Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * A devfreq driver for NVIDIA Tegra SoCs
  4 *
  5 * Copyright (c) 2014 NVIDIA CORPORATION. All rights reserved.
  6 * Copyright (C) 2014 Google, Inc
  7 */
  8
  9#include <linux/clk.h>
 10#include <linux/cpufreq.h>
 11#include <linux/devfreq.h>
 12#include <linux/interrupt.h>
 13#include <linux/io.h>
 
 14#include <linux/module.h>
 15#include <linux/mod_devicetable.h>
 16#include <linux/platform_device.h>
 17#include <linux/pm_opp.h>
 18#include <linux/reset.h>
 
 
 
 19
 20#include "governor.h"
 21
 22#define ACTMON_GLB_STATUS					0x0
 23#define ACTMON_GLB_PERIOD_CTRL					0x4
 24
 25#define ACTMON_DEV_CTRL						0x0
 26#define ACTMON_DEV_CTRL_K_VAL_SHIFT				10
 27#define ACTMON_DEV_CTRL_ENB_PERIODIC				BIT(18)
 28#define ACTMON_DEV_CTRL_AVG_BELOW_WMARK_EN			BIT(20)
 29#define ACTMON_DEV_CTRL_AVG_ABOVE_WMARK_EN			BIT(21)
 30#define ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_NUM_SHIFT	23
 31#define ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_NUM_SHIFT	26
 32#define ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN		BIT(29)
 33#define ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN		BIT(30)
 34#define ACTMON_DEV_CTRL_ENB					BIT(31)
 35
 
 
 36#define ACTMON_DEV_UPPER_WMARK					0x4
 37#define ACTMON_DEV_LOWER_WMARK					0x8
 38#define ACTMON_DEV_INIT_AVG					0xc
 39#define ACTMON_DEV_AVG_UPPER_WMARK				0x10
 40#define ACTMON_DEV_AVG_LOWER_WMARK				0x14
 41#define ACTMON_DEV_COUNT_WEIGHT					0x18
 42#define ACTMON_DEV_AVG_COUNT					0x20
 43#define ACTMON_DEV_INTR_STATUS					0x24
 44
 45#define ACTMON_INTR_STATUS_CLEAR				0xffffffff
 46
 47#define ACTMON_DEV_INTR_CONSECUTIVE_UPPER			BIT(31)
 48#define ACTMON_DEV_INTR_CONSECUTIVE_LOWER			BIT(30)
 49
 50#define ACTMON_ABOVE_WMARK_WINDOW				1
 51#define ACTMON_BELOW_WMARK_WINDOW				3
 52#define ACTMON_BOOST_FREQ_STEP					16000
 53
 54/*
 55 * Activity counter is incremented every 256 memory transactions, and each
 56 * transaction takes 4 EMC clocks for Tegra124; So the COUNT_WEIGHT is
 57 * 4 * 256 = 1024.
 58 */
 59#define ACTMON_COUNT_WEIGHT					0x400
 60
 61/*
 62 * ACTMON_AVERAGE_WINDOW_LOG2: default value for @DEV_CTRL_K_VAL, which
 63 * translates to 2 ^ (K_VAL + 1). ex: 2 ^ (6 + 1) = 128
 64 */
 65#define ACTMON_AVERAGE_WINDOW_LOG2			6
 66#define ACTMON_SAMPLING_PERIOD				12 /* ms */
 67#define ACTMON_DEFAULT_AVG_BAND				6  /* 1/10 of % */
 68
 69#define KHZ							1000
 70
 
 
 71/* Assume that the bus is saturated if the utilization is 25% */
 72#define BUS_SATURATION_RATIO					25
 73
 74/**
 75 * struct tegra_devfreq_device_config - configuration specific to an ACTMON
 76 * device
 77 *
 78 * Coefficients and thresholds are percentages unless otherwise noted
 79 */
 80struct tegra_devfreq_device_config {
 81	u32		offset;
 82	u32		irq_mask;
 83
 84	/* Factors applied to boost_freq every consecutive watermark breach */
 85	unsigned int	boost_up_coeff;
 86	unsigned int	boost_down_coeff;
 87
 88	/* Define the watermark bounds when applied to the current avg */
 89	unsigned int	boost_up_threshold;
 90	unsigned int	boost_down_threshold;
 91
 92	/*
 93	 * Threshold of activity (cycles) below which the CPU frequency isn't
 94	 * to be taken into account. This is to avoid increasing the EMC
 95	 * frequency when the CPU is very busy but not accessing the bus often.
 
 96	 */
 97	u32		avg_dependency_threshold;
 98};
 99
100enum tegra_actmon_device {
101	MCALL = 0,
102	MCCPU,
103};
104
105static struct tegra_devfreq_device_config actmon_device_configs[] = {
106	{
107		/* MCALL: All memory accesses (including from the CPUs) */
108		.offset = 0x1c0,
109		.irq_mask = 1 << 26,
110		.boost_up_coeff = 200,
111		.boost_down_coeff = 50,
112		.boost_up_threshold = 60,
113		.boost_down_threshold = 40,
114	},
115	{
116		/* MCCPU: memory accesses from the CPUs */
117		.offset = 0x200,
118		.irq_mask = 1 << 25,
119		.boost_up_coeff = 800,
120		.boost_down_coeff = 90,
121		.boost_up_threshold = 27,
122		.boost_down_threshold = 10,
123		.avg_dependency_threshold = 50000,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
124	},
125};
126
127/**
128 * struct tegra_devfreq_device - state specific to an ACTMON device
129 *
130 * Frequencies are in kHz.
131 */
132struct tegra_devfreq_device {
133	const struct tegra_devfreq_device_config *config;
134	void __iomem *regs;
135
136	/* Average event count sampled in the last interrupt */
137	u32 avg_count;
138
139	/*
140	 * Extra frequency to increase the target by due to consecutive
141	 * watermark breaches.
142	 */
143	unsigned long boost_freq;
144
145	/* Optimal frequency calculated from the stats for this device */
146	unsigned long target_freq;
147};
148
 
 
 
 
 
 
149struct tegra_devfreq {
150	struct devfreq		*devfreq;
151
152	struct reset_control	*reset;
153	struct clk		*clock;
154	void __iomem		*regs;
155
156	struct clk		*emc_clock;
157	unsigned long		max_freq;
158	unsigned long		cur_freq;
159	struct notifier_block	rate_change_nb;
 
 
 
 
 
160
161	struct tegra_devfreq_device devices[ARRAY_SIZE(actmon_device_configs)];
162
163	int irq;
 
 
164};
165
166struct tegra_actmon_emc_ratio {
167	unsigned long cpu_freq;
168	unsigned long emc_freq;
169};
170
171static struct tegra_actmon_emc_ratio actmon_emc_ratios[] = {
172	{ 1400000, ULONG_MAX },
173	{ 1200000,    750000 },
174	{ 1100000,    600000 },
175	{ 1000000,    500000 },
176	{  800000,    375000 },
177	{  500000,    200000 },
178	{  250000,    100000 },
179};
180
181static u32 actmon_readl(struct tegra_devfreq *tegra, u32 offset)
182{
183	return readl_relaxed(tegra->regs + offset);
184}
185
186static void actmon_writel(struct tegra_devfreq *tegra, u32 val, u32 offset)
187{
188	writel_relaxed(val, tegra->regs + offset);
189}
190
191static u32 device_readl(struct tegra_devfreq_device *dev, u32 offset)
192{
193	return readl_relaxed(dev->regs + offset);
194}
195
196static void device_writel(struct tegra_devfreq_device *dev, u32 val,
197			  u32 offset)
198{
199	writel_relaxed(val, dev->regs + offset);
200}
201
202static unsigned long do_percent(unsigned long val, unsigned int pct)
203{
204	return val * pct / 100;
 
 
 
 
 
 
 
205}
206
207static void tegra_devfreq_update_avg_wmark(struct tegra_devfreq *tegra,
208					   struct tegra_devfreq_device *dev)
209{
210	u32 avg = dev->avg_count;
211	u32 avg_band_freq = tegra->max_freq * ACTMON_DEFAULT_AVG_BAND / KHZ;
212	u32 band = avg_band_freq * ACTMON_SAMPLING_PERIOD;
 
213
 
214	device_writel(dev, avg + band, ACTMON_DEV_AVG_UPPER_WMARK);
215
216	avg = max(dev->avg_count, band);
217	device_writel(dev, avg - band, ACTMON_DEV_AVG_LOWER_WMARK);
218}
219
220static void tegra_devfreq_update_wmark(struct tegra_devfreq *tegra,
221				       struct tegra_devfreq_device *dev)
222{
223	u32 val = tegra->cur_freq * ACTMON_SAMPLING_PERIOD;
224
225	device_writel(dev, do_percent(val, dev->config->boost_up_threshold),
226		      ACTMON_DEV_UPPER_WMARK);
227
228	device_writel(dev, do_percent(val, dev->config->boost_down_threshold),
229		      ACTMON_DEV_LOWER_WMARK);
230}
231
232static void actmon_write_barrier(struct tegra_devfreq *tegra)
233{
234	/* ensure the update has reached the ACTMON */
235	readl(tegra->regs + ACTMON_GLB_STATUS);
236}
237
238static void actmon_isr_device(struct tegra_devfreq *tegra,
239			      struct tegra_devfreq_device *dev)
240{
241	u32 intr_status, dev_ctrl;
242
243	dev->avg_count = device_readl(dev, ACTMON_DEV_AVG_COUNT);
244	tegra_devfreq_update_avg_wmark(tegra, dev);
245
246	intr_status = device_readl(dev, ACTMON_DEV_INTR_STATUS);
247	dev_ctrl = device_readl(dev, ACTMON_DEV_CTRL);
248
249	if (intr_status & ACTMON_DEV_INTR_CONSECUTIVE_UPPER) {
250		/*
251		 * new_boost = min(old_boost * up_coef + step, max_freq)
252		 */
253		dev->boost_freq = do_percent(dev->boost_freq,
254					     dev->config->boost_up_coeff);
255		dev->boost_freq += ACTMON_BOOST_FREQ_STEP;
256
257		dev_ctrl |= ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN;
258
259		if (dev->boost_freq >= tegra->max_freq)
 
260			dev->boost_freq = tegra->max_freq;
261		else
262			dev_ctrl |= ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN;
263	} else if (intr_status & ACTMON_DEV_INTR_CONSECUTIVE_LOWER) {
264		/*
265		 * new_boost = old_boost * down_coef
266		 * or 0 if (old_boost * down_coef < step / 2)
267		 */
268		dev->boost_freq = do_percent(dev->boost_freq,
269					     dev->config->boost_down_coeff);
270
271		dev_ctrl |= ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN;
272
273		if (dev->boost_freq < (ACTMON_BOOST_FREQ_STEP >> 1))
274			dev->boost_freq = 0;
275		else
276			dev_ctrl |= ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN;
277	}
278
279	if (dev->config->avg_dependency_threshold) {
280		if (dev->avg_count >= dev->config->avg_dependency_threshold)
281			dev_ctrl |= ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN;
282		else if (dev->boost_freq == 0)
283			dev_ctrl &= ~ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN;
 
 
284	}
285
286	device_writel(dev, dev_ctrl, ACTMON_DEV_CTRL);
287
288	device_writel(dev, ACTMON_INTR_STATUS_CLEAR, ACTMON_DEV_INTR_STATUS);
289
290	actmon_write_barrier(tegra);
291}
292
293static unsigned long actmon_cpu_to_emc_rate(struct tegra_devfreq *tegra,
294					    unsigned long cpu_freq)
295{
296	unsigned int i;
297	struct tegra_actmon_emc_ratio *ratio = actmon_emc_ratios;
298
299	for (i = 0; i < ARRAY_SIZE(actmon_emc_ratios); i++, ratio++) {
300		if (cpu_freq >= ratio->cpu_freq) {
301			if (ratio->emc_freq >= tegra->max_freq)
302				return tegra->max_freq;
303			else
304				return ratio->emc_freq;
305		}
306	}
307
308	return 0;
309}
310
 
 
 
 
 
 
 
 
 
 
 
 
 
311static void actmon_update_target(struct tegra_devfreq *tegra,
312				 struct tegra_devfreq_device *dev)
313{
314	unsigned long cpu_freq = 0;
315	unsigned long static_cpu_emc_freq = 0;
316	unsigned int avg_sustain_coef;
317
318	if (dev->config->avg_dependency_threshold) {
319		cpu_freq = cpufreq_get(0);
320		static_cpu_emc_freq = actmon_cpu_to_emc_rate(tegra, cpu_freq);
321	}
322
323	dev->target_freq = dev->avg_count / ACTMON_SAMPLING_PERIOD;
324	avg_sustain_coef = 100 * 100 / dev->config->boost_up_threshold;
325	dev->target_freq = do_percent(dev->target_freq, avg_sustain_coef);
326	dev->target_freq += dev->boost_freq;
327
328	if (dev->avg_count >= dev->config->avg_dependency_threshold)
329		dev->target_freq = max(dev->target_freq, static_cpu_emc_freq);
 
 
 
330}
331
332static irqreturn_t actmon_thread_isr(int irq, void *data)
333{
334	struct tegra_devfreq *tegra = data;
335	bool handled = false;
336	unsigned int i;
337	u32 val;
338
339	mutex_lock(&tegra->devfreq->lock);
340
341	val = actmon_readl(tegra, ACTMON_GLB_STATUS);
342	for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) {
343		if (val & tegra->devices[i].config->irq_mask) {
344			actmon_isr_device(tegra, tegra->devices + i);
345			handled = true;
346		}
347	}
348
349	if (handled)
350		update_devfreq(tegra->devfreq);
351
352	mutex_unlock(&tegra->devfreq->lock);
353
354	return handled ? IRQ_HANDLED : IRQ_NONE;
355}
356
357static int tegra_actmon_rate_notify_cb(struct notifier_block *nb,
358				       unsigned long action, void *ptr)
359{
360	struct clk_notifier_data *data = ptr;
361	struct tegra_devfreq *tegra;
362	struct tegra_devfreq_device *dev;
363	unsigned int i;
364
365	if (action != POST_RATE_CHANGE)
366		return NOTIFY_OK;
367
368	tegra = container_of(nb, struct tegra_devfreq, rate_change_nb);
369
370	tegra->cur_freq = data->new_rate / KHZ;
371
372	for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) {
373		dev = &tegra->devices[i];
374
375		tegra_devfreq_update_wmark(tegra, dev);
376	}
377
378	actmon_write_barrier(tegra);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
379
380	return NOTIFY_OK;
381}
382
383static void tegra_actmon_configure_device(struct tegra_devfreq *tegra,
384					  struct tegra_devfreq_device *dev)
385{
386	u32 val = 0;
387
 
 
 
388	dev->target_freq = tegra->cur_freq;
389
390	dev->avg_count = tegra->cur_freq * ACTMON_SAMPLING_PERIOD;
391	device_writel(dev, dev->avg_count, ACTMON_DEV_INIT_AVG);
392
393	tegra_devfreq_update_avg_wmark(tegra, dev);
394	tegra_devfreq_update_wmark(tegra, dev);
395
396	device_writel(dev, ACTMON_COUNT_WEIGHT, ACTMON_DEV_COUNT_WEIGHT);
397	device_writel(dev, ACTMON_INTR_STATUS_CLEAR, ACTMON_DEV_INTR_STATUS);
398
399	val |= ACTMON_DEV_CTRL_ENB_PERIODIC;
400	val |= (ACTMON_AVERAGE_WINDOW_LOG2 - 1)
401		<< ACTMON_DEV_CTRL_K_VAL_SHIFT;
402	val |= (ACTMON_BELOW_WMARK_WINDOW - 1)
403		<< ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_NUM_SHIFT;
404	val |= (ACTMON_ABOVE_WMARK_WINDOW - 1)
405		<< ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_NUM_SHIFT;
406	val |= ACTMON_DEV_CTRL_AVG_ABOVE_WMARK_EN;
407	val |= ACTMON_DEV_CTRL_AVG_BELOW_WMARK_EN;
408	val |= ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN;
409	val |= ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN;
410	val |= ACTMON_DEV_CTRL_ENB;
411
412	device_writel(dev, val, ACTMON_DEV_CTRL);
413}
414
415static void tegra_actmon_start(struct tegra_devfreq *tegra)
416{
 
417	unsigned int i;
418
419	disable_irq(tegra->irq);
 
 
 
 
 
420
421	actmon_writel(tegra, ACTMON_SAMPLING_PERIOD - 1,
 
 
 
 
 
 
 
 
422		      ACTMON_GLB_PERIOD_CTRL);
423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
424	for (i = 0; i < ARRAY_SIZE(tegra->devices); i++)
425		tegra_actmon_configure_device(tegra, &tegra->devices[i]);
426
427	actmon_write_barrier(tegra);
 
 
 
 
 
 
 
 
 
 
 
 
 
428
429	enable_irq(tegra->irq);
 
 
 
 
 
 
 
 
 
430}
431
432static void tegra_actmon_stop(struct tegra_devfreq *tegra)
433{
434	unsigned int i;
435
436	disable_irq(tegra->irq);
 
437
438	for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) {
439		device_writel(&tegra->devices[i], 0x00000000, ACTMON_DEV_CTRL);
440		device_writel(&tegra->devices[i], ACTMON_INTR_STATUS_CLEAR,
441			      ACTMON_DEV_INTR_STATUS);
442	}
443
444	actmon_write_barrier(tegra);
 
 
 
 
 
 
445
446	enable_irq(tegra->irq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
447}
448
449static int tegra_devfreq_target(struct device *dev, unsigned long *freq,
450				u32 flags)
451{
452	struct tegra_devfreq *tegra = dev_get_drvdata(dev);
453	struct devfreq *devfreq = tegra->devfreq;
454	struct dev_pm_opp *opp;
455	unsigned long rate;
456	int err;
457
458	opp = devfreq_recommended_opp(dev, freq, flags);
459	if (IS_ERR(opp)) {
460		dev_err(dev, "Failed to find opp for %lu Hz\n", *freq);
461		return PTR_ERR(opp);
462	}
463	rate = dev_pm_opp_get_freq(opp);
464	dev_pm_opp_put(opp);
465
466	err = clk_set_min_rate(tegra->emc_clock, rate);
467	if (err)
468		return err;
469
470	err = clk_set_rate(tegra->emc_clock, 0);
471	if (err)
472		goto restore_min_rate;
473
474	return 0;
475
476restore_min_rate:
477	clk_set_min_rate(tegra->emc_clock, devfreq->previous_freq);
478
479	return err;
480}
481
482static int tegra_devfreq_get_dev_status(struct device *dev,
483					struct devfreq_dev_status *stat)
484{
485	struct tegra_devfreq *tegra = dev_get_drvdata(dev);
486	struct tegra_devfreq_device *actmon_dev;
487	unsigned long cur_freq;
488
489	cur_freq = READ_ONCE(tegra->cur_freq);
490
491	/* To be used by the tegra governor */
492	stat->private_data = tegra;
493
494	/* The below are to be used by the other governors */
495	stat->current_frequency = cur_freq * KHZ;
496
497	actmon_dev = &tegra->devices[MCALL];
498
499	/* Number of cycles spent on memory access */
500	stat->busy_time = device_readl(actmon_dev, ACTMON_DEV_AVG_COUNT);
501
502	/* The bus can be considered to be saturated way before 100% */
503	stat->busy_time *= 100 / BUS_SATURATION_RATIO;
504
505	/* Number of cycles in a sampling period */
506	stat->total_time = ACTMON_SAMPLING_PERIOD * cur_freq;
507
508	stat->busy_time = min(stat->busy_time, stat->total_time);
509
510	return 0;
511}
512
513static struct devfreq_dev_profile tegra_devfreq_profile = {
514	.polling_ms	= 0,
515	.target		= tegra_devfreq_target,
516	.get_dev_status	= tegra_devfreq_get_dev_status,
 
517};
518
519static int tegra_governor_get_target(struct devfreq *devfreq,
520				     unsigned long *freq)
521{
522	struct devfreq_dev_status *stat;
523	struct tegra_devfreq *tegra;
524	struct tegra_devfreq_device *dev;
525	unsigned long target_freq = 0;
526	unsigned int i;
527	int err;
528
529	err = devfreq_update_stats(devfreq);
530	if (err)
531		return err;
532
533	stat = &devfreq->last_status;
534
535	tegra = stat->private_data;
536
537	for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) {
538		dev = &tegra->devices[i];
539
540		actmon_update_target(tegra, dev);
541
542		target_freq = max(target_freq, dev->target_freq);
543	}
544
 
 
 
 
 
545	*freq = target_freq * KHZ;
546
547	return 0;
548}
549
550static int tegra_governor_event_handler(struct devfreq *devfreq,
551					unsigned int event, void *data)
552{
553	struct tegra_devfreq *tegra = dev_get_drvdata(devfreq->dev.parent);
 
 
 
 
 
 
 
 
554
555	switch (event) {
556	case DEVFREQ_GOV_START:
557		devfreq_monitor_start(devfreq);
558		tegra_actmon_start(tegra);
559		break;
560
561	case DEVFREQ_GOV_STOP:
562		tegra_actmon_stop(tegra);
563		devfreq_monitor_stop(devfreq);
564		break;
565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
566	case DEVFREQ_GOV_SUSPEND:
567		tegra_actmon_stop(tegra);
568		devfreq_monitor_suspend(devfreq);
569		break;
570
571	case DEVFREQ_GOV_RESUME:
572		devfreq_monitor_resume(devfreq);
573		tegra_actmon_start(tegra);
574		break;
575	}
576
577	return 0;
578}
579
580static struct devfreq_governor tegra_devfreq_governor = {
581	.name = "tegra_actmon",
 
 
 
582	.get_target_freq = tegra_governor_get_target,
583	.event_handler = tegra_governor_event_handler,
584	.immutable = true,
585};
586
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
587static int tegra_devfreq_probe(struct platform_device *pdev)
588{
589	struct tegra_devfreq *tegra;
590	struct tegra_devfreq_device *dev;
 
 
591	unsigned int i;
592	unsigned long rate;
593	int err;
 
 
 
 
 
 
 
594
595	tegra = devm_kzalloc(&pdev->dev, sizeof(*tegra), GFP_KERNEL);
596	if (!tegra)
597		return -ENOMEM;
598
 
 
599	tegra->regs = devm_platform_ioremap_resource(pdev, 0);
600	if (IS_ERR(tegra->regs))
601		return PTR_ERR(tegra->regs);
602
603	tegra->reset = devm_reset_control_get(&pdev->dev, "actmon");
604	if (IS_ERR(tegra->reset)) {
605		dev_err(&pdev->dev, "Failed to get reset\n");
606		return PTR_ERR(tegra->reset);
607	}
608
609	tegra->clock = devm_clk_get(&pdev->dev, "actmon");
610	if (IS_ERR(tegra->clock)) {
611		dev_err(&pdev->dev, "Failed to get actmon clock\n");
612		return PTR_ERR(tegra->clock);
613	}
614
615	tegra->emc_clock = devm_clk_get(&pdev->dev, "emc");
616	if (IS_ERR(tegra->emc_clock)) {
617		dev_err(&pdev->dev, "Failed to get emc clock\n");
618		return PTR_ERR(tegra->emc_clock);
619	}
620
621	tegra->irq = platform_get_irq(pdev, 0);
622	if (tegra->irq < 0) {
623		err = tegra->irq;
624		dev_err(&pdev->dev, "Failed to get IRQ: %d\n", err);
625		return err;
626	}
627
628	reset_control_assert(tegra->reset);
629
630	err = clk_prepare_enable(tegra->clock);
 
 
 
 
631	if (err) {
632		dev_err(&pdev->dev,
633			"Failed to prepare and enable ACTMON clock\n");
634		return err;
635	}
636
637	reset_control_deassert(tegra->reset);
 
 
 
 
638
639	tegra->max_freq = clk_round_rate(tegra->emc_clock, ULONG_MAX) / KHZ;
640	tegra->cur_freq = clk_get_rate(tegra->emc_clock) / KHZ;
 
 
 
641
642	for (i = 0; i < ARRAY_SIZE(actmon_device_configs); i++) {
643		dev = tegra->devices + i;
644		dev->config = actmon_device_configs + i;
645		dev->regs = tegra->regs + dev->config->offset;
 
 
 
 
646	}
647
648	for (rate = 0; rate <= tegra->max_freq * KHZ; rate++) {
649		rate = clk_round_rate(tegra->emc_clock, rate);
650
651		err = dev_pm_opp_add(&pdev->dev, rate, 0);
652		if (err) {
653			dev_err(&pdev->dev, "Failed to add OPP: %d\n", err);
654			goto remove_opps;
655		}
656	}
657
658	platform_set_drvdata(pdev, tegra);
659
660	tegra->rate_change_nb.notifier_call = tegra_actmon_rate_notify_cb;
661	err = clk_notifier_register(tegra->emc_clock, &tegra->rate_change_nb);
662	if (err) {
663		dev_err(&pdev->dev,
664			"Failed to register rate change notifier\n");
665		goto remove_opps;
666	}
667
668	err = devfreq_add_governor(&tegra_devfreq_governor);
 
 
 
669	if (err) {
670		dev_err(&pdev->dev, "Failed to add governor: %d\n", err);
671		goto unreg_notifier;
672	}
673
674	tegra_devfreq_profile.initial_freq = clk_get_rate(tegra->emc_clock);
675	tegra->devfreq = devfreq_add_device(&pdev->dev,
676					    &tegra_devfreq_profile,
677					    "tegra_actmon",
678					    NULL);
679	if (IS_ERR(tegra->devfreq)) {
680		err = PTR_ERR(tegra->devfreq);
681		goto remove_governor;
682	}
683
684	err = devm_request_threaded_irq(&pdev->dev, tegra->irq, NULL,
685					actmon_thread_isr, IRQF_ONESHOT,
686					"tegra-devfreq", tegra);
687	if (err) {
688		dev_err(&pdev->dev, "Interrupt request failed: %d\n", err);
689		goto remove_devfreq;
690	}
691
692	return 0;
693
694remove_devfreq:
695	devfreq_remove_device(tegra->devfreq);
696
697remove_governor:
698	devfreq_remove_governor(&tegra_devfreq_governor);
699
700unreg_notifier:
701	clk_notifier_unregister(tegra->emc_clock, &tegra->rate_change_nb);
702
703remove_opps:
704	dev_pm_opp_remove_all_dynamic(&pdev->dev);
705
706	reset_control_reset(tegra->reset);
707	clk_disable_unprepare(tegra->clock);
708
709	return err;
710}
711
712static int tegra_devfreq_remove(struct platform_device *pdev)
713{
714	struct tegra_devfreq *tegra = platform_get_drvdata(pdev);
715
716	devfreq_remove_device(tegra->devfreq);
717	devfreq_remove_governor(&tegra_devfreq_governor);
718
719	clk_notifier_unregister(tegra->emc_clock, &tegra->rate_change_nb);
720	dev_pm_opp_remove_all_dynamic(&pdev->dev);
721
722	reset_control_reset(tegra->reset);
723	clk_disable_unprepare(tegra->clock);
 
724
725	return 0;
726}
 
 
727
728static const struct of_device_id tegra_devfreq_of_match[] = {
729	{ .compatible = "nvidia,tegra30-actmon" },
730	{ .compatible = "nvidia,tegra124-actmon" },
731	{ },
732};
733
734MODULE_DEVICE_TABLE(of, tegra_devfreq_of_match);
735
736static struct platform_driver tegra_devfreq_driver = {
737	.probe	= tegra_devfreq_probe,
738	.remove	= tegra_devfreq_remove,
739	.driver = {
740		.name = "tegra-devfreq",
741		.of_match_table = tegra_devfreq_of_match,
742	},
743};
744module_platform_driver(tegra_devfreq_driver);
745
746MODULE_LICENSE("GPL v2");
747MODULE_DESCRIPTION("Tegra devfreq driver");
748MODULE_AUTHOR("Tomeu Vizoso <tomeu.vizoso@collabora.com>");
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * A devfreq driver for NVIDIA Tegra SoCs
  4 *
  5 * Copyright (c) 2014 NVIDIA CORPORATION. All rights reserved.
  6 * Copyright (C) 2014 Google, Inc
  7 */
  8
  9#include <linux/clk.h>
 10#include <linux/cpufreq.h>
 11#include <linux/devfreq.h>
 12#include <linux/interrupt.h>
 13#include <linux/io.h>
 14#include <linux/irq.h>
 15#include <linux/module.h>
 16#include <linux/of.h>
 17#include <linux/platform_device.h>
 18#include <linux/pm_opp.h>
 19#include <linux/reset.h>
 20#include <linux/workqueue.h>
 21
 22#include <soc/tegra/fuse.h>
 23
 24#include "governor.h"
 25
 26#define ACTMON_GLB_STATUS					0x0
 27#define ACTMON_GLB_PERIOD_CTRL					0x4
 28
 29#define ACTMON_DEV_CTRL						0x0
 30#define ACTMON_DEV_CTRL_K_VAL_SHIFT				10
 31#define ACTMON_DEV_CTRL_ENB_PERIODIC				BIT(18)
 32#define ACTMON_DEV_CTRL_AVG_BELOW_WMARK_EN			BIT(20)
 33#define ACTMON_DEV_CTRL_AVG_ABOVE_WMARK_EN			BIT(21)
 34#define ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_NUM_SHIFT	23
 35#define ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_NUM_SHIFT	26
 36#define ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN		BIT(29)
 37#define ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN		BIT(30)
 38#define ACTMON_DEV_CTRL_ENB					BIT(31)
 39
 40#define ACTMON_DEV_CTRL_STOP					0x00000000
 41
 42#define ACTMON_DEV_UPPER_WMARK					0x4
 43#define ACTMON_DEV_LOWER_WMARK					0x8
 44#define ACTMON_DEV_INIT_AVG					0xc
 45#define ACTMON_DEV_AVG_UPPER_WMARK				0x10
 46#define ACTMON_DEV_AVG_LOWER_WMARK				0x14
 47#define ACTMON_DEV_COUNT_WEIGHT					0x18
 48#define ACTMON_DEV_AVG_COUNT					0x20
 49#define ACTMON_DEV_INTR_STATUS					0x24
 50
 51#define ACTMON_INTR_STATUS_CLEAR				0xffffffff
 52
 53#define ACTMON_DEV_INTR_CONSECUTIVE_UPPER			BIT(31)
 54#define ACTMON_DEV_INTR_CONSECUTIVE_LOWER			BIT(30)
 55
 56#define ACTMON_ABOVE_WMARK_WINDOW				1
 57#define ACTMON_BELOW_WMARK_WINDOW				3
 58#define ACTMON_BOOST_FREQ_STEP					16000
 59
 60/*
 
 
 
 
 
 
 
 61 * ACTMON_AVERAGE_WINDOW_LOG2: default value for @DEV_CTRL_K_VAL, which
 62 * translates to 2 ^ (K_VAL + 1). ex: 2 ^ (6 + 1) = 128
 63 */
 64#define ACTMON_AVERAGE_WINDOW_LOG2			6
 65#define ACTMON_SAMPLING_PERIOD				12 /* ms */
 66#define ACTMON_DEFAULT_AVG_BAND				6  /* 1/10 of % */
 67
 68#define KHZ							1000
 69
 70#define KHZ_MAX						(ULONG_MAX / KHZ)
 71
 72/* Assume that the bus is saturated if the utilization is 25% */
 73#define BUS_SATURATION_RATIO					25
 74
 75/**
 76 * struct tegra_devfreq_device_config - configuration specific to an ACTMON
 77 * device
 78 *
 79 * Coefficients and thresholds are percentages unless otherwise noted
 80 */
 81struct tegra_devfreq_device_config {
 82	u32		offset;
 83	u32		irq_mask;
 84
 85	/* Factors applied to boost_freq every consecutive watermark breach */
 86	unsigned int	boost_up_coeff;
 87	unsigned int	boost_down_coeff;
 88
 89	/* Define the watermark bounds when applied to the current avg */
 90	unsigned int	boost_up_threshold;
 91	unsigned int	boost_down_threshold;
 92
 93	/*
 94	 * Threshold of activity (cycles translated to kHz) below which the
 95	 * CPU frequency isn't to be taken into account. This is to avoid
 96	 * increasing the EMC frequency when the CPU is very busy but not
 97	 * accessing the bus often.
 98	 */
 99	u32		avg_dependency_threshold;
100};
101
102enum tegra_actmon_device {
103	MCALL = 0,
104	MCCPU,
105};
106
107static const struct tegra_devfreq_device_config tegra124_device_configs[] = {
108	{
109		/* MCALL: All memory accesses (including from the CPUs) */
110		.offset = 0x1c0,
111		.irq_mask = 1 << 26,
112		.boost_up_coeff = 200,
113		.boost_down_coeff = 50,
114		.boost_up_threshold = 60,
115		.boost_down_threshold = 40,
116	},
117	{
118		/* MCCPU: memory accesses from the CPUs */
119		.offset = 0x200,
120		.irq_mask = 1 << 25,
121		.boost_up_coeff = 800,
122		.boost_down_coeff = 40,
123		.boost_up_threshold = 27,
124		.boost_down_threshold = 10,
125		.avg_dependency_threshold = 16000, /* 16MHz in kHz units */
126	},
127};
128
129static const struct tegra_devfreq_device_config tegra30_device_configs[] = {
130	{
131		/* MCALL: All memory accesses (including from the CPUs) */
132		.offset = 0x1c0,
133		.irq_mask = 1 << 26,
134		.boost_up_coeff = 200,
135		.boost_down_coeff = 50,
136		.boost_up_threshold = 20,
137		.boost_down_threshold = 10,
138	},
139	{
140		/* MCCPU: memory accesses from the CPUs */
141		.offset = 0x200,
142		.irq_mask = 1 << 25,
143		.boost_up_coeff = 800,
144		.boost_down_coeff = 40,
145		.boost_up_threshold = 27,
146		.boost_down_threshold = 10,
147		.avg_dependency_threshold = 16000, /* 16MHz in kHz units */
148	},
149};
150
151/**
152 * struct tegra_devfreq_device - state specific to an ACTMON device
153 *
154 * Frequencies are in kHz.
155 */
156struct tegra_devfreq_device {
157	const struct tegra_devfreq_device_config *config;
158	void __iomem *regs;
159
160	/* Average event count sampled in the last interrupt */
161	u32 avg_count;
162
163	/*
164	 * Extra frequency to increase the target by due to consecutive
165	 * watermark breaches.
166	 */
167	unsigned long boost_freq;
168
169	/* Optimal frequency calculated from the stats for this device */
170	unsigned long target_freq;
171};
172
173struct tegra_devfreq_soc_data {
174	const struct tegra_devfreq_device_config *configs;
175	/* Weight value for count measurements */
176	unsigned int count_weight;
177};
178
179struct tegra_devfreq {
180	struct devfreq		*devfreq;
181
182	struct reset_control	*reset;
183	struct clk		*clock;
184	void __iomem		*regs;
185
186	struct clk		*emc_clock;
187	unsigned long		max_freq;
188	unsigned long		cur_freq;
189	struct notifier_block	clk_rate_change_nb;
190
191	struct delayed_work	cpufreq_update_work;
192	struct notifier_block	cpu_rate_change_nb;
193
194	struct tegra_devfreq_device devices[2];
195
196	unsigned int		irq;
197
198	bool			started;
199
200	const struct tegra_devfreq_soc_data *soc;
201};
202
203struct tegra_actmon_emc_ratio {
204	unsigned long cpu_freq;
205	unsigned long emc_freq;
206};
207
208static const struct tegra_actmon_emc_ratio actmon_emc_ratios[] = {
209	{ 1400000,    KHZ_MAX },
210	{ 1200000,    750000 },
211	{ 1100000,    600000 },
212	{ 1000000,    500000 },
213	{  800000,    375000 },
214	{  500000,    200000 },
215	{  250000,    100000 },
216};
217
218static u32 actmon_readl(struct tegra_devfreq *tegra, u32 offset)
219{
220	return readl_relaxed(tegra->regs + offset);
221}
222
223static void actmon_writel(struct tegra_devfreq *tegra, u32 val, u32 offset)
224{
225	writel_relaxed(val, tegra->regs + offset);
226}
227
228static u32 device_readl(struct tegra_devfreq_device *dev, u32 offset)
229{
230	return readl_relaxed(dev->regs + offset);
231}
232
233static void device_writel(struct tegra_devfreq_device *dev, u32 val,
234			  u32 offset)
235{
236	writel_relaxed(val, dev->regs + offset);
237}
238
239static unsigned long do_percent(unsigned long long val, unsigned int pct)
240{
241	val = val * pct;
242	do_div(val, 100);
243
244	/*
245	 * High freq + high boosting percent + large polling interval are
246	 * resulting in integer overflow when watermarks are calculated.
247	 */
248	return min_t(u64, val, U32_MAX);
249}
250
251static void tegra_devfreq_update_avg_wmark(struct tegra_devfreq *tegra,
252					   struct tegra_devfreq_device *dev)
253{
 
254	u32 avg_band_freq = tegra->max_freq * ACTMON_DEFAULT_AVG_BAND / KHZ;
255	u32 band = avg_band_freq * tegra->devfreq->profile->polling_ms;
256	u32 avg;
257
258	avg = min(dev->avg_count, U32_MAX - band);
259	device_writel(dev, avg + band, ACTMON_DEV_AVG_UPPER_WMARK);
260
261	avg = max(dev->avg_count, band);
262	device_writel(dev, avg - band, ACTMON_DEV_AVG_LOWER_WMARK);
263}
264
265static void tegra_devfreq_update_wmark(struct tegra_devfreq *tegra,
266				       struct tegra_devfreq_device *dev)
267{
268	u32 val = tegra->cur_freq * tegra->devfreq->profile->polling_ms;
269
270	device_writel(dev, do_percent(val, dev->config->boost_up_threshold),
271		      ACTMON_DEV_UPPER_WMARK);
272
273	device_writel(dev, do_percent(val, dev->config->boost_down_threshold),
274		      ACTMON_DEV_LOWER_WMARK);
275}
276
 
 
 
 
 
 
277static void actmon_isr_device(struct tegra_devfreq *tegra,
278			      struct tegra_devfreq_device *dev)
279{
280	u32 intr_status, dev_ctrl;
281
282	dev->avg_count = device_readl(dev, ACTMON_DEV_AVG_COUNT);
283	tegra_devfreq_update_avg_wmark(tegra, dev);
284
285	intr_status = device_readl(dev, ACTMON_DEV_INTR_STATUS);
286	dev_ctrl = device_readl(dev, ACTMON_DEV_CTRL);
287
288	if (intr_status & ACTMON_DEV_INTR_CONSECUTIVE_UPPER) {
289		/*
290		 * new_boost = min(old_boost * up_coef + step, max_freq)
291		 */
292		dev->boost_freq = do_percent(dev->boost_freq,
293					     dev->config->boost_up_coeff);
294		dev->boost_freq += ACTMON_BOOST_FREQ_STEP;
295
296		dev_ctrl |= ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN;
297
298		if (dev->boost_freq >= tegra->max_freq) {
299			dev_ctrl &= ~ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN;
300			dev->boost_freq = tegra->max_freq;
301		}
 
302	} else if (intr_status & ACTMON_DEV_INTR_CONSECUTIVE_LOWER) {
303		/*
304		 * new_boost = old_boost * down_coef
305		 * or 0 if (old_boost * down_coef < step / 2)
306		 */
307		dev->boost_freq = do_percent(dev->boost_freq,
308					     dev->config->boost_down_coeff);
309
310		dev_ctrl |= ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN;
311
312		if (dev->boost_freq < (ACTMON_BOOST_FREQ_STEP >> 1)) {
 
 
 
 
 
 
 
 
 
313			dev_ctrl &= ~ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN;
314			dev->boost_freq = 0;
315		}
316	}
317
318	device_writel(dev, dev_ctrl, ACTMON_DEV_CTRL);
319
320	device_writel(dev, ACTMON_INTR_STATUS_CLEAR, ACTMON_DEV_INTR_STATUS);
 
 
321}
322
323static unsigned long actmon_cpu_to_emc_rate(struct tegra_devfreq *tegra,
324					    unsigned long cpu_freq)
325{
326	unsigned int i;
327	const struct tegra_actmon_emc_ratio *ratio = actmon_emc_ratios;
328
329	for (i = 0; i < ARRAY_SIZE(actmon_emc_ratios); i++, ratio++) {
330		if (cpu_freq >= ratio->cpu_freq) {
331			if (ratio->emc_freq >= tegra->max_freq)
332				return tegra->max_freq;
333			else
334				return ratio->emc_freq;
335		}
336	}
337
338	return 0;
339}
340
341static unsigned long actmon_device_target_freq(struct tegra_devfreq *tegra,
342					       struct tegra_devfreq_device *dev)
343{
344	unsigned int avg_sustain_coef;
345	unsigned long target_freq;
346
347	target_freq = dev->avg_count / tegra->devfreq->profile->polling_ms;
348	avg_sustain_coef = 100 * 100 / dev->config->boost_up_threshold;
349	target_freq = do_percent(target_freq, avg_sustain_coef);
350
351	return target_freq;
352}
353
354static void actmon_update_target(struct tegra_devfreq *tegra,
355				 struct tegra_devfreq_device *dev)
356{
357	unsigned long cpu_freq = 0;
358	unsigned long static_cpu_emc_freq = 0;
 
359
360	dev->target_freq = actmon_device_target_freq(tegra, dev);
 
 
 
361
362	if (dev->config->avg_dependency_threshold &&
363	    dev->config->avg_dependency_threshold <= dev->target_freq) {
364		cpu_freq = cpufreq_quick_get(0);
365		static_cpu_emc_freq = actmon_cpu_to_emc_rate(tegra, cpu_freq);
366
367		dev->target_freq += dev->boost_freq;
368		dev->target_freq = max(dev->target_freq, static_cpu_emc_freq);
369	} else {
370		dev->target_freq += dev->boost_freq;
371	}
372}
373
374static irqreturn_t actmon_thread_isr(int irq, void *data)
375{
376	struct tegra_devfreq *tegra = data;
377	bool handled = false;
378	unsigned int i;
379	u32 val;
380
381	mutex_lock(&tegra->devfreq->lock);
382
383	val = actmon_readl(tegra, ACTMON_GLB_STATUS);
384	for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) {
385		if (val & tegra->devices[i].config->irq_mask) {
386			actmon_isr_device(tegra, tegra->devices + i);
387			handled = true;
388		}
389	}
390
391	if (handled)
392		update_devfreq(tegra->devfreq);
393
394	mutex_unlock(&tegra->devfreq->lock);
395
396	return handled ? IRQ_HANDLED : IRQ_NONE;
397}
398
399static int tegra_actmon_clk_notify_cb(struct notifier_block *nb,
400				      unsigned long action, void *ptr)
401{
402	struct clk_notifier_data *data = ptr;
403	struct tegra_devfreq *tegra;
404	struct tegra_devfreq_device *dev;
405	unsigned int i;
406
407	if (action != POST_RATE_CHANGE)
408		return NOTIFY_OK;
409
410	tegra = container_of(nb, struct tegra_devfreq, clk_rate_change_nb);
411
412	tegra->cur_freq = data->new_rate / KHZ;
413
414	for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) {
415		dev = &tegra->devices[i];
416
417		tegra_devfreq_update_wmark(tegra, dev);
418	}
419
420	return NOTIFY_OK;
421}
422
423static void tegra_actmon_delayed_update(struct work_struct *work)
424{
425	struct tegra_devfreq *tegra = container_of(work, struct tegra_devfreq,
426						   cpufreq_update_work.work);
427
428	mutex_lock(&tegra->devfreq->lock);
429	update_devfreq(tegra->devfreq);
430	mutex_unlock(&tegra->devfreq->lock);
431}
432
433static unsigned long
434tegra_actmon_cpufreq_contribution(struct tegra_devfreq *tegra,
435				  unsigned int cpu_freq)
436{
437	struct tegra_devfreq_device *actmon_dev = &tegra->devices[MCCPU];
438	unsigned long static_cpu_emc_freq, dev_freq;
439
440	dev_freq = actmon_device_target_freq(tegra, actmon_dev);
441
442	/* check whether CPU's freq is taken into account at all */
443	if (dev_freq < actmon_dev->config->avg_dependency_threshold)
444		return 0;
445
446	static_cpu_emc_freq = actmon_cpu_to_emc_rate(tegra, cpu_freq);
447
448	if (dev_freq + actmon_dev->boost_freq >= static_cpu_emc_freq)
449		return 0;
450
451	return static_cpu_emc_freq;
452}
453
454static int tegra_actmon_cpu_notify_cb(struct notifier_block *nb,
455				      unsigned long action, void *ptr)
456{
457	struct cpufreq_freqs *freqs = ptr;
458	struct tegra_devfreq *tegra;
459	unsigned long old, new, delay;
460
461	if (action != CPUFREQ_POSTCHANGE)
462		return NOTIFY_OK;
463
464	tegra = container_of(nb, struct tegra_devfreq, cpu_rate_change_nb);
465
466	/*
467	 * Quickly check whether CPU frequency should be taken into account
468	 * at all, without blocking CPUFreq's core.
469	 */
470	if (mutex_trylock(&tegra->devfreq->lock)) {
471		old = tegra_actmon_cpufreq_contribution(tegra, freqs->old);
472		new = tegra_actmon_cpufreq_contribution(tegra, freqs->new);
473		mutex_unlock(&tegra->devfreq->lock);
474
475		/*
476		 * If CPU's frequency shouldn't be taken into account at
477		 * the moment, then there is no need to update the devfreq's
478		 * state because ISR will re-check CPU's frequency on the
479		 * next interrupt.
480		 */
481		if (old == new)
482			return NOTIFY_OK;
483	}
484
485	/*
486	 * CPUFreq driver should support CPUFREQ_ASYNC_NOTIFICATION in order
487	 * to allow asynchronous notifications. This means we can't block
488	 * here for too long, otherwise CPUFreq's core will complain with a
489	 * warning splat.
490	 */
491	delay = msecs_to_jiffies(ACTMON_SAMPLING_PERIOD);
492	schedule_delayed_work(&tegra->cpufreq_update_work, delay);
493
494	return NOTIFY_OK;
495}
496
497static void tegra_actmon_configure_device(struct tegra_devfreq *tegra,
498					  struct tegra_devfreq_device *dev)
499{
500	u32 val = 0;
501
502	/* reset boosting on governor's restart */
503	dev->boost_freq = 0;
504
505	dev->target_freq = tegra->cur_freq;
506
507	dev->avg_count = tegra->cur_freq * tegra->devfreq->profile->polling_ms;
508	device_writel(dev, dev->avg_count, ACTMON_DEV_INIT_AVG);
509
510	tegra_devfreq_update_avg_wmark(tegra, dev);
511	tegra_devfreq_update_wmark(tegra, dev);
512
513	device_writel(dev, tegra->soc->count_weight, ACTMON_DEV_COUNT_WEIGHT);
514	device_writel(dev, ACTMON_INTR_STATUS_CLEAR, ACTMON_DEV_INTR_STATUS);
515
516	val |= ACTMON_DEV_CTRL_ENB_PERIODIC;
517	val |= (ACTMON_AVERAGE_WINDOW_LOG2 - 1)
518		<< ACTMON_DEV_CTRL_K_VAL_SHIFT;
519	val |= (ACTMON_BELOW_WMARK_WINDOW - 1)
520		<< ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_NUM_SHIFT;
521	val |= (ACTMON_ABOVE_WMARK_WINDOW - 1)
522		<< ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_NUM_SHIFT;
523	val |= ACTMON_DEV_CTRL_AVG_ABOVE_WMARK_EN;
524	val |= ACTMON_DEV_CTRL_AVG_BELOW_WMARK_EN;
 
525	val |= ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN;
526	val |= ACTMON_DEV_CTRL_ENB;
527
528	device_writel(dev, val, ACTMON_DEV_CTRL);
529}
530
531static void tegra_actmon_stop_devices(struct tegra_devfreq *tegra)
532{
533	struct tegra_devfreq_device *dev = tegra->devices;
534	unsigned int i;
535
536	for (i = 0; i < ARRAY_SIZE(tegra->devices); i++, dev++) {
537		device_writel(dev, ACTMON_DEV_CTRL_STOP, ACTMON_DEV_CTRL);
538		device_writel(dev, ACTMON_INTR_STATUS_CLEAR,
539			      ACTMON_DEV_INTR_STATUS);
540	}
541}
542
543static int tegra_actmon_resume(struct tegra_devfreq *tegra)
544{
545	unsigned int i;
546	int err;
547
548	if (!tegra->devfreq->profile->polling_ms || !tegra->started)
549		return 0;
550
551	actmon_writel(tegra, tegra->devfreq->profile->polling_ms - 1,
552		      ACTMON_GLB_PERIOD_CTRL);
553
554	/*
555	 * CLK notifications are needed in order to reconfigure the upper
556	 * consecutive watermark in accordance to the actual clock rate
557	 * to avoid unnecessary upper interrupts.
558	 */
559	err = clk_notifier_register(tegra->emc_clock,
560				    &tegra->clk_rate_change_nb);
561	if (err) {
562		dev_err(tegra->devfreq->dev.parent,
563			"Failed to register rate change notifier\n");
564		return err;
565	}
566
567	tegra->cur_freq = clk_get_rate(tegra->emc_clock) / KHZ;
568
569	for (i = 0; i < ARRAY_SIZE(tegra->devices); i++)
570		tegra_actmon_configure_device(tegra, &tegra->devices[i]);
571
572	/*
573	 * We are estimating CPU's memory bandwidth requirement based on
574	 * amount of memory accesses and system's load, judging by CPU's
575	 * frequency. We also don't want to receive events about CPU's
576	 * frequency transaction when governor is stopped, hence notifier
577	 * is registered dynamically.
578	 */
579	err = cpufreq_register_notifier(&tegra->cpu_rate_change_nb,
580					CPUFREQ_TRANSITION_NOTIFIER);
581	if (err) {
582		dev_err(tegra->devfreq->dev.parent,
583			"Failed to register rate change notifier: %d\n", err);
584		goto err_stop;
585	}
586
587	enable_irq(tegra->irq);
588
589	return 0;
590
591err_stop:
592	tegra_actmon_stop_devices(tegra);
593
594	clk_notifier_unregister(tegra->emc_clock, &tegra->clk_rate_change_nb);
595
596	return err;
597}
598
599static int tegra_actmon_start(struct tegra_devfreq *tegra)
600{
601	int ret = 0;
602
603	if (!tegra->started) {
604		tegra->started = true;
605
606		ret = tegra_actmon_resume(tegra);
607		if (ret)
608			tegra->started = false;
 
609	}
610
611	return ret;
612}
613
614static void tegra_actmon_pause(struct tegra_devfreq *tegra)
615{
616	if (!tegra->devfreq->profile->polling_ms || !tegra->started)
617		return;
618
619	disable_irq(tegra->irq);
620
621	cpufreq_unregister_notifier(&tegra->cpu_rate_change_nb,
622				    CPUFREQ_TRANSITION_NOTIFIER);
623
624	cancel_delayed_work_sync(&tegra->cpufreq_update_work);
625
626	tegra_actmon_stop_devices(tegra);
627
628	clk_notifier_unregister(tegra->emc_clock, &tegra->clk_rate_change_nb);
629}
630
631static void tegra_actmon_stop(struct tegra_devfreq *tegra)
632{
633	tegra_actmon_pause(tegra);
634	tegra->started = false;
635}
636
637static int tegra_devfreq_target(struct device *dev, unsigned long *freq,
638				u32 flags)
639{
 
 
640	struct dev_pm_opp *opp;
641	int ret;
 
642
643	opp = devfreq_recommended_opp(dev, freq, flags);
644	if (IS_ERR(opp)) {
645		dev_err(dev, "Failed to find opp for %lu Hz\n", *freq);
646		return PTR_ERR(opp);
647	}
 
 
648
649	ret = dev_pm_opp_set_opp(dev, opp);
650	dev_pm_opp_put(opp);
 
 
 
 
 
 
 
 
 
 
651
652	return ret;
653}
654
655static int tegra_devfreq_get_dev_status(struct device *dev,
656					struct devfreq_dev_status *stat)
657{
658	struct tegra_devfreq *tegra = dev_get_drvdata(dev);
659	struct tegra_devfreq_device *actmon_dev;
660	unsigned long cur_freq;
661
662	cur_freq = READ_ONCE(tegra->cur_freq);
663
664	/* To be used by the tegra governor */
665	stat->private_data = tegra;
666
667	/* The below are to be used by the other governors */
668	stat->current_frequency = cur_freq * KHZ;
669
670	actmon_dev = &tegra->devices[MCALL];
671
672	/* Number of cycles spent on memory access */
673	stat->busy_time = device_readl(actmon_dev, ACTMON_DEV_AVG_COUNT);
674
675	/* The bus can be considered to be saturated way before 100% */
676	stat->busy_time *= 100 / BUS_SATURATION_RATIO;
677
678	/* Number of cycles in a sampling period */
679	stat->total_time = tegra->devfreq->profile->polling_ms * cur_freq;
680
681	stat->busy_time = min(stat->busy_time, stat->total_time);
682
683	return 0;
684}
685
686static struct devfreq_dev_profile tegra_devfreq_profile = {
687	.polling_ms	= ACTMON_SAMPLING_PERIOD,
688	.target		= tegra_devfreq_target,
689	.get_dev_status	= tegra_devfreq_get_dev_status,
690	.is_cooling_device = true,
691};
692
693static int tegra_governor_get_target(struct devfreq *devfreq,
694				     unsigned long *freq)
695{
696	struct devfreq_dev_status *stat;
697	struct tegra_devfreq *tegra;
698	struct tegra_devfreq_device *dev;
699	unsigned long target_freq = 0;
700	unsigned int i;
701	int err;
702
703	err = devfreq_update_stats(devfreq);
704	if (err)
705		return err;
706
707	stat = &devfreq->last_status;
708
709	tegra = stat->private_data;
710
711	for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) {
712		dev = &tegra->devices[i];
713
714		actmon_update_target(tegra, dev);
715
716		target_freq = max(target_freq, dev->target_freq);
717	}
718
719	/*
720	 * tegra-devfreq driver operates with KHz units, while OPP table
721	 * entries use Hz units. Hence we need to convert the units for the
722	 * devfreq core.
723	 */
724	*freq = target_freq * KHZ;
725
726	return 0;
727}
728
729static int tegra_governor_event_handler(struct devfreq *devfreq,
730					unsigned int event, void *data)
731{
732	struct tegra_devfreq *tegra = dev_get_drvdata(devfreq->dev.parent);
733	unsigned int *new_delay = data;
734	int ret = 0;
735
736	/*
737	 * Couple devfreq-device with the governor early because it is
738	 * needed at the moment of governor's start (used by ISR).
739	 */
740	tegra->devfreq = devfreq;
741
742	switch (event) {
743	case DEVFREQ_GOV_START:
744		devfreq_monitor_start(devfreq);
745		ret = tegra_actmon_start(tegra);
746		break;
747
748	case DEVFREQ_GOV_STOP:
749		tegra_actmon_stop(tegra);
750		devfreq_monitor_stop(devfreq);
751		break;
752
753	case DEVFREQ_GOV_UPDATE_INTERVAL:
754		/*
755		 * ACTMON hardware supports up to 256 milliseconds for the
756		 * sampling period.
757		 */
758		if (*new_delay > 256) {
759			ret = -EINVAL;
760			break;
761		}
762
763		tegra_actmon_pause(tegra);
764		devfreq_update_interval(devfreq, new_delay);
765		ret = tegra_actmon_resume(tegra);
766		break;
767
768	case DEVFREQ_GOV_SUSPEND:
769		tegra_actmon_stop(tegra);
770		devfreq_monitor_suspend(devfreq);
771		break;
772
773	case DEVFREQ_GOV_RESUME:
774		devfreq_monitor_resume(devfreq);
775		ret = tegra_actmon_start(tegra);
776		break;
777	}
778
779	return ret;
780}
781
782static struct devfreq_governor tegra_devfreq_governor = {
783	.name = "tegra_actmon",
784	.attrs = DEVFREQ_GOV_ATTR_POLLING_INTERVAL,
785	.flags = DEVFREQ_GOV_FLAG_IMMUTABLE
786		| DEVFREQ_GOV_FLAG_IRQ_DRIVEN,
787	.get_target_freq = tegra_governor_get_target,
788	.event_handler = tegra_governor_event_handler,
 
789};
790
791static void devm_tegra_devfreq_deinit_hw(void *data)
792{
793	struct tegra_devfreq *tegra = data;
794
795	reset_control_reset(tegra->reset);
796	clk_disable_unprepare(tegra->clock);
797}
798
799static int devm_tegra_devfreq_init_hw(struct device *dev,
800				      struct tegra_devfreq *tegra)
801{
802	int err;
803
804	err = clk_prepare_enable(tegra->clock);
805	if (err) {
806		dev_err(dev, "Failed to prepare and enable ACTMON clock\n");
807		return err;
808	}
809
810	err = devm_add_action_or_reset(dev, devm_tegra_devfreq_deinit_hw,
811				       tegra);
812	if (err)
813		return err;
814
815	err = reset_control_reset(tegra->reset);
816	if (err) {
817		dev_err(dev, "Failed to reset hardware: %d\n", err);
818		return err;
819	}
820
821	return err;
822}
823
824static int tegra_devfreq_config_clks_nop(struct device *dev,
825					 struct opp_table *opp_table,
826					 struct dev_pm_opp *opp, void *data,
827					 bool scaling_down)
828{
829	/* We want to skip clk configuration via dev_pm_opp_set_opp() */
830	return 0;
831}
832
833static int tegra_devfreq_probe(struct platform_device *pdev)
834{
835	u32 hw_version = BIT(tegra_sku_info.soc_speedo_id);
836	struct tegra_devfreq_device *dev;
837	struct tegra_devfreq *tegra;
838	struct devfreq *devfreq;
839	unsigned int i;
840	long rate;
841	int err;
842	const char *clk_names[] = { "actmon", NULL };
843	struct dev_pm_opp_config config = {
844		.supported_hw = &hw_version,
845		.supported_hw_count = 1,
846		.clk_names = clk_names,
847		.config_clks = tegra_devfreq_config_clks_nop,
848	};
849
850	tegra = devm_kzalloc(&pdev->dev, sizeof(*tegra), GFP_KERNEL);
851	if (!tegra)
852		return -ENOMEM;
853
854	tegra->soc = of_device_get_match_data(&pdev->dev);
855
856	tegra->regs = devm_platform_ioremap_resource(pdev, 0);
857	if (IS_ERR(tegra->regs))
858		return PTR_ERR(tegra->regs);
859
860	tegra->reset = devm_reset_control_get(&pdev->dev, "actmon");
861	if (IS_ERR(tegra->reset)) {
862		dev_err(&pdev->dev, "Failed to get reset\n");
863		return PTR_ERR(tegra->reset);
864	}
865
866	tegra->clock = devm_clk_get(&pdev->dev, "actmon");
867	if (IS_ERR(tegra->clock)) {
868		dev_err(&pdev->dev, "Failed to get actmon clock\n");
869		return PTR_ERR(tegra->clock);
870	}
871
872	tegra->emc_clock = devm_clk_get(&pdev->dev, "emc");
873	if (IS_ERR(tegra->emc_clock))
874		return dev_err_probe(&pdev->dev, PTR_ERR(tegra->emc_clock),
875				     "Failed to get emc clock\n");
 
876
877	err = platform_get_irq(pdev, 0);
878	if (err < 0)
 
 
879		return err;
 
880
881	tegra->irq = err;
882
883	irq_set_status_flags(tegra->irq, IRQ_NOAUTOEN);
884
885	err = devm_request_threaded_irq(&pdev->dev, tegra->irq, NULL,
886					actmon_thread_isr, IRQF_ONESHOT,
887					"tegra-devfreq", tegra);
888	if (err) {
889		dev_err(&pdev->dev, "Interrupt request failed: %d\n", err);
 
890		return err;
891	}
892
893	err = devm_pm_opp_set_config(&pdev->dev, &config);
894	if (err) {
895		dev_err(&pdev->dev, "Failed to set OPP config: %d\n", err);
896		return err;
897	}
898
899	err = devm_pm_opp_of_add_table_indexed(&pdev->dev, 0);
900	if (err) {
901		dev_err(&pdev->dev, "Failed to add OPP table: %d\n", err);
902		return err;
903	}
904
905	err = devm_tegra_devfreq_init_hw(&pdev->dev, tegra);
906	if (err)
907		return err;
908
909	rate = clk_round_rate(tegra->emc_clock, ULONG_MAX);
910	if (rate <= 0) {
911		dev_err(&pdev->dev, "Failed to round clock rate: %ld\n", rate);
912		return rate ?: -EINVAL;
913	}
914
915	tegra->max_freq = rate / KHZ;
 
916
917	for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) {
918		dev = tegra->devices + i;
919		dev->config = tegra->soc->configs + i;
920		dev->regs = tegra->regs + dev->config->offset;
 
921	}
922
923	platform_set_drvdata(pdev, tegra);
924
925	tegra->clk_rate_change_nb.notifier_call = tegra_actmon_clk_notify_cb;
926	tegra->cpu_rate_change_nb.notifier_call = tegra_actmon_cpu_notify_cb;
 
 
 
 
 
927
928	INIT_DELAYED_WORK(&tegra->cpufreq_update_work,
929			  tegra_actmon_delayed_update);
930
931	err = devm_devfreq_add_governor(&pdev->dev, &tegra_devfreq_governor);
932	if (err) {
933		dev_err(&pdev->dev, "Failed to add governor: %d\n", err);
934		return err;
935	}
936
937	tegra_devfreq_profile.initial_freq = clk_get_rate(tegra->emc_clock);
 
 
 
 
 
 
 
 
938
939	devfreq = devm_devfreq_add_device(&pdev->dev, &tegra_devfreq_profile,
940					  "tegra_actmon", NULL);
941	if (IS_ERR(devfreq)) {
942		dev_err(&pdev->dev, "Failed to add device: %pe\n", devfreq);
943		return PTR_ERR(devfreq);
 
944	}
945
946	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
947}
948
949static const struct tegra_devfreq_soc_data tegra124_soc = {
950	.configs = tegra124_device_configs,
 
 
 
 
951
952	/*
953	 * Activity counter is incremented every 256 memory transactions,
954	 * and each transaction takes 4 EMC clocks.
955	 */
956	.count_weight = 4 * 256,
957};
958
959static const struct tegra_devfreq_soc_data tegra30_soc = {
960	.configs = tegra30_device_configs,
961	.count_weight = 2 * 256,
962};
963
964static const struct of_device_id tegra_devfreq_of_match[] = {
965	{ .compatible = "nvidia,tegra30-actmon",  .data = &tegra30_soc, },
966	{ .compatible = "nvidia,tegra124-actmon", .data = &tegra124_soc, },
967	{ },
968};
969
970MODULE_DEVICE_TABLE(of, tegra_devfreq_of_match);
971
972static struct platform_driver tegra_devfreq_driver = {
973	.probe	= tegra_devfreq_probe,
 
974	.driver = {
975		.name = "tegra-devfreq",
976		.of_match_table = tegra_devfreq_of_match,
977	},
978};
979module_platform_driver(tegra_devfreq_driver);
980
981MODULE_LICENSE("GPL v2");
982MODULE_DESCRIPTION("Tegra devfreq driver");
983MODULE_AUTHOR("Tomeu Vizoso <tomeu.vizoso@collabora.com>");