Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Time of day based timer functions.
4 *
5 * S390 version
6 * Copyright IBM Corp. 1999, 2008
7 * Author(s): Hartmut Penner (hp@de.ibm.com),
8 * Martin Schwidefsky (schwidefsky@de.ibm.com),
9 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
10 *
11 * Derived from "arch/i386/kernel/time.c"
12 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
13 */
14
15#define KMSG_COMPONENT "time"
16#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18#include <linux/kernel_stat.h>
19#include <linux/errno.h>
20#include <linux/export.h>
21#include <linux/sched.h>
22#include <linux/sched/clock.h>
23#include <linux/kernel.h>
24#include <linux/param.h>
25#include <linux/string.h>
26#include <linux/mm.h>
27#include <linux/interrupt.h>
28#include <linux/cpu.h>
29#include <linux/stop_machine.h>
30#include <linux/time.h>
31#include <linux/device.h>
32#include <linux/delay.h>
33#include <linux/init.h>
34#include <linux/smp.h>
35#include <linux/types.h>
36#include <linux/profile.h>
37#include <linux/timex.h>
38#include <linux/notifier.h>
39#include <linux/timekeeper_internal.h>
40#include <linux/clockchips.h>
41#include <linux/gfp.h>
42#include <linux/kprobes.h>
43#include <linux/uaccess.h>
44#include <asm/facility.h>
45#include <asm/delay.h>
46#include <asm/div64.h>
47#include <asm/vdso.h>
48#include <asm/irq.h>
49#include <asm/irq_regs.h>
50#include <asm/vtimer.h>
51#include <asm/stp.h>
52#include <asm/cio.h>
53#include "entry.h"
54
55unsigned char tod_clock_base[16] __aligned(8) = {
56 /* Force to data section. */
57 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
58 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
59};
60EXPORT_SYMBOL_GPL(tod_clock_base);
61
62u64 clock_comparator_max = -1ULL;
63EXPORT_SYMBOL_GPL(clock_comparator_max);
64
65static DEFINE_PER_CPU(struct clock_event_device, comparators);
66
67ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier);
68EXPORT_SYMBOL(s390_epoch_delta_notifier);
69
70unsigned char ptff_function_mask[16];
71
72static unsigned long long lpar_offset;
73static unsigned long long initial_leap_seconds;
74static unsigned long long tod_steering_end;
75static long long tod_steering_delta;
76
77/*
78 * Get time offsets with PTFF
79 */
80void __init time_early_init(void)
81{
82 struct ptff_qto qto;
83 struct ptff_qui qui;
84
85 /* Initialize TOD steering parameters */
86 tod_steering_end = *(unsigned long long *) &tod_clock_base[1];
87 vdso_data->ts_end = tod_steering_end;
88
89 if (!test_facility(28))
90 return;
91
92 ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF);
93
94 /* get LPAR offset */
95 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
96 lpar_offset = qto.tod_epoch_difference;
97
98 /* get initial leap seconds */
99 if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0)
100 initial_leap_seconds = (unsigned long long)
101 ((long) qui.old_leap * 4096000000L);
102}
103
104/*
105 * Scheduler clock - returns current time in nanosec units.
106 */
107unsigned long long notrace sched_clock(void)
108{
109 return tod_to_ns(get_tod_clock_monotonic());
110}
111NOKPROBE_SYMBOL(sched_clock);
112
113/*
114 * Monotonic_clock - returns # of nanoseconds passed since time_init()
115 */
116unsigned long long monotonic_clock(void)
117{
118 return sched_clock();
119}
120EXPORT_SYMBOL(monotonic_clock);
121
122static void ext_to_timespec64(unsigned char *clk, struct timespec64 *xt)
123{
124 unsigned long long high, low, rem, sec, nsec;
125
126 /* Split extendnd TOD clock to micro-seconds and sub-micro-seconds */
127 high = (*(unsigned long long *) clk) >> 4;
128 low = (*(unsigned long long *)&clk[7]) << 4;
129 /* Calculate seconds and nano-seconds */
130 sec = high;
131 rem = do_div(sec, 1000000);
132 nsec = (((low >> 32) + (rem << 32)) * 1000) >> 32;
133
134 xt->tv_sec = sec;
135 xt->tv_nsec = nsec;
136}
137
138void clock_comparator_work(void)
139{
140 struct clock_event_device *cd;
141
142 S390_lowcore.clock_comparator = clock_comparator_max;
143 cd = this_cpu_ptr(&comparators);
144 cd->event_handler(cd);
145}
146
147static int s390_next_event(unsigned long delta,
148 struct clock_event_device *evt)
149{
150 S390_lowcore.clock_comparator = get_tod_clock() + delta;
151 set_clock_comparator(S390_lowcore.clock_comparator);
152 return 0;
153}
154
155/*
156 * Set up lowcore and control register of the current cpu to
157 * enable TOD clock and clock comparator interrupts.
158 */
159void init_cpu_timer(void)
160{
161 struct clock_event_device *cd;
162 int cpu;
163
164 S390_lowcore.clock_comparator = clock_comparator_max;
165 set_clock_comparator(S390_lowcore.clock_comparator);
166
167 cpu = smp_processor_id();
168 cd = &per_cpu(comparators, cpu);
169 cd->name = "comparator";
170 cd->features = CLOCK_EVT_FEAT_ONESHOT;
171 cd->mult = 16777;
172 cd->shift = 12;
173 cd->min_delta_ns = 1;
174 cd->min_delta_ticks = 1;
175 cd->max_delta_ns = LONG_MAX;
176 cd->max_delta_ticks = ULONG_MAX;
177 cd->rating = 400;
178 cd->cpumask = cpumask_of(cpu);
179 cd->set_next_event = s390_next_event;
180
181 clockevents_register_device(cd);
182
183 /* Enable clock comparator timer interrupt. */
184 __ctl_set_bit(0,11);
185
186 /* Always allow the timing alert external interrupt. */
187 __ctl_set_bit(0, 4);
188}
189
190static void clock_comparator_interrupt(struct ext_code ext_code,
191 unsigned int param32,
192 unsigned long param64)
193{
194 inc_irq_stat(IRQEXT_CLK);
195 if (S390_lowcore.clock_comparator == clock_comparator_max)
196 set_clock_comparator(S390_lowcore.clock_comparator);
197}
198
199static void stp_timing_alert(struct stp_irq_parm *);
200
201static void timing_alert_interrupt(struct ext_code ext_code,
202 unsigned int param32, unsigned long param64)
203{
204 inc_irq_stat(IRQEXT_TLA);
205 if (param32 & 0x00038000)
206 stp_timing_alert((struct stp_irq_parm *) ¶m32);
207}
208
209static void stp_reset(void);
210
211void read_persistent_clock64(struct timespec64 *ts)
212{
213 unsigned char clk[STORE_CLOCK_EXT_SIZE];
214 __u64 delta;
215
216 delta = initial_leap_seconds + TOD_UNIX_EPOCH;
217 get_tod_clock_ext(clk);
218 *(__u64 *) &clk[1] -= delta;
219 if (*(__u64 *) &clk[1] > delta)
220 clk[0]--;
221 ext_to_timespec64(clk, ts);
222}
223
224void __init read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
225 struct timespec64 *boot_offset)
226{
227 unsigned char clk[STORE_CLOCK_EXT_SIZE];
228 struct timespec64 boot_time;
229 __u64 delta;
230
231 delta = initial_leap_seconds + TOD_UNIX_EPOCH;
232 memcpy(clk, tod_clock_base, STORE_CLOCK_EXT_SIZE);
233 *(__u64 *)&clk[1] -= delta;
234 if (*(__u64 *)&clk[1] > delta)
235 clk[0]--;
236 ext_to_timespec64(clk, &boot_time);
237
238 read_persistent_clock64(wall_time);
239 *boot_offset = timespec64_sub(*wall_time, boot_time);
240}
241
242static u64 read_tod_clock(struct clocksource *cs)
243{
244 unsigned long long now, adj;
245
246 preempt_disable(); /* protect from changes to steering parameters */
247 now = get_tod_clock();
248 adj = tod_steering_end - now;
249 if (unlikely((s64) adj >= 0))
250 /*
251 * manually steer by 1 cycle every 2^16 cycles. This
252 * corresponds to shifting the tod delta by 15. 1s is
253 * therefore steered in ~9h. The adjust will decrease
254 * over time, until it finally reaches 0.
255 */
256 now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15);
257 preempt_enable();
258 return now;
259}
260
261static struct clocksource clocksource_tod = {
262 .name = "tod",
263 .rating = 400,
264 .read = read_tod_clock,
265 .mask = -1ULL,
266 .mult = 1000,
267 .shift = 12,
268 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
269};
270
271struct clocksource * __init clocksource_default_clock(void)
272{
273 return &clocksource_tod;
274}
275
276void update_vsyscall(struct timekeeper *tk)
277{
278 u64 nsecps;
279
280 if (tk->tkr_mono.clock != &clocksource_tod)
281 return;
282
283 /* Make userspace gettimeofday spin until we're done. */
284 ++vdso_data->tb_update_count;
285 smp_wmb();
286 vdso_data->xtime_tod_stamp = tk->tkr_mono.cycle_last;
287 vdso_data->xtime_clock_sec = tk->xtime_sec;
288 vdso_data->xtime_clock_nsec = tk->tkr_mono.xtime_nsec;
289 vdso_data->wtom_clock_sec =
290 tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
291 vdso_data->wtom_clock_nsec = tk->tkr_mono.xtime_nsec +
292 + ((u64) tk->wall_to_monotonic.tv_nsec << tk->tkr_mono.shift);
293 nsecps = (u64) NSEC_PER_SEC << tk->tkr_mono.shift;
294 while (vdso_data->wtom_clock_nsec >= nsecps) {
295 vdso_data->wtom_clock_nsec -= nsecps;
296 vdso_data->wtom_clock_sec++;
297 }
298
299 vdso_data->xtime_coarse_sec = tk->xtime_sec;
300 vdso_data->xtime_coarse_nsec =
301 (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
302 vdso_data->wtom_coarse_sec =
303 vdso_data->xtime_coarse_sec + tk->wall_to_monotonic.tv_sec;
304 vdso_data->wtom_coarse_nsec =
305 vdso_data->xtime_coarse_nsec + tk->wall_to_monotonic.tv_nsec;
306 while (vdso_data->wtom_coarse_nsec >= NSEC_PER_SEC) {
307 vdso_data->wtom_coarse_nsec -= NSEC_PER_SEC;
308 vdso_data->wtom_coarse_sec++;
309 }
310
311 vdso_data->tk_mult = tk->tkr_mono.mult;
312 vdso_data->tk_shift = tk->tkr_mono.shift;
313 smp_wmb();
314 ++vdso_data->tb_update_count;
315}
316
317extern struct timezone sys_tz;
318
319void update_vsyscall_tz(void)
320{
321 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
322 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
323}
324
325/*
326 * Initialize the TOD clock and the CPU timer of
327 * the boot cpu.
328 */
329void __init time_init(void)
330{
331 /* Reset time synchronization interfaces. */
332 stp_reset();
333
334 /* request the clock comparator external interrupt */
335 if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
336 panic("Couldn't request external interrupt 0x1004");
337
338 /* request the timing alert external interrupt */
339 if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
340 panic("Couldn't request external interrupt 0x1406");
341
342 if (__clocksource_register(&clocksource_tod) != 0)
343 panic("Could not register TOD clock source");
344
345 /* Enable TOD clock interrupts on the boot cpu. */
346 init_cpu_timer();
347
348 /* Enable cpu timer interrupts on the boot cpu. */
349 vtime_init();
350}
351
352static DEFINE_PER_CPU(atomic_t, clock_sync_word);
353static DEFINE_MUTEX(clock_sync_mutex);
354static unsigned long clock_sync_flags;
355
356#define CLOCK_SYNC_HAS_STP 0
357#define CLOCK_SYNC_STP 1
358
359/*
360 * The get_clock function for the physical clock. It will get the current
361 * TOD clock, subtract the LPAR offset and write the result to *clock.
362 * The function returns 0 if the clock is in sync with the external time
363 * source. If the clock mode is local it will return -EOPNOTSUPP and
364 * -EAGAIN if the clock is not in sync with the external reference.
365 */
366int get_phys_clock(unsigned long *clock)
367{
368 atomic_t *sw_ptr;
369 unsigned int sw0, sw1;
370
371 sw_ptr = &get_cpu_var(clock_sync_word);
372 sw0 = atomic_read(sw_ptr);
373 *clock = get_tod_clock() - lpar_offset;
374 sw1 = atomic_read(sw_ptr);
375 put_cpu_var(clock_sync_word);
376 if (sw0 == sw1 && (sw0 & 0x80000000U))
377 /* Success: time is in sync. */
378 return 0;
379 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
380 return -EOPNOTSUPP;
381 if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
382 return -EACCES;
383 return -EAGAIN;
384}
385EXPORT_SYMBOL(get_phys_clock);
386
387/*
388 * Make get_phys_clock() return -EAGAIN.
389 */
390static void disable_sync_clock(void *dummy)
391{
392 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
393 /*
394 * Clear the in-sync bit 2^31. All get_phys_clock calls will
395 * fail until the sync bit is turned back on. In addition
396 * increase the "sequence" counter to avoid the race of an
397 * stp event and the complete recovery against get_phys_clock.
398 */
399 atomic_andnot(0x80000000, sw_ptr);
400 atomic_inc(sw_ptr);
401}
402
403/*
404 * Make get_phys_clock() return 0 again.
405 * Needs to be called from a context disabled for preemption.
406 */
407static void enable_sync_clock(void)
408{
409 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
410 atomic_or(0x80000000, sw_ptr);
411}
412
413/*
414 * Function to check if the clock is in sync.
415 */
416static inline int check_sync_clock(void)
417{
418 atomic_t *sw_ptr;
419 int rc;
420
421 sw_ptr = &get_cpu_var(clock_sync_word);
422 rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
423 put_cpu_var(clock_sync_word);
424 return rc;
425}
426
427/*
428 * Apply clock delta to the global data structures.
429 * This is called once on the CPU that performed the clock sync.
430 */
431static void clock_sync_global(unsigned long long delta)
432{
433 unsigned long now, adj;
434 struct ptff_qto qto;
435
436 /* Fixup the monotonic sched clock. */
437 *(unsigned long long *) &tod_clock_base[1] += delta;
438 if (*(unsigned long long *) &tod_clock_base[1] < delta)
439 /* Epoch overflow */
440 tod_clock_base[0]++;
441 /* Adjust TOD steering parameters. */
442 vdso_data->tb_update_count++;
443 now = get_tod_clock();
444 adj = tod_steering_end - now;
445 if (unlikely((s64) adj >= 0))
446 /* Calculate how much of the old adjustment is left. */
447 tod_steering_delta = (tod_steering_delta < 0) ?
448 -(adj >> 15) : (adj >> 15);
449 tod_steering_delta += delta;
450 if ((abs(tod_steering_delta) >> 48) != 0)
451 panic("TOD clock sync offset %lli is too large to drift\n",
452 tod_steering_delta);
453 tod_steering_end = now + (abs(tod_steering_delta) << 15);
454 vdso_data->ts_dir = (tod_steering_delta < 0) ? 0 : 1;
455 vdso_data->ts_end = tod_steering_end;
456 vdso_data->tb_update_count++;
457 /* Update LPAR offset. */
458 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
459 lpar_offset = qto.tod_epoch_difference;
460 /* Call the TOD clock change notifier. */
461 atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta);
462}
463
464/*
465 * Apply clock delta to the per-CPU data structures of this CPU.
466 * This is called for each online CPU after the call to clock_sync_global.
467 */
468static void clock_sync_local(unsigned long long delta)
469{
470 /* Add the delta to the clock comparator. */
471 if (S390_lowcore.clock_comparator != clock_comparator_max) {
472 S390_lowcore.clock_comparator += delta;
473 set_clock_comparator(S390_lowcore.clock_comparator);
474 }
475 /* Adjust the last_update_clock time-stamp. */
476 S390_lowcore.last_update_clock += delta;
477}
478
479/* Single threaded workqueue used for stp sync events */
480static struct workqueue_struct *time_sync_wq;
481
482static void __init time_init_wq(void)
483{
484 if (time_sync_wq)
485 return;
486 time_sync_wq = create_singlethread_workqueue("timesync");
487}
488
489struct clock_sync_data {
490 atomic_t cpus;
491 int in_sync;
492 unsigned long long clock_delta;
493};
494
495/*
496 * Server Time Protocol (STP) code.
497 */
498static bool stp_online;
499static struct stp_sstpi stp_info;
500static void *stp_page;
501
502static void stp_work_fn(struct work_struct *work);
503static DEFINE_MUTEX(stp_work_mutex);
504static DECLARE_WORK(stp_work, stp_work_fn);
505static struct timer_list stp_timer;
506
507static int __init early_parse_stp(char *p)
508{
509 return kstrtobool(p, &stp_online);
510}
511early_param("stp", early_parse_stp);
512
513/*
514 * Reset STP attachment.
515 */
516static void __init stp_reset(void)
517{
518 int rc;
519
520 stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
521 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
522 if (rc == 0)
523 set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
524 else if (stp_online) {
525 pr_warn("The real or virtual hardware system does not provide an STP interface\n");
526 free_page((unsigned long) stp_page);
527 stp_page = NULL;
528 stp_online = false;
529 }
530}
531
532static void stp_timeout(struct timer_list *unused)
533{
534 queue_work(time_sync_wq, &stp_work);
535}
536
537static int __init stp_init(void)
538{
539 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
540 return 0;
541 timer_setup(&stp_timer, stp_timeout, 0);
542 time_init_wq();
543 if (!stp_online)
544 return 0;
545 queue_work(time_sync_wq, &stp_work);
546 return 0;
547}
548
549arch_initcall(stp_init);
550
551/*
552 * STP timing alert. There are three causes:
553 * 1) timing status change
554 * 2) link availability change
555 * 3) time control parameter change
556 * In all three cases we are only interested in the clock source state.
557 * If a STP clock source is now available use it.
558 */
559static void stp_timing_alert(struct stp_irq_parm *intparm)
560{
561 if (intparm->tsc || intparm->lac || intparm->tcpc)
562 queue_work(time_sync_wq, &stp_work);
563}
564
565/*
566 * STP sync check machine check. This is called when the timing state
567 * changes from the synchronized state to the unsynchronized state.
568 * After a STP sync check the clock is not in sync. The machine check
569 * is broadcasted to all cpus at the same time.
570 */
571int stp_sync_check(void)
572{
573 disable_sync_clock(NULL);
574 return 1;
575}
576
577/*
578 * STP island condition machine check. This is called when an attached
579 * server attempts to communicate over an STP link and the servers
580 * have matching CTN ids and have a valid stratum-1 configuration
581 * but the configurations do not match.
582 */
583int stp_island_check(void)
584{
585 disable_sync_clock(NULL);
586 return 1;
587}
588
589void stp_queue_work(void)
590{
591 queue_work(time_sync_wq, &stp_work);
592}
593
594static int stp_sync_clock(void *data)
595{
596 struct clock_sync_data *sync = data;
597 unsigned long long clock_delta;
598 static int first;
599 int rc;
600
601 enable_sync_clock();
602 if (xchg(&first, 1) == 0) {
603 /* Wait until all other cpus entered the sync function. */
604 while (atomic_read(&sync->cpus) != 0)
605 cpu_relax();
606 rc = 0;
607 if (stp_info.todoff[0] || stp_info.todoff[1] ||
608 stp_info.todoff[2] || stp_info.todoff[3] ||
609 stp_info.tmd != 2) {
610 rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0,
611 &clock_delta);
612 if (rc == 0) {
613 sync->clock_delta = clock_delta;
614 clock_sync_global(clock_delta);
615 rc = chsc_sstpi(stp_page, &stp_info,
616 sizeof(struct stp_sstpi));
617 if (rc == 0 && stp_info.tmd != 2)
618 rc = -EAGAIN;
619 }
620 }
621 sync->in_sync = rc ? -EAGAIN : 1;
622 xchg(&first, 0);
623 } else {
624 /* Slave */
625 atomic_dec(&sync->cpus);
626 /* Wait for in_sync to be set. */
627 while (READ_ONCE(sync->in_sync) == 0)
628 __udelay(1);
629 }
630 if (sync->in_sync != 1)
631 /* Didn't work. Clear per-cpu in sync bit again. */
632 disable_sync_clock(NULL);
633 /* Apply clock delta to per-CPU fields of this CPU. */
634 clock_sync_local(sync->clock_delta);
635
636 return 0;
637}
638
639/*
640 * STP work. Check for the STP state and take over the clock
641 * synchronization if the STP clock source is usable.
642 */
643static void stp_work_fn(struct work_struct *work)
644{
645 struct clock_sync_data stp_sync;
646 int rc;
647
648 /* prevent multiple execution. */
649 mutex_lock(&stp_work_mutex);
650
651 if (!stp_online) {
652 chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
653 del_timer_sync(&stp_timer);
654 goto out_unlock;
655 }
656
657 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0, NULL);
658 if (rc)
659 goto out_unlock;
660
661 rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
662 if (rc || stp_info.c == 0)
663 goto out_unlock;
664
665 /* Skip synchronization if the clock is already in sync. */
666 if (check_sync_clock())
667 goto out_unlock;
668
669 memset(&stp_sync, 0, sizeof(stp_sync));
670 cpus_read_lock();
671 atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
672 stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask);
673 cpus_read_unlock();
674
675 if (!check_sync_clock())
676 /*
677 * There is a usable clock but the synchonization failed.
678 * Retry after a second.
679 */
680 mod_timer(&stp_timer, jiffies + HZ);
681
682out_unlock:
683 mutex_unlock(&stp_work_mutex);
684}
685
686/*
687 * STP subsys sysfs interface functions
688 */
689static struct bus_type stp_subsys = {
690 .name = "stp",
691 .dev_name = "stp",
692};
693
694static ssize_t stp_ctn_id_show(struct device *dev,
695 struct device_attribute *attr,
696 char *buf)
697{
698 if (!stp_online)
699 return -ENODATA;
700 return sprintf(buf, "%016llx\n",
701 *(unsigned long long *) stp_info.ctnid);
702}
703
704static DEVICE_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
705
706static ssize_t stp_ctn_type_show(struct device *dev,
707 struct device_attribute *attr,
708 char *buf)
709{
710 if (!stp_online)
711 return -ENODATA;
712 return sprintf(buf, "%i\n", stp_info.ctn);
713}
714
715static DEVICE_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
716
717static ssize_t stp_dst_offset_show(struct device *dev,
718 struct device_attribute *attr,
719 char *buf)
720{
721 if (!stp_online || !(stp_info.vbits & 0x2000))
722 return -ENODATA;
723 return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
724}
725
726static DEVICE_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
727
728static ssize_t stp_leap_seconds_show(struct device *dev,
729 struct device_attribute *attr,
730 char *buf)
731{
732 if (!stp_online || !(stp_info.vbits & 0x8000))
733 return -ENODATA;
734 return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
735}
736
737static DEVICE_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
738
739static ssize_t stp_stratum_show(struct device *dev,
740 struct device_attribute *attr,
741 char *buf)
742{
743 if (!stp_online)
744 return -ENODATA;
745 return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
746}
747
748static DEVICE_ATTR(stratum, 0400, stp_stratum_show, NULL);
749
750static ssize_t stp_time_offset_show(struct device *dev,
751 struct device_attribute *attr,
752 char *buf)
753{
754 if (!stp_online || !(stp_info.vbits & 0x0800))
755 return -ENODATA;
756 return sprintf(buf, "%i\n", (int) stp_info.tto);
757}
758
759static DEVICE_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
760
761static ssize_t stp_time_zone_offset_show(struct device *dev,
762 struct device_attribute *attr,
763 char *buf)
764{
765 if (!stp_online || !(stp_info.vbits & 0x4000))
766 return -ENODATA;
767 return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
768}
769
770static DEVICE_ATTR(time_zone_offset, 0400,
771 stp_time_zone_offset_show, NULL);
772
773static ssize_t stp_timing_mode_show(struct device *dev,
774 struct device_attribute *attr,
775 char *buf)
776{
777 if (!stp_online)
778 return -ENODATA;
779 return sprintf(buf, "%i\n", stp_info.tmd);
780}
781
782static DEVICE_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
783
784static ssize_t stp_timing_state_show(struct device *dev,
785 struct device_attribute *attr,
786 char *buf)
787{
788 if (!stp_online)
789 return -ENODATA;
790 return sprintf(buf, "%i\n", stp_info.tst);
791}
792
793static DEVICE_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
794
795static ssize_t stp_online_show(struct device *dev,
796 struct device_attribute *attr,
797 char *buf)
798{
799 return sprintf(buf, "%i\n", stp_online);
800}
801
802static ssize_t stp_online_store(struct device *dev,
803 struct device_attribute *attr,
804 const char *buf, size_t count)
805{
806 unsigned int value;
807
808 value = simple_strtoul(buf, NULL, 0);
809 if (value != 0 && value != 1)
810 return -EINVAL;
811 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
812 return -EOPNOTSUPP;
813 mutex_lock(&clock_sync_mutex);
814 stp_online = value;
815 if (stp_online)
816 set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
817 else
818 clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
819 queue_work(time_sync_wq, &stp_work);
820 mutex_unlock(&clock_sync_mutex);
821 return count;
822}
823
824/*
825 * Can't use DEVICE_ATTR because the attribute should be named
826 * stp/online but dev_attr_online already exists in this file ..
827 */
828static struct device_attribute dev_attr_stp_online = {
829 .attr = { .name = "online", .mode = 0600 },
830 .show = stp_online_show,
831 .store = stp_online_store,
832};
833
834static struct device_attribute *stp_attributes[] = {
835 &dev_attr_ctn_id,
836 &dev_attr_ctn_type,
837 &dev_attr_dst_offset,
838 &dev_attr_leap_seconds,
839 &dev_attr_stp_online,
840 &dev_attr_stratum,
841 &dev_attr_time_offset,
842 &dev_attr_time_zone_offset,
843 &dev_attr_timing_mode,
844 &dev_attr_timing_state,
845 NULL
846};
847
848static int __init stp_init_sysfs(void)
849{
850 struct device_attribute **attr;
851 int rc;
852
853 rc = subsys_system_register(&stp_subsys, NULL);
854 if (rc)
855 goto out;
856 for (attr = stp_attributes; *attr; attr++) {
857 rc = device_create_file(stp_subsys.dev_root, *attr);
858 if (rc)
859 goto out_unreg;
860 }
861 return 0;
862out_unreg:
863 for (; attr >= stp_attributes; attr--)
864 device_remove_file(stp_subsys.dev_root, *attr);
865 bus_unregister(&stp_subsys);
866out:
867 return rc;
868}
869
870device_initcall(stp_init_sysfs);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Time of day based timer functions.
4 *
5 * S390 version
6 * Copyright IBM Corp. 1999, 2008
7 * Author(s): Hartmut Penner (hp@de.ibm.com),
8 * Martin Schwidefsky (schwidefsky@de.ibm.com),
9 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
10 *
11 * Derived from "arch/i386/kernel/time.c"
12 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
13 */
14
15#define KMSG_COMPONENT "time"
16#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18#include <linux/kernel_stat.h>
19#include <linux/errno.h>
20#include <linux/export.h>
21#include <linux/sched.h>
22#include <linux/sched/clock.h>
23#include <linux/kernel.h>
24#include <linux/param.h>
25#include <linux/string.h>
26#include <linux/mm.h>
27#include <linux/interrupt.h>
28#include <linux/cpu.h>
29#include <linux/stop_machine.h>
30#include <linux/time.h>
31#include <linux/device.h>
32#include <linux/delay.h>
33#include <linux/init.h>
34#include <linux/smp.h>
35#include <linux/types.h>
36#include <linux/profile.h>
37#include <linux/timex.h>
38#include <linux/notifier.h>
39#include <linux/timekeeper_internal.h>
40#include <linux/clockchips.h>
41#include <linux/gfp.h>
42#include <linux/kprobes.h>
43#include <linux/uaccess.h>
44#include <asm/facility.h>
45#include <asm/delay.h>
46#include <asm/div64.h>
47#include <asm/vdso.h>
48#include <asm/irq.h>
49#include <asm/irq_regs.h>
50#include <asm/vtimer.h>
51#include <asm/stp.h>
52#include <asm/cio.h>
53#include "entry.h"
54
55unsigned char tod_clock_base[16] __aligned(8) = {
56 /* Force to data section. */
57 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
58 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
59};
60EXPORT_SYMBOL_GPL(tod_clock_base);
61
62u64 clock_comparator_max = -1ULL;
63EXPORT_SYMBOL_GPL(clock_comparator_max);
64
65static DEFINE_PER_CPU(struct clock_event_device, comparators);
66
67ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier);
68EXPORT_SYMBOL(s390_epoch_delta_notifier);
69
70unsigned char ptff_function_mask[16];
71
72static unsigned long long lpar_offset;
73static unsigned long long initial_leap_seconds;
74static unsigned long long tod_steering_end;
75static long long tod_steering_delta;
76
77/*
78 * Get time offsets with PTFF
79 */
80void __init time_early_init(void)
81{
82 struct ptff_qto qto;
83 struct ptff_qui qui;
84
85 /* Initialize TOD steering parameters */
86 tod_steering_end = *(unsigned long long *) &tod_clock_base[1];
87 vdso_data->ts_end = tod_steering_end;
88
89 if (!test_facility(28))
90 return;
91
92 ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF);
93
94 /* get LPAR offset */
95 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
96 lpar_offset = qto.tod_epoch_difference;
97
98 /* get initial leap seconds */
99 if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0)
100 initial_leap_seconds = (unsigned long long)
101 ((long) qui.old_leap * 4096000000L);
102}
103
104/*
105 * Scheduler clock - returns current time in nanosec units.
106 */
107unsigned long long notrace sched_clock(void)
108{
109 return tod_to_ns(get_tod_clock_monotonic());
110}
111NOKPROBE_SYMBOL(sched_clock);
112
113static void ext_to_timespec64(unsigned char *clk, struct timespec64 *xt)
114{
115 unsigned long long high, low, rem, sec, nsec;
116
117 /* Split extendnd TOD clock to micro-seconds and sub-micro-seconds */
118 high = (*(unsigned long long *) clk) >> 4;
119 low = (*(unsigned long long *)&clk[7]) << 4;
120 /* Calculate seconds and nano-seconds */
121 sec = high;
122 rem = do_div(sec, 1000000);
123 nsec = (((low >> 32) + (rem << 32)) * 1000) >> 32;
124
125 xt->tv_sec = sec;
126 xt->tv_nsec = nsec;
127}
128
129void clock_comparator_work(void)
130{
131 struct clock_event_device *cd;
132
133 S390_lowcore.clock_comparator = clock_comparator_max;
134 cd = this_cpu_ptr(&comparators);
135 cd->event_handler(cd);
136}
137
138static int s390_next_event(unsigned long delta,
139 struct clock_event_device *evt)
140{
141 S390_lowcore.clock_comparator = get_tod_clock() + delta;
142 set_clock_comparator(S390_lowcore.clock_comparator);
143 return 0;
144}
145
146/*
147 * Set up lowcore and control register of the current cpu to
148 * enable TOD clock and clock comparator interrupts.
149 */
150void init_cpu_timer(void)
151{
152 struct clock_event_device *cd;
153 int cpu;
154
155 S390_lowcore.clock_comparator = clock_comparator_max;
156 set_clock_comparator(S390_lowcore.clock_comparator);
157
158 cpu = smp_processor_id();
159 cd = &per_cpu(comparators, cpu);
160 cd->name = "comparator";
161 cd->features = CLOCK_EVT_FEAT_ONESHOT;
162 cd->mult = 16777;
163 cd->shift = 12;
164 cd->min_delta_ns = 1;
165 cd->min_delta_ticks = 1;
166 cd->max_delta_ns = LONG_MAX;
167 cd->max_delta_ticks = ULONG_MAX;
168 cd->rating = 400;
169 cd->cpumask = cpumask_of(cpu);
170 cd->set_next_event = s390_next_event;
171
172 clockevents_register_device(cd);
173
174 /* Enable clock comparator timer interrupt. */
175 __ctl_set_bit(0,11);
176
177 /* Always allow the timing alert external interrupt. */
178 __ctl_set_bit(0, 4);
179}
180
181static void clock_comparator_interrupt(struct ext_code ext_code,
182 unsigned int param32,
183 unsigned long param64)
184{
185 inc_irq_stat(IRQEXT_CLK);
186 if (S390_lowcore.clock_comparator == clock_comparator_max)
187 set_clock_comparator(S390_lowcore.clock_comparator);
188}
189
190static void stp_timing_alert(struct stp_irq_parm *);
191
192static void timing_alert_interrupt(struct ext_code ext_code,
193 unsigned int param32, unsigned long param64)
194{
195 inc_irq_stat(IRQEXT_TLA);
196 if (param32 & 0x00038000)
197 stp_timing_alert((struct stp_irq_parm *) ¶m32);
198}
199
200static void stp_reset(void);
201
202void read_persistent_clock64(struct timespec64 *ts)
203{
204 unsigned char clk[STORE_CLOCK_EXT_SIZE];
205 __u64 delta;
206
207 delta = initial_leap_seconds + TOD_UNIX_EPOCH;
208 get_tod_clock_ext(clk);
209 *(__u64 *) &clk[1] -= delta;
210 if (*(__u64 *) &clk[1] > delta)
211 clk[0]--;
212 ext_to_timespec64(clk, ts);
213}
214
215void __init read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
216 struct timespec64 *boot_offset)
217{
218 unsigned char clk[STORE_CLOCK_EXT_SIZE];
219 struct timespec64 boot_time;
220 __u64 delta;
221
222 delta = initial_leap_seconds + TOD_UNIX_EPOCH;
223 memcpy(clk, tod_clock_base, STORE_CLOCK_EXT_SIZE);
224 *(__u64 *)&clk[1] -= delta;
225 if (*(__u64 *)&clk[1] > delta)
226 clk[0]--;
227 ext_to_timespec64(clk, &boot_time);
228
229 read_persistent_clock64(wall_time);
230 *boot_offset = timespec64_sub(*wall_time, boot_time);
231}
232
233static u64 read_tod_clock(struct clocksource *cs)
234{
235 unsigned long long now, adj;
236
237 preempt_disable(); /* protect from changes to steering parameters */
238 now = get_tod_clock();
239 adj = tod_steering_end - now;
240 if (unlikely((s64) adj > 0))
241 /*
242 * manually steer by 1 cycle every 2^16 cycles. This
243 * corresponds to shifting the tod delta by 15. 1s is
244 * therefore steered in ~9h. The adjust will decrease
245 * over time, until it finally reaches 0.
246 */
247 now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15);
248 preempt_enable();
249 return now;
250}
251
252static struct clocksource clocksource_tod = {
253 .name = "tod",
254 .rating = 400,
255 .read = read_tod_clock,
256 .mask = CLOCKSOURCE_MASK(64),
257 .mult = 1000,
258 .shift = 12,
259 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
260};
261
262struct clocksource * __init clocksource_default_clock(void)
263{
264 return &clocksource_tod;
265}
266
267void update_vsyscall(struct timekeeper *tk)
268{
269 u64 nsecps;
270
271 if (tk->tkr_mono.clock != &clocksource_tod)
272 return;
273
274 /* Make userspace gettimeofday spin until we're done. */
275 ++vdso_data->tb_update_count;
276 smp_wmb();
277 vdso_data->xtime_tod_stamp = tk->tkr_mono.cycle_last;
278 vdso_data->xtime_clock_sec = tk->xtime_sec;
279 vdso_data->xtime_clock_nsec = tk->tkr_mono.xtime_nsec;
280 vdso_data->wtom_clock_sec =
281 tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
282 vdso_data->wtom_clock_nsec = tk->tkr_mono.xtime_nsec +
283 + ((u64) tk->wall_to_monotonic.tv_nsec << tk->tkr_mono.shift);
284 nsecps = (u64) NSEC_PER_SEC << tk->tkr_mono.shift;
285 while (vdso_data->wtom_clock_nsec >= nsecps) {
286 vdso_data->wtom_clock_nsec -= nsecps;
287 vdso_data->wtom_clock_sec++;
288 }
289
290 vdso_data->xtime_coarse_sec = tk->xtime_sec;
291 vdso_data->xtime_coarse_nsec =
292 (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
293 vdso_data->wtom_coarse_sec =
294 vdso_data->xtime_coarse_sec + tk->wall_to_monotonic.tv_sec;
295 vdso_data->wtom_coarse_nsec =
296 vdso_data->xtime_coarse_nsec + tk->wall_to_monotonic.tv_nsec;
297 while (vdso_data->wtom_coarse_nsec >= NSEC_PER_SEC) {
298 vdso_data->wtom_coarse_nsec -= NSEC_PER_SEC;
299 vdso_data->wtom_coarse_sec++;
300 }
301
302 vdso_data->tk_mult = tk->tkr_mono.mult;
303 vdso_data->tk_shift = tk->tkr_mono.shift;
304 vdso_data->hrtimer_res = hrtimer_resolution;
305 smp_wmb();
306 ++vdso_data->tb_update_count;
307}
308
309extern struct timezone sys_tz;
310
311void update_vsyscall_tz(void)
312{
313 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
314 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
315}
316
317/*
318 * Initialize the TOD clock and the CPU timer of
319 * the boot cpu.
320 */
321void __init time_init(void)
322{
323 /* Reset time synchronization interfaces. */
324 stp_reset();
325
326 /* request the clock comparator external interrupt */
327 if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
328 panic("Couldn't request external interrupt 0x1004");
329
330 /* request the timing alert external interrupt */
331 if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
332 panic("Couldn't request external interrupt 0x1406");
333
334 if (__clocksource_register(&clocksource_tod) != 0)
335 panic("Could not register TOD clock source");
336
337 /* Enable TOD clock interrupts on the boot cpu. */
338 init_cpu_timer();
339
340 /* Enable cpu timer interrupts on the boot cpu. */
341 vtime_init();
342}
343
344static DEFINE_PER_CPU(atomic_t, clock_sync_word);
345static DEFINE_MUTEX(clock_sync_mutex);
346static unsigned long clock_sync_flags;
347
348#define CLOCK_SYNC_HAS_STP 0
349#define CLOCK_SYNC_STP 1
350
351/*
352 * The get_clock function for the physical clock. It will get the current
353 * TOD clock, subtract the LPAR offset and write the result to *clock.
354 * The function returns 0 if the clock is in sync with the external time
355 * source. If the clock mode is local it will return -EOPNOTSUPP and
356 * -EAGAIN if the clock is not in sync with the external reference.
357 */
358int get_phys_clock(unsigned long *clock)
359{
360 atomic_t *sw_ptr;
361 unsigned int sw0, sw1;
362
363 sw_ptr = &get_cpu_var(clock_sync_word);
364 sw0 = atomic_read(sw_ptr);
365 *clock = get_tod_clock() - lpar_offset;
366 sw1 = atomic_read(sw_ptr);
367 put_cpu_var(clock_sync_word);
368 if (sw0 == sw1 && (sw0 & 0x80000000U))
369 /* Success: time is in sync. */
370 return 0;
371 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
372 return -EOPNOTSUPP;
373 if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
374 return -EACCES;
375 return -EAGAIN;
376}
377EXPORT_SYMBOL(get_phys_clock);
378
379/*
380 * Make get_phys_clock() return -EAGAIN.
381 */
382static void disable_sync_clock(void *dummy)
383{
384 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
385 /*
386 * Clear the in-sync bit 2^31. All get_phys_clock calls will
387 * fail until the sync bit is turned back on. In addition
388 * increase the "sequence" counter to avoid the race of an
389 * stp event and the complete recovery against get_phys_clock.
390 */
391 atomic_andnot(0x80000000, sw_ptr);
392 atomic_inc(sw_ptr);
393}
394
395/*
396 * Make get_phys_clock() return 0 again.
397 * Needs to be called from a context disabled for preemption.
398 */
399static void enable_sync_clock(void)
400{
401 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
402 atomic_or(0x80000000, sw_ptr);
403}
404
405/*
406 * Function to check if the clock is in sync.
407 */
408static inline int check_sync_clock(void)
409{
410 atomic_t *sw_ptr;
411 int rc;
412
413 sw_ptr = &get_cpu_var(clock_sync_word);
414 rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
415 put_cpu_var(clock_sync_word);
416 return rc;
417}
418
419/*
420 * Apply clock delta to the global data structures.
421 * This is called once on the CPU that performed the clock sync.
422 */
423static void clock_sync_global(unsigned long long delta)
424{
425 unsigned long now, adj;
426 struct ptff_qto qto;
427
428 /* Fixup the monotonic sched clock. */
429 *(unsigned long long *) &tod_clock_base[1] += delta;
430 if (*(unsigned long long *) &tod_clock_base[1] < delta)
431 /* Epoch overflow */
432 tod_clock_base[0]++;
433 /* Adjust TOD steering parameters. */
434 vdso_data->tb_update_count++;
435 now = get_tod_clock();
436 adj = tod_steering_end - now;
437 if (unlikely((s64) adj >= 0))
438 /* Calculate how much of the old adjustment is left. */
439 tod_steering_delta = (tod_steering_delta < 0) ?
440 -(adj >> 15) : (adj >> 15);
441 tod_steering_delta += delta;
442 if ((abs(tod_steering_delta) >> 48) != 0)
443 panic("TOD clock sync offset %lli is too large to drift\n",
444 tod_steering_delta);
445 tod_steering_end = now + (abs(tod_steering_delta) << 15);
446 vdso_data->ts_dir = (tod_steering_delta < 0) ? 0 : 1;
447 vdso_data->ts_end = tod_steering_end;
448 vdso_data->tb_update_count++;
449 /* Update LPAR offset. */
450 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
451 lpar_offset = qto.tod_epoch_difference;
452 /* Call the TOD clock change notifier. */
453 atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta);
454}
455
456/*
457 * Apply clock delta to the per-CPU data structures of this CPU.
458 * This is called for each online CPU after the call to clock_sync_global.
459 */
460static void clock_sync_local(unsigned long long delta)
461{
462 /* Add the delta to the clock comparator. */
463 if (S390_lowcore.clock_comparator != clock_comparator_max) {
464 S390_lowcore.clock_comparator += delta;
465 set_clock_comparator(S390_lowcore.clock_comparator);
466 }
467 /* Adjust the last_update_clock time-stamp. */
468 S390_lowcore.last_update_clock += delta;
469}
470
471/* Single threaded workqueue used for stp sync events */
472static struct workqueue_struct *time_sync_wq;
473
474static void __init time_init_wq(void)
475{
476 if (time_sync_wq)
477 return;
478 time_sync_wq = create_singlethread_workqueue("timesync");
479}
480
481struct clock_sync_data {
482 atomic_t cpus;
483 int in_sync;
484 unsigned long long clock_delta;
485};
486
487/*
488 * Server Time Protocol (STP) code.
489 */
490static bool stp_online;
491static struct stp_sstpi stp_info;
492static void *stp_page;
493
494static void stp_work_fn(struct work_struct *work);
495static DEFINE_MUTEX(stp_work_mutex);
496static DECLARE_WORK(stp_work, stp_work_fn);
497static struct timer_list stp_timer;
498
499static int __init early_parse_stp(char *p)
500{
501 return kstrtobool(p, &stp_online);
502}
503early_param("stp", early_parse_stp);
504
505/*
506 * Reset STP attachment.
507 */
508static void __init stp_reset(void)
509{
510 int rc;
511
512 stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
513 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
514 if (rc == 0)
515 set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
516 else if (stp_online) {
517 pr_warn("The real or virtual hardware system does not provide an STP interface\n");
518 free_page((unsigned long) stp_page);
519 stp_page = NULL;
520 stp_online = false;
521 }
522}
523
524static void stp_timeout(struct timer_list *unused)
525{
526 queue_work(time_sync_wq, &stp_work);
527}
528
529static int __init stp_init(void)
530{
531 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
532 return 0;
533 timer_setup(&stp_timer, stp_timeout, 0);
534 time_init_wq();
535 if (!stp_online)
536 return 0;
537 queue_work(time_sync_wq, &stp_work);
538 return 0;
539}
540
541arch_initcall(stp_init);
542
543/*
544 * STP timing alert. There are three causes:
545 * 1) timing status change
546 * 2) link availability change
547 * 3) time control parameter change
548 * In all three cases we are only interested in the clock source state.
549 * If a STP clock source is now available use it.
550 */
551static void stp_timing_alert(struct stp_irq_parm *intparm)
552{
553 if (intparm->tsc || intparm->lac || intparm->tcpc)
554 queue_work(time_sync_wq, &stp_work);
555}
556
557/*
558 * STP sync check machine check. This is called when the timing state
559 * changes from the synchronized state to the unsynchronized state.
560 * After a STP sync check the clock is not in sync. The machine check
561 * is broadcasted to all cpus at the same time.
562 */
563int stp_sync_check(void)
564{
565 disable_sync_clock(NULL);
566 return 1;
567}
568
569/*
570 * STP island condition machine check. This is called when an attached
571 * server attempts to communicate over an STP link and the servers
572 * have matching CTN ids and have a valid stratum-1 configuration
573 * but the configurations do not match.
574 */
575int stp_island_check(void)
576{
577 disable_sync_clock(NULL);
578 return 1;
579}
580
581void stp_queue_work(void)
582{
583 queue_work(time_sync_wq, &stp_work);
584}
585
586static int stp_sync_clock(void *data)
587{
588 struct clock_sync_data *sync = data;
589 unsigned long long clock_delta;
590 static int first;
591 int rc;
592
593 enable_sync_clock();
594 if (xchg(&first, 1) == 0) {
595 /* Wait until all other cpus entered the sync function. */
596 while (atomic_read(&sync->cpus) != 0)
597 cpu_relax();
598 rc = 0;
599 if (stp_info.todoff[0] || stp_info.todoff[1] ||
600 stp_info.todoff[2] || stp_info.todoff[3] ||
601 stp_info.tmd != 2) {
602 rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0,
603 &clock_delta);
604 if (rc == 0) {
605 sync->clock_delta = clock_delta;
606 clock_sync_global(clock_delta);
607 rc = chsc_sstpi(stp_page, &stp_info,
608 sizeof(struct stp_sstpi));
609 if (rc == 0 && stp_info.tmd != 2)
610 rc = -EAGAIN;
611 }
612 }
613 sync->in_sync = rc ? -EAGAIN : 1;
614 xchg(&first, 0);
615 } else {
616 /* Slave */
617 atomic_dec(&sync->cpus);
618 /* Wait for in_sync to be set. */
619 while (READ_ONCE(sync->in_sync) == 0)
620 __udelay(1);
621 }
622 if (sync->in_sync != 1)
623 /* Didn't work. Clear per-cpu in sync bit again. */
624 disable_sync_clock(NULL);
625 /* Apply clock delta to per-CPU fields of this CPU. */
626 clock_sync_local(sync->clock_delta);
627
628 return 0;
629}
630
631/*
632 * STP work. Check for the STP state and take over the clock
633 * synchronization if the STP clock source is usable.
634 */
635static void stp_work_fn(struct work_struct *work)
636{
637 struct clock_sync_data stp_sync;
638 int rc;
639
640 /* prevent multiple execution. */
641 mutex_lock(&stp_work_mutex);
642
643 if (!stp_online) {
644 chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
645 del_timer_sync(&stp_timer);
646 goto out_unlock;
647 }
648
649 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0, NULL);
650 if (rc)
651 goto out_unlock;
652
653 rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
654 if (rc || stp_info.c == 0)
655 goto out_unlock;
656
657 /* Skip synchronization if the clock is already in sync. */
658 if (check_sync_clock())
659 goto out_unlock;
660
661 memset(&stp_sync, 0, sizeof(stp_sync));
662 cpus_read_lock();
663 atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
664 stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask);
665 cpus_read_unlock();
666
667 if (!check_sync_clock())
668 /*
669 * There is a usable clock but the synchonization failed.
670 * Retry after a second.
671 */
672 mod_timer(&stp_timer, jiffies + msecs_to_jiffies(MSEC_PER_SEC));
673
674out_unlock:
675 mutex_unlock(&stp_work_mutex);
676}
677
678/*
679 * STP subsys sysfs interface functions
680 */
681static struct bus_type stp_subsys = {
682 .name = "stp",
683 .dev_name = "stp",
684};
685
686static ssize_t ctn_id_show(struct device *dev,
687 struct device_attribute *attr,
688 char *buf)
689{
690 if (!stp_online)
691 return -ENODATA;
692 return sprintf(buf, "%016llx\n",
693 *(unsigned long long *) stp_info.ctnid);
694}
695
696static DEVICE_ATTR_RO(ctn_id);
697
698static ssize_t ctn_type_show(struct device *dev,
699 struct device_attribute *attr,
700 char *buf)
701{
702 if (!stp_online)
703 return -ENODATA;
704 return sprintf(buf, "%i\n", stp_info.ctn);
705}
706
707static DEVICE_ATTR_RO(ctn_type);
708
709static ssize_t dst_offset_show(struct device *dev,
710 struct device_attribute *attr,
711 char *buf)
712{
713 if (!stp_online || !(stp_info.vbits & 0x2000))
714 return -ENODATA;
715 return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
716}
717
718static DEVICE_ATTR_RO(dst_offset);
719
720static ssize_t leap_seconds_show(struct device *dev,
721 struct device_attribute *attr,
722 char *buf)
723{
724 if (!stp_online || !(stp_info.vbits & 0x8000))
725 return -ENODATA;
726 return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
727}
728
729static DEVICE_ATTR_RO(leap_seconds);
730
731static ssize_t stratum_show(struct device *dev,
732 struct device_attribute *attr,
733 char *buf)
734{
735 if (!stp_online)
736 return -ENODATA;
737 return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
738}
739
740static DEVICE_ATTR_RO(stratum);
741
742static ssize_t time_offset_show(struct device *dev,
743 struct device_attribute *attr,
744 char *buf)
745{
746 if (!stp_online || !(stp_info.vbits & 0x0800))
747 return -ENODATA;
748 return sprintf(buf, "%i\n", (int) stp_info.tto);
749}
750
751static DEVICE_ATTR_RO(time_offset);
752
753static ssize_t time_zone_offset_show(struct device *dev,
754 struct device_attribute *attr,
755 char *buf)
756{
757 if (!stp_online || !(stp_info.vbits & 0x4000))
758 return -ENODATA;
759 return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
760}
761
762static DEVICE_ATTR_RO(time_zone_offset);
763
764static ssize_t timing_mode_show(struct device *dev,
765 struct device_attribute *attr,
766 char *buf)
767{
768 if (!stp_online)
769 return -ENODATA;
770 return sprintf(buf, "%i\n", stp_info.tmd);
771}
772
773static DEVICE_ATTR_RO(timing_mode);
774
775static ssize_t timing_state_show(struct device *dev,
776 struct device_attribute *attr,
777 char *buf)
778{
779 if (!stp_online)
780 return -ENODATA;
781 return sprintf(buf, "%i\n", stp_info.tst);
782}
783
784static DEVICE_ATTR_RO(timing_state);
785
786static ssize_t online_show(struct device *dev,
787 struct device_attribute *attr,
788 char *buf)
789{
790 return sprintf(buf, "%i\n", stp_online);
791}
792
793static ssize_t online_store(struct device *dev,
794 struct device_attribute *attr,
795 const char *buf, size_t count)
796{
797 unsigned int value;
798
799 value = simple_strtoul(buf, NULL, 0);
800 if (value != 0 && value != 1)
801 return -EINVAL;
802 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
803 return -EOPNOTSUPP;
804 mutex_lock(&clock_sync_mutex);
805 stp_online = value;
806 if (stp_online)
807 set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
808 else
809 clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
810 queue_work(time_sync_wq, &stp_work);
811 mutex_unlock(&clock_sync_mutex);
812 return count;
813}
814
815/*
816 * Can't use DEVICE_ATTR because the attribute should be named
817 * stp/online but dev_attr_online already exists in this file ..
818 */
819static DEVICE_ATTR_RW(online);
820
821static struct device_attribute *stp_attributes[] = {
822 &dev_attr_ctn_id,
823 &dev_attr_ctn_type,
824 &dev_attr_dst_offset,
825 &dev_attr_leap_seconds,
826 &dev_attr_online,
827 &dev_attr_stratum,
828 &dev_attr_time_offset,
829 &dev_attr_time_zone_offset,
830 &dev_attr_timing_mode,
831 &dev_attr_timing_state,
832 NULL
833};
834
835static int __init stp_init_sysfs(void)
836{
837 struct device_attribute **attr;
838 int rc;
839
840 rc = subsys_system_register(&stp_subsys, NULL);
841 if (rc)
842 goto out;
843 for (attr = stp_attributes; *attr; attr++) {
844 rc = device_create_file(stp_subsys.dev_root, *attr);
845 if (rc)
846 goto out_unreg;
847 }
848 return 0;
849out_unreg:
850 for (; attr >= stp_attributes; attr--)
851 device_remove_file(stp_subsys.dev_root, *attr);
852 bus_unregister(&stp_subsys);
853out:
854 return rc;
855}
856
857device_initcall(stp_init_sysfs);