Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
 
  3 *    Time of day based timer functions.
  4 *
  5 *  S390 version
  6 *    Copyright IBM Corp. 1999, 2008
  7 *    Author(s): Hartmut Penner (hp@de.ibm.com),
  8 *               Martin Schwidefsky (schwidefsky@de.ibm.com),
  9 *               Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
 10 *
 11 *  Derived from "arch/i386/kernel/time.c"
 12 *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
 13 */
 14
 15#define KMSG_COMPONENT "time"
 16#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
 17
 18#include <linux/kernel_stat.h>
 19#include <linux/errno.h>
 20#include <linux/export.h>
 21#include <linux/sched.h>
 22#include <linux/sched/clock.h>
 23#include <linux/kernel.h>
 24#include <linux/param.h>
 25#include <linux/string.h>
 26#include <linux/mm.h>
 27#include <linux/interrupt.h>
 28#include <linux/cpu.h>
 29#include <linux/stop_machine.h>
 30#include <linux/time.h>
 31#include <linux/device.h>
 32#include <linux/delay.h>
 33#include <linux/init.h>
 34#include <linux/smp.h>
 35#include <linux/types.h>
 36#include <linux/profile.h>
 37#include <linux/timex.h>
 38#include <linux/notifier.h>
 39#include <linux/timekeeper_internal.h>
 40#include <linux/clockchips.h>
 41#include <linux/gfp.h>
 42#include <linux/kprobes.h>
 43#include <linux/uaccess.h>
 44#include <asm/facility.h>
 45#include <asm/delay.h>
 46#include <asm/div64.h>
 47#include <asm/vdso.h>
 48#include <asm/irq.h>
 49#include <asm/irq_regs.h>
 50#include <asm/vtimer.h>
 51#include <asm/stp.h>
 52#include <asm/cio.h>
 53#include "entry.h"
 54
 55unsigned char tod_clock_base[16] __aligned(8) = {
 56	/* Force to data section. */
 57	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 58	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
 59};
 60EXPORT_SYMBOL_GPL(tod_clock_base);
 61
 62u64 clock_comparator_max = -1ULL;
 63EXPORT_SYMBOL_GPL(clock_comparator_max);
 64
 65static DEFINE_PER_CPU(struct clock_event_device, comparators);
 66
 67ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier);
 68EXPORT_SYMBOL(s390_epoch_delta_notifier);
 69
 70unsigned char ptff_function_mask[16];
 71
 72static unsigned long long lpar_offset;
 73static unsigned long long initial_leap_seconds;
 74static unsigned long long tod_steering_end;
 75static long long tod_steering_delta;
 76
 77/*
 78 * Get time offsets with PTFF
 79 */
 80void __init time_early_init(void)
 81{
 82	struct ptff_qto qto;
 83	struct ptff_qui qui;
 84
 85	/* Initialize TOD steering parameters */
 86	tod_steering_end = *(unsigned long long *) &tod_clock_base[1];
 87	vdso_data->ts_end = tod_steering_end;
 88
 89	if (!test_facility(28))
 90		return;
 91
 92	ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF);
 93
 94	/* get LPAR offset */
 95	if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
 96		lpar_offset = qto.tod_epoch_difference;
 97
 98	/* get initial leap seconds */
 99	if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0)
100		initial_leap_seconds = (unsigned long long)
101			((long) qui.old_leap * 4096000000L);
102}
103
104/*
105 * Scheduler clock - returns current time in nanosec units.
106 */
107unsigned long long notrace sched_clock(void)
108{
109	return tod_to_ns(get_tod_clock_monotonic());
110}
111NOKPROBE_SYMBOL(sched_clock);
112
113/*
114 * Monotonic_clock - returns # of nanoseconds passed since time_init()
115 */
116unsigned long long monotonic_clock(void)
117{
118	return sched_clock();
119}
120EXPORT_SYMBOL(monotonic_clock);
121
122static void ext_to_timespec64(unsigned char *clk, struct timespec64 *xt)
123{
124	unsigned long long high, low, rem, sec, nsec;
125
126	/* Split extendnd TOD clock to micro-seconds and sub-micro-seconds */
127	high = (*(unsigned long long *) clk) >> 4;
128	low = (*(unsigned long long *)&clk[7]) << 4;
129	/* Calculate seconds and nano-seconds */
130	sec = high;
131	rem = do_div(sec, 1000000);
132	nsec = (((low >> 32) + (rem << 32)) * 1000) >> 32;
133
 
 
134	xt->tv_sec = sec;
135	xt->tv_nsec = nsec;
 
136}
 
137
138void clock_comparator_work(void)
139{
140	struct clock_event_device *cd;
141
142	S390_lowcore.clock_comparator = clock_comparator_max;
143	cd = this_cpu_ptr(&comparators);
 
144	cd->event_handler(cd);
145}
146
147static int s390_next_event(unsigned long delta,
 
 
 
 
 
 
 
 
 
 
 
 
148			   struct clock_event_device *evt)
149{
150	S390_lowcore.clock_comparator = get_tod_clock() + delta;
 
 
 
 
 
 
 
151	set_clock_comparator(S390_lowcore.clock_comparator);
152	return 0;
153}
154
 
 
 
 
 
155/*
156 * Set up lowcore and control register of the current cpu to
157 * enable TOD clock and clock comparator interrupts.
158 */
159void init_cpu_timer(void)
160{
161	struct clock_event_device *cd;
162	int cpu;
163
164	S390_lowcore.clock_comparator = clock_comparator_max;
165	set_clock_comparator(S390_lowcore.clock_comparator);
166
167	cpu = smp_processor_id();
168	cd = &per_cpu(comparators, cpu);
169	cd->name		= "comparator";
170	cd->features		= CLOCK_EVT_FEAT_ONESHOT;
 
171	cd->mult		= 16777;
172	cd->shift		= 12;
173	cd->min_delta_ns	= 1;
174	cd->min_delta_ticks	= 1;
175	cd->max_delta_ns	= LONG_MAX;
176	cd->max_delta_ticks	= ULONG_MAX;
177	cd->rating		= 400;
178	cd->cpumask		= cpumask_of(cpu);
179	cd->set_next_event	= s390_next_event;
 
180
181	clockevents_register_device(cd);
182
183	/* Enable clock comparator timer interrupt. */
184	__ctl_set_bit(0,11);
185
186	/* Always allow the timing alert external interrupt. */
187	__ctl_set_bit(0, 4);
188}
189
190static void clock_comparator_interrupt(struct ext_code ext_code,
191				       unsigned int param32,
192				       unsigned long param64)
193{
194	inc_irq_stat(IRQEXT_CLK);
195	if (S390_lowcore.clock_comparator == clock_comparator_max)
196		set_clock_comparator(S390_lowcore.clock_comparator);
197}
198
 
199static void stp_timing_alert(struct stp_irq_parm *);
200
201static void timing_alert_interrupt(struct ext_code ext_code,
202				   unsigned int param32, unsigned long param64)
203{
204	inc_irq_stat(IRQEXT_TLA);
 
 
205	if (param32 & 0x00038000)
206		stp_timing_alert((struct stp_irq_parm *) &param32);
207}
208
 
209static void stp_reset(void);
210
211void read_persistent_clock64(struct timespec64 *ts)
212{
213	unsigned char clk[STORE_CLOCK_EXT_SIZE];
214	__u64 delta;
215
216	delta = initial_leap_seconds + TOD_UNIX_EPOCH;
217	get_tod_clock_ext(clk);
218	*(__u64 *) &clk[1] -= delta;
219	if (*(__u64 *) &clk[1] > delta)
220		clk[0]--;
221	ext_to_timespec64(clk, ts);
222}
223
224void __init read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
225						 struct timespec64 *boot_offset)
226{
227	unsigned char clk[STORE_CLOCK_EXT_SIZE];
228	struct timespec64 boot_time;
229	__u64 delta;
230
231	delta = initial_leap_seconds + TOD_UNIX_EPOCH;
232	memcpy(clk, tod_clock_base, STORE_CLOCK_EXT_SIZE);
233	*(__u64 *)&clk[1] -= delta;
234	if (*(__u64 *)&clk[1] > delta)
235		clk[0]--;
236	ext_to_timespec64(clk, &boot_time);
237
238	read_persistent_clock64(wall_time);
239	*boot_offset = timespec64_sub(*wall_time, boot_time);
240}
241
242static u64 read_tod_clock(struct clocksource *cs)
243{
244	unsigned long long now, adj;
245
246	preempt_disable(); /* protect from changes to steering parameters */
247	now = get_tod_clock();
248	adj = tod_steering_end - now;
249	if (unlikely((s64) adj >= 0))
250		/*
251		 * manually steer by 1 cycle every 2^16 cycles. This
252		 * corresponds to shifting the tod delta by 15. 1s is
253		 * therefore steered in ~9h. The adjust will decrease
254		 * over time, until it finally reaches 0.
255		 */
256		now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15);
257	preempt_enable();
258	return now;
259}
260
261static struct clocksource clocksource_tod = {
262	.name		= "tod",
263	.rating		= 400,
264	.read		= read_tod_clock,
265	.mask		= -1ULL,
266	.mult		= 1000,
267	.shift		= 12,
268	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
269};
270
271struct clocksource * __init clocksource_default_clock(void)
272{
273	return &clocksource_tod;
274}
275
276void update_vsyscall(struct timekeeper *tk)
 
277{
278	u64 nsecps;
279
280	if (tk->tkr_mono.clock != &clocksource_tod)
281		return;
282
283	/* Make userspace gettimeofday spin until we're done. */
284	++vdso_data->tb_update_count;
285	smp_wmb();
286	vdso_data->xtime_tod_stamp = tk->tkr_mono.cycle_last;
287	vdso_data->xtime_clock_sec = tk->xtime_sec;
288	vdso_data->xtime_clock_nsec = tk->tkr_mono.xtime_nsec;
289	vdso_data->wtom_clock_sec =
290		tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
291	vdso_data->wtom_clock_nsec = tk->tkr_mono.xtime_nsec +
292		+ ((u64) tk->wall_to_monotonic.tv_nsec << tk->tkr_mono.shift);
293	nsecps = (u64) NSEC_PER_SEC << tk->tkr_mono.shift;
294	while (vdso_data->wtom_clock_nsec >= nsecps) {
295		vdso_data->wtom_clock_nsec -= nsecps;
296		vdso_data->wtom_clock_sec++;
297	}
298
299	vdso_data->xtime_coarse_sec = tk->xtime_sec;
300	vdso_data->xtime_coarse_nsec =
301		(long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
302	vdso_data->wtom_coarse_sec =
303		vdso_data->xtime_coarse_sec + tk->wall_to_monotonic.tv_sec;
304	vdso_data->wtom_coarse_nsec =
305		vdso_data->xtime_coarse_nsec + tk->wall_to_monotonic.tv_nsec;
306	while (vdso_data->wtom_coarse_nsec >= NSEC_PER_SEC) {
307		vdso_data->wtom_coarse_nsec -= NSEC_PER_SEC;
308		vdso_data->wtom_coarse_sec++;
309	}
310
311	vdso_data->tk_mult = tk->tkr_mono.mult;
312	vdso_data->tk_shift = tk->tkr_mono.shift;
313	smp_wmb();
314	++vdso_data->tb_update_count;
315}
316
317extern struct timezone sys_tz;
318
319void update_vsyscall_tz(void)
320{
 
 
 
321	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
322	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
 
 
323}
324
325/*
326 * Initialize the TOD clock and the CPU timer of
327 * the boot cpu.
328 */
329void __init time_init(void)
330{
331	/* Reset time synchronization interfaces. */
 
332	stp_reset();
333
334	/* request the clock comparator external interrupt */
335	if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
336		panic("Couldn't request external interrupt 0x1004");
337
338	/* request the timing alert external interrupt */
339	if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
340		panic("Couldn't request external interrupt 0x1406");
341
342	if (__clocksource_register(&clocksource_tod) != 0)
343		panic("Could not register TOD clock source");
344
345	/* Enable TOD clock interrupts on the boot cpu. */
346	init_cpu_timer();
347
348	/* Enable cpu timer interrupts on the boot cpu. */
349	vtime_init();
350}
351
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
352static DEFINE_PER_CPU(atomic_t, clock_sync_word);
353static DEFINE_MUTEX(clock_sync_mutex);
354static unsigned long clock_sync_flags;
355
356#define CLOCK_SYNC_HAS_STP	0
357#define CLOCK_SYNC_STP		1
 
 
358
359/*
360 * The get_clock function for the physical clock. It will get the current
361 * TOD clock, subtract the LPAR offset and write the result to *clock.
362 * The function returns 0 if the clock is in sync with the external time
363 * source. If the clock mode is local it will return -EOPNOTSUPP and
364 * -EAGAIN if the clock is not in sync with the external reference.
365 */
366int get_phys_clock(unsigned long *clock)
367{
368	atomic_t *sw_ptr;
369	unsigned int sw0, sw1;
370
371	sw_ptr = &get_cpu_var(clock_sync_word);
372	sw0 = atomic_read(sw_ptr);
373	*clock = get_tod_clock() - lpar_offset;
374	sw1 = atomic_read(sw_ptr);
375	put_cpu_var(clock_sync_word);
376	if (sw0 == sw1 && (sw0 & 0x80000000U))
377		/* Success: time is in sync. */
378		return 0;
379	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
380		return -EOPNOTSUPP;
381	if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
 
 
382		return -EACCES;
383	return -EAGAIN;
384}
385EXPORT_SYMBOL(get_phys_clock);
386
387/*
388 * Make get_phys_clock() return -EAGAIN.
389 */
390static void disable_sync_clock(void *dummy)
391{
392	atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
393	/*
394	 * Clear the in-sync bit 2^31. All get_phys_clock calls will
395	 * fail until the sync bit is turned back on. In addition
396	 * increase the "sequence" counter to avoid the race of an
397	 * stp event and the complete recovery against get_phys_clock.
398	 */
399	atomic_andnot(0x80000000, sw_ptr);
400	atomic_inc(sw_ptr);
401}
402
403/*
404 * Make get_phys_clock() return 0 again.
405 * Needs to be called from a context disabled for preemption.
406 */
407static void enable_sync_clock(void)
408{
409	atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
410	atomic_or(0x80000000, sw_ptr);
411}
412
413/*
414 * Function to check if the clock is in sync.
415 */
416static inline int check_sync_clock(void)
417{
418	atomic_t *sw_ptr;
419	int rc;
420
421	sw_ptr = &get_cpu_var(clock_sync_word);
422	rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
423	put_cpu_var(clock_sync_word);
424	return rc;
425}
426
 
 
 
 
 
 
 
 
 
 
427/*
428 * Apply clock delta to the global data structures.
429 * This is called once on the CPU that performed the clock sync.
430 */
431static void clock_sync_global(unsigned long long delta)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
432{
433	unsigned long now, adj;
434	struct ptff_qto qto;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
435
436	/* Fixup the monotonic sched clock. */
437	*(unsigned long long *) &tod_clock_base[1] += delta;
438	if (*(unsigned long long *) &tod_clock_base[1] < delta)
439		/* Epoch overflow */
440		tod_clock_base[0]++;
441	/* Adjust TOD steering parameters. */
442	vdso_data->tb_update_count++;
443	now = get_tod_clock();
444	adj = tod_steering_end - now;
445	if (unlikely((s64) adj >= 0))
446		/* Calculate how much of the old adjustment is left. */
447		tod_steering_delta = (tod_steering_delta < 0) ?
448			-(adj >> 15) : (adj >> 15);
449	tod_steering_delta += delta;
450	if ((abs(tod_steering_delta) >> 48) != 0)
451		panic("TOD clock sync offset %lli is too large to drift\n",
452		      tod_steering_delta);
453	tod_steering_end = now + (abs(tod_steering_delta) << 15);
454	vdso_data->ts_dir = (tod_steering_delta < 0) ? 0 : 1;
455	vdso_data->ts_end = tod_steering_end;
456	vdso_data->tb_update_count++;
457	/* Update LPAR offset. */
458	if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
459		lpar_offset = qto.tod_epoch_difference;
460	/* Call the TOD clock change notifier. */
461	atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta);
462}
463
 
 
464/*
465 * Apply clock delta to the per-CPU data structures of this CPU.
466 * This is called for each online CPU after the call to clock_sync_global.
467 */
468static void clock_sync_local(unsigned long long delta)
469{
470	/* Add the delta to the clock comparator. */
471	if (S390_lowcore.clock_comparator != clock_comparator_max) {
472		S390_lowcore.clock_comparator += delta;
473		set_clock_comparator(S390_lowcore.clock_comparator);
 
 
 
 
 
 
 
 
 
 
 
 
474	}
475	/* Adjust the last_update_clock time-stamp. */
476	S390_lowcore.last_update_clock += delta;
477}
478
479/* Single threaded workqueue used for stp sync events */
480static struct workqueue_struct *time_sync_wq;
481
482static void __init time_init_wq(void)
 
 
 
483{
484	if (time_sync_wq)
485		return;
486	time_sync_wq = create_singlethread_workqueue("timesync");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
487}
488
489struct clock_sync_data {
490	atomic_t cpus;
491	int in_sync;
492	unsigned long long clock_delta;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
493};
494
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
495/*
496 * Server Time Protocol (STP) code.
497 */
498static bool stp_online;
499static struct stp_sstpi stp_info;
500static void *stp_page;
501
502static void stp_work_fn(struct work_struct *work);
503static DEFINE_MUTEX(stp_work_mutex);
504static DECLARE_WORK(stp_work, stp_work_fn);
505static struct timer_list stp_timer;
506
507static int __init early_parse_stp(char *p)
508{
509	return kstrtobool(p, &stp_online);
 
 
 
 
510}
511early_param("stp", early_parse_stp);
512
513/*
514 * Reset STP attachment.
515 */
516static void __init stp_reset(void)
517{
518	int rc;
519
520	stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
521	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
522	if (rc == 0)
523		set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
524	else if (stp_online) {
525		pr_warn("The real or virtual hardware system does not provide an STP interface\n");
 
526		free_page((unsigned long) stp_page);
527		stp_page = NULL;
528		stp_online = false;
529	}
530}
531
532static void stp_timeout(struct timer_list *unused)
533{
534	queue_work(time_sync_wq, &stp_work);
535}
536
537static int __init stp_init(void)
538{
539	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
540		return 0;
541	timer_setup(&stp_timer, stp_timeout, 0);
542	time_init_wq();
543	if (!stp_online)
544		return 0;
545	queue_work(time_sync_wq, &stp_work);
546	return 0;
547}
548
549arch_initcall(stp_init);
550
551/*
552 * STP timing alert. There are three causes:
553 * 1) timing status change
554 * 2) link availability change
555 * 3) time control parameter change
556 * In all three cases we are only interested in the clock source state.
557 * If a STP clock source is now available use it.
558 */
559static void stp_timing_alert(struct stp_irq_parm *intparm)
560{
561	if (intparm->tsc || intparm->lac || intparm->tcpc)
562		queue_work(time_sync_wq, &stp_work);
563}
564
565/*
566 * STP sync check machine check. This is called when the timing state
567 * changes from the synchronized state to the unsynchronized state.
568 * After a STP sync check the clock is not in sync. The machine check
569 * is broadcasted to all cpus at the same time.
570 */
571int stp_sync_check(void)
572{
573	disable_sync_clock(NULL);
574	return 1;
575}
576
577/*
578 * STP island condition machine check. This is called when an attached
579 * server  attempts to communicate over an STP link and the servers
580 * have matching CTN ids and have a valid stratum-1 configuration
581 * but the configurations do not match.
582 */
583int stp_island_check(void)
584{
585	disable_sync_clock(NULL);
586	return 1;
587}
588
589void stp_queue_work(void)
590{
591	queue_work(time_sync_wq, &stp_work);
592}
593
 
594static int stp_sync_clock(void *data)
595{
596	struct clock_sync_data *sync = data;
597	unsigned long long clock_delta;
598	static int first;
 
 
599	int rc;
600
 
 
 
 
 
 
 
 
 
 
 
 
601	enable_sync_clock();
602	if (xchg(&first, 1) == 0) {
603		/* Wait until all other cpus entered the sync function. */
604		while (atomic_read(&sync->cpus) != 0)
605			cpu_relax();
606		rc = 0;
607		if (stp_info.todoff[0] || stp_info.todoff[1] ||
608		    stp_info.todoff[2] || stp_info.todoff[3] ||
609		    stp_info.tmd != 2) {
610			rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0,
611					&clock_delta);
612			if (rc == 0) {
613				sync->clock_delta = clock_delta;
614				clock_sync_global(clock_delta);
615				rc = chsc_sstpi(stp_page, &stp_info,
616						sizeof(struct stp_sstpi));
617				if (rc == 0 && stp_info.tmd != 2)
618					rc = -EAGAIN;
619			}
620		}
621		sync->in_sync = rc ? -EAGAIN : 1;
622		xchg(&first, 0);
623	} else {
624		/* Slave */
625		atomic_dec(&sync->cpus);
626		/* Wait for in_sync to be set. */
627		while (READ_ONCE(sync->in_sync) == 0)
628			__udelay(1);
629	}
630	if (sync->in_sync != 1)
631		/* Didn't work. Clear per-cpu in sync bit again. */
632		disable_sync_clock(NULL);
633	/* Apply clock delta to per-CPU fields of this CPU. */
634	clock_sync_local(sync->clock_delta);
635
 
636	return 0;
637}
638
639/*
640 * STP work. Check for the STP state and take over the clock
641 * synchronization if the STP clock source is usable.
642 */
643static void stp_work_fn(struct work_struct *work)
644{
645	struct clock_sync_data stp_sync;
646	int rc;
647
648	/* prevent multiple execution. */
649	mutex_lock(&stp_work_mutex);
650
651	if (!stp_online) {
652		chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
653		del_timer_sync(&stp_timer);
654		goto out_unlock;
655	}
656
657	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0, NULL);
658	if (rc)
659		goto out_unlock;
660
661	rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
662	if (rc || stp_info.c == 0)
663		goto out_unlock;
664
665	/* Skip synchronization if the clock is already in sync. */
666	if (check_sync_clock())
667		goto out_unlock;
668
669	memset(&stp_sync, 0, sizeof(stp_sync));
670	cpus_read_lock();
671	atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
672	stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask);
673	cpus_read_unlock();
674
675	if (!check_sync_clock())
676		/*
677		 * There is a usable clock but the synchonization failed.
678		 * Retry after a second.
679		 */
680		mod_timer(&stp_timer, jiffies + HZ);
681
682out_unlock:
683	mutex_unlock(&stp_work_mutex);
684}
685
686/*
687 * STP subsys sysfs interface functions
688 */
689static struct bus_type stp_subsys = {
690	.name		= "stp",
691	.dev_name	= "stp",
692};
693
694static ssize_t stp_ctn_id_show(struct device *dev,
695				struct device_attribute *attr,
696				char *buf)
697{
698	if (!stp_online)
699		return -ENODATA;
700	return sprintf(buf, "%016llx\n",
701		       *(unsigned long long *) stp_info.ctnid);
702}
703
704static DEVICE_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
705
706static ssize_t stp_ctn_type_show(struct device *dev,
707				struct device_attribute *attr,
708				char *buf)
709{
710	if (!stp_online)
711		return -ENODATA;
712	return sprintf(buf, "%i\n", stp_info.ctn);
713}
714
715static DEVICE_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
716
717static ssize_t stp_dst_offset_show(struct device *dev,
718				   struct device_attribute *attr,
719				   char *buf)
720{
721	if (!stp_online || !(stp_info.vbits & 0x2000))
722		return -ENODATA;
723	return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
724}
725
726static DEVICE_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
727
728static ssize_t stp_leap_seconds_show(struct device *dev,
729					struct device_attribute *attr,
730					char *buf)
731{
732	if (!stp_online || !(stp_info.vbits & 0x8000))
733		return -ENODATA;
734	return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
735}
736
737static DEVICE_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
738
739static ssize_t stp_stratum_show(struct device *dev,
740				struct device_attribute *attr,
741				char *buf)
742{
743	if (!stp_online)
744		return -ENODATA;
745	return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
746}
747
748static DEVICE_ATTR(stratum, 0400, stp_stratum_show, NULL);
749
750static ssize_t stp_time_offset_show(struct device *dev,
751				struct device_attribute *attr,
752				char *buf)
753{
754	if (!stp_online || !(stp_info.vbits & 0x0800))
755		return -ENODATA;
756	return sprintf(buf, "%i\n", (int) stp_info.tto);
757}
758
759static DEVICE_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
760
761static ssize_t stp_time_zone_offset_show(struct device *dev,
762				struct device_attribute *attr,
763				char *buf)
764{
765	if (!stp_online || !(stp_info.vbits & 0x4000))
766		return -ENODATA;
767	return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
768}
769
770static DEVICE_ATTR(time_zone_offset, 0400,
771			 stp_time_zone_offset_show, NULL);
772
773static ssize_t stp_timing_mode_show(struct device *dev,
774				struct device_attribute *attr,
775				char *buf)
776{
777	if (!stp_online)
778		return -ENODATA;
779	return sprintf(buf, "%i\n", stp_info.tmd);
780}
781
782static DEVICE_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
783
784static ssize_t stp_timing_state_show(struct device *dev,
785				struct device_attribute *attr,
786				char *buf)
787{
788	if (!stp_online)
789		return -ENODATA;
790	return sprintf(buf, "%i\n", stp_info.tst);
791}
792
793static DEVICE_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
794
795static ssize_t stp_online_show(struct device *dev,
796				struct device_attribute *attr,
797				char *buf)
798{
799	return sprintf(buf, "%i\n", stp_online);
800}
801
802static ssize_t stp_online_store(struct device *dev,
803				struct device_attribute *attr,
804				const char *buf, size_t count)
805{
806	unsigned int value;
807
808	value = simple_strtoul(buf, NULL, 0);
809	if (value != 0 && value != 1)
810		return -EINVAL;
811	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
812		return -EOPNOTSUPP;
813	mutex_lock(&clock_sync_mutex);
814	stp_online = value;
815	if (stp_online)
816		set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
817	else
818		clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
819	queue_work(time_sync_wq, &stp_work);
820	mutex_unlock(&clock_sync_mutex);
821	return count;
822}
823
824/*
825 * Can't use DEVICE_ATTR because the attribute should be named
826 * stp/online but dev_attr_online already exists in this file ..
827 */
828static struct device_attribute dev_attr_stp_online = {
829	.attr = { .name = "online", .mode = 0600 },
830	.show	= stp_online_show,
831	.store	= stp_online_store,
832};
833
834static struct device_attribute *stp_attributes[] = {
835	&dev_attr_ctn_id,
836	&dev_attr_ctn_type,
837	&dev_attr_dst_offset,
838	&dev_attr_leap_seconds,
839	&dev_attr_stp_online,
840	&dev_attr_stratum,
841	&dev_attr_time_offset,
842	&dev_attr_time_zone_offset,
843	&dev_attr_timing_mode,
844	&dev_attr_timing_state,
845	NULL
846};
847
848static int __init stp_init_sysfs(void)
849{
850	struct device_attribute **attr;
851	int rc;
852
853	rc = subsys_system_register(&stp_subsys, NULL);
854	if (rc)
855		goto out;
856	for (attr = stp_attributes; *attr; attr++) {
857		rc = device_create_file(stp_subsys.dev_root, *attr);
858		if (rc)
859			goto out_unreg;
860	}
861	return 0;
862out_unreg:
863	for (; attr >= stp_attributes; attr--)
864		device_remove_file(stp_subsys.dev_root, *attr);
865	bus_unregister(&stp_subsys);
866out:
867	return rc;
868}
869
870device_initcall(stp_init_sysfs);
v3.5.6
 
   1/*
   2 *  arch/s390/kernel/time.c
   3 *    Time of day based timer functions.
   4 *
   5 *  S390 version
   6 *    Copyright IBM Corp. 1999, 2008
   7 *    Author(s): Hartmut Penner (hp@de.ibm.com),
   8 *               Martin Schwidefsky (schwidefsky@de.ibm.com),
   9 *               Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
  10 *
  11 *  Derived from "arch/i386/kernel/time.c"
  12 *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
  13 */
  14
  15#define KMSG_COMPONENT "time"
  16#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  17
  18#include <linux/kernel_stat.h>
  19#include <linux/errno.h>
  20#include <linux/module.h>
  21#include <linux/sched.h>
 
  22#include <linux/kernel.h>
  23#include <linux/param.h>
  24#include <linux/string.h>
  25#include <linux/mm.h>
  26#include <linux/interrupt.h>
  27#include <linux/cpu.h>
  28#include <linux/stop_machine.h>
  29#include <linux/time.h>
  30#include <linux/device.h>
  31#include <linux/delay.h>
  32#include <linux/init.h>
  33#include <linux/smp.h>
  34#include <linux/types.h>
  35#include <linux/profile.h>
  36#include <linux/timex.h>
  37#include <linux/notifier.h>
  38#include <linux/clocksource.h>
  39#include <linux/clockchips.h>
  40#include <linux/gfp.h>
  41#include <linux/kprobes.h>
  42#include <asm/uaccess.h>
 
  43#include <asm/delay.h>
  44#include <asm/div64.h>
  45#include <asm/vdso.h>
  46#include <asm/irq.h>
  47#include <asm/irq_regs.h>
  48#include <asm/timer.h>
  49#include <asm/etr.h>
  50#include <asm/cio.h>
  51#include "entry.h"
  52
  53/* change this if you have some constant time drift */
  54#define USECS_PER_JIFFY     ((unsigned long) 1000000/HZ)
  55#define CLK_TICKS_PER_JIFFY ((unsigned long) USECS_PER_JIFFY << 12)
 
 
 
  56
  57u64 sched_clock_base_cc = -1;	/* Force to data section. */
  58EXPORT_SYMBOL_GPL(sched_clock_base_cc);
  59
  60static DEFINE_PER_CPU(struct clock_event_device, comparators);
  61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  62/*
  63 * Scheduler clock - returns current time in nanosec units.
  64 */
  65unsigned long long notrace __kprobes sched_clock(void)
  66{
  67	return (get_clock_monotonic() * 125) >> 9;
  68}
 
  69
  70/*
  71 * Monotonic_clock - returns # of nanoseconds passed since time_init()
  72 */
  73unsigned long long monotonic_clock(void)
  74{
  75	return sched_clock();
  76}
  77EXPORT_SYMBOL(monotonic_clock);
  78
  79void tod_to_timeval(__u64 todval, struct timespec *xt)
  80{
  81	unsigned long long sec;
 
 
 
 
 
 
 
 
  82
  83	sec = todval >> 12;
  84	do_div(sec, 1000000);
  85	xt->tv_sec = sec;
  86	todval -= (sec * 1000000) << 12;
  87	xt->tv_nsec = ((todval * 1000) >> 12);
  88}
  89EXPORT_SYMBOL(tod_to_timeval);
  90
  91void clock_comparator_work(void)
  92{
  93	struct clock_event_device *cd;
  94
  95	S390_lowcore.clock_comparator = -1ULL;
  96	set_clock_comparator(S390_lowcore.clock_comparator);
  97	cd = &__get_cpu_var(comparators);
  98	cd->event_handler(cd);
  99}
 100
 101/*
 102 * Fixup the clock comparator.
 103 */
 104static void fixup_clock_comparator(unsigned long long delta)
 105{
 106	/* If nobody is waiting there's nothing to fix. */
 107	if (S390_lowcore.clock_comparator == -1ULL)
 108		return;
 109	S390_lowcore.clock_comparator += delta;
 110	set_clock_comparator(S390_lowcore.clock_comparator);
 111}
 112
 113static int s390_next_ktime(ktime_t expires,
 114			   struct clock_event_device *evt)
 115{
 116	struct timespec ts;
 117	u64 nsecs;
 118
 119	ts.tv_sec = ts.tv_nsec = 0;
 120	monotonic_to_bootbased(&ts);
 121	nsecs = ktime_to_ns(ktime_add(timespec_to_ktime(ts), expires));
 122	do_div(nsecs, 125);
 123	S390_lowcore.clock_comparator = sched_clock_base_cc + (nsecs << 9);
 124	set_clock_comparator(S390_lowcore.clock_comparator);
 125	return 0;
 126}
 127
 128static void s390_set_mode(enum clock_event_mode mode,
 129			  struct clock_event_device *evt)
 130{
 131}
 132
 133/*
 134 * Set up lowcore and control register of the current cpu to
 135 * enable TOD clock and clock comparator interrupts.
 136 */
 137void init_cpu_timer(void)
 138{
 139	struct clock_event_device *cd;
 140	int cpu;
 141
 142	S390_lowcore.clock_comparator = -1ULL;
 143	set_clock_comparator(S390_lowcore.clock_comparator);
 144
 145	cpu = smp_processor_id();
 146	cd = &per_cpu(comparators, cpu);
 147	cd->name		= "comparator";
 148	cd->features		= CLOCK_EVT_FEAT_ONESHOT |
 149				  CLOCK_EVT_FEAT_KTIME;
 150	cd->mult		= 16777;
 151	cd->shift		= 12;
 152	cd->min_delta_ns	= 1;
 
 153	cd->max_delta_ns	= LONG_MAX;
 
 154	cd->rating		= 400;
 155	cd->cpumask		= cpumask_of(cpu);
 156	cd->set_next_ktime	= s390_next_ktime;
 157	cd->set_mode		= s390_set_mode;
 158
 159	clockevents_register_device(cd);
 160
 161	/* Enable clock comparator timer interrupt. */
 162	__ctl_set_bit(0,11);
 163
 164	/* Always allow the timing alert external interrupt. */
 165	__ctl_set_bit(0, 4);
 166}
 167
 168static void clock_comparator_interrupt(struct ext_code ext_code,
 169				       unsigned int param32,
 170				       unsigned long param64)
 171{
 172	kstat_cpu(smp_processor_id()).irqs[EXTINT_CLK]++;
 173	if (S390_lowcore.clock_comparator == -1ULL)
 174		set_clock_comparator(S390_lowcore.clock_comparator);
 175}
 176
 177static void etr_timing_alert(struct etr_irq_parm *);
 178static void stp_timing_alert(struct stp_irq_parm *);
 179
 180static void timing_alert_interrupt(struct ext_code ext_code,
 181				   unsigned int param32, unsigned long param64)
 182{
 183	kstat_cpu(smp_processor_id()).irqs[EXTINT_TLA]++;
 184	if (param32 & 0x00c40000)
 185		etr_timing_alert((struct etr_irq_parm *) &param32);
 186	if (param32 & 0x00038000)
 187		stp_timing_alert((struct stp_irq_parm *) &param32);
 188}
 189
 190static void etr_reset(void);
 191static void stp_reset(void);
 192
 193void read_persistent_clock(struct timespec *ts)
 194{
 195	tod_to_timeval(get_clock() - TOD_UNIX_EPOCH, ts);
 
 
 
 
 
 
 
 
 196}
 197
 198void read_boot_clock(struct timespec *ts)
 
 199{
 200	tod_to_timeval(sched_clock_base_cc - TOD_UNIX_EPOCH, ts);
 
 
 
 
 
 
 
 
 
 
 
 
 201}
 202
 203static cycle_t read_tod_clock(struct clocksource *cs)
 204{
 205	return get_clock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 206}
 207
 208static struct clocksource clocksource_tod = {
 209	.name		= "tod",
 210	.rating		= 400,
 211	.read		= read_tod_clock,
 212	.mask		= -1ULL,
 213	.mult		= 1000,
 214	.shift		= 12,
 215	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
 216};
 217
 218struct clocksource * __init clocksource_default_clock(void)
 219{
 220	return &clocksource_tod;
 221}
 222
 223void update_vsyscall(struct timespec *wall_time, struct timespec *wtm,
 224			struct clocksource *clock, u32 mult)
 225{
 226	if (clock != &clocksource_tod)
 
 
 227		return;
 228
 229	/* Make userspace gettimeofday spin until we're done. */
 230	++vdso_data->tb_update_count;
 231	smp_wmb();
 232	vdso_data->xtime_tod_stamp = clock->cycle_last;
 233	vdso_data->xtime_clock_sec = wall_time->tv_sec;
 234	vdso_data->xtime_clock_nsec = wall_time->tv_nsec;
 235	vdso_data->wtom_clock_sec = wtm->tv_sec;
 236	vdso_data->wtom_clock_nsec = wtm->tv_nsec;
 237	vdso_data->ntp_mult = mult;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 238	smp_wmb();
 239	++vdso_data->tb_update_count;
 240}
 241
 242extern struct timezone sys_tz;
 243
 244void update_vsyscall_tz(void)
 245{
 246	/* Make userspace gettimeofday spin until we're done. */
 247	++vdso_data->tb_update_count;
 248	smp_wmb();
 249	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
 250	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
 251	smp_wmb();
 252	++vdso_data->tb_update_count;
 253}
 254
 255/*
 256 * Initialize the TOD clock and the CPU timer of
 257 * the boot cpu.
 258 */
 259void __init time_init(void)
 260{
 261	/* Reset time synchronization interfaces. */
 262	etr_reset();
 263	stp_reset();
 264
 265	/* request the clock comparator external interrupt */
 266	if (register_external_interrupt(0x1004, clock_comparator_interrupt))
 267                panic("Couldn't request external interrupt 0x1004");
 268
 269	/* request the timing alert external interrupt */
 270	if (register_external_interrupt(0x1406, timing_alert_interrupt))
 271		panic("Couldn't request external interrupt 0x1406");
 272
 273	if (clocksource_register(&clocksource_tod) != 0)
 274		panic("Could not register TOD clock source");
 275
 276	/* Enable TOD clock interrupts on the boot cpu. */
 277	init_cpu_timer();
 278
 279	/* Enable cpu timer interrupts on the boot cpu. */
 280	vtime_init();
 281}
 282
 283/*
 284 * The time is "clock". old is what we think the time is.
 285 * Adjust the value by a multiple of jiffies and add the delta to ntp.
 286 * "delay" is an approximation how long the synchronization took. If
 287 * the time correction is positive, then "delay" is subtracted from
 288 * the time difference and only the remaining part is passed to ntp.
 289 */
 290static unsigned long long adjust_time(unsigned long long old,
 291				      unsigned long long clock,
 292				      unsigned long long delay)
 293{
 294	unsigned long long delta, ticks;
 295	struct timex adjust;
 296
 297	if (clock > old) {
 298		/* It is later than we thought. */
 299		delta = ticks = clock - old;
 300		delta = ticks = (delta < delay) ? 0 : delta - delay;
 301		delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
 302		adjust.offset = ticks * (1000000 / HZ);
 303	} else {
 304		/* It is earlier than we thought. */
 305		delta = ticks = old - clock;
 306		delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
 307		delta = -delta;
 308		adjust.offset = -ticks * (1000000 / HZ);
 309	}
 310	sched_clock_base_cc += delta;
 311	if (adjust.offset != 0) {
 312		pr_notice("The ETR interface has adjusted the clock "
 313			  "by %li microseconds\n", adjust.offset);
 314		adjust.modes = ADJ_OFFSET_SINGLESHOT;
 315		do_adjtimex(&adjust);
 316	}
 317	return delta;
 318}
 319
 320static DEFINE_PER_CPU(atomic_t, clock_sync_word);
 321static DEFINE_MUTEX(clock_sync_mutex);
 322static unsigned long clock_sync_flags;
 323
 324#define CLOCK_SYNC_HAS_ETR	0
 325#define CLOCK_SYNC_HAS_STP	1
 326#define CLOCK_SYNC_ETR		2
 327#define CLOCK_SYNC_STP		3
 328
 329/*
 330 * The synchronous get_clock function. It will write the current clock
 331 * value to the clock pointer and return 0 if the clock is in sync with
 332 * the external time source. If the clock mode is local it will return
 333 * -ENOSYS and -EAGAIN if the clock is not in sync with the external
 334 * reference.
 335 */
 336int get_sync_clock(unsigned long long *clock)
 337{
 338	atomic_t *sw_ptr;
 339	unsigned int sw0, sw1;
 340
 341	sw_ptr = &get_cpu_var(clock_sync_word);
 342	sw0 = atomic_read(sw_ptr);
 343	*clock = get_clock();
 344	sw1 = atomic_read(sw_ptr);
 345	put_cpu_var(clock_sync_word);
 346	if (sw0 == sw1 && (sw0 & 0x80000000U))
 347		/* Success: time is in sync. */
 348		return 0;
 349	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags) &&
 350	    !test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
 351		return -ENOSYS;
 352	if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags) &&
 353	    !test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
 354		return -EACCES;
 355	return -EAGAIN;
 356}
 357EXPORT_SYMBOL(get_sync_clock);
 358
 359/*
 360 * Make get_sync_clock return -EAGAIN.
 361 */
 362static void disable_sync_clock(void *dummy)
 363{
 364	atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word);
 365	/*
 366	 * Clear the in-sync bit 2^31. All get_sync_clock calls will
 367	 * fail until the sync bit is turned back on. In addition
 368	 * increase the "sequence" counter to avoid the race of an
 369	 * etr event and the complete recovery against get_sync_clock.
 370	 */
 371	atomic_clear_mask(0x80000000, sw_ptr);
 372	atomic_inc(sw_ptr);
 373}
 374
 375/*
 376 * Make get_sync_clock return 0 again.
 377 * Needs to be called from a context disabled for preemption.
 378 */
 379static void enable_sync_clock(void)
 380{
 381	atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word);
 382	atomic_set_mask(0x80000000, sw_ptr);
 383}
 384
 385/*
 386 * Function to check if the clock is in sync.
 387 */
 388static inline int check_sync_clock(void)
 389{
 390	atomic_t *sw_ptr;
 391	int rc;
 392
 393	sw_ptr = &get_cpu_var(clock_sync_word);
 394	rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
 395	put_cpu_var(clock_sync_word);
 396	return rc;
 397}
 398
 399/* Single threaded workqueue used for etr and stp sync events */
 400static struct workqueue_struct *time_sync_wq;
 401
 402static void __init time_init_wq(void)
 403{
 404	if (time_sync_wq)
 405		return;
 406	time_sync_wq = create_singlethread_workqueue("timesync");
 407}
 408
 409/*
 410 * External Time Reference (ETR) code.
 
 411 */
 412static int etr_port0_online;
 413static int etr_port1_online;
 414static int etr_steai_available;
 415
 416static int __init early_parse_etr(char *p)
 417{
 418	if (strncmp(p, "off", 3) == 0)
 419		etr_port0_online = etr_port1_online = 0;
 420	else if (strncmp(p, "port0", 5) == 0)
 421		etr_port0_online = 1;
 422	else if (strncmp(p, "port1", 5) == 0)
 423		etr_port1_online = 1;
 424	else if (strncmp(p, "on", 2) == 0)
 425		etr_port0_online = etr_port1_online = 1;
 426	return 0;
 427}
 428early_param("etr", early_parse_etr);
 429
 430enum etr_event {
 431	ETR_EVENT_PORT0_CHANGE,
 432	ETR_EVENT_PORT1_CHANGE,
 433	ETR_EVENT_PORT_ALERT,
 434	ETR_EVENT_SYNC_CHECK,
 435	ETR_EVENT_SWITCH_LOCAL,
 436	ETR_EVENT_UPDATE,
 437};
 438
 439/*
 440 * Valid bit combinations of the eacr register are (x = don't care):
 441 * e0 e1 dp p0 p1 ea es sl
 442 *  0  0  x  0	0  0  0  0  initial, disabled state
 443 *  0  0  x  0	1  1  0  0  port 1 online
 444 *  0  0  x  1	0  1  0  0  port 0 online
 445 *  0  0  x  1	1  1  0  0  both ports online
 446 *  0  1  x  0	1  1  0  0  port 1 online and usable, ETR or PPS mode
 447 *  0  1  x  0	1  1  0  1  port 1 online, usable and ETR mode
 448 *  0  1  x  0	1  1  1  0  port 1 online, usable, PPS mode, in-sync
 449 *  0  1  x  0	1  1  1  1  port 1 online, usable, ETR mode, in-sync
 450 *  0  1  x  1	1  1  0  0  both ports online, port 1 usable
 451 *  0  1  x  1	1  1  1  0  both ports online, port 1 usable, PPS mode, in-sync
 452 *  0  1  x  1	1  1  1  1  both ports online, port 1 usable, ETR mode, in-sync
 453 *  1  0  x  1	0  1  0  0  port 0 online and usable, ETR or PPS mode
 454 *  1  0  x  1	0  1  0  1  port 0 online, usable and ETR mode
 455 *  1  0  x  1	0  1  1  0  port 0 online, usable, PPS mode, in-sync
 456 *  1  0  x  1	0  1  1  1  port 0 online, usable, ETR mode, in-sync
 457 *  1  0  x  1	1  1  0  0  both ports online, port 0 usable
 458 *  1  0  x  1	1  1  1  0  both ports online, port 0 usable, PPS mode, in-sync
 459 *  1  0  x  1	1  1  1  1  both ports online, port 0 usable, ETR mode, in-sync
 460 *  1  1  x  1	1  1  1  0  both ports online & usable, ETR, in-sync
 461 *  1  1  x  1	1  1  1  1  both ports online & usable, ETR, in-sync
 462 */
 463static struct etr_eacr etr_eacr;
 464static u64 etr_tolec;			/* time of last eacr update */
 465static struct etr_aib etr_port0;
 466static int etr_port0_uptodate;
 467static struct etr_aib etr_port1;
 468static int etr_port1_uptodate;
 469static unsigned long etr_events;
 470static struct timer_list etr_timer;
 471
 472static void etr_timeout(unsigned long dummy);
 473static void etr_work_fn(struct work_struct *work);
 474static DEFINE_MUTEX(etr_work_mutex);
 475static DECLARE_WORK(etr_work, etr_work_fn);
 476
 477/*
 478 * Reset ETR attachment.
 479 */
 480static void etr_reset(void)
 481{
 482	etr_eacr =  (struct etr_eacr) {
 483		.e0 = 0, .e1 = 0, ._pad0 = 4, .dp = 0,
 484		.p0 = 0, .p1 = 0, ._pad1 = 0, .ea = 0,
 485		.es = 0, .sl = 0 };
 486	if (etr_setr(&etr_eacr) == 0) {
 487		etr_tolec = get_clock();
 488		set_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags);
 489		if (etr_port0_online && etr_port1_online)
 490			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
 491	} else if (etr_port0_online || etr_port1_online) {
 492		pr_warning("The real or virtual hardware system does "
 493			   "not provide an ETR interface\n");
 494		etr_port0_online = etr_port1_online = 0;
 495	}
 496}
 497
 498static int __init etr_init(void)
 499{
 500	struct etr_aib aib;
 501
 502	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
 503		return 0;
 504	time_init_wq();
 505	/* Check if this machine has the steai instruction. */
 506	if (etr_steai(&aib, ETR_STEAI_STEPPING_PORT) == 0)
 507		etr_steai_available = 1;
 508	setup_timer(&etr_timer, etr_timeout, 0UL);
 509	if (etr_port0_online) {
 510		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
 511		queue_work(time_sync_wq, &etr_work);
 512	}
 513	if (etr_port1_online) {
 514		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
 515		queue_work(time_sync_wq, &etr_work);
 516	}
 517	return 0;
 
 
 
 
 
 
 
 
 
 
 518}
 519
 520arch_initcall(etr_init);
 521
 522/*
 523 * Two sorts of ETR machine checks. The architecture reads:
 524 * "When a machine-check niterruption occurs and if a switch-to-local or
 525 *  ETR-sync-check interrupt request is pending but disabled, this pending
 526 *  disabled interruption request is indicated and is cleared".
 527 * Which means that we can get etr_switch_to_local events from the machine
 528 * check handler although the interruption condition is disabled. Lovely..
 529 */
 530
 531/*
 532 * Switch to local machine check. This is called when the last usable
 533 * ETR port goes inactive. After switch to local the clock is not in sync.
 534 */
 535void etr_switch_to_local(void)
 536{
 537	if (!etr_eacr.sl)
 538		return;
 539	disable_sync_clock(NULL);
 540	if (!test_and_set_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events)) {
 541		etr_eacr.es = etr_eacr.sl = 0;
 542		etr_setr(&etr_eacr);
 543		queue_work(time_sync_wq, &etr_work);
 544	}
 
 
 545}
 546
 547/*
 548 * ETR sync check machine check. This is called when the ETR OTE and the
 549 * local clock OTE are farther apart than the ETR sync check tolerance.
 550 * After a ETR sync check the clock is not in sync. The machine check
 551 * is broadcasted to all cpus at the same time.
 552 */
 553void etr_sync_check(void)
 554{
 555	if (!etr_eacr.es)
 556		return;
 557	disable_sync_clock(NULL);
 558	if (!test_and_set_bit(ETR_EVENT_SYNC_CHECK, &etr_events)) {
 559		etr_eacr.es = 0;
 560		etr_setr(&etr_eacr);
 561		queue_work(time_sync_wq, &etr_work);
 562	}
 563}
 564
 565/*
 566 * ETR timing alert. There are two causes:
 567 * 1) port state change, check the usability of the port
 568 * 2) port alert, one of the ETR-data-validity bits (v1-v2 bits of the
 569 *    sldr-status word) or ETR-data word 1 (edf1) or ETR-data word 3 (edf3)
 570 *    or ETR-data word 4 (edf4) has changed.
 571 */
 572static void etr_timing_alert(struct etr_irq_parm *intparm)
 573{
 574	if (intparm->pc0)
 575		/* ETR port 0 state change. */
 576		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
 577	if (intparm->pc1)
 578		/* ETR port 1 state change. */
 579		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
 580	if (intparm->eai)
 581		/*
 582		 * ETR port alert on either port 0, 1 or both.
 583		 * Both ports are not up-to-date now.
 584		 */
 585		set_bit(ETR_EVENT_PORT_ALERT, &etr_events);
 586	queue_work(time_sync_wq, &etr_work);
 587}
 588
 589static void etr_timeout(unsigned long dummy)
 590{
 591	set_bit(ETR_EVENT_UPDATE, &etr_events);
 592	queue_work(time_sync_wq, &etr_work);
 593}
 594
 595/*
 596 * Check if the etr mode is pss.
 597 */
 598static inline int etr_mode_is_pps(struct etr_eacr eacr)
 599{
 600	return eacr.es && !eacr.sl;
 601}
 602
 603/*
 604 * Check if the etr mode is etr.
 605 */
 606static inline int etr_mode_is_etr(struct etr_eacr eacr)
 607{
 608	return eacr.es && eacr.sl;
 609}
 610
 611/*
 612 * Check if the port can be used for TOD synchronization.
 613 * For PPS mode the port has to receive OTEs. For ETR mode
 614 * the port has to receive OTEs, the ETR stepping bit has to
 615 * be zero and the validity bits for data frame 1, 2, and 3
 616 * have to be 1.
 617 */
 618static int etr_port_valid(struct etr_aib *aib, int port)
 619{
 620	unsigned int psc;
 621
 622	/* Check that this port is receiving OTEs. */
 623	if (aib->tsp == 0)
 624		return 0;
 625
 626	psc = port ? aib->esw.psc1 : aib->esw.psc0;
 627	if (psc == etr_lpsc_pps_mode)
 628		return 1;
 629	if (psc == etr_lpsc_operational_step)
 630		return !aib->esw.y && aib->slsw.v1 &&
 631			aib->slsw.v2 && aib->slsw.v3;
 632	return 0;
 633}
 634
 635/*
 636 * Check if two ports are on the same network.
 637 */
 638static int etr_compare_network(struct etr_aib *aib1, struct etr_aib *aib2)
 639{
 640	// FIXME: any other fields we have to compare?
 641	return aib1->edf1.net_id == aib2->edf1.net_id;
 642}
 643
 644/*
 645 * Wrapper for etr_stei that converts physical port states
 646 * to logical port states to be consistent with the output
 647 * of stetr (see etr_psc vs. etr_lpsc).
 648 */
 649static void etr_steai_cv(struct etr_aib *aib, unsigned int func)
 650{
 651	BUG_ON(etr_steai(aib, func) != 0);
 652	/* Convert port state to logical port state. */
 653	if (aib->esw.psc0 == 1)
 654		aib->esw.psc0 = 2;
 655	else if (aib->esw.psc0 == 0 && aib->esw.p == 0)
 656		aib->esw.psc0 = 1;
 657	if (aib->esw.psc1 == 1)
 658		aib->esw.psc1 = 2;
 659	else if (aib->esw.psc1 == 0 && aib->esw.p == 1)
 660		aib->esw.psc1 = 1;
 661}
 662
 663/*
 664 * Check if the aib a2 is still connected to the same attachment as
 665 * aib a1, the etv values differ by one and a2 is valid.
 666 */
 667static int etr_aib_follows(struct etr_aib *a1, struct etr_aib *a2, int p)
 668{
 669	int state_a1, state_a2;
 670
 671	/* Paranoia check: e0/e1 should better be the same. */
 672	if (a1->esw.eacr.e0 != a2->esw.eacr.e0 ||
 673	    a1->esw.eacr.e1 != a2->esw.eacr.e1)
 674		return 0;
 675
 676	/* Still connected to the same etr ? */
 677	state_a1 = p ? a1->esw.psc1 : a1->esw.psc0;
 678	state_a2 = p ? a2->esw.psc1 : a2->esw.psc0;
 679	if (state_a1 == etr_lpsc_operational_step) {
 680		if (state_a2 != etr_lpsc_operational_step ||
 681		    a1->edf1.net_id != a2->edf1.net_id ||
 682		    a1->edf1.etr_id != a2->edf1.etr_id ||
 683		    a1->edf1.etr_pn != a2->edf1.etr_pn)
 684			return 0;
 685	} else if (state_a2 != etr_lpsc_pps_mode)
 686		return 0;
 687
 688	/* The ETV value of a2 needs to be ETV of a1 + 1. */
 689	if (a1->edf2.etv + 1 != a2->edf2.etv)
 690		return 0;
 691
 692	if (!etr_port_valid(a2, p))
 693		return 0;
 694
 695	return 1;
 696}
 697
 698struct clock_sync_data {
 699	atomic_t cpus;
 700	int in_sync;
 701	unsigned long long fixup_cc;
 702	int etr_port;
 703	struct etr_aib *etr_aib;
 704};
 705
 706static void clock_sync_cpu(struct clock_sync_data *sync)
 707{
 708	atomic_dec(&sync->cpus);
 709	enable_sync_clock();
 710	/*
 711	 * This looks like a busy wait loop but it isn't. etr_sync_cpus
 712	 * is called on all other cpus while the TOD clocks is stopped.
 713	 * __udelay will stop the cpu on an enabled wait psw until the
 714	 * TOD is running again.
 715	 */
 716	while (sync->in_sync == 0) {
 717		__udelay(1);
 718		/*
 719		 * A different cpu changes *in_sync. Therefore use
 720		 * barrier() to force memory access.
 721		 */
 722		barrier();
 723	}
 724	if (sync->in_sync != 1)
 725		/* Didn't work. Clear per-cpu in sync bit again. */
 726		disable_sync_clock(NULL);
 727	/*
 728	 * This round of TOD syncing is done. Set the clock comparator
 729	 * to the next tick and let the processor continue.
 730	 */
 731	fixup_clock_comparator(sync->fixup_cc);
 732}
 733
 734/*
 735 * Sync the TOD clock using the port referred to by aibp. This port
 736 * has to be enabled and the other port has to be disabled. The
 737 * last eacr update has to be more than 1.6 seconds in the past.
 738 */
 739static int etr_sync_clock(void *data)
 740{
 741	static int first;
 742	unsigned long long clock, old_clock, delay, delta;
 743	struct clock_sync_data *etr_sync;
 744	struct etr_aib *sync_port, *aib;
 745	int port;
 746	int rc;
 747
 748	etr_sync = data;
 749
 750	if (xchg(&first, 1) == 1) {
 751		/* Slave */
 752		clock_sync_cpu(etr_sync);
 753		return 0;
 754	}
 755
 756	/* Wait until all other cpus entered the sync function. */
 757	while (atomic_read(&etr_sync->cpus) != 0)
 758		cpu_relax();
 759
 760	port = etr_sync->etr_port;
 761	aib = etr_sync->etr_aib;
 762	sync_port = (port == 0) ? &etr_port0 : &etr_port1;
 763	enable_sync_clock();
 764
 765	/* Set clock to next OTE. */
 766	__ctl_set_bit(14, 21);
 767	__ctl_set_bit(0, 29);
 768	clock = ((unsigned long long) (aib->edf2.etv + 1)) << 32;
 769	old_clock = get_clock();
 770	if (set_clock(clock) == 0) {
 771		__udelay(1);	/* Wait for the clock to start. */
 772		__ctl_clear_bit(0, 29);
 773		__ctl_clear_bit(14, 21);
 774		etr_stetr(aib);
 775		/* Adjust Linux timing variables. */
 776		delay = (unsigned long long)
 777			(aib->edf2.etv - sync_port->edf2.etv) << 32;
 778		delta = adjust_time(old_clock, clock, delay);
 779		etr_sync->fixup_cc = delta;
 780		fixup_clock_comparator(delta);
 781		/* Verify that the clock is properly set. */
 782		if (!etr_aib_follows(sync_port, aib, port)) {
 783			/* Didn't work. */
 784			disable_sync_clock(NULL);
 785			etr_sync->in_sync = -EAGAIN;
 786			rc = -EAGAIN;
 787		} else {
 788			etr_sync->in_sync = 1;
 789			rc = 0;
 790		}
 791	} else {
 792		/* Could not set the clock ?!? */
 793		__ctl_clear_bit(0, 29);
 794		__ctl_clear_bit(14, 21);
 795		disable_sync_clock(NULL);
 796		etr_sync->in_sync = -EAGAIN;
 797		rc = -EAGAIN;
 798	}
 799	xchg(&first, 0);
 800	return rc;
 801}
 802
 803static int etr_sync_clock_stop(struct etr_aib *aib, int port)
 804{
 805	struct clock_sync_data etr_sync;
 806	struct etr_aib *sync_port;
 807	int follows;
 808	int rc;
 809
 810	/* Check if the current aib is adjacent to the sync port aib. */
 811	sync_port = (port == 0) ? &etr_port0 : &etr_port1;
 812	follows = etr_aib_follows(sync_port, aib, port);
 813	memcpy(sync_port, aib, sizeof(*aib));
 814	if (!follows)
 815		return -EAGAIN;
 816	memset(&etr_sync, 0, sizeof(etr_sync));
 817	etr_sync.etr_aib = aib;
 818	etr_sync.etr_port = port;
 819	get_online_cpus();
 820	atomic_set(&etr_sync.cpus, num_online_cpus() - 1);
 821	rc = stop_machine(etr_sync_clock, &etr_sync, cpu_online_mask);
 822	put_online_cpus();
 823	return rc;
 824}
 825
 826/*
 827 * Handle the immediate effects of the different events.
 828 * The port change event is used for online/offline changes.
 829 */
 830static struct etr_eacr etr_handle_events(struct etr_eacr eacr)
 831{
 832	if (test_and_clear_bit(ETR_EVENT_SYNC_CHECK, &etr_events))
 833		eacr.es = 0;
 834	if (test_and_clear_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events))
 835		eacr.es = eacr.sl = 0;
 836	if (test_and_clear_bit(ETR_EVENT_PORT_ALERT, &etr_events))
 837		etr_port0_uptodate = etr_port1_uptodate = 0;
 838
 839	if (test_and_clear_bit(ETR_EVENT_PORT0_CHANGE, &etr_events)) {
 840		if (eacr.e0)
 841			/*
 842			 * Port change of an enabled port. We have to
 843			 * assume that this can have caused an stepping
 844			 * port switch.
 845			 */
 846			etr_tolec = get_clock();
 847		eacr.p0 = etr_port0_online;
 848		if (!eacr.p0)
 849			eacr.e0 = 0;
 850		etr_port0_uptodate = 0;
 851	}
 852	if (test_and_clear_bit(ETR_EVENT_PORT1_CHANGE, &etr_events)) {
 853		if (eacr.e1)
 854			/*
 855			 * Port change of an enabled port. We have to
 856			 * assume that this can have caused an stepping
 857			 * port switch.
 858			 */
 859			etr_tolec = get_clock();
 860		eacr.p1 = etr_port1_online;
 861		if (!eacr.p1)
 862			eacr.e1 = 0;
 863		etr_port1_uptodate = 0;
 864	}
 865	clear_bit(ETR_EVENT_UPDATE, &etr_events);
 866	return eacr;
 867}
 868
 869/*
 870 * Set up a timer that expires after the etr_tolec + 1.6 seconds if
 871 * one of the ports needs an update.
 872 */
 873static void etr_set_tolec_timeout(unsigned long long now)
 874{
 875	unsigned long micros;
 876
 877	if ((!etr_eacr.p0 || etr_port0_uptodate) &&
 878	    (!etr_eacr.p1 || etr_port1_uptodate))
 879		return;
 880	micros = (now > etr_tolec) ? ((now - etr_tolec) >> 12) : 0;
 881	micros = (micros > 1600000) ? 0 : 1600000 - micros;
 882	mod_timer(&etr_timer, jiffies + (micros * HZ) / 1000000 + 1);
 883}
 884
 885/*
 886 * Set up a time that expires after 1/2 second.
 887 */
 888static void etr_set_sync_timeout(void)
 889{
 890	mod_timer(&etr_timer, jiffies + HZ/2);
 891}
 892
 893/*
 894 * Update the aib information for one or both ports.
 895 */
 896static struct etr_eacr etr_handle_update(struct etr_aib *aib,
 897					 struct etr_eacr eacr)
 898{
 899	/* With both ports disabled the aib information is useless. */
 900	if (!eacr.e0 && !eacr.e1)
 901		return eacr;
 902
 903	/* Update port0 or port1 with aib stored in etr_work_fn. */
 904	if (aib->esw.q == 0) {
 905		/* Information for port 0 stored. */
 906		if (eacr.p0 && !etr_port0_uptodate) {
 907			etr_port0 = *aib;
 908			if (etr_port0_online)
 909				etr_port0_uptodate = 1;
 910		}
 911	} else {
 912		/* Information for port 1 stored. */
 913		if (eacr.p1 && !etr_port1_uptodate) {
 914			etr_port1 = *aib;
 915			if (etr_port0_online)
 916				etr_port1_uptodate = 1;
 917		}
 918	}
 919
 920	/*
 921	 * Do not try to get the alternate port aib if the clock
 922	 * is not in sync yet.
 923	 */
 924	if (!eacr.es || !check_sync_clock())
 925		return eacr;
 926
 927	/*
 928	 * If steai is available we can get the information about
 929	 * the other port immediately. If only stetr is available the
 930	 * data-port bit toggle has to be used.
 931	 */
 932	if (etr_steai_available) {
 933		if (eacr.p0 && !etr_port0_uptodate) {
 934			etr_steai_cv(&etr_port0, ETR_STEAI_PORT_0);
 935			etr_port0_uptodate = 1;
 936		}
 937		if (eacr.p1 && !etr_port1_uptodate) {
 938			etr_steai_cv(&etr_port1, ETR_STEAI_PORT_1);
 939			etr_port1_uptodate = 1;
 940		}
 941	} else {
 942		/*
 943		 * One port was updated above, if the other
 944		 * port is not uptodate toggle dp bit.
 945		 */
 946		if ((eacr.p0 && !etr_port0_uptodate) ||
 947		    (eacr.p1 && !etr_port1_uptodate))
 948			eacr.dp ^= 1;
 949		else
 950			eacr.dp = 0;
 951	}
 952	return eacr;
 953}
 954
 955/*
 956 * Write new etr control register if it differs from the current one.
 957 * Return 1 if etr_tolec has been updated as well.
 958 */
 959static void etr_update_eacr(struct etr_eacr eacr)
 960{
 961	int dp_changed;
 962
 963	if (memcmp(&etr_eacr, &eacr, sizeof(eacr)) == 0)
 964		/* No change, return. */
 965		return;
 966	/*
 967	 * The disable of an active port of the change of the data port
 968	 * bit can/will cause a change in the data port.
 969	 */
 970	dp_changed = etr_eacr.e0 > eacr.e0 || etr_eacr.e1 > eacr.e1 ||
 971		(etr_eacr.dp ^ eacr.dp) != 0;
 972	etr_eacr = eacr;
 973	etr_setr(&etr_eacr);
 974	if (dp_changed)
 975		etr_tolec = get_clock();
 976}
 977
 978/*
 979 * ETR work. In this function you'll find the main logic. In
 980 * particular this is the only function that calls etr_update_eacr(),
 981 * it "controls" the etr control register.
 982 */
 983static void etr_work_fn(struct work_struct *work)
 984{
 985	unsigned long long now;
 986	struct etr_eacr eacr;
 987	struct etr_aib aib;
 988	int sync_port;
 989
 990	/* prevent multiple execution. */
 991	mutex_lock(&etr_work_mutex);
 992
 993	/* Create working copy of etr_eacr. */
 994	eacr = etr_eacr;
 995
 996	/* Check for the different events and their immediate effects. */
 997	eacr = etr_handle_events(eacr);
 998
 999	/* Check if ETR is supposed to be active. */
1000	eacr.ea = eacr.p0 || eacr.p1;
1001	if (!eacr.ea) {
1002		/* Both ports offline. Reset everything. */
1003		eacr.dp = eacr.es = eacr.sl = 0;
1004		on_each_cpu(disable_sync_clock, NULL, 1);
1005		del_timer_sync(&etr_timer);
1006		etr_update_eacr(eacr);
1007		goto out_unlock;
1008	}
1009
1010	/* Store aib to get the current ETR status word. */
1011	BUG_ON(etr_stetr(&aib) != 0);
1012	etr_port0.esw = etr_port1.esw = aib.esw;	/* Copy status word. */
1013	now = get_clock();
1014
1015	/*
1016	 * Update the port information if the last stepping port change
1017	 * or data port change is older than 1.6 seconds.
1018	 */
1019	if (now >= etr_tolec + (1600000 << 12))
1020		eacr = etr_handle_update(&aib, eacr);
1021
1022	/*
1023	 * Select ports to enable. The preferred synchronization mode is PPS.
1024	 * If a port can be enabled depends on a number of things:
1025	 * 1) The port needs to be online and uptodate. A port is not
1026	 *    disabled just because it is not uptodate, but it is only
1027	 *    enabled if it is uptodate.
1028	 * 2) The port needs to have the same mode (pps / etr).
1029	 * 3) The port needs to be usable -> etr_port_valid() == 1
1030	 * 4) To enable the second port the clock needs to be in sync.
1031	 * 5) If both ports are useable and are ETR ports, the network id
1032	 *    has to be the same.
1033	 * The eacr.sl bit is used to indicate etr mode vs. pps mode.
1034	 */
1035	if (eacr.p0 && aib.esw.psc0 == etr_lpsc_pps_mode) {
1036		eacr.sl = 0;
1037		eacr.e0 = 1;
1038		if (!etr_mode_is_pps(etr_eacr))
1039			eacr.es = 0;
1040		if (!eacr.es || !eacr.p1 || aib.esw.psc1 != etr_lpsc_pps_mode)
1041			eacr.e1 = 0;
1042		// FIXME: uptodate checks ?
1043		else if (etr_port0_uptodate && etr_port1_uptodate)
1044			eacr.e1 = 1;
1045		sync_port = (etr_port0_uptodate &&
1046			     etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1047	} else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_pps_mode) {
1048		eacr.sl = 0;
1049		eacr.e0 = 0;
1050		eacr.e1 = 1;
1051		if (!etr_mode_is_pps(etr_eacr))
1052			eacr.es = 0;
1053		sync_port = (etr_port1_uptodate &&
1054			     etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1055	} else if (eacr.p0 && aib.esw.psc0 == etr_lpsc_operational_step) {
1056		eacr.sl = 1;
1057		eacr.e0 = 1;
1058		if (!etr_mode_is_etr(etr_eacr))
1059			eacr.es = 0;
1060		if (!eacr.es || !eacr.p1 ||
1061		    aib.esw.psc1 != etr_lpsc_operational_alt)
1062			eacr.e1 = 0;
1063		else if (etr_port0_uptodate && etr_port1_uptodate &&
1064			 etr_compare_network(&etr_port0, &etr_port1))
1065			eacr.e1 = 1;
1066		sync_port = (etr_port0_uptodate &&
1067			     etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1068	} else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_operational_step) {
1069		eacr.sl = 1;
1070		eacr.e0 = 0;
1071		eacr.e1 = 1;
1072		if (!etr_mode_is_etr(etr_eacr))
1073			eacr.es = 0;
1074		sync_port = (etr_port1_uptodate &&
1075			     etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1076	} else {
1077		/* Both ports not usable. */
1078		eacr.es = eacr.sl = 0;
1079		sync_port = -1;
1080	}
1081
1082	/*
1083	 * If the clock is in sync just update the eacr and return.
1084	 * If there is no valid sync port wait for a port update.
1085	 */
1086	if ((eacr.es && check_sync_clock()) || sync_port < 0) {
1087		etr_update_eacr(eacr);
1088		etr_set_tolec_timeout(now);
1089		goto out_unlock;
1090	}
1091
1092	/*
1093	 * Prepare control register for clock syncing
1094	 * (reset data port bit, set sync check control.
1095	 */
1096	eacr.dp = 0;
1097	eacr.es = 1;
1098
1099	/*
1100	 * Update eacr and try to synchronize the clock. If the update
1101	 * of eacr caused a stepping port switch (or if we have to
1102	 * assume that a stepping port switch has occurred) or the
1103	 * clock syncing failed, reset the sync check control bit
1104	 * and set up a timer to try again after 0.5 seconds
1105	 */
1106	etr_update_eacr(eacr);
1107	if (now < etr_tolec + (1600000 << 12) ||
1108	    etr_sync_clock_stop(&aib, sync_port) != 0) {
1109		/* Sync failed. Try again in 1/2 second. */
1110		eacr.es = 0;
1111		etr_update_eacr(eacr);
1112		etr_set_sync_timeout();
1113	} else
1114		etr_set_tolec_timeout(now);
1115out_unlock:
1116	mutex_unlock(&etr_work_mutex);
1117}
1118
1119/*
1120 * Sysfs interface functions
1121 */
1122static struct bus_type etr_subsys = {
1123	.name		= "etr",
1124	.dev_name	= "etr",
1125};
1126
1127static struct device etr_port0_dev = {
1128	.id	= 0,
1129	.bus	= &etr_subsys,
1130};
1131
1132static struct device etr_port1_dev = {
1133	.id	= 1,
1134	.bus	= &etr_subsys,
1135};
1136
1137/*
1138 * ETR subsys attributes
1139 */
1140static ssize_t etr_stepping_port_show(struct device *dev,
1141					struct device_attribute *attr,
1142					char *buf)
1143{
1144	return sprintf(buf, "%i\n", etr_port0.esw.p);
1145}
1146
1147static DEVICE_ATTR(stepping_port, 0400, etr_stepping_port_show, NULL);
1148
1149static ssize_t etr_stepping_mode_show(struct device *dev,
1150					struct device_attribute *attr,
1151					char *buf)
1152{
1153	char *mode_str;
1154
1155	if (etr_mode_is_pps(etr_eacr))
1156		mode_str = "pps";
1157	else if (etr_mode_is_etr(etr_eacr))
1158		mode_str = "etr";
1159	else
1160		mode_str = "local";
1161	return sprintf(buf, "%s\n", mode_str);
1162}
1163
1164static DEVICE_ATTR(stepping_mode, 0400, etr_stepping_mode_show, NULL);
1165
1166/*
1167 * ETR port attributes
1168 */
1169static inline struct etr_aib *etr_aib_from_dev(struct device *dev)
1170{
1171	if (dev == &etr_port0_dev)
1172		return etr_port0_online ? &etr_port0 : NULL;
1173	else
1174		return etr_port1_online ? &etr_port1 : NULL;
1175}
1176
1177static ssize_t etr_online_show(struct device *dev,
1178				struct device_attribute *attr,
1179				char *buf)
1180{
1181	unsigned int online;
1182
1183	online = (dev == &etr_port0_dev) ? etr_port0_online : etr_port1_online;
1184	return sprintf(buf, "%i\n", online);
1185}
1186
1187static ssize_t etr_online_store(struct device *dev,
1188				struct device_attribute *attr,
1189				const char *buf, size_t count)
1190{
1191	unsigned int value;
1192
1193	value = simple_strtoul(buf, NULL, 0);
1194	if (value != 0 && value != 1)
1195		return -EINVAL;
1196	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
1197		return -EOPNOTSUPP;
1198	mutex_lock(&clock_sync_mutex);
1199	if (dev == &etr_port0_dev) {
1200		if (etr_port0_online == value)
1201			goto out;	/* Nothing to do. */
1202		etr_port0_online = value;
1203		if (etr_port0_online && etr_port1_online)
1204			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1205		else
1206			clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1207		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
1208		queue_work(time_sync_wq, &etr_work);
1209	} else {
1210		if (etr_port1_online == value)
1211			goto out;	/* Nothing to do. */
1212		etr_port1_online = value;
1213		if (etr_port0_online && etr_port1_online)
1214			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1215		else
1216			clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1217		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
1218		queue_work(time_sync_wq, &etr_work);
1219	}
1220out:
1221	mutex_unlock(&clock_sync_mutex);
1222	return count;
1223}
1224
1225static DEVICE_ATTR(online, 0600, etr_online_show, etr_online_store);
1226
1227static ssize_t etr_stepping_control_show(struct device *dev,
1228					struct device_attribute *attr,
1229					char *buf)
1230{
1231	return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1232		       etr_eacr.e0 : etr_eacr.e1);
1233}
1234
1235static DEVICE_ATTR(stepping_control, 0400, etr_stepping_control_show, NULL);
1236
1237static ssize_t etr_mode_code_show(struct device *dev,
1238				struct device_attribute *attr, char *buf)
1239{
1240	if (!etr_port0_online && !etr_port1_online)
1241		/* Status word is not uptodate if both ports are offline. */
1242		return -ENODATA;
1243	return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1244		       etr_port0.esw.psc0 : etr_port0.esw.psc1);
1245}
1246
1247static DEVICE_ATTR(state_code, 0400, etr_mode_code_show, NULL);
1248
1249static ssize_t etr_untuned_show(struct device *dev,
1250				struct device_attribute *attr, char *buf)
1251{
1252	struct etr_aib *aib = etr_aib_from_dev(dev);
1253
1254	if (!aib || !aib->slsw.v1)
1255		return -ENODATA;
1256	return sprintf(buf, "%i\n", aib->edf1.u);
1257}
1258
1259static DEVICE_ATTR(untuned, 0400, etr_untuned_show, NULL);
1260
1261static ssize_t etr_network_id_show(struct device *dev,
1262				struct device_attribute *attr, char *buf)
1263{
1264	struct etr_aib *aib = etr_aib_from_dev(dev);
1265
1266	if (!aib || !aib->slsw.v1)
1267		return -ENODATA;
1268	return sprintf(buf, "%i\n", aib->edf1.net_id);
1269}
1270
1271static DEVICE_ATTR(network, 0400, etr_network_id_show, NULL);
1272
1273static ssize_t etr_id_show(struct device *dev,
1274			struct device_attribute *attr, char *buf)
1275{
1276	struct etr_aib *aib = etr_aib_from_dev(dev);
1277
1278	if (!aib || !aib->slsw.v1)
1279		return -ENODATA;
1280	return sprintf(buf, "%i\n", aib->edf1.etr_id);
1281}
1282
1283static DEVICE_ATTR(id, 0400, etr_id_show, NULL);
1284
1285static ssize_t etr_port_number_show(struct device *dev,
1286			struct device_attribute *attr, char *buf)
1287{
1288	struct etr_aib *aib = etr_aib_from_dev(dev);
1289
1290	if (!aib || !aib->slsw.v1)
1291		return -ENODATA;
1292	return sprintf(buf, "%i\n", aib->edf1.etr_pn);
1293}
1294
1295static DEVICE_ATTR(port, 0400, etr_port_number_show, NULL);
1296
1297static ssize_t etr_coupled_show(struct device *dev,
1298			struct device_attribute *attr, char *buf)
1299{
1300	struct etr_aib *aib = etr_aib_from_dev(dev);
1301
1302	if (!aib || !aib->slsw.v3)
1303		return -ENODATA;
1304	return sprintf(buf, "%i\n", aib->edf3.c);
1305}
1306
1307static DEVICE_ATTR(coupled, 0400, etr_coupled_show, NULL);
1308
1309static ssize_t etr_local_time_show(struct device *dev,
1310			struct device_attribute *attr, char *buf)
1311{
1312	struct etr_aib *aib = etr_aib_from_dev(dev);
1313
1314	if (!aib || !aib->slsw.v3)
1315		return -ENODATA;
1316	return sprintf(buf, "%i\n", aib->edf3.blto);
1317}
1318
1319static DEVICE_ATTR(local_time, 0400, etr_local_time_show, NULL);
1320
1321static ssize_t etr_utc_offset_show(struct device *dev,
1322			struct device_attribute *attr, char *buf)
1323{
1324	struct etr_aib *aib = etr_aib_from_dev(dev);
1325
1326	if (!aib || !aib->slsw.v3)
1327		return -ENODATA;
1328	return sprintf(buf, "%i\n", aib->edf3.buo);
1329}
1330
1331static DEVICE_ATTR(utc_offset, 0400, etr_utc_offset_show, NULL);
1332
1333static struct device_attribute *etr_port_attributes[] = {
1334	&dev_attr_online,
1335	&dev_attr_stepping_control,
1336	&dev_attr_state_code,
1337	&dev_attr_untuned,
1338	&dev_attr_network,
1339	&dev_attr_id,
1340	&dev_attr_port,
1341	&dev_attr_coupled,
1342	&dev_attr_local_time,
1343	&dev_attr_utc_offset,
1344	NULL
1345};
1346
1347static int __init etr_register_port(struct device *dev)
1348{
1349	struct device_attribute **attr;
1350	int rc;
1351
1352	rc = device_register(dev);
1353	if (rc)
1354		goto out;
1355	for (attr = etr_port_attributes; *attr; attr++) {
1356		rc = device_create_file(dev, *attr);
1357		if (rc)
1358			goto out_unreg;
1359	}
1360	return 0;
1361out_unreg:
1362	for (; attr >= etr_port_attributes; attr--)
1363		device_remove_file(dev, *attr);
1364	device_unregister(dev);
1365out:
1366	return rc;
1367}
1368
1369static void __init etr_unregister_port(struct device *dev)
1370{
1371	struct device_attribute **attr;
1372
1373	for (attr = etr_port_attributes; *attr; attr++)
1374		device_remove_file(dev, *attr);
1375	device_unregister(dev);
1376}
1377
1378static int __init etr_init_sysfs(void)
1379{
1380	int rc;
1381
1382	rc = subsys_system_register(&etr_subsys, NULL);
1383	if (rc)
1384		goto out;
1385	rc = device_create_file(etr_subsys.dev_root, &dev_attr_stepping_port);
1386	if (rc)
1387		goto out_unreg_subsys;
1388	rc = device_create_file(etr_subsys.dev_root, &dev_attr_stepping_mode);
1389	if (rc)
1390		goto out_remove_stepping_port;
1391	rc = etr_register_port(&etr_port0_dev);
1392	if (rc)
1393		goto out_remove_stepping_mode;
1394	rc = etr_register_port(&etr_port1_dev);
1395	if (rc)
1396		goto out_remove_port0;
1397	return 0;
1398
1399out_remove_port0:
1400	etr_unregister_port(&etr_port0_dev);
1401out_remove_stepping_mode:
1402	device_remove_file(etr_subsys.dev_root, &dev_attr_stepping_mode);
1403out_remove_stepping_port:
1404	device_remove_file(etr_subsys.dev_root, &dev_attr_stepping_port);
1405out_unreg_subsys:
1406	bus_unregister(&etr_subsys);
1407out:
1408	return rc;
1409}
1410
1411device_initcall(etr_init_sysfs);
1412
1413/*
1414 * Server Time Protocol (STP) code.
1415 */
1416static int stp_online;
1417static struct stp_sstpi stp_info;
1418static void *stp_page;
1419
1420static void stp_work_fn(struct work_struct *work);
1421static DEFINE_MUTEX(stp_work_mutex);
1422static DECLARE_WORK(stp_work, stp_work_fn);
1423static struct timer_list stp_timer;
1424
1425static int __init early_parse_stp(char *p)
1426{
1427	if (strncmp(p, "off", 3) == 0)
1428		stp_online = 0;
1429	else if (strncmp(p, "on", 2) == 0)
1430		stp_online = 1;
1431	return 0;
1432}
1433early_param("stp", early_parse_stp);
1434
1435/*
1436 * Reset STP attachment.
1437 */
1438static void __init stp_reset(void)
1439{
1440	int rc;
1441
1442	stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
1443	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1444	if (rc == 0)
1445		set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
1446	else if (stp_online) {
1447		pr_warning("The real or virtual hardware system does "
1448			   "not provide an STP interface\n");
1449		free_page((unsigned long) stp_page);
1450		stp_page = NULL;
1451		stp_online = 0;
1452	}
1453}
1454
1455static void stp_timeout(unsigned long dummy)
1456{
1457	queue_work(time_sync_wq, &stp_work);
1458}
1459
1460static int __init stp_init(void)
1461{
1462	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1463		return 0;
1464	setup_timer(&stp_timer, stp_timeout, 0UL);
1465	time_init_wq();
1466	if (!stp_online)
1467		return 0;
1468	queue_work(time_sync_wq, &stp_work);
1469	return 0;
1470}
1471
1472arch_initcall(stp_init);
1473
1474/*
1475 * STP timing alert. There are three causes:
1476 * 1) timing status change
1477 * 2) link availability change
1478 * 3) time control parameter change
1479 * In all three cases we are only interested in the clock source state.
1480 * If a STP clock source is now available use it.
1481 */
1482static void stp_timing_alert(struct stp_irq_parm *intparm)
1483{
1484	if (intparm->tsc || intparm->lac || intparm->tcpc)
1485		queue_work(time_sync_wq, &stp_work);
1486}
1487
1488/*
1489 * STP sync check machine check. This is called when the timing state
1490 * changes from the synchronized state to the unsynchronized state.
1491 * After a STP sync check the clock is not in sync. The machine check
1492 * is broadcasted to all cpus at the same time.
1493 */
1494void stp_sync_check(void)
1495{
1496	disable_sync_clock(NULL);
1497	queue_work(time_sync_wq, &stp_work);
1498}
1499
1500/*
1501 * STP island condition machine check. This is called when an attached
1502 * server  attempts to communicate over an STP link and the servers
1503 * have matching CTN ids and have a valid stratum-1 configuration
1504 * but the configurations do not match.
1505 */
1506void stp_island_check(void)
1507{
1508	disable_sync_clock(NULL);
 
 
 
 
 
1509	queue_work(time_sync_wq, &stp_work);
1510}
1511
1512
1513static int stp_sync_clock(void *data)
1514{
 
 
1515	static int first;
1516	unsigned long long old_clock, delta;
1517	struct clock_sync_data *stp_sync;
1518	int rc;
1519
1520	stp_sync = data;
1521
1522	if (xchg(&first, 1) == 1) {
1523		/* Slave */
1524		clock_sync_cpu(stp_sync);
1525		return 0;
1526	}
1527
1528	/* Wait until all other cpus entered the sync function. */
1529	while (atomic_read(&stp_sync->cpus) != 0)
1530		cpu_relax();
1531
1532	enable_sync_clock();
1533
1534	rc = 0;
1535	if (stp_info.todoff[0] || stp_info.todoff[1] ||
1536	    stp_info.todoff[2] || stp_info.todoff[3] ||
1537	    stp_info.tmd != 2) {
1538		old_clock = get_clock();
1539		rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0);
1540		if (rc == 0) {
1541			delta = adjust_time(old_clock, get_clock(), 0);
1542			fixup_clock_comparator(delta);
1543			rc = chsc_sstpi(stp_page, &stp_info,
1544					sizeof(struct stp_sstpi));
1545			if (rc == 0 && stp_info.tmd != 2)
1546				rc = -EAGAIN;
 
 
 
 
1547		}
 
 
 
 
 
 
 
 
1548	}
1549	if (rc) {
 
1550		disable_sync_clock(NULL);
1551		stp_sync->in_sync = -EAGAIN;
1552	} else
1553		stp_sync->in_sync = 1;
1554	xchg(&first, 0);
1555	return 0;
1556}
1557
1558/*
1559 * STP work. Check for the STP state and take over the clock
1560 * synchronization if the STP clock source is usable.
1561 */
1562static void stp_work_fn(struct work_struct *work)
1563{
1564	struct clock_sync_data stp_sync;
1565	int rc;
1566
1567	/* prevent multiple execution. */
1568	mutex_lock(&stp_work_mutex);
1569
1570	if (!stp_online) {
1571		chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1572		del_timer_sync(&stp_timer);
1573		goto out_unlock;
1574	}
1575
1576	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0);
1577	if (rc)
1578		goto out_unlock;
1579
1580	rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
1581	if (rc || stp_info.c == 0)
1582		goto out_unlock;
1583
1584	/* Skip synchronization if the clock is already in sync. */
1585	if (check_sync_clock())
1586		goto out_unlock;
1587
1588	memset(&stp_sync, 0, sizeof(stp_sync));
1589	get_online_cpus();
1590	atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
1591	stop_machine(stp_sync_clock, &stp_sync, cpu_online_mask);
1592	put_online_cpus();
1593
1594	if (!check_sync_clock())
1595		/*
1596		 * There is a usable clock but the synchonization failed.
1597		 * Retry after a second.
1598		 */
1599		mod_timer(&stp_timer, jiffies + HZ);
1600
1601out_unlock:
1602	mutex_unlock(&stp_work_mutex);
1603}
1604
1605/*
1606 * STP subsys sysfs interface functions
1607 */
1608static struct bus_type stp_subsys = {
1609	.name		= "stp",
1610	.dev_name	= "stp",
1611};
1612
1613static ssize_t stp_ctn_id_show(struct device *dev,
1614				struct device_attribute *attr,
1615				char *buf)
1616{
1617	if (!stp_online)
1618		return -ENODATA;
1619	return sprintf(buf, "%016llx\n",
1620		       *(unsigned long long *) stp_info.ctnid);
1621}
1622
1623static DEVICE_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
1624
1625static ssize_t stp_ctn_type_show(struct device *dev,
1626				struct device_attribute *attr,
1627				char *buf)
1628{
1629	if (!stp_online)
1630		return -ENODATA;
1631	return sprintf(buf, "%i\n", stp_info.ctn);
1632}
1633
1634static DEVICE_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
1635
1636static ssize_t stp_dst_offset_show(struct device *dev,
1637				   struct device_attribute *attr,
1638				   char *buf)
1639{
1640	if (!stp_online || !(stp_info.vbits & 0x2000))
1641		return -ENODATA;
1642	return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
1643}
1644
1645static DEVICE_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
1646
1647static ssize_t stp_leap_seconds_show(struct device *dev,
1648					struct device_attribute *attr,
1649					char *buf)
1650{
1651	if (!stp_online || !(stp_info.vbits & 0x8000))
1652		return -ENODATA;
1653	return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
1654}
1655
1656static DEVICE_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
1657
1658static ssize_t stp_stratum_show(struct device *dev,
1659				struct device_attribute *attr,
1660				char *buf)
1661{
1662	if (!stp_online)
1663		return -ENODATA;
1664	return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
1665}
1666
1667static DEVICE_ATTR(stratum, 0400, stp_stratum_show, NULL);
1668
1669static ssize_t stp_time_offset_show(struct device *dev,
1670				struct device_attribute *attr,
1671				char *buf)
1672{
1673	if (!stp_online || !(stp_info.vbits & 0x0800))
1674		return -ENODATA;
1675	return sprintf(buf, "%i\n", (int) stp_info.tto);
1676}
1677
1678static DEVICE_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
1679
1680static ssize_t stp_time_zone_offset_show(struct device *dev,
1681				struct device_attribute *attr,
1682				char *buf)
1683{
1684	if (!stp_online || !(stp_info.vbits & 0x4000))
1685		return -ENODATA;
1686	return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
1687}
1688
1689static DEVICE_ATTR(time_zone_offset, 0400,
1690			 stp_time_zone_offset_show, NULL);
1691
1692static ssize_t stp_timing_mode_show(struct device *dev,
1693				struct device_attribute *attr,
1694				char *buf)
1695{
1696	if (!stp_online)
1697		return -ENODATA;
1698	return sprintf(buf, "%i\n", stp_info.tmd);
1699}
1700
1701static DEVICE_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
1702
1703static ssize_t stp_timing_state_show(struct device *dev,
1704				struct device_attribute *attr,
1705				char *buf)
1706{
1707	if (!stp_online)
1708		return -ENODATA;
1709	return sprintf(buf, "%i\n", stp_info.tst);
1710}
1711
1712static DEVICE_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
1713
1714static ssize_t stp_online_show(struct device *dev,
1715				struct device_attribute *attr,
1716				char *buf)
1717{
1718	return sprintf(buf, "%i\n", stp_online);
1719}
1720
1721static ssize_t stp_online_store(struct device *dev,
1722				struct device_attribute *attr,
1723				const char *buf, size_t count)
1724{
1725	unsigned int value;
1726
1727	value = simple_strtoul(buf, NULL, 0);
1728	if (value != 0 && value != 1)
1729		return -EINVAL;
1730	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1731		return -EOPNOTSUPP;
1732	mutex_lock(&clock_sync_mutex);
1733	stp_online = value;
1734	if (stp_online)
1735		set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1736	else
1737		clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1738	queue_work(time_sync_wq, &stp_work);
1739	mutex_unlock(&clock_sync_mutex);
1740	return count;
1741}
1742
1743/*
1744 * Can't use DEVICE_ATTR because the attribute should be named
1745 * stp/online but dev_attr_online already exists in this file ..
1746 */
1747static struct device_attribute dev_attr_stp_online = {
1748	.attr = { .name = "online", .mode = 0600 },
1749	.show	= stp_online_show,
1750	.store	= stp_online_store,
1751};
1752
1753static struct device_attribute *stp_attributes[] = {
1754	&dev_attr_ctn_id,
1755	&dev_attr_ctn_type,
1756	&dev_attr_dst_offset,
1757	&dev_attr_leap_seconds,
1758	&dev_attr_stp_online,
1759	&dev_attr_stratum,
1760	&dev_attr_time_offset,
1761	&dev_attr_time_zone_offset,
1762	&dev_attr_timing_mode,
1763	&dev_attr_timing_state,
1764	NULL
1765};
1766
1767static int __init stp_init_sysfs(void)
1768{
1769	struct device_attribute **attr;
1770	int rc;
1771
1772	rc = subsys_system_register(&stp_subsys, NULL);
1773	if (rc)
1774		goto out;
1775	for (attr = stp_attributes; *attr; attr++) {
1776		rc = device_create_file(stp_subsys.dev_root, *attr);
1777		if (rc)
1778			goto out_unreg;
1779	}
1780	return 0;
1781out_unreg:
1782	for (; attr >= stp_attributes; attr--)
1783		device_remove_file(stp_subsys.dev_root, *attr);
1784	bus_unregister(&stp_subsys);
1785out:
1786	return rc;
1787}
1788
1789device_initcall(stp_init_sysfs);