Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Implementation of the security services.
   4 *
   5 * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
   6 *	     James Morris <jmorris@redhat.com>
   7 *
   8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   9 *
  10 *	Support for enhanced MLS infrastructure.
  11 *	Support for context based audit filters.
  12 *
  13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  14 *
  15 *	Added conditional policy language extensions
  16 *
  17 * Updated: Hewlett-Packard <paul@paul-moore.com>
  18 *
  19 *      Added support for NetLabel
  20 *      Added support for the policy capability bitmap
  21 *
  22 * Updated: Chad Sellers <csellers@tresys.com>
  23 *
  24 *  Added validation of kernel classes and permissions
  25 *
  26 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  27 *
  28 *  Added support for bounds domain and audit messaged on masked permissions
  29 *
  30 * Updated: Guido Trentalancia <guido@trentalancia.com>
  31 *
  32 *  Added support for runtime switching of the policy type
  33 *
  34 * Copyright (C) 2008, 2009 NEC Corporation
  35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  38 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  39 */
  40#include <linux/kernel.h>
  41#include <linux/slab.h>
  42#include <linux/string.h>
  43#include <linux/spinlock.h>
  44#include <linux/rcupdate.h>
  45#include <linux/errno.h>
  46#include <linux/in.h>
  47#include <linux/sched.h>
  48#include <linux/audit.h>
  49#include <linux/mutex.h>
  50#include <linux/vmalloc.h>
  51#include <net/netlabel.h>
  52
  53#include "flask.h"
  54#include "avc.h"
  55#include "avc_ss.h"
  56#include "security.h"
  57#include "context.h"
  58#include "policydb.h"
  59#include "sidtab.h"
  60#include "services.h"
  61#include "conditional.h"
  62#include "mls.h"
  63#include "objsec.h"
  64#include "netlabel.h"
  65#include "xfrm.h"
  66#include "ebitmap.h"
  67#include "audit.h"
  68
  69/* Policy capability names */
  70const char *selinux_policycap_names[__POLICYDB_CAPABILITY_MAX] = {
  71	"network_peer_controls",
  72	"open_perms",
  73	"extended_socket_class",
  74	"always_check_network",
  75	"cgroup_seclabel",
  76	"nnp_nosuid_transition"
 
  77};
  78
  79static struct selinux_ss selinux_ss;
  80
  81void selinux_ss_init(struct selinux_ss **ss)
  82{
  83	rwlock_init(&selinux_ss.policy_rwlock);
  84	mutex_init(&selinux_ss.status_lock);
  85	*ss = &selinux_ss;
  86}
  87
  88/* Forward declaration. */
  89static int context_struct_to_string(struct policydb *policydb,
  90				    struct context *context,
  91				    char **scontext,
  92				    u32 *scontext_len);
  93
 
 
 
 
 
 
  94static void context_struct_compute_av(struct policydb *policydb,
  95				      struct context *scontext,
  96				      struct context *tcontext,
  97				      u16 tclass,
  98				      struct av_decision *avd,
  99				      struct extended_perms *xperms);
 100
 101static int selinux_set_mapping(struct policydb *pol,
 102			       struct security_class_mapping *map,
 103			       struct selinux_map *out_map)
 104{
 105	u16 i, j;
 106	unsigned k;
 107	bool print_unknown_handle = false;
 108
 109	/* Find number of classes in the input mapping */
 110	if (!map)
 111		return -EINVAL;
 112	i = 0;
 113	while (map[i].name)
 114		i++;
 115
 116	/* Allocate space for the class records, plus one for class zero */
 117	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
 118	if (!out_map->mapping)
 119		return -ENOMEM;
 120
 121	/* Store the raw class and permission values */
 122	j = 0;
 123	while (map[j].name) {
 124		struct security_class_mapping *p_in = map + (j++);
 125		struct selinux_mapping *p_out = out_map->mapping + j;
 126
 127		/* An empty class string skips ahead */
 128		if (!strcmp(p_in->name, "")) {
 129			p_out->num_perms = 0;
 130			continue;
 131		}
 132
 133		p_out->value = string_to_security_class(pol, p_in->name);
 134		if (!p_out->value) {
 135			pr_info("SELinux:  Class %s not defined in policy.\n",
 136			       p_in->name);
 137			if (pol->reject_unknown)
 138				goto err;
 139			p_out->num_perms = 0;
 140			print_unknown_handle = true;
 141			continue;
 142		}
 143
 144		k = 0;
 145		while (p_in->perms[k]) {
 146			/* An empty permission string skips ahead */
 147			if (!*p_in->perms[k]) {
 148				k++;
 149				continue;
 150			}
 151			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 152							    p_in->perms[k]);
 153			if (!p_out->perms[k]) {
 154				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
 155				       p_in->perms[k], p_in->name);
 156				if (pol->reject_unknown)
 157					goto err;
 158				print_unknown_handle = true;
 159			}
 160
 161			k++;
 162		}
 163		p_out->num_perms = k;
 164	}
 165
 166	if (print_unknown_handle)
 167		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
 168		       pol->allow_unknown ? "allowed" : "denied");
 169
 170	out_map->size = i;
 171	return 0;
 172err:
 173	kfree(out_map->mapping);
 174	out_map->mapping = NULL;
 175	return -EINVAL;
 176}
 177
 178/*
 179 * Get real, policy values from mapped values
 180 */
 181
 182static u16 unmap_class(struct selinux_map *map, u16 tclass)
 183{
 184	if (tclass < map->size)
 185		return map->mapping[tclass].value;
 186
 187	return tclass;
 188}
 189
 190/*
 191 * Get kernel value for class from its policy value
 192 */
 193static u16 map_class(struct selinux_map *map, u16 pol_value)
 194{
 195	u16 i;
 196
 197	for (i = 1; i < map->size; i++) {
 198		if (map->mapping[i].value == pol_value)
 199			return i;
 200	}
 201
 202	return SECCLASS_NULL;
 203}
 204
 205static void map_decision(struct selinux_map *map,
 206			 u16 tclass, struct av_decision *avd,
 207			 int allow_unknown)
 208{
 209	if (tclass < map->size) {
 210		struct selinux_mapping *mapping = &map->mapping[tclass];
 211		unsigned int i, n = mapping->num_perms;
 212		u32 result;
 213
 214		for (i = 0, result = 0; i < n; i++) {
 215			if (avd->allowed & mapping->perms[i])
 216				result |= 1<<i;
 217			if (allow_unknown && !mapping->perms[i])
 218				result |= 1<<i;
 219		}
 220		avd->allowed = result;
 221
 222		for (i = 0, result = 0; i < n; i++)
 223			if (avd->auditallow & mapping->perms[i])
 224				result |= 1<<i;
 225		avd->auditallow = result;
 226
 227		for (i = 0, result = 0; i < n; i++) {
 228			if (avd->auditdeny & mapping->perms[i])
 229				result |= 1<<i;
 230			if (!allow_unknown && !mapping->perms[i])
 231				result |= 1<<i;
 232		}
 233		/*
 234		 * In case the kernel has a bug and requests a permission
 235		 * between num_perms and the maximum permission number, we
 236		 * should audit that denial
 237		 */
 238		for (; i < (sizeof(u32)*8); i++)
 239			result |= 1<<i;
 240		avd->auditdeny = result;
 241	}
 242}
 243
 244int security_mls_enabled(struct selinux_state *state)
 245{
 246	struct policydb *p = &state->ss->policydb;
 247
 248	return p->mls_enabled;
 249}
 250
 251/*
 252 * Return the boolean value of a constraint expression
 253 * when it is applied to the specified source and target
 254 * security contexts.
 255 *
 256 * xcontext is a special beast...  It is used by the validatetrans rules
 257 * only.  For these rules, scontext is the context before the transition,
 258 * tcontext is the context after the transition, and xcontext is the context
 259 * of the process performing the transition.  All other callers of
 260 * constraint_expr_eval should pass in NULL for xcontext.
 261 */
 262static int constraint_expr_eval(struct policydb *policydb,
 263				struct context *scontext,
 264				struct context *tcontext,
 265				struct context *xcontext,
 266				struct constraint_expr *cexpr)
 267{
 268	u32 val1, val2;
 269	struct context *c;
 270	struct role_datum *r1, *r2;
 271	struct mls_level *l1, *l2;
 272	struct constraint_expr *e;
 273	int s[CEXPR_MAXDEPTH];
 274	int sp = -1;
 275
 276	for (e = cexpr; e; e = e->next) {
 277		switch (e->expr_type) {
 278		case CEXPR_NOT:
 279			BUG_ON(sp < 0);
 280			s[sp] = !s[sp];
 281			break;
 282		case CEXPR_AND:
 283			BUG_ON(sp < 1);
 284			sp--;
 285			s[sp] &= s[sp + 1];
 286			break;
 287		case CEXPR_OR:
 288			BUG_ON(sp < 1);
 289			sp--;
 290			s[sp] |= s[sp + 1];
 291			break;
 292		case CEXPR_ATTR:
 293			if (sp == (CEXPR_MAXDEPTH - 1))
 294				return 0;
 295			switch (e->attr) {
 296			case CEXPR_USER:
 297				val1 = scontext->user;
 298				val2 = tcontext->user;
 299				break;
 300			case CEXPR_TYPE:
 301				val1 = scontext->type;
 302				val2 = tcontext->type;
 303				break;
 304			case CEXPR_ROLE:
 305				val1 = scontext->role;
 306				val2 = tcontext->role;
 307				r1 = policydb->role_val_to_struct[val1 - 1];
 308				r2 = policydb->role_val_to_struct[val2 - 1];
 309				switch (e->op) {
 310				case CEXPR_DOM:
 311					s[++sp] = ebitmap_get_bit(&r1->dominates,
 312								  val2 - 1);
 313					continue;
 314				case CEXPR_DOMBY:
 315					s[++sp] = ebitmap_get_bit(&r2->dominates,
 316								  val1 - 1);
 317					continue;
 318				case CEXPR_INCOMP:
 319					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 320								    val2 - 1) &&
 321						   !ebitmap_get_bit(&r2->dominates,
 322								    val1 - 1));
 323					continue;
 324				default:
 325					break;
 326				}
 327				break;
 328			case CEXPR_L1L2:
 329				l1 = &(scontext->range.level[0]);
 330				l2 = &(tcontext->range.level[0]);
 331				goto mls_ops;
 332			case CEXPR_L1H2:
 333				l1 = &(scontext->range.level[0]);
 334				l2 = &(tcontext->range.level[1]);
 335				goto mls_ops;
 336			case CEXPR_H1L2:
 337				l1 = &(scontext->range.level[1]);
 338				l2 = &(tcontext->range.level[0]);
 339				goto mls_ops;
 340			case CEXPR_H1H2:
 341				l1 = &(scontext->range.level[1]);
 342				l2 = &(tcontext->range.level[1]);
 343				goto mls_ops;
 344			case CEXPR_L1H1:
 345				l1 = &(scontext->range.level[0]);
 346				l2 = &(scontext->range.level[1]);
 347				goto mls_ops;
 348			case CEXPR_L2H2:
 349				l1 = &(tcontext->range.level[0]);
 350				l2 = &(tcontext->range.level[1]);
 351				goto mls_ops;
 352mls_ops:
 353			switch (e->op) {
 354			case CEXPR_EQ:
 355				s[++sp] = mls_level_eq(l1, l2);
 356				continue;
 357			case CEXPR_NEQ:
 358				s[++sp] = !mls_level_eq(l1, l2);
 359				continue;
 360			case CEXPR_DOM:
 361				s[++sp] = mls_level_dom(l1, l2);
 362				continue;
 363			case CEXPR_DOMBY:
 364				s[++sp] = mls_level_dom(l2, l1);
 365				continue;
 366			case CEXPR_INCOMP:
 367				s[++sp] = mls_level_incomp(l2, l1);
 368				continue;
 369			default:
 370				BUG();
 371				return 0;
 372			}
 373			break;
 374			default:
 375				BUG();
 376				return 0;
 377			}
 378
 379			switch (e->op) {
 380			case CEXPR_EQ:
 381				s[++sp] = (val1 == val2);
 382				break;
 383			case CEXPR_NEQ:
 384				s[++sp] = (val1 != val2);
 385				break;
 386			default:
 387				BUG();
 388				return 0;
 389			}
 390			break;
 391		case CEXPR_NAMES:
 392			if (sp == (CEXPR_MAXDEPTH-1))
 393				return 0;
 394			c = scontext;
 395			if (e->attr & CEXPR_TARGET)
 396				c = tcontext;
 397			else if (e->attr & CEXPR_XTARGET) {
 398				c = xcontext;
 399				if (!c) {
 400					BUG();
 401					return 0;
 402				}
 403			}
 404			if (e->attr & CEXPR_USER)
 405				val1 = c->user;
 406			else if (e->attr & CEXPR_ROLE)
 407				val1 = c->role;
 408			else if (e->attr & CEXPR_TYPE)
 409				val1 = c->type;
 410			else {
 411				BUG();
 412				return 0;
 413			}
 414
 415			switch (e->op) {
 416			case CEXPR_EQ:
 417				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 418				break;
 419			case CEXPR_NEQ:
 420				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 421				break;
 422			default:
 423				BUG();
 424				return 0;
 425			}
 426			break;
 427		default:
 428			BUG();
 429			return 0;
 430		}
 431	}
 432
 433	BUG_ON(sp != 0);
 434	return s[0];
 435}
 436
 437/*
 438 * security_dump_masked_av - dumps masked permissions during
 439 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 440 */
 441static int dump_masked_av_helper(void *k, void *d, void *args)
 442{
 443	struct perm_datum *pdatum = d;
 444	char **permission_names = args;
 445
 446	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 447
 448	permission_names[pdatum->value - 1] = (char *)k;
 449
 450	return 0;
 451}
 452
 453static void security_dump_masked_av(struct policydb *policydb,
 454				    struct context *scontext,
 455				    struct context *tcontext,
 456				    u16 tclass,
 457				    u32 permissions,
 458				    const char *reason)
 459{
 460	struct common_datum *common_dat;
 461	struct class_datum *tclass_dat;
 462	struct audit_buffer *ab;
 463	char *tclass_name;
 464	char *scontext_name = NULL;
 465	char *tcontext_name = NULL;
 466	char *permission_names[32];
 467	int index;
 468	u32 length;
 469	bool need_comma = false;
 470
 471	if (!permissions)
 472		return;
 473
 474	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
 475	tclass_dat = policydb->class_val_to_struct[tclass - 1];
 476	common_dat = tclass_dat->comdatum;
 477
 478	/* init permission_names */
 479	if (common_dat &&
 480	    hashtab_map(common_dat->permissions.table,
 481			dump_masked_av_helper, permission_names) < 0)
 482		goto out;
 483
 484	if (hashtab_map(tclass_dat->permissions.table,
 485			dump_masked_av_helper, permission_names) < 0)
 486		goto out;
 487
 488	/* get scontext/tcontext in text form */
 489	if (context_struct_to_string(policydb, scontext,
 490				     &scontext_name, &length) < 0)
 491		goto out;
 492
 493	if (context_struct_to_string(policydb, tcontext,
 494				     &tcontext_name, &length) < 0)
 495		goto out;
 496
 497	/* audit a message */
 498	ab = audit_log_start(audit_context(),
 499			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
 500	if (!ab)
 501		goto out;
 502
 503	audit_log_format(ab, "op=security_compute_av reason=%s "
 504			 "scontext=%s tcontext=%s tclass=%s perms=",
 505			 reason, scontext_name, tcontext_name, tclass_name);
 506
 507	for (index = 0; index < 32; index++) {
 508		u32 mask = (1 << index);
 509
 510		if ((mask & permissions) == 0)
 511			continue;
 512
 513		audit_log_format(ab, "%s%s",
 514				 need_comma ? "," : "",
 515				 permission_names[index]
 516				 ? permission_names[index] : "????");
 517		need_comma = true;
 518	}
 519	audit_log_end(ab);
 520out:
 521	/* release scontext/tcontext */
 522	kfree(tcontext_name);
 523	kfree(scontext_name);
 524
 525	return;
 526}
 527
 528/*
 529 * security_boundary_permission - drops violated permissions
 530 * on boundary constraint.
 531 */
 532static void type_attribute_bounds_av(struct policydb *policydb,
 533				     struct context *scontext,
 534				     struct context *tcontext,
 535				     u16 tclass,
 536				     struct av_decision *avd)
 537{
 538	struct context lo_scontext;
 539	struct context lo_tcontext, *tcontextp = tcontext;
 540	struct av_decision lo_avd;
 541	struct type_datum *source;
 542	struct type_datum *target;
 543	u32 masked = 0;
 544
 545	source = policydb->type_val_to_struct[scontext->type - 1];
 546	BUG_ON(!source);
 547
 548	if (!source->bounds)
 549		return;
 550
 551	target = policydb->type_val_to_struct[tcontext->type - 1];
 552	BUG_ON(!target);
 553
 554	memset(&lo_avd, 0, sizeof(lo_avd));
 555
 556	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 557	lo_scontext.type = source->bounds;
 558
 559	if (target->bounds) {
 560		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 561		lo_tcontext.type = target->bounds;
 562		tcontextp = &lo_tcontext;
 563	}
 564
 565	context_struct_compute_av(policydb, &lo_scontext,
 566				  tcontextp,
 567				  tclass,
 568				  &lo_avd,
 569				  NULL);
 570
 571	masked = ~lo_avd.allowed & avd->allowed;
 572
 573	if (likely(!masked))
 574		return;		/* no masked permission */
 575
 576	/* mask violated permissions */
 577	avd->allowed &= ~masked;
 578
 579	/* audit masked permissions */
 580	security_dump_masked_av(policydb, scontext, tcontext,
 581				tclass, masked, "bounds");
 582}
 583
 584/*
 585 * flag which drivers have permissions
 586 * only looking for ioctl based extended permssions
 587 */
 588void services_compute_xperms_drivers(
 589		struct extended_perms *xperms,
 590		struct avtab_node *node)
 591{
 592	unsigned int i;
 593
 594	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 595		/* if one or more driver has all permissions allowed */
 596		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
 597			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
 598	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 599		/* if allowing permissions within a driver */
 600		security_xperm_set(xperms->drivers.p,
 601					node->datum.u.xperms->driver);
 602	}
 603
 604	/* If no ioctl commands are allowed, ignore auditallow and auditdeny */
 605	if (node->key.specified & AVTAB_XPERMS_ALLOWED)
 606		xperms->len = 1;
 607}
 608
 609/*
 610 * Compute access vectors and extended permissions based on a context
 611 * structure pair for the permissions in a particular class.
 612 */
 613static void context_struct_compute_av(struct policydb *policydb,
 614				      struct context *scontext,
 615				      struct context *tcontext,
 616				      u16 tclass,
 617				      struct av_decision *avd,
 618				      struct extended_perms *xperms)
 619{
 620	struct constraint_node *constraint;
 621	struct role_allow *ra;
 622	struct avtab_key avkey;
 623	struct avtab_node *node;
 624	struct class_datum *tclass_datum;
 625	struct ebitmap *sattr, *tattr;
 626	struct ebitmap_node *snode, *tnode;
 627	unsigned int i, j;
 628
 629	avd->allowed = 0;
 630	avd->auditallow = 0;
 631	avd->auditdeny = 0xffffffff;
 632	if (xperms) {
 633		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
 634		xperms->len = 0;
 635	}
 636
 637	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
 638		if (printk_ratelimit())
 639			pr_warn("SELinux:  Invalid class %hu\n", tclass);
 640		return;
 641	}
 642
 643	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 644
 645	/*
 646	 * If a specific type enforcement rule was defined for
 647	 * this permission check, then use it.
 648	 */
 649	avkey.target_class = tclass;
 650	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
 651	sattr = &policydb->type_attr_map_array[scontext->type - 1];
 652	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
 653	ebitmap_for_each_positive_bit(sattr, snode, i) {
 654		ebitmap_for_each_positive_bit(tattr, tnode, j) {
 655			avkey.source_type = i + 1;
 656			avkey.target_type = j + 1;
 657			for (node = avtab_search_node(&policydb->te_avtab,
 658						      &avkey);
 659			     node;
 660			     node = avtab_search_node_next(node, avkey.specified)) {
 661				if (node->key.specified == AVTAB_ALLOWED)
 662					avd->allowed |= node->datum.u.data;
 663				else if (node->key.specified == AVTAB_AUDITALLOW)
 664					avd->auditallow |= node->datum.u.data;
 665				else if (node->key.specified == AVTAB_AUDITDENY)
 666					avd->auditdeny &= node->datum.u.data;
 667				else if (xperms && (node->key.specified & AVTAB_XPERMS))
 668					services_compute_xperms_drivers(xperms, node);
 669			}
 670
 671			/* Check conditional av table for additional permissions */
 672			cond_compute_av(&policydb->te_cond_avtab, &avkey,
 673					avd, xperms);
 674
 675		}
 676	}
 677
 678	/*
 679	 * Remove any permissions prohibited by a constraint (this includes
 680	 * the MLS policy).
 681	 */
 682	constraint = tclass_datum->constraints;
 683	while (constraint) {
 684		if ((constraint->permissions & (avd->allowed)) &&
 685		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
 686					  constraint->expr)) {
 687			avd->allowed &= ~(constraint->permissions);
 688		}
 689		constraint = constraint->next;
 690	}
 691
 692	/*
 693	 * If checking process transition permission and the
 694	 * role is changing, then check the (current_role, new_role)
 695	 * pair.
 696	 */
 697	if (tclass == policydb->process_class &&
 698	    (avd->allowed & policydb->process_trans_perms) &&
 699	    scontext->role != tcontext->role) {
 700		for (ra = policydb->role_allow; ra; ra = ra->next) {
 701			if (scontext->role == ra->role &&
 702			    tcontext->role == ra->new_role)
 703				break;
 704		}
 705		if (!ra)
 706			avd->allowed &= ~policydb->process_trans_perms;
 707	}
 708
 709	/*
 710	 * If the given source and target types have boundary
 711	 * constraint, lazy checks have to mask any violated
 712	 * permission and notice it to userspace via audit.
 713	 */
 714	type_attribute_bounds_av(policydb, scontext, tcontext,
 715				 tclass, avd);
 716}
 717
 718static int security_validtrans_handle_fail(struct selinux_state *state,
 719					   struct context *ocontext,
 720					   struct context *ncontext,
 721					   struct context *tcontext,
 722					   u16 tclass)
 723{
 724	struct policydb *p = &state->ss->policydb;
 
 725	char *o = NULL, *n = NULL, *t = NULL;
 726	u32 olen, nlen, tlen;
 727
 728	if (context_struct_to_string(p, ocontext, &o, &olen))
 729		goto out;
 730	if (context_struct_to_string(p, ncontext, &n, &nlen))
 731		goto out;
 732	if (context_struct_to_string(p, tcontext, &t, &tlen))
 733		goto out;
 734	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
 735		  "op=security_validate_transition seresult=denied"
 736		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 737		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
 738out:
 739	kfree(o);
 740	kfree(n);
 741	kfree(t);
 742
 743	if (!enforcing_enabled(state))
 744		return 0;
 745	return -EPERM;
 746}
 747
 748static int security_compute_validatetrans(struct selinux_state *state,
 749					  u32 oldsid, u32 newsid, u32 tasksid,
 750					  u16 orig_tclass, bool user)
 751{
 752	struct policydb *policydb;
 753	struct sidtab *sidtab;
 754	struct context *ocontext;
 755	struct context *ncontext;
 756	struct context *tcontext;
 757	struct class_datum *tclass_datum;
 758	struct constraint_node *constraint;
 759	u16 tclass;
 760	int rc = 0;
 761
 762
 763	if (!state->initialized)
 764		return 0;
 765
 766	read_lock(&state->ss->policy_rwlock);
 767
 768	policydb = &state->ss->policydb;
 769	sidtab = state->ss->sidtab;
 770
 771	if (!user)
 772		tclass = unmap_class(&state->ss->map, orig_tclass);
 773	else
 774		tclass = orig_tclass;
 775
 776	if (!tclass || tclass > policydb->p_classes.nprim) {
 777		rc = -EINVAL;
 778		goto out;
 779	}
 780	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 781
 782	ocontext = sidtab_search(sidtab, oldsid);
 783	if (!ocontext) {
 784		pr_err("SELinux: %s:  unrecognized SID %d\n",
 785			__func__, oldsid);
 786		rc = -EINVAL;
 787		goto out;
 788	}
 789
 790	ncontext = sidtab_search(sidtab, newsid);
 791	if (!ncontext) {
 792		pr_err("SELinux: %s:  unrecognized SID %d\n",
 793			__func__, newsid);
 794		rc = -EINVAL;
 795		goto out;
 796	}
 797
 798	tcontext = sidtab_search(sidtab, tasksid);
 799	if (!tcontext) {
 800		pr_err("SELinux: %s:  unrecognized SID %d\n",
 801			__func__, tasksid);
 802		rc = -EINVAL;
 803		goto out;
 804	}
 805
 806	constraint = tclass_datum->validatetrans;
 807	while (constraint) {
 808		if (!constraint_expr_eval(policydb, ocontext, ncontext,
 809					  tcontext, constraint->expr)) {
 
 810			if (user)
 811				rc = -EPERM;
 812			else
 813				rc = security_validtrans_handle_fail(state,
 814								     ocontext,
 815								     ncontext,
 816								     tcontext,
 817								     tclass);
 818			goto out;
 819		}
 820		constraint = constraint->next;
 821	}
 822
 823out:
 824	read_unlock(&state->ss->policy_rwlock);
 825	return rc;
 826}
 827
 828int security_validate_transition_user(struct selinux_state *state,
 829				      u32 oldsid, u32 newsid, u32 tasksid,
 830				      u16 tclass)
 831{
 832	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 833					      tclass, true);
 834}
 835
 836int security_validate_transition(struct selinux_state *state,
 837				 u32 oldsid, u32 newsid, u32 tasksid,
 838				 u16 orig_tclass)
 839{
 840	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 841					      orig_tclass, false);
 842}
 843
 844/*
 845 * security_bounded_transition - check whether the given
 846 * transition is directed to bounded, or not.
 847 * It returns 0, if @newsid is bounded by @oldsid.
 848 * Otherwise, it returns error code.
 849 *
 850 * @oldsid : current security identifier
 851 * @newsid : destinated security identifier
 852 */
 853int security_bounded_transition(struct selinux_state *state,
 854				u32 old_sid, u32 new_sid)
 855{
 856	struct policydb *policydb;
 857	struct sidtab *sidtab;
 858	struct context *old_context, *new_context;
 859	struct type_datum *type;
 860	int index;
 861	int rc;
 862
 863	if (!state->initialized)
 864		return 0;
 865
 866	read_lock(&state->ss->policy_rwlock);
 867
 868	policydb = &state->ss->policydb;
 869	sidtab = state->ss->sidtab;
 870
 871	rc = -EINVAL;
 872	old_context = sidtab_search(sidtab, old_sid);
 873	if (!old_context) {
 874		pr_err("SELinux: %s: unrecognized SID %u\n",
 875		       __func__, old_sid);
 876		goto out;
 877	}
 878
 879	rc = -EINVAL;
 880	new_context = sidtab_search(sidtab, new_sid);
 881	if (!new_context) {
 882		pr_err("SELinux: %s: unrecognized SID %u\n",
 883		       __func__, new_sid);
 884		goto out;
 885	}
 886
 887	rc = 0;
 888	/* type/domain unchanged */
 889	if (old_context->type == new_context->type)
 890		goto out;
 891
 892	index = new_context->type;
 893	while (true) {
 894		type = policydb->type_val_to_struct[index - 1];
 895		BUG_ON(!type);
 896
 897		/* not bounded anymore */
 898		rc = -EPERM;
 899		if (!type->bounds)
 900			break;
 901
 902		/* @newsid is bounded by @oldsid */
 903		rc = 0;
 904		if (type->bounds == old_context->type)
 905			break;
 906
 907		index = type->bounds;
 908	}
 909
 910	if (rc) {
 911		char *old_name = NULL;
 912		char *new_name = NULL;
 913		u32 length;
 914
 915		if (!context_struct_to_string(policydb, old_context,
 916					      &old_name, &length) &&
 917		    !context_struct_to_string(policydb, new_context,
 918					      &new_name, &length)) {
 919			audit_log(audit_context(),
 920				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 921				  "op=security_bounded_transition "
 922				  "seresult=denied "
 923				  "oldcontext=%s newcontext=%s",
 924				  old_name, new_name);
 925		}
 926		kfree(new_name);
 927		kfree(old_name);
 928	}
 929out:
 930	read_unlock(&state->ss->policy_rwlock);
 931
 932	return rc;
 933}
 934
 935static void avd_init(struct selinux_state *state, struct av_decision *avd)
 936{
 937	avd->allowed = 0;
 938	avd->auditallow = 0;
 939	avd->auditdeny = 0xffffffff;
 940	avd->seqno = state->ss->latest_granting;
 941	avd->flags = 0;
 942}
 943
 944void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
 945					struct avtab_node *node)
 946{
 947	unsigned int i;
 948
 949	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 950		if (xpermd->driver != node->datum.u.xperms->driver)
 951			return;
 952	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 953		if (!security_xperm_test(node->datum.u.xperms->perms.p,
 954					xpermd->driver))
 955			return;
 956	} else {
 957		BUG();
 958	}
 959
 960	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
 961		xpermd->used |= XPERMS_ALLOWED;
 962		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 963			memset(xpermd->allowed->p, 0xff,
 964					sizeof(xpermd->allowed->p));
 965		}
 966		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 967			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
 968				xpermd->allowed->p[i] |=
 969					node->datum.u.xperms->perms.p[i];
 970		}
 971	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
 972		xpermd->used |= XPERMS_AUDITALLOW;
 973		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 974			memset(xpermd->auditallow->p, 0xff,
 975					sizeof(xpermd->auditallow->p));
 976		}
 977		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 978			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
 979				xpermd->auditallow->p[i] |=
 980					node->datum.u.xperms->perms.p[i];
 981		}
 982	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
 983		xpermd->used |= XPERMS_DONTAUDIT;
 984		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 985			memset(xpermd->dontaudit->p, 0xff,
 986					sizeof(xpermd->dontaudit->p));
 987		}
 988		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 989			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
 990				xpermd->dontaudit->p[i] |=
 991					node->datum.u.xperms->perms.p[i];
 992		}
 993	} else {
 994		BUG();
 995	}
 996}
 997
 998void security_compute_xperms_decision(struct selinux_state *state,
 999				      u32 ssid,
1000				      u32 tsid,
1001				      u16 orig_tclass,
1002				      u8 driver,
1003				      struct extended_perms_decision *xpermd)
1004{
1005	struct policydb *policydb;
1006	struct sidtab *sidtab;
1007	u16 tclass;
1008	struct context *scontext, *tcontext;
1009	struct avtab_key avkey;
1010	struct avtab_node *node;
1011	struct ebitmap *sattr, *tattr;
1012	struct ebitmap_node *snode, *tnode;
1013	unsigned int i, j;
1014
1015	xpermd->driver = driver;
1016	xpermd->used = 0;
1017	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1018	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1019	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1020
1021	read_lock(&state->ss->policy_rwlock);
1022	if (!state->initialized)
1023		goto allow;
1024
1025	policydb = &state->ss->policydb;
1026	sidtab = state->ss->sidtab;
1027
1028	scontext = sidtab_search(sidtab, ssid);
1029	if (!scontext) {
1030		pr_err("SELinux: %s:  unrecognized SID %d\n",
1031		       __func__, ssid);
1032		goto out;
1033	}
1034
1035	tcontext = sidtab_search(sidtab, tsid);
1036	if (!tcontext) {
1037		pr_err("SELinux: %s:  unrecognized SID %d\n",
1038		       __func__, tsid);
1039		goto out;
1040	}
1041
1042	tclass = unmap_class(&state->ss->map, orig_tclass);
1043	if (unlikely(orig_tclass && !tclass)) {
1044		if (policydb->allow_unknown)
1045			goto allow;
1046		goto out;
1047	}
1048
1049
1050	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1051		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1052		goto out;
1053	}
1054
1055	avkey.target_class = tclass;
1056	avkey.specified = AVTAB_XPERMS;
1057	sattr = &policydb->type_attr_map_array[scontext->type - 1];
1058	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1059	ebitmap_for_each_positive_bit(sattr, snode, i) {
1060		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1061			avkey.source_type = i + 1;
1062			avkey.target_type = j + 1;
1063			for (node = avtab_search_node(&policydb->te_avtab,
1064						      &avkey);
1065			     node;
1066			     node = avtab_search_node_next(node, avkey.specified))
1067				services_compute_xperms_decision(xpermd, node);
1068
1069			cond_compute_xperms(&policydb->te_cond_avtab,
1070						&avkey, xpermd);
1071		}
1072	}
1073out:
1074	read_unlock(&state->ss->policy_rwlock);
1075	return;
1076allow:
1077	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1078	goto out;
1079}
1080
1081/**
1082 * security_compute_av - Compute access vector decisions.
1083 * @ssid: source security identifier
1084 * @tsid: target security identifier
1085 * @tclass: target security class
1086 * @avd: access vector decisions
1087 * @xperms: extended permissions
1088 *
1089 * Compute a set of access vector decisions based on the
1090 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1091 */
1092void security_compute_av(struct selinux_state *state,
1093			 u32 ssid,
1094			 u32 tsid,
1095			 u16 orig_tclass,
1096			 struct av_decision *avd,
1097			 struct extended_perms *xperms)
1098{
1099	struct policydb *policydb;
1100	struct sidtab *sidtab;
1101	u16 tclass;
1102	struct context *scontext = NULL, *tcontext = NULL;
1103
1104	read_lock(&state->ss->policy_rwlock);
1105	avd_init(state, avd);
1106	xperms->len = 0;
1107	if (!state->initialized)
1108		goto allow;
1109
1110	policydb = &state->ss->policydb;
1111	sidtab = state->ss->sidtab;
1112
1113	scontext = sidtab_search(sidtab, ssid);
1114	if (!scontext) {
1115		pr_err("SELinux: %s:  unrecognized SID %d\n",
1116		       __func__, ssid);
1117		goto out;
1118	}
1119
1120	/* permissive domain? */
1121	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1122		avd->flags |= AVD_FLAGS_PERMISSIVE;
1123
1124	tcontext = sidtab_search(sidtab, tsid);
1125	if (!tcontext) {
1126		pr_err("SELinux: %s:  unrecognized SID %d\n",
1127		       __func__, tsid);
1128		goto out;
1129	}
1130
1131	tclass = unmap_class(&state->ss->map, orig_tclass);
1132	if (unlikely(orig_tclass && !tclass)) {
1133		if (policydb->allow_unknown)
1134			goto allow;
1135		goto out;
1136	}
1137	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1138				  xperms);
1139	map_decision(&state->ss->map, orig_tclass, avd,
1140		     policydb->allow_unknown);
1141out:
1142	read_unlock(&state->ss->policy_rwlock);
1143	return;
1144allow:
1145	avd->allowed = 0xffffffff;
1146	goto out;
1147}
1148
1149void security_compute_av_user(struct selinux_state *state,
1150			      u32 ssid,
1151			      u32 tsid,
1152			      u16 tclass,
1153			      struct av_decision *avd)
1154{
1155	struct policydb *policydb;
1156	struct sidtab *sidtab;
1157	struct context *scontext = NULL, *tcontext = NULL;
1158
1159	read_lock(&state->ss->policy_rwlock);
1160	avd_init(state, avd);
1161	if (!state->initialized)
1162		goto allow;
1163
1164	policydb = &state->ss->policydb;
1165	sidtab = state->ss->sidtab;
1166
1167	scontext = sidtab_search(sidtab, ssid);
1168	if (!scontext) {
1169		pr_err("SELinux: %s:  unrecognized SID %d\n",
1170		       __func__, ssid);
1171		goto out;
1172	}
1173
1174	/* permissive domain? */
1175	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1176		avd->flags |= AVD_FLAGS_PERMISSIVE;
1177
1178	tcontext = sidtab_search(sidtab, tsid);
1179	if (!tcontext) {
1180		pr_err("SELinux: %s:  unrecognized SID %d\n",
1181		       __func__, tsid);
1182		goto out;
1183	}
1184
1185	if (unlikely(!tclass)) {
1186		if (policydb->allow_unknown)
1187			goto allow;
1188		goto out;
1189	}
1190
1191	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1192				  NULL);
1193 out:
1194	read_unlock(&state->ss->policy_rwlock);
1195	return;
1196allow:
1197	avd->allowed = 0xffffffff;
1198	goto out;
1199}
1200
1201/*
1202 * Write the security context string representation of
1203 * the context structure `context' into a dynamically
1204 * allocated string of the correct size.  Set `*scontext'
1205 * to point to this string and set `*scontext_len' to
1206 * the length of the string.
1207 */
1208static int context_struct_to_string(struct policydb *p,
1209				    struct context *context,
1210				    char **scontext, u32 *scontext_len)
1211{
1212	char *scontextp;
1213
1214	if (scontext)
1215		*scontext = NULL;
1216	*scontext_len = 0;
1217
1218	if (context->len) {
1219		*scontext_len = context->len;
1220		if (scontext) {
1221			*scontext = kstrdup(context->str, GFP_ATOMIC);
1222			if (!(*scontext))
1223				return -ENOMEM;
1224		}
1225		return 0;
1226	}
1227
1228	/* Compute the size of the context. */
1229	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1230	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1231	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1232	*scontext_len += mls_compute_context_len(p, context);
1233
1234	if (!scontext)
1235		return 0;
1236
1237	/* Allocate space for the context; caller must free this space. */
1238	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1239	if (!scontextp)
1240		return -ENOMEM;
1241	*scontext = scontextp;
1242
1243	/*
1244	 * Copy the user name, role name and type name into the context.
1245	 */
1246	scontextp += sprintf(scontextp, "%s:%s:%s",
1247		sym_name(p, SYM_USERS, context->user - 1),
1248		sym_name(p, SYM_ROLES, context->role - 1),
1249		sym_name(p, SYM_TYPES, context->type - 1));
1250
1251	mls_sid_to_context(p, context, &scontextp);
1252
1253	*scontextp = 0;
1254
1255	return 0;
1256}
1257
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1258#include "initial_sid_to_string.h"
1259
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1260const char *security_get_initial_sid_context(u32 sid)
1261{
1262	if (unlikely(sid > SECINITSID_NUM))
1263		return NULL;
1264	return initial_sid_to_string[sid];
1265}
1266
1267static int security_sid_to_context_core(struct selinux_state *state,
1268					u32 sid, char **scontext,
1269					u32 *scontext_len, int force,
1270					int only_invalid)
1271{
1272	struct policydb *policydb;
1273	struct sidtab *sidtab;
1274	struct context *context;
1275	int rc = 0;
1276
1277	if (scontext)
1278		*scontext = NULL;
1279	*scontext_len  = 0;
1280
1281	if (!state->initialized) {
1282		if (sid <= SECINITSID_NUM) {
1283			char *scontextp;
 
1284
1285			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
 
 
1286			if (!scontext)
1287				goto out;
1288			scontextp = kmemdup(initial_sid_to_string[sid],
1289					    *scontext_len, GFP_ATOMIC);
1290			if (!scontextp) {
1291				rc = -ENOMEM;
1292				goto out;
1293			}
1294			*scontext = scontextp;
1295			goto out;
1296		}
1297		pr_err("SELinux: %s:  called before initial "
1298		       "load_policy on unknown SID %d\n", __func__, sid);
1299		rc = -EINVAL;
1300		goto out;
1301	}
1302	read_lock(&state->ss->policy_rwlock);
1303	policydb = &state->ss->policydb;
1304	sidtab = state->ss->sidtab;
 
1305	if (force)
1306		context = sidtab_search_force(sidtab, sid);
1307	else
1308		context = sidtab_search(sidtab, sid);
1309	if (!context) {
1310		pr_err("SELinux: %s:  unrecognized SID %d\n",
1311			__func__, sid);
1312		rc = -EINVAL;
1313		goto out_unlock;
1314	}
1315	if (only_invalid && !context->len)
1316		rc = 0;
1317	else
1318		rc = context_struct_to_string(policydb, context, scontext,
1319					      scontext_len);
 
1320out_unlock:
1321	read_unlock(&state->ss->policy_rwlock);
1322out:
1323	return rc;
1324
1325}
1326
1327/**
1328 * security_sid_to_context - Obtain a context for a given SID.
1329 * @sid: security identifier, SID
1330 * @scontext: security context
1331 * @scontext_len: length in bytes
1332 *
1333 * Write the string representation of the context associated with @sid
1334 * into a dynamically allocated string of the correct size.  Set @scontext
1335 * to point to this string and set @scontext_len to the length of the string.
1336 */
1337int security_sid_to_context(struct selinux_state *state,
1338			    u32 sid, char **scontext, u32 *scontext_len)
1339{
1340	return security_sid_to_context_core(state, sid, scontext,
1341					    scontext_len, 0, 0);
1342}
1343
1344int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1345				  char **scontext, u32 *scontext_len)
1346{
1347	return security_sid_to_context_core(state, sid, scontext,
1348					    scontext_len, 1, 0);
1349}
1350
1351/**
1352 * security_sid_to_context_inval - Obtain a context for a given SID if it
1353 *                                 is invalid.
1354 * @sid: security identifier, SID
1355 * @scontext: security context
1356 * @scontext_len: length in bytes
1357 *
1358 * Write the string representation of the context associated with @sid
1359 * into a dynamically allocated string of the correct size, but only if the
1360 * context is invalid in the current policy.  Set @scontext to point to
1361 * this string (or NULL if the context is valid) and set @scontext_len to
1362 * the length of the string (or 0 if the context is valid).
1363 */
1364int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1365				  char **scontext, u32 *scontext_len)
1366{
1367	return security_sid_to_context_core(state, sid, scontext,
1368					    scontext_len, 1, 1);
1369}
1370
1371/*
1372 * Caveat:  Mutates scontext.
1373 */
1374static int string_to_context_struct(struct policydb *pol,
1375				    struct sidtab *sidtabp,
1376				    char *scontext,
1377				    struct context *ctx,
1378				    u32 def_sid)
1379{
1380	struct role_datum *role;
1381	struct type_datum *typdatum;
1382	struct user_datum *usrdatum;
1383	char *scontextp, *p, oldc;
1384	int rc = 0;
1385
1386	context_init(ctx);
1387
1388	/* Parse the security context. */
1389
1390	rc = -EINVAL;
1391	scontextp = (char *) scontext;
1392
1393	/* Extract the user. */
1394	p = scontextp;
1395	while (*p && *p != ':')
1396		p++;
1397
1398	if (*p == 0)
1399		goto out;
1400
1401	*p++ = 0;
1402
1403	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1404	if (!usrdatum)
1405		goto out;
1406
1407	ctx->user = usrdatum->value;
1408
1409	/* Extract role. */
1410	scontextp = p;
1411	while (*p && *p != ':')
1412		p++;
1413
1414	if (*p == 0)
1415		goto out;
1416
1417	*p++ = 0;
1418
1419	role = hashtab_search(pol->p_roles.table, scontextp);
1420	if (!role)
1421		goto out;
1422	ctx->role = role->value;
1423
1424	/* Extract type. */
1425	scontextp = p;
1426	while (*p && *p != ':')
1427		p++;
1428	oldc = *p;
1429	*p++ = 0;
1430
1431	typdatum = hashtab_search(pol->p_types.table, scontextp);
1432	if (!typdatum || typdatum->attribute)
1433		goto out;
1434
1435	ctx->type = typdatum->value;
1436
1437	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1438	if (rc)
1439		goto out;
1440
1441	/* Check the validity of the new context. */
1442	rc = -EINVAL;
1443	if (!policydb_context_isvalid(pol, ctx))
1444		goto out;
1445	rc = 0;
1446out:
1447	if (rc)
1448		context_destroy(ctx);
1449	return rc;
1450}
1451
1452static int security_context_to_sid_core(struct selinux_state *state,
1453					const char *scontext, u32 scontext_len,
1454					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1455					int force)
1456{
1457	struct policydb *policydb;
1458	struct sidtab *sidtab;
1459	char *scontext2, *str = NULL;
1460	struct context context;
1461	int rc = 0;
1462
1463	/* An empty security context is never valid. */
1464	if (!scontext_len)
1465		return -EINVAL;
1466
1467	/* Copy the string to allow changes and ensure a NUL terminator */
1468	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1469	if (!scontext2)
1470		return -ENOMEM;
1471
1472	if (!state->initialized) {
1473		int i;
1474
1475		for (i = 1; i < SECINITSID_NUM; i++) {
1476			if (!strcmp(initial_sid_to_string[i], scontext2)) {
 
 
1477				*sid = i;
1478				goto out;
1479			}
1480		}
1481		*sid = SECINITSID_KERNEL;
1482		goto out;
1483	}
1484	*sid = SECSID_NULL;
1485
1486	if (force) {
1487		/* Save another copy for storing in uninterpreted form */
1488		rc = -ENOMEM;
1489		str = kstrdup(scontext2, gfp_flags);
1490		if (!str)
1491			goto out;
1492	}
1493	read_lock(&state->ss->policy_rwlock);
1494	policydb = &state->ss->policydb;
1495	sidtab = state->ss->sidtab;
1496	rc = string_to_context_struct(policydb, sidtab, scontext2,
1497				      &context, def_sid);
1498	if (rc == -EINVAL && force) {
1499		context.str = str;
1500		context.len = strlen(str) + 1;
1501		str = NULL;
1502	} else if (rc)
1503		goto out_unlock;
1504	rc = sidtab_context_to_sid(sidtab, &context, sid);
1505	context_destroy(&context);
1506out_unlock:
1507	read_unlock(&state->ss->policy_rwlock);
1508out:
1509	kfree(scontext2);
1510	kfree(str);
1511	return rc;
1512}
1513
1514/**
1515 * security_context_to_sid - Obtain a SID for a given security context.
1516 * @scontext: security context
1517 * @scontext_len: length in bytes
1518 * @sid: security identifier, SID
1519 * @gfp: context for the allocation
1520 *
1521 * Obtains a SID associated with the security context that
1522 * has the string representation specified by @scontext.
1523 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1524 * memory is available, or 0 on success.
1525 */
1526int security_context_to_sid(struct selinux_state *state,
1527			    const char *scontext, u32 scontext_len, u32 *sid,
1528			    gfp_t gfp)
1529{
1530	return security_context_to_sid_core(state, scontext, scontext_len,
1531					    sid, SECSID_NULL, gfp, 0);
1532}
1533
1534int security_context_str_to_sid(struct selinux_state *state,
1535				const char *scontext, u32 *sid, gfp_t gfp)
1536{
1537	return security_context_to_sid(state, scontext, strlen(scontext),
1538				       sid, gfp);
1539}
1540
1541/**
1542 * security_context_to_sid_default - Obtain a SID for a given security context,
1543 * falling back to specified default if needed.
1544 *
1545 * @scontext: security context
1546 * @scontext_len: length in bytes
1547 * @sid: security identifier, SID
1548 * @def_sid: default SID to assign on error
1549 *
1550 * Obtains a SID associated with the security context that
1551 * has the string representation specified by @scontext.
1552 * The default SID is passed to the MLS layer to be used to allow
1553 * kernel labeling of the MLS field if the MLS field is not present
1554 * (for upgrading to MLS without full relabel).
1555 * Implicitly forces adding of the context even if it cannot be mapped yet.
1556 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1557 * memory is available, or 0 on success.
1558 */
1559int security_context_to_sid_default(struct selinux_state *state,
1560				    const char *scontext, u32 scontext_len,
1561				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1562{
1563	return security_context_to_sid_core(state, scontext, scontext_len,
1564					    sid, def_sid, gfp_flags, 1);
1565}
1566
1567int security_context_to_sid_force(struct selinux_state *state,
1568				  const char *scontext, u32 scontext_len,
1569				  u32 *sid)
1570{
1571	return security_context_to_sid_core(state, scontext, scontext_len,
1572					    sid, SECSID_NULL, GFP_KERNEL, 1);
1573}
1574
1575static int compute_sid_handle_invalid_context(
1576	struct selinux_state *state,
1577	struct context *scontext,
1578	struct context *tcontext,
1579	u16 tclass,
1580	struct context *newcontext)
1581{
1582	struct policydb *policydb = &state->ss->policydb;
 
1583	char *s = NULL, *t = NULL, *n = NULL;
1584	u32 slen, tlen, nlen;
1585	struct audit_buffer *ab;
1586
1587	if (context_struct_to_string(policydb, scontext, &s, &slen))
1588		goto out;
1589	if (context_struct_to_string(policydb, tcontext, &t, &tlen))
1590		goto out;
1591	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1592		goto out;
1593	ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1594	audit_log_format(ab,
1595			 "op=security_compute_sid invalid_context=");
1596	/* no need to record the NUL with untrusted strings */
1597	audit_log_n_untrustedstring(ab, n, nlen - 1);
1598	audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1599			 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1600	audit_log_end(ab);
1601out:
1602	kfree(s);
1603	kfree(t);
1604	kfree(n);
1605	if (!enforcing_enabled(state))
1606		return 0;
1607	return -EACCES;
1608}
1609
1610static void filename_compute_type(struct policydb *policydb,
1611				  struct context *newcontext,
1612				  u32 stype, u32 ttype, u16 tclass,
1613				  const char *objname)
1614{
1615	struct filename_trans ft;
1616	struct filename_trans_datum *otype;
1617
1618	/*
1619	 * Most filename trans rules are going to live in specific directories
1620	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1621	 * if the ttype does not contain any rules.
1622	 */
1623	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1624		return;
1625
1626	ft.stype = stype;
1627	ft.ttype = ttype;
1628	ft.tclass = tclass;
1629	ft.name = objname;
1630
1631	otype = hashtab_search(policydb->filename_trans, &ft);
1632	if (otype)
1633		newcontext->type = otype->otype;
 
 
 
 
 
1634}
1635
1636static int security_compute_sid(struct selinux_state *state,
1637				u32 ssid,
1638				u32 tsid,
1639				u16 orig_tclass,
1640				u32 specified,
1641				const char *objname,
1642				u32 *out_sid,
1643				bool kern)
1644{
1645	struct policydb *policydb;
1646	struct sidtab *sidtab;
1647	struct class_datum *cladatum = NULL;
1648	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1649	struct role_trans *roletr = NULL;
1650	struct avtab_key avkey;
1651	struct avtab_datum *avdatum;
1652	struct avtab_node *node;
1653	u16 tclass;
1654	int rc = 0;
1655	bool sock;
1656
1657	if (!state->initialized) {
1658		switch (orig_tclass) {
1659		case SECCLASS_PROCESS: /* kernel value */
1660			*out_sid = ssid;
1661			break;
1662		default:
1663			*out_sid = tsid;
1664			break;
1665		}
1666		goto out;
1667	}
1668
1669	context_init(&newcontext);
1670
1671	read_lock(&state->ss->policy_rwlock);
1672
1673	if (kern) {
1674		tclass = unmap_class(&state->ss->map, orig_tclass);
1675		sock = security_is_socket_class(orig_tclass);
1676	} else {
1677		tclass = orig_tclass;
1678		sock = security_is_socket_class(map_class(&state->ss->map,
1679							  tclass));
1680	}
1681
1682	policydb = &state->ss->policydb;
1683	sidtab = state->ss->sidtab;
1684
1685	scontext = sidtab_search(sidtab, ssid);
1686	if (!scontext) {
1687		pr_err("SELinux: %s:  unrecognized SID %d\n",
1688		       __func__, ssid);
1689		rc = -EINVAL;
1690		goto out_unlock;
1691	}
1692	tcontext = sidtab_search(sidtab, tsid);
1693	if (!tcontext) {
1694		pr_err("SELinux: %s:  unrecognized SID %d\n",
1695		       __func__, tsid);
1696		rc = -EINVAL;
1697		goto out_unlock;
1698	}
1699
 
 
 
1700	if (tclass && tclass <= policydb->p_classes.nprim)
1701		cladatum = policydb->class_val_to_struct[tclass - 1];
1702
1703	/* Set the user identity. */
1704	switch (specified) {
1705	case AVTAB_TRANSITION:
1706	case AVTAB_CHANGE:
1707		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1708			newcontext.user = tcontext->user;
1709		} else {
1710			/* notice this gets both DEFAULT_SOURCE and unset */
1711			/* Use the process user identity. */
1712			newcontext.user = scontext->user;
1713		}
1714		break;
1715	case AVTAB_MEMBER:
1716		/* Use the related object owner. */
1717		newcontext.user = tcontext->user;
1718		break;
1719	}
1720
1721	/* Set the role to default values. */
1722	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1723		newcontext.role = scontext->role;
1724	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1725		newcontext.role = tcontext->role;
1726	} else {
1727		if ((tclass == policydb->process_class) || (sock == true))
1728			newcontext.role = scontext->role;
1729		else
1730			newcontext.role = OBJECT_R_VAL;
1731	}
1732
1733	/* Set the type to default values. */
1734	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1735		newcontext.type = scontext->type;
1736	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1737		newcontext.type = tcontext->type;
1738	} else {
1739		if ((tclass == policydb->process_class) || (sock == true)) {
1740			/* Use the type of process. */
1741			newcontext.type = scontext->type;
1742		} else {
1743			/* Use the type of the related object. */
1744			newcontext.type = tcontext->type;
1745		}
1746	}
1747
1748	/* Look for a type transition/member/change rule. */
1749	avkey.source_type = scontext->type;
1750	avkey.target_type = tcontext->type;
1751	avkey.target_class = tclass;
1752	avkey.specified = specified;
1753	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1754
1755	/* If no permanent rule, also check for enabled conditional rules */
1756	if (!avdatum) {
1757		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1758		for (; node; node = avtab_search_node_next(node, specified)) {
1759			if (node->key.specified & AVTAB_ENABLED) {
1760				avdatum = &node->datum;
1761				break;
1762			}
1763		}
1764	}
1765
1766	if (avdatum) {
1767		/* Use the type from the type transition/member/change rule. */
1768		newcontext.type = avdatum->u.data;
1769	}
1770
1771	/* if we have a objname this is a file trans check so check those rules */
1772	if (objname)
1773		filename_compute_type(policydb, &newcontext, scontext->type,
1774				      tcontext->type, tclass, objname);
1775
1776	/* Check for class-specific changes. */
1777	if (specified & AVTAB_TRANSITION) {
1778		/* Look for a role transition rule. */
1779		for (roletr = policydb->role_tr; roletr;
1780		     roletr = roletr->next) {
1781			if ((roletr->role == scontext->role) &&
1782			    (roletr->type == tcontext->type) &&
1783			    (roletr->tclass == tclass)) {
1784				/* Use the role transition rule. */
1785				newcontext.role = roletr->new_role;
1786				break;
1787			}
1788		}
1789	}
1790
1791	/* Set the MLS attributes.
1792	   This is done last because it may allocate memory. */
1793	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1794			     &newcontext, sock);
1795	if (rc)
1796		goto out_unlock;
1797
1798	/* Check the validity of the context. */
1799	if (!policydb_context_isvalid(policydb, &newcontext)) {
1800		rc = compute_sid_handle_invalid_context(state, scontext,
1801							tcontext,
1802							tclass,
1803							&newcontext);
1804		if (rc)
1805			goto out_unlock;
1806	}
1807	/* Obtain the sid for the context. */
1808	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1809out_unlock:
1810	read_unlock(&state->ss->policy_rwlock);
1811	context_destroy(&newcontext);
1812out:
1813	return rc;
1814}
1815
1816/**
1817 * security_transition_sid - Compute the SID for a new subject/object.
1818 * @ssid: source security identifier
1819 * @tsid: target security identifier
1820 * @tclass: target security class
1821 * @out_sid: security identifier for new subject/object
1822 *
1823 * Compute a SID to use for labeling a new subject or object in the
1824 * class @tclass based on a SID pair (@ssid, @tsid).
1825 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1826 * if insufficient memory is available, or %0 if the new SID was
1827 * computed successfully.
1828 */
1829int security_transition_sid(struct selinux_state *state,
1830			    u32 ssid, u32 tsid, u16 tclass,
1831			    const struct qstr *qstr, u32 *out_sid)
1832{
1833	return security_compute_sid(state, ssid, tsid, tclass,
1834				    AVTAB_TRANSITION,
1835				    qstr ? qstr->name : NULL, out_sid, true);
1836}
1837
1838int security_transition_sid_user(struct selinux_state *state,
1839				 u32 ssid, u32 tsid, u16 tclass,
1840				 const char *objname, u32 *out_sid)
1841{
1842	return security_compute_sid(state, ssid, tsid, tclass,
1843				    AVTAB_TRANSITION,
1844				    objname, out_sid, false);
1845}
1846
1847/**
1848 * security_member_sid - Compute the SID for member selection.
1849 * @ssid: source security identifier
1850 * @tsid: target security identifier
1851 * @tclass: target security class
1852 * @out_sid: security identifier for selected member
1853 *
1854 * Compute a SID to use when selecting a member of a polyinstantiated
1855 * object of class @tclass based on a SID pair (@ssid, @tsid).
1856 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1857 * if insufficient memory is available, or %0 if the SID was
1858 * computed successfully.
1859 */
1860int security_member_sid(struct selinux_state *state,
1861			u32 ssid,
1862			u32 tsid,
1863			u16 tclass,
1864			u32 *out_sid)
1865{
1866	return security_compute_sid(state, ssid, tsid, tclass,
1867				    AVTAB_MEMBER, NULL,
1868				    out_sid, false);
1869}
1870
1871/**
1872 * security_change_sid - Compute the SID for object relabeling.
1873 * @ssid: source security identifier
1874 * @tsid: target security identifier
1875 * @tclass: target security class
1876 * @out_sid: security identifier for selected member
1877 *
1878 * Compute a SID to use for relabeling an object of class @tclass
1879 * based on a SID pair (@ssid, @tsid).
1880 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1881 * if insufficient memory is available, or %0 if the SID was
1882 * computed successfully.
1883 */
1884int security_change_sid(struct selinux_state *state,
1885			u32 ssid,
1886			u32 tsid,
1887			u16 tclass,
1888			u32 *out_sid)
1889{
1890	return security_compute_sid(state,
1891				    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1892				    out_sid, false);
1893}
1894
1895static inline int convert_context_handle_invalid_context(
1896	struct selinux_state *state,
1897	struct context *context)
1898{
1899	struct policydb *policydb = &state->ss->policydb;
1900	char *s;
1901	u32 len;
1902
1903	if (enforcing_enabled(state))
1904		return -EINVAL;
1905
1906	if (!context_struct_to_string(policydb, context, &s, &len)) {
1907		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
1908			s);
1909		kfree(s);
1910	}
1911	return 0;
1912}
1913
1914struct convert_context_args {
1915	struct selinux_state *state;
1916	struct policydb *oldp;
1917	struct policydb *newp;
1918};
1919
1920/*
1921 * Convert the values in the security context
1922 * structure `oldc' from the values specified
1923 * in the policy `p->oldp' to the values specified
1924 * in the policy `p->newp', storing the new context
1925 * in `newc'.  Verify that the context is valid
1926 * under the new policy.
1927 */
1928static int convert_context(struct context *oldc, struct context *newc, void *p)
1929{
1930	struct convert_context_args *args;
1931	struct ocontext *oc;
1932	struct role_datum *role;
1933	struct type_datum *typdatum;
1934	struct user_datum *usrdatum;
1935	char *s;
1936	u32 len;
1937	int rc;
1938
1939	args = p;
1940
1941	if (oldc->str) {
1942		s = kstrdup(oldc->str, GFP_KERNEL);
1943		if (!s)
1944			return -ENOMEM;
1945
1946		rc = string_to_context_struct(args->newp, NULL, s,
1947					      newc, SECSID_NULL);
1948		if (rc == -EINVAL) {
1949			/*
1950			 * Retain string representation for later mapping.
1951			 *
1952			 * IMPORTANT: We need to copy the contents of oldc->str
1953			 * back into s again because string_to_context_struct()
1954			 * may have garbled it.
1955			 */
1956			memcpy(s, oldc->str, oldc->len);
1957			context_init(newc);
1958			newc->str = s;
1959			newc->len = oldc->len;
1960			return 0;
1961		}
1962		kfree(s);
1963		if (rc) {
1964			/* Other error condition, e.g. ENOMEM. */
1965			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
1966			       oldc->str, -rc);
1967			return rc;
1968		}
1969		pr_info("SELinux:  Context %s became valid (mapped).\n",
1970			oldc->str);
1971		return 0;
1972	}
1973
1974	context_init(newc);
1975
1976	/* Convert the user. */
1977	rc = -EINVAL;
1978	usrdatum = hashtab_search(args->newp->p_users.table,
1979				  sym_name(args->oldp,
1980					   SYM_USERS, oldc->user - 1));
1981	if (!usrdatum)
1982		goto bad;
1983	newc->user = usrdatum->value;
1984
1985	/* Convert the role. */
1986	rc = -EINVAL;
1987	role = hashtab_search(args->newp->p_roles.table,
1988			      sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
1989	if (!role)
1990		goto bad;
1991	newc->role = role->value;
1992
1993	/* Convert the type. */
1994	rc = -EINVAL;
1995	typdatum = hashtab_search(args->newp->p_types.table,
1996				  sym_name(args->oldp,
1997					   SYM_TYPES, oldc->type - 1));
1998	if (!typdatum)
1999		goto bad;
2000	newc->type = typdatum->value;
2001
2002	/* Convert the MLS fields if dealing with MLS policies */
2003	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2004		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2005		if (rc)
2006			goto bad;
2007	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2008		/*
2009		 * Switching between non-MLS and MLS policy:
2010		 * ensure that the MLS fields of the context for all
2011		 * existing entries in the sidtab are filled in with a
2012		 * suitable default value, likely taken from one of the
2013		 * initial SIDs.
2014		 */
2015		oc = args->newp->ocontexts[OCON_ISID];
2016		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2017			oc = oc->next;
2018		rc = -EINVAL;
2019		if (!oc) {
2020			pr_err("SELinux:  unable to look up"
2021				" the initial SIDs list\n");
2022			goto bad;
2023		}
2024		rc = mls_range_set(newc, &oc->context[0].range);
2025		if (rc)
2026			goto bad;
2027	}
2028
2029	/* Check the validity of the new context. */
2030	if (!policydb_context_isvalid(args->newp, newc)) {
2031		rc = convert_context_handle_invalid_context(args->state, oldc);
2032		if (rc)
2033			goto bad;
2034	}
2035
2036	return 0;
2037bad:
2038	/* Map old representation to string and save it. */
2039	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2040	if (rc)
2041		return rc;
2042	context_destroy(newc);
2043	newc->str = s;
2044	newc->len = len;
2045	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2046		newc->str);
2047	return 0;
2048}
2049
2050static void security_load_policycaps(struct selinux_state *state)
2051{
2052	struct policydb *p = &state->ss->policydb;
2053	unsigned int i;
2054	struct ebitmap_node *node;
2055
2056	for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2057		state->policycap[i] = ebitmap_get_bit(&p->policycaps, i);
2058
2059	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2060		pr_info("SELinux:  policy capability %s=%d\n",
2061			selinux_policycap_names[i],
2062			ebitmap_get_bit(&p->policycaps, i));
2063
2064	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2065		if (i >= ARRAY_SIZE(selinux_policycap_names))
2066			pr_info("SELinux:  unknown policy capability %u\n",
2067				i);
2068	}
2069}
2070
2071static int security_preserve_bools(struct selinux_state *state,
2072				   struct policydb *newpolicydb);
2073
2074/**
2075 * security_load_policy - Load a security policy configuration.
2076 * @data: binary policy data
2077 * @len: length of data in bytes
2078 *
2079 * Load a new set of security policy configuration data,
2080 * validate it and convert the SID table as necessary.
2081 * This function will flush the access vector cache after
2082 * loading the new policy.
2083 */
2084int security_load_policy(struct selinux_state *state, void *data, size_t len)
2085{
2086	struct policydb *policydb;
2087	struct sidtab *oldsidtab, *newsidtab;
2088	struct policydb *oldpolicydb, *newpolicydb;
2089	struct selinux_mapping *oldmapping;
2090	struct selinux_map newmap;
2091	struct sidtab_convert_params convert_params;
2092	struct convert_context_args args;
2093	u32 seqno;
2094	int rc = 0;
2095	struct policy_file file = { data, len }, *fp = &file;
2096
2097	oldpolicydb = kcalloc(2, sizeof(*oldpolicydb), GFP_KERNEL);
2098	if (!oldpolicydb) {
2099		rc = -ENOMEM;
2100		goto out;
2101	}
2102	newpolicydb = oldpolicydb + 1;
2103
2104	policydb = &state->ss->policydb;
2105
2106	newsidtab = kmalloc(sizeof(*newsidtab), GFP_KERNEL);
2107	if (!newsidtab) {
2108		rc = -ENOMEM;
2109		goto out;
2110	}
2111
2112	if (!state->initialized) {
2113		rc = policydb_read(policydb, fp);
2114		if (rc) {
2115			kfree(newsidtab);
2116			goto out;
2117		}
2118
2119		policydb->len = len;
2120		rc = selinux_set_mapping(policydb, secclass_map,
2121					 &state->ss->map);
2122		if (rc) {
2123			kfree(newsidtab);
2124			policydb_destroy(policydb);
2125			goto out;
2126		}
2127
2128		rc = policydb_load_isids(policydb, newsidtab);
2129		if (rc) {
2130			kfree(newsidtab);
2131			policydb_destroy(policydb);
2132			goto out;
2133		}
2134
2135		state->ss->sidtab = newsidtab;
2136		security_load_policycaps(state);
2137		state->initialized = 1;
2138		seqno = ++state->ss->latest_granting;
2139		selinux_complete_init();
2140		avc_ss_reset(state->avc, seqno);
2141		selnl_notify_policyload(seqno);
2142		selinux_status_update_policyload(state, seqno);
2143		selinux_netlbl_cache_invalidate();
2144		selinux_xfrm_notify_policyload();
2145		goto out;
 
 
 
 
 
 
2146	}
 
2147
2148	rc = policydb_read(newpolicydb, fp);
2149	if (rc) {
2150		kfree(newsidtab);
2151		goto out;
2152	}
2153
2154	newpolicydb->len = len;
2155	/* If switching between different policy types, log MLS status */
2156	if (policydb->mls_enabled && !newpolicydb->mls_enabled)
2157		pr_info("SELinux: Disabling MLS support...\n");
2158	else if (!policydb->mls_enabled && newpolicydb->mls_enabled)
2159		pr_info("SELinux: Enabling MLS support...\n");
2160
2161	rc = policydb_load_isids(newpolicydb, newsidtab);
2162	if (rc) {
2163		pr_err("SELinux:  unable to load the initial SIDs\n");
2164		policydb_destroy(newpolicydb);
2165		kfree(newsidtab);
2166		goto out;
2167	}
2168
2169	rc = selinux_set_mapping(newpolicydb, secclass_map, &newmap);
2170	if (rc)
2171		goto err;
2172
2173	rc = security_preserve_bools(state, newpolicydb);
2174	if (rc) {
2175		pr_err("SELinux:  unable to preserve booleans\n");
2176		goto err;
2177	}
2178
2179	oldsidtab = state->ss->sidtab;
2180
2181	/*
2182	 * Convert the internal representations of contexts
2183	 * in the new SID table.
2184	 */
2185	args.state = state;
2186	args.oldp = policydb;
2187	args.newp = newpolicydb;
2188
2189	convert_params.func = convert_context;
2190	convert_params.args = &args;
2191	convert_params.target = newsidtab;
2192
2193	rc = sidtab_convert(oldsidtab, &convert_params);
2194	if (rc) {
2195		pr_err("SELinux:  unable to convert the internal"
2196			" representation of contexts in the new SID"
2197			" table\n");
2198		goto err;
2199	}
2200
2201	/* Save the old policydb and SID table to free later. */
2202	memcpy(oldpolicydb, policydb, sizeof(*policydb));
2203
2204	/* Install the new policydb and SID table. */
2205	write_lock_irq(&state->ss->policy_rwlock);
2206	memcpy(policydb, newpolicydb, sizeof(*policydb));
2207	state->ss->sidtab = newsidtab;
2208	security_load_policycaps(state);
2209	oldmapping = state->ss->map.mapping;
2210	state->ss->map.mapping = newmap.mapping;
2211	state->ss->map.size = newmap.size;
2212	seqno = ++state->ss->latest_granting;
2213	write_unlock_irq(&state->ss->policy_rwlock);
2214
2215	/* Free the old policydb and SID table. */
2216	policydb_destroy(oldpolicydb);
2217	sidtab_destroy(oldsidtab);
2218	kfree(oldsidtab);
2219	kfree(oldmapping);
2220
2221	avc_ss_reset(state->avc, seqno);
2222	selnl_notify_policyload(seqno);
2223	selinux_status_update_policyload(state, seqno);
2224	selinux_netlbl_cache_invalidate();
2225	selinux_xfrm_notify_policyload();
2226
2227	rc = 0;
2228	goto out;
2229
2230err:
2231	kfree(newmap.mapping);
2232	sidtab_destroy(newsidtab);
2233	kfree(newsidtab);
2234	policydb_destroy(newpolicydb);
2235
2236out:
2237	kfree(oldpolicydb);
2238	return rc;
2239}
2240
2241size_t security_policydb_len(struct selinux_state *state)
2242{
2243	struct policydb *p = &state->ss->policydb;
2244	size_t len;
2245
2246	read_lock(&state->ss->policy_rwlock);
2247	len = p->len;
2248	read_unlock(&state->ss->policy_rwlock);
2249
2250	return len;
2251}
2252
2253/**
2254 * security_port_sid - Obtain the SID for a port.
2255 * @protocol: protocol number
2256 * @port: port number
2257 * @out_sid: security identifier
2258 */
2259int security_port_sid(struct selinux_state *state,
2260		      u8 protocol, u16 port, u32 *out_sid)
2261{
2262	struct policydb *policydb;
2263	struct sidtab *sidtab;
2264	struct ocontext *c;
2265	int rc = 0;
2266
2267	read_lock(&state->ss->policy_rwlock);
2268
2269	policydb = &state->ss->policydb;
2270	sidtab = state->ss->sidtab;
2271
2272	c = policydb->ocontexts[OCON_PORT];
2273	while (c) {
2274		if (c->u.port.protocol == protocol &&
2275		    c->u.port.low_port <= port &&
2276		    c->u.port.high_port >= port)
2277			break;
2278		c = c->next;
2279	}
2280
2281	if (c) {
2282		if (!c->sid[0]) {
2283			rc = sidtab_context_to_sid(sidtab,
2284						   &c->context[0],
2285						   &c->sid[0]);
2286			if (rc)
2287				goto out;
2288		}
2289		*out_sid = c->sid[0];
2290	} else {
2291		*out_sid = SECINITSID_PORT;
2292	}
2293
2294out:
2295	read_unlock(&state->ss->policy_rwlock);
2296	return rc;
2297}
2298
2299/**
2300 * security_pkey_sid - Obtain the SID for a pkey.
2301 * @subnet_prefix: Subnet Prefix
2302 * @pkey_num: pkey number
2303 * @out_sid: security identifier
2304 */
2305int security_ib_pkey_sid(struct selinux_state *state,
2306			 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2307{
2308	struct policydb *policydb;
2309	struct sidtab *sidtab;
2310	struct ocontext *c;
2311	int rc = 0;
2312
2313	read_lock(&state->ss->policy_rwlock);
2314
2315	policydb = &state->ss->policydb;
2316	sidtab = state->ss->sidtab;
2317
2318	c = policydb->ocontexts[OCON_IBPKEY];
2319	while (c) {
2320		if (c->u.ibpkey.low_pkey <= pkey_num &&
2321		    c->u.ibpkey.high_pkey >= pkey_num &&
2322		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2323			break;
2324
2325		c = c->next;
2326	}
2327
2328	if (c) {
2329		if (!c->sid[0]) {
2330			rc = sidtab_context_to_sid(sidtab,
2331						   &c->context[0],
2332						   &c->sid[0]);
2333			if (rc)
2334				goto out;
2335		}
2336		*out_sid = c->sid[0];
2337	} else
2338		*out_sid = SECINITSID_UNLABELED;
2339
2340out:
2341	read_unlock(&state->ss->policy_rwlock);
2342	return rc;
2343}
2344
2345/**
2346 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2347 * @dev_name: device name
2348 * @port: port number
2349 * @out_sid: security identifier
2350 */
2351int security_ib_endport_sid(struct selinux_state *state,
2352			    const char *dev_name, u8 port_num, u32 *out_sid)
2353{
2354	struct policydb *policydb;
2355	struct sidtab *sidtab;
2356	struct ocontext *c;
2357	int rc = 0;
2358
2359	read_lock(&state->ss->policy_rwlock);
2360
2361	policydb = &state->ss->policydb;
2362	sidtab = state->ss->sidtab;
2363
2364	c = policydb->ocontexts[OCON_IBENDPORT];
2365	while (c) {
2366		if (c->u.ibendport.port == port_num &&
2367		    !strncmp(c->u.ibendport.dev_name,
2368			     dev_name,
2369			     IB_DEVICE_NAME_MAX))
2370			break;
2371
2372		c = c->next;
2373	}
2374
2375	if (c) {
2376		if (!c->sid[0]) {
2377			rc = sidtab_context_to_sid(sidtab,
2378						   &c->context[0],
2379						   &c->sid[0]);
2380			if (rc)
2381				goto out;
2382		}
2383		*out_sid = c->sid[0];
2384	} else
2385		*out_sid = SECINITSID_UNLABELED;
2386
2387out:
2388	read_unlock(&state->ss->policy_rwlock);
2389	return rc;
2390}
2391
2392/**
2393 * security_netif_sid - Obtain the SID for a network interface.
2394 * @name: interface name
2395 * @if_sid: interface SID
2396 */
2397int security_netif_sid(struct selinux_state *state,
2398		       char *name, u32 *if_sid)
2399{
2400	struct policydb *policydb;
2401	struct sidtab *sidtab;
2402	int rc = 0;
2403	struct ocontext *c;
2404
2405	read_lock(&state->ss->policy_rwlock);
2406
2407	policydb = &state->ss->policydb;
2408	sidtab = state->ss->sidtab;
2409
2410	c = policydb->ocontexts[OCON_NETIF];
2411	while (c) {
2412		if (strcmp(name, c->u.name) == 0)
2413			break;
2414		c = c->next;
2415	}
2416
2417	if (c) {
2418		if (!c->sid[0] || !c->sid[1]) {
2419			rc = sidtab_context_to_sid(sidtab,
2420						  &c->context[0],
2421						  &c->sid[0]);
2422			if (rc)
2423				goto out;
2424			rc = sidtab_context_to_sid(sidtab,
2425						   &c->context[1],
2426						   &c->sid[1]);
2427			if (rc)
2428				goto out;
2429		}
2430		*if_sid = c->sid[0];
2431	} else
2432		*if_sid = SECINITSID_NETIF;
2433
2434out:
2435	read_unlock(&state->ss->policy_rwlock);
2436	return rc;
2437}
2438
2439static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2440{
2441	int i, fail = 0;
2442
2443	for (i = 0; i < 4; i++)
2444		if (addr[i] != (input[i] & mask[i])) {
2445			fail = 1;
2446			break;
2447		}
2448
2449	return !fail;
2450}
2451
2452/**
2453 * security_node_sid - Obtain the SID for a node (host).
2454 * @domain: communication domain aka address family
2455 * @addrp: address
2456 * @addrlen: address length in bytes
2457 * @out_sid: security identifier
2458 */
2459int security_node_sid(struct selinux_state *state,
2460		      u16 domain,
2461		      void *addrp,
2462		      u32 addrlen,
2463		      u32 *out_sid)
2464{
2465	struct policydb *policydb;
2466	struct sidtab *sidtab;
2467	int rc;
2468	struct ocontext *c;
2469
2470	read_lock(&state->ss->policy_rwlock);
2471
2472	policydb = &state->ss->policydb;
2473	sidtab = state->ss->sidtab;
2474
2475	switch (domain) {
2476	case AF_INET: {
2477		u32 addr;
2478
2479		rc = -EINVAL;
2480		if (addrlen != sizeof(u32))
2481			goto out;
2482
2483		addr = *((u32 *)addrp);
2484
2485		c = policydb->ocontexts[OCON_NODE];
2486		while (c) {
2487			if (c->u.node.addr == (addr & c->u.node.mask))
2488				break;
2489			c = c->next;
2490		}
2491		break;
2492	}
2493
2494	case AF_INET6:
2495		rc = -EINVAL;
2496		if (addrlen != sizeof(u64) * 2)
2497			goto out;
2498		c = policydb->ocontexts[OCON_NODE6];
2499		while (c) {
2500			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2501						c->u.node6.mask))
2502				break;
2503			c = c->next;
2504		}
2505		break;
2506
2507	default:
2508		rc = 0;
2509		*out_sid = SECINITSID_NODE;
2510		goto out;
2511	}
2512
2513	if (c) {
2514		if (!c->sid[0]) {
2515			rc = sidtab_context_to_sid(sidtab,
2516						   &c->context[0],
2517						   &c->sid[0]);
2518			if (rc)
2519				goto out;
2520		}
2521		*out_sid = c->sid[0];
2522	} else {
2523		*out_sid = SECINITSID_NODE;
2524	}
2525
2526	rc = 0;
2527out:
2528	read_unlock(&state->ss->policy_rwlock);
2529	return rc;
2530}
2531
2532#define SIDS_NEL 25
2533
2534/**
2535 * security_get_user_sids - Obtain reachable SIDs for a user.
2536 * @fromsid: starting SID
2537 * @username: username
2538 * @sids: array of reachable SIDs for user
2539 * @nel: number of elements in @sids
2540 *
2541 * Generate the set of SIDs for legal security contexts
2542 * for a given user that can be reached by @fromsid.
2543 * Set *@sids to point to a dynamically allocated
2544 * array containing the set of SIDs.  Set *@nel to the
2545 * number of elements in the array.
2546 */
2547
2548int security_get_user_sids(struct selinux_state *state,
2549			   u32 fromsid,
2550			   char *username,
2551			   u32 **sids,
2552			   u32 *nel)
2553{
2554	struct policydb *policydb;
2555	struct sidtab *sidtab;
2556	struct context *fromcon, usercon;
2557	u32 *mysids = NULL, *mysids2, sid;
2558	u32 mynel = 0, maxnel = SIDS_NEL;
2559	struct user_datum *user;
2560	struct role_datum *role;
2561	struct ebitmap_node *rnode, *tnode;
2562	int rc = 0, i, j;
2563
2564	*sids = NULL;
2565	*nel = 0;
2566
2567	if (!state->initialized)
2568		goto out;
2569
2570	read_lock(&state->ss->policy_rwlock);
2571
2572	policydb = &state->ss->policydb;
2573	sidtab = state->ss->sidtab;
2574
2575	context_init(&usercon);
2576
2577	rc = -EINVAL;
2578	fromcon = sidtab_search(sidtab, fromsid);
2579	if (!fromcon)
2580		goto out_unlock;
2581
2582	rc = -EINVAL;
2583	user = hashtab_search(policydb->p_users.table, username);
2584	if (!user)
2585		goto out_unlock;
2586
2587	usercon.user = user->value;
2588
2589	rc = -ENOMEM;
2590	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2591	if (!mysids)
2592		goto out_unlock;
2593
2594	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2595		role = policydb->role_val_to_struct[i];
2596		usercon.role = i + 1;
2597		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2598			usercon.type = j + 1;
2599
2600			if (mls_setup_user_range(policydb, fromcon, user,
2601						 &usercon))
2602				continue;
2603
2604			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2605			if (rc)
2606				goto out_unlock;
2607			if (mynel < maxnel) {
2608				mysids[mynel++] = sid;
2609			} else {
2610				rc = -ENOMEM;
2611				maxnel += SIDS_NEL;
2612				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2613				if (!mysids2)
2614					goto out_unlock;
2615				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2616				kfree(mysids);
2617				mysids = mysids2;
2618				mysids[mynel++] = sid;
2619			}
2620		}
2621	}
2622	rc = 0;
2623out_unlock:
2624	read_unlock(&state->ss->policy_rwlock);
2625	if (rc || !mynel) {
2626		kfree(mysids);
2627		goto out;
2628	}
2629
2630	rc = -ENOMEM;
2631	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2632	if (!mysids2) {
2633		kfree(mysids);
2634		goto out;
2635	}
2636	for (i = 0, j = 0; i < mynel; i++) {
2637		struct av_decision dummy_avd;
2638		rc = avc_has_perm_noaudit(state,
2639					  fromsid, mysids[i],
2640					  SECCLASS_PROCESS, /* kernel value */
2641					  PROCESS__TRANSITION, AVC_STRICT,
2642					  &dummy_avd);
2643		if (!rc)
2644			mysids2[j++] = mysids[i];
2645		cond_resched();
2646	}
2647	rc = 0;
2648	kfree(mysids);
2649	*sids = mysids2;
2650	*nel = j;
2651out:
2652	return rc;
2653}
2654
2655/**
2656 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2657 * @fstype: filesystem type
2658 * @path: path from root of mount
2659 * @sclass: file security class
2660 * @sid: SID for path
2661 *
2662 * Obtain a SID to use for a file in a filesystem that
2663 * cannot support xattr or use a fixed labeling behavior like
2664 * transition SIDs or task SIDs.
2665 *
2666 * The caller must acquire the policy_rwlock before calling this function.
2667 */
2668static inline int __security_genfs_sid(struct selinux_state *state,
2669				       const char *fstype,
2670				       char *path,
2671				       u16 orig_sclass,
2672				       u32 *sid)
2673{
2674	struct policydb *policydb = &state->ss->policydb;
2675	struct sidtab *sidtab = state->ss->sidtab;
2676	int len;
2677	u16 sclass;
2678	struct genfs *genfs;
2679	struct ocontext *c;
2680	int rc, cmp = 0;
2681
2682	while (path[0] == '/' && path[1] == '/')
2683		path++;
2684
2685	sclass = unmap_class(&state->ss->map, orig_sclass);
2686	*sid = SECINITSID_UNLABELED;
2687
2688	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2689		cmp = strcmp(fstype, genfs->fstype);
2690		if (cmp <= 0)
2691			break;
2692	}
2693
2694	rc = -ENOENT;
2695	if (!genfs || cmp)
2696		goto out;
2697
2698	for (c = genfs->head; c; c = c->next) {
2699		len = strlen(c->u.name);
2700		if ((!c->v.sclass || sclass == c->v.sclass) &&
2701		    (strncmp(c->u.name, path, len) == 0))
2702			break;
2703	}
2704
2705	rc = -ENOENT;
2706	if (!c)
2707		goto out;
2708
2709	if (!c->sid[0]) {
2710		rc = sidtab_context_to_sid(sidtab, &c->context[0], &c->sid[0]);
2711		if (rc)
2712			goto out;
2713	}
2714
2715	*sid = c->sid[0];
2716	rc = 0;
2717out:
2718	return rc;
2719}
2720
2721/**
2722 * security_genfs_sid - Obtain a SID for a file in a filesystem
2723 * @fstype: filesystem type
2724 * @path: path from root of mount
2725 * @sclass: file security class
2726 * @sid: SID for path
2727 *
2728 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2729 * it afterward.
2730 */
2731int security_genfs_sid(struct selinux_state *state,
2732		       const char *fstype,
2733		       char *path,
2734		       u16 orig_sclass,
2735		       u32 *sid)
2736{
2737	int retval;
2738
2739	read_lock(&state->ss->policy_rwlock);
2740	retval = __security_genfs_sid(state, fstype, path, orig_sclass, sid);
2741	read_unlock(&state->ss->policy_rwlock);
2742	return retval;
2743}
2744
2745/**
2746 * security_fs_use - Determine how to handle labeling for a filesystem.
2747 * @sb: superblock in question
2748 */
2749int security_fs_use(struct selinux_state *state, struct super_block *sb)
2750{
2751	struct policydb *policydb;
2752	struct sidtab *sidtab;
2753	int rc = 0;
2754	struct ocontext *c;
2755	struct superblock_security_struct *sbsec = sb->s_security;
2756	const char *fstype = sb->s_type->name;
2757
2758	read_lock(&state->ss->policy_rwlock);
2759
2760	policydb = &state->ss->policydb;
2761	sidtab = state->ss->sidtab;
2762
2763	c = policydb->ocontexts[OCON_FSUSE];
2764	while (c) {
2765		if (strcmp(fstype, c->u.name) == 0)
2766			break;
2767		c = c->next;
2768	}
2769
2770	if (c) {
2771		sbsec->behavior = c->v.behavior;
2772		if (!c->sid[0]) {
2773			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2774						   &c->sid[0]);
2775			if (rc)
2776				goto out;
2777		}
2778		sbsec->sid = c->sid[0];
2779	} else {
2780		rc = __security_genfs_sid(state, fstype, "/", SECCLASS_DIR,
2781					  &sbsec->sid);
2782		if (rc) {
2783			sbsec->behavior = SECURITY_FS_USE_NONE;
2784			rc = 0;
2785		} else {
2786			sbsec->behavior = SECURITY_FS_USE_GENFS;
2787		}
2788	}
2789
2790out:
2791	read_unlock(&state->ss->policy_rwlock);
2792	return rc;
2793}
2794
2795int security_get_bools(struct selinux_state *state,
2796		       int *len, char ***names, int **values)
2797{
2798	struct policydb *policydb;
2799	int i, rc;
 
2800
2801	if (!state->initialized) {
2802		*len = 0;
2803		*names = NULL;
2804		*values = NULL;
2805		return 0;
2806	}
2807
2808	read_lock(&state->ss->policy_rwlock);
2809
2810	policydb = &state->ss->policydb;
2811
2812	*names = NULL;
2813	*values = NULL;
2814
2815	rc = 0;
2816	*len = policydb->p_bools.nprim;
2817	if (!*len)
2818		goto out;
2819
2820	rc = -ENOMEM;
2821	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2822	if (!*names)
2823		goto err;
2824
2825	rc = -ENOMEM;
2826	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2827	if (!*values)
2828		goto err;
2829
2830	for (i = 0; i < *len; i++) {
2831		(*values)[i] = policydb->bool_val_to_struct[i]->state;
2832
2833		rc = -ENOMEM;
2834		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
2835				      GFP_ATOMIC);
2836		if (!(*names)[i])
2837			goto err;
2838	}
2839	rc = 0;
2840out:
2841	read_unlock(&state->ss->policy_rwlock);
2842	return rc;
2843err:
2844	if (*names) {
2845		for (i = 0; i < *len; i++)
2846			kfree((*names)[i]);
 
2847	}
2848	kfree(*values);
 
 
 
2849	goto out;
2850}
2851
2852
2853int security_set_bools(struct selinux_state *state, int len, int *values)
2854{
2855	struct policydb *policydb;
2856	int i, rc;
2857	int lenp, seqno = 0;
2858	struct cond_node *cur;
2859
2860	write_lock_irq(&state->ss->policy_rwlock);
2861
2862	policydb = &state->ss->policydb;
2863
2864	rc = -EFAULT;
2865	lenp = policydb->p_bools.nprim;
2866	if (len != lenp)
2867		goto out;
2868
2869	for (i = 0; i < len; i++) {
2870		if (!!values[i] != policydb->bool_val_to_struct[i]->state) {
2871			audit_log(audit_context(), GFP_ATOMIC,
2872				AUDIT_MAC_CONFIG_CHANGE,
2873				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2874				sym_name(policydb, SYM_BOOLS, i),
2875				!!values[i],
2876				policydb->bool_val_to_struct[i]->state,
2877				from_kuid(&init_user_ns, audit_get_loginuid(current)),
2878				audit_get_sessionid(current));
2879		}
2880		if (values[i])
2881			policydb->bool_val_to_struct[i]->state = 1;
2882		else
2883			policydb->bool_val_to_struct[i]->state = 0;
2884	}
2885
2886	for (cur = policydb->cond_list; cur; cur = cur->next) {
2887		rc = evaluate_cond_node(policydb, cur);
2888		if (rc)
2889			goto out;
2890	}
2891
2892	seqno = ++state->ss->latest_granting;
2893	rc = 0;
2894out:
2895	write_unlock_irq(&state->ss->policy_rwlock);
2896	if (!rc) {
2897		avc_ss_reset(state->avc, seqno);
2898		selnl_notify_policyload(seqno);
2899		selinux_status_update_policyload(state, seqno);
2900		selinux_xfrm_notify_policyload();
2901	}
2902	return rc;
2903}
2904
2905int security_get_bool_value(struct selinux_state *state,
2906			    int index)
2907{
2908	struct policydb *policydb;
2909	int rc;
2910	int len;
2911
2912	read_lock(&state->ss->policy_rwlock);
2913
2914	policydb = &state->ss->policydb;
2915
2916	rc = -EFAULT;
2917	len = policydb->p_bools.nprim;
2918	if (index >= len)
2919		goto out;
2920
2921	rc = policydb->bool_val_to_struct[index]->state;
2922out:
2923	read_unlock(&state->ss->policy_rwlock);
2924	return rc;
2925}
2926
2927static int security_preserve_bools(struct selinux_state *state,
2928				   struct policydb *policydb)
2929{
2930	int rc, nbools = 0, *bvalues = NULL, i;
2931	char **bnames = NULL;
2932	struct cond_bool_datum *booldatum;
2933	struct cond_node *cur;
2934
2935	rc = security_get_bools(state, &nbools, &bnames, &bvalues);
2936	if (rc)
2937		goto out;
2938	for (i = 0; i < nbools; i++) {
2939		booldatum = hashtab_search(policydb->p_bools.table, bnames[i]);
2940		if (booldatum)
2941			booldatum->state = bvalues[i];
2942	}
2943	for (cur = policydb->cond_list; cur; cur = cur->next) {
2944		rc = evaluate_cond_node(policydb, cur);
2945		if (rc)
2946			goto out;
2947	}
2948
2949out:
2950	if (bnames) {
2951		for (i = 0; i < nbools; i++)
2952			kfree(bnames[i]);
2953	}
2954	kfree(bnames);
2955	kfree(bvalues);
2956	return rc;
2957}
2958
2959/*
2960 * security_sid_mls_copy() - computes a new sid based on the given
2961 * sid and the mls portion of mls_sid.
2962 */
2963int security_sid_mls_copy(struct selinux_state *state,
2964			  u32 sid, u32 mls_sid, u32 *new_sid)
2965{
2966	struct policydb *policydb = &state->ss->policydb;
2967	struct sidtab *sidtab = state->ss->sidtab;
2968	struct context *context1;
2969	struct context *context2;
2970	struct context newcon;
2971	char *s;
2972	u32 len;
2973	int rc;
2974
2975	rc = 0;
2976	if (!state->initialized || !policydb->mls_enabled) {
2977		*new_sid = sid;
2978		goto out;
2979	}
2980
2981	context_init(&newcon);
2982
2983	read_lock(&state->ss->policy_rwlock);
2984
2985	rc = -EINVAL;
2986	context1 = sidtab_search(sidtab, sid);
2987	if (!context1) {
2988		pr_err("SELinux: %s:  unrecognized SID %d\n",
2989			__func__, sid);
2990		goto out_unlock;
2991	}
2992
2993	rc = -EINVAL;
2994	context2 = sidtab_search(sidtab, mls_sid);
2995	if (!context2) {
2996		pr_err("SELinux: %s:  unrecognized SID %d\n",
2997			__func__, mls_sid);
2998		goto out_unlock;
2999	}
3000
3001	newcon.user = context1->user;
3002	newcon.role = context1->role;
3003	newcon.type = context1->type;
3004	rc = mls_context_cpy(&newcon, context2);
3005	if (rc)
3006		goto out_unlock;
3007
3008	/* Check the validity of the new context. */
3009	if (!policydb_context_isvalid(policydb, &newcon)) {
3010		rc = convert_context_handle_invalid_context(state, &newcon);
3011		if (rc) {
3012			if (!context_struct_to_string(policydb, &newcon, &s,
3013						      &len)) {
3014				struct audit_buffer *ab;
3015
3016				ab = audit_log_start(audit_context(),
3017						     GFP_ATOMIC,
3018						     AUDIT_SELINUX_ERR);
3019				audit_log_format(ab,
3020						 "op=security_sid_mls_copy invalid_context=");
3021				/* don't record NUL with untrusted strings */
3022				audit_log_n_untrustedstring(ab, s, len - 1);
3023				audit_log_end(ab);
3024				kfree(s);
3025			}
3026			goto out_unlock;
3027		}
3028	}
3029
3030	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3031out_unlock:
3032	read_unlock(&state->ss->policy_rwlock);
3033	context_destroy(&newcon);
3034out:
3035	return rc;
3036}
3037
3038/**
3039 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3040 * @nlbl_sid: NetLabel SID
3041 * @nlbl_type: NetLabel labeling protocol type
3042 * @xfrm_sid: XFRM SID
3043 *
3044 * Description:
3045 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3046 * resolved into a single SID it is returned via @peer_sid and the function
3047 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3048 * returns a negative value.  A table summarizing the behavior is below:
3049 *
3050 *                                 | function return |      @sid
3051 *   ------------------------------+-----------------+-----------------
3052 *   no peer labels                |        0        |    SECSID_NULL
3053 *   single peer label             |        0        |    <peer_label>
3054 *   multiple, consistent labels   |        0        |    <peer_label>
3055 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3056 *
3057 */
3058int security_net_peersid_resolve(struct selinux_state *state,
3059				 u32 nlbl_sid, u32 nlbl_type,
3060				 u32 xfrm_sid,
3061				 u32 *peer_sid)
3062{
3063	struct policydb *policydb = &state->ss->policydb;
3064	struct sidtab *sidtab = state->ss->sidtab;
3065	int rc;
3066	struct context *nlbl_ctx;
3067	struct context *xfrm_ctx;
3068
3069	*peer_sid = SECSID_NULL;
3070
3071	/* handle the common (which also happens to be the set of easy) cases
3072	 * right away, these two if statements catch everything involving a
3073	 * single or absent peer SID/label */
3074	if (xfrm_sid == SECSID_NULL) {
3075		*peer_sid = nlbl_sid;
3076		return 0;
3077	}
3078	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3079	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3080	 * is present */
3081	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3082		*peer_sid = xfrm_sid;
3083		return 0;
3084	}
3085
3086	/*
3087	 * We don't need to check initialized here since the only way both
3088	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3089	 * security server was initialized and state->initialized was true.
3090	 */
3091	if (!policydb->mls_enabled)
3092		return 0;
3093
3094	read_lock(&state->ss->policy_rwlock);
3095
3096	rc = -EINVAL;
3097	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3098	if (!nlbl_ctx) {
3099		pr_err("SELinux: %s:  unrecognized SID %d\n",
3100		       __func__, nlbl_sid);
3101		goto out;
3102	}
3103	rc = -EINVAL;
3104	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3105	if (!xfrm_ctx) {
3106		pr_err("SELinux: %s:  unrecognized SID %d\n",
3107		       __func__, xfrm_sid);
3108		goto out;
3109	}
3110	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3111	if (rc)
3112		goto out;
3113
3114	/* at present NetLabel SIDs/labels really only carry MLS
3115	 * information so if the MLS portion of the NetLabel SID
3116	 * matches the MLS portion of the labeled XFRM SID/label
3117	 * then pass along the XFRM SID as it is the most
3118	 * expressive */
3119	*peer_sid = xfrm_sid;
3120out:
3121	read_unlock(&state->ss->policy_rwlock);
3122	return rc;
3123}
3124
3125static int get_classes_callback(void *k, void *d, void *args)
3126{
3127	struct class_datum *datum = d;
3128	char *name = k, **classes = args;
3129	int value = datum->value - 1;
3130
3131	classes[value] = kstrdup(name, GFP_ATOMIC);
3132	if (!classes[value])
3133		return -ENOMEM;
3134
3135	return 0;
3136}
3137
3138int security_get_classes(struct selinux_state *state,
3139			 char ***classes, int *nclasses)
3140{
3141	struct policydb *policydb = &state->ss->policydb;
3142	int rc;
3143
3144	if (!state->initialized) {
3145		*nclasses = 0;
3146		*classes = NULL;
3147		return 0;
3148	}
3149
3150	read_lock(&state->ss->policy_rwlock);
3151
3152	rc = -ENOMEM;
3153	*nclasses = policydb->p_classes.nprim;
3154	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3155	if (!*classes)
3156		goto out;
3157
3158	rc = hashtab_map(policydb->p_classes.table, get_classes_callback,
3159			*classes);
3160	if (rc) {
3161		int i;
3162		for (i = 0; i < *nclasses; i++)
3163			kfree((*classes)[i]);
3164		kfree(*classes);
3165	}
3166
3167out:
3168	read_unlock(&state->ss->policy_rwlock);
3169	return rc;
3170}
3171
3172static int get_permissions_callback(void *k, void *d, void *args)
3173{
3174	struct perm_datum *datum = d;
3175	char *name = k, **perms = args;
3176	int value = datum->value - 1;
3177
3178	perms[value] = kstrdup(name, GFP_ATOMIC);
3179	if (!perms[value])
3180		return -ENOMEM;
3181
3182	return 0;
3183}
3184
3185int security_get_permissions(struct selinux_state *state,
3186			     char *class, char ***perms, int *nperms)
3187{
3188	struct policydb *policydb = &state->ss->policydb;
3189	int rc, i;
3190	struct class_datum *match;
3191
3192	read_lock(&state->ss->policy_rwlock);
3193
3194	rc = -EINVAL;
3195	match = hashtab_search(policydb->p_classes.table, class);
3196	if (!match) {
3197		pr_err("SELinux: %s:  unrecognized class %s\n",
3198			__func__, class);
3199		goto out;
3200	}
3201
3202	rc = -ENOMEM;
3203	*nperms = match->permissions.nprim;
3204	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3205	if (!*perms)
3206		goto out;
3207
3208	if (match->comdatum) {
3209		rc = hashtab_map(match->comdatum->permissions.table,
3210				get_permissions_callback, *perms);
3211		if (rc)
3212			goto err;
3213	}
3214
3215	rc = hashtab_map(match->permissions.table, get_permissions_callback,
3216			*perms);
3217	if (rc)
3218		goto err;
3219
3220out:
3221	read_unlock(&state->ss->policy_rwlock);
3222	return rc;
3223
3224err:
3225	read_unlock(&state->ss->policy_rwlock);
3226	for (i = 0; i < *nperms; i++)
3227		kfree((*perms)[i]);
3228	kfree(*perms);
3229	return rc;
3230}
3231
3232int security_get_reject_unknown(struct selinux_state *state)
3233{
3234	return state->ss->policydb.reject_unknown;
3235}
3236
3237int security_get_allow_unknown(struct selinux_state *state)
3238{
3239	return state->ss->policydb.allow_unknown;
3240}
3241
3242/**
3243 * security_policycap_supported - Check for a specific policy capability
3244 * @req_cap: capability
3245 *
3246 * Description:
3247 * This function queries the currently loaded policy to see if it supports the
3248 * capability specified by @req_cap.  Returns true (1) if the capability is
3249 * supported, false (0) if it isn't supported.
3250 *
3251 */
3252int security_policycap_supported(struct selinux_state *state,
3253				 unsigned int req_cap)
3254{
3255	struct policydb *policydb = &state->ss->policydb;
3256	int rc;
3257
3258	read_lock(&state->ss->policy_rwlock);
3259	rc = ebitmap_get_bit(&policydb->policycaps, req_cap);
3260	read_unlock(&state->ss->policy_rwlock);
3261
3262	return rc;
3263}
3264
3265struct selinux_audit_rule {
3266	u32 au_seqno;
3267	struct context au_ctxt;
3268};
3269
3270void selinux_audit_rule_free(void *vrule)
3271{
3272	struct selinux_audit_rule *rule = vrule;
3273
3274	if (rule) {
3275		context_destroy(&rule->au_ctxt);
3276		kfree(rule);
3277	}
3278}
3279
3280int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3281{
3282	struct selinux_state *state = &selinux_state;
3283	struct policydb *policydb = &state->ss->policydb;
3284	struct selinux_audit_rule *tmprule;
3285	struct role_datum *roledatum;
3286	struct type_datum *typedatum;
3287	struct user_datum *userdatum;
3288	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3289	int rc = 0;
3290
3291	*rule = NULL;
3292
3293	if (!state->initialized)
3294		return -EOPNOTSUPP;
3295
3296	switch (field) {
3297	case AUDIT_SUBJ_USER:
3298	case AUDIT_SUBJ_ROLE:
3299	case AUDIT_SUBJ_TYPE:
3300	case AUDIT_OBJ_USER:
3301	case AUDIT_OBJ_ROLE:
3302	case AUDIT_OBJ_TYPE:
3303		/* only 'equals' and 'not equals' fit user, role, and type */
3304		if (op != Audit_equal && op != Audit_not_equal)
3305			return -EINVAL;
3306		break;
3307	case AUDIT_SUBJ_SEN:
3308	case AUDIT_SUBJ_CLR:
3309	case AUDIT_OBJ_LEV_LOW:
3310	case AUDIT_OBJ_LEV_HIGH:
3311		/* we do not allow a range, indicated by the presence of '-' */
3312		if (strchr(rulestr, '-'))
3313			return -EINVAL;
3314		break;
3315	default:
3316		/* only the above fields are valid */
3317		return -EINVAL;
3318	}
3319
3320	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3321	if (!tmprule)
3322		return -ENOMEM;
3323
3324	context_init(&tmprule->au_ctxt);
3325
3326	read_lock(&state->ss->policy_rwlock);
3327
3328	tmprule->au_seqno = state->ss->latest_granting;
3329
3330	switch (field) {
3331	case AUDIT_SUBJ_USER:
3332	case AUDIT_OBJ_USER:
3333		rc = -EINVAL;
3334		userdatum = hashtab_search(policydb->p_users.table, rulestr);
3335		if (!userdatum)
3336			goto out;
3337		tmprule->au_ctxt.user = userdatum->value;
3338		break;
3339	case AUDIT_SUBJ_ROLE:
3340	case AUDIT_OBJ_ROLE:
3341		rc = -EINVAL;
3342		roledatum = hashtab_search(policydb->p_roles.table, rulestr);
3343		if (!roledatum)
3344			goto out;
3345		tmprule->au_ctxt.role = roledatum->value;
3346		break;
3347	case AUDIT_SUBJ_TYPE:
3348	case AUDIT_OBJ_TYPE:
3349		rc = -EINVAL;
3350		typedatum = hashtab_search(policydb->p_types.table, rulestr);
3351		if (!typedatum)
3352			goto out;
3353		tmprule->au_ctxt.type = typedatum->value;
3354		break;
3355	case AUDIT_SUBJ_SEN:
3356	case AUDIT_SUBJ_CLR:
3357	case AUDIT_OBJ_LEV_LOW:
3358	case AUDIT_OBJ_LEV_HIGH:
3359		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3360				     GFP_ATOMIC);
3361		if (rc)
3362			goto out;
3363		break;
3364	}
3365	rc = 0;
3366out:
3367	read_unlock(&state->ss->policy_rwlock);
3368
3369	if (rc) {
3370		selinux_audit_rule_free(tmprule);
3371		tmprule = NULL;
3372	}
3373
3374	*rule = tmprule;
3375
3376	return rc;
3377}
3378
3379/* Check to see if the rule contains any selinux fields */
3380int selinux_audit_rule_known(struct audit_krule *rule)
3381{
3382	int i;
3383
3384	for (i = 0; i < rule->field_count; i++) {
3385		struct audit_field *f = &rule->fields[i];
3386		switch (f->type) {
3387		case AUDIT_SUBJ_USER:
3388		case AUDIT_SUBJ_ROLE:
3389		case AUDIT_SUBJ_TYPE:
3390		case AUDIT_SUBJ_SEN:
3391		case AUDIT_SUBJ_CLR:
3392		case AUDIT_OBJ_USER:
3393		case AUDIT_OBJ_ROLE:
3394		case AUDIT_OBJ_TYPE:
3395		case AUDIT_OBJ_LEV_LOW:
3396		case AUDIT_OBJ_LEV_HIGH:
3397			return 1;
3398		}
3399	}
3400
3401	return 0;
3402}
3403
3404int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3405{
3406	struct selinux_state *state = &selinux_state;
3407	struct context *ctxt;
3408	struct mls_level *level;
3409	struct selinux_audit_rule *rule = vrule;
3410	int match = 0;
3411
3412	if (unlikely(!rule)) {
3413		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3414		return -ENOENT;
3415	}
3416
3417	read_lock(&state->ss->policy_rwlock);
3418
3419	if (rule->au_seqno < state->ss->latest_granting) {
3420		match = -ESTALE;
3421		goto out;
3422	}
3423
3424	ctxt = sidtab_search(state->ss->sidtab, sid);
3425	if (unlikely(!ctxt)) {
3426		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3427			  sid);
3428		match = -ENOENT;
3429		goto out;
3430	}
3431
3432	/* a field/op pair that is not caught here will simply fall through
3433	   without a match */
3434	switch (field) {
3435	case AUDIT_SUBJ_USER:
3436	case AUDIT_OBJ_USER:
3437		switch (op) {
3438		case Audit_equal:
3439			match = (ctxt->user == rule->au_ctxt.user);
3440			break;
3441		case Audit_not_equal:
3442			match = (ctxt->user != rule->au_ctxt.user);
3443			break;
3444		}
3445		break;
3446	case AUDIT_SUBJ_ROLE:
3447	case AUDIT_OBJ_ROLE:
3448		switch (op) {
3449		case Audit_equal:
3450			match = (ctxt->role == rule->au_ctxt.role);
3451			break;
3452		case Audit_not_equal:
3453			match = (ctxt->role != rule->au_ctxt.role);
3454			break;
3455		}
3456		break;
3457	case AUDIT_SUBJ_TYPE:
3458	case AUDIT_OBJ_TYPE:
3459		switch (op) {
3460		case Audit_equal:
3461			match = (ctxt->type == rule->au_ctxt.type);
3462			break;
3463		case Audit_not_equal:
3464			match = (ctxt->type != rule->au_ctxt.type);
3465			break;
3466		}
3467		break;
3468	case AUDIT_SUBJ_SEN:
3469	case AUDIT_SUBJ_CLR:
3470	case AUDIT_OBJ_LEV_LOW:
3471	case AUDIT_OBJ_LEV_HIGH:
3472		level = ((field == AUDIT_SUBJ_SEN ||
3473			  field == AUDIT_OBJ_LEV_LOW) ?
3474			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3475		switch (op) {
3476		case Audit_equal:
3477			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3478					     level);
3479			break;
3480		case Audit_not_equal:
3481			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3482					      level);
3483			break;
3484		case Audit_lt:
3485			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3486					       level) &&
3487				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3488					       level));
3489			break;
3490		case Audit_le:
3491			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3492					      level);
3493			break;
3494		case Audit_gt:
3495			match = (mls_level_dom(level,
3496					      &rule->au_ctxt.range.level[0]) &&
3497				 !mls_level_eq(level,
3498					       &rule->au_ctxt.range.level[0]));
3499			break;
3500		case Audit_ge:
3501			match = mls_level_dom(level,
3502					      &rule->au_ctxt.range.level[0]);
3503			break;
3504		}
3505	}
3506
3507out:
3508	read_unlock(&state->ss->policy_rwlock);
3509	return match;
3510}
3511
3512static int (*aurule_callback)(void) = audit_update_lsm_rules;
3513
3514static int aurule_avc_callback(u32 event)
3515{
3516	int err = 0;
3517
3518	if (event == AVC_CALLBACK_RESET && aurule_callback)
3519		err = aurule_callback();
3520	return err;
3521}
3522
3523static int __init aurule_init(void)
3524{
3525	int err;
3526
3527	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3528	if (err)
3529		panic("avc_add_callback() failed, error %d\n", err);
3530
3531	return err;
3532}
3533__initcall(aurule_init);
3534
3535#ifdef CONFIG_NETLABEL
3536/**
3537 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3538 * @secattr: the NetLabel packet security attributes
3539 * @sid: the SELinux SID
3540 *
3541 * Description:
3542 * Attempt to cache the context in @ctx, which was derived from the packet in
3543 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3544 * already been initialized.
3545 *
3546 */
3547static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3548				      u32 sid)
3549{
3550	u32 *sid_cache;
3551
3552	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3553	if (sid_cache == NULL)
3554		return;
3555	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3556	if (secattr->cache == NULL) {
3557		kfree(sid_cache);
3558		return;
3559	}
3560
3561	*sid_cache = sid;
3562	secattr->cache->free = kfree;
3563	secattr->cache->data = sid_cache;
3564	secattr->flags |= NETLBL_SECATTR_CACHE;
3565}
3566
3567/**
3568 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3569 * @secattr: the NetLabel packet security attributes
3570 * @sid: the SELinux SID
3571 *
3572 * Description:
3573 * Convert the given NetLabel security attributes in @secattr into a
3574 * SELinux SID.  If the @secattr field does not contain a full SELinux
3575 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3576 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3577 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3578 * conversion for future lookups.  Returns zero on success, negative values on
3579 * failure.
3580 *
3581 */
3582int security_netlbl_secattr_to_sid(struct selinux_state *state,
3583				   struct netlbl_lsm_secattr *secattr,
3584				   u32 *sid)
3585{
3586	struct policydb *policydb = &state->ss->policydb;
3587	struct sidtab *sidtab = state->ss->sidtab;
3588	int rc;
3589	struct context *ctx;
3590	struct context ctx_new;
3591
3592	if (!state->initialized) {
3593		*sid = SECSID_NULL;
3594		return 0;
3595	}
3596
3597	read_lock(&state->ss->policy_rwlock);
3598
3599	if (secattr->flags & NETLBL_SECATTR_CACHE)
3600		*sid = *(u32 *)secattr->cache->data;
3601	else if (secattr->flags & NETLBL_SECATTR_SECID)
3602		*sid = secattr->attr.secid;
3603	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3604		rc = -EIDRM;
3605		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3606		if (ctx == NULL)
3607			goto out;
3608
3609		context_init(&ctx_new);
3610		ctx_new.user = ctx->user;
3611		ctx_new.role = ctx->role;
3612		ctx_new.type = ctx->type;
3613		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3614		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3615			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3616			if (rc)
3617				goto out;
3618		}
3619		rc = -EIDRM;
3620		if (!mls_context_isvalid(policydb, &ctx_new))
3621			goto out_free;
3622
3623		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3624		if (rc)
3625			goto out_free;
3626
3627		security_netlbl_cache_add(secattr, *sid);
3628
3629		ebitmap_destroy(&ctx_new.range.level[0].cat);
3630	} else
3631		*sid = SECSID_NULL;
3632
3633	read_unlock(&state->ss->policy_rwlock);
3634	return 0;
3635out_free:
3636	ebitmap_destroy(&ctx_new.range.level[0].cat);
3637out:
3638	read_unlock(&state->ss->policy_rwlock);
3639	return rc;
3640}
3641
3642/**
3643 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3644 * @sid: the SELinux SID
3645 * @secattr: the NetLabel packet security attributes
3646 *
3647 * Description:
3648 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3649 * Returns zero on success, negative values on failure.
3650 *
3651 */
3652int security_netlbl_sid_to_secattr(struct selinux_state *state,
3653				   u32 sid, struct netlbl_lsm_secattr *secattr)
3654{
3655	struct policydb *policydb = &state->ss->policydb;
3656	int rc;
3657	struct context *ctx;
3658
3659	if (!state->initialized)
3660		return 0;
3661
3662	read_lock(&state->ss->policy_rwlock);
3663
3664	rc = -ENOENT;
3665	ctx = sidtab_search(state->ss->sidtab, sid);
3666	if (ctx == NULL)
3667		goto out;
3668
3669	rc = -ENOMEM;
3670	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3671				  GFP_ATOMIC);
3672	if (secattr->domain == NULL)
3673		goto out;
3674
3675	secattr->attr.secid = sid;
3676	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3677	mls_export_netlbl_lvl(policydb, ctx, secattr);
3678	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3679out:
3680	read_unlock(&state->ss->policy_rwlock);
3681	return rc;
3682}
3683#endif /* CONFIG_NETLABEL */
3684
3685/**
3686 * security_read_policy - read the policy.
3687 * @data: binary policy data
3688 * @len: length of data in bytes
3689 *
3690 */
3691int security_read_policy(struct selinux_state *state,
3692			 void **data, size_t *len)
3693{
3694	struct policydb *policydb = &state->ss->policydb;
3695	int rc;
3696	struct policy_file fp;
3697
3698	if (!state->initialized)
3699		return -EINVAL;
3700
3701	*len = security_policydb_len(state);
3702
3703	*data = vmalloc_user(*len);
3704	if (!*data)
3705		return -ENOMEM;
3706
3707	fp.data = *data;
3708	fp.len = *len;
3709
3710	read_lock(&state->ss->policy_rwlock);
3711	rc = policydb_write(policydb, &fp);
3712	read_unlock(&state->ss->policy_rwlock);
3713
3714	if (rc)
3715		return rc;
3716
3717	*len = (unsigned long)fp.data - (unsigned long)*data;
3718	return 0;
3719
3720}
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Implementation of the security services.
   4 *
   5 * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
   6 *	     James Morris <jmorris@redhat.com>
   7 *
   8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   9 *
  10 *	Support for enhanced MLS infrastructure.
  11 *	Support for context based audit filters.
  12 *
  13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  14 *
  15 *	Added conditional policy language extensions
  16 *
  17 * Updated: Hewlett-Packard <paul@paul-moore.com>
  18 *
  19 *      Added support for NetLabel
  20 *      Added support for the policy capability bitmap
  21 *
  22 * Updated: Chad Sellers <csellers@tresys.com>
  23 *
  24 *  Added validation of kernel classes and permissions
  25 *
  26 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  27 *
  28 *  Added support for bounds domain and audit messaged on masked permissions
  29 *
  30 * Updated: Guido Trentalancia <guido@trentalancia.com>
  31 *
  32 *  Added support for runtime switching of the policy type
  33 *
  34 * Copyright (C) 2008, 2009 NEC Corporation
  35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  38 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  39 */
  40#include <linux/kernel.h>
  41#include <linux/slab.h>
  42#include <linux/string.h>
  43#include <linux/spinlock.h>
  44#include <linux/rcupdate.h>
  45#include <linux/errno.h>
  46#include <linux/in.h>
  47#include <linux/sched.h>
  48#include <linux/audit.h>
 
  49#include <linux/vmalloc.h>
  50#include <net/netlabel.h>
  51
  52#include "flask.h"
  53#include "avc.h"
  54#include "avc_ss.h"
  55#include "security.h"
  56#include "context.h"
  57#include "policydb.h"
  58#include "sidtab.h"
  59#include "services.h"
  60#include "conditional.h"
  61#include "mls.h"
  62#include "objsec.h"
  63#include "netlabel.h"
  64#include "xfrm.h"
  65#include "ebitmap.h"
  66#include "audit.h"
  67
  68/* Policy capability names */
  69const char *selinux_policycap_names[__POLICYDB_CAPABILITY_MAX] = {
  70	"network_peer_controls",
  71	"open_perms",
  72	"extended_socket_class",
  73	"always_check_network",
  74	"cgroup_seclabel",
  75	"nnp_nosuid_transition",
  76	"genfs_seclabel_symlinks"
  77};
  78
  79static struct selinux_ss selinux_ss;
  80
  81void selinux_ss_init(struct selinux_ss **ss)
  82{
  83	rwlock_init(&selinux_ss.policy_rwlock);
 
  84	*ss = &selinux_ss;
  85}
  86
  87/* Forward declaration. */
  88static int context_struct_to_string(struct policydb *policydb,
  89				    struct context *context,
  90				    char **scontext,
  91				    u32 *scontext_len);
  92
  93static int sidtab_entry_to_string(struct policydb *policydb,
  94				  struct sidtab *sidtab,
  95				  struct sidtab_entry *entry,
  96				  char **scontext,
  97				  u32 *scontext_len);
  98
  99static void context_struct_compute_av(struct policydb *policydb,
 100				      struct context *scontext,
 101				      struct context *tcontext,
 102				      u16 tclass,
 103				      struct av_decision *avd,
 104				      struct extended_perms *xperms);
 105
 106static int selinux_set_mapping(struct policydb *pol,
 107			       struct security_class_mapping *map,
 108			       struct selinux_map *out_map)
 109{
 110	u16 i, j;
 111	unsigned k;
 112	bool print_unknown_handle = false;
 113
 114	/* Find number of classes in the input mapping */
 115	if (!map)
 116		return -EINVAL;
 117	i = 0;
 118	while (map[i].name)
 119		i++;
 120
 121	/* Allocate space for the class records, plus one for class zero */
 122	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
 123	if (!out_map->mapping)
 124		return -ENOMEM;
 125
 126	/* Store the raw class and permission values */
 127	j = 0;
 128	while (map[j].name) {
 129		struct security_class_mapping *p_in = map + (j++);
 130		struct selinux_mapping *p_out = out_map->mapping + j;
 131
 132		/* An empty class string skips ahead */
 133		if (!strcmp(p_in->name, "")) {
 134			p_out->num_perms = 0;
 135			continue;
 136		}
 137
 138		p_out->value = string_to_security_class(pol, p_in->name);
 139		if (!p_out->value) {
 140			pr_info("SELinux:  Class %s not defined in policy.\n",
 141			       p_in->name);
 142			if (pol->reject_unknown)
 143				goto err;
 144			p_out->num_perms = 0;
 145			print_unknown_handle = true;
 146			continue;
 147		}
 148
 149		k = 0;
 150		while (p_in->perms[k]) {
 151			/* An empty permission string skips ahead */
 152			if (!*p_in->perms[k]) {
 153				k++;
 154				continue;
 155			}
 156			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 157							    p_in->perms[k]);
 158			if (!p_out->perms[k]) {
 159				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
 160				       p_in->perms[k], p_in->name);
 161				if (pol->reject_unknown)
 162					goto err;
 163				print_unknown_handle = true;
 164			}
 165
 166			k++;
 167		}
 168		p_out->num_perms = k;
 169	}
 170
 171	if (print_unknown_handle)
 172		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
 173		       pol->allow_unknown ? "allowed" : "denied");
 174
 175	out_map->size = i;
 176	return 0;
 177err:
 178	kfree(out_map->mapping);
 179	out_map->mapping = NULL;
 180	return -EINVAL;
 181}
 182
 183/*
 184 * Get real, policy values from mapped values
 185 */
 186
 187static u16 unmap_class(struct selinux_map *map, u16 tclass)
 188{
 189	if (tclass < map->size)
 190		return map->mapping[tclass].value;
 191
 192	return tclass;
 193}
 194
 195/*
 196 * Get kernel value for class from its policy value
 197 */
 198static u16 map_class(struct selinux_map *map, u16 pol_value)
 199{
 200	u16 i;
 201
 202	for (i = 1; i < map->size; i++) {
 203		if (map->mapping[i].value == pol_value)
 204			return i;
 205	}
 206
 207	return SECCLASS_NULL;
 208}
 209
 210static void map_decision(struct selinux_map *map,
 211			 u16 tclass, struct av_decision *avd,
 212			 int allow_unknown)
 213{
 214	if (tclass < map->size) {
 215		struct selinux_mapping *mapping = &map->mapping[tclass];
 216		unsigned int i, n = mapping->num_perms;
 217		u32 result;
 218
 219		for (i = 0, result = 0; i < n; i++) {
 220			if (avd->allowed & mapping->perms[i])
 221				result |= 1<<i;
 222			if (allow_unknown && !mapping->perms[i])
 223				result |= 1<<i;
 224		}
 225		avd->allowed = result;
 226
 227		for (i = 0, result = 0; i < n; i++)
 228			if (avd->auditallow & mapping->perms[i])
 229				result |= 1<<i;
 230		avd->auditallow = result;
 231
 232		for (i = 0, result = 0; i < n; i++) {
 233			if (avd->auditdeny & mapping->perms[i])
 234				result |= 1<<i;
 235			if (!allow_unknown && !mapping->perms[i])
 236				result |= 1<<i;
 237		}
 238		/*
 239		 * In case the kernel has a bug and requests a permission
 240		 * between num_perms and the maximum permission number, we
 241		 * should audit that denial
 242		 */
 243		for (; i < (sizeof(u32)*8); i++)
 244			result |= 1<<i;
 245		avd->auditdeny = result;
 246	}
 247}
 248
 249int security_mls_enabled(struct selinux_state *state)
 250{
 251	struct policydb *p = &state->ss->policydb;
 252
 253	return p->mls_enabled;
 254}
 255
 256/*
 257 * Return the boolean value of a constraint expression
 258 * when it is applied to the specified source and target
 259 * security contexts.
 260 *
 261 * xcontext is a special beast...  It is used by the validatetrans rules
 262 * only.  For these rules, scontext is the context before the transition,
 263 * tcontext is the context after the transition, and xcontext is the context
 264 * of the process performing the transition.  All other callers of
 265 * constraint_expr_eval should pass in NULL for xcontext.
 266 */
 267static int constraint_expr_eval(struct policydb *policydb,
 268				struct context *scontext,
 269				struct context *tcontext,
 270				struct context *xcontext,
 271				struct constraint_expr *cexpr)
 272{
 273	u32 val1, val2;
 274	struct context *c;
 275	struct role_datum *r1, *r2;
 276	struct mls_level *l1, *l2;
 277	struct constraint_expr *e;
 278	int s[CEXPR_MAXDEPTH];
 279	int sp = -1;
 280
 281	for (e = cexpr; e; e = e->next) {
 282		switch (e->expr_type) {
 283		case CEXPR_NOT:
 284			BUG_ON(sp < 0);
 285			s[sp] = !s[sp];
 286			break;
 287		case CEXPR_AND:
 288			BUG_ON(sp < 1);
 289			sp--;
 290			s[sp] &= s[sp + 1];
 291			break;
 292		case CEXPR_OR:
 293			BUG_ON(sp < 1);
 294			sp--;
 295			s[sp] |= s[sp + 1];
 296			break;
 297		case CEXPR_ATTR:
 298			if (sp == (CEXPR_MAXDEPTH - 1))
 299				return 0;
 300			switch (e->attr) {
 301			case CEXPR_USER:
 302				val1 = scontext->user;
 303				val2 = tcontext->user;
 304				break;
 305			case CEXPR_TYPE:
 306				val1 = scontext->type;
 307				val2 = tcontext->type;
 308				break;
 309			case CEXPR_ROLE:
 310				val1 = scontext->role;
 311				val2 = tcontext->role;
 312				r1 = policydb->role_val_to_struct[val1 - 1];
 313				r2 = policydb->role_val_to_struct[val2 - 1];
 314				switch (e->op) {
 315				case CEXPR_DOM:
 316					s[++sp] = ebitmap_get_bit(&r1->dominates,
 317								  val2 - 1);
 318					continue;
 319				case CEXPR_DOMBY:
 320					s[++sp] = ebitmap_get_bit(&r2->dominates,
 321								  val1 - 1);
 322					continue;
 323				case CEXPR_INCOMP:
 324					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 325								    val2 - 1) &&
 326						   !ebitmap_get_bit(&r2->dominates,
 327								    val1 - 1));
 328					continue;
 329				default:
 330					break;
 331				}
 332				break;
 333			case CEXPR_L1L2:
 334				l1 = &(scontext->range.level[0]);
 335				l2 = &(tcontext->range.level[0]);
 336				goto mls_ops;
 337			case CEXPR_L1H2:
 338				l1 = &(scontext->range.level[0]);
 339				l2 = &(tcontext->range.level[1]);
 340				goto mls_ops;
 341			case CEXPR_H1L2:
 342				l1 = &(scontext->range.level[1]);
 343				l2 = &(tcontext->range.level[0]);
 344				goto mls_ops;
 345			case CEXPR_H1H2:
 346				l1 = &(scontext->range.level[1]);
 347				l2 = &(tcontext->range.level[1]);
 348				goto mls_ops;
 349			case CEXPR_L1H1:
 350				l1 = &(scontext->range.level[0]);
 351				l2 = &(scontext->range.level[1]);
 352				goto mls_ops;
 353			case CEXPR_L2H2:
 354				l1 = &(tcontext->range.level[0]);
 355				l2 = &(tcontext->range.level[1]);
 356				goto mls_ops;
 357mls_ops:
 358			switch (e->op) {
 359			case CEXPR_EQ:
 360				s[++sp] = mls_level_eq(l1, l2);
 361				continue;
 362			case CEXPR_NEQ:
 363				s[++sp] = !mls_level_eq(l1, l2);
 364				continue;
 365			case CEXPR_DOM:
 366				s[++sp] = mls_level_dom(l1, l2);
 367				continue;
 368			case CEXPR_DOMBY:
 369				s[++sp] = mls_level_dom(l2, l1);
 370				continue;
 371			case CEXPR_INCOMP:
 372				s[++sp] = mls_level_incomp(l2, l1);
 373				continue;
 374			default:
 375				BUG();
 376				return 0;
 377			}
 378			break;
 379			default:
 380				BUG();
 381				return 0;
 382			}
 383
 384			switch (e->op) {
 385			case CEXPR_EQ:
 386				s[++sp] = (val1 == val2);
 387				break;
 388			case CEXPR_NEQ:
 389				s[++sp] = (val1 != val2);
 390				break;
 391			default:
 392				BUG();
 393				return 0;
 394			}
 395			break;
 396		case CEXPR_NAMES:
 397			if (sp == (CEXPR_MAXDEPTH-1))
 398				return 0;
 399			c = scontext;
 400			if (e->attr & CEXPR_TARGET)
 401				c = tcontext;
 402			else if (e->attr & CEXPR_XTARGET) {
 403				c = xcontext;
 404				if (!c) {
 405					BUG();
 406					return 0;
 407				}
 408			}
 409			if (e->attr & CEXPR_USER)
 410				val1 = c->user;
 411			else if (e->attr & CEXPR_ROLE)
 412				val1 = c->role;
 413			else if (e->attr & CEXPR_TYPE)
 414				val1 = c->type;
 415			else {
 416				BUG();
 417				return 0;
 418			}
 419
 420			switch (e->op) {
 421			case CEXPR_EQ:
 422				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 423				break;
 424			case CEXPR_NEQ:
 425				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 426				break;
 427			default:
 428				BUG();
 429				return 0;
 430			}
 431			break;
 432		default:
 433			BUG();
 434			return 0;
 435		}
 436	}
 437
 438	BUG_ON(sp != 0);
 439	return s[0];
 440}
 441
 442/*
 443 * security_dump_masked_av - dumps masked permissions during
 444 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 445 */
 446static int dump_masked_av_helper(void *k, void *d, void *args)
 447{
 448	struct perm_datum *pdatum = d;
 449	char **permission_names = args;
 450
 451	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 452
 453	permission_names[pdatum->value - 1] = (char *)k;
 454
 455	return 0;
 456}
 457
 458static void security_dump_masked_av(struct policydb *policydb,
 459				    struct context *scontext,
 460				    struct context *tcontext,
 461				    u16 tclass,
 462				    u32 permissions,
 463				    const char *reason)
 464{
 465	struct common_datum *common_dat;
 466	struct class_datum *tclass_dat;
 467	struct audit_buffer *ab;
 468	char *tclass_name;
 469	char *scontext_name = NULL;
 470	char *tcontext_name = NULL;
 471	char *permission_names[32];
 472	int index;
 473	u32 length;
 474	bool need_comma = false;
 475
 476	if (!permissions)
 477		return;
 478
 479	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
 480	tclass_dat = policydb->class_val_to_struct[tclass - 1];
 481	common_dat = tclass_dat->comdatum;
 482
 483	/* init permission_names */
 484	if (common_dat &&
 485	    hashtab_map(&common_dat->permissions.table,
 486			dump_masked_av_helper, permission_names) < 0)
 487		goto out;
 488
 489	if (hashtab_map(&tclass_dat->permissions.table,
 490			dump_masked_av_helper, permission_names) < 0)
 491		goto out;
 492
 493	/* get scontext/tcontext in text form */
 494	if (context_struct_to_string(policydb, scontext,
 495				     &scontext_name, &length) < 0)
 496		goto out;
 497
 498	if (context_struct_to_string(policydb, tcontext,
 499				     &tcontext_name, &length) < 0)
 500		goto out;
 501
 502	/* audit a message */
 503	ab = audit_log_start(audit_context(),
 504			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
 505	if (!ab)
 506		goto out;
 507
 508	audit_log_format(ab, "op=security_compute_av reason=%s "
 509			 "scontext=%s tcontext=%s tclass=%s perms=",
 510			 reason, scontext_name, tcontext_name, tclass_name);
 511
 512	for (index = 0; index < 32; index++) {
 513		u32 mask = (1 << index);
 514
 515		if ((mask & permissions) == 0)
 516			continue;
 517
 518		audit_log_format(ab, "%s%s",
 519				 need_comma ? "," : "",
 520				 permission_names[index]
 521				 ? permission_names[index] : "????");
 522		need_comma = true;
 523	}
 524	audit_log_end(ab);
 525out:
 526	/* release scontext/tcontext */
 527	kfree(tcontext_name);
 528	kfree(scontext_name);
 529
 530	return;
 531}
 532
 533/*
 534 * security_boundary_permission - drops violated permissions
 535 * on boundary constraint.
 536 */
 537static void type_attribute_bounds_av(struct policydb *policydb,
 538				     struct context *scontext,
 539				     struct context *tcontext,
 540				     u16 tclass,
 541				     struct av_decision *avd)
 542{
 543	struct context lo_scontext;
 544	struct context lo_tcontext, *tcontextp = tcontext;
 545	struct av_decision lo_avd;
 546	struct type_datum *source;
 547	struct type_datum *target;
 548	u32 masked = 0;
 549
 550	source = policydb->type_val_to_struct[scontext->type - 1];
 551	BUG_ON(!source);
 552
 553	if (!source->bounds)
 554		return;
 555
 556	target = policydb->type_val_to_struct[tcontext->type - 1];
 557	BUG_ON(!target);
 558
 559	memset(&lo_avd, 0, sizeof(lo_avd));
 560
 561	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 562	lo_scontext.type = source->bounds;
 563
 564	if (target->bounds) {
 565		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 566		lo_tcontext.type = target->bounds;
 567		tcontextp = &lo_tcontext;
 568	}
 569
 570	context_struct_compute_av(policydb, &lo_scontext,
 571				  tcontextp,
 572				  tclass,
 573				  &lo_avd,
 574				  NULL);
 575
 576	masked = ~lo_avd.allowed & avd->allowed;
 577
 578	if (likely(!masked))
 579		return;		/* no masked permission */
 580
 581	/* mask violated permissions */
 582	avd->allowed &= ~masked;
 583
 584	/* audit masked permissions */
 585	security_dump_masked_av(policydb, scontext, tcontext,
 586				tclass, masked, "bounds");
 587}
 588
 589/*
 590 * flag which drivers have permissions
 591 * only looking for ioctl based extended permssions
 592 */
 593void services_compute_xperms_drivers(
 594		struct extended_perms *xperms,
 595		struct avtab_node *node)
 596{
 597	unsigned int i;
 598
 599	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 600		/* if one or more driver has all permissions allowed */
 601		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
 602			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
 603	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 604		/* if allowing permissions within a driver */
 605		security_xperm_set(xperms->drivers.p,
 606					node->datum.u.xperms->driver);
 607	}
 608
 609	/* If no ioctl commands are allowed, ignore auditallow and auditdeny */
 610	if (node->key.specified & AVTAB_XPERMS_ALLOWED)
 611		xperms->len = 1;
 612}
 613
 614/*
 615 * Compute access vectors and extended permissions based on a context
 616 * structure pair for the permissions in a particular class.
 617 */
 618static void context_struct_compute_av(struct policydb *policydb,
 619				      struct context *scontext,
 620				      struct context *tcontext,
 621				      u16 tclass,
 622				      struct av_decision *avd,
 623				      struct extended_perms *xperms)
 624{
 625	struct constraint_node *constraint;
 626	struct role_allow *ra;
 627	struct avtab_key avkey;
 628	struct avtab_node *node;
 629	struct class_datum *tclass_datum;
 630	struct ebitmap *sattr, *tattr;
 631	struct ebitmap_node *snode, *tnode;
 632	unsigned int i, j;
 633
 634	avd->allowed = 0;
 635	avd->auditallow = 0;
 636	avd->auditdeny = 0xffffffff;
 637	if (xperms) {
 638		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
 639		xperms->len = 0;
 640	}
 641
 642	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
 643		if (printk_ratelimit())
 644			pr_warn("SELinux:  Invalid class %hu\n", tclass);
 645		return;
 646	}
 647
 648	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 649
 650	/*
 651	 * If a specific type enforcement rule was defined for
 652	 * this permission check, then use it.
 653	 */
 654	avkey.target_class = tclass;
 655	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
 656	sattr = &policydb->type_attr_map_array[scontext->type - 1];
 657	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
 658	ebitmap_for_each_positive_bit(sattr, snode, i) {
 659		ebitmap_for_each_positive_bit(tattr, tnode, j) {
 660			avkey.source_type = i + 1;
 661			avkey.target_type = j + 1;
 662			for (node = avtab_search_node(&policydb->te_avtab,
 663						      &avkey);
 664			     node;
 665			     node = avtab_search_node_next(node, avkey.specified)) {
 666				if (node->key.specified == AVTAB_ALLOWED)
 667					avd->allowed |= node->datum.u.data;
 668				else if (node->key.specified == AVTAB_AUDITALLOW)
 669					avd->auditallow |= node->datum.u.data;
 670				else if (node->key.specified == AVTAB_AUDITDENY)
 671					avd->auditdeny &= node->datum.u.data;
 672				else if (xperms && (node->key.specified & AVTAB_XPERMS))
 673					services_compute_xperms_drivers(xperms, node);
 674			}
 675
 676			/* Check conditional av table for additional permissions */
 677			cond_compute_av(&policydb->te_cond_avtab, &avkey,
 678					avd, xperms);
 679
 680		}
 681	}
 682
 683	/*
 684	 * Remove any permissions prohibited by a constraint (this includes
 685	 * the MLS policy).
 686	 */
 687	constraint = tclass_datum->constraints;
 688	while (constraint) {
 689		if ((constraint->permissions & (avd->allowed)) &&
 690		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
 691					  constraint->expr)) {
 692			avd->allowed &= ~(constraint->permissions);
 693		}
 694		constraint = constraint->next;
 695	}
 696
 697	/*
 698	 * If checking process transition permission and the
 699	 * role is changing, then check the (current_role, new_role)
 700	 * pair.
 701	 */
 702	if (tclass == policydb->process_class &&
 703	    (avd->allowed & policydb->process_trans_perms) &&
 704	    scontext->role != tcontext->role) {
 705		for (ra = policydb->role_allow; ra; ra = ra->next) {
 706			if (scontext->role == ra->role &&
 707			    tcontext->role == ra->new_role)
 708				break;
 709		}
 710		if (!ra)
 711			avd->allowed &= ~policydb->process_trans_perms;
 712	}
 713
 714	/*
 715	 * If the given source and target types have boundary
 716	 * constraint, lazy checks have to mask any violated
 717	 * permission and notice it to userspace via audit.
 718	 */
 719	type_attribute_bounds_av(policydb, scontext, tcontext,
 720				 tclass, avd);
 721}
 722
 723static int security_validtrans_handle_fail(struct selinux_state *state,
 724					   struct sidtab_entry *oentry,
 725					   struct sidtab_entry *nentry,
 726					   struct sidtab_entry *tentry,
 727					   u16 tclass)
 728{
 729	struct policydb *p = &state->ss->policydb;
 730	struct sidtab *sidtab = state->ss->sidtab;
 731	char *o = NULL, *n = NULL, *t = NULL;
 732	u32 olen, nlen, tlen;
 733
 734	if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
 735		goto out;
 736	if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
 737		goto out;
 738	if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
 739		goto out;
 740	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
 741		  "op=security_validate_transition seresult=denied"
 742		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 743		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
 744out:
 745	kfree(o);
 746	kfree(n);
 747	kfree(t);
 748
 749	if (!enforcing_enabled(state))
 750		return 0;
 751	return -EPERM;
 752}
 753
 754static int security_compute_validatetrans(struct selinux_state *state,
 755					  u32 oldsid, u32 newsid, u32 tasksid,
 756					  u16 orig_tclass, bool user)
 757{
 758	struct policydb *policydb;
 759	struct sidtab *sidtab;
 760	struct sidtab_entry *oentry;
 761	struct sidtab_entry *nentry;
 762	struct sidtab_entry *tentry;
 763	struct class_datum *tclass_datum;
 764	struct constraint_node *constraint;
 765	u16 tclass;
 766	int rc = 0;
 767
 768
 769	if (!selinux_initialized(state))
 770		return 0;
 771
 772	read_lock(&state->ss->policy_rwlock);
 773
 774	policydb = &state->ss->policydb;
 775	sidtab = state->ss->sidtab;
 776
 777	if (!user)
 778		tclass = unmap_class(&state->ss->map, orig_tclass);
 779	else
 780		tclass = orig_tclass;
 781
 782	if (!tclass || tclass > policydb->p_classes.nprim) {
 783		rc = -EINVAL;
 784		goto out;
 785	}
 786	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 787
 788	oentry = sidtab_search_entry(sidtab, oldsid);
 789	if (!oentry) {
 790		pr_err("SELinux: %s:  unrecognized SID %d\n",
 791			__func__, oldsid);
 792		rc = -EINVAL;
 793		goto out;
 794	}
 795
 796	nentry = sidtab_search_entry(sidtab, newsid);
 797	if (!nentry) {
 798		pr_err("SELinux: %s:  unrecognized SID %d\n",
 799			__func__, newsid);
 800		rc = -EINVAL;
 801		goto out;
 802	}
 803
 804	tentry = sidtab_search_entry(sidtab, tasksid);
 805	if (!tentry) {
 806		pr_err("SELinux: %s:  unrecognized SID %d\n",
 807			__func__, tasksid);
 808		rc = -EINVAL;
 809		goto out;
 810	}
 811
 812	constraint = tclass_datum->validatetrans;
 813	while (constraint) {
 814		if (!constraint_expr_eval(policydb, &oentry->context,
 815					  &nentry->context, &tentry->context,
 816					  constraint->expr)) {
 817			if (user)
 818				rc = -EPERM;
 819			else
 820				rc = security_validtrans_handle_fail(state,
 821								     oentry,
 822								     nentry,
 823								     tentry,
 824								     tclass);
 825			goto out;
 826		}
 827		constraint = constraint->next;
 828	}
 829
 830out:
 831	read_unlock(&state->ss->policy_rwlock);
 832	return rc;
 833}
 834
 835int security_validate_transition_user(struct selinux_state *state,
 836				      u32 oldsid, u32 newsid, u32 tasksid,
 837				      u16 tclass)
 838{
 839	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 840					      tclass, true);
 841}
 842
 843int security_validate_transition(struct selinux_state *state,
 844				 u32 oldsid, u32 newsid, u32 tasksid,
 845				 u16 orig_tclass)
 846{
 847	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 848					      orig_tclass, false);
 849}
 850
 851/*
 852 * security_bounded_transition - check whether the given
 853 * transition is directed to bounded, or not.
 854 * It returns 0, if @newsid is bounded by @oldsid.
 855 * Otherwise, it returns error code.
 856 *
 857 * @oldsid : current security identifier
 858 * @newsid : destinated security identifier
 859 */
 860int security_bounded_transition(struct selinux_state *state,
 861				u32 old_sid, u32 new_sid)
 862{
 863	struct policydb *policydb;
 864	struct sidtab *sidtab;
 865	struct sidtab_entry *old_entry, *new_entry;
 866	struct type_datum *type;
 867	int index;
 868	int rc;
 869
 870	if (!selinux_initialized(state))
 871		return 0;
 872
 873	read_lock(&state->ss->policy_rwlock);
 874
 875	policydb = &state->ss->policydb;
 876	sidtab = state->ss->sidtab;
 877
 878	rc = -EINVAL;
 879	old_entry = sidtab_search_entry(sidtab, old_sid);
 880	if (!old_entry) {
 881		pr_err("SELinux: %s: unrecognized SID %u\n",
 882		       __func__, old_sid);
 883		goto out;
 884	}
 885
 886	rc = -EINVAL;
 887	new_entry = sidtab_search_entry(sidtab, new_sid);
 888	if (!new_entry) {
 889		pr_err("SELinux: %s: unrecognized SID %u\n",
 890		       __func__, new_sid);
 891		goto out;
 892	}
 893
 894	rc = 0;
 895	/* type/domain unchanged */
 896	if (old_entry->context.type == new_entry->context.type)
 897		goto out;
 898
 899	index = new_entry->context.type;
 900	while (true) {
 901		type = policydb->type_val_to_struct[index - 1];
 902		BUG_ON(!type);
 903
 904		/* not bounded anymore */
 905		rc = -EPERM;
 906		if (!type->bounds)
 907			break;
 908
 909		/* @newsid is bounded by @oldsid */
 910		rc = 0;
 911		if (type->bounds == old_entry->context.type)
 912			break;
 913
 914		index = type->bounds;
 915	}
 916
 917	if (rc) {
 918		char *old_name = NULL;
 919		char *new_name = NULL;
 920		u32 length;
 921
 922		if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
 923					    &old_name, &length) &&
 924		    !sidtab_entry_to_string(policydb, sidtab, new_entry,
 925					    &new_name, &length)) {
 926			audit_log(audit_context(),
 927				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 928				  "op=security_bounded_transition "
 929				  "seresult=denied "
 930				  "oldcontext=%s newcontext=%s",
 931				  old_name, new_name);
 932		}
 933		kfree(new_name);
 934		kfree(old_name);
 935	}
 936out:
 937	read_unlock(&state->ss->policy_rwlock);
 938
 939	return rc;
 940}
 941
 942static void avd_init(struct selinux_state *state, struct av_decision *avd)
 943{
 944	avd->allowed = 0;
 945	avd->auditallow = 0;
 946	avd->auditdeny = 0xffffffff;
 947	avd->seqno = state->ss->latest_granting;
 948	avd->flags = 0;
 949}
 950
 951void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
 952					struct avtab_node *node)
 953{
 954	unsigned int i;
 955
 956	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 957		if (xpermd->driver != node->datum.u.xperms->driver)
 958			return;
 959	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 960		if (!security_xperm_test(node->datum.u.xperms->perms.p,
 961					xpermd->driver))
 962			return;
 963	} else {
 964		BUG();
 965	}
 966
 967	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
 968		xpermd->used |= XPERMS_ALLOWED;
 969		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 970			memset(xpermd->allowed->p, 0xff,
 971					sizeof(xpermd->allowed->p));
 972		}
 973		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 974			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
 975				xpermd->allowed->p[i] |=
 976					node->datum.u.xperms->perms.p[i];
 977		}
 978	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
 979		xpermd->used |= XPERMS_AUDITALLOW;
 980		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 981			memset(xpermd->auditallow->p, 0xff,
 982					sizeof(xpermd->auditallow->p));
 983		}
 984		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 985			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
 986				xpermd->auditallow->p[i] |=
 987					node->datum.u.xperms->perms.p[i];
 988		}
 989	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
 990		xpermd->used |= XPERMS_DONTAUDIT;
 991		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 992			memset(xpermd->dontaudit->p, 0xff,
 993					sizeof(xpermd->dontaudit->p));
 994		}
 995		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 996			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
 997				xpermd->dontaudit->p[i] |=
 998					node->datum.u.xperms->perms.p[i];
 999		}
1000	} else {
1001		BUG();
1002	}
1003}
1004
1005void security_compute_xperms_decision(struct selinux_state *state,
1006				      u32 ssid,
1007				      u32 tsid,
1008				      u16 orig_tclass,
1009				      u8 driver,
1010				      struct extended_perms_decision *xpermd)
1011{
1012	struct policydb *policydb;
1013	struct sidtab *sidtab;
1014	u16 tclass;
1015	struct context *scontext, *tcontext;
1016	struct avtab_key avkey;
1017	struct avtab_node *node;
1018	struct ebitmap *sattr, *tattr;
1019	struct ebitmap_node *snode, *tnode;
1020	unsigned int i, j;
1021
1022	xpermd->driver = driver;
1023	xpermd->used = 0;
1024	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1025	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1026	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1027
1028	read_lock(&state->ss->policy_rwlock);
1029	if (!selinux_initialized(state))
1030		goto allow;
1031
1032	policydb = &state->ss->policydb;
1033	sidtab = state->ss->sidtab;
1034
1035	scontext = sidtab_search(sidtab, ssid);
1036	if (!scontext) {
1037		pr_err("SELinux: %s:  unrecognized SID %d\n",
1038		       __func__, ssid);
1039		goto out;
1040	}
1041
1042	tcontext = sidtab_search(sidtab, tsid);
1043	if (!tcontext) {
1044		pr_err("SELinux: %s:  unrecognized SID %d\n",
1045		       __func__, tsid);
1046		goto out;
1047	}
1048
1049	tclass = unmap_class(&state->ss->map, orig_tclass);
1050	if (unlikely(orig_tclass && !tclass)) {
1051		if (policydb->allow_unknown)
1052			goto allow;
1053		goto out;
1054	}
1055
1056
1057	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1058		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1059		goto out;
1060	}
1061
1062	avkey.target_class = tclass;
1063	avkey.specified = AVTAB_XPERMS;
1064	sattr = &policydb->type_attr_map_array[scontext->type - 1];
1065	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1066	ebitmap_for_each_positive_bit(sattr, snode, i) {
1067		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1068			avkey.source_type = i + 1;
1069			avkey.target_type = j + 1;
1070			for (node = avtab_search_node(&policydb->te_avtab,
1071						      &avkey);
1072			     node;
1073			     node = avtab_search_node_next(node, avkey.specified))
1074				services_compute_xperms_decision(xpermd, node);
1075
1076			cond_compute_xperms(&policydb->te_cond_avtab,
1077						&avkey, xpermd);
1078		}
1079	}
1080out:
1081	read_unlock(&state->ss->policy_rwlock);
1082	return;
1083allow:
1084	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1085	goto out;
1086}
1087
1088/**
1089 * security_compute_av - Compute access vector decisions.
1090 * @ssid: source security identifier
1091 * @tsid: target security identifier
1092 * @tclass: target security class
1093 * @avd: access vector decisions
1094 * @xperms: extended permissions
1095 *
1096 * Compute a set of access vector decisions based on the
1097 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1098 */
1099void security_compute_av(struct selinux_state *state,
1100			 u32 ssid,
1101			 u32 tsid,
1102			 u16 orig_tclass,
1103			 struct av_decision *avd,
1104			 struct extended_perms *xperms)
1105{
1106	struct policydb *policydb;
1107	struct sidtab *sidtab;
1108	u16 tclass;
1109	struct context *scontext = NULL, *tcontext = NULL;
1110
1111	read_lock(&state->ss->policy_rwlock);
1112	avd_init(state, avd);
1113	xperms->len = 0;
1114	if (!selinux_initialized(state))
1115		goto allow;
1116
1117	policydb = &state->ss->policydb;
1118	sidtab = state->ss->sidtab;
1119
1120	scontext = sidtab_search(sidtab, ssid);
1121	if (!scontext) {
1122		pr_err("SELinux: %s:  unrecognized SID %d\n",
1123		       __func__, ssid);
1124		goto out;
1125	}
1126
1127	/* permissive domain? */
1128	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1129		avd->flags |= AVD_FLAGS_PERMISSIVE;
1130
1131	tcontext = sidtab_search(sidtab, tsid);
1132	if (!tcontext) {
1133		pr_err("SELinux: %s:  unrecognized SID %d\n",
1134		       __func__, tsid);
1135		goto out;
1136	}
1137
1138	tclass = unmap_class(&state->ss->map, orig_tclass);
1139	if (unlikely(orig_tclass && !tclass)) {
1140		if (policydb->allow_unknown)
1141			goto allow;
1142		goto out;
1143	}
1144	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1145				  xperms);
1146	map_decision(&state->ss->map, orig_tclass, avd,
1147		     policydb->allow_unknown);
1148out:
1149	read_unlock(&state->ss->policy_rwlock);
1150	return;
1151allow:
1152	avd->allowed = 0xffffffff;
1153	goto out;
1154}
1155
1156void security_compute_av_user(struct selinux_state *state,
1157			      u32 ssid,
1158			      u32 tsid,
1159			      u16 tclass,
1160			      struct av_decision *avd)
1161{
1162	struct policydb *policydb;
1163	struct sidtab *sidtab;
1164	struct context *scontext = NULL, *tcontext = NULL;
1165
1166	read_lock(&state->ss->policy_rwlock);
1167	avd_init(state, avd);
1168	if (!selinux_initialized(state))
1169		goto allow;
1170
1171	policydb = &state->ss->policydb;
1172	sidtab = state->ss->sidtab;
1173
1174	scontext = sidtab_search(sidtab, ssid);
1175	if (!scontext) {
1176		pr_err("SELinux: %s:  unrecognized SID %d\n",
1177		       __func__, ssid);
1178		goto out;
1179	}
1180
1181	/* permissive domain? */
1182	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1183		avd->flags |= AVD_FLAGS_PERMISSIVE;
1184
1185	tcontext = sidtab_search(sidtab, tsid);
1186	if (!tcontext) {
1187		pr_err("SELinux: %s:  unrecognized SID %d\n",
1188		       __func__, tsid);
1189		goto out;
1190	}
1191
1192	if (unlikely(!tclass)) {
1193		if (policydb->allow_unknown)
1194			goto allow;
1195		goto out;
1196	}
1197
1198	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1199				  NULL);
1200 out:
1201	read_unlock(&state->ss->policy_rwlock);
1202	return;
1203allow:
1204	avd->allowed = 0xffffffff;
1205	goto out;
1206}
1207
1208/*
1209 * Write the security context string representation of
1210 * the context structure `context' into a dynamically
1211 * allocated string of the correct size.  Set `*scontext'
1212 * to point to this string and set `*scontext_len' to
1213 * the length of the string.
1214 */
1215static int context_struct_to_string(struct policydb *p,
1216				    struct context *context,
1217				    char **scontext, u32 *scontext_len)
1218{
1219	char *scontextp;
1220
1221	if (scontext)
1222		*scontext = NULL;
1223	*scontext_len = 0;
1224
1225	if (context->len) {
1226		*scontext_len = context->len;
1227		if (scontext) {
1228			*scontext = kstrdup(context->str, GFP_ATOMIC);
1229			if (!(*scontext))
1230				return -ENOMEM;
1231		}
1232		return 0;
1233	}
1234
1235	/* Compute the size of the context. */
1236	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1237	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1238	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1239	*scontext_len += mls_compute_context_len(p, context);
1240
1241	if (!scontext)
1242		return 0;
1243
1244	/* Allocate space for the context; caller must free this space. */
1245	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1246	if (!scontextp)
1247		return -ENOMEM;
1248	*scontext = scontextp;
1249
1250	/*
1251	 * Copy the user name, role name and type name into the context.
1252	 */
1253	scontextp += sprintf(scontextp, "%s:%s:%s",
1254		sym_name(p, SYM_USERS, context->user - 1),
1255		sym_name(p, SYM_ROLES, context->role - 1),
1256		sym_name(p, SYM_TYPES, context->type - 1));
1257
1258	mls_sid_to_context(p, context, &scontextp);
1259
1260	*scontextp = 0;
1261
1262	return 0;
1263}
1264
1265static int sidtab_entry_to_string(struct policydb *p,
1266				  struct sidtab *sidtab,
1267				  struct sidtab_entry *entry,
1268				  char **scontext, u32 *scontext_len)
1269{
1270	int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1271
1272	if (rc != -ENOENT)
1273		return rc;
1274
1275	rc = context_struct_to_string(p, &entry->context, scontext,
1276				      scontext_len);
1277	if (!rc && scontext)
1278		sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1279	return rc;
1280}
1281
1282#include "initial_sid_to_string.h"
1283
1284int security_sidtab_hash_stats(struct selinux_state *state, char *page)
1285{
1286	int rc;
1287
1288	if (!selinux_initialized(state)) {
1289		pr_err("SELinux: %s:  called before initial load_policy\n",
1290		       __func__);
1291		return -EINVAL;
1292	}
1293
1294	read_lock(&state->ss->policy_rwlock);
1295	rc = sidtab_hash_stats(state->ss->sidtab, page);
1296	read_unlock(&state->ss->policy_rwlock);
1297
1298	return rc;
1299}
1300
1301const char *security_get_initial_sid_context(u32 sid)
1302{
1303	if (unlikely(sid > SECINITSID_NUM))
1304		return NULL;
1305	return initial_sid_to_string[sid];
1306}
1307
1308static int security_sid_to_context_core(struct selinux_state *state,
1309					u32 sid, char **scontext,
1310					u32 *scontext_len, int force,
1311					int only_invalid)
1312{
1313	struct policydb *policydb;
1314	struct sidtab *sidtab;
1315	struct sidtab_entry *entry;
1316	int rc = 0;
1317
1318	if (scontext)
1319		*scontext = NULL;
1320	*scontext_len  = 0;
1321
1322	if (!selinux_initialized(state)) {
1323		if (sid <= SECINITSID_NUM) {
1324			char *scontextp;
1325			const char *s = initial_sid_to_string[sid];
1326
1327			if (!s)
1328				return -EINVAL;
1329			*scontext_len = strlen(s) + 1;
1330			if (!scontext)
1331				return 0;
1332			scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1333			if (!scontextp)
1334				return -ENOMEM;
 
 
 
1335			*scontext = scontextp;
1336			return 0;
1337		}
1338		pr_err("SELinux: %s:  called before initial "
1339		       "load_policy on unknown SID %d\n", __func__, sid);
1340		return -EINVAL;
 
1341	}
1342	read_lock(&state->ss->policy_rwlock);
1343	policydb = &state->ss->policydb;
1344	sidtab = state->ss->sidtab;
1345
1346	if (force)
1347		entry = sidtab_search_entry_force(sidtab, sid);
1348	else
1349		entry = sidtab_search_entry(sidtab, sid);
1350	if (!entry) {
1351		pr_err("SELinux: %s:  unrecognized SID %d\n",
1352			__func__, sid);
1353		rc = -EINVAL;
1354		goto out_unlock;
1355	}
1356	if (only_invalid && !entry->context.len)
1357		goto out_unlock;
1358
1359	rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1360				    scontext_len);
1361
1362out_unlock:
1363	read_unlock(&state->ss->policy_rwlock);
 
1364	return rc;
1365
1366}
1367
1368/**
1369 * security_sid_to_context - Obtain a context for a given SID.
1370 * @sid: security identifier, SID
1371 * @scontext: security context
1372 * @scontext_len: length in bytes
1373 *
1374 * Write the string representation of the context associated with @sid
1375 * into a dynamically allocated string of the correct size.  Set @scontext
1376 * to point to this string and set @scontext_len to the length of the string.
1377 */
1378int security_sid_to_context(struct selinux_state *state,
1379			    u32 sid, char **scontext, u32 *scontext_len)
1380{
1381	return security_sid_to_context_core(state, sid, scontext,
1382					    scontext_len, 0, 0);
1383}
1384
1385int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1386				  char **scontext, u32 *scontext_len)
1387{
1388	return security_sid_to_context_core(state, sid, scontext,
1389					    scontext_len, 1, 0);
1390}
1391
1392/**
1393 * security_sid_to_context_inval - Obtain a context for a given SID if it
1394 *                                 is invalid.
1395 * @sid: security identifier, SID
1396 * @scontext: security context
1397 * @scontext_len: length in bytes
1398 *
1399 * Write the string representation of the context associated with @sid
1400 * into a dynamically allocated string of the correct size, but only if the
1401 * context is invalid in the current policy.  Set @scontext to point to
1402 * this string (or NULL if the context is valid) and set @scontext_len to
1403 * the length of the string (or 0 if the context is valid).
1404 */
1405int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1406				  char **scontext, u32 *scontext_len)
1407{
1408	return security_sid_to_context_core(state, sid, scontext,
1409					    scontext_len, 1, 1);
1410}
1411
1412/*
1413 * Caveat:  Mutates scontext.
1414 */
1415static int string_to_context_struct(struct policydb *pol,
1416				    struct sidtab *sidtabp,
1417				    char *scontext,
1418				    struct context *ctx,
1419				    u32 def_sid)
1420{
1421	struct role_datum *role;
1422	struct type_datum *typdatum;
1423	struct user_datum *usrdatum;
1424	char *scontextp, *p, oldc;
1425	int rc = 0;
1426
1427	context_init(ctx);
1428
1429	/* Parse the security context. */
1430
1431	rc = -EINVAL;
1432	scontextp = (char *) scontext;
1433
1434	/* Extract the user. */
1435	p = scontextp;
1436	while (*p && *p != ':')
1437		p++;
1438
1439	if (*p == 0)
1440		goto out;
1441
1442	*p++ = 0;
1443
1444	usrdatum = symtab_search(&pol->p_users, scontextp);
1445	if (!usrdatum)
1446		goto out;
1447
1448	ctx->user = usrdatum->value;
1449
1450	/* Extract role. */
1451	scontextp = p;
1452	while (*p && *p != ':')
1453		p++;
1454
1455	if (*p == 0)
1456		goto out;
1457
1458	*p++ = 0;
1459
1460	role = symtab_search(&pol->p_roles, scontextp);
1461	if (!role)
1462		goto out;
1463	ctx->role = role->value;
1464
1465	/* Extract type. */
1466	scontextp = p;
1467	while (*p && *p != ':')
1468		p++;
1469	oldc = *p;
1470	*p++ = 0;
1471
1472	typdatum = symtab_search(&pol->p_types, scontextp);
1473	if (!typdatum || typdatum->attribute)
1474		goto out;
1475
1476	ctx->type = typdatum->value;
1477
1478	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1479	if (rc)
1480		goto out;
1481
1482	/* Check the validity of the new context. */
1483	rc = -EINVAL;
1484	if (!policydb_context_isvalid(pol, ctx))
1485		goto out;
1486	rc = 0;
1487out:
1488	if (rc)
1489		context_destroy(ctx);
1490	return rc;
1491}
1492
1493static int security_context_to_sid_core(struct selinux_state *state,
1494					const char *scontext, u32 scontext_len,
1495					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1496					int force)
1497{
1498	struct policydb *policydb;
1499	struct sidtab *sidtab;
1500	char *scontext2, *str = NULL;
1501	struct context context;
1502	int rc = 0;
1503
1504	/* An empty security context is never valid. */
1505	if (!scontext_len)
1506		return -EINVAL;
1507
1508	/* Copy the string to allow changes and ensure a NUL terminator */
1509	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1510	if (!scontext2)
1511		return -ENOMEM;
1512
1513	if (!selinux_initialized(state)) {
1514		int i;
1515
1516		for (i = 1; i < SECINITSID_NUM; i++) {
1517			const char *s = initial_sid_to_string[i];
1518
1519			if (s && !strcmp(s, scontext2)) {
1520				*sid = i;
1521				goto out;
1522			}
1523		}
1524		*sid = SECINITSID_KERNEL;
1525		goto out;
1526	}
1527	*sid = SECSID_NULL;
1528
1529	if (force) {
1530		/* Save another copy for storing in uninterpreted form */
1531		rc = -ENOMEM;
1532		str = kstrdup(scontext2, gfp_flags);
1533		if (!str)
1534			goto out;
1535	}
1536	read_lock(&state->ss->policy_rwlock);
1537	policydb = &state->ss->policydb;
1538	sidtab = state->ss->sidtab;
1539	rc = string_to_context_struct(policydb, sidtab, scontext2,
1540				      &context, def_sid);
1541	if (rc == -EINVAL && force) {
1542		context.str = str;
1543		context.len = strlen(str) + 1;
1544		str = NULL;
1545	} else if (rc)
1546		goto out_unlock;
1547	rc = sidtab_context_to_sid(sidtab, &context, sid);
1548	context_destroy(&context);
1549out_unlock:
1550	read_unlock(&state->ss->policy_rwlock);
1551out:
1552	kfree(scontext2);
1553	kfree(str);
1554	return rc;
1555}
1556
1557/**
1558 * security_context_to_sid - Obtain a SID for a given security context.
1559 * @scontext: security context
1560 * @scontext_len: length in bytes
1561 * @sid: security identifier, SID
1562 * @gfp: context for the allocation
1563 *
1564 * Obtains a SID associated with the security context that
1565 * has the string representation specified by @scontext.
1566 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1567 * memory is available, or 0 on success.
1568 */
1569int security_context_to_sid(struct selinux_state *state,
1570			    const char *scontext, u32 scontext_len, u32 *sid,
1571			    gfp_t gfp)
1572{
1573	return security_context_to_sid_core(state, scontext, scontext_len,
1574					    sid, SECSID_NULL, gfp, 0);
1575}
1576
1577int security_context_str_to_sid(struct selinux_state *state,
1578				const char *scontext, u32 *sid, gfp_t gfp)
1579{
1580	return security_context_to_sid(state, scontext, strlen(scontext),
1581				       sid, gfp);
1582}
1583
1584/**
1585 * security_context_to_sid_default - Obtain a SID for a given security context,
1586 * falling back to specified default if needed.
1587 *
1588 * @scontext: security context
1589 * @scontext_len: length in bytes
1590 * @sid: security identifier, SID
1591 * @def_sid: default SID to assign on error
1592 *
1593 * Obtains a SID associated with the security context that
1594 * has the string representation specified by @scontext.
1595 * The default SID is passed to the MLS layer to be used to allow
1596 * kernel labeling of the MLS field if the MLS field is not present
1597 * (for upgrading to MLS without full relabel).
1598 * Implicitly forces adding of the context even if it cannot be mapped yet.
1599 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1600 * memory is available, or 0 on success.
1601 */
1602int security_context_to_sid_default(struct selinux_state *state,
1603				    const char *scontext, u32 scontext_len,
1604				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1605{
1606	return security_context_to_sid_core(state, scontext, scontext_len,
1607					    sid, def_sid, gfp_flags, 1);
1608}
1609
1610int security_context_to_sid_force(struct selinux_state *state,
1611				  const char *scontext, u32 scontext_len,
1612				  u32 *sid)
1613{
1614	return security_context_to_sid_core(state, scontext, scontext_len,
1615					    sid, SECSID_NULL, GFP_KERNEL, 1);
1616}
1617
1618static int compute_sid_handle_invalid_context(
1619	struct selinux_state *state,
1620	struct sidtab_entry *sentry,
1621	struct sidtab_entry *tentry,
1622	u16 tclass,
1623	struct context *newcontext)
1624{
1625	struct policydb *policydb = &state->ss->policydb;
1626	struct sidtab *sidtab = state->ss->sidtab;
1627	char *s = NULL, *t = NULL, *n = NULL;
1628	u32 slen, tlen, nlen;
1629	struct audit_buffer *ab;
1630
1631	if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1632		goto out;
1633	if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1634		goto out;
1635	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1636		goto out;
1637	ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1638	audit_log_format(ab,
1639			 "op=security_compute_sid invalid_context=");
1640	/* no need to record the NUL with untrusted strings */
1641	audit_log_n_untrustedstring(ab, n, nlen - 1);
1642	audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1643			 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1644	audit_log_end(ab);
1645out:
1646	kfree(s);
1647	kfree(t);
1648	kfree(n);
1649	if (!enforcing_enabled(state))
1650		return 0;
1651	return -EACCES;
1652}
1653
1654static void filename_compute_type(struct policydb *policydb,
1655				  struct context *newcontext,
1656				  u32 stype, u32 ttype, u16 tclass,
1657				  const char *objname)
1658{
1659	struct filename_trans_key ft;
1660	struct filename_trans_datum *datum;
1661
1662	/*
1663	 * Most filename trans rules are going to live in specific directories
1664	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1665	 * if the ttype does not contain any rules.
1666	 */
1667	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1668		return;
1669
 
1670	ft.ttype = ttype;
1671	ft.tclass = tclass;
1672	ft.name = objname;
1673
1674	datum = policydb_filenametr_search(policydb, &ft);
1675	while (datum) {
1676		if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1677			newcontext->type = datum->otype;
1678			return;
1679		}
1680		datum = datum->next;
1681	}
1682}
1683
1684static int security_compute_sid(struct selinux_state *state,
1685				u32 ssid,
1686				u32 tsid,
1687				u16 orig_tclass,
1688				u32 specified,
1689				const char *objname,
1690				u32 *out_sid,
1691				bool kern)
1692{
1693	struct policydb *policydb;
1694	struct sidtab *sidtab;
1695	struct class_datum *cladatum = NULL;
1696	struct context *scontext, *tcontext, newcontext;
1697	struct sidtab_entry *sentry, *tentry;
1698	struct avtab_key avkey;
1699	struct avtab_datum *avdatum;
1700	struct avtab_node *node;
1701	u16 tclass;
1702	int rc = 0;
1703	bool sock;
1704
1705	if (!selinux_initialized(state)) {
1706		switch (orig_tclass) {
1707		case SECCLASS_PROCESS: /* kernel value */
1708			*out_sid = ssid;
1709			break;
1710		default:
1711			*out_sid = tsid;
1712			break;
1713		}
1714		goto out;
1715	}
1716
1717	context_init(&newcontext);
1718
1719	read_lock(&state->ss->policy_rwlock);
1720
1721	if (kern) {
1722		tclass = unmap_class(&state->ss->map, orig_tclass);
1723		sock = security_is_socket_class(orig_tclass);
1724	} else {
1725		tclass = orig_tclass;
1726		sock = security_is_socket_class(map_class(&state->ss->map,
1727							  tclass));
1728	}
1729
1730	policydb = &state->ss->policydb;
1731	sidtab = state->ss->sidtab;
1732
1733	sentry = sidtab_search_entry(sidtab, ssid);
1734	if (!sentry) {
1735		pr_err("SELinux: %s:  unrecognized SID %d\n",
1736		       __func__, ssid);
1737		rc = -EINVAL;
1738		goto out_unlock;
1739	}
1740	tentry = sidtab_search_entry(sidtab, tsid);
1741	if (!tentry) {
1742		pr_err("SELinux: %s:  unrecognized SID %d\n",
1743		       __func__, tsid);
1744		rc = -EINVAL;
1745		goto out_unlock;
1746	}
1747
1748	scontext = &sentry->context;
1749	tcontext = &tentry->context;
1750
1751	if (tclass && tclass <= policydb->p_classes.nprim)
1752		cladatum = policydb->class_val_to_struct[tclass - 1];
1753
1754	/* Set the user identity. */
1755	switch (specified) {
1756	case AVTAB_TRANSITION:
1757	case AVTAB_CHANGE:
1758		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1759			newcontext.user = tcontext->user;
1760		} else {
1761			/* notice this gets both DEFAULT_SOURCE and unset */
1762			/* Use the process user identity. */
1763			newcontext.user = scontext->user;
1764		}
1765		break;
1766	case AVTAB_MEMBER:
1767		/* Use the related object owner. */
1768		newcontext.user = tcontext->user;
1769		break;
1770	}
1771
1772	/* Set the role to default values. */
1773	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1774		newcontext.role = scontext->role;
1775	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1776		newcontext.role = tcontext->role;
1777	} else {
1778		if ((tclass == policydb->process_class) || sock)
1779			newcontext.role = scontext->role;
1780		else
1781			newcontext.role = OBJECT_R_VAL;
1782	}
1783
1784	/* Set the type to default values. */
1785	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1786		newcontext.type = scontext->type;
1787	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1788		newcontext.type = tcontext->type;
1789	} else {
1790		if ((tclass == policydb->process_class) || sock) {
1791			/* Use the type of process. */
1792			newcontext.type = scontext->type;
1793		} else {
1794			/* Use the type of the related object. */
1795			newcontext.type = tcontext->type;
1796		}
1797	}
1798
1799	/* Look for a type transition/member/change rule. */
1800	avkey.source_type = scontext->type;
1801	avkey.target_type = tcontext->type;
1802	avkey.target_class = tclass;
1803	avkey.specified = specified;
1804	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1805
1806	/* If no permanent rule, also check for enabled conditional rules */
1807	if (!avdatum) {
1808		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1809		for (; node; node = avtab_search_node_next(node, specified)) {
1810			if (node->key.specified & AVTAB_ENABLED) {
1811				avdatum = &node->datum;
1812				break;
1813			}
1814		}
1815	}
1816
1817	if (avdatum) {
1818		/* Use the type from the type transition/member/change rule. */
1819		newcontext.type = avdatum->u.data;
1820	}
1821
1822	/* if we have a objname this is a file trans check so check those rules */
1823	if (objname)
1824		filename_compute_type(policydb, &newcontext, scontext->type,
1825				      tcontext->type, tclass, objname);
1826
1827	/* Check for class-specific changes. */
1828	if (specified & AVTAB_TRANSITION) {
1829		/* Look for a role transition rule. */
1830		struct role_trans_datum *rtd;
1831		struct role_trans_key rtk = {
1832			.role = scontext->role,
1833			.type = tcontext->type,
1834			.tclass = tclass,
1835		};
1836
1837		rtd = policydb_roletr_search(policydb, &rtk);
1838		if (rtd)
1839			newcontext.role = rtd->new_role;
1840	}
1841
1842	/* Set the MLS attributes.
1843	   This is done last because it may allocate memory. */
1844	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1845			     &newcontext, sock);
1846	if (rc)
1847		goto out_unlock;
1848
1849	/* Check the validity of the context. */
1850	if (!policydb_context_isvalid(policydb, &newcontext)) {
1851		rc = compute_sid_handle_invalid_context(state, sentry, tentry,
1852							tclass, &newcontext);
 
 
1853		if (rc)
1854			goto out_unlock;
1855	}
1856	/* Obtain the sid for the context. */
1857	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1858out_unlock:
1859	read_unlock(&state->ss->policy_rwlock);
1860	context_destroy(&newcontext);
1861out:
1862	return rc;
1863}
1864
1865/**
1866 * security_transition_sid - Compute the SID for a new subject/object.
1867 * @ssid: source security identifier
1868 * @tsid: target security identifier
1869 * @tclass: target security class
1870 * @out_sid: security identifier for new subject/object
1871 *
1872 * Compute a SID to use for labeling a new subject or object in the
1873 * class @tclass based on a SID pair (@ssid, @tsid).
1874 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1875 * if insufficient memory is available, or %0 if the new SID was
1876 * computed successfully.
1877 */
1878int security_transition_sid(struct selinux_state *state,
1879			    u32 ssid, u32 tsid, u16 tclass,
1880			    const struct qstr *qstr, u32 *out_sid)
1881{
1882	return security_compute_sid(state, ssid, tsid, tclass,
1883				    AVTAB_TRANSITION,
1884				    qstr ? qstr->name : NULL, out_sid, true);
1885}
1886
1887int security_transition_sid_user(struct selinux_state *state,
1888				 u32 ssid, u32 tsid, u16 tclass,
1889				 const char *objname, u32 *out_sid)
1890{
1891	return security_compute_sid(state, ssid, tsid, tclass,
1892				    AVTAB_TRANSITION,
1893				    objname, out_sid, false);
1894}
1895
1896/**
1897 * security_member_sid - Compute the SID for member selection.
1898 * @ssid: source security identifier
1899 * @tsid: target security identifier
1900 * @tclass: target security class
1901 * @out_sid: security identifier for selected member
1902 *
1903 * Compute a SID to use when selecting a member of a polyinstantiated
1904 * object of class @tclass based on a SID pair (@ssid, @tsid).
1905 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1906 * if insufficient memory is available, or %0 if the SID was
1907 * computed successfully.
1908 */
1909int security_member_sid(struct selinux_state *state,
1910			u32 ssid,
1911			u32 tsid,
1912			u16 tclass,
1913			u32 *out_sid)
1914{
1915	return security_compute_sid(state, ssid, tsid, tclass,
1916				    AVTAB_MEMBER, NULL,
1917				    out_sid, false);
1918}
1919
1920/**
1921 * security_change_sid - Compute the SID for object relabeling.
1922 * @ssid: source security identifier
1923 * @tsid: target security identifier
1924 * @tclass: target security class
1925 * @out_sid: security identifier for selected member
1926 *
1927 * Compute a SID to use for relabeling an object of class @tclass
1928 * based on a SID pair (@ssid, @tsid).
1929 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1930 * if insufficient memory is available, or %0 if the SID was
1931 * computed successfully.
1932 */
1933int security_change_sid(struct selinux_state *state,
1934			u32 ssid,
1935			u32 tsid,
1936			u16 tclass,
1937			u32 *out_sid)
1938{
1939	return security_compute_sid(state,
1940				    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1941				    out_sid, false);
1942}
1943
1944static inline int convert_context_handle_invalid_context(
1945	struct selinux_state *state,
1946	struct context *context)
1947{
1948	struct policydb *policydb = &state->ss->policydb;
1949	char *s;
1950	u32 len;
1951
1952	if (enforcing_enabled(state))
1953		return -EINVAL;
1954
1955	if (!context_struct_to_string(policydb, context, &s, &len)) {
1956		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
1957			s);
1958		kfree(s);
1959	}
1960	return 0;
1961}
1962
1963struct convert_context_args {
1964	struct selinux_state *state;
1965	struct policydb *oldp;
1966	struct policydb *newp;
1967};
1968
1969/*
1970 * Convert the values in the security context
1971 * structure `oldc' from the values specified
1972 * in the policy `p->oldp' to the values specified
1973 * in the policy `p->newp', storing the new context
1974 * in `newc'.  Verify that the context is valid
1975 * under the new policy.
1976 */
1977static int convert_context(struct context *oldc, struct context *newc, void *p)
1978{
1979	struct convert_context_args *args;
1980	struct ocontext *oc;
1981	struct role_datum *role;
1982	struct type_datum *typdatum;
1983	struct user_datum *usrdatum;
1984	char *s;
1985	u32 len;
1986	int rc;
1987
1988	args = p;
1989
1990	if (oldc->str) {
1991		s = kstrdup(oldc->str, GFP_KERNEL);
1992		if (!s)
1993			return -ENOMEM;
1994
1995		rc = string_to_context_struct(args->newp, NULL, s,
1996					      newc, SECSID_NULL);
1997		if (rc == -EINVAL) {
1998			/*
1999			 * Retain string representation for later mapping.
2000			 *
2001			 * IMPORTANT: We need to copy the contents of oldc->str
2002			 * back into s again because string_to_context_struct()
2003			 * may have garbled it.
2004			 */
2005			memcpy(s, oldc->str, oldc->len);
2006			context_init(newc);
2007			newc->str = s;
2008			newc->len = oldc->len;
2009			return 0;
2010		}
2011		kfree(s);
2012		if (rc) {
2013			/* Other error condition, e.g. ENOMEM. */
2014			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
2015			       oldc->str, -rc);
2016			return rc;
2017		}
2018		pr_info("SELinux:  Context %s became valid (mapped).\n",
2019			oldc->str);
2020		return 0;
2021	}
2022
2023	context_init(newc);
2024
2025	/* Convert the user. */
2026	rc = -EINVAL;
2027	usrdatum = symtab_search(&args->newp->p_users,
2028				 sym_name(args->oldp,
2029					  SYM_USERS, oldc->user - 1));
2030	if (!usrdatum)
2031		goto bad;
2032	newc->user = usrdatum->value;
2033
2034	/* Convert the role. */
2035	rc = -EINVAL;
2036	role = symtab_search(&args->newp->p_roles,
2037			     sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2038	if (!role)
2039		goto bad;
2040	newc->role = role->value;
2041
2042	/* Convert the type. */
2043	rc = -EINVAL;
2044	typdatum = symtab_search(&args->newp->p_types,
2045				 sym_name(args->oldp,
2046					  SYM_TYPES, oldc->type - 1));
2047	if (!typdatum)
2048		goto bad;
2049	newc->type = typdatum->value;
2050
2051	/* Convert the MLS fields if dealing with MLS policies */
2052	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2053		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2054		if (rc)
2055			goto bad;
2056	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2057		/*
2058		 * Switching between non-MLS and MLS policy:
2059		 * ensure that the MLS fields of the context for all
2060		 * existing entries in the sidtab are filled in with a
2061		 * suitable default value, likely taken from one of the
2062		 * initial SIDs.
2063		 */
2064		oc = args->newp->ocontexts[OCON_ISID];
2065		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2066			oc = oc->next;
2067		rc = -EINVAL;
2068		if (!oc) {
2069			pr_err("SELinux:  unable to look up"
2070				" the initial SIDs list\n");
2071			goto bad;
2072		}
2073		rc = mls_range_set(newc, &oc->context[0].range);
2074		if (rc)
2075			goto bad;
2076	}
2077
2078	/* Check the validity of the new context. */
2079	if (!policydb_context_isvalid(args->newp, newc)) {
2080		rc = convert_context_handle_invalid_context(args->state, oldc);
2081		if (rc)
2082			goto bad;
2083	}
2084
2085	return 0;
2086bad:
2087	/* Map old representation to string and save it. */
2088	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2089	if (rc)
2090		return rc;
2091	context_destroy(newc);
2092	newc->str = s;
2093	newc->len = len;
2094	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2095		newc->str);
2096	return 0;
2097}
2098
2099static void security_load_policycaps(struct selinux_state *state)
2100{
2101	struct policydb *p = &state->ss->policydb;
2102	unsigned int i;
2103	struct ebitmap_node *node;
2104
2105	for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2106		state->policycap[i] = ebitmap_get_bit(&p->policycaps, i);
2107
2108	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2109		pr_info("SELinux:  policy capability %s=%d\n",
2110			selinux_policycap_names[i],
2111			ebitmap_get_bit(&p->policycaps, i));
2112
2113	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2114		if (i >= ARRAY_SIZE(selinux_policycap_names))
2115			pr_info("SELinux:  unknown policy capability %u\n",
2116				i);
2117	}
2118}
2119
2120static int security_preserve_bools(struct selinux_state *state,
2121				   struct policydb *newpolicydb);
2122
2123/**
2124 * security_load_policy - Load a security policy configuration.
2125 * @data: binary policy data
2126 * @len: length of data in bytes
2127 *
2128 * Load a new set of security policy configuration data,
2129 * validate it and convert the SID table as necessary.
2130 * This function will flush the access vector cache after
2131 * loading the new policy.
2132 */
2133int security_load_policy(struct selinux_state *state, void *data, size_t len)
2134{
2135	struct policydb *policydb;
2136	struct sidtab *oldsidtab, *newsidtab;
2137	struct policydb *oldpolicydb, *newpolicydb;
2138	struct selinux_mapping *oldmapping;
2139	struct selinux_map newmap;
2140	struct sidtab_convert_params convert_params;
2141	struct convert_context_args args;
2142	u32 seqno;
2143	int rc = 0;
2144	struct policy_file file = { data, len }, *fp = &file;
2145
 
 
 
 
 
 
 
2146	policydb = &state->ss->policydb;
2147
2148	newsidtab = kmalloc(sizeof(*newsidtab), GFP_KERNEL);
2149	if (!newsidtab)
2150		return -ENOMEM;
 
 
2151
2152	if (!selinux_initialized(state)) {
2153		rc = policydb_read(policydb, fp);
2154		if (rc) {
2155			kfree(newsidtab);
2156			return rc;
2157		}
2158
2159		policydb->len = len;
2160		rc = selinux_set_mapping(policydb, secclass_map,
2161					 &state->ss->map);
2162		if (rc) {
2163			kfree(newsidtab);
2164			policydb_destroy(policydb);
2165			return rc;
2166		}
2167
2168		rc = policydb_load_isids(policydb, newsidtab);
2169		if (rc) {
2170			kfree(newsidtab);
2171			policydb_destroy(policydb);
2172			return rc;
2173		}
2174
2175		state->ss->sidtab = newsidtab;
2176		security_load_policycaps(state);
2177		selinux_mark_initialized(state);
2178		seqno = ++state->ss->latest_granting;
2179		selinux_complete_init();
2180		avc_ss_reset(state->avc, seqno);
2181		selnl_notify_policyload(seqno);
2182		selinux_status_update_policyload(state, seqno);
2183		selinux_netlbl_cache_invalidate();
2184		selinux_xfrm_notify_policyload();
2185		return 0;
2186	}
2187
2188	oldpolicydb = kcalloc(2, sizeof(*oldpolicydb), GFP_KERNEL);
2189	if (!oldpolicydb) {
2190		kfree(newsidtab);
2191		return -ENOMEM;
2192	}
2193	newpolicydb = oldpolicydb + 1;
2194
2195	rc = policydb_read(newpolicydb, fp);
2196	if (rc) {
2197		kfree(newsidtab);
2198		goto out;
2199	}
2200
2201	newpolicydb->len = len;
2202	/* If switching between different policy types, log MLS status */
2203	if (policydb->mls_enabled && !newpolicydb->mls_enabled)
2204		pr_info("SELinux: Disabling MLS support...\n");
2205	else if (!policydb->mls_enabled && newpolicydb->mls_enabled)
2206		pr_info("SELinux: Enabling MLS support...\n");
2207
2208	rc = policydb_load_isids(newpolicydb, newsidtab);
2209	if (rc) {
2210		pr_err("SELinux:  unable to load the initial SIDs\n");
2211		policydb_destroy(newpolicydb);
2212		kfree(newsidtab);
2213		goto out;
2214	}
2215
2216	rc = selinux_set_mapping(newpolicydb, secclass_map, &newmap);
2217	if (rc)
2218		goto err;
2219
2220	rc = security_preserve_bools(state, newpolicydb);
2221	if (rc) {
2222		pr_err("SELinux:  unable to preserve booleans\n");
2223		goto err;
2224	}
2225
2226	oldsidtab = state->ss->sidtab;
2227
2228	/*
2229	 * Convert the internal representations of contexts
2230	 * in the new SID table.
2231	 */
2232	args.state = state;
2233	args.oldp = policydb;
2234	args.newp = newpolicydb;
2235
2236	convert_params.func = convert_context;
2237	convert_params.args = &args;
2238	convert_params.target = newsidtab;
2239
2240	rc = sidtab_convert(oldsidtab, &convert_params);
2241	if (rc) {
2242		pr_err("SELinux:  unable to convert the internal"
2243			" representation of contexts in the new SID"
2244			" table\n");
2245		goto err;
2246	}
2247
2248	/* Save the old policydb and SID table to free later. */
2249	memcpy(oldpolicydb, policydb, sizeof(*policydb));
2250
2251	/* Install the new policydb and SID table. */
2252	write_lock_irq(&state->ss->policy_rwlock);
2253	memcpy(policydb, newpolicydb, sizeof(*policydb));
2254	state->ss->sidtab = newsidtab;
2255	security_load_policycaps(state);
2256	oldmapping = state->ss->map.mapping;
2257	state->ss->map.mapping = newmap.mapping;
2258	state->ss->map.size = newmap.size;
2259	seqno = ++state->ss->latest_granting;
2260	write_unlock_irq(&state->ss->policy_rwlock);
2261
2262	/* Free the old policydb and SID table. */
2263	policydb_destroy(oldpolicydb);
2264	sidtab_destroy(oldsidtab);
2265	kfree(oldsidtab);
2266	kfree(oldmapping);
2267
2268	avc_ss_reset(state->avc, seqno);
2269	selnl_notify_policyload(seqno);
2270	selinux_status_update_policyload(state, seqno);
2271	selinux_netlbl_cache_invalidate();
2272	selinux_xfrm_notify_policyload();
2273
2274	rc = 0;
2275	goto out;
2276
2277err:
2278	kfree(newmap.mapping);
2279	sidtab_destroy(newsidtab);
2280	kfree(newsidtab);
2281	policydb_destroy(newpolicydb);
2282
2283out:
2284	kfree(oldpolicydb);
2285	return rc;
2286}
2287
2288size_t security_policydb_len(struct selinux_state *state)
2289{
2290	struct policydb *p = &state->ss->policydb;
2291	size_t len;
2292
2293	read_lock(&state->ss->policy_rwlock);
2294	len = p->len;
2295	read_unlock(&state->ss->policy_rwlock);
2296
2297	return len;
2298}
2299
2300/**
2301 * security_port_sid - Obtain the SID for a port.
2302 * @protocol: protocol number
2303 * @port: port number
2304 * @out_sid: security identifier
2305 */
2306int security_port_sid(struct selinux_state *state,
2307		      u8 protocol, u16 port, u32 *out_sid)
2308{
2309	struct policydb *policydb;
2310	struct sidtab *sidtab;
2311	struct ocontext *c;
2312	int rc = 0;
2313
2314	read_lock(&state->ss->policy_rwlock);
2315
2316	policydb = &state->ss->policydb;
2317	sidtab = state->ss->sidtab;
2318
2319	c = policydb->ocontexts[OCON_PORT];
2320	while (c) {
2321		if (c->u.port.protocol == protocol &&
2322		    c->u.port.low_port <= port &&
2323		    c->u.port.high_port >= port)
2324			break;
2325		c = c->next;
2326	}
2327
2328	if (c) {
2329		if (!c->sid[0]) {
2330			rc = sidtab_context_to_sid(sidtab, &c->context[0],
 
2331						   &c->sid[0]);
2332			if (rc)
2333				goto out;
2334		}
2335		*out_sid = c->sid[0];
2336	} else {
2337		*out_sid = SECINITSID_PORT;
2338	}
2339
2340out:
2341	read_unlock(&state->ss->policy_rwlock);
2342	return rc;
2343}
2344
2345/**
2346 * security_pkey_sid - Obtain the SID for a pkey.
2347 * @subnet_prefix: Subnet Prefix
2348 * @pkey_num: pkey number
2349 * @out_sid: security identifier
2350 */
2351int security_ib_pkey_sid(struct selinux_state *state,
2352			 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2353{
2354	struct policydb *policydb;
2355	struct sidtab *sidtab;
2356	struct ocontext *c;
2357	int rc = 0;
2358
2359	read_lock(&state->ss->policy_rwlock);
2360
2361	policydb = &state->ss->policydb;
2362	sidtab = state->ss->sidtab;
2363
2364	c = policydb->ocontexts[OCON_IBPKEY];
2365	while (c) {
2366		if (c->u.ibpkey.low_pkey <= pkey_num &&
2367		    c->u.ibpkey.high_pkey >= pkey_num &&
2368		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2369			break;
2370
2371		c = c->next;
2372	}
2373
2374	if (c) {
2375		if (!c->sid[0]) {
2376			rc = sidtab_context_to_sid(sidtab,
2377						   &c->context[0],
2378						   &c->sid[0]);
2379			if (rc)
2380				goto out;
2381		}
2382		*out_sid = c->sid[0];
2383	} else
2384		*out_sid = SECINITSID_UNLABELED;
2385
2386out:
2387	read_unlock(&state->ss->policy_rwlock);
2388	return rc;
2389}
2390
2391/**
2392 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2393 * @dev_name: device name
2394 * @port: port number
2395 * @out_sid: security identifier
2396 */
2397int security_ib_endport_sid(struct selinux_state *state,
2398			    const char *dev_name, u8 port_num, u32 *out_sid)
2399{
2400	struct policydb *policydb;
2401	struct sidtab *sidtab;
2402	struct ocontext *c;
2403	int rc = 0;
2404
2405	read_lock(&state->ss->policy_rwlock);
2406
2407	policydb = &state->ss->policydb;
2408	sidtab = state->ss->sidtab;
2409
2410	c = policydb->ocontexts[OCON_IBENDPORT];
2411	while (c) {
2412		if (c->u.ibendport.port == port_num &&
2413		    !strncmp(c->u.ibendport.dev_name,
2414			     dev_name,
2415			     IB_DEVICE_NAME_MAX))
2416			break;
2417
2418		c = c->next;
2419	}
2420
2421	if (c) {
2422		if (!c->sid[0]) {
2423			rc = sidtab_context_to_sid(sidtab, &c->context[0],
 
2424						   &c->sid[0]);
2425			if (rc)
2426				goto out;
2427		}
2428		*out_sid = c->sid[0];
2429	} else
2430		*out_sid = SECINITSID_UNLABELED;
2431
2432out:
2433	read_unlock(&state->ss->policy_rwlock);
2434	return rc;
2435}
2436
2437/**
2438 * security_netif_sid - Obtain the SID for a network interface.
2439 * @name: interface name
2440 * @if_sid: interface SID
2441 */
2442int security_netif_sid(struct selinux_state *state,
2443		       char *name, u32 *if_sid)
2444{
2445	struct policydb *policydb;
2446	struct sidtab *sidtab;
2447	int rc = 0;
2448	struct ocontext *c;
2449
2450	read_lock(&state->ss->policy_rwlock);
2451
2452	policydb = &state->ss->policydb;
2453	sidtab = state->ss->sidtab;
2454
2455	c = policydb->ocontexts[OCON_NETIF];
2456	while (c) {
2457		if (strcmp(name, c->u.name) == 0)
2458			break;
2459		c = c->next;
2460	}
2461
2462	if (c) {
2463		if (!c->sid[0] || !c->sid[1]) {
2464			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2465						   &c->sid[0]);
 
2466			if (rc)
2467				goto out;
2468			rc = sidtab_context_to_sid(sidtab, &c->context[1],
 
2469						   &c->sid[1]);
2470			if (rc)
2471				goto out;
2472		}
2473		*if_sid = c->sid[0];
2474	} else
2475		*if_sid = SECINITSID_NETIF;
2476
2477out:
2478	read_unlock(&state->ss->policy_rwlock);
2479	return rc;
2480}
2481
2482static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2483{
2484	int i, fail = 0;
2485
2486	for (i = 0; i < 4; i++)
2487		if (addr[i] != (input[i] & mask[i])) {
2488			fail = 1;
2489			break;
2490		}
2491
2492	return !fail;
2493}
2494
2495/**
2496 * security_node_sid - Obtain the SID for a node (host).
2497 * @domain: communication domain aka address family
2498 * @addrp: address
2499 * @addrlen: address length in bytes
2500 * @out_sid: security identifier
2501 */
2502int security_node_sid(struct selinux_state *state,
2503		      u16 domain,
2504		      void *addrp,
2505		      u32 addrlen,
2506		      u32 *out_sid)
2507{
2508	struct policydb *policydb;
2509	struct sidtab *sidtab;
2510	int rc;
2511	struct ocontext *c;
2512
2513	read_lock(&state->ss->policy_rwlock);
2514
2515	policydb = &state->ss->policydb;
2516	sidtab = state->ss->sidtab;
2517
2518	switch (domain) {
2519	case AF_INET: {
2520		u32 addr;
2521
2522		rc = -EINVAL;
2523		if (addrlen != sizeof(u32))
2524			goto out;
2525
2526		addr = *((u32 *)addrp);
2527
2528		c = policydb->ocontexts[OCON_NODE];
2529		while (c) {
2530			if (c->u.node.addr == (addr & c->u.node.mask))
2531				break;
2532			c = c->next;
2533		}
2534		break;
2535	}
2536
2537	case AF_INET6:
2538		rc = -EINVAL;
2539		if (addrlen != sizeof(u64) * 2)
2540			goto out;
2541		c = policydb->ocontexts[OCON_NODE6];
2542		while (c) {
2543			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2544						c->u.node6.mask))
2545				break;
2546			c = c->next;
2547		}
2548		break;
2549
2550	default:
2551		rc = 0;
2552		*out_sid = SECINITSID_NODE;
2553		goto out;
2554	}
2555
2556	if (c) {
2557		if (!c->sid[0]) {
2558			rc = sidtab_context_to_sid(sidtab,
2559						   &c->context[0],
2560						   &c->sid[0]);
2561			if (rc)
2562				goto out;
2563		}
2564		*out_sid = c->sid[0];
2565	} else {
2566		*out_sid = SECINITSID_NODE;
2567	}
2568
2569	rc = 0;
2570out:
2571	read_unlock(&state->ss->policy_rwlock);
2572	return rc;
2573}
2574
2575#define SIDS_NEL 25
2576
2577/**
2578 * security_get_user_sids - Obtain reachable SIDs for a user.
2579 * @fromsid: starting SID
2580 * @username: username
2581 * @sids: array of reachable SIDs for user
2582 * @nel: number of elements in @sids
2583 *
2584 * Generate the set of SIDs for legal security contexts
2585 * for a given user that can be reached by @fromsid.
2586 * Set *@sids to point to a dynamically allocated
2587 * array containing the set of SIDs.  Set *@nel to the
2588 * number of elements in the array.
2589 */
2590
2591int security_get_user_sids(struct selinux_state *state,
2592			   u32 fromsid,
2593			   char *username,
2594			   u32 **sids,
2595			   u32 *nel)
2596{
2597	struct policydb *policydb;
2598	struct sidtab *sidtab;
2599	struct context *fromcon, usercon;
2600	u32 *mysids = NULL, *mysids2, sid;
2601	u32 mynel = 0, maxnel = SIDS_NEL;
2602	struct user_datum *user;
2603	struct role_datum *role;
2604	struct ebitmap_node *rnode, *tnode;
2605	int rc = 0, i, j;
2606
2607	*sids = NULL;
2608	*nel = 0;
2609
2610	if (!selinux_initialized(state))
2611		goto out;
2612
2613	read_lock(&state->ss->policy_rwlock);
2614
2615	policydb = &state->ss->policydb;
2616	sidtab = state->ss->sidtab;
2617
2618	context_init(&usercon);
2619
2620	rc = -EINVAL;
2621	fromcon = sidtab_search(sidtab, fromsid);
2622	if (!fromcon)
2623		goto out_unlock;
2624
2625	rc = -EINVAL;
2626	user = symtab_search(&policydb->p_users, username);
2627	if (!user)
2628		goto out_unlock;
2629
2630	usercon.user = user->value;
2631
2632	rc = -ENOMEM;
2633	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2634	if (!mysids)
2635		goto out_unlock;
2636
2637	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2638		role = policydb->role_val_to_struct[i];
2639		usercon.role = i + 1;
2640		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2641			usercon.type = j + 1;
2642
2643			if (mls_setup_user_range(policydb, fromcon, user,
2644						 &usercon))
2645				continue;
2646
2647			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2648			if (rc)
2649				goto out_unlock;
2650			if (mynel < maxnel) {
2651				mysids[mynel++] = sid;
2652			} else {
2653				rc = -ENOMEM;
2654				maxnel += SIDS_NEL;
2655				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2656				if (!mysids2)
2657					goto out_unlock;
2658				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2659				kfree(mysids);
2660				mysids = mysids2;
2661				mysids[mynel++] = sid;
2662			}
2663		}
2664	}
2665	rc = 0;
2666out_unlock:
2667	read_unlock(&state->ss->policy_rwlock);
2668	if (rc || !mynel) {
2669		kfree(mysids);
2670		goto out;
2671	}
2672
2673	rc = -ENOMEM;
2674	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2675	if (!mysids2) {
2676		kfree(mysids);
2677		goto out;
2678	}
2679	for (i = 0, j = 0; i < mynel; i++) {
2680		struct av_decision dummy_avd;
2681		rc = avc_has_perm_noaudit(state,
2682					  fromsid, mysids[i],
2683					  SECCLASS_PROCESS, /* kernel value */
2684					  PROCESS__TRANSITION, AVC_STRICT,
2685					  &dummy_avd);
2686		if (!rc)
2687			mysids2[j++] = mysids[i];
2688		cond_resched();
2689	}
2690	rc = 0;
2691	kfree(mysids);
2692	*sids = mysids2;
2693	*nel = j;
2694out:
2695	return rc;
2696}
2697
2698/**
2699 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2700 * @fstype: filesystem type
2701 * @path: path from root of mount
2702 * @sclass: file security class
2703 * @sid: SID for path
2704 *
2705 * Obtain a SID to use for a file in a filesystem that
2706 * cannot support xattr or use a fixed labeling behavior like
2707 * transition SIDs or task SIDs.
2708 *
2709 * The caller must acquire the policy_rwlock before calling this function.
2710 */
2711static inline int __security_genfs_sid(struct selinux_state *state,
2712				       const char *fstype,
2713				       char *path,
2714				       u16 orig_sclass,
2715				       u32 *sid)
2716{
2717	struct policydb *policydb = &state->ss->policydb;
2718	struct sidtab *sidtab = state->ss->sidtab;
2719	int len;
2720	u16 sclass;
2721	struct genfs *genfs;
2722	struct ocontext *c;
2723	int rc, cmp = 0;
2724
2725	while (path[0] == '/' && path[1] == '/')
2726		path++;
2727
2728	sclass = unmap_class(&state->ss->map, orig_sclass);
2729	*sid = SECINITSID_UNLABELED;
2730
2731	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2732		cmp = strcmp(fstype, genfs->fstype);
2733		if (cmp <= 0)
2734			break;
2735	}
2736
2737	rc = -ENOENT;
2738	if (!genfs || cmp)
2739		goto out;
2740
2741	for (c = genfs->head; c; c = c->next) {
2742		len = strlen(c->u.name);
2743		if ((!c->v.sclass || sclass == c->v.sclass) &&
2744		    (strncmp(c->u.name, path, len) == 0))
2745			break;
2746	}
2747
2748	rc = -ENOENT;
2749	if (!c)
2750		goto out;
2751
2752	if (!c->sid[0]) {
2753		rc = sidtab_context_to_sid(sidtab, &c->context[0], &c->sid[0]);
2754		if (rc)
2755			goto out;
2756	}
2757
2758	*sid = c->sid[0];
2759	rc = 0;
2760out:
2761	return rc;
2762}
2763
2764/**
2765 * security_genfs_sid - Obtain a SID for a file in a filesystem
2766 * @fstype: filesystem type
2767 * @path: path from root of mount
2768 * @sclass: file security class
2769 * @sid: SID for path
2770 *
2771 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2772 * it afterward.
2773 */
2774int security_genfs_sid(struct selinux_state *state,
2775		       const char *fstype,
2776		       char *path,
2777		       u16 orig_sclass,
2778		       u32 *sid)
2779{
2780	int retval;
2781
2782	read_lock(&state->ss->policy_rwlock);
2783	retval = __security_genfs_sid(state, fstype, path, orig_sclass, sid);
2784	read_unlock(&state->ss->policy_rwlock);
2785	return retval;
2786}
2787
2788/**
2789 * security_fs_use - Determine how to handle labeling for a filesystem.
2790 * @sb: superblock in question
2791 */
2792int security_fs_use(struct selinux_state *state, struct super_block *sb)
2793{
2794	struct policydb *policydb;
2795	struct sidtab *sidtab;
2796	int rc = 0;
2797	struct ocontext *c;
2798	struct superblock_security_struct *sbsec = sb->s_security;
2799	const char *fstype = sb->s_type->name;
2800
2801	read_lock(&state->ss->policy_rwlock);
2802
2803	policydb = &state->ss->policydb;
2804	sidtab = state->ss->sidtab;
2805
2806	c = policydb->ocontexts[OCON_FSUSE];
2807	while (c) {
2808		if (strcmp(fstype, c->u.name) == 0)
2809			break;
2810		c = c->next;
2811	}
2812
2813	if (c) {
2814		sbsec->behavior = c->v.behavior;
2815		if (!c->sid[0]) {
2816			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2817						   &c->sid[0]);
2818			if (rc)
2819				goto out;
2820		}
2821		sbsec->sid = c->sid[0];
2822	} else {
2823		rc = __security_genfs_sid(state, fstype, "/", SECCLASS_DIR,
2824					  &sbsec->sid);
2825		if (rc) {
2826			sbsec->behavior = SECURITY_FS_USE_NONE;
2827			rc = 0;
2828		} else {
2829			sbsec->behavior = SECURITY_FS_USE_GENFS;
2830		}
2831	}
2832
2833out:
2834	read_unlock(&state->ss->policy_rwlock);
2835	return rc;
2836}
2837
2838int security_get_bools(struct selinux_state *state,
2839		       u32 *len, char ***names, int **values)
2840{
2841	struct policydb *policydb;
2842	u32 i;
2843	int rc;
2844
2845	if (!selinux_initialized(state)) {
2846		*len = 0;
2847		*names = NULL;
2848		*values = NULL;
2849		return 0;
2850	}
2851
2852	read_lock(&state->ss->policy_rwlock);
2853
2854	policydb = &state->ss->policydb;
2855
2856	*names = NULL;
2857	*values = NULL;
2858
2859	rc = 0;
2860	*len = policydb->p_bools.nprim;
2861	if (!*len)
2862		goto out;
2863
2864	rc = -ENOMEM;
2865	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2866	if (!*names)
2867		goto err;
2868
2869	rc = -ENOMEM;
2870	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2871	if (!*values)
2872		goto err;
2873
2874	for (i = 0; i < *len; i++) {
2875		(*values)[i] = policydb->bool_val_to_struct[i]->state;
2876
2877		rc = -ENOMEM;
2878		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
2879				      GFP_ATOMIC);
2880		if (!(*names)[i])
2881			goto err;
2882	}
2883	rc = 0;
2884out:
2885	read_unlock(&state->ss->policy_rwlock);
2886	return rc;
2887err:
2888	if (*names) {
2889		for (i = 0; i < *len; i++)
2890			kfree((*names)[i]);
2891		kfree(*names);
2892	}
2893	kfree(*values);
2894	*len = 0;
2895	*names = NULL;
2896	*values = NULL;
2897	goto out;
2898}
2899
2900
2901int security_set_bools(struct selinux_state *state, u32 len, int *values)
2902{
2903	struct policydb *policydb;
2904	int rc;
2905	u32 i, lenp, seqno = 0;
 
2906
2907	write_lock_irq(&state->ss->policy_rwlock);
2908
2909	policydb = &state->ss->policydb;
2910
2911	rc = -EFAULT;
2912	lenp = policydb->p_bools.nprim;
2913	if (len != lenp)
2914		goto out;
2915
2916	for (i = 0; i < len; i++) {
2917		if (!!values[i] != policydb->bool_val_to_struct[i]->state) {
2918			audit_log(audit_context(), GFP_ATOMIC,
2919				AUDIT_MAC_CONFIG_CHANGE,
2920				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2921				sym_name(policydb, SYM_BOOLS, i),
2922				!!values[i],
2923				policydb->bool_val_to_struct[i]->state,
2924				from_kuid(&init_user_ns, audit_get_loginuid(current)),
2925				audit_get_sessionid(current));
2926		}
2927		if (values[i])
2928			policydb->bool_val_to_struct[i]->state = 1;
2929		else
2930			policydb->bool_val_to_struct[i]->state = 0;
2931	}
2932
2933	evaluate_cond_nodes(policydb);
 
 
 
 
2934
2935	seqno = ++state->ss->latest_granting;
2936	rc = 0;
2937out:
2938	write_unlock_irq(&state->ss->policy_rwlock);
2939	if (!rc) {
2940		avc_ss_reset(state->avc, seqno);
2941		selnl_notify_policyload(seqno);
2942		selinux_status_update_policyload(state, seqno);
2943		selinux_xfrm_notify_policyload();
2944	}
2945	return rc;
2946}
2947
2948int security_get_bool_value(struct selinux_state *state,
2949			    u32 index)
2950{
2951	struct policydb *policydb;
2952	int rc;
2953	u32 len;
2954
2955	read_lock(&state->ss->policy_rwlock);
2956
2957	policydb = &state->ss->policydb;
2958
2959	rc = -EFAULT;
2960	len = policydb->p_bools.nprim;
2961	if (index >= len)
2962		goto out;
2963
2964	rc = policydb->bool_val_to_struct[index]->state;
2965out:
2966	read_unlock(&state->ss->policy_rwlock);
2967	return rc;
2968}
2969
2970static int security_preserve_bools(struct selinux_state *state,
2971				   struct policydb *policydb)
2972{
2973	int rc, *bvalues = NULL;
2974	char **bnames = NULL;
2975	struct cond_bool_datum *booldatum;
2976	u32 i, nbools = 0;
2977
2978	rc = security_get_bools(state, &nbools, &bnames, &bvalues);
2979	if (rc)
2980		goto out;
2981	for (i = 0; i < nbools; i++) {
2982		booldatum = symtab_search(&policydb->p_bools, bnames[i]);
2983		if (booldatum)
2984			booldatum->state = bvalues[i];
2985	}
2986	evaluate_cond_nodes(policydb);
 
 
 
 
2987
2988out:
2989	if (bnames) {
2990		for (i = 0; i < nbools; i++)
2991			kfree(bnames[i]);
2992	}
2993	kfree(bnames);
2994	kfree(bvalues);
2995	return rc;
2996}
2997
2998/*
2999 * security_sid_mls_copy() - computes a new sid based on the given
3000 * sid and the mls portion of mls_sid.
3001 */
3002int security_sid_mls_copy(struct selinux_state *state,
3003			  u32 sid, u32 mls_sid, u32 *new_sid)
3004{
3005	struct policydb *policydb = &state->ss->policydb;
3006	struct sidtab *sidtab = state->ss->sidtab;
3007	struct context *context1;
3008	struct context *context2;
3009	struct context newcon;
3010	char *s;
3011	u32 len;
3012	int rc;
3013
3014	rc = 0;
3015	if (!selinux_initialized(state) || !policydb->mls_enabled) {
3016		*new_sid = sid;
3017		goto out;
3018	}
3019
3020	context_init(&newcon);
3021
3022	read_lock(&state->ss->policy_rwlock);
3023
3024	rc = -EINVAL;
3025	context1 = sidtab_search(sidtab, sid);
3026	if (!context1) {
3027		pr_err("SELinux: %s:  unrecognized SID %d\n",
3028			__func__, sid);
3029		goto out_unlock;
3030	}
3031
3032	rc = -EINVAL;
3033	context2 = sidtab_search(sidtab, mls_sid);
3034	if (!context2) {
3035		pr_err("SELinux: %s:  unrecognized SID %d\n",
3036			__func__, mls_sid);
3037		goto out_unlock;
3038	}
3039
3040	newcon.user = context1->user;
3041	newcon.role = context1->role;
3042	newcon.type = context1->type;
3043	rc = mls_context_cpy(&newcon, context2);
3044	if (rc)
3045		goto out_unlock;
3046
3047	/* Check the validity of the new context. */
3048	if (!policydb_context_isvalid(policydb, &newcon)) {
3049		rc = convert_context_handle_invalid_context(state, &newcon);
3050		if (rc) {
3051			if (!context_struct_to_string(policydb, &newcon, &s,
3052						      &len)) {
3053				struct audit_buffer *ab;
3054
3055				ab = audit_log_start(audit_context(),
3056						     GFP_ATOMIC,
3057						     AUDIT_SELINUX_ERR);
3058				audit_log_format(ab,
3059						 "op=security_sid_mls_copy invalid_context=");
3060				/* don't record NUL with untrusted strings */
3061				audit_log_n_untrustedstring(ab, s, len - 1);
3062				audit_log_end(ab);
3063				kfree(s);
3064			}
3065			goto out_unlock;
3066		}
3067	}
 
3068	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3069out_unlock:
3070	read_unlock(&state->ss->policy_rwlock);
3071	context_destroy(&newcon);
3072out:
3073	return rc;
3074}
3075
3076/**
3077 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3078 * @nlbl_sid: NetLabel SID
3079 * @nlbl_type: NetLabel labeling protocol type
3080 * @xfrm_sid: XFRM SID
3081 *
3082 * Description:
3083 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3084 * resolved into a single SID it is returned via @peer_sid and the function
3085 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3086 * returns a negative value.  A table summarizing the behavior is below:
3087 *
3088 *                                 | function return |      @sid
3089 *   ------------------------------+-----------------+-----------------
3090 *   no peer labels                |        0        |    SECSID_NULL
3091 *   single peer label             |        0        |    <peer_label>
3092 *   multiple, consistent labels   |        0        |    <peer_label>
3093 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3094 *
3095 */
3096int security_net_peersid_resolve(struct selinux_state *state,
3097				 u32 nlbl_sid, u32 nlbl_type,
3098				 u32 xfrm_sid,
3099				 u32 *peer_sid)
3100{
3101	struct policydb *policydb = &state->ss->policydb;
3102	struct sidtab *sidtab = state->ss->sidtab;
3103	int rc;
3104	struct context *nlbl_ctx;
3105	struct context *xfrm_ctx;
3106
3107	*peer_sid = SECSID_NULL;
3108
3109	/* handle the common (which also happens to be the set of easy) cases
3110	 * right away, these two if statements catch everything involving a
3111	 * single or absent peer SID/label */
3112	if (xfrm_sid == SECSID_NULL) {
3113		*peer_sid = nlbl_sid;
3114		return 0;
3115	}
3116	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3117	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3118	 * is present */
3119	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3120		*peer_sid = xfrm_sid;
3121		return 0;
3122	}
3123
3124	/*
3125	 * We don't need to check initialized here since the only way both
3126	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3127	 * security server was initialized and state->initialized was true.
3128	 */
3129	if (!policydb->mls_enabled)
3130		return 0;
3131
3132	read_lock(&state->ss->policy_rwlock);
3133
3134	rc = -EINVAL;
3135	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3136	if (!nlbl_ctx) {
3137		pr_err("SELinux: %s:  unrecognized SID %d\n",
3138		       __func__, nlbl_sid);
3139		goto out;
3140	}
3141	rc = -EINVAL;
3142	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3143	if (!xfrm_ctx) {
3144		pr_err("SELinux: %s:  unrecognized SID %d\n",
3145		       __func__, xfrm_sid);
3146		goto out;
3147	}
3148	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3149	if (rc)
3150		goto out;
3151
3152	/* at present NetLabel SIDs/labels really only carry MLS
3153	 * information so if the MLS portion of the NetLabel SID
3154	 * matches the MLS portion of the labeled XFRM SID/label
3155	 * then pass along the XFRM SID as it is the most
3156	 * expressive */
3157	*peer_sid = xfrm_sid;
3158out:
3159	read_unlock(&state->ss->policy_rwlock);
3160	return rc;
3161}
3162
3163static int get_classes_callback(void *k, void *d, void *args)
3164{
3165	struct class_datum *datum = d;
3166	char *name = k, **classes = args;
3167	int value = datum->value - 1;
3168
3169	classes[value] = kstrdup(name, GFP_ATOMIC);
3170	if (!classes[value])
3171		return -ENOMEM;
3172
3173	return 0;
3174}
3175
3176int security_get_classes(struct selinux_state *state,
3177			 char ***classes, int *nclasses)
3178{
3179	struct policydb *policydb = &state->ss->policydb;
3180	int rc;
3181
3182	if (!selinux_initialized(state)) {
3183		*nclasses = 0;
3184		*classes = NULL;
3185		return 0;
3186	}
3187
3188	read_lock(&state->ss->policy_rwlock);
3189
3190	rc = -ENOMEM;
3191	*nclasses = policydb->p_classes.nprim;
3192	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3193	if (!*classes)
3194		goto out;
3195
3196	rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3197			 *classes);
3198	if (rc) {
3199		int i;
3200		for (i = 0; i < *nclasses; i++)
3201			kfree((*classes)[i]);
3202		kfree(*classes);
3203	}
3204
3205out:
3206	read_unlock(&state->ss->policy_rwlock);
3207	return rc;
3208}
3209
3210static int get_permissions_callback(void *k, void *d, void *args)
3211{
3212	struct perm_datum *datum = d;
3213	char *name = k, **perms = args;
3214	int value = datum->value - 1;
3215
3216	perms[value] = kstrdup(name, GFP_ATOMIC);
3217	if (!perms[value])
3218		return -ENOMEM;
3219
3220	return 0;
3221}
3222
3223int security_get_permissions(struct selinux_state *state,
3224			     char *class, char ***perms, int *nperms)
3225{
3226	struct policydb *policydb = &state->ss->policydb;
3227	int rc, i;
3228	struct class_datum *match;
3229
3230	read_lock(&state->ss->policy_rwlock);
3231
3232	rc = -EINVAL;
3233	match = symtab_search(&policydb->p_classes, class);
3234	if (!match) {
3235		pr_err("SELinux: %s:  unrecognized class %s\n",
3236			__func__, class);
3237		goto out;
3238	}
3239
3240	rc = -ENOMEM;
3241	*nperms = match->permissions.nprim;
3242	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3243	if (!*perms)
3244		goto out;
3245
3246	if (match->comdatum) {
3247		rc = hashtab_map(&match->comdatum->permissions.table,
3248				 get_permissions_callback, *perms);
3249		if (rc)
3250			goto err;
3251	}
3252
3253	rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3254			 *perms);
3255	if (rc)
3256		goto err;
3257
3258out:
3259	read_unlock(&state->ss->policy_rwlock);
3260	return rc;
3261
3262err:
3263	read_unlock(&state->ss->policy_rwlock);
3264	for (i = 0; i < *nperms; i++)
3265		kfree((*perms)[i]);
3266	kfree(*perms);
3267	return rc;
3268}
3269
3270int security_get_reject_unknown(struct selinux_state *state)
3271{
3272	return state->ss->policydb.reject_unknown;
3273}
3274
3275int security_get_allow_unknown(struct selinux_state *state)
3276{
3277	return state->ss->policydb.allow_unknown;
3278}
3279
3280/**
3281 * security_policycap_supported - Check for a specific policy capability
3282 * @req_cap: capability
3283 *
3284 * Description:
3285 * This function queries the currently loaded policy to see if it supports the
3286 * capability specified by @req_cap.  Returns true (1) if the capability is
3287 * supported, false (0) if it isn't supported.
3288 *
3289 */
3290int security_policycap_supported(struct selinux_state *state,
3291				 unsigned int req_cap)
3292{
3293	struct policydb *policydb = &state->ss->policydb;
3294	int rc;
3295
3296	read_lock(&state->ss->policy_rwlock);
3297	rc = ebitmap_get_bit(&policydb->policycaps, req_cap);
3298	read_unlock(&state->ss->policy_rwlock);
3299
3300	return rc;
3301}
3302
3303struct selinux_audit_rule {
3304	u32 au_seqno;
3305	struct context au_ctxt;
3306};
3307
3308void selinux_audit_rule_free(void *vrule)
3309{
3310	struct selinux_audit_rule *rule = vrule;
3311
3312	if (rule) {
3313		context_destroy(&rule->au_ctxt);
3314		kfree(rule);
3315	}
3316}
3317
3318int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3319{
3320	struct selinux_state *state = &selinux_state;
3321	struct policydb *policydb = &state->ss->policydb;
3322	struct selinux_audit_rule *tmprule;
3323	struct role_datum *roledatum;
3324	struct type_datum *typedatum;
3325	struct user_datum *userdatum;
3326	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3327	int rc = 0;
3328
3329	*rule = NULL;
3330
3331	if (!selinux_initialized(state))
3332		return -EOPNOTSUPP;
3333
3334	switch (field) {
3335	case AUDIT_SUBJ_USER:
3336	case AUDIT_SUBJ_ROLE:
3337	case AUDIT_SUBJ_TYPE:
3338	case AUDIT_OBJ_USER:
3339	case AUDIT_OBJ_ROLE:
3340	case AUDIT_OBJ_TYPE:
3341		/* only 'equals' and 'not equals' fit user, role, and type */
3342		if (op != Audit_equal && op != Audit_not_equal)
3343			return -EINVAL;
3344		break;
3345	case AUDIT_SUBJ_SEN:
3346	case AUDIT_SUBJ_CLR:
3347	case AUDIT_OBJ_LEV_LOW:
3348	case AUDIT_OBJ_LEV_HIGH:
3349		/* we do not allow a range, indicated by the presence of '-' */
3350		if (strchr(rulestr, '-'))
3351			return -EINVAL;
3352		break;
3353	default:
3354		/* only the above fields are valid */
3355		return -EINVAL;
3356	}
3357
3358	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3359	if (!tmprule)
3360		return -ENOMEM;
3361
3362	context_init(&tmprule->au_ctxt);
3363
3364	read_lock(&state->ss->policy_rwlock);
3365
3366	tmprule->au_seqno = state->ss->latest_granting;
3367
3368	switch (field) {
3369	case AUDIT_SUBJ_USER:
3370	case AUDIT_OBJ_USER:
3371		rc = -EINVAL;
3372		userdatum = symtab_search(&policydb->p_users, rulestr);
3373		if (!userdatum)
3374			goto out;
3375		tmprule->au_ctxt.user = userdatum->value;
3376		break;
3377	case AUDIT_SUBJ_ROLE:
3378	case AUDIT_OBJ_ROLE:
3379		rc = -EINVAL;
3380		roledatum = symtab_search(&policydb->p_roles, rulestr);
3381		if (!roledatum)
3382			goto out;
3383		tmprule->au_ctxt.role = roledatum->value;
3384		break;
3385	case AUDIT_SUBJ_TYPE:
3386	case AUDIT_OBJ_TYPE:
3387		rc = -EINVAL;
3388		typedatum = symtab_search(&policydb->p_types, rulestr);
3389		if (!typedatum)
3390			goto out;
3391		tmprule->au_ctxt.type = typedatum->value;
3392		break;
3393	case AUDIT_SUBJ_SEN:
3394	case AUDIT_SUBJ_CLR:
3395	case AUDIT_OBJ_LEV_LOW:
3396	case AUDIT_OBJ_LEV_HIGH:
3397		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3398				     GFP_ATOMIC);
3399		if (rc)
3400			goto out;
3401		break;
3402	}
3403	rc = 0;
3404out:
3405	read_unlock(&state->ss->policy_rwlock);
3406
3407	if (rc) {
3408		selinux_audit_rule_free(tmprule);
3409		tmprule = NULL;
3410	}
3411
3412	*rule = tmprule;
3413
3414	return rc;
3415}
3416
3417/* Check to see if the rule contains any selinux fields */
3418int selinux_audit_rule_known(struct audit_krule *rule)
3419{
3420	int i;
3421
3422	for (i = 0; i < rule->field_count; i++) {
3423		struct audit_field *f = &rule->fields[i];
3424		switch (f->type) {
3425		case AUDIT_SUBJ_USER:
3426		case AUDIT_SUBJ_ROLE:
3427		case AUDIT_SUBJ_TYPE:
3428		case AUDIT_SUBJ_SEN:
3429		case AUDIT_SUBJ_CLR:
3430		case AUDIT_OBJ_USER:
3431		case AUDIT_OBJ_ROLE:
3432		case AUDIT_OBJ_TYPE:
3433		case AUDIT_OBJ_LEV_LOW:
3434		case AUDIT_OBJ_LEV_HIGH:
3435			return 1;
3436		}
3437	}
3438
3439	return 0;
3440}
3441
3442int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3443{
3444	struct selinux_state *state = &selinux_state;
3445	struct context *ctxt;
3446	struct mls_level *level;
3447	struct selinux_audit_rule *rule = vrule;
3448	int match = 0;
3449
3450	if (unlikely(!rule)) {
3451		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3452		return -ENOENT;
3453	}
3454
3455	read_lock(&state->ss->policy_rwlock);
3456
3457	if (rule->au_seqno < state->ss->latest_granting) {
3458		match = -ESTALE;
3459		goto out;
3460	}
3461
3462	ctxt = sidtab_search(state->ss->sidtab, sid);
3463	if (unlikely(!ctxt)) {
3464		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3465			  sid);
3466		match = -ENOENT;
3467		goto out;
3468	}
3469
3470	/* a field/op pair that is not caught here will simply fall through
3471	   without a match */
3472	switch (field) {
3473	case AUDIT_SUBJ_USER:
3474	case AUDIT_OBJ_USER:
3475		switch (op) {
3476		case Audit_equal:
3477			match = (ctxt->user == rule->au_ctxt.user);
3478			break;
3479		case Audit_not_equal:
3480			match = (ctxt->user != rule->au_ctxt.user);
3481			break;
3482		}
3483		break;
3484	case AUDIT_SUBJ_ROLE:
3485	case AUDIT_OBJ_ROLE:
3486		switch (op) {
3487		case Audit_equal:
3488			match = (ctxt->role == rule->au_ctxt.role);
3489			break;
3490		case Audit_not_equal:
3491			match = (ctxt->role != rule->au_ctxt.role);
3492			break;
3493		}
3494		break;
3495	case AUDIT_SUBJ_TYPE:
3496	case AUDIT_OBJ_TYPE:
3497		switch (op) {
3498		case Audit_equal:
3499			match = (ctxt->type == rule->au_ctxt.type);
3500			break;
3501		case Audit_not_equal:
3502			match = (ctxt->type != rule->au_ctxt.type);
3503			break;
3504		}
3505		break;
3506	case AUDIT_SUBJ_SEN:
3507	case AUDIT_SUBJ_CLR:
3508	case AUDIT_OBJ_LEV_LOW:
3509	case AUDIT_OBJ_LEV_HIGH:
3510		level = ((field == AUDIT_SUBJ_SEN ||
3511			  field == AUDIT_OBJ_LEV_LOW) ?
3512			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3513		switch (op) {
3514		case Audit_equal:
3515			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3516					     level);
3517			break;
3518		case Audit_not_equal:
3519			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3520					      level);
3521			break;
3522		case Audit_lt:
3523			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3524					       level) &&
3525				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3526					       level));
3527			break;
3528		case Audit_le:
3529			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3530					      level);
3531			break;
3532		case Audit_gt:
3533			match = (mls_level_dom(level,
3534					      &rule->au_ctxt.range.level[0]) &&
3535				 !mls_level_eq(level,
3536					       &rule->au_ctxt.range.level[0]));
3537			break;
3538		case Audit_ge:
3539			match = mls_level_dom(level,
3540					      &rule->au_ctxt.range.level[0]);
3541			break;
3542		}
3543	}
3544
3545out:
3546	read_unlock(&state->ss->policy_rwlock);
3547	return match;
3548}
3549
3550static int (*aurule_callback)(void) = audit_update_lsm_rules;
3551
3552static int aurule_avc_callback(u32 event)
3553{
3554	int err = 0;
3555
3556	if (event == AVC_CALLBACK_RESET && aurule_callback)
3557		err = aurule_callback();
3558	return err;
3559}
3560
3561static int __init aurule_init(void)
3562{
3563	int err;
3564
3565	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3566	if (err)
3567		panic("avc_add_callback() failed, error %d\n", err);
3568
3569	return err;
3570}
3571__initcall(aurule_init);
3572
3573#ifdef CONFIG_NETLABEL
3574/**
3575 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3576 * @secattr: the NetLabel packet security attributes
3577 * @sid: the SELinux SID
3578 *
3579 * Description:
3580 * Attempt to cache the context in @ctx, which was derived from the packet in
3581 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3582 * already been initialized.
3583 *
3584 */
3585static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3586				      u32 sid)
3587{
3588	u32 *sid_cache;
3589
3590	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3591	if (sid_cache == NULL)
3592		return;
3593	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3594	if (secattr->cache == NULL) {
3595		kfree(sid_cache);
3596		return;
3597	}
3598
3599	*sid_cache = sid;
3600	secattr->cache->free = kfree;
3601	secattr->cache->data = sid_cache;
3602	secattr->flags |= NETLBL_SECATTR_CACHE;
3603}
3604
3605/**
3606 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3607 * @secattr: the NetLabel packet security attributes
3608 * @sid: the SELinux SID
3609 *
3610 * Description:
3611 * Convert the given NetLabel security attributes in @secattr into a
3612 * SELinux SID.  If the @secattr field does not contain a full SELinux
3613 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3614 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3615 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3616 * conversion for future lookups.  Returns zero on success, negative values on
3617 * failure.
3618 *
3619 */
3620int security_netlbl_secattr_to_sid(struct selinux_state *state,
3621				   struct netlbl_lsm_secattr *secattr,
3622				   u32 *sid)
3623{
3624	struct policydb *policydb = &state->ss->policydb;
3625	struct sidtab *sidtab = state->ss->sidtab;
3626	int rc;
3627	struct context *ctx;
3628	struct context ctx_new;
3629
3630	if (!selinux_initialized(state)) {
3631		*sid = SECSID_NULL;
3632		return 0;
3633	}
3634
3635	read_lock(&state->ss->policy_rwlock);
3636
3637	if (secattr->flags & NETLBL_SECATTR_CACHE)
3638		*sid = *(u32 *)secattr->cache->data;
3639	else if (secattr->flags & NETLBL_SECATTR_SECID)
3640		*sid = secattr->attr.secid;
3641	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3642		rc = -EIDRM;
3643		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3644		if (ctx == NULL)
3645			goto out;
3646
3647		context_init(&ctx_new);
3648		ctx_new.user = ctx->user;
3649		ctx_new.role = ctx->role;
3650		ctx_new.type = ctx->type;
3651		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3652		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3653			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3654			if (rc)
3655				goto out;
3656		}
3657		rc = -EIDRM;
3658		if (!mls_context_isvalid(policydb, &ctx_new))
3659			goto out_free;
3660
3661		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3662		if (rc)
3663			goto out_free;
3664
3665		security_netlbl_cache_add(secattr, *sid);
3666
3667		ebitmap_destroy(&ctx_new.range.level[0].cat);
3668	} else
3669		*sid = SECSID_NULL;
3670
3671	read_unlock(&state->ss->policy_rwlock);
3672	return 0;
3673out_free:
3674	ebitmap_destroy(&ctx_new.range.level[0].cat);
3675out:
3676	read_unlock(&state->ss->policy_rwlock);
3677	return rc;
3678}
3679
3680/**
3681 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3682 * @sid: the SELinux SID
3683 * @secattr: the NetLabel packet security attributes
3684 *
3685 * Description:
3686 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3687 * Returns zero on success, negative values on failure.
3688 *
3689 */
3690int security_netlbl_sid_to_secattr(struct selinux_state *state,
3691				   u32 sid, struct netlbl_lsm_secattr *secattr)
3692{
3693	struct policydb *policydb = &state->ss->policydb;
3694	int rc;
3695	struct context *ctx;
3696
3697	if (!selinux_initialized(state))
3698		return 0;
3699
3700	read_lock(&state->ss->policy_rwlock);
3701
3702	rc = -ENOENT;
3703	ctx = sidtab_search(state->ss->sidtab, sid);
3704	if (ctx == NULL)
3705		goto out;
3706
3707	rc = -ENOMEM;
3708	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3709				  GFP_ATOMIC);
3710	if (secattr->domain == NULL)
3711		goto out;
3712
3713	secattr->attr.secid = sid;
3714	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3715	mls_export_netlbl_lvl(policydb, ctx, secattr);
3716	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3717out:
3718	read_unlock(&state->ss->policy_rwlock);
3719	return rc;
3720}
3721#endif /* CONFIG_NETLABEL */
3722
3723/**
3724 * security_read_policy - read the policy.
3725 * @data: binary policy data
3726 * @len: length of data in bytes
3727 *
3728 */
3729int security_read_policy(struct selinux_state *state,
3730			 void **data, size_t *len)
3731{
3732	struct policydb *policydb = &state->ss->policydb;
3733	int rc;
3734	struct policy_file fp;
3735
3736	if (!selinux_initialized(state))
3737		return -EINVAL;
3738
3739	*len = security_policydb_len(state);
3740
3741	*data = vmalloc_user(*len);
3742	if (!*data)
3743		return -ENOMEM;
3744
3745	fp.data = *data;
3746	fp.len = *len;
3747
3748	read_lock(&state->ss->policy_rwlock);
3749	rc = policydb_write(policydb, &fp);
3750	read_unlock(&state->ss->policy_rwlock);
3751
3752	if (rc)
3753		return rc;
3754
3755	*len = (unsigned long)fp.data - (unsigned long)*data;
3756	return 0;
3757
3758}