Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Implementation of the security services.
   4 *
   5 * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
   6 *	     James Morris <jmorris@redhat.com>
   7 *
   8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   9 *
  10 *	Support for enhanced MLS infrastructure.
  11 *	Support for context based audit filters.
  12 *
  13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  14 *
  15 *	Added conditional policy language extensions
  16 *
  17 * Updated: Hewlett-Packard <paul@paul-moore.com>
  18 *
  19 *      Added support for NetLabel
  20 *      Added support for the policy capability bitmap
  21 *
  22 * Updated: Chad Sellers <csellers@tresys.com>
  23 *
  24 *  Added validation of kernel classes and permissions
  25 *
  26 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  27 *
  28 *  Added support for bounds domain and audit messaged on masked permissions
  29 *
  30 * Updated: Guido Trentalancia <guido@trentalancia.com>
  31 *
  32 *  Added support for runtime switching of the policy type
  33 *
  34 * Copyright (C) 2008, 2009 NEC Corporation
  35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  38 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
 
 
 
  39 */
  40#include <linux/kernel.h>
  41#include <linux/slab.h>
  42#include <linux/string.h>
  43#include <linux/spinlock.h>
  44#include <linux/rcupdate.h>
  45#include <linux/errno.h>
  46#include <linux/in.h>
  47#include <linux/sched.h>
  48#include <linux/audit.h>
  49#include <linux/mutex.h>
 
 
  50#include <linux/vmalloc.h>
  51#include <net/netlabel.h>
  52
  53#include "flask.h"
  54#include "avc.h"
  55#include "avc_ss.h"
  56#include "security.h"
  57#include "context.h"
  58#include "policydb.h"
  59#include "sidtab.h"
  60#include "services.h"
  61#include "conditional.h"
  62#include "mls.h"
  63#include "objsec.h"
  64#include "netlabel.h"
  65#include "xfrm.h"
  66#include "ebitmap.h"
  67#include "audit.h"
  68
  69/* Policy capability names */
  70const char *selinux_policycap_names[__POLICYDB_CAPABILITY_MAX] = {
  71	"network_peer_controls",
  72	"open_perms",
  73	"extended_socket_class",
  74	"always_check_network",
  75	"cgroup_seclabel",
  76	"nnp_nosuid_transition"
  77};
  78
  79static struct selinux_ss selinux_ss;
  80
  81void selinux_ss_init(struct selinux_ss **ss)
  82{
  83	rwlock_init(&selinux_ss.policy_rwlock);
  84	mutex_init(&selinux_ss.status_lock);
  85	*ss = &selinux_ss;
  86}
 
  87
  88/* Forward declaration. */
  89static int context_struct_to_string(struct policydb *policydb,
  90				    struct context *context,
  91				    char **scontext,
  92				    u32 *scontext_len);
  93
  94static void context_struct_compute_av(struct policydb *policydb,
  95				      struct context *scontext,
  96				      struct context *tcontext,
  97				      u16 tclass,
  98				      struct av_decision *avd,
  99				      struct extended_perms *xperms);
 
 
 
 
 
 
 
 
 100
 101static int selinux_set_mapping(struct policydb *pol,
 102			       struct security_class_mapping *map,
 103			       struct selinux_map *out_map)
 
 104{
 
 
 105	u16 i, j;
 106	unsigned k;
 107	bool print_unknown_handle = false;
 108
 109	/* Find number of classes in the input mapping */
 110	if (!map)
 111		return -EINVAL;
 112	i = 0;
 113	while (map[i].name)
 114		i++;
 115
 116	/* Allocate space for the class records, plus one for class zero */
 117	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
 118	if (!out_map->mapping)
 119		return -ENOMEM;
 120
 121	/* Store the raw class and permission values */
 122	j = 0;
 123	while (map[j].name) {
 124		struct security_class_mapping *p_in = map + (j++);
 125		struct selinux_mapping *p_out = out_map->mapping + j;
 126
 127		/* An empty class string skips ahead */
 128		if (!strcmp(p_in->name, "")) {
 129			p_out->num_perms = 0;
 130			continue;
 131		}
 132
 133		p_out->value = string_to_security_class(pol, p_in->name);
 134		if (!p_out->value) {
 135			pr_info("SELinux:  Class %s not defined in policy.\n",
 
 136			       p_in->name);
 137			if (pol->reject_unknown)
 138				goto err;
 139			p_out->num_perms = 0;
 140			print_unknown_handle = true;
 141			continue;
 142		}
 143
 144		k = 0;
 145		while (p_in->perms[k]) {
 146			/* An empty permission string skips ahead */
 147			if (!*p_in->perms[k]) {
 148				k++;
 149				continue;
 150			}
 151			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 152							    p_in->perms[k]);
 153			if (!p_out->perms[k]) {
 154				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
 
 155				       p_in->perms[k], p_in->name);
 156				if (pol->reject_unknown)
 157					goto err;
 158				print_unknown_handle = true;
 159			}
 160
 161			k++;
 162		}
 163		p_out->num_perms = k;
 164	}
 165
 166	if (print_unknown_handle)
 167		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
 168		       pol->allow_unknown ? "allowed" : "denied");
 169
 170	out_map->size = i;
 
 171	return 0;
 172err:
 173	kfree(out_map->mapping);
 174	out_map->mapping = NULL;
 175	return -EINVAL;
 176}
 177
 178/*
 179 * Get real, policy values from mapped values
 180 */
 181
 182static u16 unmap_class(struct selinux_map *map, u16 tclass)
 183{
 184	if (tclass < map->size)
 185		return map->mapping[tclass].value;
 186
 187	return tclass;
 188}
 189
 190/*
 191 * Get kernel value for class from its policy value
 192 */
 193static u16 map_class(struct selinux_map *map, u16 pol_value)
 194{
 195	u16 i;
 196
 197	for (i = 1; i < map->size; i++) {
 198		if (map->mapping[i].value == pol_value)
 199			return i;
 200	}
 201
 202	return SECCLASS_NULL;
 203}
 204
 205static void map_decision(struct selinux_map *map,
 206			 u16 tclass, struct av_decision *avd,
 207			 int allow_unknown)
 208{
 209	if (tclass < map->size) {
 210		struct selinux_mapping *mapping = &map->mapping[tclass];
 211		unsigned int i, n = mapping->num_perms;
 212		u32 result;
 213
 214		for (i = 0, result = 0; i < n; i++) {
 215			if (avd->allowed & mapping->perms[i])
 216				result |= 1<<i;
 217			if (allow_unknown && !mapping->perms[i])
 218				result |= 1<<i;
 219		}
 220		avd->allowed = result;
 221
 222		for (i = 0, result = 0; i < n; i++)
 223			if (avd->auditallow & mapping->perms[i])
 224				result |= 1<<i;
 225		avd->auditallow = result;
 226
 227		for (i = 0, result = 0; i < n; i++) {
 228			if (avd->auditdeny & mapping->perms[i])
 229				result |= 1<<i;
 230			if (!allow_unknown && !mapping->perms[i])
 231				result |= 1<<i;
 232		}
 233		/*
 234		 * In case the kernel has a bug and requests a permission
 235		 * between num_perms and the maximum permission number, we
 236		 * should audit that denial
 237		 */
 238		for (; i < (sizeof(u32)*8); i++)
 239			result |= 1<<i;
 240		avd->auditdeny = result;
 241	}
 242}
 243
 244int security_mls_enabled(struct selinux_state *state)
 245{
 246	struct policydb *p = &state->ss->policydb;
 247
 248	return p->mls_enabled;
 249}
 250
 251/*
 252 * Return the boolean value of a constraint expression
 253 * when it is applied to the specified source and target
 254 * security contexts.
 255 *
 256 * xcontext is a special beast...  It is used by the validatetrans rules
 257 * only.  For these rules, scontext is the context before the transition,
 258 * tcontext is the context after the transition, and xcontext is the context
 259 * of the process performing the transition.  All other callers of
 260 * constraint_expr_eval should pass in NULL for xcontext.
 261 */
 262static int constraint_expr_eval(struct policydb *policydb,
 263				struct context *scontext,
 264				struct context *tcontext,
 265				struct context *xcontext,
 266				struct constraint_expr *cexpr)
 267{
 268	u32 val1, val2;
 269	struct context *c;
 270	struct role_datum *r1, *r2;
 271	struct mls_level *l1, *l2;
 272	struct constraint_expr *e;
 273	int s[CEXPR_MAXDEPTH];
 274	int sp = -1;
 275
 276	for (e = cexpr; e; e = e->next) {
 277		switch (e->expr_type) {
 278		case CEXPR_NOT:
 279			BUG_ON(sp < 0);
 280			s[sp] = !s[sp];
 281			break;
 282		case CEXPR_AND:
 283			BUG_ON(sp < 1);
 284			sp--;
 285			s[sp] &= s[sp + 1];
 286			break;
 287		case CEXPR_OR:
 288			BUG_ON(sp < 1);
 289			sp--;
 290			s[sp] |= s[sp + 1];
 291			break;
 292		case CEXPR_ATTR:
 293			if (sp == (CEXPR_MAXDEPTH - 1))
 294				return 0;
 295			switch (e->attr) {
 296			case CEXPR_USER:
 297				val1 = scontext->user;
 298				val2 = tcontext->user;
 299				break;
 300			case CEXPR_TYPE:
 301				val1 = scontext->type;
 302				val2 = tcontext->type;
 303				break;
 304			case CEXPR_ROLE:
 305				val1 = scontext->role;
 306				val2 = tcontext->role;
 307				r1 = policydb->role_val_to_struct[val1 - 1];
 308				r2 = policydb->role_val_to_struct[val2 - 1];
 309				switch (e->op) {
 310				case CEXPR_DOM:
 311					s[++sp] = ebitmap_get_bit(&r1->dominates,
 312								  val2 - 1);
 313					continue;
 314				case CEXPR_DOMBY:
 315					s[++sp] = ebitmap_get_bit(&r2->dominates,
 316								  val1 - 1);
 317					continue;
 318				case CEXPR_INCOMP:
 319					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 320								    val2 - 1) &&
 321						   !ebitmap_get_bit(&r2->dominates,
 322								    val1 - 1));
 323					continue;
 324				default:
 325					break;
 326				}
 327				break;
 328			case CEXPR_L1L2:
 329				l1 = &(scontext->range.level[0]);
 330				l2 = &(tcontext->range.level[0]);
 331				goto mls_ops;
 332			case CEXPR_L1H2:
 333				l1 = &(scontext->range.level[0]);
 334				l2 = &(tcontext->range.level[1]);
 335				goto mls_ops;
 336			case CEXPR_H1L2:
 337				l1 = &(scontext->range.level[1]);
 338				l2 = &(tcontext->range.level[0]);
 339				goto mls_ops;
 340			case CEXPR_H1H2:
 341				l1 = &(scontext->range.level[1]);
 342				l2 = &(tcontext->range.level[1]);
 343				goto mls_ops;
 344			case CEXPR_L1H1:
 345				l1 = &(scontext->range.level[0]);
 346				l2 = &(scontext->range.level[1]);
 347				goto mls_ops;
 348			case CEXPR_L2H2:
 349				l1 = &(tcontext->range.level[0]);
 350				l2 = &(tcontext->range.level[1]);
 351				goto mls_ops;
 352mls_ops:
 353			switch (e->op) {
 354			case CEXPR_EQ:
 355				s[++sp] = mls_level_eq(l1, l2);
 356				continue;
 357			case CEXPR_NEQ:
 358				s[++sp] = !mls_level_eq(l1, l2);
 359				continue;
 360			case CEXPR_DOM:
 361				s[++sp] = mls_level_dom(l1, l2);
 362				continue;
 363			case CEXPR_DOMBY:
 364				s[++sp] = mls_level_dom(l2, l1);
 365				continue;
 366			case CEXPR_INCOMP:
 367				s[++sp] = mls_level_incomp(l2, l1);
 368				continue;
 369			default:
 370				BUG();
 371				return 0;
 372			}
 373			break;
 374			default:
 375				BUG();
 376				return 0;
 377			}
 378
 379			switch (e->op) {
 380			case CEXPR_EQ:
 381				s[++sp] = (val1 == val2);
 382				break;
 383			case CEXPR_NEQ:
 384				s[++sp] = (val1 != val2);
 385				break;
 386			default:
 387				BUG();
 388				return 0;
 389			}
 390			break;
 391		case CEXPR_NAMES:
 392			if (sp == (CEXPR_MAXDEPTH-1))
 393				return 0;
 394			c = scontext;
 395			if (e->attr & CEXPR_TARGET)
 396				c = tcontext;
 397			else if (e->attr & CEXPR_XTARGET) {
 398				c = xcontext;
 399				if (!c) {
 400					BUG();
 401					return 0;
 402				}
 403			}
 404			if (e->attr & CEXPR_USER)
 405				val1 = c->user;
 406			else if (e->attr & CEXPR_ROLE)
 407				val1 = c->role;
 408			else if (e->attr & CEXPR_TYPE)
 409				val1 = c->type;
 410			else {
 411				BUG();
 412				return 0;
 413			}
 414
 415			switch (e->op) {
 416			case CEXPR_EQ:
 417				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 418				break;
 419			case CEXPR_NEQ:
 420				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 421				break;
 422			default:
 423				BUG();
 424				return 0;
 425			}
 426			break;
 427		default:
 428			BUG();
 429			return 0;
 430		}
 431	}
 432
 433	BUG_ON(sp != 0);
 434	return s[0];
 435}
 436
 437/*
 438 * security_dump_masked_av - dumps masked permissions during
 439 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 440 */
 441static int dump_masked_av_helper(void *k, void *d, void *args)
 442{
 443	struct perm_datum *pdatum = d;
 444	char **permission_names = args;
 445
 446	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 447
 448	permission_names[pdatum->value - 1] = (char *)k;
 449
 450	return 0;
 451}
 452
 453static void security_dump_masked_av(struct policydb *policydb,
 454				    struct context *scontext,
 455				    struct context *tcontext,
 456				    u16 tclass,
 457				    u32 permissions,
 458				    const char *reason)
 459{
 460	struct common_datum *common_dat;
 461	struct class_datum *tclass_dat;
 462	struct audit_buffer *ab;
 463	char *tclass_name;
 464	char *scontext_name = NULL;
 465	char *tcontext_name = NULL;
 466	char *permission_names[32];
 467	int index;
 468	u32 length;
 469	bool need_comma = false;
 470
 471	if (!permissions)
 472		return;
 473
 474	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
 475	tclass_dat = policydb->class_val_to_struct[tclass - 1];
 476	common_dat = tclass_dat->comdatum;
 477
 478	/* init permission_names */
 479	if (common_dat &&
 480	    hashtab_map(common_dat->permissions.table,
 481			dump_masked_av_helper, permission_names) < 0)
 482		goto out;
 483
 484	if (hashtab_map(tclass_dat->permissions.table,
 485			dump_masked_av_helper, permission_names) < 0)
 486		goto out;
 487
 488	/* get scontext/tcontext in text form */
 489	if (context_struct_to_string(policydb, scontext,
 490				     &scontext_name, &length) < 0)
 491		goto out;
 492
 493	if (context_struct_to_string(policydb, tcontext,
 494				     &tcontext_name, &length) < 0)
 495		goto out;
 496
 497	/* audit a message */
 498	ab = audit_log_start(audit_context(),
 499			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
 500	if (!ab)
 501		goto out;
 502
 503	audit_log_format(ab, "op=security_compute_av reason=%s "
 504			 "scontext=%s tcontext=%s tclass=%s perms=",
 505			 reason, scontext_name, tcontext_name, tclass_name);
 506
 507	for (index = 0; index < 32; index++) {
 508		u32 mask = (1 << index);
 509
 510		if ((mask & permissions) == 0)
 511			continue;
 512
 513		audit_log_format(ab, "%s%s",
 514				 need_comma ? "," : "",
 515				 permission_names[index]
 516				 ? permission_names[index] : "????");
 517		need_comma = true;
 518	}
 519	audit_log_end(ab);
 520out:
 521	/* release scontext/tcontext */
 522	kfree(tcontext_name);
 523	kfree(scontext_name);
 524
 525	return;
 526}
 527
 528/*
 529 * security_boundary_permission - drops violated permissions
 530 * on boundary constraint.
 531 */
 532static void type_attribute_bounds_av(struct policydb *policydb,
 533				     struct context *scontext,
 534				     struct context *tcontext,
 535				     u16 tclass,
 536				     struct av_decision *avd)
 537{
 538	struct context lo_scontext;
 539	struct context lo_tcontext, *tcontextp = tcontext;
 540	struct av_decision lo_avd;
 541	struct type_datum *source;
 542	struct type_datum *target;
 543	u32 masked = 0;
 544
 545	source = policydb->type_val_to_struct[scontext->type - 1];
 
 546	BUG_ON(!source);
 547
 548	if (!source->bounds)
 549		return;
 550
 551	target = policydb->type_val_to_struct[tcontext->type - 1];
 552	BUG_ON(!target);
 553
 554	memset(&lo_avd, 0, sizeof(lo_avd));
 
 555
 556	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 557	lo_scontext.type = source->bounds;
 558
 559	if (target->bounds) {
 560		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 561		lo_tcontext.type = target->bounds;
 562		tcontextp = &lo_tcontext;
 
 
 
 563	}
 564
 565	context_struct_compute_av(policydb, &lo_scontext,
 566				  tcontextp,
 567				  tclass,
 568				  &lo_avd,
 569				  NULL);
 570
 571	masked = ~lo_avd.allowed & avd->allowed;
 572
 573	if (likely(!masked))
 574		return;		/* no masked permission */
 575
 576	/* mask violated permissions */
 577	avd->allowed &= ~masked;
 
 
 
 
 
 
 578
 579	/* audit masked permissions */
 580	security_dump_masked_av(policydb, scontext, tcontext,
 581				tclass, masked, "bounds");
 582}
 
 
 583
 584/*
 585 * flag which drivers have permissions
 586 * only looking for ioctl based extended permssions
 587 */
 588void services_compute_xperms_drivers(
 589		struct extended_perms *xperms,
 590		struct avtab_node *node)
 591{
 592	unsigned int i;
 593
 594	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 595		/* if one or more driver has all permissions allowed */
 596		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
 597			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
 598	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 599		/* if allowing permissions within a driver */
 600		security_xperm_set(xperms->drivers.p,
 601					node->datum.u.xperms->driver);
 602	}
 603
 604	/* If no ioctl commands are allowed, ignore auditallow and auditdeny */
 605	if (node->key.specified & AVTAB_XPERMS_ALLOWED)
 606		xperms->len = 1;
 607}
 608
 609/*
 610 * Compute access vectors and extended permissions based on a context
 611 * structure pair for the permissions in a particular class.
 612 */
 613static void context_struct_compute_av(struct policydb *policydb,
 614				      struct context *scontext,
 615				      struct context *tcontext,
 616				      u16 tclass,
 617				      struct av_decision *avd,
 618				      struct extended_perms *xperms)
 619{
 620	struct constraint_node *constraint;
 621	struct role_allow *ra;
 622	struct avtab_key avkey;
 623	struct avtab_node *node;
 624	struct class_datum *tclass_datum;
 625	struct ebitmap *sattr, *tattr;
 626	struct ebitmap_node *snode, *tnode;
 627	unsigned int i, j;
 628
 629	avd->allowed = 0;
 630	avd->auditallow = 0;
 631	avd->auditdeny = 0xffffffff;
 632	if (xperms) {
 633		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
 634		xperms->len = 0;
 635	}
 636
 637	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
 638		if (printk_ratelimit())
 639			pr_warn("SELinux:  Invalid class %hu\n", tclass);
 640		return;
 641	}
 642
 643	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 644
 645	/*
 646	 * If a specific type enforcement rule was defined for
 647	 * this permission check, then use it.
 648	 */
 649	avkey.target_class = tclass;
 650	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
 651	sattr = &policydb->type_attr_map_array[scontext->type - 1];
 652	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
 
 
 653	ebitmap_for_each_positive_bit(sattr, snode, i) {
 654		ebitmap_for_each_positive_bit(tattr, tnode, j) {
 655			avkey.source_type = i + 1;
 656			avkey.target_type = j + 1;
 657			for (node = avtab_search_node(&policydb->te_avtab,
 658						      &avkey);
 659			     node;
 660			     node = avtab_search_node_next(node, avkey.specified)) {
 661				if (node->key.specified == AVTAB_ALLOWED)
 662					avd->allowed |= node->datum.u.data;
 663				else if (node->key.specified == AVTAB_AUDITALLOW)
 664					avd->auditallow |= node->datum.u.data;
 665				else if (node->key.specified == AVTAB_AUDITDENY)
 666					avd->auditdeny &= node->datum.u.data;
 667				else if (xperms && (node->key.specified & AVTAB_XPERMS))
 668					services_compute_xperms_drivers(xperms, node);
 669			}
 670
 671			/* Check conditional av table for additional permissions */
 672			cond_compute_av(&policydb->te_cond_avtab, &avkey,
 673					avd, xperms);
 674
 675		}
 676	}
 677
 678	/*
 679	 * Remove any permissions prohibited by a constraint (this includes
 680	 * the MLS policy).
 681	 */
 682	constraint = tclass_datum->constraints;
 683	while (constraint) {
 684		if ((constraint->permissions & (avd->allowed)) &&
 685		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
 686					  constraint->expr)) {
 687			avd->allowed &= ~(constraint->permissions);
 688		}
 689		constraint = constraint->next;
 690	}
 691
 692	/*
 693	 * If checking process transition permission and the
 694	 * role is changing, then check the (current_role, new_role)
 695	 * pair.
 696	 */
 697	if (tclass == policydb->process_class &&
 698	    (avd->allowed & policydb->process_trans_perms) &&
 699	    scontext->role != tcontext->role) {
 700		for (ra = policydb->role_allow; ra; ra = ra->next) {
 701			if (scontext->role == ra->role &&
 702			    tcontext->role == ra->new_role)
 703				break;
 704		}
 705		if (!ra)
 706			avd->allowed &= ~policydb->process_trans_perms;
 707	}
 708
 709	/*
 710	 * If the given source and target types have boundary
 711	 * constraint, lazy checks have to mask any violated
 712	 * permission and notice it to userspace via audit.
 713	 */
 714	type_attribute_bounds_av(policydb, scontext, tcontext,
 715				 tclass, avd);
 716}
 717
 718static int security_validtrans_handle_fail(struct selinux_state *state,
 719					   struct context *ocontext,
 720					   struct context *ncontext,
 721					   struct context *tcontext,
 722					   u16 tclass)
 723{
 724	struct policydb *p = &state->ss->policydb;
 725	char *o = NULL, *n = NULL, *t = NULL;
 726	u32 olen, nlen, tlen;
 727
 728	if (context_struct_to_string(p, ocontext, &o, &olen))
 729		goto out;
 730	if (context_struct_to_string(p, ncontext, &n, &nlen))
 731		goto out;
 732	if (context_struct_to_string(p, tcontext, &t, &tlen))
 733		goto out;
 734	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
 735		  "op=security_validate_transition seresult=denied"
 736		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 737		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
 738out:
 739	kfree(o);
 740	kfree(n);
 741	kfree(t);
 742
 743	if (!enforcing_enabled(state))
 744		return 0;
 745	return -EPERM;
 746}
 747
 748static int security_compute_validatetrans(struct selinux_state *state,
 749					  u32 oldsid, u32 newsid, u32 tasksid,
 750					  u16 orig_tclass, bool user)
 751{
 752	struct policydb *policydb;
 753	struct sidtab *sidtab;
 754	struct context *ocontext;
 755	struct context *ncontext;
 756	struct context *tcontext;
 757	struct class_datum *tclass_datum;
 758	struct constraint_node *constraint;
 759	u16 tclass;
 760	int rc = 0;
 761
 762
 763	if (!state->initialized)
 764		return 0;
 765
 766	read_lock(&state->ss->policy_rwlock);
 767
 768	policydb = &state->ss->policydb;
 769	sidtab = state->ss->sidtab;
 770
 771	if (!user)
 772		tclass = unmap_class(&state->ss->map, orig_tclass);
 773	else
 774		tclass = orig_tclass;
 775
 776	if (!tclass || tclass > policydb->p_classes.nprim) {
 777		rc = -EINVAL;
 778		goto out;
 779	}
 780	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 781
 782	ocontext = sidtab_search(sidtab, oldsid);
 783	if (!ocontext) {
 784		pr_err("SELinux: %s:  unrecognized SID %d\n",
 785			__func__, oldsid);
 786		rc = -EINVAL;
 787		goto out;
 788	}
 789
 790	ncontext = sidtab_search(sidtab, newsid);
 791	if (!ncontext) {
 792		pr_err("SELinux: %s:  unrecognized SID %d\n",
 793			__func__, newsid);
 794		rc = -EINVAL;
 795		goto out;
 796	}
 797
 798	tcontext = sidtab_search(sidtab, tasksid);
 799	if (!tcontext) {
 800		pr_err("SELinux: %s:  unrecognized SID %d\n",
 801			__func__, tasksid);
 802		rc = -EINVAL;
 803		goto out;
 804	}
 805
 806	constraint = tclass_datum->validatetrans;
 807	while (constraint) {
 808		if (!constraint_expr_eval(policydb, ocontext, ncontext,
 809					  tcontext, constraint->expr)) {
 810			if (user)
 811				rc = -EPERM;
 812			else
 813				rc = security_validtrans_handle_fail(state,
 814								     ocontext,
 815								     ncontext,
 816								     tcontext,
 817								     tclass);
 818			goto out;
 819		}
 820		constraint = constraint->next;
 821	}
 822
 823out:
 824	read_unlock(&state->ss->policy_rwlock);
 825	return rc;
 826}
 827
 828int security_validate_transition_user(struct selinux_state *state,
 829				      u32 oldsid, u32 newsid, u32 tasksid,
 830				      u16 tclass)
 831{
 832	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 833					      tclass, true);
 834}
 835
 836int security_validate_transition(struct selinux_state *state,
 837				 u32 oldsid, u32 newsid, u32 tasksid,
 838				 u16 orig_tclass)
 839{
 840	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 841					      orig_tclass, false);
 842}
 843
 844/*
 845 * security_bounded_transition - check whether the given
 846 * transition is directed to bounded, or not.
 847 * It returns 0, if @newsid is bounded by @oldsid.
 848 * Otherwise, it returns error code.
 849 *
 850 * @oldsid : current security identifier
 851 * @newsid : destinated security identifier
 852 */
 853int security_bounded_transition(struct selinux_state *state,
 854				u32 old_sid, u32 new_sid)
 855{
 856	struct policydb *policydb;
 857	struct sidtab *sidtab;
 858	struct context *old_context, *new_context;
 859	struct type_datum *type;
 860	int index;
 861	int rc;
 862
 863	if (!state->initialized)
 864		return 0;
 865
 866	read_lock(&state->ss->policy_rwlock);
 867
 868	policydb = &state->ss->policydb;
 869	sidtab = state->ss->sidtab;
 870
 871	rc = -EINVAL;
 872	old_context = sidtab_search(sidtab, old_sid);
 873	if (!old_context) {
 874		pr_err("SELinux: %s: unrecognized SID %u\n",
 875		       __func__, old_sid);
 876		goto out;
 877	}
 878
 879	rc = -EINVAL;
 880	new_context = sidtab_search(sidtab, new_sid);
 881	if (!new_context) {
 882		pr_err("SELinux: %s: unrecognized SID %u\n",
 883		       __func__, new_sid);
 884		goto out;
 885	}
 886
 887	rc = 0;
 888	/* type/domain unchanged */
 889	if (old_context->type == new_context->type)
 890		goto out;
 891
 892	index = new_context->type;
 893	while (true) {
 894		type = policydb->type_val_to_struct[index - 1];
 
 895		BUG_ON(!type);
 896
 897		/* not bounded anymore */
 898		rc = -EPERM;
 899		if (!type->bounds)
 900			break;
 901
 902		/* @newsid is bounded by @oldsid */
 903		rc = 0;
 904		if (type->bounds == old_context->type)
 905			break;
 906
 907		index = type->bounds;
 908	}
 909
 910	if (rc) {
 911		char *old_name = NULL;
 912		char *new_name = NULL;
 913		u32 length;
 914
 915		if (!context_struct_to_string(policydb, old_context,
 916					      &old_name, &length) &&
 917		    !context_struct_to_string(policydb, new_context,
 918					      &new_name, &length)) {
 919			audit_log(audit_context(),
 920				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 921				  "op=security_bounded_transition "
 922				  "seresult=denied "
 923				  "oldcontext=%s newcontext=%s",
 924				  old_name, new_name);
 925		}
 926		kfree(new_name);
 927		kfree(old_name);
 928	}
 929out:
 930	read_unlock(&state->ss->policy_rwlock);
 931
 932	return rc;
 933}
 934
 935static void avd_init(struct selinux_state *state, struct av_decision *avd)
 936{
 937	avd->allowed = 0;
 938	avd->auditallow = 0;
 939	avd->auditdeny = 0xffffffff;
 940	avd->seqno = state->ss->latest_granting;
 941	avd->flags = 0;
 942}
 943
 944void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
 945					struct avtab_node *node)
 946{
 947	unsigned int i;
 948
 949	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 950		if (xpermd->driver != node->datum.u.xperms->driver)
 951			return;
 952	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 953		if (!security_xperm_test(node->datum.u.xperms->perms.p,
 954					xpermd->driver))
 955			return;
 956	} else {
 957		BUG();
 958	}
 959
 960	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
 961		xpermd->used |= XPERMS_ALLOWED;
 962		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 963			memset(xpermd->allowed->p, 0xff,
 964					sizeof(xpermd->allowed->p));
 965		}
 966		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 967			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
 968				xpermd->allowed->p[i] |=
 969					node->datum.u.xperms->perms.p[i];
 970		}
 971	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
 972		xpermd->used |= XPERMS_AUDITALLOW;
 973		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 974			memset(xpermd->auditallow->p, 0xff,
 975					sizeof(xpermd->auditallow->p));
 976		}
 977		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 978			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
 979				xpermd->auditallow->p[i] |=
 980					node->datum.u.xperms->perms.p[i];
 981		}
 982	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
 983		xpermd->used |= XPERMS_DONTAUDIT;
 984		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 985			memset(xpermd->dontaudit->p, 0xff,
 986					sizeof(xpermd->dontaudit->p));
 987		}
 988		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 989			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
 990				xpermd->dontaudit->p[i] |=
 991					node->datum.u.xperms->perms.p[i];
 992		}
 993	} else {
 994		BUG();
 995	}
 996}
 997
 998void security_compute_xperms_decision(struct selinux_state *state,
 999				      u32 ssid,
1000				      u32 tsid,
1001				      u16 orig_tclass,
1002				      u8 driver,
1003				      struct extended_perms_decision *xpermd)
1004{
1005	struct policydb *policydb;
1006	struct sidtab *sidtab;
1007	u16 tclass;
1008	struct context *scontext, *tcontext;
1009	struct avtab_key avkey;
1010	struct avtab_node *node;
1011	struct ebitmap *sattr, *tattr;
1012	struct ebitmap_node *snode, *tnode;
1013	unsigned int i, j;
1014
1015	xpermd->driver = driver;
1016	xpermd->used = 0;
1017	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1018	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1019	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1020
1021	read_lock(&state->ss->policy_rwlock);
1022	if (!state->initialized)
1023		goto allow;
1024
1025	policydb = &state->ss->policydb;
1026	sidtab = state->ss->sidtab;
1027
1028	scontext = sidtab_search(sidtab, ssid);
1029	if (!scontext) {
1030		pr_err("SELinux: %s:  unrecognized SID %d\n",
1031		       __func__, ssid);
1032		goto out;
1033	}
1034
1035	tcontext = sidtab_search(sidtab, tsid);
1036	if (!tcontext) {
1037		pr_err("SELinux: %s:  unrecognized SID %d\n",
1038		       __func__, tsid);
1039		goto out;
1040	}
1041
1042	tclass = unmap_class(&state->ss->map, orig_tclass);
1043	if (unlikely(orig_tclass && !tclass)) {
1044		if (policydb->allow_unknown)
1045			goto allow;
1046		goto out;
1047	}
1048
1049
1050	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1051		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1052		goto out;
1053	}
1054
1055	avkey.target_class = tclass;
1056	avkey.specified = AVTAB_XPERMS;
1057	sattr = &policydb->type_attr_map_array[scontext->type - 1];
1058	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1059	ebitmap_for_each_positive_bit(sattr, snode, i) {
1060		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1061			avkey.source_type = i + 1;
1062			avkey.target_type = j + 1;
1063			for (node = avtab_search_node(&policydb->te_avtab,
1064						      &avkey);
1065			     node;
1066			     node = avtab_search_node_next(node, avkey.specified))
1067				services_compute_xperms_decision(xpermd, node);
1068
1069			cond_compute_xperms(&policydb->te_cond_avtab,
1070						&avkey, xpermd);
1071		}
1072	}
1073out:
1074	read_unlock(&state->ss->policy_rwlock);
1075	return;
1076allow:
1077	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1078	goto out;
1079}
1080
1081/**
1082 * security_compute_av - Compute access vector decisions.
1083 * @ssid: source security identifier
1084 * @tsid: target security identifier
1085 * @tclass: target security class
1086 * @avd: access vector decisions
1087 * @xperms: extended permissions
1088 *
1089 * Compute a set of access vector decisions based on the
1090 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1091 */
1092void security_compute_av(struct selinux_state *state,
1093			 u32 ssid,
1094			 u32 tsid,
1095			 u16 orig_tclass,
1096			 struct av_decision *avd,
1097			 struct extended_perms *xperms)
1098{
1099	struct policydb *policydb;
1100	struct sidtab *sidtab;
1101	u16 tclass;
1102	struct context *scontext = NULL, *tcontext = NULL;
1103
1104	read_lock(&state->ss->policy_rwlock);
1105	avd_init(state, avd);
1106	xperms->len = 0;
1107	if (!state->initialized)
1108		goto allow;
1109
1110	policydb = &state->ss->policydb;
1111	sidtab = state->ss->sidtab;
1112
1113	scontext = sidtab_search(sidtab, ssid);
1114	if (!scontext) {
1115		pr_err("SELinux: %s:  unrecognized SID %d\n",
1116		       __func__, ssid);
1117		goto out;
1118	}
1119
1120	/* permissive domain? */
1121	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1122		avd->flags |= AVD_FLAGS_PERMISSIVE;
1123
1124	tcontext = sidtab_search(sidtab, tsid);
1125	if (!tcontext) {
1126		pr_err("SELinux: %s:  unrecognized SID %d\n",
1127		       __func__, tsid);
1128		goto out;
1129	}
1130
1131	tclass = unmap_class(&state->ss->map, orig_tclass);
1132	if (unlikely(orig_tclass && !tclass)) {
1133		if (policydb->allow_unknown)
1134			goto allow;
1135		goto out;
1136	}
1137	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1138				  xperms);
1139	map_decision(&state->ss->map, orig_tclass, avd,
1140		     policydb->allow_unknown);
1141out:
1142	read_unlock(&state->ss->policy_rwlock);
1143	return;
1144allow:
1145	avd->allowed = 0xffffffff;
1146	goto out;
1147}
1148
1149void security_compute_av_user(struct selinux_state *state,
1150			      u32 ssid,
1151			      u32 tsid,
1152			      u16 tclass,
1153			      struct av_decision *avd)
1154{
1155	struct policydb *policydb;
1156	struct sidtab *sidtab;
1157	struct context *scontext = NULL, *tcontext = NULL;
1158
1159	read_lock(&state->ss->policy_rwlock);
1160	avd_init(state, avd);
1161	if (!state->initialized)
1162		goto allow;
1163
1164	policydb = &state->ss->policydb;
1165	sidtab = state->ss->sidtab;
1166
1167	scontext = sidtab_search(sidtab, ssid);
1168	if (!scontext) {
1169		pr_err("SELinux: %s:  unrecognized SID %d\n",
1170		       __func__, ssid);
1171		goto out;
1172	}
1173
1174	/* permissive domain? */
1175	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1176		avd->flags |= AVD_FLAGS_PERMISSIVE;
1177
1178	tcontext = sidtab_search(sidtab, tsid);
1179	if (!tcontext) {
1180		pr_err("SELinux: %s:  unrecognized SID %d\n",
1181		       __func__, tsid);
1182		goto out;
1183	}
1184
1185	if (unlikely(!tclass)) {
1186		if (policydb->allow_unknown)
1187			goto allow;
1188		goto out;
1189	}
1190
1191	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1192				  NULL);
1193 out:
1194	read_unlock(&state->ss->policy_rwlock);
1195	return;
1196allow:
1197	avd->allowed = 0xffffffff;
1198	goto out;
1199}
1200
1201/*
1202 * Write the security context string representation of
1203 * the context structure `context' into a dynamically
1204 * allocated string of the correct size.  Set `*scontext'
1205 * to point to this string and set `*scontext_len' to
1206 * the length of the string.
1207 */
1208static int context_struct_to_string(struct policydb *p,
1209				    struct context *context,
1210				    char **scontext, u32 *scontext_len)
1211{
1212	char *scontextp;
1213
1214	if (scontext)
1215		*scontext = NULL;
1216	*scontext_len = 0;
1217
1218	if (context->len) {
1219		*scontext_len = context->len;
1220		if (scontext) {
1221			*scontext = kstrdup(context->str, GFP_ATOMIC);
1222			if (!(*scontext))
1223				return -ENOMEM;
1224		}
1225		return 0;
1226	}
1227
1228	/* Compute the size of the context. */
1229	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1230	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1231	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1232	*scontext_len += mls_compute_context_len(p, context);
1233
1234	if (!scontext)
1235		return 0;
1236
1237	/* Allocate space for the context; caller must free this space. */
1238	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1239	if (!scontextp)
1240		return -ENOMEM;
1241	*scontext = scontextp;
1242
1243	/*
1244	 * Copy the user name, role name and type name into the context.
1245	 */
1246	scontextp += sprintf(scontextp, "%s:%s:%s",
1247		sym_name(p, SYM_USERS, context->user - 1),
1248		sym_name(p, SYM_ROLES, context->role - 1),
1249		sym_name(p, SYM_TYPES, context->type - 1));
 
 
 
1250
1251	mls_sid_to_context(p, context, &scontextp);
1252
1253	*scontextp = 0;
1254
1255	return 0;
1256}
1257
1258#include "initial_sid_to_string.h"
1259
1260const char *security_get_initial_sid_context(u32 sid)
1261{
1262	if (unlikely(sid > SECINITSID_NUM))
1263		return NULL;
1264	return initial_sid_to_string[sid];
1265}
1266
1267static int security_sid_to_context_core(struct selinux_state *state,
1268					u32 sid, char **scontext,
1269					u32 *scontext_len, int force,
1270					int only_invalid)
1271{
1272	struct policydb *policydb;
1273	struct sidtab *sidtab;
1274	struct context *context;
1275	int rc = 0;
1276
1277	if (scontext)
1278		*scontext = NULL;
1279	*scontext_len  = 0;
1280
1281	if (!state->initialized) {
1282		if (sid <= SECINITSID_NUM) {
1283			char *scontextp;
1284
1285			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1286			if (!scontext)
1287				goto out;
1288			scontextp = kmemdup(initial_sid_to_string[sid],
1289					    *scontext_len, GFP_ATOMIC);
1290			if (!scontextp) {
1291				rc = -ENOMEM;
1292				goto out;
1293			}
 
1294			*scontext = scontextp;
1295			goto out;
1296		}
1297		pr_err("SELinux: %s:  called before initial "
1298		       "load_policy on unknown SID %d\n", __func__, sid);
1299		rc = -EINVAL;
1300		goto out;
1301	}
1302	read_lock(&state->ss->policy_rwlock);
1303	policydb = &state->ss->policydb;
1304	sidtab = state->ss->sidtab;
1305	if (force)
1306		context = sidtab_search_force(sidtab, sid);
1307	else
1308		context = sidtab_search(sidtab, sid);
1309	if (!context) {
1310		pr_err("SELinux: %s:  unrecognized SID %d\n",
1311			__func__, sid);
1312		rc = -EINVAL;
1313		goto out_unlock;
1314	}
1315	if (only_invalid && !context->len)
1316		rc = 0;
1317	else
1318		rc = context_struct_to_string(policydb, context, scontext,
1319					      scontext_len);
1320out_unlock:
1321	read_unlock(&state->ss->policy_rwlock);
1322out:
1323	return rc;
1324
1325}
1326
1327/**
1328 * security_sid_to_context - Obtain a context for a given SID.
1329 * @sid: security identifier, SID
1330 * @scontext: security context
1331 * @scontext_len: length in bytes
1332 *
1333 * Write the string representation of the context associated with @sid
1334 * into a dynamically allocated string of the correct size.  Set @scontext
1335 * to point to this string and set @scontext_len to the length of the string.
1336 */
1337int security_sid_to_context(struct selinux_state *state,
1338			    u32 sid, char **scontext, u32 *scontext_len)
1339{
1340	return security_sid_to_context_core(state, sid, scontext,
1341					    scontext_len, 0, 0);
1342}
1343
1344int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1345				  char **scontext, u32 *scontext_len)
1346{
1347	return security_sid_to_context_core(state, sid, scontext,
1348					    scontext_len, 1, 0);
1349}
1350
1351/**
1352 * security_sid_to_context_inval - Obtain a context for a given SID if it
1353 *                                 is invalid.
1354 * @sid: security identifier, SID
1355 * @scontext: security context
1356 * @scontext_len: length in bytes
1357 *
1358 * Write the string representation of the context associated with @sid
1359 * into a dynamically allocated string of the correct size, but only if the
1360 * context is invalid in the current policy.  Set @scontext to point to
1361 * this string (or NULL if the context is valid) and set @scontext_len to
1362 * the length of the string (or 0 if the context is valid).
1363 */
1364int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1365				  char **scontext, u32 *scontext_len)
1366{
1367	return security_sid_to_context_core(state, sid, scontext,
1368					    scontext_len, 1, 1);
1369}
1370
1371/*
1372 * Caveat:  Mutates scontext.
1373 */
1374static int string_to_context_struct(struct policydb *pol,
1375				    struct sidtab *sidtabp,
1376				    char *scontext,
 
1377				    struct context *ctx,
1378				    u32 def_sid)
1379{
1380	struct role_datum *role;
1381	struct type_datum *typdatum;
1382	struct user_datum *usrdatum;
1383	char *scontextp, *p, oldc;
1384	int rc = 0;
1385
1386	context_init(ctx);
1387
1388	/* Parse the security context. */
1389
1390	rc = -EINVAL;
1391	scontextp = (char *) scontext;
1392
1393	/* Extract the user. */
1394	p = scontextp;
1395	while (*p && *p != ':')
1396		p++;
1397
1398	if (*p == 0)
1399		goto out;
1400
1401	*p++ = 0;
1402
1403	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1404	if (!usrdatum)
1405		goto out;
1406
1407	ctx->user = usrdatum->value;
1408
1409	/* Extract role. */
1410	scontextp = p;
1411	while (*p && *p != ':')
1412		p++;
1413
1414	if (*p == 0)
1415		goto out;
1416
1417	*p++ = 0;
1418
1419	role = hashtab_search(pol->p_roles.table, scontextp);
1420	if (!role)
1421		goto out;
1422	ctx->role = role->value;
1423
1424	/* Extract type. */
1425	scontextp = p;
1426	while (*p && *p != ':')
1427		p++;
1428	oldc = *p;
1429	*p++ = 0;
1430
1431	typdatum = hashtab_search(pol->p_types.table, scontextp);
1432	if (!typdatum || typdatum->attribute)
1433		goto out;
1434
1435	ctx->type = typdatum->value;
1436
1437	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1438	if (rc)
1439		goto out;
1440
1441	/* Check the validity of the new context. */
1442	rc = -EINVAL;
 
 
 
 
1443	if (!policydb_context_isvalid(pol, ctx))
1444		goto out;
1445	rc = 0;
1446out:
1447	if (rc)
1448		context_destroy(ctx);
1449	return rc;
1450}
1451
1452static int security_context_to_sid_core(struct selinux_state *state,
1453					const char *scontext, u32 scontext_len,
1454					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1455					int force)
1456{
1457	struct policydb *policydb;
1458	struct sidtab *sidtab;
1459	char *scontext2, *str = NULL;
1460	struct context context;
1461	int rc = 0;
1462
1463	/* An empty security context is never valid. */
1464	if (!scontext_len)
1465		return -EINVAL;
1466
1467	/* Copy the string to allow changes and ensure a NUL terminator */
1468	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1469	if (!scontext2)
1470		return -ENOMEM;
1471
1472	if (!state->initialized) {
1473		int i;
1474
1475		for (i = 1; i < SECINITSID_NUM; i++) {
1476			if (!strcmp(initial_sid_to_string[i], scontext2)) {
1477				*sid = i;
1478				goto out;
1479			}
1480		}
1481		*sid = SECINITSID_KERNEL;
1482		goto out;
1483	}
1484	*sid = SECSID_NULL;
1485
 
 
 
 
 
 
 
1486	if (force) {
1487		/* Save another copy for storing in uninterpreted form */
1488		rc = -ENOMEM;
1489		str = kstrdup(scontext2, gfp_flags);
1490		if (!str)
1491			goto out;
1492	}
1493	read_lock(&state->ss->policy_rwlock);
1494	policydb = &state->ss->policydb;
1495	sidtab = state->ss->sidtab;
1496	rc = string_to_context_struct(policydb, sidtab, scontext2,
1497				      &context, def_sid);
1498	if (rc == -EINVAL && force) {
1499		context.str = str;
1500		context.len = strlen(str) + 1;
1501		str = NULL;
1502	} else if (rc)
1503		goto out_unlock;
1504	rc = sidtab_context_to_sid(sidtab, &context, sid);
1505	context_destroy(&context);
1506out_unlock:
1507	read_unlock(&state->ss->policy_rwlock);
1508out:
1509	kfree(scontext2);
1510	kfree(str);
1511	return rc;
1512}
1513
1514/**
1515 * security_context_to_sid - Obtain a SID for a given security context.
1516 * @scontext: security context
1517 * @scontext_len: length in bytes
1518 * @sid: security identifier, SID
1519 * @gfp: context for the allocation
1520 *
1521 * Obtains a SID associated with the security context that
1522 * has the string representation specified by @scontext.
1523 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1524 * memory is available, or 0 on success.
1525 */
1526int security_context_to_sid(struct selinux_state *state,
1527			    const char *scontext, u32 scontext_len, u32 *sid,
1528			    gfp_t gfp)
1529{
1530	return security_context_to_sid_core(state, scontext, scontext_len,
1531					    sid, SECSID_NULL, gfp, 0);
1532}
1533
1534int security_context_str_to_sid(struct selinux_state *state,
1535				const char *scontext, u32 *sid, gfp_t gfp)
1536{
1537	return security_context_to_sid(state, scontext, strlen(scontext),
1538				       sid, gfp);
1539}
1540
1541/**
1542 * security_context_to_sid_default - Obtain a SID for a given security context,
1543 * falling back to specified default if needed.
1544 *
1545 * @scontext: security context
1546 * @scontext_len: length in bytes
1547 * @sid: security identifier, SID
1548 * @def_sid: default SID to assign on error
1549 *
1550 * Obtains a SID associated with the security context that
1551 * has the string representation specified by @scontext.
1552 * The default SID is passed to the MLS layer to be used to allow
1553 * kernel labeling of the MLS field if the MLS field is not present
1554 * (for upgrading to MLS without full relabel).
1555 * Implicitly forces adding of the context even if it cannot be mapped yet.
1556 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1557 * memory is available, or 0 on success.
1558 */
1559int security_context_to_sid_default(struct selinux_state *state,
1560				    const char *scontext, u32 scontext_len,
1561				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1562{
1563	return security_context_to_sid_core(state, scontext, scontext_len,
1564					    sid, def_sid, gfp_flags, 1);
1565}
1566
1567int security_context_to_sid_force(struct selinux_state *state,
1568				  const char *scontext, u32 scontext_len,
1569				  u32 *sid)
1570{
1571	return security_context_to_sid_core(state, scontext, scontext_len,
1572					    sid, SECSID_NULL, GFP_KERNEL, 1);
1573}
1574
1575static int compute_sid_handle_invalid_context(
1576	struct selinux_state *state,
1577	struct context *scontext,
1578	struct context *tcontext,
1579	u16 tclass,
1580	struct context *newcontext)
1581{
1582	struct policydb *policydb = &state->ss->policydb;
1583	char *s = NULL, *t = NULL, *n = NULL;
1584	u32 slen, tlen, nlen;
1585	struct audit_buffer *ab;
1586
1587	if (context_struct_to_string(policydb, scontext, &s, &slen))
1588		goto out;
1589	if (context_struct_to_string(policydb, tcontext, &t, &tlen))
1590		goto out;
1591	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1592		goto out;
1593	ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1594	audit_log_format(ab,
1595			 "op=security_compute_sid invalid_context=");
1596	/* no need to record the NUL with untrusted strings */
1597	audit_log_n_untrustedstring(ab, n, nlen - 1);
1598	audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1599			 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1600	audit_log_end(ab);
1601out:
1602	kfree(s);
1603	kfree(t);
1604	kfree(n);
1605	if (!enforcing_enabled(state))
1606		return 0;
1607	return -EACCES;
1608}
1609
1610static void filename_compute_type(struct policydb *policydb,
1611				  struct context *newcontext,
1612				  u32 stype, u32 ttype, u16 tclass,
1613				  const char *objname)
1614{
1615	struct filename_trans ft;
1616	struct filename_trans_datum *otype;
1617
1618	/*
1619	 * Most filename trans rules are going to live in specific directories
1620	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1621	 * if the ttype does not contain any rules.
1622	 */
1623	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1624		return;
1625
1626	ft.stype = stype;
1627	ft.ttype = ttype;
1628	ft.tclass = tclass;
1629	ft.name = objname;
1630
1631	otype = hashtab_search(policydb->filename_trans, &ft);
1632	if (otype)
1633		newcontext->type = otype->otype;
1634}
1635
1636static int security_compute_sid(struct selinux_state *state,
1637				u32 ssid,
1638				u32 tsid,
1639				u16 orig_tclass,
1640				u32 specified,
1641				const char *objname,
1642				u32 *out_sid,
1643				bool kern)
1644{
1645	struct policydb *policydb;
1646	struct sidtab *sidtab;
1647	struct class_datum *cladatum = NULL;
1648	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1649	struct role_trans *roletr = NULL;
1650	struct avtab_key avkey;
1651	struct avtab_datum *avdatum;
1652	struct avtab_node *node;
1653	u16 tclass;
1654	int rc = 0;
1655	bool sock;
1656
1657	if (!state->initialized) {
1658		switch (orig_tclass) {
1659		case SECCLASS_PROCESS: /* kernel value */
1660			*out_sid = ssid;
1661			break;
1662		default:
1663			*out_sid = tsid;
1664			break;
1665		}
1666		goto out;
1667	}
1668
1669	context_init(&newcontext);
1670
1671	read_lock(&state->ss->policy_rwlock);
1672
1673	if (kern) {
1674		tclass = unmap_class(&state->ss->map, orig_tclass);
1675		sock = security_is_socket_class(orig_tclass);
1676	} else {
1677		tclass = orig_tclass;
1678		sock = security_is_socket_class(map_class(&state->ss->map,
1679							  tclass));
1680	}
1681
1682	policydb = &state->ss->policydb;
1683	sidtab = state->ss->sidtab;
1684
1685	scontext = sidtab_search(sidtab, ssid);
1686	if (!scontext) {
1687		pr_err("SELinux: %s:  unrecognized SID %d\n",
1688		       __func__, ssid);
1689		rc = -EINVAL;
1690		goto out_unlock;
1691	}
1692	tcontext = sidtab_search(sidtab, tsid);
1693	if (!tcontext) {
1694		pr_err("SELinux: %s:  unrecognized SID %d\n",
1695		       __func__, tsid);
1696		rc = -EINVAL;
1697		goto out_unlock;
1698	}
1699
1700	if (tclass && tclass <= policydb->p_classes.nprim)
1701		cladatum = policydb->class_val_to_struct[tclass - 1];
1702
1703	/* Set the user identity. */
1704	switch (specified) {
1705	case AVTAB_TRANSITION:
1706	case AVTAB_CHANGE:
1707		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1708			newcontext.user = tcontext->user;
1709		} else {
1710			/* notice this gets both DEFAULT_SOURCE and unset */
1711			/* Use the process user identity. */
1712			newcontext.user = scontext->user;
1713		}
1714		break;
1715	case AVTAB_MEMBER:
1716		/* Use the related object owner. */
1717		newcontext.user = tcontext->user;
1718		break;
1719	}
1720
1721	/* Set the role to default values. */
1722	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1723		newcontext.role = scontext->role;
1724	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1725		newcontext.role = tcontext->role;
1726	} else {
1727		if ((tclass == policydb->process_class) || (sock == true))
1728			newcontext.role = scontext->role;
1729		else
1730			newcontext.role = OBJECT_R_VAL;
1731	}
1732
1733	/* Set the type to default values. */
1734	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1735		newcontext.type = scontext->type;
1736	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1737		newcontext.type = tcontext->type;
1738	} else {
1739		if ((tclass == policydb->process_class) || (sock == true)) {
1740			/* Use the type of process. */
1741			newcontext.type = scontext->type;
1742		} else {
1743			/* Use the type of the related object. */
1744			newcontext.type = tcontext->type;
1745		}
1746	}
1747
1748	/* Look for a type transition/member/change rule. */
1749	avkey.source_type = scontext->type;
1750	avkey.target_type = tcontext->type;
1751	avkey.target_class = tclass;
1752	avkey.specified = specified;
1753	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1754
1755	/* If no permanent rule, also check for enabled conditional rules */
1756	if (!avdatum) {
1757		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1758		for (; node; node = avtab_search_node_next(node, specified)) {
1759			if (node->key.specified & AVTAB_ENABLED) {
1760				avdatum = &node->datum;
1761				break;
1762			}
1763		}
1764	}
1765
1766	if (avdatum) {
1767		/* Use the type from the type transition/member/change rule. */
1768		newcontext.type = avdatum->u.data;
1769	}
1770
1771	/* if we have a objname this is a file trans check so check those rules */
1772	if (objname)
1773		filename_compute_type(policydb, &newcontext, scontext->type,
1774				      tcontext->type, tclass, objname);
1775
1776	/* Check for class-specific changes. */
1777	if (specified & AVTAB_TRANSITION) {
1778		/* Look for a role transition rule. */
1779		for (roletr = policydb->role_tr; roletr;
1780		     roletr = roletr->next) {
1781			if ((roletr->role == scontext->role) &&
1782			    (roletr->type == tcontext->type) &&
1783			    (roletr->tclass == tclass)) {
1784				/* Use the role transition rule. */
1785				newcontext.role = roletr->new_role;
1786				break;
1787			}
1788		}
1789	}
1790
1791	/* Set the MLS attributes.
1792	   This is done last because it may allocate memory. */
1793	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1794			     &newcontext, sock);
1795	if (rc)
1796		goto out_unlock;
1797
1798	/* Check the validity of the context. */
1799	if (!policydb_context_isvalid(policydb, &newcontext)) {
1800		rc = compute_sid_handle_invalid_context(state, scontext,
1801							tcontext,
1802							tclass,
1803							&newcontext);
1804		if (rc)
1805			goto out_unlock;
1806	}
1807	/* Obtain the sid for the context. */
1808	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1809out_unlock:
1810	read_unlock(&state->ss->policy_rwlock);
1811	context_destroy(&newcontext);
1812out:
1813	return rc;
1814}
1815
1816/**
1817 * security_transition_sid - Compute the SID for a new subject/object.
1818 * @ssid: source security identifier
1819 * @tsid: target security identifier
1820 * @tclass: target security class
1821 * @out_sid: security identifier for new subject/object
1822 *
1823 * Compute a SID to use for labeling a new subject or object in the
1824 * class @tclass based on a SID pair (@ssid, @tsid).
1825 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1826 * if insufficient memory is available, or %0 if the new SID was
1827 * computed successfully.
1828 */
1829int security_transition_sid(struct selinux_state *state,
1830			    u32 ssid, u32 tsid, u16 tclass,
1831			    const struct qstr *qstr, u32 *out_sid)
1832{
1833	return security_compute_sid(state, ssid, tsid, tclass,
1834				    AVTAB_TRANSITION,
1835				    qstr ? qstr->name : NULL, out_sid, true);
1836}
1837
1838int security_transition_sid_user(struct selinux_state *state,
1839				 u32 ssid, u32 tsid, u16 tclass,
1840				 const char *objname, u32 *out_sid)
1841{
1842	return security_compute_sid(state, ssid, tsid, tclass,
1843				    AVTAB_TRANSITION,
1844				    objname, out_sid, false);
1845}
1846
1847/**
1848 * security_member_sid - Compute the SID for member selection.
1849 * @ssid: source security identifier
1850 * @tsid: target security identifier
1851 * @tclass: target security class
1852 * @out_sid: security identifier for selected member
1853 *
1854 * Compute a SID to use when selecting a member of a polyinstantiated
1855 * object of class @tclass based on a SID pair (@ssid, @tsid).
1856 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1857 * if insufficient memory is available, or %0 if the SID was
1858 * computed successfully.
1859 */
1860int security_member_sid(struct selinux_state *state,
1861			u32 ssid,
1862			u32 tsid,
1863			u16 tclass,
1864			u32 *out_sid)
1865{
1866	return security_compute_sid(state, ssid, tsid, tclass,
1867				    AVTAB_MEMBER, NULL,
1868				    out_sid, false);
1869}
1870
1871/**
1872 * security_change_sid - Compute the SID for object relabeling.
1873 * @ssid: source security identifier
1874 * @tsid: target security identifier
1875 * @tclass: target security class
1876 * @out_sid: security identifier for selected member
1877 *
1878 * Compute a SID to use for relabeling an object of class @tclass
1879 * based on a SID pair (@ssid, @tsid).
1880 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1881 * if insufficient memory is available, or %0 if the SID was
1882 * computed successfully.
1883 */
1884int security_change_sid(struct selinux_state *state,
1885			u32 ssid,
1886			u32 tsid,
1887			u16 tclass,
1888			u32 *out_sid)
1889{
1890	return security_compute_sid(state,
1891				    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1892				    out_sid, false);
1893}
1894
1895static inline int convert_context_handle_invalid_context(
1896	struct selinux_state *state,
1897	struct context *context)
 
 
 
 
 
 
 
 
 
 
 
1898{
1899	struct policydb *policydb = &state->ss->policydb;
1900	char *s;
1901	u32 len;
1902
1903	if (enforcing_enabled(state))
1904		return -EINVAL;
1905
1906	if (!context_struct_to_string(policydb, context, &s, &len)) {
1907		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
1908			s);
1909		kfree(s);
1910	}
1911	return 0;
1912}
1913
1914struct convert_context_args {
1915	struct selinux_state *state;
1916	struct policydb *oldp;
1917	struct policydb *newp;
1918};
1919
1920/*
1921 * Convert the values in the security context
1922 * structure `oldc' from the values specified
1923 * in the policy `p->oldp' to the values specified
1924 * in the policy `p->newp', storing the new context
1925 * in `newc'.  Verify that the context is valid
1926 * under the new policy.
1927 */
1928static int convert_context(struct context *oldc, struct context *newc, void *p)
 
 
1929{
1930	struct convert_context_args *args;
 
1931	struct ocontext *oc;
 
1932	struct role_datum *role;
1933	struct type_datum *typdatum;
1934	struct user_datum *usrdatum;
1935	char *s;
1936	u32 len;
1937	int rc;
 
 
 
1938
1939	args = p;
1940
1941	if (oldc->str) {
1942		s = kstrdup(oldc->str, GFP_KERNEL);
 
 
 
1943		if (!s)
1944			return -ENOMEM;
1945
1946		rc = string_to_context_struct(args->newp, NULL, s,
1947					      newc, SECSID_NULL);
1948		if (rc == -EINVAL) {
1949			/*
1950			 * Retain string representation for later mapping.
1951			 *
1952			 * IMPORTANT: We need to copy the contents of oldc->str
1953			 * back into s again because string_to_context_struct()
1954			 * may have garbled it.
1955			 */
1956			memcpy(s, oldc->str, oldc->len);
1957			context_init(newc);
1958			newc->str = s;
1959			newc->len = oldc->len;
1960			return 0;
1961		}
1962		kfree(s);
1963		if (rc) {
 
 
 
 
 
 
 
 
 
 
 
1964			/* Other error condition, e.g. ENOMEM. */
1965			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
1966			       oldc->str, -rc);
1967			return rc;
1968		}
1969		pr_info("SELinux:  Context %s became valid (mapped).\n",
1970			oldc->str);
1971		return 0;
1972	}
1973
1974	context_init(newc);
 
 
1975
1976	/* Convert the user. */
1977	rc = -EINVAL;
1978	usrdatum = hashtab_search(args->newp->p_users.table,
1979				  sym_name(args->oldp,
1980					   SYM_USERS, oldc->user - 1));
1981	if (!usrdatum)
1982		goto bad;
1983	newc->user = usrdatum->value;
1984
1985	/* Convert the role. */
1986	rc = -EINVAL;
1987	role = hashtab_search(args->newp->p_roles.table,
1988			      sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
1989	if (!role)
1990		goto bad;
1991	newc->role = role->value;
1992
1993	/* Convert the type. */
1994	rc = -EINVAL;
1995	typdatum = hashtab_search(args->newp->p_types.table,
1996				  sym_name(args->oldp,
1997					   SYM_TYPES, oldc->type - 1));
1998	if (!typdatum)
1999		goto bad;
2000	newc->type = typdatum->value;
2001
2002	/* Convert the MLS fields if dealing with MLS policies */
2003	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2004		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2005		if (rc)
2006			goto bad;
 
 
 
 
 
 
 
2007	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2008		/*
2009		 * Switching between non-MLS and MLS policy:
2010		 * ensure that the MLS fields of the context for all
2011		 * existing entries in the sidtab are filled in with a
2012		 * suitable default value, likely taken from one of the
2013		 * initial SIDs.
2014		 */
2015		oc = args->newp->ocontexts[OCON_ISID];
2016		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2017			oc = oc->next;
2018		rc = -EINVAL;
2019		if (!oc) {
2020			pr_err("SELinux:  unable to look up"
2021				" the initial SIDs list\n");
2022			goto bad;
2023		}
2024		rc = mls_range_set(newc, &oc->context[0].range);
 
2025		if (rc)
2026			goto bad;
2027	}
2028
2029	/* Check the validity of the new context. */
2030	if (!policydb_context_isvalid(args->newp, newc)) {
2031		rc = convert_context_handle_invalid_context(args->state, oldc);
2032		if (rc)
2033			goto bad;
2034	}
2035
2036	return 0;
 
 
 
 
2037bad:
2038	/* Map old representation to string and save it. */
2039	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2040	if (rc)
2041		return rc;
2042	context_destroy(newc);
2043	newc->str = s;
2044	newc->len = len;
2045	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2046		newc->str);
2047	return 0;
 
 
2048}
2049
2050static void security_load_policycaps(struct selinux_state *state)
2051{
2052	struct policydb *p = &state->ss->policydb;
2053	unsigned int i;
2054	struct ebitmap_node *node;
2055
2056	for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2057		state->policycap[i] = ebitmap_get_bit(&p->policycaps, i);
2058
2059	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2060		pr_info("SELinux:  policy capability %s=%d\n",
2061			selinux_policycap_names[i],
2062			ebitmap_get_bit(&p->policycaps, i));
2063
2064	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2065		if (i >= ARRAY_SIZE(selinux_policycap_names))
2066			pr_info("SELinux:  unknown policy capability %u\n",
2067				i);
2068	}
2069}
2070
2071static int security_preserve_bools(struct selinux_state *state,
2072				   struct policydb *newpolicydb);
2073
2074/**
2075 * security_load_policy - Load a security policy configuration.
2076 * @data: binary policy data
2077 * @len: length of data in bytes
2078 *
2079 * Load a new set of security policy configuration data,
2080 * validate it and convert the SID table as necessary.
2081 * This function will flush the access vector cache after
2082 * loading the new policy.
2083 */
2084int security_load_policy(struct selinux_state *state, void *data, size_t len)
2085{
2086	struct policydb *policydb;
2087	struct sidtab *oldsidtab, *newsidtab;
2088	struct policydb *oldpolicydb, *newpolicydb;
2089	struct selinux_mapping *oldmapping;
2090	struct selinux_map newmap;
2091	struct sidtab_convert_params convert_params;
2092	struct convert_context_args args;
2093	u32 seqno;
 
2094	int rc = 0;
2095	struct policy_file file = { data, len }, *fp = &file;
2096
2097	oldpolicydb = kcalloc(2, sizeof(*oldpolicydb), GFP_KERNEL);
2098	if (!oldpolicydb) {
2099		rc = -ENOMEM;
2100		goto out;
2101	}
2102	newpolicydb = oldpolicydb + 1;
2103
2104	policydb = &state->ss->policydb;
2105
2106	newsidtab = kmalloc(sizeof(*newsidtab), GFP_KERNEL);
2107	if (!newsidtab) {
2108		rc = -ENOMEM;
2109		goto out;
2110	}
2111
2112	if (!state->initialized) {
2113		rc = policydb_read(policydb, fp);
2114		if (rc) {
2115			kfree(newsidtab);
2116			goto out;
2117		}
2118
2119		policydb->len = len;
2120		rc = selinux_set_mapping(policydb, secclass_map,
2121					 &state->ss->map);
 
2122		if (rc) {
2123			kfree(newsidtab);
2124			policydb_destroy(policydb);
2125			goto out;
2126		}
2127
2128		rc = policydb_load_isids(policydb, newsidtab);
2129		if (rc) {
2130			kfree(newsidtab);
2131			policydb_destroy(policydb);
2132			goto out;
2133		}
2134
2135		state->ss->sidtab = newsidtab;
2136		security_load_policycaps(state);
2137		state->initialized = 1;
2138		seqno = ++state->ss->latest_granting;
2139		selinux_complete_init();
2140		avc_ss_reset(state->avc, seqno);
2141		selnl_notify_policyload(seqno);
2142		selinux_status_update_policyload(state, seqno);
2143		selinux_netlbl_cache_invalidate();
2144		selinux_xfrm_notify_policyload();
2145		goto out;
2146	}
2147
 
 
 
 
2148	rc = policydb_read(newpolicydb, fp);
2149	if (rc) {
2150		kfree(newsidtab);
2151		goto out;
2152	}
2153
2154	newpolicydb->len = len;
2155	/* If switching between different policy types, log MLS status */
2156	if (policydb->mls_enabled && !newpolicydb->mls_enabled)
2157		pr_info("SELinux: Disabling MLS support...\n");
2158	else if (!policydb->mls_enabled && newpolicydb->mls_enabled)
2159		pr_info("SELinux: Enabling MLS support...\n");
2160
2161	rc = policydb_load_isids(newpolicydb, newsidtab);
2162	if (rc) {
2163		pr_err("SELinux:  unable to load the initial SIDs\n");
2164		policydb_destroy(newpolicydb);
2165		kfree(newsidtab);
2166		goto out;
2167	}
2168
2169	rc = selinux_set_mapping(newpolicydb, secclass_map, &newmap);
2170	if (rc)
2171		goto err;
2172
2173	rc = security_preserve_bools(state, newpolicydb);
2174	if (rc) {
2175		pr_err("SELinux:  unable to preserve booleans\n");
2176		goto err;
2177	}
2178
2179	oldsidtab = state->ss->sidtab;
 
 
 
 
 
2180
2181	/*
2182	 * Convert the internal representations of contexts
2183	 * in the new SID table.
2184	 */
2185	args.state = state;
2186	args.oldp = policydb;
2187	args.newp = newpolicydb;
2188
2189	convert_params.func = convert_context;
2190	convert_params.args = &args;
2191	convert_params.target = newsidtab;
2192
2193	rc = sidtab_convert(oldsidtab, &convert_params);
2194	if (rc) {
2195		pr_err("SELinux:  unable to convert the internal"
2196			" representation of contexts in the new SID"
2197			" table\n");
2198		goto err;
2199	}
2200
2201	/* Save the old policydb and SID table to free later. */
2202	memcpy(oldpolicydb, policydb, sizeof(*policydb));
 
2203
2204	/* Install the new policydb and SID table. */
2205	write_lock_irq(&state->ss->policy_rwlock);
2206	memcpy(policydb, newpolicydb, sizeof(*policydb));
2207	state->ss->sidtab = newsidtab;
2208	security_load_policycaps(state);
2209	oldmapping = state->ss->map.mapping;
2210	state->ss->map.mapping = newmap.mapping;
2211	state->ss->map.size = newmap.size;
2212	seqno = ++state->ss->latest_granting;
2213	write_unlock_irq(&state->ss->policy_rwlock);
2214
2215	/* Free the old policydb and SID table. */
2216	policydb_destroy(oldpolicydb);
2217	sidtab_destroy(oldsidtab);
2218	kfree(oldsidtab);
2219	kfree(oldmapping);
2220
2221	avc_ss_reset(state->avc, seqno);
2222	selnl_notify_policyload(seqno);
2223	selinux_status_update_policyload(state, seqno);
2224	selinux_netlbl_cache_invalidate();
2225	selinux_xfrm_notify_policyload();
2226
2227	rc = 0;
2228	goto out;
2229
2230err:
2231	kfree(newmap.mapping);
2232	sidtab_destroy(newsidtab);
2233	kfree(newsidtab);
2234	policydb_destroy(newpolicydb);
2235
2236out:
2237	kfree(oldpolicydb);
2238	return rc;
2239}
2240
2241size_t security_policydb_len(struct selinux_state *state)
2242{
2243	struct policydb *p = &state->ss->policydb;
2244	size_t len;
2245
2246	read_lock(&state->ss->policy_rwlock);
2247	len = p->len;
2248	read_unlock(&state->ss->policy_rwlock);
2249
2250	return len;
2251}
2252
2253/**
2254 * security_port_sid - Obtain the SID for a port.
2255 * @protocol: protocol number
2256 * @port: port number
2257 * @out_sid: security identifier
2258 */
2259int security_port_sid(struct selinux_state *state,
2260		      u8 protocol, u16 port, u32 *out_sid)
2261{
2262	struct policydb *policydb;
2263	struct sidtab *sidtab;
2264	struct ocontext *c;
2265	int rc = 0;
2266
2267	read_lock(&state->ss->policy_rwlock);
2268
2269	policydb = &state->ss->policydb;
2270	sidtab = state->ss->sidtab;
2271
2272	c = policydb->ocontexts[OCON_PORT];
2273	while (c) {
2274		if (c->u.port.protocol == protocol &&
2275		    c->u.port.low_port <= port &&
2276		    c->u.port.high_port >= port)
2277			break;
2278		c = c->next;
2279	}
2280
2281	if (c) {
2282		if (!c->sid[0]) {
2283			rc = sidtab_context_to_sid(sidtab,
2284						   &c->context[0],
2285						   &c->sid[0]);
2286			if (rc)
2287				goto out;
2288		}
2289		*out_sid = c->sid[0];
2290	} else {
2291		*out_sid = SECINITSID_PORT;
2292	}
2293
2294out:
2295	read_unlock(&state->ss->policy_rwlock);
2296	return rc;
2297}
2298
2299/**
2300 * security_pkey_sid - Obtain the SID for a pkey.
2301 * @subnet_prefix: Subnet Prefix
2302 * @pkey_num: pkey number
2303 * @out_sid: security identifier
2304 */
2305int security_ib_pkey_sid(struct selinux_state *state,
2306			 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2307{
2308	struct policydb *policydb;
2309	struct sidtab *sidtab;
2310	struct ocontext *c;
2311	int rc = 0;
2312
2313	read_lock(&state->ss->policy_rwlock);
2314
2315	policydb = &state->ss->policydb;
2316	sidtab = state->ss->sidtab;
2317
2318	c = policydb->ocontexts[OCON_IBPKEY];
2319	while (c) {
2320		if (c->u.ibpkey.low_pkey <= pkey_num &&
2321		    c->u.ibpkey.high_pkey >= pkey_num &&
2322		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2323			break;
2324
2325		c = c->next;
2326	}
2327
2328	if (c) {
2329		if (!c->sid[0]) {
2330			rc = sidtab_context_to_sid(sidtab,
2331						   &c->context[0],
2332						   &c->sid[0]);
2333			if (rc)
2334				goto out;
2335		}
2336		*out_sid = c->sid[0];
2337	} else
2338		*out_sid = SECINITSID_UNLABELED;
2339
2340out:
2341	read_unlock(&state->ss->policy_rwlock);
2342	return rc;
2343}
2344
2345/**
2346 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2347 * @dev_name: device name
2348 * @port: port number
2349 * @out_sid: security identifier
2350 */
2351int security_ib_endport_sid(struct selinux_state *state,
2352			    const char *dev_name, u8 port_num, u32 *out_sid)
2353{
2354	struct policydb *policydb;
2355	struct sidtab *sidtab;
2356	struct ocontext *c;
2357	int rc = 0;
2358
2359	read_lock(&state->ss->policy_rwlock);
2360
2361	policydb = &state->ss->policydb;
2362	sidtab = state->ss->sidtab;
2363
2364	c = policydb->ocontexts[OCON_IBENDPORT];
2365	while (c) {
2366		if (c->u.ibendport.port == port_num &&
2367		    !strncmp(c->u.ibendport.dev_name,
2368			     dev_name,
2369			     IB_DEVICE_NAME_MAX))
2370			break;
2371
2372		c = c->next;
2373	}
2374
2375	if (c) {
2376		if (!c->sid[0]) {
2377			rc = sidtab_context_to_sid(sidtab,
2378						   &c->context[0],
2379						   &c->sid[0]);
2380			if (rc)
2381				goto out;
2382		}
2383		*out_sid = c->sid[0];
2384	} else
2385		*out_sid = SECINITSID_UNLABELED;
2386
2387out:
2388	read_unlock(&state->ss->policy_rwlock);
2389	return rc;
2390}
2391
2392/**
2393 * security_netif_sid - Obtain the SID for a network interface.
2394 * @name: interface name
2395 * @if_sid: interface SID
2396 */
2397int security_netif_sid(struct selinux_state *state,
2398		       char *name, u32 *if_sid)
2399{
2400	struct policydb *policydb;
2401	struct sidtab *sidtab;
2402	int rc = 0;
2403	struct ocontext *c;
2404
2405	read_lock(&state->ss->policy_rwlock);
2406
2407	policydb = &state->ss->policydb;
2408	sidtab = state->ss->sidtab;
2409
2410	c = policydb->ocontexts[OCON_NETIF];
2411	while (c) {
2412		if (strcmp(name, c->u.name) == 0)
2413			break;
2414		c = c->next;
2415	}
2416
2417	if (c) {
2418		if (!c->sid[0] || !c->sid[1]) {
2419			rc = sidtab_context_to_sid(sidtab,
2420						  &c->context[0],
2421						  &c->sid[0]);
2422			if (rc)
2423				goto out;
2424			rc = sidtab_context_to_sid(sidtab,
2425						   &c->context[1],
2426						   &c->sid[1]);
2427			if (rc)
2428				goto out;
2429		}
2430		*if_sid = c->sid[0];
2431	} else
2432		*if_sid = SECINITSID_NETIF;
2433
2434out:
2435	read_unlock(&state->ss->policy_rwlock);
2436	return rc;
2437}
2438
2439static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2440{
2441	int i, fail = 0;
2442
2443	for (i = 0; i < 4; i++)
2444		if (addr[i] != (input[i] & mask[i])) {
2445			fail = 1;
2446			break;
2447		}
2448
2449	return !fail;
2450}
2451
2452/**
2453 * security_node_sid - Obtain the SID for a node (host).
2454 * @domain: communication domain aka address family
2455 * @addrp: address
2456 * @addrlen: address length in bytes
2457 * @out_sid: security identifier
2458 */
2459int security_node_sid(struct selinux_state *state,
2460		      u16 domain,
2461		      void *addrp,
2462		      u32 addrlen,
2463		      u32 *out_sid)
2464{
2465	struct policydb *policydb;
2466	struct sidtab *sidtab;
2467	int rc;
2468	struct ocontext *c;
2469
2470	read_lock(&state->ss->policy_rwlock);
2471
2472	policydb = &state->ss->policydb;
2473	sidtab = state->ss->sidtab;
2474
2475	switch (domain) {
2476	case AF_INET: {
2477		u32 addr;
2478
2479		rc = -EINVAL;
2480		if (addrlen != sizeof(u32))
2481			goto out;
2482
2483		addr = *((u32 *)addrp);
2484
2485		c = policydb->ocontexts[OCON_NODE];
2486		while (c) {
2487			if (c->u.node.addr == (addr & c->u.node.mask))
2488				break;
2489			c = c->next;
2490		}
2491		break;
2492	}
2493
2494	case AF_INET6:
2495		rc = -EINVAL;
2496		if (addrlen != sizeof(u64) * 2)
2497			goto out;
2498		c = policydb->ocontexts[OCON_NODE6];
2499		while (c) {
2500			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2501						c->u.node6.mask))
2502				break;
2503			c = c->next;
2504		}
2505		break;
2506
2507	default:
2508		rc = 0;
2509		*out_sid = SECINITSID_NODE;
2510		goto out;
2511	}
2512
2513	if (c) {
2514		if (!c->sid[0]) {
2515			rc = sidtab_context_to_sid(sidtab,
2516						   &c->context[0],
2517						   &c->sid[0]);
2518			if (rc)
2519				goto out;
2520		}
2521		*out_sid = c->sid[0];
2522	} else {
2523		*out_sid = SECINITSID_NODE;
2524	}
2525
2526	rc = 0;
2527out:
2528	read_unlock(&state->ss->policy_rwlock);
2529	return rc;
2530}
2531
2532#define SIDS_NEL 25
2533
2534/**
2535 * security_get_user_sids - Obtain reachable SIDs for a user.
2536 * @fromsid: starting SID
2537 * @username: username
2538 * @sids: array of reachable SIDs for user
2539 * @nel: number of elements in @sids
2540 *
2541 * Generate the set of SIDs for legal security contexts
2542 * for a given user that can be reached by @fromsid.
2543 * Set *@sids to point to a dynamically allocated
2544 * array containing the set of SIDs.  Set *@nel to the
2545 * number of elements in the array.
2546 */
2547
2548int security_get_user_sids(struct selinux_state *state,
2549			   u32 fromsid,
2550			   char *username,
2551			   u32 **sids,
2552			   u32 *nel)
2553{
2554	struct policydb *policydb;
2555	struct sidtab *sidtab;
2556	struct context *fromcon, usercon;
2557	u32 *mysids = NULL, *mysids2, sid;
2558	u32 mynel = 0, maxnel = SIDS_NEL;
2559	struct user_datum *user;
2560	struct role_datum *role;
2561	struct ebitmap_node *rnode, *tnode;
2562	int rc = 0, i, j;
2563
2564	*sids = NULL;
2565	*nel = 0;
2566
2567	if (!state->initialized)
2568		goto out;
2569
2570	read_lock(&state->ss->policy_rwlock);
2571
2572	policydb = &state->ss->policydb;
2573	sidtab = state->ss->sidtab;
2574
2575	context_init(&usercon);
2576
2577	rc = -EINVAL;
2578	fromcon = sidtab_search(sidtab, fromsid);
2579	if (!fromcon)
2580		goto out_unlock;
2581
2582	rc = -EINVAL;
2583	user = hashtab_search(policydb->p_users.table, username);
2584	if (!user)
2585		goto out_unlock;
2586
2587	usercon.user = user->value;
2588
2589	rc = -ENOMEM;
2590	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2591	if (!mysids)
2592		goto out_unlock;
2593
2594	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2595		role = policydb->role_val_to_struct[i];
2596		usercon.role = i + 1;
2597		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2598			usercon.type = j + 1;
2599
2600			if (mls_setup_user_range(policydb, fromcon, user,
2601						 &usercon))
2602				continue;
2603
2604			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2605			if (rc)
2606				goto out_unlock;
2607			if (mynel < maxnel) {
2608				mysids[mynel++] = sid;
2609			} else {
2610				rc = -ENOMEM;
2611				maxnel += SIDS_NEL;
2612				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2613				if (!mysids2)
2614					goto out_unlock;
2615				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2616				kfree(mysids);
2617				mysids = mysids2;
2618				mysids[mynel++] = sid;
2619			}
2620		}
2621	}
2622	rc = 0;
2623out_unlock:
2624	read_unlock(&state->ss->policy_rwlock);
2625	if (rc || !mynel) {
2626		kfree(mysids);
2627		goto out;
2628	}
2629
2630	rc = -ENOMEM;
2631	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2632	if (!mysids2) {
2633		kfree(mysids);
2634		goto out;
2635	}
2636	for (i = 0, j = 0; i < mynel; i++) {
2637		struct av_decision dummy_avd;
2638		rc = avc_has_perm_noaudit(state,
2639					  fromsid, mysids[i],
2640					  SECCLASS_PROCESS, /* kernel value */
2641					  PROCESS__TRANSITION, AVC_STRICT,
2642					  &dummy_avd);
2643		if (!rc)
2644			mysids2[j++] = mysids[i];
2645		cond_resched();
2646	}
2647	rc = 0;
2648	kfree(mysids);
2649	*sids = mysids2;
2650	*nel = j;
2651out:
2652	return rc;
2653}
2654
2655/**
2656 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2657 * @fstype: filesystem type
2658 * @path: path from root of mount
2659 * @sclass: file security class
2660 * @sid: SID for path
2661 *
2662 * Obtain a SID to use for a file in a filesystem that
2663 * cannot support xattr or use a fixed labeling behavior like
2664 * transition SIDs or task SIDs.
2665 *
2666 * The caller must acquire the policy_rwlock before calling this function.
2667 */
2668static inline int __security_genfs_sid(struct selinux_state *state,
2669				       const char *fstype,
2670				       char *path,
2671				       u16 orig_sclass,
2672				       u32 *sid)
2673{
2674	struct policydb *policydb = &state->ss->policydb;
2675	struct sidtab *sidtab = state->ss->sidtab;
2676	int len;
2677	u16 sclass;
2678	struct genfs *genfs;
2679	struct ocontext *c;
2680	int rc, cmp = 0;
2681
2682	while (path[0] == '/' && path[1] == '/')
2683		path++;
2684
2685	sclass = unmap_class(&state->ss->map, orig_sclass);
 
 
2686	*sid = SECINITSID_UNLABELED;
2687
2688	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2689		cmp = strcmp(fstype, genfs->fstype);
2690		if (cmp <= 0)
2691			break;
2692	}
2693
2694	rc = -ENOENT;
2695	if (!genfs || cmp)
2696		goto out;
2697
2698	for (c = genfs->head; c; c = c->next) {
2699		len = strlen(c->u.name);
2700		if ((!c->v.sclass || sclass == c->v.sclass) &&
2701		    (strncmp(c->u.name, path, len) == 0))
2702			break;
2703	}
2704
2705	rc = -ENOENT;
2706	if (!c)
2707		goto out;
2708
2709	if (!c->sid[0]) {
2710		rc = sidtab_context_to_sid(sidtab, &c->context[0], &c->sid[0]);
2711		if (rc)
2712			goto out;
2713	}
2714
2715	*sid = c->sid[0];
2716	rc = 0;
2717out:
 
2718	return rc;
2719}
2720
2721/**
2722 * security_genfs_sid - Obtain a SID for a file in a filesystem
2723 * @fstype: filesystem type
2724 * @path: path from root of mount
2725 * @sclass: file security class
2726 * @sid: SID for path
2727 *
2728 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2729 * it afterward.
2730 */
2731int security_genfs_sid(struct selinux_state *state,
2732		       const char *fstype,
2733		       char *path,
2734		       u16 orig_sclass,
2735		       u32 *sid)
2736{
2737	int retval;
2738
2739	read_lock(&state->ss->policy_rwlock);
2740	retval = __security_genfs_sid(state, fstype, path, orig_sclass, sid);
2741	read_unlock(&state->ss->policy_rwlock);
2742	return retval;
2743}
2744
2745/**
2746 * security_fs_use - Determine how to handle labeling for a filesystem.
2747 * @sb: superblock in question
2748 */
2749int security_fs_use(struct selinux_state *state, struct super_block *sb)
2750{
2751	struct policydb *policydb;
2752	struct sidtab *sidtab;
2753	int rc = 0;
2754	struct ocontext *c;
2755	struct superblock_security_struct *sbsec = sb->s_security;
2756	const char *fstype = sb->s_type->name;
2757
2758	read_lock(&state->ss->policy_rwlock);
2759
2760	policydb = &state->ss->policydb;
2761	sidtab = state->ss->sidtab;
2762
2763	c = policydb->ocontexts[OCON_FSUSE];
2764	while (c) {
2765		if (strcmp(fstype, c->u.name) == 0)
2766			break;
2767		c = c->next;
2768	}
2769
2770	if (c) {
2771		sbsec->behavior = c->v.behavior;
2772		if (!c->sid[0]) {
2773			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2774						   &c->sid[0]);
2775			if (rc)
2776				goto out;
2777		}
2778		sbsec->sid = c->sid[0];
2779	} else {
2780		rc = __security_genfs_sid(state, fstype, "/", SECCLASS_DIR,
2781					  &sbsec->sid);
2782		if (rc) {
2783			sbsec->behavior = SECURITY_FS_USE_NONE;
2784			rc = 0;
2785		} else {
2786			sbsec->behavior = SECURITY_FS_USE_GENFS;
2787		}
2788	}
2789
2790out:
2791	read_unlock(&state->ss->policy_rwlock);
2792	return rc;
2793}
2794
2795int security_get_bools(struct selinux_state *state,
2796		       int *len, char ***names, int **values)
2797{
2798	struct policydb *policydb;
2799	int i, rc;
2800
2801	if (!state->initialized) {
2802		*len = 0;
2803		*names = NULL;
2804		*values = NULL;
2805		return 0;
2806	}
2807
2808	read_lock(&state->ss->policy_rwlock);
2809
2810	policydb = &state->ss->policydb;
2811
2812	*names = NULL;
2813	*values = NULL;
2814
2815	rc = 0;
2816	*len = policydb->p_bools.nprim;
2817	if (!*len)
2818		goto out;
2819
2820	rc = -ENOMEM;
2821	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2822	if (!*names)
2823		goto err;
2824
2825	rc = -ENOMEM;
2826	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2827	if (!*values)
2828		goto err;
2829
2830	for (i = 0; i < *len; i++) {
2831		(*values)[i] = policydb->bool_val_to_struct[i]->state;
 
 
 
2832
2833		rc = -ENOMEM;
2834		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
2835				      GFP_ATOMIC);
2836		if (!(*names)[i])
2837			goto err;
 
 
 
2838	}
2839	rc = 0;
2840out:
2841	read_unlock(&state->ss->policy_rwlock);
2842	return rc;
2843err:
2844	if (*names) {
2845		for (i = 0; i < *len; i++)
2846			kfree((*names)[i]);
2847	}
2848	kfree(*values);
2849	goto out;
2850}
2851
2852
2853int security_set_bools(struct selinux_state *state, int len, int *values)
2854{
2855	struct policydb *policydb;
2856	int i, rc;
2857	int lenp, seqno = 0;
2858	struct cond_node *cur;
2859
2860	write_lock_irq(&state->ss->policy_rwlock);
2861
2862	policydb = &state->ss->policydb;
2863
2864	rc = -EFAULT;
2865	lenp = policydb->p_bools.nprim;
2866	if (len != lenp)
2867		goto out;
2868
2869	for (i = 0; i < len; i++) {
2870		if (!!values[i] != policydb->bool_val_to_struct[i]->state) {
2871			audit_log(audit_context(), GFP_ATOMIC,
2872				AUDIT_MAC_CONFIG_CHANGE,
2873				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2874				sym_name(policydb, SYM_BOOLS, i),
2875				!!values[i],
2876				policydb->bool_val_to_struct[i]->state,
2877				from_kuid(&init_user_ns, audit_get_loginuid(current)),
2878				audit_get_sessionid(current));
2879		}
2880		if (values[i])
2881			policydb->bool_val_to_struct[i]->state = 1;
2882		else
2883			policydb->bool_val_to_struct[i]->state = 0;
2884	}
2885
2886	for (cur = policydb->cond_list; cur; cur = cur->next) {
2887		rc = evaluate_cond_node(policydb, cur);
2888		if (rc)
2889			goto out;
2890	}
2891
2892	seqno = ++state->ss->latest_granting;
2893	rc = 0;
2894out:
2895	write_unlock_irq(&state->ss->policy_rwlock);
2896	if (!rc) {
2897		avc_ss_reset(state->avc, seqno);
2898		selnl_notify_policyload(seqno);
2899		selinux_status_update_policyload(state, seqno);
2900		selinux_xfrm_notify_policyload();
2901	}
2902	return rc;
2903}
2904
2905int security_get_bool_value(struct selinux_state *state,
2906			    int index)
2907{
2908	struct policydb *policydb;
2909	int rc;
2910	int len;
2911
2912	read_lock(&state->ss->policy_rwlock);
2913
2914	policydb = &state->ss->policydb;
2915
2916	rc = -EFAULT;
2917	len = policydb->p_bools.nprim;
2918	if (index >= len)
2919		goto out;
2920
2921	rc = policydb->bool_val_to_struct[index]->state;
2922out:
2923	read_unlock(&state->ss->policy_rwlock);
2924	return rc;
2925}
2926
2927static int security_preserve_bools(struct selinux_state *state,
2928				   struct policydb *policydb)
2929{
2930	int rc, nbools = 0, *bvalues = NULL, i;
2931	char **bnames = NULL;
2932	struct cond_bool_datum *booldatum;
2933	struct cond_node *cur;
2934
2935	rc = security_get_bools(state, &nbools, &bnames, &bvalues);
2936	if (rc)
2937		goto out;
2938	for (i = 0; i < nbools; i++) {
2939		booldatum = hashtab_search(policydb->p_bools.table, bnames[i]);
2940		if (booldatum)
2941			booldatum->state = bvalues[i];
2942	}
2943	for (cur = policydb->cond_list; cur; cur = cur->next) {
2944		rc = evaluate_cond_node(policydb, cur);
2945		if (rc)
2946			goto out;
2947	}
2948
2949out:
2950	if (bnames) {
2951		for (i = 0; i < nbools; i++)
2952			kfree(bnames[i]);
2953	}
2954	kfree(bnames);
2955	kfree(bvalues);
2956	return rc;
2957}
2958
2959/*
2960 * security_sid_mls_copy() - computes a new sid based on the given
2961 * sid and the mls portion of mls_sid.
2962 */
2963int security_sid_mls_copy(struct selinux_state *state,
2964			  u32 sid, u32 mls_sid, u32 *new_sid)
2965{
2966	struct policydb *policydb = &state->ss->policydb;
2967	struct sidtab *sidtab = state->ss->sidtab;
2968	struct context *context1;
2969	struct context *context2;
2970	struct context newcon;
2971	char *s;
2972	u32 len;
2973	int rc;
2974
2975	rc = 0;
2976	if (!state->initialized || !policydb->mls_enabled) {
2977		*new_sid = sid;
2978		goto out;
2979	}
2980
2981	context_init(&newcon);
2982
2983	read_lock(&state->ss->policy_rwlock);
2984
2985	rc = -EINVAL;
2986	context1 = sidtab_search(sidtab, sid);
2987	if (!context1) {
2988		pr_err("SELinux: %s:  unrecognized SID %d\n",
2989			__func__, sid);
2990		goto out_unlock;
2991	}
2992
2993	rc = -EINVAL;
2994	context2 = sidtab_search(sidtab, mls_sid);
2995	if (!context2) {
2996		pr_err("SELinux: %s:  unrecognized SID %d\n",
2997			__func__, mls_sid);
2998		goto out_unlock;
2999	}
3000
3001	newcon.user = context1->user;
3002	newcon.role = context1->role;
3003	newcon.type = context1->type;
3004	rc = mls_context_cpy(&newcon, context2);
3005	if (rc)
3006		goto out_unlock;
3007
3008	/* Check the validity of the new context. */
3009	if (!policydb_context_isvalid(policydb, &newcon)) {
3010		rc = convert_context_handle_invalid_context(state, &newcon);
3011		if (rc) {
3012			if (!context_struct_to_string(policydb, &newcon, &s,
3013						      &len)) {
3014				struct audit_buffer *ab;
3015
3016				ab = audit_log_start(audit_context(),
3017						     GFP_ATOMIC,
3018						     AUDIT_SELINUX_ERR);
3019				audit_log_format(ab,
3020						 "op=security_sid_mls_copy invalid_context=");
3021				/* don't record NUL with untrusted strings */
3022				audit_log_n_untrustedstring(ab, s, len - 1);
3023				audit_log_end(ab);
3024				kfree(s);
3025			}
3026			goto out_unlock;
3027		}
3028	}
3029
3030	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3031out_unlock:
3032	read_unlock(&state->ss->policy_rwlock);
3033	context_destroy(&newcon);
3034out:
3035	return rc;
3036}
3037
3038/**
3039 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3040 * @nlbl_sid: NetLabel SID
3041 * @nlbl_type: NetLabel labeling protocol type
3042 * @xfrm_sid: XFRM SID
3043 *
3044 * Description:
3045 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3046 * resolved into a single SID it is returned via @peer_sid and the function
3047 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3048 * returns a negative value.  A table summarizing the behavior is below:
3049 *
3050 *                                 | function return |      @sid
3051 *   ------------------------------+-----------------+-----------------
3052 *   no peer labels                |        0        |    SECSID_NULL
3053 *   single peer label             |        0        |    <peer_label>
3054 *   multiple, consistent labels   |        0        |    <peer_label>
3055 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3056 *
3057 */
3058int security_net_peersid_resolve(struct selinux_state *state,
3059				 u32 nlbl_sid, u32 nlbl_type,
3060				 u32 xfrm_sid,
3061				 u32 *peer_sid)
3062{
3063	struct policydb *policydb = &state->ss->policydb;
3064	struct sidtab *sidtab = state->ss->sidtab;
3065	int rc;
3066	struct context *nlbl_ctx;
3067	struct context *xfrm_ctx;
3068
3069	*peer_sid = SECSID_NULL;
3070
3071	/* handle the common (which also happens to be the set of easy) cases
3072	 * right away, these two if statements catch everything involving a
3073	 * single or absent peer SID/label */
3074	if (xfrm_sid == SECSID_NULL) {
3075		*peer_sid = nlbl_sid;
3076		return 0;
3077	}
3078	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3079	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3080	 * is present */
3081	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3082		*peer_sid = xfrm_sid;
3083		return 0;
3084	}
3085
3086	/*
3087	 * We don't need to check initialized here since the only way both
3088	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3089	 * security server was initialized and state->initialized was true.
3090	 */
3091	if (!policydb->mls_enabled)
3092		return 0;
3093
3094	read_lock(&state->ss->policy_rwlock);
3095
3096	rc = -EINVAL;
3097	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3098	if (!nlbl_ctx) {
3099		pr_err("SELinux: %s:  unrecognized SID %d\n",
3100		       __func__, nlbl_sid);
3101		goto out;
3102	}
3103	rc = -EINVAL;
3104	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3105	if (!xfrm_ctx) {
3106		pr_err("SELinux: %s:  unrecognized SID %d\n",
3107		       __func__, xfrm_sid);
3108		goto out;
3109	}
3110	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3111	if (rc)
3112		goto out;
3113
3114	/* at present NetLabel SIDs/labels really only carry MLS
3115	 * information so if the MLS portion of the NetLabel SID
3116	 * matches the MLS portion of the labeled XFRM SID/label
3117	 * then pass along the XFRM SID as it is the most
3118	 * expressive */
3119	*peer_sid = xfrm_sid;
3120out:
3121	read_unlock(&state->ss->policy_rwlock);
3122	return rc;
3123}
3124
3125static int get_classes_callback(void *k, void *d, void *args)
3126{
3127	struct class_datum *datum = d;
3128	char *name = k, **classes = args;
3129	int value = datum->value - 1;
3130
3131	classes[value] = kstrdup(name, GFP_ATOMIC);
3132	if (!classes[value])
3133		return -ENOMEM;
3134
3135	return 0;
3136}
3137
3138int security_get_classes(struct selinux_state *state,
3139			 char ***classes, int *nclasses)
3140{
3141	struct policydb *policydb = &state->ss->policydb;
3142	int rc;
3143
3144	if (!state->initialized) {
3145		*nclasses = 0;
3146		*classes = NULL;
3147		return 0;
3148	}
3149
3150	read_lock(&state->ss->policy_rwlock);
3151
3152	rc = -ENOMEM;
3153	*nclasses = policydb->p_classes.nprim;
3154	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3155	if (!*classes)
3156		goto out;
3157
3158	rc = hashtab_map(policydb->p_classes.table, get_classes_callback,
3159			*classes);
3160	if (rc) {
3161		int i;
3162		for (i = 0; i < *nclasses; i++)
3163			kfree((*classes)[i]);
3164		kfree(*classes);
3165	}
3166
3167out:
3168	read_unlock(&state->ss->policy_rwlock);
3169	return rc;
3170}
3171
3172static int get_permissions_callback(void *k, void *d, void *args)
3173{
3174	struct perm_datum *datum = d;
3175	char *name = k, **perms = args;
3176	int value = datum->value - 1;
3177
3178	perms[value] = kstrdup(name, GFP_ATOMIC);
3179	if (!perms[value])
3180		return -ENOMEM;
3181
3182	return 0;
3183}
3184
3185int security_get_permissions(struct selinux_state *state,
3186			     char *class, char ***perms, int *nperms)
3187{
3188	struct policydb *policydb = &state->ss->policydb;
3189	int rc, i;
3190	struct class_datum *match;
3191
3192	read_lock(&state->ss->policy_rwlock);
3193
3194	rc = -EINVAL;
3195	match = hashtab_search(policydb->p_classes.table, class);
3196	if (!match) {
3197		pr_err("SELinux: %s:  unrecognized class %s\n",
3198			__func__, class);
3199		goto out;
3200	}
3201
3202	rc = -ENOMEM;
3203	*nperms = match->permissions.nprim;
3204	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3205	if (!*perms)
3206		goto out;
3207
3208	if (match->comdatum) {
3209		rc = hashtab_map(match->comdatum->permissions.table,
3210				get_permissions_callback, *perms);
3211		if (rc)
3212			goto err;
3213	}
3214
3215	rc = hashtab_map(match->permissions.table, get_permissions_callback,
3216			*perms);
3217	if (rc)
3218		goto err;
3219
3220out:
3221	read_unlock(&state->ss->policy_rwlock);
3222	return rc;
3223
3224err:
3225	read_unlock(&state->ss->policy_rwlock);
3226	for (i = 0; i < *nperms; i++)
3227		kfree((*perms)[i]);
3228	kfree(*perms);
3229	return rc;
3230}
3231
3232int security_get_reject_unknown(struct selinux_state *state)
3233{
3234	return state->ss->policydb.reject_unknown;
3235}
3236
3237int security_get_allow_unknown(struct selinux_state *state)
3238{
3239	return state->ss->policydb.allow_unknown;
3240}
3241
3242/**
3243 * security_policycap_supported - Check for a specific policy capability
3244 * @req_cap: capability
3245 *
3246 * Description:
3247 * This function queries the currently loaded policy to see if it supports the
3248 * capability specified by @req_cap.  Returns true (1) if the capability is
3249 * supported, false (0) if it isn't supported.
3250 *
3251 */
3252int security_policycap_supported(struct selinux_state *state,
3253				 unsigned int req_cap)
3254{
3255	struct policydb *policydb = &state->ss->policydb;
3256	int rc;
3257
3258	read_lock(&state->ss->policy_rwlock);
3259	rc = ebitmap_get_bit(&policydb->policycaps, req_cap);
3260	read_unlock(&state->ss->policy_rwlock);
3261
3262	return rc;
3263}
3264
3265struct selinux_audit_rule {
3266	u32 au_seqno;
3267	struct context au_ctxt;
3268};
3269
3270void selinux_audit_rule_free(void *vrule)
3271{
3272	struct selinux_audit_rule *rule = vrule;
3273
3274	if (rule) {
3275		context_destroy(&rule->au_ctxt);
3276		kfree(rule);
3277	}
3278}
3279
3280int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3281{
3282	struct selinux_state *state = &selinux_state;
3283	struct policydb *policydb = &state->ss->policydb;
3284	struct selinux_audit_rule *tmprule;
3285	struct role_datum *roledatum;
3286	struct type_datum *typedatum;
3287	struct user_datum *userdatum;
3288	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3289	int rc = 0;
3290
3291	*rule = NULL;
3292
3293	if (!state->initialized)
3294		return -EOPNOTSUPP;
3295
3296	switch (field) {
3297	case AUDIT_SUBJ_USER:
3298	case AUDIT_SUBJ_ROLE:
3299	case AUDIT_SUBJ_TYPE:
3300	case AUDIT_OBJ_USER:
3301	case AUDIT_OBJ_ROLE:
3302	case AUDIT_OBJ_TYPE:
3303		/* only 'equals' and 'not equals' fit user, role, and type */
3304		if (op != Audit_equal && op != Audit_not_equal)
3305			return -EINVAL;
3306		break;
3307	case AUDIT_SUBJ_SEN:
3308	case AUDIT_SUBJ_CLR:
3309	case AUDIT_OBJ_LEV_LOW:
3310	case AUDIT_OBJ_LEV_HIGH:
3311		/* we do not allow a range, indicated by the presence of '-' */
3312		if (strchr(rulestr, '-'))
3313			return -EINVAL;
3314		break;
3315	default:
3316		/* only the above fields are valid */
3317		return -EINVAL;
3318	}
3319
3320	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3321	if (!tmprule)
3322		return -ENOMEM;
3323
3324	context_init(&tmprule->au_ctxt);
3325
3326	read_lock(&state->ss->policy_rwlock);
3327
3328	tmprule->au_seqno = state->ss->latest_granting;
3329
3330	switch (field) {
3331	case AUDIT_SUBJ_USER:
3332	case AUDIT_OBJ_USER:
3333		rc = -EINVAL;
3334		userdatum = hashtab_search(policydb->p_users.table, rulestr);
3335		if (!userdatum)
3336			goto out;
3337		tmprule->au_ctxt.user = userdatum->value;
3338		break;
3339	case AUDIT_SUBJ_ROLE:
3340	case AUDIT_OBJ_ROLE:
3341		rc = -EINVAL;
3342		roledatum = hashtab_search(policydb->p_roles.table, rulestr);
3343		if (!roledatum)
3344			goto out;
3345		tmprule->au_ctxt.role = roledatum->value;
3346		break;
3347	case AUDIT_SUBJ_TYPE:
3348	case AUDIT_OBJ_TYPE:
3349		rc = -EINVAL;
3350		typedatum = hashtab_search(policydb->p_types.table, rulestr);
3351		if (!typedatum)
3352			goto out;
3353		tmprule->au_ctxt.type = typedatum->value;
3354		break;
3355	case AUDIT_SUBJ_SEN:
3356	case AUDIT_SUBJ_CLR:
3357	case AUDIT_OBJ_LEV_LOW:
3358	case AUDIT_OBJ_LEV_HIGH:
3359		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3360				     GFP_ATOMIC);
3361		if (rc)
3362			goto out;
3363		break;
3364	}
3365	rc = 0;
3366out:
3367	read_unlock(&state->ss->policy_rwlock);
3368
3369	if (rc) {
3370		selinux_audit_rule_free(tmprule);
3371		tmprule = NULL;
3372	}
3373
3374	*rule = tmprule;
3375
3376	return rc;
3377}
3378
3379/* Check to see if the rule contains any selinux fields */
3380int selinux_audit_rule_known(struct audit_krule *rule)
3381{
3382	int i;
3383
3384	for (i = 0; i < rule->field_count; i++) {
3385		struct audit_field *f = &rule->fields[i];
3386		switch (f->type) {
3387		case AUDIT_SUBJ_USER:
3388		case AUDIT_SUBJ_ROLE:
3389		case AUDIT_SUBJ_TYPE:
3390		case AUDIT_SUBJ_SEN:
3391		case AUDIT_SUBJ_CLR:
3392		case AUDIT_OBJ_USER:
3393		case AUDIT_OBJ_ROLE:
3394		case AUDIT_OBJ_TYPE:
3395		case AUDIT_OBJ_LEV_LOW:
3396		case AUDIT_OBJ_LEV_HIGH:
3397			return 1;
3398		}
3399	}
3400
3401	return 0;
3402}
3403
3404int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
 
3405{
3406	struct selinux_state *state = &selinux_state;
3407	struct context *ctxt;
3408	struct mls_level *level;
3409	struct selinux_audit_rule *rule = vrule;
3410	int match = 0;
3411
3412	if (unlikely(!rule)) {
3413		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3414		return -ENOENT;
3415	}
3416
3417	read_lock(&state->ss->policy_rwlock);
3418
3419	if (rule->au_seqno < state->ss->latest_granting) {
3420		match = -ESTALE;
3421		goto out;
3422	}
3423
3424	ctxt = sidtab_search(state->ss->sidtab, sid);
3425	if (unlikely(!ctxt)) {
3426		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3427			  sid);
3428		match = -ENOENT;
3429		goto out;
3430	}
3431
3432	/* a field/op pair that is not caught here will simply fall through
3433	   without a match */
3434	switch (field) {
3435	case AUDIT_SUBJ_USER:
3436	case AUDIT_OBJ_USER:
3437		switch (op) {
3438		case Audit_equal:
3439			match = (ctxt->user == rule->au_ctxt.user);
3440			break;
3441		case Audit_not_equal:
3442			match = (ctxt->user != rule->au_ctxt.user);
3443			break;
3444		}
3445		break;
3446	case AUDIT_SUBJ_ROLE:
3447	case AUDIT_OBJ_ROLE:
3448		switch (op) {
3449		case Audit_equal:
3450			match = (ctxt->role == rule->au_ctxt.role);
3451			break;
3452		case Audit_not_equal:
3453			match = (ctxt->role != rule->au_ctxt.role);
3454			break;
3455		}
3456		break;
3457	case AUDIT_SUBJ_TYPE:
3458	case AUDIT_OBJ_TYPE:
3459		switch (op) {
3460		case Audit_equal:
3461			match = (ctxt->type == rule->au_ctxt.type);
3462			break;
3463		case Audit_not_equal:
3464			match = (ctxt->type != rule->au_ctxt.type);
3465			break;
3466		}
3467		break;
3468	case AUDIT_SUBJ_SEN:
3469	case AUDIT_SUBJ_CLR:
3470	case AUDIT_OBJ_LEV_LOW:
3471	case AUDIT_OBJ_LEV_HIGH:
3472		level = ((field == AUDIT_SUBJ_SEN ||
3473			  field == AUDIT_OBJ_LEV_LOW) ?
3474			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3475		switch (op) {
3476		case Audit_equal:
3477			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3478					     level);
3479			break;
3480		case Audit_not_equal:
3481			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3482					      level);
3483			break;
3484		case Audit_lt:
3485			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3486					       level) &&
3487				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3488					       level));
3489			break;
3490		case Audit_le:
3491			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3492					      level);
3493			break;
3494		case Audit_gt:
3495			match = (mls_level_dom(level,
3496					      &rule->au_ctxt.range.level[0]) &&
3497				 !mls_level_eq(level,
3498					       &rule->au_ctxt.range.level[0]));
3499			break;
3500		case Audit_ge:
3501			match = mls_level_dom(level,
3502					      &rule->au_ctxt.range.level[0]);
3503			break;
3504		}
3505	}
3506
3507out:
3508	read_unlock(&state->ss->policy_rwlock);
3509	return match;
3510}
3511
3512static int (*aurule_callback)(void) = audit_update_lsm_rules;
3513
3514static int aurule_avc_callback(u32 event)
3515{
3516	int err = 0;
3517
3518	if (event == AVC_CALLBACK_RESET && aurule_callback)
3519		err = aurule_callback();
3520	return err;
3521}
3522
3523static int __init aurule_init(void)
3524{
3525	int err;
3526
3527	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3528	if (err)
3529		panic("avc_add_callback() failed, error %d\n", err);
3530
3531	return err;
3532}
3533__initcall(aurule_init);
3534
3535#ifdef CONFIG_NETLABEL
3536/**
3537 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3538 * @secattr: the NetLabel packet security attributes
3539 * @sid: the SELinux SID
3540 *
3541 * Description:
3542 * Attempt to cache the context in @ctx, which was derived from the packet in
3543 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3544 * already been initialized.
3545 *
3546 */
3547static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3548				      u32 sid)
3549{
3550	u32 *sid_cache;
3551
3552	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3553	if (sid_cache == NULL)
3554		return;
3555	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3556	if (secattr->cache == NULL) {
3557		kfree(sid_cache);
3558		return;
3559	}
3560
3561	*sid_cache = sid;
3562	secattr->cache->free = kfree;
3563	secattr->cache->data = sid_cache;
3564	secattr->flags |= NETLBL_SECATTR_CACHE;
3565}
3566
3567/**
3568 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3569 * @secattr: the NetLabel packet security attributes
3570 * @sid: the SELinux SID
3571 *
3572 * Description:
3573 * Convert the given NetLabel security attributes in @secattr into a
3574 * SELinux SID.  If the @secattr field does not contain a full SELinux
3575 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3576 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3577 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3578 * conversion for future lookups.  Returns zero on success, negative values on
3579 * failure.
3580 *
3581 */
3582int security_netlbl_secattr_to_sid(struct selinux_state *state,
3583				   struct netlbl_lsm_secattr *secattr,
3584				   u32 *sid)
3585{
3586	struct policydb *policydb = &state->ss->policydb;
3587	struct sidtab *sidtab = state->ss->sidtab;
3588	int rc;
3589	struct context *ctx;
3590	struct context ctx_new;
3591
3592	if (!state->initialized) {
3593		*sid = SECSID_NULL;
3594		return 0;
3595	}
3596
3597	read_lock(&state->ss->policy_rwlock);
3598
3599	if (secattr->flags & NETLBL_SECATTR_CACHE)
3600		*sid = *(u32 *)secattr->cache->data;
3601	else if (secattr->flags & NETLBL_SECATTR_SECID)
3602		*sid = secattr->attr.secid;
3603	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3604		rc = -EIDRM;
3605		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3606		if (ctx == NULL)
3607			goto out;
3608
3609		context_init(&ctx_new);
3610		ctx_new.user = ctx->user;
3611		ctx_new.role = ctx->role;
3612		ctx_new.type = ctx->type;
3613		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3614		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3615			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
 
3616			if (rc)
3617				goto out;
 
 
 
3618		}
3619		rc = -EIDRM;
3620		if (!mls_context_isvalid(policydb, &ctx_new))
3621			goto out_free;
3622
3623		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3624		if (rc)
3625			goto out_free;
3626
3627		security_netlbl_cache_add(secattr, *sid);
3628
3629		ebitmap_destroy(&ctx_new.range.level[0].cat);
3630	} else
3631		*sid = SECSID_NULL;
3632
3633	read_unlock(&state->ss->policy_rwlock);
3634	return 0;
3635out_free:
3636	ebitmap_destroy(&ctx_new.range.level[0].cat);
3637out:
3638	read_unlock(&state->ss->policy_rwlock);
3639	return rc;
3640}
3641
3642/**
3643 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3644 * @sid: the SELinux SID
3645 * @secattr: the NetLabel packet security attributes
3646 *
3647 * Description:
3648 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3649 * Returns zero on success, negative values on failure.
3650 *
3651 */
3652int security_netlbl_sid_to_secattr(struct selinux_state *state,
3653				   u32 sid, struct netlbl_lsm_secattr *secattr)
3654{
3655	struct policydb *policydb = &state->ss->policydb;
3656	int rc;
3657	struct context *ctx;
3658
3659	if (!state->initialized)
3660		return 0;
3661
3662	read_lock(&state->ss->policy_rwlock);
3663
3664	rc = -ENOENT;
3665	ctx = sidtab_search(state->ss->sidtab, sid);
3666	if (ctx == NULL)
3667		goto out;
3668
3669	rc = -ENOMEM;
3670	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3671				  GFP_ATOMIC);
3672	if (secattr->domain == NULL)
3673		goto out;
3674
3675	secattr->attr.secid = sid;
3676	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3677	mls_export_netlbl_lvl(policydb, ctx, secattr);
3678	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3679out:
3680	read_unlock(&state->ss->policy_rwlock);
3681	return rc;
3682}
3683#endif /* CONFIG_NETLABEL */
3684
3685/**
3686 * security_read_policy - read the policy.
3687 * @data: binary policy data
3688 * @len: length of data in bytes
3689 *
3690 */
3691int security_read_policy(struct selinux_state *state,
3692			 void **data, size_t *len)
3693{
3694	struct policydb *policydb = &state->ss->policydb;
3695	int rc;
3696	struct policy_file fp;
3697
3698	if (!state->initialized)
3699		return -EINVAL;
3700
3701	*len = security_policydb_len(state);
3702
3703	*data = vmalloc_user(*len);
3704	if (!*data)
3705		return -ENOMEM;
3706
3707	fp.data = *data;
3708	fp.len = *len;
3709
3710	read_lock(&state->ss->policy_rwlock);
3711	rc = policydb_write(policydb, &fp);
3712	read_unlock(&state->ss->policy_rwlock);
3713
3714	if (rc)
3715		return rc;
3716
3717	*len = (unsigned long)fp.data - (unsigned long)*data;
3718	return 0;
3719
3720}
v3.15
 
   1/*
   2 * Implementation of the security services.
   3 *
   4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
   5 *	     James Morris <jmorris@redhat.com>
   6 *
   7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   8 *
   9 *	Support for enhanced MLS infrastructure.
  10 *	Support for context based audit filters.
  11 *
  12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  13 *
  14 *	Added conditional policy language extensions
  15 *
  16 * Updated: Hewlett-Packard <paul@paul-moore.com>
  17 *
  18 *      Added support for NetLabel
  19 *      Added support for the policy capability bitmap
  20 *
  21 * Updated: Chad Sellers <csellers@tresys.com>
  22 *
  23 *  Added validation of kernel classes and permissions
  24 *
  25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  26 *
  27 *  Added support for bounds domain and audit messaged on masked permissions
  28 *
  29 * Updated: Guido Trentalancia <guido@trentalancia.com>
  30 *
  31 *  Added support for runtime switching of the policy type
  32 *
  33 * Copyright (C) 2008, 2009 NEC Corporation
  34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  38 *	This program is free software; you can redistribute it and/or modify
  39 *	it under the terms of the GNU General Public License as published by
  40 *	the Free Software Foundation, version 2.
  41 */
  42#include <linux/kernel.h>
  43#include <linux/slab.h>
  44#include <linux/string.h>
  45#include <linux/spinlock.h>
  46#include <linux/rcupdate.h>
  47#include <linux/errno.h>
  48#include <linux/in.h>
  49#include <linux/sched.h>
  50#include <linux/audit.h>
  51#include <linux/mutex.h>
  52#include <linux/selinux.h>
  53#include <linux/flex_array.h>
  54#include <linux/vmalloc.h>
  55#include <net/netlabel.h>
  56
  57#include "flask.h"
  58#include "avc.h"
  59#include "avc_ss.h"
  60#include "security.h"
  61#include "context.h"
  62#include "policydb.h"
  63#include "sidtab.h"
  64#include "services.h"
  65#include "conditional.h"
  66#include "mls.h"
  67#include "objsec.h"
  68#include "netlabel.h"
  69#include "xfrm.h"
  70#include "ebitmap.h"
  71#include "audit.h"
  72
  73int selinux_policycap_netpeer;
  74int selinux_policycap_openperm;
  75int selinux_policycap_alwaysnetwork;
  76
  77static DEFINE_RWLOCK(policy_rwlock);
  78
  79static struct sidtab sidtab;
  80struct policydb policydb;
  81int ss_initialized;
 
 
  82
  83/*
  84 * The largest sequence number that has been used when
  85 * providing an access decision to the access vector cache.
  86 * The sequence number only changes when a policy change
  87 * occurs.
  88 */
  89static u32 latest_granting;
  90
  91/* Forward declaration. */
  92static int context_struct_to_string(struct context *context, char **scontext,
 
 
  93				    u32 *scontext_len);
  94
  95static void context_struct_compute_av(struct context *scontext,
 
  96				      struct context *tcontext,
  97				      u16 tclass,
  98				      struct av_decision *avd);
  99
 100struct selinux_mapping {
 101	u16 value; /* policy value */
 102	unsigned num_perms;
 103	u32 perms[sizeof(u32) * 8];
 104};
 105
 106static struct selinux_mapping *current_mapping;
 107static u16 current_mapping_size;
 108
 109static int selinux_set_mapping(struct policydb *pol,
 110			       struct security_class_mapping *map,
 111			       struct selinux_mapping **out_map_p,
 112			       u16 *out_map_size)
 113{
 114	struct selinux_mapping *out_map = NULL;
 115	size_t size = sizeof(struct selinux_mapping);
 116	u16 i, j;
 117	unsigned k;
 118	bool print_unknown_handle = false;
 119
 120	/* Find number of classes in the input mapping */
 121	if (!map)
 122		return -EINVAL;
 123	i = 0;
 124	while (map[i].name)
 125		i++;
 126
 127	/* Allocate space for the class records, plus one for class zero */
 128	out_map = kcalloc(++i, size, GFP_ATOMIC);
 129	if (!out_map)
 130		return -ENOMEM;
 131
 132	/* Store the raw class and permission values */
 133	j = 0;
 134	while (map[j].name) {
 135		struct security_class_mapping *p_in = map + (j++);
 136		struct selinux_mapping *p_out = out_map + j;
 137
 138		/* An empty class string skips ahead */
 139		if (!strcmp(p_in->name, "")) {
 140			p_out->num_perms = 0;
 141			continue;
 142		}
 143
 144		p_out->value = string_to_security_class(pol, p_in->name);
 145		if (!p_out->value) {
 146			printk(KERN_INFO
 147			       "SELinux:  Class %s not defined in policy.\n",
 148			       p_in->name);
 149			if (pol->reject_unknown)
 150				goto err;
 151			p_out->num_perms = 0;
 152			print_unknown_handle = true;
 153			continue;
 154		}
 155
 156		k = 0;
 157		while (p_in->perms && p_in->perms[k]) {
 158			/* An empty permission string skips ahead */
 159			if (!*p_in->perms[k]) {
 160				k++;
 161				continue;
 162			}
 163			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 164							    p_in->perms[k]);
 165			if (!p_out->perms[k]) {
 166				printk(KERN_INFO
 167				       "SELinux:  Permission %s in class %s not defined in policy.\n",
 168				       p_in->perms[k], p_in->name);
 169				if (pol->reject_unknown)
 170					goto err;
 171				print_unknown_handle = true;
 172			}
 173
 174			k++;
 175		}
 176		p_out->num_perms = k;
 177	}
 178
 179	if (print_unknown_handle)
 180		printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
 181		       pol->allow_unknown ? "allowed" : "denied");
 182
 183	*out_map_p = out_map;
 184	*out_map_size = i;
 185	return 0;
 186err:
 187	kfree(out_map);
 
 188	return -EINVAL;
 189}
 190
 191/*
 192 * Get real, policy values from mapped values
 193 */
 194
 195static u16 unmap_class(u16 tclass)
 196{
 197	if (tclass < current_mapping_size)
 198		return current_mapping[tclass].value;
 199
 200	return tclass;
 201}
 202
 203/*
 204 * Get kernel value for class from its policy value
 205 */
 206static u16 map_class(u16 pol_value)
 207{
 208	u16 i;
 209
 210	for (i = 1; i < current_mapping_size; i++) {
 211		if (current_mapping[i].value == pol_value)
 212			return i;
 213	}
 214
 215	return SECCLASS_NULL;
 216}
 217
 218static void map_decision(u16 tclass, struct av_decision *avd,
 
 219			 int allow_unknown)
 220{
 221	if (tclass < current_mapping_size) {
 222		unsigned i, n = current_mapping[tclass].num_perms;
 
 223		u32 result;
 224
 225		for (i = 0, result = 0; i < n; i++) {
 226			if (avd->allowed & current_mapping[tclass].perms[i])
 227				result |= 1<<i;
 228			if (allow_unknown && !current_mapping[tclass].perms[i])
 229				result |= 1<<i;
 230		}
 231		avd->allowed = result;
 232
 233		for (i = 0, result = 0; i < n; i++)
 234			if (avd->auditallow & current_mapping[tclass].perms[i])
 235				result |= 1<<i;
 236		avd->auditallow = result;
 237
 238		for (i = 0, result = 0; i < n; i++) {
 239			if (avd->auditdeny & current_mapping[tclass].perms[i])
 240				result |= 1<<i;
 241			if (!allow_unknown && !current_mapping[tclass].perms[i])
 242				result |= 1<<i;
 243		}
 244		/*
 245		 * In case the kernel has a bug and requests a permission
 246		 * between num_perms and the maximum permission number, we
 247		 * should audit that denial
 248		 */
 249		for (; i < (sizeof(u32)*8); i++)
 250			result |= 1<<i;
 251		avd->auditdeny = result;
 252	}
 253}
 254
 255int security_mls_enabled(void)
 256{
 257	return policydb.mls_enabled;
 
 
 258}
 259
 260/*
 261 * Return the boolean value of a constraint expression
 262 * when it is applied to the specified source and target
 263 * security contexts.
 264 *
 265 * xcontext is a special beast...  It is used by the validatetrans rules
 266 * only.  For these rules, scontext is the context before the transition,
 267 * tcontext is the context after the transition, and xcontext is the context
 268 * of the process performing the transition.  All other callers of
 269 * constraint_expr_eval should pass in NULL for xcontext.
 270 */
 271static int constraint_expr_eval(struct context *scontext,
 
 272				struct context *tcontext,
 273				struct context *xcontext,
 274				struct constraint_expr *cexpr)
 275{
 276	u32 val1, val2;
 277	struct context *c;
 278	struct role_datum *r1, *r2;
 279	struct mls_level *l1, *l2;
 280	struct constraint_expr *e;
 281	int s[CEXPR_MAXDEPTH];
 282	int sp = -1;
 283
 284	for (e = cexpr; e; e = e->next) {
 285		switch (e->expr_type) {
 286		case CEXPR_NOT:
 287			BUG_ON(sp < 0);
 288			s[sp] = !s[sp];
 289			break;
 290		case CEXPR_AND:
 291			BUG_ON(sp < 1);
 292			sp--;
 293			s[sp] &= s[sp + 1];
 294			break;
 295		case CEXPR_OR:
 296			BUG_ON(sp < 1);
 297			sp--;
 298			s[sp] |= s[sp + 1];
 299			break;
 300		case CEXPR_ATTR:
 301			if (sp == (CEXPR_MAXDEPTH - 1))
 302				return 0;
 303			switch (e->attr) {
 304			case CEXPR_USER:
 305				val1 = scontext->user;
 306				val2 = tcontext->user;
 307				break;
 308			case CEXPR_TYPE:
 309				val1 = scontext->type;
 310				val2 = tcontext->type;
 311				break;
 312			case CEXPR_ROLE:
 313				val1 = scontext->role;
 314				val2 = tcontext->role;
 315				r1 = policydb.role_val_to_struct[val1 - 1];
 316				r2 = policydb.role_val_to_struct[val2 - 1];
 317				switch (e->op) {
 318				case CEXPR_DOM:
 319					s[++sp] = ebitmap_get_bit(&r1->dominates,
 320								  val2 - 1);
 321					continue;
 322				case CEXPR_DOMBY:
 323					s[++sp] = ebitmap_get_bit(&r2->dominates,
 324								  val1 - 1);
 325					continue;
 326				case CEXPR_INCOMP:
 327					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 328								    val2 - 1) &&
 329						   !ebitmap_get_bit(&r2->dominates,
 330								    val1 - 1));
 331					continue;
 332				default:
 333					break;
 334				}
 335				break;
 336			case CEXPR_L1L2:
 337				l1 = &(scontext->range.level[0]);
 338				l2 = &(tcontext->range.level[0]);
 339				goto mls_ops;
 340			case CEXPR_L1H2:
 341				l1 = &(scontext->range.level[0]);
 342				l2 = &(tcontext->range.level[1]);
 343				goto mls_ops;
 344			case CEXPR_H1L2:
 345				l1 = &(scontext->range.level[1]);
 346				l2 = &(tcontext->range.level[0]);
 347				goto mls_ops;
 348			case CEXPR_H1H2:
 349				l1 = &(scontext->range.level[1]);
 350				l2 = &(tcontext->range.level[1]);
 351				goto mls_ops;
 352			case CEXPR_L1H1:
 353				l1 = &(scontext->range.level[0]);
 354				l2 = &(scontext->range.level[1]);
 355				goto mls_ops;
 356			case CEXPR_L2H2:
 357				l1 = &(tcontext->range.level[0]);
 358				l2 = &(tcontext->range.level[1]);
 359				goto mls_ops;
 360mls_ops:
 361			switch (e->op) {
 362			case CEXPR_EQ:
 363				s[++sp] = mls_level_eq(l1, l2);
 364				continue;
 365			case CEXPR_NEQ:
 366				s[++sp] = !mls_level_eq(l1, l2);
 367				continue;
 368			case CEXPR_DOM:
 369				s[++sp] = mls_level_dom(l1, l2);
 370				continue;
 371			case CEXPR_DOMBY:
 372				s[++sp] = mls_level_dom(l2, l1);
 373				continue;
 374			case CEXPR_INCOMP:
 375				s[++sp] = mls_level_incomp(l2, l1);
 376				continue;
 377			default:
 378				BUG();
 379				return 0;
 380			}
 381			break;
 382			default:
 383				BUG();
 384				return 0;
 385			}
 386
 387			switch (e->op) {
 388			case CEXPR_EQ:
 389				s[++sp] = (val1 == val2);
 390				break;
 391			case CEXPR_NEQ:
 392				s[++sp] = (val1 != val2);
 393				break;
 394			default:
 395				BUG();
 396				return 0;
 397			}
 398			break;
 399		case CEXPR_NAMES:
 400			if (sp == (CEXPR_MAXDEPTH-1))
 401				return 0;
 402			c = scontext;
 403			if (e->attr & CEXPR_TARGET)
 404				c = tcontext;
 405			else if (e->attr & CEXPR_XTARGET) {
 406				c = xcontext;
 407				if (!c) {
 408					BUG();
 409					return 0;
 410				}
 411			}
 412			if (e->attr & CEXPR_USER)
 413				val1 = c->user;
 414			else if (e->attr & CEXPR_ROLE)
 415				val1 = c->role;
 416			else if (e->attr & CEXPR_TYPE)
 417				val1 = c->type;
 418			else {
 419				BUG();
 420				return 0;
 421			}
 422
 423			switch (e->op) {
 424			case CEXPR_EQ:
 425				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 426				break;
 427			case CEXPR_NEQ:
 428				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 429				break;
 430			default:
 431				BUG();
 432				return 0;
 433			}
 434			break;
 435		default:
 436			BUG();
 437			return 0;
 438		}
 439	}
 440
 441	BUG_ON(sp != 0);
 442	return s[0];
 443}
 444
 445/*
 446 * security_dump_masked_av - dumps masked permissions during
 447 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 448 */
 449static int dump_masked_av_helper(void *k, void *d, void *args)
 450{
 451	struct perm_datum *pdatum = d;
 452	char **permission_names = args;
 453
 454	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 455
 456	permission_names[pdatum->value - 1] = (char *)k;
 457
 458	return 0;
 459}
 460
 461static void security_dump_masked_av(struct context *scontext,
 
 462				    struct context *tcontext,
 463				    u16 tclass,
 464				    u32 permissions,
 465				    const char *reason)
 466{
 467	struct common_datum *common_dat;
 468	struct class_datum *tclass_dat;
 469	struct audit_buffer *ab;
 470	char *tclass_name;
 471	char *scontext_name = NULL;
 472	char *tcontext_name = NULL;
 473	char *permission_names[32];
 474	int index;
 475	u32 length;
 476	bool need_comma = false;
 477
 478	if (!permissions)
 479		return;
 480
 481	tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1);
 482	tclass_dat = policydb.class_val_to_struct[tclass - 1];
 483	common_dat = tclass_dat->comdatum;
 484
 485	/* init permission_names */
 486	if (common_dat &&
 487	    hashtab_map(common_dat->permissions.table,
 488			dump_masked_av_helper, permission_names) < 0)
 489		goto out;
 490
 491	if (hashtab_map(tclass_dat->permissions.table,
 492			dump_masked_av_helper, permission_names) < 0)
 493		goto out;
 494
 495	/* get scontext/tcontext in text form */
 496	if (context_struct_to_string(scontext,
 497				     &scontext_name, &length) < 0)
 498		goto out;
 499
 500	if (context_struct_to_string(tcontext,
 501				     &tcontext_name, &length) < 0)
 502		goto out;
 503
 504	/* audit a message */
 505	ab = audit_log_start(current->audit_context,
 506			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
 507	if (!ab)
 508		goto out;
 509
 510	audit_log_format(ab, "op=security_compute_av reason=%s "
 511			 "scontext=%s tcontext=%s tclass=%s perms=",
 512			 reason, scontext_name, tcontext_name, tclass_name);
 513
 514	for (index = 0; index < 32; index++) {
 515		u32 mask = (1 << index);
 516
 517		if ((mask & permissions) == 0)
 518			continue;
 519
 520		audit_log_format(ab, "%s%s",
 521				 need_comma ? "," : "",
 522				 permission_names[index]
 523				 ? permission_names[index] : "????");
 524		need_comma = true;
 525	}
 526	audit_log_end(ab);
 527out:
 528	/* release scontext/tcontext */
 529	kfree(tcontext_name);
 530	kfree(scontext_name);
 531
 532	return;
 533}
 534
 535/*
 536 * security_boundary_permission - drops violated permissions
 537 * on boundary constraint.
 538 */
 539static void type_attribute_bounds_av(struct context *scontext,
 
 540				     struct context *tcontext,
 541				     u16 tclass,
 542				     struct av_decision *avd)
 543{
 544	struct context lo_scontext;
 545	struct context lo_tcontext;
 546	struct av_decision lo_avd;
 547	struct type_datum *source;
 548	struct type_datum *target;
 549	u32 masked = 0;
 550
 551	source = flex_array_get_ptr(policydb.type_val_to_struct_array,
 552				    scontext->type - 1);
 553	BUG_ON(!source);
 554
 555	target = flex_array_get_ptr(policydb.type_val_to_struct_array,
 556				    tcontext->type - 1);
 
 
 557	BUG_ON(!target);
 558
 559	if (source->bounds) {
 560		memset(&lo_avd, 0, sizeof(lo_avd));
 561
 562		memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 563		lo_scontext.type = source->bounds;
 564
 565		context_struct_compute_av(&lo_scontext,
 566					  tcontext,
 567					  tclass,
 568					  &lo_avd);
 569		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 570			return;		/* no masked permission */
 571		masked = ~lo_avd.allowed & avd->allowed;
 572	}
 573
 574	if (target->bounds) {
 575		memset(&lo_avd, 0, sizeof(lo_avd));
 
 
 
 
 
 576
 577		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 578		lo_tcontext.type = target->bounds;
 579
 580		context_struct_compute_av(scontext,
 581					  &lo_tcontext,
 582					  tclass,
 583					  &lo_avd);
 584		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 585			return;		/* no masked permission */
 586		masked = ~lo_avd.allowed & avd->allowed;
 587	}
 588
 589	if (source->bounds && target->bounds) {
 590		memset(&lo_avd, 0, sizeof(lo_avd));
 591		/*
 592		 * lo_scontext and lo_tcontext are already
 593		 * set up.
 594		 */
 595
 596		context_struct_compute_av(&lo_scontext,
 597					  &lo_tcontext,
 598					  tclass,
 599					  &lo_avd);
 600		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 601			return;		/* no masked permission */
 602		masked = ~lo_avd.allowed & avd->allowed;
 603	}
 604
 605	if (masked) {
 606		/* mask violated permissions */
 607		avd->allowed &= ~masked;
 608
 609		/* audit masked permissions */
 610		security_dump_masked_av(scontext, tcontext,
 611					tclass, masked, "bounds");
 612	}
 
 
 
 
 
 
 613}
 614
 615/*
 616 * Compute access vectors based on a context structure pair for
 617 * the permissions in a particular class.
 618 */
 619static void context_struct_compute_av(struct context *scontext,
 
 620				      struct context *tcontext,
 621				      u16 tclass,
 622				      struct av_decision *avd)
 
 623{
 624	struct constraint_node *constraint;
 625	struct role_allow *ra;
 626	struct avtab_key avkey;
 627	struct avtab_node *node;
 628	struct class_datum *tclass_datum;
 629	struct ebitmap *sattr, *tattr;
 630	struct ebitmap_node *snode, *tnode;
 631	unsigned int i, j;
 632
 633	avd->allowed = 0;
 634	avd->auditallow = 0;
 635	avd->auditdeny = 0xffffffff;
 
 
 
 
 636
 637	if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
 638		if (printk_ratelimit())
 639			printk(KERN_WARNING "SELinux:  Invalid class %hu\n", tclass);
 640		return;
 641	}
 642
 643	tclass_datum = policydb.class_val_to_struct[tclass - 1];
 644
 645	/*
 646	 * If a specific type enforcement rule was defined for
 647	 * this permission check, then use it.
 648	 */
 649	avkey.target_class = tclass;
 650	avkey.specified = AVTAB_AV;
 651	sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
 652	BUG_ON(!sattr);
 653	tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
 654	BUG_ON(!tattr);
 655	ebitmap_for_each_positive_bit(sattr, snode, i) {
 656		ebitmap_for_each_positive_bit(tattr, tnode, j) {
 657			avkey.source_type = i + 1;
 658			avkey.target_type = j + 1;
 659			for (node = avtab_search_node(&policydb.te_avtab, &avkey);
 
 660			     node;
 661			     node = avtab_search_node_next(node, avkey.specified)) {
 662				if (node->key.specified == AVTAB_ALLOWED)
 663					avd->allowed |= node->datum.data;
 664				else if (node->key.specified == AVTAB_AUDITALLOW)
 665					avd->auditallow |= node->datum.data;
 666				else if (node->key.specified == AVTAB_AUDITDENY)
 667					avd->auditdeny &= node->datum.data;
 
 
 668			}
 669
 670			/* Check conditional av table for additional permissions */
 671			cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
 
 672
 673		}
 674	}
 675
 676	/*
 677	 * Remove any permissions prohibited by a constraint (this includes
 678	 * the MLS policy).
 679	 */
 680	constraint = tclass_datum->constraints;
 681	while (constraint) {
 682		if ((constraint->permissions & (avd->allowed)) &&
 683		    !constraint_expr_eval(scontext, tcontext, NULL,
 684					  constraint->expr)) {
 685			avd->allowed &= ~(constraint->permissions);
 686		}
 687		constraint = constraint->next;
 688	}
 689
 690	/*
 691	 * If checking process transition permission and the
 692	 * role is changing, then check the (current_role, new_role)
 693	 * pair.
 694	 */
 695	if (tclass == policydb.process_class &&
 696	    (avd->allowed & policydb.process_trans_perms) &&
 697	    scontext->role != tcontext->role) {
 698		for (ra = policydb.role_allow; ra; ra = ra->next) {
 699			if (scontext->role == ra->role &&
 700			    tcontext->role == ra->new_role)
 701				break;
 702		}
 703		if (!ra)
 704			avd->allowed &= ~policydb.process_trans_perms;
 705	}
 706
 707	/*
 708	 * If the given source and target types have boundary
 709	 * constraint, lazy checks have to mask any violated
 710	 * permission and notice it to userspace via audit.
 711	 */
 712	type_attribute_bounds_av(scontext, tcontext,
 713				 tclass, avd);
 714}
 715
 716static int security_validtrans_handle_fail(struct context *ocontext,
 
 717					   struct context *ncontext,
 718					   struct context *tcontext,
 719					   u16 tclass)
 720{
 
 721	char *o = NULL, *n = NULL, *t = NULL;
 722	u32 olen, nlen, tlen;
 723
 724	if (context_struct_to_string(ocontext, &o, &olen))
 725		goto out;
 726	if (context_struct_to_string(ncontext, &n, &nlen))
 727		goto out;
 728	if (context_struct_to_string(tcontext, &t, &tlen))
 729		goto out;
 730	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
 731		  "security_validate_transition:  denied for"
 732		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 733		  o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
 734out:
 735	kfree(o);
 736	kfree(n);
 737	kfree(t);
 738
 739	if (!selinux_enforcing)
 740		return 0;
 741	return -EPERM;
 742}
 743
 744int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
 745				 u16 orig_tclass)
 
 746{
 
 
 747	struct context *ocontext;
 748	struct context *ncontext;
 749	struct context *tcontext;
 750	struct class_datum *tclass_datum;
 751	struct constraint_node *constraint;
 752	u16 tclass;
 753	int rc = 0;
 754
 755	if (!ss_initialized)
 
 756		return 0;
 757
 758	read_lock(&policy_rwlock);
 759
 760	tclass = unmap_class(orig_tclass);
 
 761
 762	if (!tclass || tclass > policydb.p_classes.nprim) {
 763		printk(KERN_ERR "SELinux: %s:  unrecognized class %d\n",
 764			__func__, tclass);
 
 
 
 765		rc = -EINVAL;
 766		goto out;
 767	}
 768	tclass_datum = policydb.class_val_to_struct[tclass - 1];
 769
 770	ocontext = sidtab_search(&sidtab, oldsid);
 771	if (!ocontext) {
 772		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 773			__func__, oldsid);
 774		rc = -EINVAL;
 775		goto out;
 776	}
 777
 778	ncontext = sidtab_search(&sidtab, newsid);
 779	if (!ncontext) {
 780		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 781			__func__, newsid);
 782		rc = -EINVAL;
 783		goto out;
 784	}
 785
 786	tcontext = sidtab_search(&sidtab, tasksid);
 787	if (!tcontext) {
 788		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 789			__func__, tasksid);
 790		rc = -EINVAL;
 791		goto out;
 792	}
 793
 794	constraint = tclass_datum->validatetrans;
 795	while (constraint) {
 796		if (!constraint_expr_eval(ocontext, ncontext, tcontext,
 797					  constraint->expr)) {
 798			rc = security_validtrans_handle_fail(ocontext, ncontext,
 799							     tcontext, tclass);
 
 
 
 
 
 
 800			goto out;
 801		}
 802		constraint = constraint->next;
 803	}
 804
 805out:
 806	read_unlock(&policy_rwlock);
 807	return rc;
 808}
 809
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 810/*
 811 * security_bounded_transition - check whether the given
 812 * transition is directed to bounded, or not.
 813 * It returns 0, if @newsid is bounded by @oldsid.
 814 * Otherwise, it returns error code.
 815 *
 816 * @oldsid : current security identifier
 817 * @newsid : destinated security identifier
 818 */
 819int security_bounded_transition(u32 old_sid, u32 new_sid)
 
 820{
 
 
 821	struct context *old_context, *new_context;
 822	struct type_datum *type;
 823	int index;
 824	int rc;
 825
 826	read_lock(&policy_rwlock);
 
 
 
 
 
 
 827
 828	rc = -EINVAL;
 829	old_context = sidtab_search(&sidtab, old_sid);
 830	if (!old_context) {
 831		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 832		       __func__, old_sid);
 833		goto out;
 834	}
 835
 836	rc = -EINVAL;
 837	new_context = sidtab_search(&sidtab, new_sid);
 838	if (!new_context) {
 839		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 840		       __func__, new_sid);
 841		goto out;
 842	}
 843
 844	rc = 0;
 845	/* type/domain unchanged */
 846	if (old_context->type == new_context->type)
 847		goto out;
 848
 849	index = new_context->type;
 850	while (true) {
 851		type = flex_array_get_ptr(policydb.type_val_to_struct_array,
 852					  index - 1);
 853		BUG_ON(!type);
 854
 855		/* not bounded anymore */
 856		rc = -EPERM;
 857		if (!type->bounds)
 858			break;
 859
 860		/* @newsid is bounded by @oldsid */
 861		rc = 0;
 862		if (type->bounds == old_context->type)
 863			break;
 864
 865		index = type->bounds;
 866	}
 867
 868	if (rc) {
 869		char *old_name = NULL;
 870		char *new_name = NULL;
 871		u32 length;
 872
 873		if (!context_struct_to_string(old_context,
 874					      &old_name, &length) &&
 875		    !context_struct_to_string(new_context,
 876					      &new_name, &length)) {
 877			audit_log(current->audit_context,
 878				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 879				  "op=security_bounded_transition "
 880				  "result=denied "
 881				  "oldcontext=%s newcontext=%s",
 882				  old_name, new_name);
 883		}
 884		kfree(new_name);
 885		kfree(old_name);
 886	}
 887out:
 888	read_unlock(&policy_rwlock);
 889
 890	return rc;
 891}
 892
 893static void avd_init(struct av_decision *avd)
 894{
 895	avd->allowed = 0;
 896	avd->auditallow = 0;
 897	avd->auditdeny = 0xffffffff;
 898	avd->seqno = latest_granting;
 899	avd->flags = 0;
 900}
 901
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 902
 903/**
 904 * security_compute_av - Compute access vector decisions.
 905 * @ssid: source security identifier
 906 * @tsid: target security identifier
 907 * @tclass: target security class
 908 * @avd: access vector decisions
 
 909 *
 910 * Compute a set of access vector decisions based on the
 911 * SID pair (@ssid, @tsid) for the permissions in @tclass.
 912 */
 913void security_compute_av(u32 ssid,
 
 914			 u32 tsid,
 915			 u16 orig_tclass,
 916			 struct av_decision *avd)
 
 917{
 
 
 918	u16 tclass;
 919	struct context *scontext = NULL, *tcontext = NULL;
 920
 921	read_lock(&policy_rwlock);
 922	avd_init(avd);
 923	if (!ss_initialized)
 
 924		goto allow;
 925
 926	scontext = sidtab_search(&sidtab, ssid);
 
 
 
 927	if (!scontext) {
 928		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 929		       __func__, ssid);
 930		goto out;
 931	}
 932
 933	/* permissive domain? */
 934	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
 935		avd->flags |= AVD_FLAGS_PERMISSIVE;
 936
 937	tcontext = sidtab_search(&sidtab, tsid);
 938	if (!tcontext) {
 939		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 940		       __func__, tsid);
 941		goto out;
 942	}
 943
 944	tclass = unmap_class(orig_tclass);
 945	if (unlikely(orig_tclass && !tclass)) {
 946		if (policydb.allow_unknown)
 947			goto allow;
 948		goto out;
 949	}
 950	context_struct_compute_av(scontext, tcontext, tclass, avd);
 951	map_decision(orig_tclass, avd, policydb.allow_unknown);
 
 
 952out:
 953	read_unlock(&policy_rwlock);
 954	return;
 955allow:
 956	avd->allowed = 0xffffffff;
 957	goto out;
 958}
 959
 960void security_compute_av_user(u32 ssid,
 
 961			      u32 tsid,
 962			      u16 tclass,
 963			      struct av_decision *avd)
 964{
 
 
 965	struct context *scontext = NULL, *tcontext = NULL;
 966
 967	read_lock(&policy_rwlock);
 968	avd_init(avd);
 969	if (!ss_initialized)
 970		goto allow;
 971
 972	scontext = sidtab_search(&sidtab, ssid);
 
 
 
 973	if (!scontext) {
 974		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 975		       __func__, ssid);
 976		goto out;
 977	}
 978
 979	/* permissive domain? */
 980	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
 981		avd->flags |= AVD_FLAGS_PERMISSIVE;
 982
 983	tcontext = sidtab_search(&sidtab, tsid);
 984	if (!tcontext) {
 985		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 986		       __func__, tsid);
 987		goto out;
 988	}
 989
 990	if (unlikely(!tclass)) {
 991		if (policydb.allow_unknown)
 992			goto allow;
 993		goto out;
 994	}
 995
 996	context_struct_compute_av(scontext, tcontext, tclass, avd);
 
 997 out:
 998	read_unlock(&policy_rwlock);
 999	return;
1000allow:
1001	avd->allowed = 0xffffffff;
1002	goto out;
1003}
1004
1005/*
1006 * Write the security context string representation of
1007 * the context structure `context' into a dynamically
1008 * allocated string of the correct size.  Set `*scontext'
1009 * to point to this string and set `*scontext_len' to
1010 * the length of the string.
1011 */
1012static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
 
 
1013{
1014	char *scontextp;
1015
1016	if (scontext)
1017		*scontext = NULL;
1018	*scontext_len = 0;
1019
1020	if (context->len) {
1021		*scontext_len = context->len;
1022		if (scontext) {
1023			*scontext = kstrdup(context->str, GFP_ATOMIC);
1024			if (!(*scontext))
1025				return -ENOMEM;
1026		}
1027		return 0;
1028	}
1029
1030	/* Compute the size of the context. */
1031	*scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1;
1032	*scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1;
1033	*scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1;
1034	*scontext_len += mls_compute_context_len(context);
1035
1036	if (!scontext)
1037		return 0;
1038
1039	/* Allocate space for the context; caller must free this space. */
1040	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1041	if (!scontextp)
1042		return -ENOMEM;
1043	*scontext = scontextp;
1044
1045	/*
1046	 * Copy the user name, role name and type name into the context.
1047	 */
1048	sprintf(scontextp, "%s:%s:%s",
1049		sym_name(&policydb, SYM_USERS, context->user - 1),
1050		sym_name(&policydb, SYM_ROLES, context->role - 1),
1051		sym_name(&policydb, SYM_TYPES, context->type - 1));
1052	scontextp += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) +
1053		     1 + strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) +
1054		     1 + strlen(sym_name(&policydb, SYM_TYPES, context->type - 1));
1055
1056	mls_sid_to_context(context, &scontextp);
1057
1058	*scontextp = 0;
1059
1060	return 0;
1061}
1062
1063#include "initial_sid_to_string.h"
1064
1065const char *security_get_initial_sid_context(u32 sid)
1066{
1067	if (unlikely(sid > SECINITSID_NUM))
1068		return NULL;
1069	return initial_sid_to_string[sid];
1070}
1071
1072static int security_sid_to_context_core(u32 sid, char **scontext,
1073					u32 *scontext_len, int force)
 
 
1074{
 
 
1075	struct context *context;
1076	int rc = 0;
1077
1078	if (scontext)
1079		*scontext = NULL;
1080	*scontext_len  = 0;
1081
1082	if (!ss_initialized) {
1083		if (sid <= SECINITSID_NUM) {
1084			char *scontextp;
1085
1086			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1087			if (!scontext)
1088				goto out;
1089			scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
 
1090			if (!scontextp) {
1091				rc = -ENOMEM;
1092				goto out;
1093			}
1094			strcpy(scontextp, initial_sid_to_string[sid]);
1095			*scontext = scontextp;
1096			goto out;
1097		}
1098		printk(KERN_ERR "SELinux: %s:  called before initial "
1099		       "load_policy on unknown SID %d\n", __func__, sid);
1100		rc = -EINVAL;
1101		goto out;
1102	}
1103	read_lock(&policy_rwlock);
 
 
1104	if (force)
1105		context = sidtab_search_force(&sidtab, sid);
1106	else
1107		context = sidtab_search(&sidtab, sid);
1108	if (!context) {
1109		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1110			__func__, sid);
1111		rc = -EINVAL;
1112		goto out_unlock;
1113	}
1114	rc = context_struct_to_string(context, scontext, scontext_len);
 
 
 
 
1115out_unlock:
1116	read_unlock(&policy_rwlock);
1117out:
1118	return rc;
1119
1120}
1121
1122/**
1123 * security_sid_to_context - Obtain a context for a given SID.
1124 * @sid: security identifier, SID
1125 * @scontext: security context
1126 * @scontext_len: length in bytes
1127 *
1128 * Write the string representation of the context associated with @sid
1129 * into a dynamically allocated string of the correct size.  Set @scontext
1130 * to point to this string and set @scontext_len to the length of the string.
1131 */
1132int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
 
1133{
1134	return security_sid_to_context_core(sid, scontext, scontext_len, 0);
 
1135}
1136
1137int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
 
1138{
1139	return security_sid_to_context_core(sid, scontext, scontext_len, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1140}
1141
1142/*
1143 * Caveat:  Mutates scontext.
1144 */
1145static int string_to_context_struct(struct policydb *pol,
1146				    struct sidtab *sidtabp,
1147				    char *scontext,
1148				    u32 scontext_len,
1149				    struct context *ctx,
1150				    u32 def_sid)
1151{
1152	struct role_datum *role;
1153	struct type_datum *typdatum;
1154	struct user_datum *usrdatum;
1155	char *scontextp, *p, oldc;
1156	int rc = 0;
1157
1158	context_init(ctx);
1159
1160	/* Parse the security context. */
1161
1162	rc = -EINVAL;
1163	scontextp = (char *) scontext;
1164
1165	/* Extract the user. */
1166	p = scontextp;
1167	while (*p && *p != ':')
1168		p++;
1169
1170	if (*p == 0)
1171		goto out;
1172
1173	*p++ = 0;
1174
1175	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1176	if (!usrdatum)
1177		goto out;
1178
1179	ctx->user = usrdatum->value;
1180
1181	/* Extract role. */
1182	scontextp = p;
1183	while (*p && *p != ':')
1184		p++;
1185
1186	if (*p == 0)
1187		goto out;
1188
1189	*p++ = 0;
1190
1191	role = hashtab_search(pol->p_roles.table, scontextp);
1192	if (!role)
1193		goto out;
1194	ctx->role = role->value;
1195
1196	/* Extract type. */
1197	scontextp = p;
1198	while (*p && *p != ':')
1199		p++;
1200	oldc = *p;
1201	*p++ = 0;
1202
1203	typdatum = hashtab_search(pol->p_types.table, scontextp);
1204	if (!typdatum || typdatum->attribute)
1205		goto out;
1206
1207	ctx->type = typdatum->value;
1208
1209	rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1210	if (rc)
1211		goto out;
1212
 
1213	rc = -EINVAL;
1214	if ((p - scontext) < scontext_len)
1215		goto out;
1216
1217	/* Check the validity of the new context. */
1218	if (!policydb_context_isvalid(pol, ctx))
1219		goto out;
1220	rc = 0;
1221out:
1222	if (rc)
1223		context_destroy(ctx);
1224	return rc;
1225}
1226
1227static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
 
1228					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1229					int force)
1230{
 
 
1231	char *scontext2, *str = NULL;
1232	struct context context;
1233	int rc = 0;
1234
1235	/* An empty security context is never valid. */
1236	if (!scontext_len)
1237		return -EINVAL;
1238
1239	if (!ss_initialized) {
 
 
 
 
 
1240		int i;
1241
1242		for (i = 1; i < SECINITSID_NUM; i++) {
1243			if (!strcmp(initial_sid_to_string[i], scontext)) {
1244				*sid = i;
1245				return 0;
1246			}
1247		}
1248		*sid = SECINITSID_KERNEL;
1249		return 0;
1250	}
1251	*sid = SECSID_NULL;
1252
1253	/* Copy the string so that we can modify the copy as we parse it. */
1254	scontext2 = kmalloc(scontext_len + 1, gfp_flags);
1255	if (!scontext2)
1256		return -ENOMEM;
1257	memcpy(scontext2, scontext, scontext_len);
1258	scontext2[scontext_len] = 0;
1259
1260	if (force) {
1261		/* Save another copy for storing in uninterpreted form */
1262		rc = -ENOMEM;
1263		str = kstrdup(scontext2, gfp_flags);
1264		if (!str)
1265			goto out;
1266	}
1267
1268	read_lock(&policy_rwlock);
1269	rc = string_to_context_struct(&policydb, &sidtab, scontext2,
1270				      scontext_len, &context, def_sid);
 
1271	if (rc == -EINVAL && force) {
1272		context.str = str;
1273		context.len = scontext_len;
1274		str = NULL;
1275	} else if (rc)
1276		goto out_unlock;
1277	rc = sidtab_context_to_sid(&sidtab, &context, sid);
1278	context_destroy(&context);
1279out_unlock:
1280	read_unlock(&policy_rwlock);
1281out:
1282	kfree(scontext2);
1283	kfree(str);
1284	return rc;
1285}
1286
1287/**
1288 * security_context_to_sid - Obtain a SID for a given security context.
1289 * @scontext: security context
1290 * @scontext_len: length in bytes
1291 * @sid: security identifier, SID
1292 * @gfp: context for the allocation
1293 *
1294 * Obtains a SID associated with the security context that
1295 * has the string representation specified by @scontext.
1296 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1297 * memory is available, or 0 on success.
1298 */
1299int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid,
 
1300			    gfp_t gfp)
1301{
1302	return security_context_to_sid_core(scontext, scontext_len,
1303					    sid, SECSID_NULL, gfp, 0);
1304}
1305
 
 
 
 
 
 
 
1306/**
1307 * security_context_to_sid_default - Obtain a SID for a given security context,
1308 * falling back to specified default if needed.
1309 *
1310 * @scontext: security context
1311 * @scontext_len: length in bytes
1312 * @sid: security identifier, SID
1313 * @def_sid: default SID to assign on error
1314 *
1315 * Obtains a SID associated with the security context that
1316 * has the string representation specified by @scontext.
1317 * The default SID is passed to the MLS layer to be used to allow
1318 * kernel labeling of the MLS field if the MLS field is not present
1319 * (for upgrading to MLS without full relabel).
1320 * Implicitly forces adding of the context even if it cannot be mapped yet.
1321 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1322 * memory is available, or 0 on success.
1323 */
1324int security_context_to_sid_default(const char *scontext, u32 scontext_len,
 
1325				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1326{
1327	return security_context_to_sid_core(scontext, scontext_len,
1328					    sid, def_sid, gfp_flags, 1);
1329}
1330
1331int security_context_to_sid_force(const char *scontext, u32 scontext_len,
 
1332				  u32 *sid)
1333{
1334	return security_context_to_sid_core(scontext, scontext_len,
1335					    sid, SECSID_NULL, GFP_KERNEL, 1);
1336}
1337
1338static int compute_sid_handle_invalid_context(
 
1339	struct context *scontext,
1340	struct context *tcontext,
1341	u16 tclass,
1342	struct context *newcontext)
1343{
 
1344	char *s = NULL, *t = NULL, *n = NULL;
1345	u32 slen, tlen, nlen;
 
1346
1347	if (context_struct_to_string(scontext, &s, &slen))
1348		goto out;
1349	if (context_struct_to_string(tcontext, &t, &tlen))
1350		goto out;
1351	if (context_struct_to_string(newcontext, &n, &nlen))
1352		goto out;
1353	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1354		  "security_compute_sid:  invalid context %s"
1355		  " for scontext=%s"
1356		  " tcontext=%s"
1357		  " tclass=%s",
1358		  n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
 
 
1359out:
1360	kfree(s);
1361	kfree(t);
1362	kfree(n);
1363	if (!selinux_enforcing)
1364		return 0;
1365	return -EACCES;
1366}
1367
1368static void filename_compute_type(struct policydb *p, struct context *newcontext,
 
1369				  u32 stype, u32 ttype, u16 tclass,
1370				  const char *objname)
1371{
1372	struct filename_trans ft;
1373	struct filename_trans_datum *otype;
1374
1375	/*
1376	 * Most filename trans rules are going to live in specific directories
1377	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1378	 * if the ttype does not contain any rules.
1379	 */
1380	if (!ebitmap_get_bit(&p->filename_trans_ttypes, ttype))
1381		return;
1382
1383	ft.stype = stype;
1384	ft.ttype = ttype;
1385	ft.tclass = tclass;
1386	ft.name = objname;
1387
1388	otype = hashtab_search(p->filename_trans, &ft);
1389	if (otype)
1390		newcontext->type = otype->otype;
1391}
1392
1393static int security_compute_sid(u32 ssid,
 
1394				u32 tsid,
1395				u16 orig_tclass,
1396				u32 specified,
1397				const char *objname,
1398				u32 *out_sid,
1399				bool kern)
1400{
 
 
1401	struct class_datum *cladatum = NULL;
1402	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1403	struct role_trans *roletr = NULL;
1404	struct avtab_key avkey;
1405	struct avtab_datum *avdatum;
1406	struct avtab_node *node;
1407	u16 tclass;
1408	int rc = 0;
1409	bool sock;
1410
1411	if (!ss_initialized) {
1412		switch (orig_tclass) {
1413		case SECCLASS_PROCESS: /* kernel value */
1414			*out_sid = ssid;
1415			break;
1416		default:
1417			*out_sid = tsid;
1418			break;
1419		}
1420		goto out;
1421	}
1422
1423	context_init(&newcontext);
1424
1425	read_lock(&policy_rwlock);
1426
1427	if (kern) {
1428		tclass = unmap_class(orig_tclass);
1429		sock = security_is_socket_class(orig_tclass);
1430	} else {
1431		tclass = orig_tclass;
1432		sock = security_is_socket_class(map_class(tclass));
 
1433	}
1434
1435	scontext = sidtab_search(&sidtab, ssid);
 
 
 
1436	if (!scontext) {
1437		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1438		       __func__, ssid);
1439		rc = -EINVAL;
1440		goto out_unlock;
1441	}
1442	tcontext = sidtab_search(&sidtab, tsid);
1443	if (!tcontext) {
1444		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1445		       __func__, tsid);
1446		rc = -EINVAL;
1447		goto out_unlock;
1448	}
1449
1450	if (tclass && tclass <= policydb.p_classes.nprim)
1451		cladatum = policydb.class_val_to_struct[tclass - 1];
1452
1453	/* Set the user identity. */
1454	switch (specified) {
1455	case AVTAB_TRANSITION:
1456	case AVTAB_CHANGE:
1457		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1458			newcontext.user = tcontext->user;
1459		} else {
1460			/* notice this gets both DEFAULT_SOURCE and unset */
1461			/* Use the process user identity. */
1462			newcontext.user = scontext->user;
1463		}
1464		break;
1465	case AVTAB_MEMBER:
1466		/* Use the related object owner. */
1467		newcontext.user = tcontext->user;
1468		break;
1469	}
1470
1471	/* Set the role to default values. */
1472	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1473		newcontext.role = scontext->role;
1474	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1475		newcontext.role = tcontext->role;
1476	} else {
1477		if ((tclass == policydb.process_class) || (sock == true))
1478			newcontext.role = scontext->role;
1479		else
1480			newcontext.role = OBJECT_R_VAL;
1481	}
1482
1483	/* Set the type to default values. */
1484	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1485		newcontext.type = scontext->type;
1486	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1487		newcontext.type = tcontext->type;
1488	} else {
1489		if ((tclass == policydb.process_class) || (sock == true)) {
1490			/* Use the type of process. */
1491			newcontext.type = scontext->type;
1492		} else {
1493			/* Use the type of the related object. */
1494			newcontext.type = tcontext->type;
1495		}
1496	}
1497
1498	/* Look for a type transition/member/change rule. */
1499	avkey.source_type = scontext->type;
1500	avkey.target_type = tcontext->type;
1501	avkey.target_class = tclass;
1502	avkey.specified = specified;
1503	avdatum = avtab_search(&policydb.te_avtab, &avkey);
1504
1505	/* If no permanent rule, also check for enabled conditional rules */
1506	if (!avdatum) {
1507		node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1508		for (; node; node = avtab_search_node_next(node, specified)) {
1509			if (node->key.specified & AVTAB_ENABLED) {
1510				avdatum = &node->datum;
1511				break;
1512			}
1513		}
1514	}
1515
1516	if (avdatum) {
1517		/* Use the type from the type transition/member/change rule. */
1518		newcontext.type = avdatum->data;
1519	}
1520
1521	/* if we have a objname this is a file trans check so check those rules */
1522	if (objname)
1523		filename_compute_type(&policydb, &newcontext, scontext->type,
1524				      tcontext->type, tclass, objname);
1525
1526	/* Check for class-specific changes. */
1527	if (specified & AVTAB_TRANSITION) {
1528		/* Look for a role transition rule. */
1529		for (roletr = policydb.role_tr; roletr; roletr = roletr->next) {
 
1530			if ((roletr->role == scontext->role) &&
1531			    (roletr->type == tcontext->type) &&
1532			    (roletr->tclass == tclass)) {
1533				/* Use the role transition rule. */
1534				newcontext.role = roletr->new_role;
1535				break;
1536			}
1537		}
1538	}
1539
1540	/* Set the MLS attributes.
1541	   This is done last because it may allocate memory. */
1542	rc = mls_compute_sid(scontext, tcontext, tclass, specified,
1543			     &newcontext, sock);
1544	if (rc)
1545		goto out_unlock;
1546
1547	/* Check the validity of the context. */
1548	if (!policydb_context_isvalid(&policydb, &newcontext)) {
1549		rc = compute_sid_handle_invalid_context(scontext,
1550							tcontext,
1551							tclass,
1552							&newcontext);
1553		if (rc)
1554			goto out_unlock;
1555	}
1556	/* Obtain the sid for the context. */
1557	rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1558out_unlock:
1559	read_unlock(&policy_rwlock);
1560	context_destroy(&newcontext);
1561out:
1562	return rc;
1563}
1564
1565/**
1566 * security_transition_sid - Compute the SID for a new subject/object.
1567 * @ssid: source security identifier
1568 * @tsid: target security identifier
1569 * @tclass: target security class
1570 * @out_sid: security identifier for new subject/object
1571 *
1572 * Compute a SID to use for labeling a new subject or object in the
1573 * class @tclass based on a SID pair (@ssid, @tsid).
1574 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1575 * if insufficient memory is available, or %0 if the new SID was
1576 * computed successfully.
1577 */
1578int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
 
1579			    const struct qstr *qstr, u32 *out_sid)
1580{
1581	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
 
1582				    qstr ? qstr->name : NULL, out_sid, true);
1583}
1584
1585int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
 
1586				 const char *objname, u32 *out_sid)
1587{
1588	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
 
1589				    objname, out_sid, false);
1590}
1591
1592/**
1593 * security_member_sid - Compute the SID for member selection.
1594 * @ssid: source security identifier
1595 * @tsid: target security identifier
1596 * @tclass: target security class
1597 * @out_sid: security identifier for selected member
1598 *
1599 * Compute a SID to use when selecting a member of a polyinstantiated
1600 * object of class @tclass based on a SID pair (@ssid, @tsid).
1601 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1602 * if insufficient memory is available, or %0 if the SID was
1603 * computed successfully.
1604 */
1605int security_member_sid(u32 ssid,
 
1606			u32 tsid,
1607			u16 tclass,
1608			u32 *out_sid)
1609{
1610	return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, NULL,
 
1611				    out_sid, false);
1612}
1613
1614/**
1615 * security_change_sid - Compute the SID for object relabeling.
1616 * @ssid: source security identifier
1617 * @tsid: target security identifier
1618 * @tclass: target security class
1619 * @out_sid: security identifier for selected member
1620 *
1621 * Compute a SID to use for relabeling an object of class @tclass
1622 * based on a SID pair (@ssid, @tsid).
1623 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1624 * if insufficient memory is available, or %0 if the SID was
1625 * computed successfully.
1626 */
1627int security_change_sid(u32 ssid,
 
1628			u32 tsid,
1629			u16 tclass,
1630			u32 *out_sid)
1631{
1632	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
 
1633				    out_sid, false);
1634}
1635
1636/* Clone the SID into the new SID table. */
1637static int clone_sid(u32 sid,
1638		     struct context *context,
1639		     void *arg)
1640{
1641	struct sidtab *s = arg;
1642
1643	if (sid > SECINITSID_NUM)
1644		return sidtab_insert(s, sid, context);
1645	else
1646		return 0;
1647}
1648
1649static inline int convert_context_handle_invalid_context(struct context *context)
1650{
 
1651	char *s;
1652	u32 len;
1653
1654	if (selinux_enforcing)
1655		return -EINVAL;
1656
1657	if (!context_struct_to_string(context, &s, &len)) {
1658		printk(KERN_WARNING "SELinux:  Context %s would be invalid if enforcing\n", s);
 
1659		kfree(s);
1660	}
1661	return 0;
1662}
1663
1664struct convert_context_args {
 
1665	struct policydb *oldp;
1666	struct policydb *newp;
1667};
1668
1669/*
1670 * Convert the values in the security context
1671 * structure `c' from the values specified
1672 * in the policy `p->oldp' to the values specified
1673 * in the policy `p->newp'.  Verify that the
1674 * context is valid under the new policy.
 
1675 */
1676static int convert_context(u32 key,
1677			   struct context *c,
1678			   void *p)
1679{
1680	struct convert_context_args *args;
1681	struct context oldc;
1682	struct ocontext *oc;
1683	struct mls_range *range;
1684	struct role_datum *role;
1685	struct type_datum *typdatum;
1686	struct user_datum *usrdatum;
1687	char *s;
1688	u32 len;
1689	int rc = 0;
1690
1691	if (key <= SECINITSID_NUM)
1692		goto out;
1693
1694	args = p;
1695
1696	if (c->str) {
1697		struct context ctx;
1698
1699		rc = -ENOMEM;
1700		s = kstrdup(c->str, GFP_KERNEL);
1701		if (!s)
1702			goto out;
1703
1704		rc = string_to_context_struct(args->newp, NULL, s,
1705					      c->len, &ctx, SECSID_NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1706		kfree(s);
1707		if (!rc) {
1708			printk(KERN_INFO "SELinux:  Context %s became valid (mapped).\n",
1709			       c->str);
1710			/* Replace string with mapped representation. */
1711			kfree(c->str);
1712			memcpy(c, &ctx, sizeof(*c));
1713			goto out;
1714		} else if (rc == -EINVAL) {
1715			/* Retain string representation for later mapping. */
1716			rc = 0;
1717			goto out;
1718		} else {
1719			/* Other error condition, e.g. ENOMEM. */
1720			printk(KERN_ERR "SELinux:   Unable to map context %s, rc = %d.\n",
1721			       c->str, -rc);
1722			goto out;
1723		}
 
 
 
1724	}
1725
1726	rc = context_cpy(&oldc, c);
1727	if (rc)
1728		goto out;
1729
1730	/* Convert the user. */
1731	rc = -EINVAL;
1732	usrdatum = hashtab_search(args->newp->p_users.table,
1733				  sym_name(args->oldp, SYM_USERS, c->user - 1));
 
1734	if (!usrdatum)
1735		goto bad;
1736	c->user = usrdatum->value;
1737
1738	/* Convert the role. */
1739	rc = -EINVAL;
1740	role = hashtab_search(args->newp->p_roles.table,
1741			      sym_name(args->oldp, SYM_ROLES, c->role - 1));
1742	if (!role)
1743		goto bad;
1744	c->role = role->value;
1745
1746	/* Convert the type. */
1747	rc = -EINVAL;
1748	typdatum = hashtab_search(args->newp->p_types.table,
1749				  sym_name(args->oldp, SYM_TYPES, c->type - 1));
 
1750	if (!typdatum)
1751		goto bad;
1752	c->type = typdatum->value;
1753
1754	/* Convert the MLS fields if dealing with MLS policies */
1755	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1756		rc = mls_convert_context(args->oldp, args->newp, c);
1757		if (rc)
1758			goto bad;
1759	} else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1760		/*
1761		 * Switching between MLS and non-MLS policy:
1762		 * free any storage used by the MLS fields in the
1763		 * context for all existing entries in the sidtab.
1764		 */
1765		mls_context_destroy(c);
1766	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1767		/*
1768		 * Switching between non-MLS and MLS policy:
1769		 * ensure that the MLS fields of the context for all
1770		 * existing entries in the sidtab are filled in with a
1771		 * suitable default value, likely taken from one of the
1772		 * initial SIDs.
1773		 */
1774		oc = args->newp->ocontexts[OCON_ISID];
1775		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1776			oc = oc->next;
1777		rc = -EINVAL;
1778		if (!oc) {
1779			printk(KERN_ERR "SELinux:  unable to look up"
1780				" the initial SIDs list\n");
1781			goto bad;
1782		}
1783		range = &oc->context[0].range;
1784		rc = mls_range_set(c, range);
1785		if (rc)
1786			goto bad;
1787	}
1788
1789	/* Check the validity of the new context. */
1790	if (!policydb_context_isvalid(args->newp, c)) {
1791		rc = convert_context_handle_invalid_context(&oldc);
1792		if (rc)
1793			goto bad;
1794	}
1795
1796	context_destroy(&oldc);
1797
1798	rc = 0;
1799out:
1800	return rc;
1801bad:
1802	/* Map old representation to string and save it. */
1803	rc = context_struct_to_string(&oldc, &s, &len);
1804	if (rc)
1805		return rc;
1806	context_destroy(&oldc);
1807	context_destroy(c);
1808	c->str = s;
1809	c->len = len;
1810	printk(KERN_INFO "SELinux:  Context %s became invalid (unmapped).\n",
1811	       c->str);
1812	rc = 0;
1813	goto out;
1814}
1815
1816static void security_load_policycaps(void)
1817{
1818	selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1819						  POLICYDB_CAPABILITY_NETPEER);
1820	selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1821						  POLICYDB_CAPABILITY_OPENPERM);
1822	selinux_policycap_alwaysnetwork = ebitmap_get_bit(&policydb.policycaps,
1823						  POLICYDB_CAPABILITY_ALWAYSNETWORK);
 
 
 
 
 
 
 
 
 
 
 
1824}
1825
1826static int security_preserve_bools(struct policydb *p);
 
1827
1828/**
1829 * security_load_policy - Load a security policy configuration.
1830 * @data: binary policy data
1831 * @len: length of data in bytes
1832 *
1833 * Load a new set of security policy configuration data,
1834 * validate it and convert the SID table as necessary.
1835 * This function will flush the access vector cache after
1836 * loading the new policy.
1837 */
1838int security_load_policy(void *data, size_t len)
1839{
 
 
1840	struct policydb *oldpolicydb, *newpolicydb;
1841	struct sidtab oldsidtab, newsidtab;
1842	struct selinux_mapping *oldmap, *map = NULL;
 
1843	struct convert_context_args args;
1844	u32 seqno;
1845	u16 map_size;
1846	int rc = 0;
1847	struct policy_file file = { data, len }, *fp = &file;
1848
1849	oldpolicydb = kzalloc(2 * sizeof(*oldpolicydb), GFP_KERNEL);
1850	if (!oldpolicydb) {
1851		rc = -ENOMEM;
1852		goto out;
1853	}
1854	newpolicydb = oldpolicydb + 1;
1855
1856	if (!ss_initialized) {
1857		avtab_cache_init();
1858		rc = policydb_read(&policydb, fp);
 
 
 
 
 
 
 
1859		if (rc) {
1860			avtab_cache_destroy();
1861			goto out;
1862		}
1863
1864		policydb.len = len;
1865		rc = selinux_set_mapping(&policydb, secclass_map,
1866					 &current_mapping,
1867					 &current_mapping_size);
1868		if (rc) {
1869			policydb_destroy(&policydb);
1870			avtab_cache_destroy();
1871			goto out;
1872		}
1873
1874		rc = policydb_load_isids(&policydb, &sidtab);
1875		if (rc) {
1876			policydb_destroy(&policydb);
1877			avtab_cache_destroy();
1878			goto out;
1879		}
1880
1881		security_load_policycaps();
1882		ss_initialized = 1;
1883		seqno = ++latest_granting;
 
1884		selinux_complete_init();
1885		avc_ss_reset(seqno);
1886		selnl_notify_policyload(seqno);
1887		selinux_status_update_policyload(seqno);
1888		selinux_netlbl_cache_invalidate();
1889		selinux_xfrm_notify_policyload();
1890		goto out;
1891	}
1892
1893#if 0
1894	sidtab_hash_eval(&sidtab, "sids");
1895#endif
1896
1897	rc = policydb_read(newpolicydb, fp);
1898	if (rc)
 
1899		goto out;
 
1900
1901	newpolicydb->len = len;
1902	/* If switching between different policy types, log MLS status */
1903	if (policydb.mls_enabled && !newpolicydb->mls_enabled)
1904		printk(KERN_INFO "SELinux: Disabling MLS support...\n");
1905	else if (!policydb.mls_enabled && newpolicydb->mls_enabled)
1906		printk(KERN_INFO "SELinux: Enabling MLS support...\n");
1907
1908	rc = policydb_load_isids(newpolicydb, &newsidtab);
1909	if (rc) {
1910		printk(KERN_ERR "SELinux:  unable to load the initial SIDs\n");
1911		policydb_destroy(newpolicydb);
 
1912		goto out;
1913	}
1914
1915	rc = selinux_set_mapping(newpolicydb, secclass_map, &map, &map_size);
1916	if (rc)
1917		goto err;
1918
1919	rc = security_preserve_bools(newpolicydb);
1920	if (rc) {
1921		printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
1922		goto err;
1923	}
1924
1925	/* Clone the SID table. */
1926	sidtab_shutdown(&sidtab);
1927
1928	rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
1929	if (rc)
1930		goto err;
1931
1932	/*
1933	 * Convert the internal representations of contexts
1934	 * in the new SID table.
1935	 */
1936	args.oldp = &policydb;
 
1937	args.newp = newpolicydb;
1938	rc = sidtab_map(&newsidtab, convert_context, &args);
 
 
 
 
 
1939	if (rc) {
1940		printk(KERN_ERR "SELinux:  unable to convert the internal"
1941			" representation of contexts in the new SID"
1942			" table\n");
1943		goto err;
1944	}
1945
1946	/* Save the old policydb and SID table to free later. */
1947	memcpy(oldpolicydb, &policydb, sizeof(policydb));
1948	sidtab_set(&oldsidtab, &sidtab);
1949
1950	/* Install the new policydb and SID table. */
1951	write_lock_irq(&policy_rwlock);
1952	memcpy(&policydb, newpolicydb, sizeof(policydb));
1953	sidtab_set(&sidtab, &newsidtab);
1954	security_load_policycaps();
1955	oldmap = current_mapping;
1956	current_mapping = map;
1957	current_mapping_size = map_size;
1958	seqno = ++latest_granting;
1959	write_unlock_irq(&policy_rwlock);
1960
1961	/* Free the old policydb and SID table. */
1962	policydb_destroy(oldpolicydb);
1963	sidtab_destroy(&oldsidtab);
1964	kfree(oldmap);
 
1965
1966	avc_ss_reset(seqno);
1967	selnl_notify_policyload(seqno);
1968	selinux_status_update_policyload(seqno);
1969	selinux_netlbl_cache_invalidate();
1970	selinux_xfrm_notify_policyload();
1971
1972	rc = 0;
1973	goto out;
1974
1975err:
1976	kfree(map);
1977	sidtab_destroy(&newsidtab);
 
1978	policydb_destroy(newpolicydb);
1979
1980out:
1981	kfree(oldpolicydb);
1982	return rc;
1983}
1984
1985size_t security_policydb_len(void)
1986{
 
1987	size_t len;
1988
1989	read_lock(&policy_rwlock);
1990	len = policydb.len;
1991	read_unlock(&policy_rwlock);
1992
1993	return len;
1994}
1995
1996/**
1997 * security_port_sid - Obtain the SID for a port.
1998 * @protocol: protocol number
1999 * @port: port number
2000 * @out_sid: security identifier
2001 */
2002int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
 
2003{
 
 
2004	struct ocontext *c;
2005	int rc = 0;
2006
2007	read_lock(&policy_rwlock);
2008
2009	c = policydb.ocontexts[OCON_PORT];
 
 
 
2010	while (c) {
2011		if (c->u.port.protocol == protocol &&
2012		    c->u.port.low_port <= port &&
2013		    c->u.port.high_port >= port)
2014			break;
2015		c = c->next;
2016	}
2017
2018	if (c) {
2019		if (!c->sid[0]) {
2020			rc = sidtab_context_to_sid(&sidtab,
2021						   &c->context[0],
2022						   &c->sid[0]);
2023			if (rc)
2024				goto out;
2025		}
2026		*out_sid = c->sid[0];
2027	} else {
2028		*out_sid = SECINITSID_PORT;
2029	}
2030
2031out:
2032	read_unlock(&policy_rwlock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2033	return rc;
2034}
2035
2036/**
2037 * security_netif_sid - Obtain the SID for a network interface.
2038 * @name: interface name
2039 * @if_sid: interface SID
2040 */
2041int security_netif_sid(char *name, u32 *if_sid)
 
2042{
 
 
2043	int rc = 0;
2044	struct ocontext *c;
2045
2046	read_lock(&policy_rwlock);
2047
2048	c = policydb.ocontexts[OCON_NETIF];
 
 
 
2049	while (c) {
2050		if (strcmp(name, c->u.name) == 0)
2051			break;
2052		c = c->next;
2053	}
2054
2055	if (c) {
2056		if (!c->sid[0] || !c->sid[1]) {
2057			rc = sidtab_context_to_sid(&sidtab,
2058						  &c->context[0],
2059						  &c->sid[0]);
2060			if (rc)
2061				goto out;
2062			rc = sidtab_context_to_sid(&sidtab,
2063						   &c->context[1],
2064						   &c->sid[1]);
2065			if (rc)
2066				goto out;
2067		}
2068		*if_sid = c->sid[0];
2069	} else
2070		*if_sid = SECINITSID_NETIF;
2071
2072out:
2073	read_unlock(&policy_rwlock);
2074	return rc;
2075}
2076
2077static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2078{
2079	int i, fail = 0;
2080
2081	for (i = 0; i < 4; i++)
2082		if (addr[i] != (input[i] & mask[i])) {
2083			fail = 1;
2084			break;
2085		}
2086
2087	return !fail;
2088}
2089
2090/**
2091 * security_node_sid - Obtain the SID for a node (host).
2092 * @domain: communication domain aka address family
2093 * @addrp: address
2094 * @addrlen: address length in bytes
2095 * @out_sid: security identifier
2096 */
2097int security_node_sid(u16 domain,
 
2098		      void *addrp,
2099		      u32 addrlen,
2100		      u32 *out_sid)
2101{
 
 
2102	int rc;
2103	struct ocontext *c;
2104
2105	read_lock(&policy_rwlock);
 
 
 
2106
2107	switch (domain) {
2108	case AF_INET: {
2109		u32 addr;
2110
2111		rc = -EINVAL;
2112		if (addrlen != sizeof(u32))
2113			goto out;
2114
2115		addr = *((u32 *)addrp);
2116
2117		c = policydb.ocontexts[OCON_NODE];
2118		while (c) {
2119			if (c->u.node.addr == (addr & c->u.node.mask))
2120				break;
2121			c = c->next;
2122		}
2123		break;
2124	}
2125
2126	case AF_INET6:
2127		rc = -EINVAL;
2128		if (addrlen != sizeof(u64) * 2)
2129			goto out;
2130		c = policydb.ocontexts[OCON_NODE6];
2131		while (c) {
2132			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2133						c->u.node6.mask))
2134				break;
2135			c = c->next;
2136		}
2137		break;
2138
2139	default:
2140		rc = 0;
2141		*out_sid = SECINITSID_NODE;
2142		goto out;
2143	}
2144
2145	if (c) {
2146		if (!c->sid[0]) {
2147			rc = sidtab_context_to_sid(&sidtab,
2148						   &c->context[0],
2149						   &c->sid[0]);
2150			if (rc)
2151				goto out;
2152		}
2153		*out_sid = c->sid[0];
2154	} else {
2155		*out_sid = SECINITSID_NODE;
2156	}
2157
2158	rc = 0;
2159out:
2160	read_unlock(&policy_rwlock);
2161	return rc;
2162}
2163
2164#define SIDS_NEL 25
2165
2166/**
2167 * security_get_user_sids - Obtain reachable SIDs for a user.
2168 * @fromsid: starting SID
2169 * @username: username
2170 * @sids: array of reachable SIDs for user
2171 * @nel: number of elements in @sids
2172 *
2173 * Generate the set of SIDs for legal security contexts
2174 * for a given user that can be reached by @fromsid.
2175 * Set *@sids to point to a dynamically allocated
2176 * array containing the set of SIDs.  Set *@nel to the
2177 * number of elements in the array.
2178 */
2179
2180int security_get_user_sids(u32 fromsid,
 
2181			   char *username,
2182			   u32 **sids,
2183			   u32 *nel)
2184{
 
 
2185	struct context *fromcon, usercon;
2186	u32 *mysids = NULL, *mysids2, sid;
2187	u32 mynel = 0, maxnel = SIDS_NEL;
2188	struct user_datum *user;
2189	struct role_datum *role;
2190	struct ebitmap_node *rnode, *tnode;
2191	int rc = 0, i, j;
2192
2193	*sids = NULL;
2194	*nel = 0;
2195
2196	if (!ss_initialized)
2197		goto out;
2198
2199	read_lock(&policy_rwlock);
 
 
 
2200
2201	context_init(&usercon);
2202
2203	rc = -EINVAL;
2204	fromcon = sidtab_search(&sidtab, fromsid);
2205	if (!fromcon)
2206		goto out_unlock;
2207
2208	rc = -EINVAL;
2209	user = hashtab_search(policydb.p_users.table, username);
2210	if (!user)
2211		goto out_unlock;
2212
2213	usercon.user = user->value;
2214
2215	rc = -ENOMEM;
2216	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2217	if (!mysids)
2218		goto out_unlock;
2219
2220	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2221		role = policydb.role_val_to_struct[i];
2222		usercon.role = i + 1;
2223		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2224			usercon.type = j + 1;
2225
2226			if (mls_setup_user_range(fromcon, user, &usercon))
 
2227				continue;
2228
2229			rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2230			if (rc)
2231				goto out_unlock;
2232			if (mynel < maxnel) {
2233				mysids[mynel++] = sid;
2234			} else {
2235				rc = -ENOMEM;
2236				maxnel += SIDS_NEL;
2237				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2238				if (!mysids2)
2239					goto out_unlock;
2240				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2241				kfree(mysids);
2242				mysids = mysids2;
2243				mysids[mynel++] = sid;
2244			}
2245		}
2246	}
2247	rc = 0;
2248out_unlock:
2249	read_unlock(&policy_rwlock);
2250	if (rc || !mynel) {
2251		kfree(mysids);
2252		goto out;
2253	}
2254
2255	rc = -ENOMEM;
2256	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2257	if (!mysids2) {
2258		kfree(mysids);
2259		goto out;
2260	}
2261	for (i = 0, j = 0; i < mynel; i++) {
2262		struct av_decision dummy_avd;
2263		rc = avc_has_perm_noaudit(fromsid, mysids[i],
 
2264					  SECCLASS_PROCESS, /* kernel value */
2265					  PROCESS__TRANSITION, AVC_STRICT,
2266					  &dummy_avd);
2267		if (!rc)
2268			mysids2[j++] = mysids[i];
2269		cond_resched();
2270	}
2271	rc = 0;
2272	kfree(mysids);
2273	*sids = mysids2;
2274	*nel = j;
2275out:
2276	return rc;
2277}
2278
2279/**
2280 * security_genfs_sid - Obtain a SID for a file in a filesystem
2281 * @fstype: filesystem type
2282 * @path: path from root of mount
2283 * @sclass: file security class
2284 * @sid: SID for path
2285 *
2286 * Obtain a SID to use for a file in a filesystem that
2287 * cannot support xattr or use a fixed labeling behavior like
2288 * transition SIDs or task SIDs.
 
 
2289 */
2290int security_genfs_sid(const char *fstype,
2291		       char *path,
2292		       u16 orig_sclass,
2293		       u32 *sid)
 
2294{
 
 
2295	int len;
2296	u16 sclass;
2297	struct genfs *genfs;
2298	struct ocontext *c;
2299	int rc, cmp = 0;
2300
2301	while (path[0] == '/' && path[1] == '/')
2302		path++;
2303
2304	read_lock(&policy_rwlock);
2305
2306	sclass = unmap_class(orig_sclass);
2307	*sid = SECINITSID_UNLABELED;
2308
2309	for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2310		cmp = strcmp(fstype, genfs->fstype);
2311		if (cmp <= 0)
2312			break;
2313	}
2314
2315	rc = -ENOENT;
2316	if (!genfs || cmp)
2317		goto out;
2318
2319	for (c = genfs->head; c; c = c->next) {
2320		len = strlen(c->u.name);
2321		if ((!c->v.sclass || sclass == c->v.sclass) &&
2322		    (strncmp(c->u.name, path, len) == 0))
2323			break;
2324	}
2325
2326	rc = -ENOENT;
2327	if (!c)
2328		goto out;
2329
2330	if (!c->sid[0]) {
2331		rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]);
2332		if (rc)
2333			goto out;
2334	}
2335
2336	*sid = c->sid[0];
2337	rc = 0;
2338out:
2339	read_unlock(&policy_rwlock);
2340	return rc;
2341}
2342
2343/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2344 * security_fs_use - Determine how to handle labeling for a filesystem.
2345 * @sb: superblock in question
2346 */
2347int security_fs_use(struct super_block *sb)
2348{
 
 
2349	int rc = 0;
2350	struct ocontext *c;
2351	struct superblock_security_struct *sbsec = sb->s_security;
2352	const char *fstype = sb->s_type->name;
2353
2354	read_lock(&policy_rwlock);
 
 
 
2355
2356	c = policydb.ocontexts[OCON_FSUSE];
2357	while (c) {
2358		if (strcmp(fstype, c->u.name) == 0)
2359			break;
2360		c = c->next;
2361	}
2362
2363	if (c) {
2364		sbsec->behavior = c->v.behavior;
2365		if (!c->sid[0]) {
2366			rc = sidtab_context_to_sid(&sidtab, &c->context[0],
2367						   &c->sid[0]);
2368			if (rc)
2369				goto out;
2370		}
2371		sbsec->sid = c->sid[0];
2372	} else {
2373		rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, &sbsec->sid);
 
2374		if (rc) {
2375			sbsec->behavior = SECURITY_FS_USE_NONE;
2376			rc = 0;
2377		} else {
2378			sbsec->behavior = SECURITY_FS_USE_GENFS;
2379		}
2380	}
2381
2382out:
2383	read_unlock(&policy_rwlock);
2384	return rc;
2385}
2386
2387int security_get_bools(int *len, char ***names, int **values)
 
2388{
 
2389	int i, rc;
2390
2391	read_lock(&policy_rwlock);
 
 
 
 
 
 
 
 
 
 
2392	*names = NULL;
2393	*values = NULL;
2394
2395	rc = 0;
2396	*len = policydb.p_bools.nprim;
2397	if (!*len)
2398		goto out;
2399
2400	rc = -ENOMEM;
2401	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2402	if (!*names)
2403		goto err;
2404
2405	rc = -ENOMEM;
2406	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2407	if (!*values)
2408		goto err;
2409
2410	for (i = 0; i < *len; i++) {
2411		size_t name_len;
2412
2413		(*values)[i] = policydb.bool_val_to_struct[i]->state;
2414		name_len = strlen(sym_name(&policydb, SYM_BOOLS, i)) + 1;
2415
2416		rc = -ENOMEM;
2417		(*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
 
2418		if (!(*names)[i])
2419			goto err;
2420
2421		strncpy((*names)[i], sym_name(&policydb, SYM_BOOLS, i), name_len);
2422		(*names)[i][name_len - 1] = 0;
2423	}
2424	rc = 0;
2425out:
2426	read_unlock(&policy_rwlock);
2427	return rc;
2428err:
2429	if (*names) {
2430		for (i = 0; i < *len; i++)
2431			kfree((*names)[i]);
2432	}
2433	kfree(*values);
2434	goto out;
2435}
2436
2437
2438int security_set_bools(int len, int *values)
2439{
 
2440	int i, rc;
2441	int lenp, seqno = 0;
2442	struct cond_node *cur;
2443
2444	write_lock_irq(&policy_rwlock);
 
 
2445
2446	rc = -EFAULT;
2447	lenp = policydb.p_bools.nprim;
2448	if (len != lenp)
2449		goto out;
2450
2451	for (i = 0; i < len; i++) {
2452		if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2453			audit_log(current->audit_context, GFP_ATOMIC,
2454				AUDIT_MAC_CONFIG_CHANGE,
2455				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2456				sym_name(&policydb, SYM_BOOLS, i),
2457				!!values[i],
2458				policydb.bool_val_to_struct[i]->state,
2459				from_kuid(&init_user_ns, audit_get_loginuid(current)),
2460				audit_get_sessionid(current));
2461		}
2462		if (values[i])
2463			policydb.bool_val_to_struct[i]->state = 1;
2464		else
2465			policydb.bool_val_to_struct[i]->state = 0;
2466	}
2467
2468	for (cur = policydb.cond_list; cur; cur = cur->next) {
2469		rc = evaluate_cond_node(&policydb, cur);
2470		if (rc)
2471			goto out;
2472	}
2473
2474	seqno = ++latest_granting;
2475	rc = 0;
2476out:
2477	write_unlock_irq(&policy_rwlock);
2478	if (!rc) {
2479		avc_ss_reset(seqno);
2480		selnl_notify_policyload(seqno);
2481		selinux_status_update_policyload(seqno);
2482		selinux_xfrm_notify_policyload();
2483	}
2484	return rc;
2485}
2486
2487int security_get_bool_value(int bool)
 
2488{
 
2489	int rc;
2490	int len;
2491
2492	read_lock(&policy_rwlock);
 
 
2493
2494	rc = -EFAULT;
2495	len = policydb.p_bools.nprim;
2496	if (bool >= len)
2497		goto out;
2498
2499	rc = policydb.bool_val_to_struct[bool]->state;
2500out:
2501	read_unlock(&policy_rwlock);
2502	return rc;
2503}
2504
2505static int security_preserve_bools(struct policydb *p)
 
2506{
2507	int rc, nbools = 0, *bvalues = NULL, i;
2508	char **bnames = NULL;
2509	struct cond_bool_datum *booldatum;
2510	struct cond_node *cur;
2511
2512	rc = security_get_bools(&nbools, &bnames, &bvalues);
2513	if (rc)
2514		goto out;
2515	for (i = 0; i < nbools; i++) {
2516		booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2517		if (booldatum)
2518			booldatum->state = bvalues[i];
2519	}
2520	for (cur = p->cond_list; cur; cur = cur->next) {
2521		rc = evaluate_cond_node(p, cur);
2522		if (rc)
2523			goto out;
2524	}
2525
2526out:
2527	if (bnames) {
2528		for (i = 0; i < nbools; i++)
2529			kfree(bnames[i]);
2530	}
2531	kfree(bnames);
2532	kfree(bvalues);
2533	return rc;
2534}
2535
2536/*
2537 * security_sid_mls_copy() - computes a new sid based on the given
2538 * sid and the mls portion of mls_sid.
2539 */
2540int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
 
2541{
 
 
2542	struct context *context1;
2543	struct context *context2;
2544	struct context newcon;
2545	char *s;
2546	u32 len;
2547	int rc;
2548
2549	rc = 0;
2550	if (!ss_initialized || !policydb.mls_enabled) {
2551		*new_sid = sid;
2552		goto out;
2553	}
2554
2555	context_init(&newcon);
2556
2557	read_lock(&policy_rwlock);
2558
2559	rc = -EINVAL;
2560	context1 = sidtab_search(&sidtab, sid);
2561	if (!context1) {
2562		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2563			__func__, sid);
2564		goto out_unlock;
2565	}
2566
2567	rc = -EINVAL;
2568	context2 = sidtab_search(&sidtab, mls_sid);
2569	if (!context2) {
2570		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2571			__func__, mls_sid);
2572		goto out_unlock;
2573	}
2574
2575	newcon.user = context1->user;
2576	newcon.role = context1->role;
2577	newcon.type = context1->type;
2578	rc = mls_context_cpy(&newcon, context2);
2579	if (rc)
2580		goto out_unlock;
2581
2582	/* Check the validity of the new context. */
2583	if (!policydb_context_isvalid(&policydb, &newcon)) {
2584		rc = convert_context_handle_invalid_context(&newcon);
2585		if (rc) {
2586			if (!context_struct_to_string(&newcon, &s, &len)) {
2587				audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2588					  "security_sid_mls_copy: invalid context %s", s);
 
 
 
 
 
 
 
 
 
2589				kfree(s);
2590			}
2591			goto out_unlock;
2592		}
2593	}
2594
2595	rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2596out_unlock:
2597	read_unlock(&policy_rwlock);
2598	context_destroy(&newcon);
2599out:
2600	return rc;
2601}
2602
2603/**
2604 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2605 * @nlbl_sid: NetLabel SID
2606 * @nlbl_type: NetLabel labeling protocol type
2607 * @xfrm_sid: XFRM SID
2608 *
2609 * Description:
2610 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2611 * resolved into a single SID it is returned via @peer_sid and the function
2612 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
2613 * returns a negative value.  A table summarizing the behavior is below:
2614 *
2615 *                                 | function return |      @sid
2616 *   ------------------------------+-----------------+-----------------
2617 *   no peer labels                |        0        |    SECSID_NULL
2618 *   single peer label             |        0        |    <peer_label>
2619 *   multiple, consistent labels   |        0        |    <peer_label>
2620 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
2621 *
2622 */
2623int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
 
2624				 u32 xfrm_sid,
2625				 u32 *peer_sid)
2626{
 
 
2627	int rc;
2628	struct context *nlbl_ctx;
2629	struct context *xfrm_ctx;
2630
2631	*peer_sid = SECSID_NULL;
2632
2633	/* handle the common (which also happens to be the set of easy) cases
2634	 * right away, these two if statements catch everything involving a
2635	 * single or absent peer SID/label */
2636	if (xfrm_sid == SECSID_NULL) {
2637		*peer_sid = nlbl_sid;
2638		return 0;
2639	}
2640	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2641	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2642	 * is present */
2643	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2644		*peer_sid = xfrm_sid;
2645		return 0;
2646	}
2647
2648	/* we don't need to check ss_initialized here since the only way both
 
2649	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2650	 * security server was initialized and ss_initialized was true */
2651	if (!policydb.mls_enabled)
 
2652		return 0;
2653
2654	read_lock(&policy_rwlock);
2655
2656	rc = -EINVAL;
2657	nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2658	if (!nlbl_ctx) {
2659		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2660		       __func__, nlbl_sid);
2661		goto out;
2662	}
2663	rc = -EINVAL;
2664	xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2665	if (!xfrm_ctx) {
2666		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2667		       __func__, xfrm_sid);
2668		goto out;
2669	}
2670	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2671	if (rc)
2672		goto out;
2673
2674	/* at present NetLabel SIDs/labels really only carry MLS
2675	 * information so if the MLS portion of the NetLabel SID
2676	 * matches the MLS portion of the labeled XFRM SID/label
2677	 * then pass along the XFRM SID as it is the most
2678	 * expressive */
2679	*peer_sid = xfrm_sid;
2680out:
2681	read_unlock(&policy_rwlock);
2682	return rc;
2683}
2684
2685static int get_classes_callback(void *k, void *d, void *args)
2686{
2687	struct class_datum *datum = d;
2688	char *name = k, **classes = args;
2689	int value = datum->value - 1;
2690
2691	classes[value] = kstrdup(name, GFP_ATOMIC);
2692	if (!classes[value])
2693		return -ENOMEM;
2694
2695	return 0;
2696}
2697
2698int security_get_classes(char ***classes, int *nclasses)
 
2699{
 
2700	int rc;
2701
2702	read_lock(&policy_rwlock);
 
 
 
 
 
 
2703
2704	rc = -ENOMEM;
2705	*nclasses = policydb.p_classes.nprim;
2706	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
2707	if (!*classes)
2708		goto out;
2709
2710	rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2711			*classes);
2712	if (rc) {
2713		int i;
2714		for (i = 0; i < *nclasses; i++)
2715			kfree((*classes)[i]);
2716		kfree(*classes);
2717	}
2718
2719out:
2720	read_unlock(&policy_rwlock);
2721	return rc;
2722}
2723
2724static int get_permissions_callback(void *k, void *d, void *args)
2725{
2726	struct perm_datum *datum = d;
2727	char *name = k, **perms = args;
2728	int value = datum->value - 1;
2729
2730	perms[value] = kstrdup(name, GFP_ATOMIC);
2731	if (!perms[value])
2732		return -ENOMEM;
2733
2734	return 0;
2735}
2736
2737int security_get_permissions(char *class, char ***perms, int *nperms)
 
2738{
 
2739	int rc, i;
2740	struct class_datum *match;
2741
2742	read_lock(&policy_rwlock);
2743
2744	rc = -EINVAL;
2745	match = hashtab_search(policydb.p_classes.table, class);
2746	if (!match) {
2747		printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
2748			__func__, class);
2749		goto out;
2750	}
2751
2752	rc = -ENOMEM;
2753	*nperms = match->permissions.nprim;
2754	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
2755	if (!*perms)
2756		goto out;
2757
2758	if (match->comdatum) {
2759		rc = hashtab_map(match->comdatum->permissions.table,
2760				get_permissions_callback, *perms);
2761		if (rc)
2762			goto err;
2763	}
2764
2765	rc = hashtab_map(match->permissions.table, get_permissions_callback,
2766			*perms);
2767	if (rc)
2768		goto err;
2769
2770out:
2771	read_unlock(&policy_rwlock);
2772	return rc;
2773
2774err:
2775	read_unlock(&policy_rwlock);
2776	for (i = 0; i < *nperms; i++)
2777		kfree((*perms)[i]);
2778	kfree(*perms);
2779	return rc;
2780}
2781
2782int security_get_reject_unknown(void)
2783{
2784	return policydb.reject_unknown;
2785}
2786
2787int security_get_allow_unknown(void)
2788{
2789	return policydb.allow_unknown;
2790}
2791
2792/**
2793 * security_policycap_supported - Check for a specific policy capability
2794 * @req_cap: capability
2795 *
2796 * Description:
2797 * This function queries the currently loaded policy to see if it supports the
2798 * capability specified by @req_cap.  Returns true (1) if the capability is
2799 * supported, false (0) if it isn't supported.
2800 *
2801 */
2802int security_policycap_supported(unsigned int req_cap)
 
2803{
 
2804	int rc;
2805
2806	read_lock(&policy_rwlock);
2807	rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
2808	read_unlock(&policy_rwlock);
2809
2810	return rc;
2811}
2812
2813struct selinux_audit_rule {
2814	u32 au_seqno;
2815	struct context au_ctxt;
2816};
2817
2818void selinux_audit_rule_free(void *vrule)
2819{
2820	struct selinux_audit_rule *rule = vrule;
2821
2822	if (rule) {
2823		context_destroy(&rule->au_ctxt);
2824		kfree(rule);
2825	}
2826}
2827
2828int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
2829{
 
 
2830	struct selinux_audit_rule *tmprule;
2831	struct role_datum *roledatum;
2832	struct type_datum *typedatum;
2833	struct user_datum *userdatum;
2834	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
2835	int rc = 0;
2836
2837	*rule = NULL;
2838
2839	if (!ss_initialized)
2840		return -EOPNOTSUPP;
2841
2842	switch (field) {
2843	case AUDIT_SUBJ_USER:
2844	case AUDIT_SUBJ_ROLE:
2845	case AUDIT_SUBJ_TYPE:
2846	case AUDIT_OBJ_USER:
2847	case AUDIT_OBJ_ROLE:
2848	case AUDIT_OBJ_TYPE:
2849		/* only 'equals' and 'not equals' fit user, role, and type */
2850		if (op != Audit_equal && op != Audit_not_equal)
2851			return -EINVAL;
2852		break;
2853	case AUDIT_SUBJ_SEN:
2854	case AUDIT_SUBJ_CLR:
2855	case AUDIT_OBJ_LEV_LOW:
2856	case AUDIT_OBJ_LEV_HIGH:
2857		/* we do not allow a range, indicated by the presence of '-' */
2858		if (strchr(rulestr, '-'))
2859			return -EINVAL;
2860		break;
2861	default:
2862		/* only the above fields are valid */
2863		return -EINVAL;
2864	}
2865
2866	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2867	if (!tmprule)
2868		return -ENOMEM;
2869
2870	context_init(&tmprule->au_ctxt);
2871
2872	read_lock(&policy_rwlock);
2873
2874	tmprule->au_seqno = latest_granting;
2875
2876	switch (field) {
2877	case AUDIT_SUBJ_USER:
2878	case AUDIT_OBJ_USER:
2879		rc = -EINVAL;
2880		userdatum = hashtab_search(policydb.p_users.table, rulestr);
2881		if (!userdatum)
2882			goto out;
2883		tmprule->au_ctxt.user = userdatum->value;
2884		break;
2885	case AUDIT_SUBJ_ROLE:
2886	case AUDIT_OBJ_ROLE:
2887		rc = -EINVAL;
2888		roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2889		if (!roledatum)
2890			goto out;
2891		tmprule->au_ctxt.role = roledatum->value;
2892		break;
2893	case AUDIT_SUBJ_TYPE:
2894	case AUDIT_OBJ_TYPE:
2895		rc = -EINVAL;
2896		typedatum = hashtab_search(policydb.p_types.table, rulestr);
2897		if (!typedatum)
2898			goto out;
2899		tmprule->au_ctxt.type = typedatum->value;
2900		break;
2901	case AUDIT_SUBJ_SEN:
2902	case AUDIT_SUBJ_CLR:
2903	case AUDIT_OBJ_LEV_LOW:
2904	case AUDIT_OBJ_LEV_HIGH:
2905		rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
 
2906		if (rc)
2907			goto out;
2908		break;
2909	}
2910	rc = 0;
2911out:
2912	read_unlock(&policy_rwlock);
2913
2914	if (rc) {
2915		selinux_audit_rule_free(tmprule);
2916		tmprule = NULL;
2917	}
2918
2919	*rule = tmprule;
2920
2921	return rc;
2922}
2923
2924/* Check to see if the rule contains any selinux fields */
2925int selinux_audit_rule_known(struct audit_krule *rule)
2926{
2927	int i;
2928
2929	for (i = 0; i < rule->field_count; i++) {
2930		struct audit_field *f = &rule->fields[i];
2931		switch (f->type) {
2932		case AUDIT_SUBJ_USER:
2933		case AUDIT_SUBJ_ROLE:
2934		case AUDIT_SUBJ_TYPE:
2935		case AUDIT_SUBJ_SEN:
2936		case AUDIT_SUBJ_CLR:
2937		case AUDIT_OBJ_USER:
2938		case AUDIT_OBJ_ROLE:
2939		case AUDIT_OBJ_TYPE:
2940		case AUDIT_OBJ_LEV_LOW:
2941		case AUDIT_OBJ_LEV_HIGH:
2942			return 1;
2943		}
2944	}
2945
2946	return 0;
2947}
2948
2949int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
2950			     struct audit_context *actx)
2951{
 
2952	struct context *ctxt;
2953	struct mls_level *level;
2954	struct selinux_audit_rule *rule = vrule;
2955	int match = 0;
2956
2957	if (unlikely(!rule)) {
2958		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
2959		return -ENOENT;
2960	}
2961
2962	read_lock(&policy_rwlock);
2963
2964	if (rule->au_seqno < latest_granting) {
2965		match = -ESTALE;
2966		goto out;
2967	}
2968
2969	ctxt = sidtab_search(&sidtab, sid);
2970	if (unlikely(!ctxt)) {
2971		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
2972			  sid);
2973		match = -ENOENT;
2974		goto out;
2975	}
2976
2977	/* a field/op pair that is not caught here will simply fall through
2978	   without a match */
2979	switch (field) {
2980	case AUDIT_SUBJ_USER:
2981	case AUDIT_OBJ_USER:
2982		switch (op) {
2983		case Audit_equal:
2984			match = (ctxt->user == rule->au_ctxt.user);
2985			break;
2986		case Audit_not_equal:
2987			match = (ctxt->user != rule->au_ctxt.user);
2988			break;
2989		}
2990		break;
2991	case AUDIT_SUBJ_ROLE:
2992	case AUDIT_OBJ_ROLE:
2993		switch (op) {
2994		case Audit_equal:
2995			match = (ctxt->role == rule->au_ctxt.role);
2996			break;
2997		case Audit_not_equal:
2998			match = (ctxt->role != rule->au_ctxt.role);
2999			break;
3000		}
3001		break;
3002	case AUDIT_SUBJ_TYPE:
3003	case AUDIT_OBJ_TYPE:
3004		switch (op) {
3005		case Audit_equal:
3006			match = (ctxt->type == rule->au_ctxt.type);
3007			break;
3008		case Audit_not_equal:
3009			match = (ctxt->type != rule->au_ctxt.type);
3010			break;
3011		}
3012		break;
3013	case AUDIT_SUBJ_SEN:
3014	case AUDIT_SUBJ_CLR:
3015	case AUDIT_OBJ_LEV_LOW:
3016	case AUDIT_OBJ_LEV_HIGH:
3017		level = ((field == AUDIT_SUBJ_SEN ||
3018			  field == AUDIT_OBJ_LEV_LOW) ?
3019			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3020		switch (op) {
3021		case Audit_equal:
3022			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3023					     level);
3024			break;
3025		case Audit_not_equal:
3026			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3027					      level);
3028			break;
3029		case Audit_lt:
3030			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3031					       level) &&
3032				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3033					       level));
3034			break;
3035		case Audit_le:
3036			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3037					      level);
3038			break;
3039		case Audit_gt:
3040			match = (mls_level_dom(level,
3041					      &rule->au_ctxt.range.level[0]) &&
3042				 !mls_level_eq(level,
3043					       &rule->au_ctxt.range.level[0]));
3044			break;
3045		case Audit_ge:
3046			match = mls_level_dom(level,
3047					      &rule->au_ctxt.range.level[0]);
3048			break;
3049		}
3050	}
3051
3052out:
3053	read_unlock(&policy_rwlock);
3054	return match;
3055}
3056
3057static int (*aurule_callback)(void) = audit_update_lsm_rules;
3058
3059static int aurule_avc_callback(u32 event)
3060{
3061	int err = 0;
3062
3063	if (event == AVC_CALLBACK_RESET && aurule_callback)
3064		err = aurule_callback();
3065	return err;
3066}
3067
3068static int __init aurule_init(void)
3069{
3070	int err;
3071
3072	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3073	if (err)
3074		panic("avc_add_callback() failed, error %d\n", err);
3075
3076	return err;
3077}
3078__initcall(aurule_init);
3079
3080#ifdef CONFIG_NETLABEL
3081/**
3082 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3083 * @secattr: the NetLabel packet security attributes
3084 * @sid: the SELinux SID
3085 *
3086 * Description:
3087 * Attempt to cache the context in @ctx, which was derived from the packet in
3088 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3089 * already been initialized.
3090 *
3091 */
3092static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3093				      u32 sid)
3094{
3095	u32 *sid_cache;
3096
3097	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3098	if (sid_cache == NULL)
3099		return;
3100	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3101	if (secattr->cache == NULL) {
3102		kfree(sid_cache);
3103		return;
3104	}
3105
3106	*sid_cache = sid;
3107	secattr->cache->free = kfree;
3108	secattr->cache->data = sid_cache;
3109	secattr->flags |= NETLBL_SECATTR_CACHE;
3110}
3111
3112/**
3113 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3114 * @secattr: the NetLabel packet security attributes
3115 * @sid: the SELinux SID
3116 *
3117 * Description:
3118 * Convert the given NetLabel security attributes in @secattr into a
3119 * SELinux SID.  If the @secattr field does not contain a full SELinux
3120 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3121 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3122 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3123 * conversion for future lookups.  Returns zero on success, negative values on
3124 * failure.
3125 *
3126 */
3127int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
 
3128				   u32 *sid)
3129{
 
 
3130	int rc;
3131	struct context *ctx;
3132	struct context ctx_new;
3133
3134	if (!ss_initialized) {
3135		*sid = SECSID_NULL;
3136		return 0;
3137	}
3138
3139	read_lock(&policy_rwlock);
3140
3141	if (secattr->flags & NETLBL_SECATTR_CACHE)
3142		*sid = *(u32 *)secattr->cache->data;
3143	else if (secattr->flags & NETLBL_SECATTR_SECID)
3144		*sid = secattr->attr.secid;
3145	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3146		rc = -EIDRM;
3147		ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
3148		if (ctx == NULL)
3149			goto out;
3150
3151		context_init(&ctx_new);
3152		ctx_new.user = ctx->user;
3153		ctx_new.role = ctx->role;
3154		ctx_new.type = ctx->type;
3155		mls_import_netlbl_lvl(&ctx_new, secattr);
3156		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3157			rc = ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
3158						   secattr->attr.mls.cat);
3159			if (rc)
3160				goto out;
3161			memcpy(&ctx_new.range.level[1].cat,
3162			       &ctx_new.range.level[0].cat,
3163			       sizeof(ctx_new.range.level[0].cat));
3164		}
3165		rc = -EIDRM;
3166		if (!mls_context_isvalid(&policydb, &ctx_new))
3167			goto out_free;
3168
3169		rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
3170		if (rc)
3171			goto out_free;
3172
3173		security_netlbl_cache_add(secattr, *sid);
3174
3175		ebitmap_destroy(&ctx_new.range.level[0].cat);
3176	} else
3177		*sid = SECSID_NULL;
3178
3179	read_unlock(&policy_rwlock);
3180	return 0;
3181out_free:
3182	ebitmap_destroy(&ctx_new.range.level[0].cat);
3183out:
3184	read_unlock(&policy_rwlock);
3185	return rc;
3186}
3187
3188/**
3189 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3190 * @sid: the SELinux SID
3191 * @secattr: the NetLabel packet security attributes
3192 *
3193 * Description:
3194 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3195 * Returns zero on success, negative values on failure.
3196 *
3197 */
3198int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
 
3199{
 
3200	int rc;
3201	struct context *ctx;
3202
3203	if (!ss_initialized)
3204		return 0;
3205
3206	read_lock(&policy_rwlock);
3207
3208	rc = -ENOENT;
3209	ctx = sidtab_search(&sidtab, sid);
3210	if (ctx == NULL)
3211		goto out;
3212
3213	rc = -ENOMEM;
3214	secattr->domain = kstrdup(sym_name(&policydb, SYM_TYPES, ctx->type - 1),
3215				  GFP_ATOMIC);
3216	if (secattr->domain == NULL)
3217		goto out;
3218
3219	secattr->attr.secid = sid;
3220	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3221	mls_export_netlbl_lvl(ctx, secattr);
3222	rc = mls_export_netlbl_cat(ctx, secattr);
3223out:
3224	read_unlock(&policy_rwlock);
3225	return rc;
3226}
3227#endif /* CONFIG_NETLABEL */
3228
3229/**
3230 * security_read_policy - read the policy.
3231 * @data: binary policy data
3232 * @len: length of data in bytes
3233 *
3234 */
3235int security_read_policy(void **data, size_t *len)
 
3236{
 
3237	int rc;
3238	struct policy_file fp;
3239
3240	if (!ss_initialized)
3241		return -EINVAL;
3242
3243	*len = security_policydb_len();
3244
3245	*data = vmalloc_user(*len);
3246	if (!*data)
3247		return -ENOMEM;
3248
3249	fp.data = *data;
3250	fp.len = *len;
3251
3252	read_lock(&policy_rwlock);
3253	rc = policydb_write(&policydb, &fp);
3254	read_unlock(&policy_rwlock);
3255
3256	if (rc)
3257		return rc;
3258
3259	*len = (unsigned long)fp.data - (unsigned long)*data;
3260	return 0;
3261
3262}