Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * sparse memory mappings.
  4 */
  5#include <linux/mm.h>
  6#include <linux/slab.h>
  7#include <linux/mmzone.h>
  8#include <linux/memblock.h>
  9#include <linux/compiler.h>
 10#include <linux/highmem.h>
 11#include <linux/export.h>
 12#include <linux/spinlock.h>
 13#include <linux/vmalloc.h>
 14#include <linux/swap.h>
 15#include <linux/swapops.h>
 16
 17#include "internal.h"
 18#include <asm/dma.h>
 19#include <asm/pgalloc.h>
 20#include <asm/pgtable.h>
 21
 22/*
 23 * Permanent SPARSEMEM data:
 24 *
 25 * 1) mem_section	- memory sections, mem_map's for valid memory
 26 */
 27#ifdef CONFIG_SPARSEMEM_EXTREME
 28struct mem_section **mem_section;
 29#else
 30struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
 31	____cacheline_internodealigned_in_smp;
 32#endif
 33EXPORT_SYMBOL(mem_section);
 34
 35#ifdef NODE_NOT_IN_PAGE_FLAGS
 36/*
 37 * If we did not store the node number in the page then we have to
 38 * do a lookup in the section_to_node_table in order to find which
 39 * node the page belongs to.
 40 */
 41#if MAX_NUMNODES <= 256
 42static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 43#else
 44static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 45#endif
 46
 47int page_to_nid(const struct page *page)
 48{
 49	return section_to_node_table[page_to_section(page)];
 50}
 51EXPORT_SYMBOL(page_to_nid);
 52
 53static void set_section_nid(unsigned long section_nr, int nid)
 54{
 55	section_to_node_table[section_nr] = nid;
 56}
 57#else /* !NODE_NOT_IN_PAGE_FLAGS */
 58static inline void set_section_nid(unsigned long section_nr, int nid)
 59{
 60}
 61#endif
 62
 63#ifdef CONFIG_SPARSEMEM_EXTREME
 64static noinline struct mem_section __ref *sparse_index_alloc(int nid)
 65{
 66	struct mem_section *section = NULL;
 67	unsigned long array_size = SECTIONS_PER_ROOT *
 68				   sizeof(struct mem_section);
 69
 70	if (slab_is_available()) {
 71		section = kzalloc_node(array_size, GFP_KERNEL, nid);
 72	} else {
 73		section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
 74					      nid);
 75		if (!section)
 76			panic("%s: Failed to allocate %lu bytes nid=%d\n",
 77			      __func__, array_size, nid);
 78	}
 79
 80	return section;
 81}
 82
 83static int __meminit sparse_index_init(unsigned long section_nr, int nid)
 84{
 85	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
 86	struct mem_section *section;
 87
 88	/*
 89	 * An existing section is possible in the sub-section hotplug
 90	 * case. First hot-add instantiates, follow-on hot-add reuses
 91	 * the existing section.
 92	 *
 93	 * The mem_hotplug_lock resolves the apparent race below.
 94	 */
 95	if (mem_section[root])
 96		return 0;
 97
 98	section = sparse_index_alloc(nid);
 99	if (!section)
100		return -ENOMEM;
101
102	mem_section[root] = section;
103
104	return 0;
105}
106#else /* !SPARSEMEM_EXTREME */
107static inline int sparse_index_init(unsigned long section_nr, int nid)
108{
109	return 0;
110}
111#endif
112
113#ifdef CONFIG_SPARSEMEM_EXTREME
114unsigned long __section_nr(struct mem_section *ms)
115{
116	unsigned long root_nr;
117	struct mem_section *root = NULL;
118
119	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
120		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
121		if (!root)
122			continue;
123
124		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
125		     break;
126	}
127
128	VM_BUG_ON(!root);
129
130	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
131}
132#else
133unsigned long __section_nr(struct mem_section *ms)
134{
135	return (unsigned long)(ms - mem_section[0]);
136}
137#endif
138
139/*
140 * During early boot, before section_mem_map is used for an actual
141 * mem_map, we use section_mem_map to store the section's NUMA
142 * node.  This keeps us from having to use another data structure.  The
143 * node information is cleared just before we store the real mem_map.
144 */
145static inline unsigned long sparse_encode_early_nid(int nid)
146{
147	return (nid << SECTION_NID_SHIFT);
148}
149
150static inline int sparse_early_nid(struct mem_section *section)
151{
152	return (section->section_mem_map >> SECTION_NID_SHIFT);
153}
154
155/* Validate the physical addressing limitations of the model */
156void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
157						unsigned long *end_pfn)
158{
159	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
160
161	/*
162	 * Sanity checks - do not allow an architecture to pass
163	 * in larger pfns than the maximum scope of sparsemem:
164	 */
165	if (*start_pfn > max_sparsemem_pfn) {
166		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
167			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
168			*start_pfn, *end_pfn, max_sparsemem_pfn);
169		WARN_ON_ONCE(1);
170		*start_pfn = max_sparsemem_pfn;
171		*end_pfn = max_sparsemem_pfn;
172	} else if (*end_pfn > max_sparsemem_pfn) {
173		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
174			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
175			*start_pfn, *end_pfn, max_sparsemem_pfn);
176		WARN_ON_ONCE(1);
177		*end_pfn = max_sparsemem_pfn;
178	}
179}
180
181/*
182 * There are a number of times that we loop over NR_MEM_SECTIONS,
183 * looking for section_present() on each.  But, when we have very
184 * large physical address spaces, NR_MEM_SECTIONS can also be
185 * very large which makes the loops quite long.
186 *
187 * Keeping track of this gives us an easy way to break out of
188 * those loops early.
189 */
190unsigned long __highest_present_section_nr;
191static void section_mark_present(struct mem_section *ms)
192{
193	unsigned long section_nr = __section_nr(ms);
194
195	if (section_nr > __highest_present_section_nr)
196		__highest_present_section_nr = section_nr;
197
198	ms->section_mem_map |= SECTION_MARKED_PRESENT;
199}
200
201static inline unsigned long next_present_section_nr(unsigned long section_nr)
202{
203	do {
204		section_nr++;
205		if (present_section_nr(section_nr))
206			return section_nr;
207	} while ((section_nr <= __highest_present_section_nr));
208
209	return -1;
210}
211#define for_each_present_section_nr(start, section_nr)		\
212	for (section_nr = next_present_section_nr(start-1);	\
213	     ((section_nr != -1) &&				\
214	      (section_nr <= __highest_present_section_nr));	\
215	     section_nr = next_present_section_nr(section_nr))
216
217static inline unsigned long first_present_section_nr(void)
218{
219	return next_present_section_nr(-1);
220}
221
 
222static void subsection_mask_set(unsigned long *map, unsigned long pfn,
223		unsigned long nr_pages)
224{
225	int idx = subsection_map_index(pfn);
226	int end = subsection_map_index(pfn + nr_pages - 1);
227
228	bitmap_set(map, idx, end - idx + 1);
229}
230
231void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
232{
233	int end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
234	unsigned long nr, start_sec = pfn_to_section_nr(pfn);
235
236	if (!nr_pages)
237		return;
238
239	for (nr = start_sec; nr <= end_sec; nr++) {
240		struct mem_section *ms;
241		unsigned long pfns;
242
243		pfns = min(nr_pages, PAGES_PER_SECTION
244				- (pfn & ~PAGE_SECTION_MASK));
245		ms = __nr_to_section(nr);
246		subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
247
248		pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
249				pfns, subsection_map_index(pfn),
250				subsection_map_index(pfn + pfns - 1));
251
252		pfn += pfns;
253		nr_pages -= pfns;
254	}
255}
 
 
 
 
 
256
257/* Record a memory area against a node. */
258void __init memory_present(int nid, unsigned long start, unsigned long end)
259{
260	unsigned long pfn;
261
262#ifdef CONFIG_SPARSEMEM_EXTREME
263	if (unlikely(!mem_section)) {
264		unsigned long size, align;
265
266		size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
267		align = 1 << (INTERNODE_CACHE_SHIFT);
268		mem_section = memblock_alloc(size, align);
269		if (!mem_section)
270			panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
271			      __func__, size, align);
272	}
273#endif
274
275	start &= PAGE_SECTION_MASK;
276	mminit_validate_memmodel_limits(&start, &end);
277	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
278		unsigned long section = pfn_to_section_nr(pfn);
279		struct mem_section *ms;
280
281		sparse_index_init(section, nid);
282		set_section_nid(section, nid);
283
284		ms = __nr_to_section(section);
285		if (!ms->section_mem_map) {
286			ms->section_mem_map = sparse_encode_early_nid(nid) |
287							SECTION_IS_ONLINE;
288			section_mark_present(ms);
289		}
290	}
291}
292
293/*
294 * Mark all memblocks as present using memory_present(). This is a
295 * convienence function that is useful for a number of arches
296 * to mark all of the systems memory as present during initialization.
297 */
298void __init memblocks_present(void)
299{
300	struct memblock_region *reg;
301
302	for_each_memblock(memory, reg) {
303		memory_present(memblock_get_region_node(reg),
304			       memblock_region_memory_base_pfn(reg),
305			       memblock_region_memory_end_pfn(reg));
306	}
307}
308
309/*
310 * Subtle, we encode the real pfn into the mem_map such that
311 * the identity pfn - section_mem_map will return the actual
312 * physical page frame number.
313 */
314static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
315{
316	unsigned long coded_mem_map =
317		(unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
318	BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
319	BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
320	return coded_mem_map;
321}
322
323/*
324 * Decode mem_map from the coded memmap
325 */
326struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
327{
328	/* mask off the extra low bits of information */
329	coded_mem_map &= SECTION_MAP_MASK;
330	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
331}
332
333static void __meminit sparse_init_one_section(struct mem_section *ms,
334		unsigned long pnum, struct page *mem_map,
335		struct mem_section_usage *usage, unsigned long flags)
336{
337	ms->section_mem_map &= ~SECTION_MAP_MASK;
338	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
339		| SECTION_HAS_MEM_MAP | flags;
340	ms->usage = usage;
341}
342
343static unsigned long usemap_size(void)
344{
345	return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
346}
347
348size_t mem_section_usage_size(void)
349{
350	return sizeof(struct mem_section_usage) + usemap_size();
351}
352
353#ifdef CONFIG_MEMORY_HOTREMOVE
354static struct mem_section_usage * __init
355sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
356					 unsigned long size)
357{
358	struct mem_section_usage *usage;
359	unsigned long goal, limit;
360	int nid;
361	/*
362	 * A page may contain usemaps for other sections preventing the
363	 * page being freed and making a section unremovable while
364	 * other sections referencing the usemap remain active. Similarly,
365	 * a pgdat can prevent a section being removed. If section A
366	 * contains a pgdat and section B contains the usemap, both
367	 * sections become inter-dependent. This allocates usemaps
368	 * from the same section as the pgdat where possible to avoid
369	 * this problem.
370	 */
371	goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
372	limit = goal + (1UL << PA_SECTION_SHIFT);
373	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
374again:
375	usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
376	if (!usage && limit) {
377		limit = 0;
378		goto again;
379	}
380	return usage;
381}
382
383static void __init check_usemap_section_nr(int nid,
384		struct mem_section_usage *usage)
385{
386	unsigned long usemap_snr, pgdat_snr;
387	static unsigned long old_usemap_snr;
388	static unsigned long old_pgdat_snr;
389	struct pglist_data *pgdat = NODE_DATA(nid);
390	int usemap_nid;
391
392	/* First call */
393	if (!old_usemap_snr) {
394		old_usemap_snr = NR_MEM_SECTIONS;
395		old_pgdat_snr = NR_MEM_SECTIONS;
396	}
397
398	usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
399	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
400	if (usemap_snr == pgdat_snr)
401		return;
402
403	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
404		/* skip redundant message */
405		return;
406
407	old_usemap_snr = usemap_snr;
408	old_pgdat_snr = pgdat_snr;
409
410	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
411	if (usemap_nid != nid) {
412		pr_info("node %d must be removed before remove section %ld\n",
413			nid, usemap_snr);
414		return;
415	}
416	/*
417	 * There is a circular dependency.
418	 * Some platforms allow un-removable section because they will just
419	 * gather other removable sections for dynamic partitioning.
420	 * Just notify un-removable section's number here.
421	 */
422	pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
423		usemap_snr, pgdat_snr, nid);
424}
425#else
426static struct mem_section_usage * __init
427sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
428					 unsigned long size)
429{
430	return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
431}
432
433static void __init check_usemap_section_nr(int nid,
434		struct mem_section_usage *usage)
435{
436}
437#endif /* CONFIG_MEMORY_HOTREMOVE */
438
439#ifdef CONFIG_SPARSEMEM_VMEMMAP
440static unsigned long __init section_map_size(void)
441{
442	return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
443}
444
445#else
446static unsigned long __init section_map_size(void)
447{
448	return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
449}
450
451struct page __init *__populate_section_memmap(unsigned long pfn,
452		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
453{
454	unsigned long size = section_map_size();
455	struct page *map = sparse_buffer_alloc(size);
456	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
457
458	if (map)
459		return map;
460
461	map = memblock_alloc_try_nid(size,
462					  PAGE_SIZE, addr,
463					  MEMBLOCK_ALLOC_ACCESSIBLE, nid);
464	if (!map)
465		panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
466		      __func__, size, PAGE_SIZE, nid, &addr);
467
468	return map;
469}
470#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
471
472static void *sparsemap_buf __meminitdata;
473static void *sparsemap_buf_end __meminitdata;
474
475static inline void __meminit sparse_buffer_free(unsigned long size)
476{
477	WARN_ON(!sparsemap_buf || size == 0);
478	memblock_free_early(__pa(sparsemap_buf), size);
479}
480
481static void __init sparse_buffer_init(unsigned long size, int nid)
482{
483	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
484	WARN_ON(sparsemap_buf);	/* forgot to call sparse_buffer_fini()? */
485	sparsemap_buf =
486		memblock_alloc_try_nid_raw(size, PAGE_SIZE,
487						addr,
488						MEMBLOCK_ALLOC_ACCESSIBLE, nid);
 
 
 
489	sparsemap_buf_end = sparsemap_buf + size;
490}
491
492static void __init sparse_buffer_fini(void)
493{
494	unsigned long size = sparsemap_buf_end - sparsemap_buf;
495
496	if (sparsemap_buf && size > 0)
497		sparse_buffer_free(size);
498	sparsemap_buf = NULL;
499}
500
501void * __meminit sparse_buffer_alloc(unsigned long size)
502{
503	void *ptr = NULL;
504
505	if (sparsemap_buf) {
506		ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
507		if (ptr + size > sparsemap_buf_end)
508			ptr = NULL;
509		else {
510			/* Free redundant aligned space */
511			if ((unsigned long)(ptr - sparsemap_buf) > 0)
512				sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
513			sparsemap_buf = ptr + size;
514		}
515	}
516	return ptr;
517}
518
519void __weak __meminit vmemmap_populate_print_last(void)
520{
521}
522
523/*
524 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
525 * And number of present sections in this node is map_count.
526 */
527static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
528				   unsigned long pnum_end,
529				   unsigned long map_count)
530{
531	struct mem_section_usage *usage;
532	unsigned long pnum;
533	struct page *map;
534
535	usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
536			mem_section_usage_size() * map_count);
537	if (!usage) {
538		pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
539		goto failed;
540	}
541	sparse_buffer_init(map_count * section_map_size(), nid);
542	for_each_present_section_nr(pnum_begin, pnum) {
543		unsigned long pfn = section_nr_to_pfn(pnum);
544
545		if (pnum >= pnum_end)
546			break;
547
548		map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
549				nid, NULL);
550		if (!map) {
551			pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
552			       __func__, nid);
553			pnum_begin = pnum;
554			goto failed;
555		}
556		check_usemap_section_nr(nid, usage);
557		sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
558				SECTION_IS_EARLY);
559		usage = (void *) usage + mem_section_usage_size();
560	}
561	sparse_buffer_fini();
562	return;
563failed:
564	/* We failed to allocate, mark all the following pnums as not present */
565	for_each_present_section_nr(pnum_begin, pnum) {
566		struct mem_section *ms;
567
568		if (pnum >= pnum_end)
569			break;
570		ms = __nr_to_section(pnum);
571		ms->section_mem_map = 0;
572	}
573}
574
575/*
576 * Allocate the accumulated non-linear sections, allocate a mem_map
577 * for each and record the physical to section mapping.
578 */
579void __init sparse_init(void)
580{
581	unsigned long pnum_begin = first_present_section_nr();
582	int nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
583	unsigned long pnum_end, map_count = 1;
 
 
 
 
584
585	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
586	set_pageblock_order();
587
588	for_each_present_section_nr(pnum_begin + 1, pnum_end) {
589		int nid = sparse_early_nid(__nr_to_section(pnum_end));
590
591		if (nid == nid_begin) {
592			map_count++;
593			continue;
594		}
595		/* Init node with sections in range [pnum_begin, pnum_end) */
596		sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
597		nid_begin = nid;
598		pnum_begin = pnum_end;
599		map_count = 1;
600	}
601	/* cover the last node */
602	sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
603	vmemmap_populate_print_last();
604}
605
606#ifdef CONFIG_MEMORY_HOTPLUG
607
608/* Mark all memory sections within the pfn range as online */
609void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
610{
611	unsigned long pfn;
612
613	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
614		unsigned long section_nr = pfn_to_section_nr(pfn);
615		struct mem_section *ms;
616
617		/* onlining code should never touch invalid ranges */
618		if (WARN_ON(!valid_section_nr(section_nr)))
619			continue;
620
621		ms = __nr_to_section(section_nr);
622		ms->section_mem_map |= SECTION_IS_ONLINE;
623	}
624}
625
626#ifdef CONFIG_MEMORY_HOTREMOVE
627/* Mark all memory sections within the pfn range as offline */
628void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
629{
630	unsigned long pfn;
631
632	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
633		unsigned long section_nr = pfn_to_section_nr(pfn);
634		struct mem_section *ms;
635
636		/*
637		 * TODO this needs some double checking. Offlining code makes
638		 * sure to check pfn_valid but those checks might be just bogus
639		 */
640		if (WARN_ON(!valid_section_nr(section_nr)))
641			continue;
642
643		ms = __nr_to_section(section_nr);
644		ms->section_mem_map &= ~SECTION_IS_ONLINE;
645	}
646}
647#endif
648
649#ifdef CONFIG_SPARSEMEM_VMEMMAP
650static struct page *populate_section_memmap(unsigned long pfn,
651		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
652{
653	return __populate_section_memmap(pfn, nr_pages, nid, altmap);
654}
655
656static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
657		struct vmem_altmap *altmap)
658{
659	unsigned long start = (unsigned long) pfn_to_page(pfn);
660	unsigned long end = start + nr_pages * sizeof(struct page);
661
662	vmemmap_free(start, end, altmap);
663}
664static void free_map_bootmem(struct page *memmap)
665{
666	unsigned long start = (unsigned long)memmap;
667	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
668
669	vmemmap_free(start, end, NULL);
670}
671#else
672struct page *populate_section_memmap(unsigned long pfn,
673		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
674{
675	struct page *page, *ret;
676	unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
 
 
 
677
678	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
679	if (page)
680		goto got_map_page;
681
682	ret = vmalloc(memmap_size);
683	if (ret)
684		goto got_map_ptr;
685
686	return NULL;
687got_map_page:
688	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
689got_map_ptr:
690
691	return ret;
 
 
 
 
 
 
692}
693
694static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
695		struct vmem_altmap *altmap)
696{
697	struct page *memmap = pfn_to_page(pfn);
 
 
698
699	if (is_vmalloc_addr(memmap))
700		vfree(memmap);
 
 
 
 
 
 
 
 
 
 
 
 
 
701	else
702		free_pages((unsigned long)memmap,
703			   get_order(sizeof(struct page) * PAGES_PER_SECTION));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
704}
705
706static void free_map_bootmem(struct page *memmap)
707{
708	unsigned long maps_section_nr, removing_section_nr, i;
709	unsigned long magic, nr_pages;
710	struct page *page = virt_to_page(memmap);
711
712	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
713		>> PAGE_SHIFT;
714
715	for (i = 0; i < nr_pages; i++, page++) {
716		magic = (unsigned long) page->freelist;
717
718		BUG_ON(magic == NODE_INFO);
719
720		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
721		removing_section_nr = page_private(page);
722
723		/*
724		 * When this function is called, the removing section is
725		 * logical offlined state. This means all pages are isolated
726		 * from page allocator. If removing section's memmap is placed
727		 * on the same section, it must not be freed.
728		 * If it is freed, page allocator may allocate it which will
729		 * be removed physically soon.
730		 */
731		if (maps_section_nr != removing_section_nr)
732			put_page_bootmem(page);
733	}
734}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
735#endif /* CONFIG_SPARSEMEM_VMEMMAP */
736
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
737static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
738		struct vmem_altmap *altmap)
739{
740	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
741	DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
742	struct mem_section *ms = __pfn_to_section(pfn);
743	bool section_is_early = early_section(ms);
744	struct page *memmap = NULL;
745	unsigned long *subsection_map = ms->usage
746		? &ms->usage->subsection_map[0] : NULL;
747
748	subsection_mask_set(map, pfn, nr_pages);
749	if (subsection_map)
750		bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
751
752	if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
753				"section already deactivated (%#lx + %ld)\n",
754				pfn, nr_pages))
755		return;
756
757	/*
758	 * There are 3 cases to handle across two configurations
759	 * (SPARSEMEM_VMEMMAP={y,n}):
760	 *
761	 * 1/ deactivation of a partial hot-added section (only possible
762	 * in the SPARSEMEM_VMEMMAP=y case).
763	 *    a/ section was present at memory init
764	 *    b/ section was hot-added post memory init
765	 * 2/ deactivation of a complete hot-added section
766	 * 3/ deactivation of a complete section from memory init
767	 *
768	 * For 1/, when subsection_map does not empty we will not be
769	 * freeing the usage map, but still need to free the vmemmap
770	 * range.
771	 *
772	 * For 2/ and 3/ the SPARSEMEM_VMEMMAP={y,n} cases are unified
773	 */
774	bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
775	if (bitmap_empty(subsection_map, SUBSECTIONS_PER_SECTION)) {
776		unsigned long section_nr = pfn_to_section_nr(pfn);
777
778		if (!section_is_early) {
 
 
 
 
 
 
 
779			kfree(ms->usage);
780			ms->usage = NULL;
781		}
782		memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
783		ms->section_mem_map = sparse_encode_mem_map(NULL, section_nr);
 
 
 
 
 
784	}
785
786	if (section_is_early && memmap)
787		free_map_bootmem(memmap);
788	else
 
 
789		depopulate_section_memmap(pfn, nr_pages, altmap);
 
 
 
 
 
790}
791
792static struct page * __meminit section_activate(int nid, unsigned long pfn,
793		unsigned long nr_pages, struct vmem_altmap *altmap)
794{
795	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
796	struct mem_section *ms = __pfn_to_section(pfn);
797	struct mem_section_usage *usage = NULL;
798	unsigned long *subsection_map;
799	struct page *memmap;
800	int rc = 0;
801
802	subsection_mask_set(map, pfn, nr_pages);
803
804	if (!ms->usage) {
805		usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
806		if (!usage)
807			return ERR_PTR(-ENOMEM);
808		ms->usage = usage;
809	}
810	subsection_map = &ms->usage->subsection_map[0];
811
812	if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
813		rc = -EINVAL;
814	else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
815		rc = -EEXIST;
816	else
817		bitmap_or(subsection_map, map, subsection_map,
818				SUBSECTIONS_PER_SECTION);
819
 
820	if (rc) {
821		if (usage)
822			ms->usage = NULL;
823		kfree(usage);
824		return ERR_PTR(rc);
825	}
826
827	/*
828	 * The early init code does not consider partially populated
829	 * initial sections, it simply assumes that memory will never be
830	 * referenced.  If we hot-add memory into such a section then we
831	 * do not need to populate the memmap and can simply reuse what
832	 * is already there.
833	 */
834	if (nr_pages < PAGES_PER_SECTION && early_section(ms))
835		return pfn_to_page(pfn);
836
837	memmap = populate_section_memmap(pfn, nr_pages, nid, altmap);
838	if (!memmap) {
839		section_deactivate(pfn, nr_pages, altmap);
840		return ERR_PTR(-ENOMEM);
841	}
842
843	return memmap;
844}
845
846/**
847 * sparse_add_section - add a memory section, or populate an existing one
848 * @nid: The node to add section on
849 * @start_pfn: start pfn of the memory range
850 * @nr_pages: number of pfns to add in the section
851 * @altmap: device page map
852 *
853 * This is only intended for hotplug.
854 *
 
 
 
 
855 * Return:
856 * * 0		- On success.
857 * * -EEXIST	- Section has been present.
858 * * -ENOMEM	- Out of memory.
859 */
860int __meminit sparse_add_section(int nid, unsigned long start_pfn,
861		unsigned long nr_pages, struct vmem_altmap *altmap)
862{
863	unsigned long section_nr = pfn_to_section_nr(start_pfn);
864	struct mem_section *ms;
865	struct page *memmap;
866	int ret;
867
868	ret = sparse_index_init(section_nr, nid);
869	if (ret < 0)
870		return ret;
871
872	memmap = section_activate(nid, start_pfn, nr_pages, altmap);
873	if (IS_ERR(memmap))
874		return PTR_ERR(memmap);
875
876	/*
877	 * Poison uninitialized struct pages in order to catch invalid flags
878	 * combinations.
879	 */
880	page_init_poison(pfn_to_page(start_pfn), sizeof(struct page) * nr_pages);
881
882	ms = __nr_to_section(section_nr);
883	set_section_nid(section_nr, nid);
884	section_mark_present(ms);
885
886	/* Align memmap to section boundary in the subsection case */
887	if (section_nr_to_pfn(section_nr) != start_pfn)
888		memmap = pfn_to_kaddr(section_nr_to_pfn(section_nr));
889	sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
890
891	return 0;
892}
893
894#ifdef CONFIG_MEMORY_FAILURE
895static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
896{
897	int i;
898
899	/*
900	 * A further optimization is to have per section refcounted
901	 * num_poisoned_pages.  But that would need more space per memmap, so
902	 * for now just do a quick global check to speed up this routine in the
903	 * absence of bad pages.
904	 */
905	if (atomic_long_read(&num_poisoned_pages) == 0)
906		return;
907
908	for (i = 0; i < nr_pages; i++) {
909		if (PageHWPoison(&memmap[i])) {
910			num_poisoned_pages_dec();
911			ClearPageHWPoison(&memmap[i]);
912		}
913	}
914}
915#else
916static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
917{
918}
919#endif
920
921void sparse_remove_section(struct mem_section *ms, unsigned long pfn,
922		unsigned long nr_pages, unsigned long map_offset,
923		struct vmem_altmap *altmap)
924{
925	clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset,
926			nr_pages - map_offset);
927	section_deactivate(pfn, nr_pages, altmap);
928}
929#endif /* CONFIG_MEMORY_HOTPLUG */
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * sparse memory mappings.
  4 */
  5#include <linux/mm.h>
  6#include <linux/slab.h>
  7#include <linux/mmzone.h>
  8#include <linux/memblock.h>
  9#include <linux/compiler.h>
 10#include <linux/highmem.h>
 11#include <linux/export.h>
 12#include <linux/spinlock.h>
 13#include <linux/vmalloc.h>
 14#include <linux/swap.h>
 15#include <linux/swapops.h>
 16
 17#include "internal.h"
 18#include <asm/dma.h>
 
 
 19
 20/*
 21 * Permanent SPARSEMEM data:
 22 *
 23 * 1) mem_section	- memory sections, mem_map's for valid memory
 24 */
 25#ifdef CONFIG_SPARSEMEM_EXTREME
 26struct mem_section **mem_section;
 27#else
 28struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
 29	____cacheline_internodealigned_in_smp;
 30#endif
 31EXPORT_SYMBOL(mem_section);
 32
 33#ifdef NODE_NOT_IN_PAGE_FLAGS
 34/*
 35 * If we did not store the node number in the page then we have to
 36 * do a lookup in the section_to_node_table in order to find which
 37 * node the page belongs to.
 38 */
 39#if MAX_NUMNODES <= 256
 40static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 41#else
 42static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 43#endif
 44
 45int page_to_nid(const struct page *page)
 46{
 47	return section_to_node_table[page_to_section(page)];
 48}
 49EXPORT_SYMBOL(page_to_nid);
 50
 51static void set_section_nid(unsigned long section_nr, int nid)
 52{
 53	section_to_node_table[section_nr] = nid;
 54}
 55#else /* !NODE_NOT_IN_PAGE_FLAGS */
 56static inline void set_section_nid(unsigned long section_nr, int nid)
 57{
 58}
 59#endif
 60
 61#ifdef CONFIG_SPARSEMEM_EXTREME
 62static noinline struct mem_section __ref *sparse_index_alloc(int nid)
 63{
 64	struct mem_section *section = NULL;
 65	unsigned long array_size = SECTIONS_PER_ROOT *
 66				   sizeof(struct mem_section);
 67
 68	if (slab_is_available()) {
 69		section = kzalloc_node(array_size, GFP_KERNEL, nid);
 70	} else {
 71		section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
 72					      nid);
 73		if (!section)
 74			panic("%s: Failed to allocate %lu bytes nid=%d\n",
 75			      __func__, array_size, nid);
 76	}
 77
 78	return section;
 79}
 80
 81static int __meminit sparse_index_init(unsigned long section_nr, int nid)
 82{
 83	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
 84	struct mem_section *section;
 85
 86	/*
 87	 * An existing section is possible in the sub-section hotplug
 88	 * case. First hot-add instantiates, follow-on hot-add reuses
 89	 * the existing section.
 90	 *
 91	 * The mem_hotplug_lock resolves the apparent race below.
 92	 */
 93	if (mem_section[root])
 94		return 0;
 95
 96	section = sparse_index_alloc(nid);
 97	if (!section)
 98		return -ENOMEM;
 99
100	mem_section[root] = section;
101
102	return 0;
103}
104#else /* !SPARSEMEM_EXTREME */
105static inline int sparse_index_init(unsigned long section_nr, int nid)
106{
107	return 0;
108}
109#endif
110
111#ifdef CONFIG_SPARSEMEM_EXTREME
112unsigned long __section_nr(struct mem_section *ms)
113{
114	unsigned long root_nr;
115	struct mem_section *root = NULL;
116
117	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
118		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
119		if (!root)
120			continue;
121
122		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
123		     break;
124	}
125
126	VM_BUG_ON(!root);
127
128	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
129}
130#else
131unsigned long __section_nr(struct mem_section *ms)
132{
133	return (unsigned long)(ms - mem_section[0]);
134}
135#endif
136
137/*
138 * During early boot, before section_mem_map is used for an actual
139 * mem_map, we use section_mem_map to store the section's NUMA
140 * node.  This keeps us from having to use another data structure.  The
141 * node information is cleared just before we store the real mem_map.
142 */
143static inline unsigned long sparse_encode_early_nid(int nid)
144{
145	return (nid << SECTION_NID_SHIFT);
146}
147
148static inline int sparse_early_nid(struct mem_section *section)
149{
150	return (section->section_mem_map >> SECTION_NID_SHIFT);
151}
152
153/* Validate the physical addressing limitations of the model */
154void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
155						unsigned long *end_pfn)
156{
157	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
158
159	/*
160	 * Sanity checks - do not allow an architecture to pass
161	 * in larger pfns than the maximum scope of sparsemem:
162	 */
163	if (*start_pfn > max_sparsemem_pfn) {
164		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
165			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
166			*start_pfn, *end_pfn, max_sparsemem_pfn);
167		WARN_ON_ONCE(1);
168		*start_pfn = max_sparsemem_pfn;
169		*end_pfn = max_sparsemem_pfn;
170	} else if (*end_pfn > max_sparsemem_pfn) {
171		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
172			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
173			*start_pfn, *end_pfn, max_sparsemem_pfn);
174		WARN_ON_ONCE(1);
175		*end_pfn = max_sparsemem_pfn;
176	}
177}
178
179/*
180 * There are a number of times that we loop over NR_MEM_SECTIONS,
181 * looking for section_present() on each.  But, when we have very
182 * large physical address spaces, NR_MEM_SECTIONS can also be
183 * very large which makes the loops quite long.
184 *
185 * Keeping track of this gives us an easy way to break out of
186 * those loops early.
187 */
188unsigned long __highest_present_section_nr;
189static void section_mark_present(struct mem_section *ms)
190{
191	unsigned long section_nr = __section_nr(ms);
192
193	if (section_nr > __highest_present_section_nr)
194		__highest_present_section_nr = section_nr;
195
196	ms->section_mem_map |= SECTION_MARKED_PRESENT;
197}
198
 
 
 
 
 
 
 
 
 
 
199#define for_each_present_section_nr(start, section_nr)		\
200	for (section_nr = next_present_section_nr(start-1);	\
201	     ((section_nr != -1) &&				\
202	      (section_nr <= __highest_present_section_nr));	\
203	     section_nr = next_present_section_nr(section_nr))
204
205static inline unsigned long first_present_section_nr(void)
206{
207	return next_present_section_nr(-1);
208}
209
210#ifdef CONFIG_SPARSEMEM_VMEMMAP
211static void subsection_mask_set(unsigned long *map, unsigned long pfn,
212		unsigned long nr_pages)
213{
214	int idx = subsection_map_index(pfn);
215	int end = subsection_map_index(pfn + nr_pages - 1);
216
217	bitmap_set(map, idx, end - idx + 1);
218}
219
220void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
221{
222	int end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
223	unsigned long nr, start_sec = pfn_to_section_nr(pfn);
224
225	if (!nr_pages)
226		return;
227
228	for (nr = start_sec; nr <= end_sec; nr++) {
229		struct mem_section *ms;
230		unsigned long pfns;
231
232		pfns = min(nr_pages, PAGES_PER_SECTION
233				- (pfn & ~PAGE_SECTION_MASK));
234		ms = __nr_to_section(nr);
235		subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
236
237		pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
238				pfns, subsection_map_index(pfn),
239				subsection_map_index(pfn + pfns - 1));
240
241		pfn += pfns;
242		nr_pages -= pfns;
243	}
244}
245#else
246void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
247{
248}
249#endif
250
251/* Record a memory area against a node. */
252static void __init memory_present(int nid, unsigned long start, unsigned long end)
253{
254	unsigned long pfn;
255
256#ifdef CONFIG_SPARSEMEM_EXTREME
257	if (unlikely(!mem_section)) {
258		unsigned long size, align;
259
260		size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
261		align = 1 << (INTERNODE_CACHE_SHIFT);
262		mem_section = memblock_alloc(size, align);
263		if (!mem_section)
264			panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
265			      __func__, size, align);
266	}
267#endif
268
269	start &= PAGE_SECTION_MASK;
270	mminit_validate_memmodel_limits(&start, &end);
271	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
272		unsigned long section = pfn_to_section_nr(pfn);
273		struct mem_section *ms;
274
275		sparse_index_init(section, nid);
276		set_section_nid(section, nid);
277
278		ms = __nr_to_section(section);
279		if (!ms->section_mem_map) {
280			ms->section_mem_map = sparse_encode_early_nid(nid) |
281							SECTION_IS_ONLINE;
282			section_mark_present(ms);
283		}
284	}
285}
286
287/*
288 * Mark all memblocks as present using memory_present().
289 * This is a convenience function that is useful to mark all of the systems
290 * memory as present during initialization.
291 */
292static void __init memblocks_present(void)
293{
294	struct memblock_region *reg;
295
296	for_each_memblock(memory, reg) {
297		memory_present(memblock_get_region_node(reg),
298			       memblock_region_memory_base_pfn(reg),
299			       memblock_region_memory_end_pfn(reg));
300	}
301}
302
303/*
304 * Subtle, we encode the real pfn into the mem_map such that
305 * the identity pfn - section_mem_map will return the actual
306 * physical page frame number.
307 */
308static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
309{
310	unsigned long coded_mem_map =
311		(unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
312	BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
313	BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
314	return coded_mem_map;
315}
316
317/*
318 * Decode mem_map from the coded memmap
319 */
320struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
321{
322	/* mask off the extra low bits of information */
323	coded_mem_map &= SECTION_MAP_MASK;
324	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
325}
326
327static void __meminit sparse_init_one_section(struct mem_section *ms,
328		unsigned long pnum, struct page *mem_map,
329		struct mem_section_usage *usage, unsigned long flags)
330{
331	ms->section_mem_map &= ~SECTION_MAP_MASK;
332	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
333		| SECTION_HAS_MEM_MAP | flags;
334	ms->usage = usage;
335}
336
337static unsigned long usemap_size(void)
338{
339	return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
340}
341
342size_t mem_section_usage_size(void)
343{
344	return sizeof(struct mem_section_usage) + usemap_size();
345}
346
347#ifdef CONFIG_MEMORY_HOTREMOVE
348static struct mem_section_usage * __init
349sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
350					 unsigned long size)
351{
352	struct mem_section_usage *usage;
353	unsigned long goal, limit;
354	int nid;
355	/*
356	 * A page may contain usemaps for other sections preventing the
357	 * page being freed and making a section unremovable while
358	 * other sections referencing the usemap remain active. Similarly,
359	 * a pgdat can prevent a section being removed. If section A
360	 * contains a pgdat and section B contains the usemap, both
361	 * sections become inter-dependent. This allocates usemaps
362	 * from the same section as the pgdat where possible to avoid
363	 * this problem.
364	 */
365	goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
366	limit = goal + (1UL << PA_SECTION_SHIFT);
367	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
368again:
369	usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
370	if (!usage && limit) {
371		limit = 0;
372		goto again;
373	}
374	return usage;
375}
376
377static void __init check_usemap_section_nr(int nid,
378		struct mem_section_usage *usage)
379{
380	unsigned long usemap_snr, pgdat_snr;
381	static unsigned long old_usemap_snr;
382	static unsigned long old_pgdat_snr;
383	struct pglist_data *pgdat = NODE_DATA(nid);
384	int usemap_nid;
385
386	/* First call */
387	if (!old_usemap_snr) {
388		old_usemap_snr = NR_MEM_SECTIONS;
389		old_pgdat_snr = NR_MEM_SECTIONS;
390	}
391
392	usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
393	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
394	if (usemap_snr == pgdat_snr)
395		return;
396
397	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
398		/* skip redundant message */
399		return;
400
401	old_usemap_snr = usemap_snr;
402	old_pgdat_snr = pgdat_snr;
403
404	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
405	if (usemap_nid != nid) {
406		pr_info("node %d must be removed before remove section %ld\n",
407			nid, usemap_snr);
408		return;
409	}
410	/*
411	 * There is a circular dependency.
412	 * Some platforms allow un-removable section because they will just
413	 * gather other removable sections for dynamic partitioning.
414	 * Just notify un-removable section's number here.
415	 */
416	pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
417		usemap_snr, pgdat_snr, nid);
418}
419#else
420static struct mem_section_usage * __init
421sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
422					 unsigned long size)
423{
424	return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
425}
426
427static void __init check_usemap_section_nr(int nid,
428		struct mem_section_usage *usage)
429{
430}
431#endif /* CONFIG_MEMORY_HOTREMOVE */
432
433#ifdef CONFIG_SPARSEMEM_VMEMMAP
434static unsigned long __init section_map_size(void)
435{
436	return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
437}
438
439#else
440static unsigned long __init section_map_size(void)
441{
442	return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
443}
444
445struct page __init *__populate_section_memmap(unsigned long pfn,
446		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
447{
448	unsigned long size = section_map_size();
449	struct page *map = sparse_buffer_alloc(size);
450	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
451
452	if (map)
453		return map;
454
455	map = memblock_alloc_try_nid_raw(size, size, addr,
 
456					  MEMBLOCK_ALLOC_ACCESSIBLE, nid);
457	if (!map)
458		panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
459		      __func__, size, PAGE_SIZE, nid, &addr);
460
461	return map;
462}
463#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
464
465static void *sparsemap_buf __meminitdata;
466static void *sparsemap_buf_end __meminitdata;
467
468static inline void __meminit sparse_buffer_free(unsigned long size)
469{
470	WARN_ON(!sparsemap_buf || size == 0);
471	memblock_free_early(__pa(sparsemap_buf), size);
472}
473
474static void __init sparse_buffer_init(unsigned long size, int nid)
475{
476	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
477	WARN_ON(sparsemap_buf);	/* forgot to call sparse_buffer_fini()? */
478	/*
479	 * Pre-allocated buffer is mainly used by __populate_section_memmap
480	 * and we want it to be properly aligned to the section size - this is
481	 * especially the case for VMEMMAP which maps memmap to PMDs
482	 */
483	sparsemap_buf = memblock_alloc_exact_nid_raw(size, section_map_size(),
484					addr, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
485	sparsemap_buf_end = sparsemap_buf + size;
486}
487
488static void __init sparse_buffer_fini(void)
489{
490	unsigned long size = sparsemap_buf_end - sparsemap_buf;
491
492	if (sparsemap_buf && size > 0)
493		sparse_buffer_free(size);
494	sparsemap_buf = NULL;
495}
496
497void * __meminit sparse_buffer_alloc(unsigned long size)
498{
499	void *ptr = NULL;
500
501	if (sparsemap_buf) {
502		ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
503		if (ptr + size > sparsemap_buf_end)
504			ptr = NULL;
505		else {
506			/* Free redundant aligned space */
507			if ((unsigned long)(ptr - sparsemap_buf) > 0)
508				sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
509			sparsemap_buf = ptr + size;
510		}
511	}
512	return ptr;
513}
514
515void __weak __meminit vmemmap_populate_print_last(void)
516{
517}
518
519/*
520 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
521 * And number of present sections in this node is map_count.
522 */
523static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
524				   unsigned long pnum_end,
525				   unsigned long map_count)
526{
527	struct mem_section_usage *usage;
528	unsigned long pnum;
529	struct page *map;
530
531	usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
532			mem_section_usage_size() * map_count);
533	if (!usage) {
534		pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
535		goto failed;
536	}
537	sparse_buffer_init(map_count * section_map_size(), nid);
538	for_each_present_section_nr(pnum_begin, pnum) {
539		unsigned long pfn = section_nr_to_pfn(pnum);
540
541		if (pnum >= pnum_end)
542			break;
543
544		map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
545				nid, NULL);
546		if (!map) {
547			pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
548			       __func__, nid);
549			pnum_begin = pnum;
550			goto failed;
551		}
552		check_usemap_section_nr(nid, usage);
553		sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
554				SECTION_IS_EARLY);
555		usage = (void *) usage + mem_section_usage_size();
556	}
557	sparse_buffer_fini();
558	return;
559failed:
560	/* We failed to allocate, mark all the following pnums as not present */
561	for_each_present_section_nr(pnum_begin, pnum) {
562		struct mem_section *ms;
563
564		if (pnum >= pnum_end)
565			break;
566		ms = __nr_to_section(pnum);
567		ms->section_mem_map = 0;
568	}
569}
570
571/*
572 * Allocate the accumulated non-linear sections, allocate a mem_map
573 * for each and record the physical to section mapping.
574 */
575void __init sparse_init(void)
576{
577	unsigned long pnum_end, pnum_begin, map_count = 1;
578	int nid_begin;
579
580	memblocks_present();
581
582	pnum_begin = first_present_section_nr();
583	nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
584
585	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
586	set_pageblock_order();
587
588	for_each_present_section_nr(pnum_begin + 1, pnum_end) {
589		int nid = sparse_early_nid(__nr_to_section(pnum_end));
590
591		if (nid == nid_begin) {
592			map_count++;
593			continue;
594		}
595		/* Init node with sections in range [pnum_begin, pnum_end) */
596		sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
597		nid_begin = nid;
598		pnum_begin = pnum_end;
599		map_count = 1;
600	}
601	/* cover the last node */
602	sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
603	vmemmap_populate_print_last();
604}
605
606#ifdef CONFIG_MEMORY_HOTPLUG
607
608/* Mark all memory sections within the pfn range as online */
609void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
610{
611	unsigned long pfn;
612
613	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
614		unsigned long section_nr = pfn_to_section_nr(pfn);
615		struct mem_section *ms;
616
617		/* onlining code should never touch invalid ranges */
618		if (WARN_ON(!valid_section_nr(section_nr)))
619			continue;
620
621		ms = __nr_to_section(section_nr);
622		ms->section_mem_map |= SECTION_IS_ONLINE;
623	}
624}
625
626#ifdef CONFIG_MEMORY_HOTREMOVE
627/* Mark all memory sections within the pfn range as offline */
628void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
629{
630	unsigned long pfn;
631
632	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
633		unsigned long section_nr = pfn_to_section_nr(pfn);
634		struct mem_section *ms;
635
636		/*
637		 * TODO this needs some double checking. Offlining code makes
638		 * sure to check pfn_valid but those checks might be just bogus
639		 */
640		if (WARN_ON(!valid_section_nr(section_nr)))
641			continue;
642
643		ms = __nr_to_section(section_nr);
644		ms->section_mem_map &= ~SECTION_IS_ONLINE;
645	}
646}
647#endif
648
649#ifdef CONFIG_SPARSEMEM_VMEMMAP
650static struct page * __meminit populate_section_memmap(unsigned long pfn,
651		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
652{
653	return __populate_section_memmap(pfn, nr_pages, nid, altmap);
654}
655
656static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
657		struct vmem_altmap *altmap)
658{
659	unsigned long start = (unsigned long) pfn_to_page(pfn);
660	unsigned long end = start + nr_pages * sizeof(struct page);
661
662	vmemmap_free(start, end, altmap);
663}
664static void free_map_bootmem(struct page *memmap)
665{
666	unsigned long start = (unsigned long)memmap;
667	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
668
669	vmemmap_free(start, end, NULL);
670}
671
672static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
 
673{
674	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
675	DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
676	struct mem_section *ms = __pfn_to_section(pfn);
677	unsigned long *subsection_map = ms->usage
678		? &ms->usage->subsection_map[0] : NULL;
679
680	subsection_mask_set(map, pfn, nr_pages);
681	if (subsection_map)
682		bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
 
 
 
 
 
 
 
 
 
683
684	if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
685				"section already deactivated (%#lx + %ld)\n",
686				pfn, nr_pages))
687		return -EINVAL;
688
689	bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
690	return 0;
691}
692
693static bool is_subsection_map_empty(struct mem_section *ms)
 
694{
695	return bitmap_empty(&ms->usage->subsection_map[0],
696			    SUBSECTIONS_PER_SECTION);
697}
698
699static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
700{
701	struct mem_section *ms = __pfn_to_section(pfn);
702	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
703	unsigned long *subsection_map;
704	int rc = 0;
705
706	subsection_mask_set(map, pfn, nr_pages);
707
708	subsection_map = &ms->usage->subsection_map[0];
709
710	if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
711		rc = -EINVAL;
712	else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
713		rc = -EEXIST;
714	else
715		bitmap_or(subsection_map, map, subsection_map,
716				SUBSECTIONS_PER_SECTION);
717
718	return rc;
719}
720#else
721struct page * __meminit populate_section_memmap(unsigned long pfn,
722		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
723{
724	return kvmalloc_node(array_size(sizeof(struct page),
725					PAGES_PER_SECTION), GFP_KERNEL, nid);
726}
727
728static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
729		struct vmem_altmap *altmap)
730{
731	kvfree(pfn_to_page(pfn));
732}
733
734static void free_map_bootmem(struct page *memmap)
735{
736	unsigned long maps_section_nr, removing_section_nr, i;
737	unsigned long magic, nr_pages;
738	struct page *page = virt_to_page(memmap);
739
740	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
741		>> PAGE_SHIFT;
742
743	for (i = 0; i < nr_pages; i++, page++) {
744		magic = (unsigned long) page->freelist;
745
746		BUG_ON(magic == NODE_INFO);
747
748		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
749		removing_section_nr = page_private(page);
750
751		/*
752		 * When this function is called, the removing section is
753		 * logical offlined state. This means all pages are isolated
754		 * from page allocator. If removing section's memmap is placed
755		 * on the same section, it must not be freed.
756		 * If it is freed, page allocator may allocate it which will
757		 * be removed physically soon.
758		 */
759		if (maps_section_nr != removing_section_nr)
760			put_page_bootmem(page);
761	}
762}
763
764static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
765{
766	return 0;
767}
768
769static bool is_subsection_map_empty(struct mem_section *ms)
770{
771	return true;
772}
773
774static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
775{
776	return 0;
777}
778#endif /* CONFIG_SPARSEMEM_VMEMMAP */
779
780/*
781 * To deactivate a memory region, there are 3 cases to handle across
782 * two configurations (SPARSEMEM_VMEMMAP={y,n}):
783 *
784 * 1. deactivation of a partial hot-added section (only possible in
785 *    the SPARSEMEM_VMEMMAP=y case).
786 *      a) section was present at memory init.
787 *      b) section was hot-added post memory init.
788 * 2. deactivation of a complete hot-added section.
789 * 3. deactivation of a complete section from memory init.
790 *
791 * For 1, when subsection_map does not empty we will not be freeing the
792 * usage map, but still need to free the vmemmap range.
793 *
794 * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified
795 */
796static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
797		struct vmem_altmap *altmap)
798{
 
 
799	struct mem_section *ms = __pfn_to_section(pfn);
800	bool section_is_early = early_section(ms);
801	struct page *memmap = NULL;
802	bool empty;
 
 
 
 
 
803
804	if (clear_subsection_map(pfn, nr_pages))
 
 
805		return;
806
807	empty = is_subsection_map_empty(ms);
808	if (empty) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
809		unsigned long section_nr = pfn_to_section_nr(pfn);
810
811		/*
812		 * When removing an early section, the usage map is kept (as the
813		 * usage maps of other sections fall into the same page). It
814		 * will be re-used when re-adding the section - which is then no
815		 * longer an early section. If the usage map is PageReserved, it
816		 * was allocated during boot.
817		 */
818		if (!PageReserved(virt_to_page(ms->usage))) {
819			kfree(ms->usage);
820			ms->usage = NULL;
821		}
822		memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
823		/*
824		 * Mark the section invalid so that valid_section()
825		 * return false. This prevents code from dereferencing
826		 * ms->usage array.
827		 */
828		ms->section_mem_map &= ~SECTION_HAS_MEM_MAP;
829	}
830
831	/*
832	 * The memmap of early sections is always fully populated. See
833	 * section_activate() and pfn_valid() .
834	 */
835	if (!section_is_early)
836		depopulate_section_memmap(pfn, nr_pages, altmap);
837	else if (memmap)
838		free_map_bootmem(memmap);
839
840	if (empty)
841		ms->section_mem_map = (unsigned long)NULL;
842}
843
844static struct page * __meminit section_activate(int nid, unsigned long pfn,
845		unsigned long nr_pages, struct vmem_altmap *altmap)
846{
 
847	struct mem_section *ms = __pfn_to_section(pfn);
848	struct mem_section_usage *usage = NULL;
 
849	struct page *memmap;
850	int rc = 0;
851
 
 
852	if (!ms->usage) {
853		usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
854		if (!usage)
855			return ERR_PTR(-ENOMEM);
856		ms->usage = usage;
857	}
 
 
 
 
 
 
 
 
 
858
859	rc = fill_subsection_map(pfn, nr_pages);
860	if (rc) {
861		if (usage)
862			ms->usage = NULL;
863		kfree(usage);
864		return ERR_PTR(rc);
865	}
866
867	/*
868	 * The early init code does not consider partially populated
869	 * initial sections, it simply assumes that memory will never be
870	 * referenced.  If we hot-add memory into such a section then we
871	 * do not need to populate the memmap and can simply reuse what
872	 * is already there.
873	 */
874	if (nr_pages < PAGES_PER_SECTION && early_section(ms))
875		return pfn_to_page(pfn);
876
877	memmap = populate_section_memmap(pfn, nr_pages, nid, altmap);
878	if (!memmap) {
879		section_deactivate(pfn, nr_pages, altmap);
880		return ERR_PTR(-ENOMEM);
881	}
882
883	return memmap;
884}
885
886/**
887 * sparse_add_section - add a memory section, or populate an existing one
888 * @nid: The node to add section on
889 * @start_pfn: start pfn of the memory range
890 * @nr_pages: number of pfns to add in the section
891 * @altmap: device page map
892 *
893 * This is only intended for hotplug.
894 *
895 * Note that only VMEMMAP supports sub-section aligned hotplug,
896 * the proper alignment and size are gated by check_pfn_span().
897 *
898 *
899 * Return:
900 * * 0		- On success.
901 * * -EEXIST	- Section has been present.
902 * * -ENOMEM	- Out of memory.
903 */
904int __meminit sparse_add_section(int nid, unsigned long start_pfn,
905		unsigned long nr_pages, struct vmem_altmap *altmap)
906{
907	unsigned long section_nr = pfn_to_section_nr(start_pfn);
908	struct mem_section *ms;
909	struct page *memmap;
910	int ret;
911
912	ret = sparse_index_init(section_nr, nid);
913	if (ret < 0)
914		return ret;
915
916	memmap = section_activate(nid, start_pfn, nr_pages, altmap);
917	if (IS_ERR(memmap))
918		return PTR_ERR(memmap);
919
920	/*
921	 * Poison uninitialized struct pages in order to catch invalid flags
922	 * combinations.
923	 */
924	page_init_poison(memmap, sizeof(struct page) * nr_pages);
925
926	ms = __nr_to_section(section_nr);
927	set_section_nid(section_nr, nid);
928	section_mark_present(ms);
929
930	/* Align memmap to section boundary in the subsection case */
931	if (section_nr_to_pfn(section_nr) != start_pfn)
932		memmap = pfn_to_page(section_nr_to_pfn(section_nr));
933	sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
934
935	return 0;
936}
937
938#ifdef CONFIG_MEMORY_FAILURE
939static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
940{
941	int i;
942
943	/*
944	 * A further optimization is to have per section refcounted
945	 * num_poisoned_pages.  But that would need more space per memmap, so
946	 * for now just do a quick global check to speed up this routine in the
947	 * absence of bad pages.
948	 */
949	if (atomic_long_read(&num_poisoned_pages) == 0)
950		return;
951
952	for (i = 0; i < nr_pages; i++) {
953		if (PageHWPoison(&memmap[i])) {
954			num_poisoned_pages_dec();
955			ClearPageHWPoison(&memmap[i]);
956		}
957	}
958}
959#else
960static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
961{
962}
963#endif
964
965void sparse_remove_section(struct mem_section *ms, unsigned long pfn,
966		unsigned long nr_pages, unsigned long map_offset,
967		struct vmem_altmap *altmap)
968{
969	clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset,
970			nr_pages - map_offset);
971	section_deactivate(pfn, nr_pages, altmap);
972}
973#endif /* CONFIG_MEMORY_HOTPLUG */