Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * sparse memory mappings.
  4 */
  5#include <linux/mm.h>
  6#include <linux/slab.h>
  7#include <linux/mmzone.h>
  8#include <linux/memblock.h>
  9#include <linux/compiler.h>
 10#include <linux/highmem.h>
 11#include <linux/export.h>
 12#include <linux/spinlock.h>
 13#include <linux/vmalloc.h>
 14#include <linux/swap.h>
 15#include <linux/swapops.h>
 16
 17#include "internal.h"
 18#include <asm/dma.h>
 19#include <asm/pgalloc.h>
 20#include <asm/pgtable.h>
 21
 22/*
 23 * Permanent SPARSEMEM data:
 24 *
 25 * 1) mem_section	- memory sections, mem_map's for valid memory
 26 */
 27#ifdef CONFIG_SPARSEMEM_EXTREME
 28struct mem_section **mem_section;
 29#else
 30struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
 31	____cacheline_internodealigned_in_smp;
 32#endif
 33EXPORT_SYMBOL(mem_section);
 34
 35#ifdef NODE_NOT_IN_PAGE_FLAGS
 36/*
 37 * If we did not store the node number in the page then we have to
 38 * do a lookup in the section_to_node_table in order to find which
 39 * node the page belongs to.
 40 */
 41#if MAX_NUMNODES <= 256
 42static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 43#else
 44static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 45#endif
 46
 47int page_to_nid(const struct page *page)
 48{
 49	return section_to_node_table[page_to_section(page)];
 50}
 51EXPORT_SYMBOL(page_to_nid);
 52
 53static void set_section_nid(unsigned long section_nr, int nid)
 54{
 55	section_to_node_table[section_nr] = nid;
 56}
 57#else /* !NODE_NOT_IN_PAGE_FLAGS */
 58static inline void set_section_nid(unsigned long section_nr, int nid)
 59{
 60}
 61#endif
 62
 63#ifdef CONFIG_SPARSEMEM_EXTREME
 64static noinline struct mem_section __ref *sparse_index_alloc(int nid)
 65{
 66	struct mem_section *section = NULL;
 67	unsigned long array_size = SECTIONS_PER_ROOT *
 68				   sizeof(struct mem_section);
 69
 70	if (slab_is_available()) {
 71		section = kzalloc_node(array_size, GFP_KERNEL, nid);
 72	} else {
 73		section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
 74					      nid);
 75		if (!section)
 76			panic("%s: Failed to allocate %lu bytes nid=%d\n",
 77			      __func__, array_size, nid);
 78	}
 79
 80	return section;
 81}
 82
 83static int __meminit sparse_index_init(unsigned long section_nr, int nid)
 84{
 85	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
 86	struct mem_section *section;
 87
 88	/*
 89	 * An existing section is possible in the sub-section hotplug
 90	 * case. First hot-add instantiates, follow-on hot-add reuses
 91	 * the existing section.
 92	 *
 93	 * The mem_hotplug_lock resolves the apparent race below.
 94	 */
 95	if (mem_section[root])
 96		return 0;
 97
 98	section = sparse_index_alloc(nid);
 99	if (!section)
100		return -ENOMEM;
101
102	mem_section[root] = section;
103
104	return 0;
105}
106#else /* !SPARSEMEM_EXTREME */
107static inline int sparse_index_init(unsigned long section_nr, int nid)
108{
109	return 0;
110}
111#endif
112
113#ifdef CONFIG_SPARSEMEM_EXTREME
114unsigned long __section_nr(struct mem_section *ms)
115{
116	unsigned long root_nr;
117	struct mem_section *root = NULL;
118
119	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
120		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
121		if (!root)
122			continue;
123
124		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
125		     break;
126	}
127
128	VM_BUG_ON(!root);
129
130	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
131}
132#else
133unsigned long __section_nr(struct mem_section *ms)
134{
135	return (unsigned long)(ms - mem_section[0]);
136}
137#endif
138
139/*
140 * During early boot, before section_mem_map is used for an actual
141 * mem_map, we use section_mem_map to store the section's NUMA
142 * node.  This keeps us from having to use another data structure.  The
143 * node information is cleared just before we store the real mem_map.
144 */
145static inline unsigned long sparse_encode_early_nid(int nid)
146{
147	return (nid << SECTION_NID_SHIFT);
148}
149
150static inline int sparse_early_nid(struct mem_section *section)
151{
152	return (section->section_mem_map >> SECTION_NID_SHIFT);
153}
154
155/* Validate the physical addressing limitations of the model */
156void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
157						unsigned long *end_pfn)
158{
159	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
160
161	/*
162	 * Sanity checks - do not allow an architecture to pass
163	 * in larger pfns than the maximum scope of sparsemem:
164	 */
165	if (*start_pfn > max_sparsemem_pfn) {
166		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
167			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
168			*start_pfn, *end_pfn, max_sparsemem_pfn);
169		WARN_ON_ONCE(1);
170		*start_pfn = max_sparsemem_pfn;
171		*end_pfn = max_sparsemem_pfn;
172	} else if (*end_pfn > max_sparsemem_pfn) {
173		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
174			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
175			*start_pfn, *end_pfn, max_sparsemem_pfn);
176		WARN_ON_ONCE(1);
177		*end_pfn = max_sparsemem_pfn;
178	}
179}
180
181/*
182 * There are a number of times that we loop over NR_MEM_SECTIONS,
183 * looking for section_present() on each.  But, when we have very
184 * large physical address spaces, NR_MEM_SECTIONS can also be
185 * very large which makes the loops quite long.
186 *
187 * Keeping track of this gives us an easy way to break out of
188 * those loops early.
189 */
190unsigned long __highest_present_section_nr;
191static void section_mark_present(struct mem_section *ms)
192{
193	unsigned long section_nr = __section_nr(ms);
194
195	if (section_nr > __highest_present_section_nr)
196		__highest_present_section_nr = section_nr;
197
198	ms->section_mem_map |= SECTION_MARKED_PRESENT;
199}
200
201static inline unsigned long next_present_section_nr(unsigned long section_nr)
202{
203	do {
204		section_nr++;
205		if (present_section_nr(section_nr))
206			return section_nr;
207	} while ((section_nr <= __highest_present_section_nr));
 
208
209	return -1;
210}
211#define for_each_present_section_nr(start, section_nr)		\
212	for (section_nr = next_present_section_nr(start-1);	\
213	     ((section_nr != -1) &&				\
 
214	      (section_nr <= __highest_present_section_nr));	\
215	     section_nr = next_present_section_nr(section_nr))
216
217static inline unsigned long first_present_section_nr(void)
218{
219	return next_present_section_nr(-1);
220}
221
222static void subsection_mask_set(unsigned long *map, unsigned long pfn,
223		unsigned long nr_pages)
224{
225	int idx = subsection_map_index(pfn);
226	int end = subsection_map_index(pfn + nr_pages - 1);
227
228	bitmap_set(map, idx, end - idx + 1);
229}
230
231void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
232{
233	int end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
234	unsigned long nr, start_sec = pfn_to_section_nr(pfn);
235
236	if (!nr_pages)
237		return;
238
239	for (nr = start_sec; nr <= end_sec; nr++) {
240		struct mem_section *ms;
241		unsigned long pfns;
242
243		pfns = min(nr_pages, PAGES_PER_SECTION
244				- (pfn & ~PAGE_SECTION_MASK));
245		ms = __nr_to_section(nr);
246		subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
247
248		pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
249				pfns, subsection_map_index(pfn),
250				subsection_map_index(pfn + pfns - 1));
251
252		pfn += pfns;
253		nr_pages -= pfns;
254	}
255}
256
257/* Record a memory area against a node. */
258void __init memory_present(int nid, unsigned long start, unsigned long end)
259{
260	unsigned long pfn;
261
262#ifdef CONFIG_SPARSEMEM_EXTREME
263	if (unlikely(!mem_section)) {
264		unsigned long size, align;
265
266		size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
267		align = 1 << (INTERNODE_CACHE_SHIFT);
268		mem_section = memblock_alloc(size, align);
269		if (!mem_section)
270			panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
271			      __func__, size, align);
272	}
273#endif
274
275	start &= PAGE_SECTION_MASK;
276	mminit_validate_memmodel_limits(&start, &end);
277	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
278		unsigned long section = pfn_to_section_nr(pfn);
279		struct mem_section *ms;
280
281		sparse_index_init(section, nid);
282		set_section_nid(section, nid);
283
284		ms = __nr_to_section(section);
285		if (!ms->section_mem_map) {
286			ms->section_mem_map = sparse_encode_early_nid(nid) |
287							SECTION_IS_ONLINE;
288			section_mark_present(ms);
289		}
290	}
291}
292
293/*
294 * Mark all memblocks as present using memory_present(). This is a
295 * convienence function that is useful for a number of arches
296 * to mark all of the systems memory as present during initialization.
297 */
298void __init memblocks_present(void)
299{
300	struct memblock_region *reg;
301
302	for_each_memblock(memory, reg) {
303		memory_present(memblock_get_region_node(reg),
304			       memblock_region_memory_base_pfn(reg),
305			       memblock_region_memory_end_pfn(reg));
306	}
307}
308
309/*
310 * Subtle, we encode the real pfn into the mem_map such that
311 * the identity pfn - section_mem_map will return the actual
312 * physical page frame number.
313 */
314static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
315{
316	unsigned long coded_mem_map =
317		(unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
318	BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
319	BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
320	return coded_mem_map;
321}
322
323/*
324 * Decode mem_map from the coded memmap
325 */
326struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
327{
328	/* mask off the extra low bits of information */
329	coded_mem_map &= SECTION_MAP_MASK;
330	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
331}
332
333static void __meminit sparse_init_one_section(struct mem_section *ms,
334		unsigned long pnum, struct page *mem_map,
335		struct mem_section_usage *usage, unsigned long flags)
336{
 
 
 
337	ms->section_mem_map &= ~SECTION_MAP_MASK;
338	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
339		| SECTION_HAS_MEM_MAP | flags;
340	ms->usage = usage;
 
 
341}
342
343static unsigned long usemap_size(void)
344{
345	return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
346}
347
348size_t mem_section_usage_size(void)
 
349{
350	return sizeof(struct mem_section_usage) + usemap_size();
351}
 
352
353#ifdef CONFIG_MEMORY_HOTREMOVE
354static struct mem_section_usage * __init
355sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
356					 unsigned long size)
357{
358	struct mem_section_usage *usage;
359	unsigned long goal, limit;
 
360	int nid;
361	/*
362	 * A page may contain usemaps for other sections preventing the
363	 * page being freed and making a section unremovable while
364	 * other sections referencing the usemap remain active. Similarly,
365	 * a pgdat can prevent a section being removed. If section A
366	 * contains a pgdat and section B contains the usemap, both
367	 * sections become inter-dependent. This allocates usemaps
368	 * from the same section as the pgdat where possible to avoid
369	 * this problem.
370	 */
371	goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
372	limit = goal + (1UL << PA_SECTION_SHIFT);
373	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
374again:
375	usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
376	if (!usage && limit) {
 
 
377		limit = 0;
378		goto again;
379	}
380	return usage;
381}
382
383static void __init check_usemap_section_nr(int nid,
384		struct mem_section_usage *usage)
385{
386	unsigned long usemap_snr, pgdat_snr;
387	static unsigned long old_usemap_snr;
388	static unsigned long old_pgdat_snr;
389	struct pglist_data *pgdat = NODE_DATA(nid);
390	int usemap_nid;
391
392	/* First call */
393	if (!old_usemap_snr) {
394		old_usemap_snr = NR_MEM_SECTIONS;
395		old_pgdat_snr = NR_MEM_SECTIONS;
396	}
397
398	usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
399	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
400	if (usemap_snr == pgdat_snr)
401		return;
402
403	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
404		/* skip redundant message */
405		return;
406
407	old_usemap_snr = usemap_snr;
408	old_pgdat_snr = pgdat_snr;
409
410	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
411	if (usemap_nid != nid) {
412		pr_info("node %d must be removed before remove section %ld\n",
413			nid, usemap_snr);
414		return;
415	}
416	/*
417	 * There is a circular dependency.
418	 * Some platforms allow un-removable section because they will just
419	 * gather other removable sections for dynamic partitioning.
420	 * Just notify un-removable section's number here.
421	 */
422	pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
423		usemap_snr, pgdat_snr, nid);
424}
425#else
426static struct mem_section_usage * __init
427sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
428					 unsigned long size)
429{
430	return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
431}
432
433static void __init check_usemap_section_nr(int nid,
434		struct mem_section_usage *usage)
435{
436}
437#endif /* CONFIG_MEMORY_HOTREMOVE */
438
439#ifdef CONFIG_SPARSEMEM_VMEMMAP
440static unsigned long __init section_map_size(void)
 
 
441{
442	return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
443}
 
 
444
445#else
446static unsigned long __init section_map_size(void)
447{
448	return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
 
 
 
 
 
 
 
 
 
 
449}
450
451struct page __init *__populate_section_memmap(unsigned long pfn,
452		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
 
453{
454	unsigned long size = section_map_size();
455	struct page *map = sparse_buffer_alloc(size);
456	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
457
458	if (map)
459		return map;
460
461	map = memblock_alloc_try_nid(size,
462					  PAGE_SIZE, addr,
463					  MEMBLOCK_ALLOC_ACCESSIBLE, nid);
464	if (!map)
465		panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
466		      __func__, size, PAGE_SIZE, nid, &addr);
467
 
 
 
 
468	return map;
469}
470#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
471
472static void *sparsemap_buf __meminitdata;
473static void *sparsemap_buf_end __meminitdata;
474
475static inline void __meminit sparse_buffer_free(unsigned long size)
476{
477	WARN_ON(!sparsemap_buf || size == 0);
478	memblock_free_early(__pa(sparsemap_buf), size);
479}
480
481static void __init sparse_buffer_init(unsigned long size, int nid)
482{
483	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
484	WARN_ON(sparsemap_buf);	/* forgot to call sparse_buffer_fini()? */
485	sparsemap_buf =
486		memblock_alloc_try_nid_raw(size, PAGE_SIZE,
487						addr,
488						MEMBLOCK_ALLOC_ACCESSIBLE, nid);
489	sparsemap_buf_end = sparsemap_buf + size;
490}
 
 
 
491
492static void __init sparse_buffer_fini(void)
493{
494	unsigned long size = sparsemap_buf_end - sparsemap_buf;
495
496	if (sparsemap_buf && size > 0)
497		sparse_buffer_free(size);
498	sparsemap_buf = NULL;
 
 
 
 
 
 
 
499}
 
500
501void * __meminit sparse_buffer_alloc(unsigned long size)
 
 
 
 
 
 
 
 
 
 
 
502{
503	void *ptr = NULL;
 
 
504
505	if (sparsemap_buf) {
506		ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
507		if (ptr + size > sparsemap_buf_end)
508			ptr = NULL;
509		else {
510			/* Free redundant aligned space */
511			if ((unsigned long)(ptr - sparsemap_buf) > 0)
512				sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
513			sparsemap_buf = ptr + size;
514		}
515	}
516	return ptr;
517}
 
518
519void __weak __meminit vmemmap_populate_print_last(void)
520{
521}
522
523/*
524 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
525 * And number of present sections in this node is map_count.
526 */
527static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
528				   unsigned long pnum_end,
529				   unsigned long map_count)
530{
531	struct mem_section_usage *usage;
532	unsigned long pnum;
533	struct page *map;
 
 
534
535	usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
536			mem_section_usage_size() * map_count);
537	if (!usage) {
538		pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
539		goto failed;
540	}
541	sparse_buffer_init(map_count * section_map_size(), nid);
542	for_each_present_section_nr(pnum_begin, pnum) {
543		unsigned long pfn = section_nr_to_pfn(pnum);
544
545		if (pnum >= pnum_end)
546			break;
547
548		map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
549				nid, NULL);
550		if (!map) {
551			pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
552			       __func__, nid);
553			pnum_begin = pnum;
554			goto failed;
555		}
556		check_usemap_section_nr(nid, usage);
557		sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
558				SECTION_IS_EARLY);
559		usage = (void *) usage + mem_section_usage_size();
560	}
561	sparse_buffer_fini();
562	return;
563failed:
564	/* We failed to allocate, mark all the following pnums as not present */
565	for_each_present_section_nr(pnum_begin, pnum) {
566		struct mem_section *ms;
567
568		if (pnum >= pnum_end)
569			break;
570		ms = __nr_to_section(pnum);
571		ms->section_mem_map = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
572	}
 
 
 
573}
574
575/*
576 * Allocate the accumulated non-linear sections, allocate a mem_map
577 * for each and record the physical to section mapping.
578 */
579void __init sparse_init(void)
580{
581	unsigned long pnum_begin = first_present_section_nr();
582	int nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
583	unsigned long pnum_end, map_count = 1;
 
 
 
 
 
 
 
 
 
584
585	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
586	set_pageblock_order();
587
588	for_each_present_section_nr(pnum_begin + 1, pnum_end) {
589		int nid = sparse_early_nid(__nr_to_section(pnum_end));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
590
591		if (nid == nid_begin) {
592			map_count++;
 
 
 
 
593			continue;
594		}
595		/* Init node with sections in range [pnum_begin, pnum_end) */
596		sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
597		nid_begin = nid;
598		pnum_begin = pnum_end;
599		map_count = 1;
600	}
601	/* cover the last node */
602	sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
603	vmemmap_populate_print_last();
 
 
 
 
 
604}
605
606#ifdef CONFIG_MEMORY_HOTPLUG
607
608/* Mark all memory sections within the pfn range as online */
609void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
610{
611	unsigned long pfn;
612
613	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
614		unsigned long section_nr = pfn_to_section_nr(pfn);
615		struct mem_section *ms;
616
617		/* onlining code should never touch invalid ranges */
618		if (WARN_ON(!valid_section_nr(section_nr)))
619			continue;
620
621		ms = __nr_to_section(section_nr);
622		ms->section_mem_map |= SECTION_IS_ONLINE;
623	}
624}
625
626#ifdef CONFIG_MEMORY_HOTREMOVE
627/* Mark all memory sections within the pfn range as offline */
628void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
629{
630	unsigned long pfn;
631
632	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
633		unsigned long section_nr = pfn_to_section_nr(pfn);
634		struct mem_section *ms;
635
636		/*
637		 * TODO this needs some double checking. Offlining code makes
638		 * sure to check pfn_valid but those checks might be just bogus
639		 */
640		if (WARN_ON(!valid_section_nr(section_nr)))
641			continue;
642
643		ms = __nr_to_section(section_nr);
644		ms->section_mem_map &= ~SECTION_IS_ONLINE;
645	}
646}
647#endif
648
649#ifdef CONFIG_SPARSEMEM_VMEMMAP
650static struct page *populate_section_memmap(unsigned long pfn,
651		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
652{
653	return __populate_section_memmap(pfn, nr_pages, nid, altmap);
 
654}
655
656static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
657		struct vmem_altmap *altmap)
658{
659	unsigned long start = (unsigned long) pfn_to_page(pfn);
660	unsigned long end = start + nr_pages * sizeof(struct page);
661
662	vmemmap_free(start, end, altmap);
663}
 
664static void free_map_bootmem(struct page *memmap)
665{
666	unsigned long start = (unsigned long)memmap;
667	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
668
669	vmemmap_free(start, end, NULL);
670}
 
671#else
672struct page *populate_section_memmap(unsigned long pfn,
673		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
674{
675	struct page *page, *ret;
676	unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
677
678	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
679	if (page)
680		goto got_map_page;
681
682	ret = vmalloc(memmap_size);
683	if (ret)
684		goto got_map_ptr;
685
686	return NULL;
687got_map_page:
688	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
689got_map_ptr:
690
691	return ret;
692}
693
694static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
695		struct vmem_altmap *altmap)
696{
697	struct page *memmap = pfn_to_page(pfn);
 
698
 
 
 
699	if (is_vmalloc_addr(memmap))
700		vfree(memmap);
701	else
702		free_pages((unsigned long)memmap,
703			   get_order(sizeof(struct page) * PAGES_PER_SECTION));
704}
705
 
706static void free_map_bootmem(struct page *memmap)
707{
708	unsigned long maps_section_nr, removing_section_nr, i;
709	unsigned long magic, nr_pages;
710	struct page *page = virt_to_page(memmap);
711
712	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
713		>> PAGE_SHIFT;
714
715	for (i = 0; i < nr_pages; i++, page++) {
716		magic = (unsigned long) page->freelist;
717
718		BUG_ON(magic == NODE_INFO);
719
720		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
721		removing_section_nr = page_private(page);
722
723		/*
724		 * When this function is called, the removing section is
725		 * logical offlined state. This means all pages are isolated
726		 * from page allocator. If removing section's memmap is placed
727		 * on the same section, it must not be freed.
728		 * If it is freed, page allocator may allocate it which will
729		 * be removed physically soon.
730		 */
731		if (maps_section_nr != removing_section_nr)
732			put_page_bootmem(page);
733	}
734}
 
735#endif /* CONFIG_SPARSEMEM_VMEMMAP */
736
737static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
738		struct vmem_altmap *altmap)
739{
740	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
741	DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
742	struct mem_section *ms = __pfn_to_section(pfn);
743	bool section_is_early = early_section(ms);
744	struct page *memmap = NULL;
745	unsigned long *subsection_map = ms->usage
746		? &ms->usage->subsection_map[0] : NULL;
747
748	subsection_mask_set(map, pfn, nr_pages);
749	if (subsection_map)
750		bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
751
752	if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
753				"section already deactivated (%#lx + %ld)\n",
754				pfn, nr_pages))
755		return;
756
757	/*
758	 * There are 3 cases to handle across two configurations
759	 * (SPARSEMEM_VMEMMAP={y,n}):
760	 *
761	 * 1/ deactivation of a partial hot-added section (only possible
762	 * in the SPARSEMEM_VMEMMAP=y case).
763	 *    a/ section was present at memory init
764	 *    b/ section was hot-added post memory init
765	 * 2/ deactivation of a complete hot-added section
766	 * 3/ deactivation of a complete section from memory init
767	 *
768	 * For 1/, when subsection_map does not empty we will not be
769	 * freeing the usage map, but still need to free the vmemmap
770	 * range.
771	 *
772	 * For 2/ and 3/ the SPARSEMEM_VMEMMAP={y,n} cases are unified
773	 */
774	bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
775	if (bitmap_empty(subsection_map, SUBSECTIONS_PER_SECTION)) {
776		unsigned long section_nr = pfn_to_section_nr(pfn);
777
778		if (!section_is_early) {
779			kfree(ms->usage);
780			ms->usage = NULL;
781		}
782		memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
783		ms->section_mem_map = sparse_encode_mem_map(NULL, section_nr);
784	}
785
786	if (section_is_early && memmap)
787		free_map_bootmem(memmap);
788	else
789		depopulate_section_memmap(pfn, nr_pages, altmap);
790}
791
792static struct page * __meminit section_activate(int nid, unsigned long pfn,
793		unsigned long nr_pages, struct vmem_altmap *altmap)
794{
795	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
796	struct mem_section *ms = __pfn_to_section(pfn);
797	struct mem_section_usage *usage = NULL;
798	unsigned long *subsection_map;
799	struct page *memmap;
800	int rc = 0;
801
802	subsection_mask_set(map, pfn, nr_pages);
803
804	if (!ms->usage) {
805		usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
806		if (!usage)
807			return ERR_PTR(-ENOMEM);
808		ms->usage = usage;
809	}
810	subsection_map = &ms->usage->subsection_map[0];
811
812	if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
813		rc = -EINVAL;
814	else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
815		rc = -EEXIST;
816	else
817		bitmap_or(subsection_map, map, subsection_map,
818				SUBSECTIONS_PER_SECTION);
819
820	if (rc) {
821		if (usage)
822			ms->usage = NULL;
823		kfree(usage);
824		return ERR_PTR(rc);
825	}
826
827	/*
828	 * The early init code does not consider partially populated
829	 * initial sections, it simply assumes that memory will never be
830	 * referenced.  If we hot-add memory into such a section then we
831	 * do not need to populate the memmap and can simply reuse what
832	 * is already there.
833	 */
834	if (nr_pages < PAGES_PER_SECTION && early_section(ms))
835		return pfn_to_page(pfn);
836
837	memmap = populate_section_memmap(pfn, nr_pages, nid, altmap);
838	if (!memmap) {
839		section_deactivate(pfn, nr_pages, altmap);
840		return ERR_PTR(-ENOMEM);
841	}
842
843	return memmap;
844}
845
846/**
847 * sparse_add_section - add a memory section, or populate an existing one
848 * @nid: The node to add section on
849 * @start_pfn: start pfn of the memory range
850 * @nr_pages: number of pfns to add in the section
851 * @altmap: device page map
852 *
853 * This is only intended for hotplug.
854 *
855 * Return:
856 * * 0		- On success.
857 * * -EEXIST	- Section has been present.
858 * * -ENOMEM	- Out of memory.
859 */
860int __meminit sparse_add_section(int nid, unsigned long start_pfn,
861		unsigned long nr_pages, struct vmem_altmap *altmap)
862{
863	unsigned long section_nr = pfn_to_section_nr(start_pfn);
864	struct mem_section *ms;
865	struct page *memmap;
 
 
866	int ret;
867
868	ret = sparse_index_init(section_nr, nid);
869	if (ret < 0)
 
 
 
 
870		return ret;
 
 
 
 
 
 
 
 
871
872	memmap = section_activate(nid, start_pfn, nr_pages, altmap);
873	if (IS_ERR(memmap))
874		return PTR_ERR(memmap);
875
 
 
 
 
 
 
 
876	/*
877	 * Poison uninitialized struct pages in order to catch invalid flags
878	 * combinations.
879	 */
880	page_init_poison(pfn_to_page(start_pfn), sizeof(struct page) * nr_pages);
 
881
882	ms = __nr_to_section(section_nr);
883	set_section_nid(section_nr, nid);
884	section_mark_present(ms);
885
886	/* Align memmap to section boundary in the subsection case */
887	if (section_nr_to_pfn(section_nr) != start_pfn)
888		memmap = pfn_to_kaddr(section_nr_to_pfn(section_nr));
889	sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
890
891	return 0;
 
 
 
 
 
 
892}
893
 
894#ifdef CONFIG_MEMORY_FAILURE
895static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
896{
897	int i;
898
899	/*
900	 * A further optimization is to have per section refcounted
901	 * num_poisoned_pages.  But that would need more space per memmap, so
902	 * for now just do a quick global check to speed up this routine in the
903	 * absence of bad pages.
904	 */
905	if (atomic_long_read(&num_poisoned_pages) == 0)
906		return;
907
908	for (i = 0; i < nr_pages; i++) {
909		if (PageHWPoison(&memmap[i])) {
910			num_poisoned_pages_dec();
911			ClearPageHWPoison(&memmap[i]);
912		}
913	}
914}
915#else
916static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
917{
918}
919#endif
920
921void sparse_remove_section(struct mem_section *ms, unsigned long pfn,
922		unsigned long nr_pages, unsigned long map_offset,
923		struct vmem_altmap *altmap)
924{
925	clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset,
926			nr_pages - map_offset);
927	section_deactivate(pfn, nr_pages, altmap);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
928}
 
929#endif /* CONFIG_MEMORY_HOTPLUG */
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * sparse memory mappings.
  4 */
  5#include <linux/mm.h>
  6#include <linux/slab.h>
  7#include <linux/mmzone.h>
  8#include <linux/bootmem.h>
  9#include <linux/compiler.h>
 10#include <linux/highmem.h>
 11#include <linux/export.h>
 12#include <linux/spinlock.h>
 13#include <linux/vmalloc.h>
 
 
 14
 15#include "internal.h"
 16#include <asm/dma.h>
 17#include <asm/pgalloc.h>
 18#include <asm/pgtable.h>
 19
 20/*
 21 * Permanent SPARSEMEM data:
 22 *
 23 * 1) mem_section	- memory sections, mem_map's for valid memory
 24 */
 25#ifdef CONFIG_SPARSEMEM_EXTREME
 26struct mem_section **mem_section;
 27#else
 28struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
 29	____cacheline_internodealigned_in_smp;
 30#endif
 31EXPORT_SYMBOL(mem_section);
 32
 33#ifdef NODE_NOT_IN_PAGE_FLAGS
 34/*
 35 * If we did not store the node number in the page then we have to
 36 * do a lookup in the section_to_node_table in order to find which
 37 * node the page belongs to.
 38 */
 39#if MAX_NUMNODES <= 256
 40static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 41#else
 42static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 43#endif
 44
 45int page_to_nid(const struct page *page)
 46{
 47	return section_to_node_table[page_to_section(page)];
 48}
 49EXPORT_SYMBOL(page_to_nid);
 50
 51static void set_section_nid(unsigned long section_nr, int nid)
 52{
 53	section_to_node_table[section_nr] = nid;
 54}
 55#else /* !NODE_NOT_IN_PAGE_FLAGS */
 56static inline void set_section_nid(unsigned long section_nr, int nid)
 57{
 58}
 59#endif
 60
 61#ifdef CONFIG_SPARSEMEM_EXTREME
 62static noinline struct mem_section __ref *sparse_index_alloc(int nid)
 63{
 64	struct mem_section *section = NULL;
 65	unsigned long array_size = SECTIONS_PER_ROOT *
 66				   sizeof(struct mem_section);
 67
 68	if (slab_is_available())
 69		section = kzalloc_node(array_size, GFP_KERNEL, nid);
 70	else
 71		section = memblock_virt_alloc_node(array_size, nid);
 
 
 
 
 
 72
 73	return section;
 74}
 75
 76static int __meminit sparse_index_init(unsigned long section_nr, int nid)
 77{
 78	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
 79	struct mem_section *section;
 80
 
 
 
 
 
 
 
 81	if (mem_section[root])
 82		return -EEXIST;
 83
 84	section = sparse_index_alloc(nid);
 85	if (!section)
 86		return -ENOMEM;
 87
 88	mem_section[root] = section;
 89
 90	return 0;
 91}
 92#else /* !SPARSEMEM_EXTREME */
 93static inline int sparse_index_init(unsigned long section_nr, int nid)
 94{
 95	return 0;
 96}
 97#endif
 98
 99#ifdef CONFIG_SPARSEMEM_EXTREME
100int __section_nr(struct mem_section* ms)
101{
102	unsigned long root_nr;
103	struct mem_section *root = NULL;
104
105	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
106		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
107		if (!root)
108			continue;
109
110		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
111		     break;
112	}
113
114	VM_BUG_ON(!root);
115
116	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
117}
118#else
119int __section_nr(struct mem_section* ms)
120{
121	return (int)(ms - mem_section[0]);
122}
123#endif
124
125/*
126 * During early boot, before section_mem_map is used for an actual
127 * mem_map, we use section_mem_map to store the section's NUMA
128 * node.  This keeps us from having to use another data structure.  The
129 * node information is cleared just before we store the real mem_map.
130 */
131static inline unsigned long sparse_encode_early_nid(int nid)
132{
133	return (nid << SECTION_NID_SHIFT);
134}
135
136static inline int sparse_early_nid(struct mem_section *section)
137{
138	return (section->section_mem_map >> SECTION_NID_SHIFT);
139}
140
141/* Validate the physical addressing limitations of the model */
142void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
143						unsigned long *end_pfn)
144{
145	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
146
147	/*
148	 * Sanity checks - do not allow an architecture to pass
149	 * in larger pfns than the maximum scope of sparsemem:
150	 */
151	if (*start_pfn > max_sparsemem_pfn) {
152		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
153			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
154			*start_pfn, *end_pfn, max_sparsemem_pfn);
155		WARN_ON_ONCE(1);
156		*start_pfn = max_sparsemem_pfn;
157		*end_pfn = max_sparsemem_pfn;
158	} else if (*end_pfn > max_sparsemem_pfn) {
159		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
160			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
161			*start_pfn, *end_pfn, max_sparsemem_pfn);
162		WARN_ON_ONCE(1);
163		*end_pfn = max_sparsemem_pfn;
164	}
165}
166
167/*
168 * There are a number of times that we loop over NR_MEM_SECTIONS,
169 * looking for section_present() on each.  But, when we have very
170 * large physical address spaces, NR_MEM_SECTIONS can also be
171 * very large which makes the loops quite long.
172 *
173 * Keeping track of this gives us an easy way to break out of
174 * those loops early.
175 */
176int __highest_present_section_nr;
177static void section_mark_present(struct mem_section *ms)
178{
179	int section_nr = __section_nr(ms);
180
181	if (section_nr > __highest_present_section_nr)
182		__highest_present_section_nr = section_nr;
183
184	ms->section_mem_map |= SECTION_MARKED_PRESENT;
185}
186
187static inline int next_present_section_nr(int section_nr)
188{
189	do {
190		section_nr++;
191		if (present_section_nr(section_nr))
192			return section_nr;
193	} while ((section_nr < NR_MEM_SECTIONS) &&
194		 (section_nr <= __highest_present_section_nr));
195
196	return -1;
197}
198#define for_each_present_section_nr(start, section_nr)		\
199	for (section_nr = next_present_section_nr(start-1);	\
200	     ((section_nr >= 0) &&				\
201	      (section_nr < NR_MEM_SECTIONS) &&			\
202	      (section_nr <= __highest_present_section_nr));	\
203	     section_nr = next_present_section_nr(section_nr))
204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
205/* Record a memory area against a node. */
206void __init memory_present(int nid, unsigned long start, unsigned long end)
207{
208	unsigned long pfn;
209
210#ifdef CONFIG_SPARSEMEM_EXTREME
211	if (unlikely(!mem_section)) {
212		unsigned long size, align;
213
214		size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
215		align = 1 << (INTERNODE_CACHE_SHIFT);
216		mem_section = memblock_virt_alloc(size, align);
 
 
 
217	}
218#endif
219
220	start &= PAGE_SECTION_MASK;
221	mminit_validate_memmodel_limits(&start, &end);
222	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
223		unsigned long section = pfn_to_section_nr(pfn);
224		struct mem_section *ms;
225
226		sparse_index_init(section, nid);
227		set_section_nid(section, nid);
228
229		ms = __nr_to_section(section);
230		if (!ms->section_mem_map) {
231			ms->section_mem_map = sparse_encode_early_nid(nid) |
232							SECTION_IS_ONLINE;
233			section_mark_present(ms);
234		}
235	}
236}
237
238/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
239 * Subtle, we encode the real pfn into the mem_map such that
240 * the identity pfn - section_mem_map will return the actual
241 * physical page frame number.
242 */
243static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
244{
245	unsigned long coded_mem_map =
246		(unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
247	BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
248	BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
249	return coded_mem_map;
250}
251
252/*
253 * Decode mem_map from the coded memmap
254 */
255struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
256{
257	/* mask off the extra low bits of information */
258	coded_mem_map &= SECTION_MAP_MASK;
259	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
260}
261
262static int __meminit sparse_init_one_section(struct mem_section *ms,
263		unsigned long pnum, struct page *mem_map,
264		unsigned long *pageblock_bitmap)
265{
266	if (!present_section(ms))
267		return -EINVAL;
268
269	ms->section_mem_map &= ~SECTION_MAP_MASK;
270	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
271							SECTION_HAS_MEM_MAP;
272 	ms->pageblock_flags = pageblock_bitmap;
273
274	return 1;
275}
276
277unsigned long usemap_size(void)
278{
279	return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
280}
281
282#ifdef CONFIG_MEMORY_HOTPLUG
283static unsigned long *__kmalloc_section_usemap(void)
284{
285	return kmalloc(usemap_size(), GFP_KERNEL);
286}
287#endif /* CONFIG_MEMORY_HOTPLUG */
288
289#ifdef CONFIG_MEMORY_HOTREMOVE
290static unsigned long * __init
291sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
292					 unsigned long size)
293{
 
294	unsigned long goal, limit;
295	unsigned long *p;
296	int nid;
297	/*
298	 * A page may contain usemaps for other sections preventing the
299	 * page being freed and making a section unremovable while
300	 * other sections referencing the usemap remain active. Similarly,
301	 * a pgdat can prevent a section being removed. If section A
302	 * contains a pgdat and section B contains the usemap, both
303	 * sections become inter-dependent. This allocates usemaps
304	 * from the same section as the pgdat where possible to avoid
305	 * this problem.
306	 */
307	goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
308	limit = goal + (1UL << PA_SECTION_SHIFT);
309	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
310again:
311	p = memblock_virt_alloc_try_nid_nopanic(size,
312						SMP_CACHE_BYTES, goal, limit,
313						nid);
314	if (!p && limit) {
315		limit = 0;
316		goto again;
317	}
318	return p;
319}
320
321static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
 
322{
323	unsigned long usemap_snr, pgdat_snr;
324	static unsigned long old_usemap_snr;
325	static unsigned long old_pgdat_snr;
326	struct pglist_data *pgdat = NODE_DATA(nid);
327	int usemap_nid;
328
329	/* First call */
330	if (!old_usemap_snr) {
331		old_usemap_snr = NR_MEM_SECTIONS;
332		old_pgdat_snr = NR_MEM_SECTIONS;
333	}
334
335	usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
336	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
337	if (usemap_snr == pgdat_snr)
338		return;
339
340	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
341		/* skip redundant message */
342		return;
343
344	old_usemap_snr = usemap_snr;
345	old_pgdat_snr = pgdat_snr;
346
347	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
348	if (usemap_nid != nid) {
349		pr_info("node %d must be removed before remove section %ld\n",
350			nid, usemap_snr);
351		return;
352	}
353	/*
354	 * There is a circular dependency.
355	 * Some platforms allow un-removable section because they will just
356	 * gather other removable sections for dynamic partitioning.
357	 * Just notify un-removable section's number here.
358	 */
359	pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
360		usemap_snr, pgdat_snr, nid);
361}
362#else
363static unsigned long * __init
364sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
365					 unsigned long size)
366{
367	return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
368}
369
370static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
 
371{
372}
373#endif /* CONFIG_MEMORY_HOTREMOVE */
374
375static void __init sparse_early_usemaps_alloc_node(void *data,
376				 unsigned long pnum_begin,
377				 unsigned long pnum_end,
378				 unsigned long usemap_count, int nodeid)
379{
380	void *usemap;
381	unsigned long pnum;
382	unsigned long **usemap_map = (unsigned long **)data;
383	int size = usemap_size();
384
385	usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
386							  size * usemap_count);
387	if (!usemap) {
388		pr_warn("%s: allocation failed\n", __func__);
389		return;
390	}
391
392	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
393		if (!present_section_nr(pnum))
394			continue;
395		usemap_map[pnum] = usemap;
396		usemap += size;
397		check_usemap_section_nr(nodeid, usemap_map[pnum]);
398	}
399}
400
401#ifndef CONFIG_SPARSEMEM_VMEMMAP
402struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid,
403		struct vmem_altmap *altmap)
404{
405	struct page *map;
406	unsigned long size;
 
 
 
 
 
 
 
 
 
 
 
407
408	size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
409	map = memblock_virt_alloc_try_nid(size,
410					  PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
411					  BOOTMEM_ALLOC_ACCESSIBLE, nid);
412	return map;
413}
414void __init sparse_mem_maps_populate_node(struct page **map_map,
415					  unsigned long pnum_begin,
416					  unsigned long pnum_end,
417					  unsigned long map_count, int nodeid)
 
 
418{
419	void *map;
420	unsigned long pnum;
421	unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
422
423	size = PAGE_ALIGN(size);
424	map = memblock_virt_alloc_try_nid_raw(size * map_count,
425					      PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
426					      BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
427	if (map) {
428		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
429			if (!present_section_nr(pnum))
430				continue;
431			map_map[pnum] = map;
432			map += size;
433		}
434		return;
435	}
436
437	/* fallback */
438	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
439		struct mem_section *ms;
440
441		if (!present_section_nr(pnum))
442			continue;
443		map_map[pnum] = sparse_mem_map_populate(pnum, nodeid, NULL);
444		if (map_map[pnum])
445			continue;
446		ms = __nr_to_section(pnum);
447		pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
448		       __func__);
449		ms->section_mem_map = 0;
450	}
451}
452#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
453
454#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
455static void __init sparse_early_mem_maps_alloc_node(void *data,
456				 unsigned long pnum_begin,
457				 unsigned long pnum_end,
458				 unsigned long map_count, int nodeid)
459{
460	struct page **map_map = (struct page **)data;
461	sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
462					 map_count, nodeid);
463}
464#else
465static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
466{
467	struct page *map;
468	struct mem_section *ms = __nr_to_section(pnum);
469	int nid = sparse_early_nid(ms);
470
471	map = sparse_mem_map_populate(pnum, nid, NULL);
472	if (map)
473		return map;
474
475	pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
476	       __func__);
477	ms->section_mem_map = 0;
478	return NULL;
 
 
 
 
479}
480#endif
481
482void __weak __meminit vmemmap_populate_print_last(void)
483{
484}
485
486/**
487 *  alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
488 *  @map: usemap_map for pageblock flags or mmap_map for vmemmap
489 */
490static void __init alloc_usemap_and_memmap(void (*alloc_func)
491					(void *, unsigned long, unsigned long,
492					unsigned long, int), void *data)
493{
 
494	unsigned long pnum;
495	unsigned long map_count;
496	int nodeid_begin = 0;
497	unsigned long pnum_begin = 0;
498
499	for_each_present_section_nr(0, pnum) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
500		struct mem_section *ms;
501
 
 
502		ms = __nr_to_section(pnum);
503		nodeid_begin = sparse_early_nid(ms);
504		pnum_begin = pnum;
505		break;
506	}
507	map_count = 1;
508	for_each_present_section_nr(pnum_begin + 1, pnum) {
509		struct mem_section *ms;
510		int nodeid;
511
512		ms = __nr_to_section(pnum);
513		nodeid = sparse_early_nid(ms);
514		if (nodeid == nodeid_begin) {
515			map_count++;
516			continue;
517		}
518		/* ok, we need to take cake of from pnum_begin to pnum - 1*/
519		alloc_func(data, pnum_begin, pnum,
520						map_count, nodeid_begin);
521		/* new start, update count etc*/
522		nodeid_begin = nodeid;
523		pnum_begin = pnum;
524		map_count = 1;
525	}
526	/* ok, last chunk */
527	alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
528						map_count, nodeid_begin);
529}
530
531/*
532 * Allocate the accumulated non-linear sections, allocate a mem_map
533 * for each and record the physical to section mapping.
534 */
535void __init sparse_init(void)
536{
537	unsigned long pnum;
538	struct page *map;
539	unsigned long *usemap;
540	unsigned long **usemap_map;
541	int size;
542#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
543	int size2;
544	struct page **map_map;
545#endif
546
547	/* see include/linux/mmzone.h 'struct mem_section' definition */
548	BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
549
550	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
551	set_pageblock_order();
552
553	/*
554	 * map is using big page (aka 2M in x86 64 bit)
555	 * usemap is less one page (aka 24 bytes)
556	 * so alloc 2M (with 2M align) and 24 bytes in turn will
557	 * make next 2M slip to one more 2M later.
558	 * then in big system, the memory will have a lot of holes...
559	 * here try to allocate 2M pages continuously.
560	 *
561	 * powerpc need to call sparse_init_one_section right after each
562	 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
563	 */
564	size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
565	usemap_map = memblock_virt_alloc(size, 0);
566	if (!usemap_map)
567		panic("can not allocate usemap_map\n");
568	alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
569							(void *)usemap_map);
570
571#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
572	size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
573	map_map = memblock_virt_alloc(size2, 0);
574	if (!map_map)
575		panic("can not allocate map_map\n");
576	alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
577							(void *)map_map);
578#endif
579
580	for_each_present_section_nr(0, pnum) {
581		usemap = usemap_map[pnum];
582		if (!usemap)
583			continue;
584
585#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
586		map = map_map[pnum];
587#else
588		map = sparse_early_mem_map_alloc(pnum);
589#endif
590		if (!map)
591			continue;
592
593		sparse_init_one_section(__nr_to_section(pnum), pnum, map,
594								usemap);
 
 
 
595	}
596
 
597	vmemmap_populate_print_last();
598
599#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
600	memblock_free_early(__pa(map_map), size2);
601#endif
602	memblock_free_early(__pa(usemap_map), size);
603}
604
605#ifdef CONFIG_MEMORY_HOTPLUG
606
607/* Mark all memory sections within the pfn range as online */
608void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
609{
610	unsigned long pfn;
611
612	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
613		unsigned long section_nr = pfn_to_section_nr(pfn);
614		struct mem_section *ms;
615
616		/* onlining code should never touch invalid ranges */
617		if (WARN_ON(!valid_section_nr(section_nr)))
618			continue;
619
620		ms = __nr_to_section(section_nr);
621		ms->section_mem_map |= SECTION_IS_ONLINE;
622	}
623}
624
625#ifdef CONFIG_MEMORY_HOTREMOVE
626/* Mark all memory sections within the pfn range as online */
627void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
628{
629	unsigned long pfn;
630
631	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
632		unsigned long section_nr = pfn_to_section_nr(pfn);
633		struct mem_section *ms;
634
635		/*
636		 * TODO this needs some double checking. Offlining code makes
637		 * sure to check pfn_valid but those checks might be just bogus
638		 */
639		if (WARN_ON(!valid_section_nr(section_nr)))
640			continue;
641
642		ms = __nr_to_section(section_nr);
643		ms->section_mem_map &= ~SECTION_IS_ONLINE;
644	}
645}
646#endif
647
648#ifdef CONFIG_SPARSEMEM_VMEMMAP
649static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
650		struct vmem_altmap *altmap)
651{
652	/* This will make the necessary allocations eventually. */
653	return sparse_mem_map_populate(pnum, nid, altmap);
654}
655static void __kfree_section_memmap(struct page *memmap,
 
656		struct vmem_altmap *altmap)
657{
658	unsigned long start = (unsigned long)memmap;
659	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
660
661	vmemmap_free(start, end, altmap);
662}
663#ifdef CONFIG_MEMORY_HOTREMOVE
664static void free_map_bootmem(struct page *memmap)
665{
666	unsigned long start = (unsigned long)memmap;
667	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
668
669	vmemmap_free(start, end, NULL);
670}
671#endif /* CONFIG_MEMORY_HOTREMOVE */
672#else
673static struct page *__kmalloc_section_memmap(void)
 
674{
675	struct page *page, *ret;
676	unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
677
678	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
679	if (page)
680		goto got_map_page;
681
682	ret = vmalloc(memmap_size);
683	if (ret)
684		goto got_map_ptr;
685
686	return NULL;
687got_map_page:
688	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
689got_map_ptr:
690
691	return ret;
692}
693
694static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
695		struct vmem_altmap *altmap)
696{
697	return __kmalloc_section_memmap();
698}
699
700static void __kfree_section_memmap(struct page *memmap,
701		struct vmem_altmap *altmap)
702{
703	if (is_vmalloc_addr(memmap))
704		vfree(memmap);
705	else
706		free_pages((unsigned long)memmap,
707			   get_order(sizeof(struct page) * PAGES_PER_SECTION));
708}
709
710#ifdef CONFIG_MEMORY_HOTREMOVE
711static void free_map_bootmem(struct page *memmap)
712{
713	unsigned long maps_section_nr, removing_section_nr, i;
714	unsigned long magic, nr_pages;
715	struct page *page = virt_to_page(memmap);
716
717	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
718		>> PAGE_SHIFT;
719
720	for (i = 0; i < nr_pages; i++, page++) {
721		magic = (unsigned long) page->freelist;
722
723		BUG_ON(magic == NODE_INFO);
724
725		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
726		removing_section_nr = page_private(page);
727
728		/*
729		 * When this function is called, the removing section is
730		 * logical offlined state. This means all pages are isolated
731		 * from page allocator. If removing section's memmap is placed
732		 * on the same section, it must not be freed.
733		 * If it is freed, page allocator may allocate it which will
734		 * be removed physically soon.
735		 */
736		if (maps_section_nr != removing_section_nr)
737			put_page_bootmem(page);
738	}
739}
740#endif /* CONFIG_MEMORY_HOTREMOVE */
741#endif /* CONFIG_SPARSEMEM_VMEMMAP */
742
743/*
744 * returns the number of sections whose mem_maps were properly
745 * set.  If this is <=0, then that means that the passed-in
746 * map was not consumed and must be freed.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
747 */
748int __meminit sparse_add_one_section(struct pglist_data *pgdat,
749		unsigned long start_pfn, struct vmem_altmap *altmap)
750{
751	unsigned long section_nr = pfn_to_section_nr(start_pfn);
752	struct mem_section *ms;
753	struct page *memmap;
754	unsigned long *usemap;
755	unsigned long flags;
756	int ret;
757
758	/*
759	 * no locking for this, because it does its own
760	 * plus, it does a kmalloc
761	 */
762	ret = sparse_index_init(section_nr, pgdat->node_id);
763	if (ret < 0 && ret != -EEXIST)
764		return ret;
765	memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, altmap);
766	if (!memmap)
767		return -ENOMEM;
768	usemap = __kmalloc_section_usemap();
769	if (!usemap) {
770		__kfree_section_memmap(memmap, altmap);
771		return -ENOMEM;
772	}
773
774	pgdat_resize_lock(pgdat, &flags);
 
 
775
776	ms = __pfn_to_section(start_pfn);
777	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
778		ret = -EEXIST;
779		goto out;
780	}
781
782#ifdef CONFIG_DEBUG_VM
783	/*
784	 * Poison uninitialized struct pages in order to catch invalid flags
785	 * combinations.
786	 */
787	memset(memmap, PAGE_POISON_PATTERN, sizeof(struct page) * PAGES_PER_SECTION);
788#endif
789
 
 
790	section_mark_present(ms);
791
792	ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
 
 
 
793
794out:
795	pgdat_resize_unlock(pgdat, &flags);
796	if (ret <= 0) {
797		kfree(usemap);
798		__kfree_section_memmap(memmap, altmap);
799	}
800	return ret;
801}
802
803#ifdef CONFIG_MEMORY_HOTREMOVE
804#ifdef CONFIG_MEMORY_FAILURE
805static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
806{
807	int i;
808
809	if (!memmap)
 
 
 
 
 
 
810		return;
811
812	for (i = 0; i < nr_pages; i++) {
813		if (PageHWPoison(&memmap[i])) {
814			atomic_long_sub(1, &num_poisoned_pages);
815			ClearPageHWPoison(&memmap[i]);
816		}
817	}
818}
819#else
820static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
821{
822}
823#endif
824
825static void free_section_usemap(struct page *memmap, unsigned long *usemap,
 
826		struct vmem_altmap *altmap)
827{
828	struct page *usemap_page;
829
830	if (!usemap)
831		return;
832
833	usemap_page = virt_to_page(usemap);
834	/*
835	 * Check to see if allocation came from hot-plug-add
836	 */
837	if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
838		kfree(usemap);
839		if (memmap)
840			__kfree_section_memmap(memmap, altmap);
841		return;
842	}
843
844	/*
845	 * The usemap came from bootmem. This is packed with other usemaps
846	 * on the section which has pgdat at boot time. Just keep it as is now.
847	 */
848
849	if (memmap)
850		free_map_bootmem(memmap);
851}
852
853void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
854		unsigned long map_offset, struct vmem_altmap *altmap)
855{
856	struct page *memmap = NULL;
857	unsigned long *usemap = NULL, flags;
858	struct pglist_data *pgdat = zone->zone_pgdat;
859
860	pgdat_resize_lock(pgdat, &flags);
861	if (ms->section_mem_map) {
862		usemap = ms->pageblock_flags;
863		memmap = sparse_decode_mem_map(ms->section_mem_map,
864						__section_nr(ms));
865		ms->section_mem_map = 0;
866		ms->pageblock_flags = NULL;
867	}
868	pgdat_resize_unlock(pgdat, &flags);
869
870	clear_hwpoisoned_pages(memmap + map_offset,
871			PAGES_PER_SECTION - map_offset);
872	free_section_usemap(memmap, usemap, altmap);
873}
874#endif /* CONFIG_MEMORY_HOTREMOVE */
875#endif /* CONFIG_MEMORY_HOTPLUG */