Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *	linux/mm/filemap.c
   4 *
   5 * Copyright (C) 1994-1999  Linus Torvalds
   6 */
   7
   8/*
   9 * This file handles the generic file mmap semantics used by
  10 * most "normal" filesystems (but you don't /have/ to use this:
  11 * the NFS filesystem used to do this differently, for example)
  12 */
  13#include <linux/export.h>
  14#include <linux/compiler.h>
  15#include <linux/dax.h>
  16#include <linux/fs.h>
  17#include <linux/sched/signal.h>
  18#include <linux/uaccess.h>
  19#include <linux/capability.h>
  20#include <linux/kernel_stat.h>
  21#include <linux/gfp.h>
  22#include <linux/mm.h>
  23#include <linux/swap.h>
  24#include <linux/mman.h>
  25#include <linux/pagemap.h>
  26#include <linux/file.h>
  27#include <linux/uio.h>
  28#include <linux/error-injection.h>
  29#include <linux/hash.h>
  30#include <linux/writeback.h>
  31#include <linux/backing-dev.h>
  32#include <linux/pagevec.h>
  33#include <linux/blkdev.h>
  34#include <linux/security.h>
  35#include <linux/cpuset.h>
  36#include <linux/hugetlb.h>
  37#include <linux/memcontrol.h>
  38#include <linux/cleancache.h>
  39#include <linux/shmem_fs.h>
  40#include <linux/rmap.h>
  41#include <linux/delayacct.h>
  42#include <linux/psi.h>
  43#include <linux/ramfs.h>
 
  44#include "internal.h"
  45
  46#define CREATE_TRACE_POINTS
  47#include <trace/events/filemap.h>
  48
  49/*
  50 * FIXME: remove all knowledge of the buffer layer from the core VM
  51 */
  52#include <linux/buffer_head.h> /* for try_to_free_buffers */
  53
  54#include <asm/mman.h>
  55
  56/*
  57 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  58 * though.
  59 *
  60 * Shared mappings now work. 15.8.1995  Bruno.
  61 *
  62 * finished 'unifying' the page and buffer cache and SMP-threaded the
  63 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  64 *
  65 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  66 */
  67
  68/*
  69 * Lock ordering:
  70 *
  71 *  ->i_mmap_rwsem		(truncate_pagecache)
  72 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
  73 *      ->swap_lock		(exclusive_swap_page, others)
  74 *        ->i_pages lock
  75 *
  76 *  ->i_mutex
  77 *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
  78 *
  79 *  ->mmap_sem
  80 *    ->i_mmap_rwsem
  81 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
  82 *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
  83 *
  84 *  ->mmap_sem
  85 *    ->lock_page		(access_process_vm)
  86 *
  87 *  ->i_mutex			(generic_perform_write)
  88 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
  89 *
  90 *  bdi->wb.list_lock
  91 *    sb_lock			(fs/fs-writeback.c)
  92 *    ->i_pages lock		(__sync_single_inode)
  93 *
  94 *  ->i_mmap_rwsem
  95 *    ->anon_vma.lock		(vma_adjust)
  96 *
  97 *  ->anon_vma.lock
  98 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
  99 *
 100 *  ->page_table_lock or pte_lock
 101 *    ->swap_lock		(try_to_unmap_one)
 102 *    ->private_lock		(try_to_unmap_one)
 103 *    ->i_pages lock		(try_to_unmap_one)
 104 *    ->pgdat->lru_lock		(follow_page->mark_page_accessed)
 105 *    ->pgdat->lru_lock		(check_pte_range->isolate_lru_page)
 106 *    ->private_lock		(page_remove_rmap->set_page_dirty)
 107 *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
 108 *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
 109 *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
 110 *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
 111 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
 112 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
 113 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
 114 *
 115 * ->i_mmap_rwsem
 116 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
 117 */
 118
 119static void page_cache_delete(struct address_space *mapping,
 120				   struct page *page, void *shadow)
 121{
 122	XA_STATE(xas, &mapping->i_pages, page->index);
 123	unsigned int nr = 1;
 124
 125	mapping_set_update(&xas, mapping);
 126
 127	/* hugetlb pages are represented by a single entry in the xarray */
 128	if (!PageHuge(page)) {
 129		xas_set_order(&xas, page->index, compound_order(page));
 130		nr = compound_nr(page);
 131	}
 132
 133	VM_BUG_ON_PAGE(!PageLocked(page), page);
 134	VM_BUG_ON_PAGE(PageTail(page), page);
 135	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
 136
 137	xas_store(&xas, shadow);
 138	xas_init_marks(&xas);
 139
 140	page->mapping = NULL;
 141	/* Leave page->index set: truncation lookup relies upon it */
 142
 143	if (shadow) {
 144		mapping->nrexceptional += nr;
 145		/*
 146		 * Make sure the nrexceptional update is committed before
 147		 * the nrpages update so that final truncate racing
 148		 * with reclaim does not see both counters 0 at the
 149		 * same time and miss a shadow entry.
 150		 */
 151		smp_wmb();
 152	}
 153	mapping->nrpages -= nr;
 154}
 155
 156static void unaccount_page_cache_page(struct address_space *mapping,
 157				      struct page *page)
 158{
 159	int nr;
 160
 161	/*
 162	 * if we're uptodate, flush out into the cleancache, otherwise
 163	 * invalidate any existing cleancache entries.  We can't leave
 164	 * stale data around in the cleancache once our page is gone
 165	 */
 166	if (PageUptodate(page) && PageMappedToDisk(page))
 167		cleancache_put_page(page);
 168	else
 169		cleancache_invalidate_page(mapping, page);
 170
 171	VM_BUG_ON_PAGE(PageTail(page), page);
 172	VM_BUG_ON_PAGE(page_mapped(page), page);
 173	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
 174		int mapcount;
 175
 176		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
 177			 current->comm, page_to_pfn(page));
 178		dump_page(page, "still mapped when deleted");
 179		dump_stack();
 180		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 181
 182		mapcount = page_mapcount(page);
 183		if (mapping_exiting(mapping) &&
 184		    page_count(page) >= mapcount + 2) {
 185			/*
 186			 * All vmas have already been torn down, so it's
 187			 * a good bet that actually the page is unmapped,
 188			 * and we'd prefer not to leak it: if we're wrong,
 189			 * some other bad page check should catch it later.
 190			 */
 191			page_mapcount_reset(page);
 192			page_ref_sub(page, mapcount);
 193		}
 194	}
 195
 196	/* hugetlb pages do not participate in page cache accounting. */
 197	if (PageHuge(page))
 198		return;
 199
 200	nr = hpage_nr_pages(page);
 201
 202	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
 203	if (PageSwapBacked(page)) {
 204		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
 205		if (PageTransHuge(page))
 206			__dec_node_page_state(page, NR_SHMEM_THPS);
 207	} else if (PageTransHuge(page)) {
 208		__dec_node_page_state(page, NR_FILE_THPS);
 209		filemap_nr_thps_dec(mapping);
 210	}
 211
 212	/*
 213	 * At this point page must be either written or cleaned by
 214	 * truncate.  Dirty page here signals a bug and loss of
 215	 * unwritten data.
 216	 *
 217	 * This fixes dirty accounting after removing the page entirely
 218	 * but leaves PageDirty set: it has no effect for truncated
 219	 * page and anyway will be cleared before returning page into
 220	 * buddy allocator.
 221	 */
 222	if (WARN_ON_ONCE(PageDirty(page)))
 223		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
 224}
 225
 226/*
 227 * Delete a page from the page cache and free it. Caller has to make
 228 * sure the page is locked and that nobody else uses it - or that usage
 229 * is safe.  The caller must hold the i_pages lock.
 230 */
 231void __delete_from_page_cache(struct page *page, void *shadow)
 232{
 233	struct address_space *mapping = page->mapping;
 234
 235	trace_mm_filemap_delete_from_page_cache(page);
 236
 237	unaccount_page_cache_page(mapping, page);
 238	page_cache_delete(mapping, page, shadow);
 239}
 240
 241static void page_cache_free_page(struct address_space *mapping,
 242				struct page *page)
 243{
 244	void (*freepage)(struct page *);
 245
 246	freepage = mapping->a_ops->freepage;
 247	if (freepage)
 248		freepage(page);
 249
 250	if (PageTransHuge(page) && !PageHuge(page)) {
 251		page_ref_sub(page, HPAGE_PMD_NR);
 252		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
 253	} else {
 254		put_page(page);
 255	}
 256}
 257
 258/**
 259 * delete_from_page_cache - delete page from page cache
 260 * @page: the page which the kernel is trying to remove from page cache
 261 *
 262 * This must be called only on pages that have been verified to be in the page
 263 * cache and locked.  It will never put the page into the free list, the caller
 264 * has a reference on the page.
 265 */
 266void delete_from_page_cache(struct page *page)
 267{
 268	struct address_space *mapping = page_mapping(page);
 269	unsigned long flags;
 270
 271	BUG_ON(!PageLocked(page));
 272	xa_lock_irqsave(&mapping->i_pages, flags);
 273	__delete_from_page_cache(page, NULL);
 274	xa_unlock_irqrestore(&mapping->i_pages, flags);
 275
 276	page_cache_free_page(mapping, page);
 277}
 278EXPORT_SYMBOL(delete_from_page_cache);
 279
 280/*
 281 * page_cache_delete_batch - delete several pages from page cache
 282 * @mapping: the mapping to which pages belong
 283 * @pvec: pagevec with pages to delete
 284 *
 285 * The function walks over mapping->i_pages and removes pages passed in @pvec
 286 * from the mapping. The function expects @pvec to be sorted by page index
 287 * and is optimised for it to be dense.
 288 * It tolerates holes in @pvec (mapping entries at those indices are not
 289 * modified). The function expects only THP head pages to be present in the
 290 * @pvec.
 291 *
 292 * The function expects the i_pages lock to be held.
 293 */
 294static void page_cache_delete_batch(struct address_space *mapping,
 295			     struct pagevec *pvec)
 296{
 297	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
 298	int total_pages = 0;
 299	int i = 0;
 300	struct page *page;
 301
 302	mapping_set_update(&xas, mapping);
 303	xas_for_each(&xas, page, ULONG_MAX) {
 304		if (i >= pagevec_count(pvec))
 305			break;
 306
 307		/* A swap/dax/shadow entry got inserted? Skip it. */
 308		if (xa_is_value(page))
 309			continue;
 310		/*
 311		 * A page got inserted in our range? Skip it. We have our
 312		 * pages locked so they are protected from being removed.
 313		 * If we see a page whose index is higher than ours, it
 314		 * means our page has been removed, which shouldn't be
 315		 * possible because we're holding the PageLock.
 316		 */
 317		if (page != pvec->pages[i]) {
 318			VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
 319					page);
 320			continue;
 321		}
 322
 323		WARN_ON_ONCE(!PageLocked(page));
 324
 325		if (page->index == xas.xa_index)
 326			page->mapping = NULL;
 327		/* Leave page->index set: truncation lookup relies on it */
 328
 329		/*
 330		 * Move to the next page in the vector if this is a regular
 331		 * page or the index is of the last sub-page of this compound
 332		 * page.
 333		 */
 334		if (page->index + compound_nr(page) - 1 == xas.xa_index)
 335			i++;
 336		xas_store(&xas, NULL);
 337		total_pages++;
 338	}
 339	mapping->nrpages -= total_pages;
 340}
 341
 342void delete_from_page_cache_batch(struct address_space *mapping,
 343				  struct pagevec *pvec)
 344{
 345	int i;
 346	unsigned long flags;
 347
 348	if (!pagevec_count(pvec))
 349		return;
 350
 351	xa_lock_irqsave(&mapping->i_pages, flags);
 352	for (i = 0; i < pagevec_count(pvec); i++) {
 353		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
 354
 355		unaccount_page_cache_page(mapping, pvec->pages[i]);
 356	}
 357	page_cache_delete_batch(mapping, pvec);
 358	xa_unlock_irqrestore(&mapping->i_pages, flags);
 359
 360	for (i = 0; i < pagevec_count(pvec); i++)
 361		page_cache_free_page(mapping, pvec->pages[i]);
 362}
 363
 364int filemap_check_errors(struct address_space *mapping)
 365{
 366	int ret = 0;
 367	/* Check for outstanding write errors */
 368	if (test_bit(AS_ENOSPC, &mapping->flags) &&
 369	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 370		ret = -ENOSPC;
 371	if (test_bit(AS_EIO, &mapping->flags) &&
 372	    test_and_clear_bit(AS_EIO, &mapping->flags))
 373		ret = -EIO;
 374	return ret;
 375}
 376EXPORT_SYMBOL(filemap_check_errors);
 377
 378static int filemap_check_and_keep_errors(struct address_space *mapping)
 379{
 380	/* Check for outstanding write errors */
 381	if (test_bit(AS_EIO, &mapping->flags))
 382		return -EIO;
 383	if (test_bit(AS_ENOSPC, &mapping->flags))
 384		return -ENOSPC;
 385	return 0;
 386}
 387
 388/**
 389 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 390 * @mapping:	address space structure to write
 391 * @start:	offset in bytes where the range starts
 392 * @end:	offset in bytes where the range ends (inclusive)
 393 * @sync_mode:	enable synchronous operation
 394 *
 395 * Start writeback against all of a mapping's dirty pages that lie
 396 * within the byte offsets <start, end> inclusive.
 397 *
 398 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 399 * opposed to a regular memory cleansing writeback.  The difference between
 400 * these two operations is that if a dirty page/buffer is encountered, it must
 401 * be waited upon, and not just skipped over.
 402 *
 403 * Return: %0 on success, negative error code otherwise.
 404 */
 405int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 406				loff_t end, int sync_mode)
 407{
 408	int ret;
 409	struct writeback_control wbc = {
 410		.sync_mode = sync_mode,
 411		.nr_to_write = LONG_MAX,
 412		.range_start = start,
 413		.range_end = end,
 414	};
 415
 416	if (!mapping_cap_writeback_dirty(mapping) ||
 417	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
 418		return 0;
 419
 420	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
 421	ret = do_writepages(mapping, &wbc);
 422	wbc_detach_inode(&wbc);
 423	return ret;
 424}
 425
 426static inline int __filemap_fdatawrite(struct address_space *mapping,
 427	int sync_mode)
 428{
 429	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 430}
 431
 432int filemap_fdatawrite(struct address_space *mapping)
 433{
 434	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 435}
 436EXPORT_SYMBOL(filemap_fdatawrite);
 437
 438int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 439				loff_t end)
 440{
 441	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 442}
 443EXPORT_SYMBOL(filemap_fdatawrite_range);
 444
 445/**
 446 * filemap_flush - mostly a non-blocking flush
 447 * @mapping:	target address_space
 448 *
 449 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 450 * purposes - I/O may not be started against all dirty pages.
 451 *
 452 * Return: %0 on success, negative error code otherwise.
 453 */
 454int filemap_flush(struct address_space *mapping)
 455{
 456	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 457}
 458EXPORT_SYMBOL(filemap_flush);
 459
 460/**
 461 * filemap_range_has_page - check if a page exists in range.
 462 * @mapping:           address space within which to check
 463 * @start_byte:        offset in bytes where the range starts
 464 * @end_byte:          offset in bytes where the range ends (inclusive)
 465 *
 466 * Find at least one page in the range supplied, usually used to check if
 467 * direct writing in this range will trigger a writeback.
 468 *
 469 * Return: %true if at least one page exists in the specified range,
 470 * %false otherwise.
 471 */
 472bool filemap_range_has_page(struct address_space *mapping,
 473			   loff_t start_byte, loff_t end_byte)
 474{
 475	struct page *page;
 476	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
 477	pgoff_t max = end_byte >> PAGE_SHIFT;
 478
 479	if (end_byte < start_byte)
 480		return false;
 481
 482	rcu_read_lock();
 483	for (;;) {
 484		page = xas_find(&xas, max);
 485		if (xas_retry(&xas, page))
 486			continue;
 487		/* Shadow entries don't count */
 488		if (xa_is_value(page))
 489			continue;
 490		/*
 491		 * We don't need to try to pin this page; we're about to
 492		 * release the RCU lock anyway.  It is enough to know that
 493		 * there was a page here recently.
 494		 */
 495		break;
 496	}
 497	rcu_read_unlock();
 498
 499	return page != NULL;
 500}
 501EXPORT_SYMBOL(filemap_range_has_page);
 502
 503static void __filemap_fdatawait_range(struct address_space *mapping,
 504				     loff_t start_byte, loff_t end_byte)
 505{
 506	pgoff_t index = start_byte >> PAGE_SHIFT;
 507	pgoff_t end = end_byte >> PAGE_SHIFT;
 508	struct pagevec pvec;
 509	int nr_pages;
 510
 511	if (end_byte < start_byte)
 512		return;
 513
 514	pagevec_init(&pvec);
 515	while (index <= end) {
 516		unsigned i;
 517
 518		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
 519				end, PAGECACHE_TAG_WRITEBACK);
 520		if (!nr_pages)
 521			break;
 522
 523		for (i = 0; i < nr_pages; i++) {
 524			struct page *page = pvec.pages[i];
 525
 526			wait_on_page_writeback(page);
 527			ClearPageError(page);
 528		}
 529		pagevec_release(&pvec);
 530		cond_resched();
 531	}
 532}
 533
 534/**
 535 * filemap_fdatawait_range - wait for writeback to complete
 536 * @mapping:		address space structure to wait for
 537 * @start_byte:		offset in bytes where the range starts
 538 * @end_byte:		offset in bytes where the range ends (inclusive)
 539 *
 540 * Walk the list of under-writeback pages of the given address space
 541 * in the given range and wait for all of them.  Check error status of
 542 * the address space and return it.
 543 *
 544 * Since the error status of the address space is cleared by this function,
 545 * callers are responsible for checking the return value and handling and/or
 546 * reporting the error.
 547 *
 548 * Return: error status of the address space.
 549 */
 550int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 551			    loff_t end_byte)
 552{
 553	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 554	return filemap_check_errors(mapping);
 555}
 556EXPORT_SYMBOL(filemap_fdatawait_range);
 557
 558/**
 559 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
 560 * @mapping:		address space structure to wait for
 561 * @start_byte:		offset in bytes where the range starts
 562 * @end_byte:		offset in bytes where the range ends (inclusive)
 563 *
 564 * Walk the list of under-writeback pages of the given address space in the
 565 * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
 566 * this function does not clear error status of the address space.
 567 *
 568 * Use this function if callers don't handle errors themselves.  Expected
 569 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 570 * fsfreeze(8)
 571 */
 572int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
 573		loff_t start_byte, loff_t end_byte)
 574{
 575	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 576	return filemap_check_and_keep_errors(mapping);
 577}
 578EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
 579
 580/**
 581 * file_fdatawait_range - wait for writeback to complete
 582 * @file:		file pointing to address space structure to wait for
 583 * @start_byte:		offset in bytes where the range starts
 584 * @end_byte:		offset in bytes where the range ends (inclusive)
 585 *
 586 * Walk the list of under-writeback pages of the address space that file
 587 * refers to, in the given range and wait for all of them.  Check error
 588 * status of the address space vs. the file->f_wb_err cursor and return it.
 589 *
 590 * Since the error status of the file is advanced by this function,
 591 * callers are responsible for checking the return value and handling and/or
 592 * reporting the error.
 593 *
 594 * Return: error status of the address space vs. the file->f_wb_err cursor.
 595 */
 596int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
 597{
 598	struct address_space *mapping = file->f_mapping;
 599
 600	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 601	return file_check_and_advance_wb_err(file);
 602}
 603EXPORT_SYMBOL(file_fdatawait_range);
 604
 605/**
 606 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 607 * @mapping: address space structure to wait for
 608 *
 609 * Walk the list of under-writeback pages of the given address space
 610 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 611 * does not clear error status of the address space.
 612 *
 613 * Use this function if callers don't handle errors themselves.  Expected
 614 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 615 * fsfreeze(8)
 616 *
 617 * Return: error status of the address space.
 618 */
 619int filemap_fdatawait_keep_errors(struct address_space *mapping)
 620{
 621	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
 622	return filemap_check_and_keep_errors(mapping);
 623}
 624EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
 625
 626/* Returns true if writeback might be needed or already in progress. */
 627static bool mapping_needs_writeback(struct address_space *mapping)
 628{
 629	if (dax_mapping(mapping))
 630		return mapping->nrexceptional;
 631
 632	return mapping->nrpages;
 633}
 634
 635int filemap_write_and_wait(struct address_space *mapping)
 636{
 637	int err = 0;
 638
 639	if (mapping_needs_writeback(mapping)) {
 640		err = filemap_fdatawrite(mapping);
 641		/*
 642		 * Even if the above returned error, the pages may be
 643		 * written partially (e.g. -ENOSPC), so we wait for it.
 644		 * But the -EIO is special case, it may indicate the worst
 645		 * thing (e.g. bug) happened, so we avoid waiting for it.
 646		 */
 647		if (err != -EIO) {
 648			int err2 = filemap_fdatawait(mapping);
 649			if (!err)
 650				err = err2;
 651		} else {
 652			/* Clear any previously stored errors */
 653			filemap_check_errors(mapping);
 654		}
 655	} else {
 656		err = filemap_check_errors(mapping);
 657	}
 658	return err;
 659}
 660EXPORT_SYMBOL(filemap_write_and_wait);
 661
 662/**
 663 * filemap_write_and_wait_range - write out & wait on a file range
 664 * @mapping:	the address_space for the pages
 665 * @lstart:	offset in bytes where the range starts
 666 * @lend:	offset in bytes where the range ends (inclusive)
 667 *
 668 * Write out and wait upon file offsets lstart->lend, inclusive.
 669 *
 670 * Note that @lend is inclusive (describes the last byte to be written) so
 671 * that this function can be used to write to the very end-of-file (end = -1).
 672 *
 673 * Return: error status of the address space.
 674 */
 675int filemap_write_and_wait_range(struct address_space *mapping,
 676				 loff_t lstart, loff_t lend)
 677{
 678	int err = 0;
 679
 680	if (mapping_needs_writeback(mapping)) {
 681		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 682						 WB_SYNC_ALL);
 683		/* See comment of filemap_write_and_wait() */
 
 
 
 
 
 684		if (err != -EIO) {
 685			int err2 = filemap_fdatawait_range(mapping,
 686						lstart, lend);
 687			if (!err)
 688				err = err2;
 689		} else {
 690			/* Clear any previously stored errors */
 691			filemap_check_errors(mapping);
 692		}
 693	} else {
 694		err = filemap_check_errors(mapping);
 695	}
 696	return err;
 697}
 698EXPORT_SYMBOL(filemap_write_and_wait_range);
 699
 700void __filemap_set_wb_err(struct address_space *mapping, int err)
 701{
 702	errseq_t eseq = errseq_set(&mapping->wb_err, err);
 703
 704	trace_filemap_set_wb_err(mapping, eseq);
 705}
 706EXPORT_SYMBOL(__filemap_set_wb_err);
 707
 708/**
 709 * file_check_and_advance_wb_err - report wb error (if any) that was previously
 710 * 				   and advance wb_err to current one
 711 * @file: struct file on which the error is being reported
 712 *
 713 * When userland calls fsync (or something like nfsd does the equivalent), we
 714 * want to report any writeback errors that occurred since the last fsync (or
 715 * since the file was opened if there haven't been any).
 716 *
 717 * Grab the wb_err from the mapping. If it matches what we have in the file,
 718 * then just quickly return 0. The file is all caught up.
 719 *
 720 * If it doesn't match, then take the mapping value, set the "seen" flag in
 721 * it and try to swap it into place. If it works, or another task beat us
 722 * to it with the new value, then update the f_wb_err and return the error
 723 * portion. The error at this point must be reported via proper channels
 724 * (a'la fsync, or NFS COMMIT operation, etc.).
 725 *
 726 * While we handle mapping->wb_err with atomic operations, the f_wb_err
 727 * value is protected by the f_lock since we must ensure that it reflects
 728 * the latest value swapped in for this file descriptor.
 729 *
 730 * Return: %0 on success, negative error code otherwise.
 731 */
 732int file_check_and_advance_wb_err(struct file *file)
 733{
 734	int err = 0;
 735	errseq_t old = READ_ONCE(file->f_wb_err);
 736	struct address_space *mapping = file->f_mapping;
 737
 738	/* Locklessly handle the common case where nothing has changed */
 739	if (errseq_check(&mapping->wb_err, old)) {
 740		/* Something changed, must use slow path */
 741		spin_lock(&file->f_lock);
 742		old = file->f_wb_err;
 743		err = errseq_check_and_advance(&mapping->wb_err,
 744						&file->f_wb_err);
 745		trace_file_check_and_advance_wb_err(file, old);
 746		spin_unlock(&file->f_lock);
 747	}
 748
 749	/*
 750	 * We're mostly using this function as a drop in replacement for
 751	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
 752	 * that the legacy code would have had on these flags.
 753	 */
 754	clear_bit(AS_EIO, &mapping->flags);
 755	clear_bit(AS_ENOSPC, &mapping->flags);
 756	return err;
 757}
 758EXPORT_SYMBOL(file_check_and_advance_wb_err);
 759
 760/**
 761 * file_write_and_wait_range - write out & wait on a file range
 762 * @file:	file pointing to address_space with pages
 763 * @lstart:	offset in bytes where the range starts
 764 * @lend:	offset in bytes where the range ends (inclusive)
 765 *
 766 * Write out and wait upon file offsets lstart->lend, inclusive.
 767 *
 768 * Note that @lend is inclusive (describes the last byte to be written) so
 769 * that this function can be used to write to the very end-of-file (end = -1).
 770 *
 771 * After writing out and waiting on the data, we check and advance the
 772 * f_wb_err cursor to the latest value, and return any errors detected there.
 773 *
 774 * Return: %0 on success, negative error code otherwise.
 775 */
 776int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
 777{
 778	int err = 0, err2;
 779	struct address_space *mapping = file->f_mapping;
 780
 781	if (mapping_needs_writeback(mapping)) {
 782		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 783						 WB_SYNC_ALL);
 784		/* See comment of filemap_write_and_wait() */
 785		if (err != -EIO)
 786			__filemap_fdatawait_range(mapping, lstart, lend);
 787	}
 788	err2 = file_check_and_advance_wb_err(file);
 789	if (!err)
 790		err = err2;
 791	return err;
 792}
 793EXPORT_SYMBOL(file_write_and_wait_range);
 794
 795/**
 796 * replace_page_cache_page - replace a pagecache page with a new one
 797 * @old:	page to be replaced
 798 * @new:	page to replace with
 799 * @gfp_mask:	allocation mode
 800 *
 801 * This function replaces a page in the pagecache with a new one.  On
 802 * success it acquires the pagecache reference for the new page and
 803 * drops it for the old page.  Both the old and new pages must be
 804 * locked.  This function does not add the new page to the LRU, the
 805 * caller must do that.
 806 *
 807 * The remove + add is atomic.  This function cannot fail.
 808 *
 809 * Return: %0
 810 */
 811int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
 812{
 813	struct address_space *mapping = old->mapping;
 814	void (*freepage)(struct page *) = mapping->a_ops->freepage;
 815	pgoff_t offset = old->index;
 816	XA_STATE(xas, &mapping->i_pages, offset);
 817	unsigned long flags;
 818
 819	VM_BUG_ON_PAGE(!PageLocked(old), old);
 820	VM_BUG_ON_PAGE(!PageLocked(new), new);
 821	VM_BUG_ON_PAGE(new->mapping, new);
 822
 823	get_page(new);
 824	new->mapping = mapping;
 825	new->index = offset;
 826
 
 
 827	xas_lock_irqsave(&xas, flags);
 828	xas_store(&xas, new);
 829
 830	old->mapping = NULL;
 831	/* hugetlb pages do not participate in page cache accounting. */
 832	if (!PageHuge(old))
 833		__dec_node_page_state(new, NR_FILE_PAGES);
 834	if (!PageHuge(new))
 835		__inc_node_page_state(new, NR_FILE_PAGES);
 836	if (PageSwapBacked(old))
 837		__dec_node_page_state(new, NR_SHMEM);
 838	if (PageSwapBacked(new))
 839		__inc_node_page_state(new, NR_SHMEM);
 840	xas_unlock_irqrestore(&xas, flags);
 841	mem_cgroup_migrate(old, new);
 842	if (freepage)
 843		freepage(old);
 844	put_page(old);
 845
 846	return 0;
 847}
 848EXPORT_SYMBOL_GPL(replace_page_cache_page);
 849
 850static int __add_to_page_cache_locked(struct page *page,
 851				      struct address_space *mapping,
 852				      pgoff_t offset, gfp_t gfp_mask,
 853				      void **shadowp)
 854{
 855	XA_STATE(xas, &mapping->i_pages, offset);
 856	int huge = PageHuge(page);
 857	struct mem_cgroup *memcg;
 858	int error;
 859	void *old;
 860
 861	VM_BUG_ON_PAGE(!PageLocked(page), page);
 862	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
 863	mapping_set_update(&xas, mapping);
 864
 865	if (!huge) {
 866		error = mem_cgroup_try_charge(page, current->mm,
 867					      gfp_mask, &memcg, false);
 868		if (error)
 869			return error;
 870	}
 871
 872	get_page(page);
 873	page->mapping = mapping;
 874	page->index = offset;
 875
 
 
 
 
 
 
 876	do {
 877		xas_lock_irq(&xas);
 878		old = xas_load(&xas);
 879		if (old && !xa_is_value(old))
 880			xas_set_err(&xas, -EEXIST);
 881		xas_store(&xas, page);
 882		if (xas_error(&xas))
 883			goto unlock;
 884
 885		if (xa_is_value(old)) {
 886			mapping->nrexceptional--;
 887			if (shadowp)
 888				*shadowp = old;
 889		}
 890		mapping->nrpages++;
 891
 892		/* hugetlb pages do not participate in page cache accounting */
 893		if (!huge)
 894			__inc_node_page_state(page, NR_FILE_PAGES);
 895unlock:
 896		xas_unlock_irq(&xas);
 897	} while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
 898
 899	if (xas_error(&xas))
 
 900		goto error;
 
 901
 902	if (!huge)
 903		mem_cgroup_commit_charge(page, memcg, false, false);
 904	trace_mm_filemap_add_to_page_cache(page);
 905	return 0;
 906error:
 907	page->mapping = NULL;
 908	/* Leave page->index set: truncation relies upon it */
 909	if (!huge)
 910		mem_cgroup_cancel_charge(page, memcg, false);
 911	put_page(page);
 912	return xas_error(&xas);
 913}
 914ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
 915
 916/**
 917 * add_to_page_cache_locked - add a locked page to the pagecache
 918 * @page:	page to add
 919 * @mapping:	the page's address_space
 920 * @offset:	page index
 921 * @gfp_mask:	page allocation mode
 922 *
 923 * This function is used to add a page to the pagecache. It must be locked.
 924 * This function does not add the page to the LRU.  The caller must do that.
 925 *
 926 * Return: %0 on success, negative error code otherwise.
 927 */
 928int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
 929		pgoff_t offset, gfp_t gfp_mask)
 930{
 931	return __add_to_page_cache_locked(page, mapping, offset,
 932					  gfp_mask, NULL);
 933}
 934EXPORT_SYMBOL(add_to_page_cache_locked);
 935
 936int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 937				pgoff_t offset, gfp_t gfp_mask)
 938{
 939	void *shadow = NULL;
 940	int ret;
 941
 942	__SetPageLocked(page);
 943	ret = __add_to_page_cache_locked(page, mapping, offset,
 944					 gfp_mask, &shadow);
 945	if (unlikely(ret))
 946		__ClearPageLocked(page);
 947	else {
 948		/*
 949		 * The page might have been evicted from cache only
 950		 * recently, in which case it should be activated like
 951		 * any other repeatedly accessed page.
 952		 * The exception is pages getting rewritten; evicting other
 953		 * data from the working set, only to cache data that will
 954		 * get overwritten with something else, is a waste of memory.
 955		 */
 956		WARN_ON_ONCE(PageActive(page));
 957		if (!(gfp_mask & __GFP_WRITE) && shadow)
 958			workingset_refault(page, shadow);
 959		lru_cache_add(page);
 960	}
 961	return ret;
 962}
 963EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
 964
 965#ifdef CONFIG_NUMA
 966struct page *__page_cache_alloc(gfp_t gfp)
 967{
 968	int n;
 969	struct page *page;
 970
 971	if (cpuset_do_page_mem_spread()) {
 972		unsigned int cpuset_mems_cookie;
 973		do {
 974			cpuset_mems_cookie = read_mems_allowed_begin();
 975			n = cpuset_mem_spread_node();
 976			page = __alloc_pages_node(n, gfp, 0);
 977		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
 978
 979		return page;
 980	}
 981	return alloc_pages(gfp, 0);
 982}
 983EXPORT_SYMBOL(__page_cache_alloc);
 984#endif
 985
 986/*
 987 * In order to wait for pages to become available there must be
 988 * waitqueues associated with pages. By using a hash table of
 989 * waitqueues where the bucket discipline is to maintain all
 990 * waiters on the same queue and wake all when any of the pages
 991 * become available, and for the woken contexts to check to be
 992 * sure the appropriate page became available, this saves space
 993 * at a cost of "thundering herd" phenomena during rare hash
 994 * collisions.
 995 */
 996#define PAGE_WAIT_TABLE_BITS 8
 997#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
 998static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
 999
1000static wait_queue_head_t *page_waitqueue(struct page *page)
1001{
1002	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1003}
1004
1005void __init pagecache_init(void)
1006{
1007	int i;
1008
1009	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1010		init_waitqueue_head(&page_wait_table[i]);
1011
1012	page_writeback_init();
1013}
1014
1015/* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
1016struct wait_page_key {
1017	struct page *page;
1018	int bit_nr;
1019	int page_match;
1020};
1021
1022struct wait_page_queue {
1023	struct page *page;
1024	int bit_nr;
1025	wait_queue_entry_t wait;
1026};
1027
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1028static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1029{
 
1030	struct wait_page_key *key = arg;
1031	struct wait_page_queue *wait_page
1032		= container_of(wait, struct wait_page_queue, wait);
1033
1034	if (wait_page->page != key->page)
1035	       return 0;
1036	key->page_match = 1;
1037
1038	if (wait_page->bit_nr != key->bit_nr)
1039		return 0;
1040
1041	/*
1042	 * Stop walking if it's locked.
1043	 * Is this safe if put_and_wait_on_page_locked() is in use?
1044	 * Yes: the waker must hold a reference to this page, and if PG_locked
1045	 * has now already been set by another task, that task must also hold
1046	 * a reference to the *same usage* of this page; so there is no need
1047	 * to walk on to wake even the put_and_wait_on_page_locked() callers.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1048	 */
1049	if (test_bit(key->bit_nr, &key->page->flags))
1050		return -1;
1051
1052	return autoremove_wake_function(wait, mode, sync, key);
 
 
 
 
 
 
 
 
 
 
 
1053}
1054
1055static void wake_up_page_bit(struct page *page, int bit_nr)
1056{
1057	wait_queue_head_t *q = page_waitqueue(page);
1058	struct wait_page_key key;
1059	unsigned long flags;
1060	wait_queue_entry_t bookmark;
1061
1062	key.page = page;
1063	key.bit_nr = bit_nr;
1064	key.page_match = 0;
1065
1066	bookmark.flags = 0;
1067	bookmark.private = NULL;
1068	bookmark.func = NULL;
1069	INIT_LIST_HEAD(&bookmark.entry);
1070
1071	spin_lock_irqsave(&q->lock, flags);
1072	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1073
1074	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1075		/*
1076		 * Take a breather from holding the lock,
1077		 * allow pages that finish wake up asynchronously
1078		 * to acquire the lock and remove themselves
1079		 * from wait queue
1080		 */
1081		spin_unlock_irqrestore(&q->lock, flags);
1082		cpu_relax();
1083		spin_lock_irqsave(&q->lock, flags);
1084		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1085	}
1086
1087	/*
1088	 * It is possible for other pages to have collided on the waitqueue
1089	 * hash, so in that case check for a page match. That prevents a long-
1090	 * term waiter
1091	 *
1092	 * It is still possible to miss a case here, when we woke page waiters
1093	 * and removed them from the waitqueue, but there are still other
1094	 * page waiters.
1095	 */
1096	if (!waitqueue_active(q) || !key.page_match) {
1097		ClearPageWaiters(page);
1098		/*
1099		 * It's possible to miss clearing Waiters here, when we woke
1100		 * our page waiters, but the hashed waitqueue has waiters for
1101		 * other pages on it.
1102		 *
1103		 * That's okay, it's a rare case. The next waker will clear it.
1104		 */
1105	}
1106	spin_unlock_irqrestore(&q->lock, flags);
1107}
1108
1109static void wake_up_page(struct page *page, int bit)
1110{
1111	if (!PageWaiters(page))
1112		return;
1113	wake_up_page_bit(page, bit);
1114}
1115
1116/*
1117 * A choice of three behaviors for wait_on_page_bit_common():
1118 */
1119enum behavior {
1120	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1121			 * __lock_page() waiting on then setting PG_locked.
1122			 */
1123	SHARED,		/* Hold ref to page and check the bit when woken, like
1124			 * wait_on_page_writeback() waiting on PG_writeback.
1125			 */
1126	DROP,		/* Drop ref to page before wait, no check when woken,
1127			 * like put_and_wait_on_page_locked() on PG_locked.
1128			 */
1129};
1130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1131static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1132	struct page *page, int bit_nr, int state, enum behavior behavior)
1133{
 
1134	struct wait_page_queue wait_page;
1135	wait_queue_entry_t *wait = &wait_page.wait;
1136	bool bit_is_set;
1137	bool thrashing = false;
1138	bool delayacct = false;
1139	unsigned long pflags;
1140	int ret = 0;
1141
1142	if (bit_nr == PG_locked &&
1143	    !PageUptodate(page) && PageWorkingset(page)) {
1144		if (!PageSwapBacked(page)) {
1145			delayacct_thrashing_start();
1146			delayacct = true;
1147		}
1148		psi_memstall_enter(&pflags);
1149		thrashing = true;
1150	}
1151
1152	init_wait(wait);
1153	wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
1154	wait->func = wake_page_function;
1155	wait_page.page = page;
1156	wait_page.bit_nr = bit_nr;
1157
1158	for (;;) {
1159		spin_lock_irq(&q->lock);
1160
1161		if (likely(list_empty(&wait->entry))) {
1162			__add_wait_queue_entry_tail(q, wait);
1163			SetPageWaiters(page);
1164		}
1165
1166		set_current_state(state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1167
1168		spin_unlock_irq(&q->lock);
 
 
 
 
 
 
 
 
 
1169
1170		bit_is_set = test_bit(bit_nr, &page->flags);
1171		if (behavior == DROP)
1172			put_page(page);
 
 
 
 
 
1173
1174		if (likely(bit_is_set))
1175			io_schedule();
1176
1177		if (behavior == EXCLUSIVE) {
1178			if (!test_and_set_bit_lock(bit_nr, &page->flags))
1179				break;
1180		} else if (behavior == SHARED) {
1181			if (!test_bit(bit_nr, &page->flags))
1182				break;
 
 
 
1183		}
1184
1185		if (signal_pending_state(state, current)) {
1186			ret = -EINTR;
1187			break;
1188		}
1189
1190		if (behavior == DROP) {
1191			/*
1192			 * We can no longer safely access page->flags:
1193			 * even if CONFIG_MEMORY_HOTREMOVE is not enabled,
1194			 * there is a risk of waiting forever on a page reused
1195			 * for something that keeps it locked indefinitely.
1196			 * But best check for -EINTR above before breaking.
1197			 */
1198			break;
1199		}
 
 
 
 
 
 
 
 
 
 
 
1200	}
1201
 
 
 
 
 
 
1202	finish_wait(q, wait);
1203
1204	if (thrashing) {
1205		if (delayacct)
1206			delayacct_thrashing_end();
1207		psi_memstall_leave(&pflags);
1208	}
1209
1210	/*
1211	 * A signal could leave PageWaiters set. Clearing it here if
1212	 * !waitqueue_active would be possible (by open-coding finish_wait),
1213	 * but still fail to catch it in the case of wait hash collision. We
1214	 * already can fail to clear wait hash collision cases, so don't
1215	 * bother with signals either.
 
 
 
 
 
 
1216	 */
 
 
1217
1218	return ret;
1219}
1220
1221void wait_on_page_bit(struct page *page, int bit_nr)
1222{
1223	wait_queue_head_t *q = page_waitqueue(page);
1224	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1225}
1226EXPORT_SYMBOL(wait_on_page_bit);
1227
1228int wait_on_page_bit_killable(struct page *page, int bit_nr)
1229{
1230	wait_queue_head_t *q = page_waitqueue(page);
1231	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1232}
1233EXPORT_SYMBOL(wait_on_page_bit_killable);
1234
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1235/**
1236 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1237 * @page: The page to wait for.
1238 *
1239 * The caller should hold a reference on @page.  They expect the page to
1240 * become unlocked relatively soon, but do not wish to hold up migration
1241 * (for example) by holding the reference while waiting for the page to
1242 * come unlocked.  After this function returns, the caller should not
1243 * dereference @page.
1244 */
1245void put_and_wait_on_page_locked(struct page *page)
1246{
1247	wait_queue_head_t *q;
1248
1249	page = compound_head(page);
1250	q = page_waitqueue(page);
1251	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1252}
1253
1254/**
1255 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1256 * @page: Page defining the wait queue of interest
1257 * @waiter: Waiter to add to the queue
1258 *
1259 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1260 */
1261void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1262{
1263	wait_queue_head_t *q = page_waitqueue(page);
1264	unsigned long flags;
1265
1266	spin_lock_irqsave(&q->lock, flags);
1267	__add_wait_queue_entry_tail(q, waiter);
1268	SetPageWaiters(page);
1269	spin_unlock_irqrestore(&q->lock, flags);
1270}
1271EXPORT_SYMBOL_GPL(add_page_wait_queue);
1272
1273#ifndef clear_bit_unlock_is_negative_byte
1274
1275/*
1276 * PG_waiters is the high bit in the same byte as PG_lock.
1277 *
1278 * On x86 (and on many other architectures), we can clear PG_lock and
1279 * test the sign bit at the same time. But if the architecture does
1280 * not support that special operation, we just do this all by hand
1281 * instead.
1282 *
1283 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1284 * being cleared, but a memory barrier should be unneccssary since it is
1285 * in the same byte as PG_locked.
1286 */
1287static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1288{
1289	clear_bit_unlock(nr, mem);
1290	/* smp_mb__after_atomic(); */
1291	return test_bit(PG_waiters, mem);
1292}
1293
1294#endif
1295
1296/**
1297 * unlock_page - unlock a locked page
1298 * @page: the page
1299 *
1300 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1301 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1302 * mechanism between PageLocked pages and PageWriteback pages is shared.
1303 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1304 *
1305 * Note that this depends on PG_waiters being the sign bit in the byte
1306 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1307 * clear the PG_locked bit and test PG_waiters at the same time fairly
1308 * portably (architectures that do LL/SC can test any bit, while x86 can
1309 * test the sign bit).
1310 */
1311void unlock_page(struct page *page)
1312{
1313	BUILD_BUG_ON(PG_waiters != 7);
1314	page = compound_head(page);
1315	VM_BUG_ON_PAGE(!PageLocked(page), page);
1316	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1317		wake_up_page_bit(page, PG_locked);
1318}
1319EXPORT_SYMBOL(unlock_page);
1320
1321/**
1322 * end_page_writeback - end writeback against a page
1323 * @page: the page
1324 */
1325void end_page_writeback(struct page *page)
1326{
1327	/*
1328	 * TestClearPageReclaim could be used here but it is an atomic
1329	 * operation and overkill in this particular case. Failing to
1330	 * shuffle a page marked for immediate reclaim is too mild to
1331	 * justify taking an atomic operation penalty at the end of
1332	 * ever page writeback.
1333	 */
1334	if (PageReclaim(page)) {
1335		ClearPageReclaim(page);
1336		rotate_reclaimable_page(page);
1337	}
1338
1339	if (!test_clear_page_writeback(page))
1340		BUG();
1341
1342	smp_mb__after_atomic();
1343	wake_up_page(page, PG_writeback);
1344}
1345EXPORT_SYMBOL(end_page_writeback);
1346
1347/*
1348 * After completing I/O on a page, call this routine to update the page
1349 * flags appropriately
1350 */
1351void page_endio(struct page *page, bool is_write, int err)
1352{
1353	if (!is_write) {
1354		if (!err) {
1355			SetPageUptodate(page);
1356		} else {
1357			ClearPageUptodate(page);
1358			SetPageError(page);
1359		}
1360		unlock_page(page);
1361	} else {
1362		if (err) {
1363			struct address_space *mapping;
1364
1365			SetPageError(page);
1366			mapping = page_mapping(page);
1367			if (mapping)
1368				mapping_set_error(mapping, err);
1369		}
1370		end_page_writeback(page);
1371	}
1372}
1373EXPORT_SYMBOL_GPL(page_endio);
1374
1375/**
1376 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1377 * @__page: the page to lock
1378 */
1379void __lock_page(struct page *__page)
1380{
1381	struct page *page = compound_head(__page);
1382	wait_queue_head_t *q = page_waitqueue(page);
1383	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1384				EXCLUSIVE);
1385}
1386EXPORT_SYMBOL(__lock_page);
1387
1388int __lock_page_killable(struct page *__page)
1389{
1390	struct page *page = compound_head(__page);
1391	wait_queue_head_t *q = page_waitqueue(page);
1392	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1393					EXCLUSIVE);
1394}
1395EXPORT_SYMBOL_GPL(__lock_page_killable);
1396
 
 
 
 
 
1397/*
1398 * Return values:
1399 * 1 - page is locked; mmap_sem is still held.
1400 * 0 - page is not locked.
1401 *     mmap_sem has been released (up_read()), unless flags had both
1402 *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1403 *     which case mmap_sem is still held.
1404 *
1405 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1406 * with the page locked and the mmap_sem unperturbed.
1407 */
1408int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1409			 unsigned int flags)
1410{
1411	if (flags & FAULT_FLAG_ALLOW_RETRY) {
1412		/*
1413		 * CAUTION! In this case, mmap_sem is not released
1414		 * even though return 0.
1415		 */
1416		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1417			return 0;
1418
1419		up_read(&mm->mmap_sem);
1420		if (flags & FAULT_FLAG_KILLABLE)
1421			wait_on_page_locked_killable(page);
1422		else
1423			wait_on_page_locked(page);
1424		return 0;
1425	} else {
1426		if (flags & FAULT_FLAG_KILLABLE) {
1427			int ret;
1428
1429			ret = __lock_page_killable(page);
1430			if (ret) {
1431				up_read(&mm->mmap_sem);
1432				return 0;
1433			}
1434		} else
1435			__lock_page(page);
1436		return 1;
1437	}
1438}
1439
1440/**
1441 * page_cache_next_miss() - Find the next gap in the page cache.
1442 * @mapping: Mapping.
1443 * @index: Index.
1444 * @max_scan: Maximum range to search.
1445 *
1446 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1447 * gap with the lowest index.
1448 *
1449 * This function may be called under the rcu_read_lock.  However, this will
1450 * not atomically search a snapshot of the cache at a single point in time.
1451 * For example, if a gap is created at index 5, then subsequently a gap is
1452 * created at index 10, page_cache_next_miss covering both indices may
1453 * return 10 if called under the rcu_read_lock.
1454 *
1455 * Return: The index of the gap if found, otherwise an index outside the
1456 * range specified (in which case 'return - index >= max_scan' will be true).
1457 * In the rare case of index wrap-around, 0 will be returned.
1458 */
1459pgoff_t page_cache_next_miss(struct address_space *mapping,
1460			     pgoff_t index, unsigned long max_scan)
1461{
1462	XA_STATE(xas, &mapping->i_pages, index);
1463
1464	while (max_scan--) {
1465		void *entry = xas_next(&xas);
1466		if (!entry || xa_is_value(entry))
1467			break;
1468		if (xas.xa_index == 0)
1469			break;
1470	}
1471
1472	return xas.xa_index;
1473}
1474EXPORT_SYMBOL(page_cache_next_miss);
1475
1476/**
1477 * page_cache_prev_miss() - Find the previous gap in the page cache.
1478 * @mapping: Mapping.
1479 * @index: Index.
1480 * @max_scan: Maximum range to search.
1481 *
1482 * Search the range [max(index - max_scan + 1, 0), index] for the
1483 * gap with the highest index.
1484 *
1485 * This function may be called under the rcu_read_lock.  However, this will
1486 * not atomically search a snapshot of the cache at a single point in time.
1487 * For example, if a gap is created at index 10, then subsequently a gap is
1488 * created at index 5, page_cache_prev_miss() covering both indices may
1489 * return 5 if called under the rcu_read_lock.
1490 *
1491 * Return: The index of the gap if found, otherwise an index outside the
1492 * range specified (in which case 'index - return >= max_scan' will be true).
1493 * In the rare case of wrap-around, ULONG_MAX will be returned.
1494 */
1495pgoff_t page_cache_prev_miss(struct address_space *mapping,
1496			     pgoff_t index, unsigned long max_scan)
1497{
1498	XA_STATE(xas, &mapping->i_pages, index);
1499
1500	while (max_scan--) {
1501		void *entry = xas_prev(&xas);
1502		if (!entry || xa_is_value(entry))
1503			break;
1504		if (xas.xa_index == ULONG_MAX)
1505			break;
1506	}
1507
1508	return xas.xa_index;
1509}
1510EXPORT_SYMBOL(page_cache_prev_miss);
1511
1512/**
1513 * find_get_entry - find and get a page cache entry
1514 * @mapping: the address_space to search
1515 * @offset: the page cache index
1516 *
1517 * Looks up the page cache slot at @mapping & @offset.  If there is a
1518 * page cache page, it is returned with an increased refcount.
1519 *
1520 * If the slot holds a shadow entry of a previously evicted page, or a
1521 * swap entry from shmem/tmpfs, it is returned.
1522 *
1523 * Return: the found page or shadow entry, %NULL if nothing is found.
1524 */
1525struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1526{
1527	XA_STATE(xas, &mapping->i_pages, offset);
1528	struct page *page;
1529
1530	rcu_read_lock();
1531repeat:
1532	xas_reset(&xas);
1533	page = xas_load(&xas);
1534	if (xas_retry(&xas, page))
1535		goto repeat;
1536	/*
1537	 * A shadow entry of a recently evicted page, or a swap entry from
1538	 * shmem/tmpfs.  Return it without attempting to raise page count.
1539	 */
1540	if (!page || xa_is_value(page))
1541		goto out;
1542
1543	if (!page_cache_get_speculative(page))
1544		goto repeat;
1545
1546	/*
1547	 * Has the page moved or been split?
1548	 * This is part of the lockless pagecache protocol. See
1549	 * include/linux/pagemap.h for details.
1550	 */
1551	if (unlikely(page != xas_reload(&xas))) {
1552		put_page(page);
1553		goto repeat;
1554	}
1555	page = find_subpage(page, offset);
1556out:
1557	rcu_read_unlock();
1558
1559	return page;
1560}
1561EXPORT_SYMBOL(find_get_entry);
1562
1563/**
1564 * find_lock_entry - locate, pin and lock a page cache entry
1565 * @mapping: the address_space to search
1566 * @offset: the page cache index
1567 *
1568 * Looks up the page cache slot at @mapping & @offset.  If there is a
1569 * page cache page, it is returned locked and with an increased
1570 * refcount.
1571 *
1572 * If the slot holds a shadow entry of a previously evicted page, or a
1573 * swap entry from shmem/tmpfs, it is returned.
1574 *
1575 * find_lock_entry() may sleep.
1576 *
1577 * Return: the found page or shadow entry, %NULL if nothing is found.
1578 */
1579struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1580{
1581	struct page *page;
1582
1583repeat:
1584	page = find_get_entry(mapping, offset);
1585	if (page && !xa_is_value(page)) {
1586		lock_page(page);
1587		/* Has the page been truncated? */
1588		if (unlikely(page_mapping(page) != mapping)) {
1589			unlock_page(page);
1590			put_page(page);
1591			goto repeat;
1592		}
1593		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1594	}
1595	return page;
1596}
1597EXPORT_SYMBOL(find_lock_entry);
1598
1599/**
1600 * pagecache_get_page - find and get a page reference
1601 * @mapping: the address_space to search
1602 * @offset: the page index
1603 * @fgp_flags: PCG flags
1604 * @gfp_mask: gfp mask to use for the page cache data page allocation
1605 *
1606 * Looks up the page cache slot at @mapping & @offset.
1607 *
1608 * PCG flags modify how the page is returned.
1609 *
1610 * @fgp_flags can be:
1611 *
1612 * - FGP_ACCESSED: the page will be marked accessed
1613 * - FGP_LOCK: Page is return locked
1614 * - FGP_CREAT: If page is not present then a new page is allocated using
1615 *   @gfp_mask and added to the page cache and the VM's LRU
1616 *   list. The page is returned locked and with an increased
1617 *   refcount.
1618 * - FGP_FOR_MMAP: Similar to FGP_CREAT, only we want to allow the caller to do
1619 *   its own locking dance if the page is already in cache, or unlock the page
1620 *   before returning if we had to add the page to pagecache.
1621 *
1622 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1623 * if the GFP flags specified for FGP_CREAT are atomic.
1624 *
1625 * If there is a page cache page, it is returned with an increased refcount.
1626 *
1627 * Return: the found page or %NULL otherwise.
1628 */
1629struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1630	int fgp_flags, gfp_t gfp_mask)
1631{
1632	struct page *page;
1633
1634repeat:
1635	page = find_get_entry(mapping, offset);
1636	if (xa_is_value(page))
1637		page = NULL;
1638	if (!page)
1639		goto no_page;
1640
1641	if (fgp_flags & FGP_LOCK) {
1642		if (fgp_flags & FGP_NOWAIT) {
1643			if (!trylock_page(page)) {
1644				put_page(page);
1645				return NULL;
1646			}
1647		} else {
1648			lock_page(page);
1649		}
1650
1651		/* Has the page been truncated? */
1652		if (unlikely(compound_head(page)->mapping != mapping)) {
1653			unlock_page(page);
1654			put_page(page);
1655			goto repeat;
1656		}
1657		VM_BUG_ON_PAGE(page->index != offset, page);
1658	}
1659
1660	if (fgp_flags & FGP_ACCESSED)
1661		mark_page_accessed(page);
 
 
 
 
 
1662
1663no_page:
1664	if (!page && (fgp_flags & FGP_CREAT)) {
1665		int err;
1666		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1667			gfp_mask |= __GFP_WRITE;
1668		if (fgp_flags & FGP_NOFS)
1669			gfp_mask &= ~__GFP_FS;
1670
1671		page = __page_cache_alloc(gfp_mask);
1672		if (!page)
1673			return NULL;
1674
1675		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1676			fgp_flags |= FGP_LOCK;
1677
1678		/* Init accessed so avoid atomic mark_page_accessed later */
1679		if (fgp_flags & FGP_ACCESSED)
1680			__SetPageReferenced(page);
1681
1682		err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
1683		if (unlikely(err)) {
1684			put_page(page);
1685			page = NULL;
1686			if (err == -EEXIST)
1687				goto repeat;
1688		}
1689
1690		/*
1691		 * add_to_page_cache_lru locks the page, and for mmap we expect
1692		 * an unlocked page.
1693		 */
1694		if (page && (fgp_flags & FGP_FOR_MMAP))
1695			unlock_page(page);
1696	}
1697
1698	return page;
1699}
1700EXPORT_SYMBOL(pagecache_get_page);
1701
1702/**
1703 * find_get_entries - gang pagecache lookup
1704 * @mapping:	The address_space to search
1705 * @start:	The starting page cache index
1706 * @nr_entries:	The maximum number of entries
1707 * @entries:	Where the resulting entries are placed
1708 * @indices:	The cache indices corresponding to the entries in @entries
1709 *
1710 * find_get_entries() will search for and return a group of up to
1711 * @nr_entries entries in the mapping.  The entries are placed at
1712 * @entries.  find_get_entries() takes a reference against any actual
1713 * pages it returns.
1714 *
1715 * The search returns a group of mapping-contiguous page cache entries
1716 * with ascending indexes.  There may be holes in the indices due to
1717 * not-present pages.
1718 *
1719 * Any shadow entries of evicted pages, or swap entries from
1720 * shmem/tmpfs, are included in the returned array.
1721 *
 
 
 
 
 
1722 * Return: the number of pages and shadow entries which were found.
1723 */
1724unsigned find_get_entries(struct address_space *mapping,
1725			  pgoff_t start, unsigned int nr_entries,
1726			  struct page **entries, pgoff_t *indices)
1727{
1728	XA_STATE(xas, &mapping->i_pages, start);
1729	struct page *page;
1730	unsigned int ret = 0;
1731
1732	if (!nr_entries)
1733		return 0;
1734
1735	rcu_read_lock();
1736	xas_for_each(&xas, page, ULONG_MAX) {
1737		if (xas_retry(&xas, page))
1738			continue;
1739		/*
1740		 * A shadow entry of a recently evicted page, a swap
1741		 * entry from shmem/tmpfs or a DAX entry.  Return it
1742		 * without attempting to raise page count.
1743		 */
1744		if (xa_is_value(page))
1745			goto export;
1746
1747		if (!page_cache_get_speculative(page))
1748			goto retry;
1749
1750		/* Has the page moved or been split? */
1751		if (unlikely(page != xas_reload(&xas)))
1752			goto put_page;
1753		page = find_subpage(page, xas.xa_index);
1754
 
 
 
 
 
 
 
 
1755export:
1756		indices[ret] = xas.xa_index;
1757		entries[ret] = page;
1758		if (++ret == nr_entries)
1759			break;
1760		continue;
1761put_page:
1762		put_page(page);
1763retry:
1764		xas_reset(&xas);
1765	}
1766	rcu_read_unlock();
1767	return ret;
1768}
1769
1770/**
1771 * find_get_pages_range - gang pagecache lookup
1772 * @mapping:	The address_space to search
1773 * @start:	The starting page index
1774 * @end:	The final page index (inclusive)
1775 * @nr_pages:	The maximum number of pages
1776 * @pages:	Where the resulting pages are placed
1777 *
1778 * find_get_pages_range() will search for and return a group of up to @nr_pages
1779 * pages in the mapping starting at index @start and up to index @end
1780 * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
1781 * a reference against the returned pages.
1782 *
1783 * The search returns a group of mapping-contiguous pages with ascending
1784 * indexes.  There may be holes in the indices due to not-present pages.
1785 * We also update @start to index the next page for the traversal.
1786 *
1787 * Return: the number of pages which were found. If this number is
1788 * smaller than @nr_pages, the end of specified range has been
1789 * reached.
1790 */
1791unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1792			      pgoff_t end, unsigned int nr_pages,
1793			      struct page **pages)
1794{
1795	XA_STATE(xas, &mapping->i_pages, *start);
1796	struct page *page;
1797	unsigned ret = 0;
1798
1799	if (unlikely(!nr_pages))
1800		return 0;
1801
1802	rcu_read_lock();
1803	xas_for_each(&xas, page, end) {
1804		if (xas_retry(&xas, page))
1805			continue;
1806		/* Skip over shadow, swap and DAX entries */
1807		if (xa_is_value(page))
1808			continue;
1809
1810		if (!page_cache_get_speculative(page))
1811			goto retry;
1812
1813		/* Has the page moved or been split? */
1814		if (unlikely(page != xas_reload(&xas)))
1815			goto put_page;
1816
1817		pages[ret] = find_subpage(page, xas.xa_index);
1818		if (++ret == nr_pages) {
1819			*start = xas.xa_index + 1;
1820			goto out;
1821		}
1822		continue;
1823put_page:
1824		put_page(page);
1825retry:
1826		xas_reset(&xas);
1827	}
1828
1829	/*
1830	 * We come here when there is no page beyond @end. We take care to not
1831	 * overflow the index @start as it confuses some of the callers. This
1832	 * breaks the iteration when there is a page at index -1 but that is
1833	 * already broken anyway.
1834	 */
1835	if (end == (pgoff_t)-1)
1836		*start = (pgoff_t)-1;
1837	else
1838		*start = end + 1;
1839out:
1840	rcu_read_unlock();
1841
1842	return ret;
1843}
1844
1845/**
1846 * find_get_pages_contig - gang contiguous pagecache lookup
1847 * @mapping:	The address_space to search
1848 * @index:	The starting page index
1849 * @nr_pages:	The maximum number of pages
1850 * @pages:	Where the resulting pages are placed
1851 *
1852 * find_get_pages_contig() works exactly like find_get_pages(), except
1853 * that the returned number of pages are guaranteed to be contiguous.
1854 *
1855 * Return: the number of pages which were found.
1856 */
1857unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1858			       unsigned int nr_pages, struct page **pages)
1859{
1860	XA_STATE(xas, &mapping->i_pages, index);
1861	struct page *page;
1862	unsigned int ret = 0;
1863
1864	if (unlikely(!nr_pages))
1865		return 0;
1866
1867	rcu_read_lock();
1868	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1869		if (xas_retry(&xas, page))
1870			continue;
1871		/*
1872		 * If the entry has been swapped out, we can stop looking.
1873		 * No current caller is looking for DAX entries.
1874		 */
1875		if (xa_is_value(page))
1876			break;
1877
1878		if (!page_cache_get_speculative(page))
1879			goto retry;
1880
1881		/* Has the page moved or been split? */
1882		if (unlikely(page != xas_reload(&xas)))
1883			goto put_page;
1884
1885		pages[ret] = find_subpage(page, xas.xa_index);
1886		if (++ret == nr_pages)
1887			break;
1888		continue;
1889put_page:
1890		put_page(page);
1891retry:
1892		xas_reset(&xas);
1893	}
1894	rcu_read_unlock();
1895	return ret;
1896}
1897EXPORT_SYMBOL(find_get_pages_contig);
1898
1899/**
1900 * find_get_pages_range_tag - find and return pages in given range matching @tag
1901 * @mapping:	the address_space to search
1902 * @index:	the starting page index
1903 * @end:	The final page index (inclusive)
1904 * @tag:	the tag index
1905 * @nr_pages:	the maximum number of pages
1906 * @pages:	where the resulting pages are placed
1907 *
1908 * Like find_get_pages, except we only return pages which are tagged with
1909 * @tag.   We update @index to index the next page for the traversal.
1910 *
1911 * Return: the number of pages which were found.
1912 */
1913unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1914			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
1915			struct page **pages)
1916{
1917	XA_STATE(xas, &mapping->i_pages, *index);
1918	struct page *page;
1919	unsigned ret = 0;
1920
1921	if (unlikely(!nr_pages))
1922		return 0;
1923
1924	rcu_read_lock();
1925	xas_for_each_marked(&xas, page, end, tag) {
1926		if (xas_retry(&xas, page))
1927			continue;
1928		/*
1929		 * Shadow entries should never be tagged, but this iteration
1930		 * is lockless so there is a window for page reclaim to evict
1931		 * a page we saw tagged.  Skip over it.
1932		 */
1933		if (xa_is_value(page))
1934			continue;
1935
1936		if (!page_cache_get_speculative(page))
1937			goto retry;
1938
1939		/* Has the page moved or been split? */
1940		if (unlikely(page != xas_reload(&xas)))
1941			goto put_page;
1942
1943		pages[ret] = find_subpage(page, xas.xa_index);
1944		if (++ret == nr_pages) {
1945			*index = xas.xa_index + 1;
1946			goto out;
1947		}
1948		continue;
1949put_page:
1950		put_page(page);
1951retry:
1952		xas_reset(&xas);
1953	}
1954
1955	/*
1956	 * We come here when we got to @end. We take care to not overflow the
1957	 * index @index as it confuses some of the callers. This breaks the
1958	 * iteration when there is a page at index -1 but that is already
1959	 * broken anyway.
1960	 */
1961	if (end == (pgoff_t)-1)
1962		*index = (pgoff_t)-1;
1963	else
1964		*index = end + 1;
1965out:
1966	rcu_read_unlock();
1967
1968	return ret;
1969}
1970EXPORT_SYMBOL(find_get_pages_range_tag);
1971
1972/*
1973 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1974 * a _large_ part of the i/o request. Imagine the worst scenario:
1975 *
1976 *      ---R__________________________________________B__________
1977 *         ^ reading here                             ^ bad block(assume 4k)
1978 *
1979 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1980 * => failing the whole request => read(R) => read(R+1) =>
1981 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1982 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1983 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1984 *
1985 * It is going insane. Fix it by quickly scaling down the readahead size.
1986 */
1987static void shrink_readahead_size_eio(struct file *filp,
1988					struct file_ra_state *ra)
1989{
1990	ra->ra_pages /= 4;
1991}
1992
1993/**
1994 * generic_file_buffered_read - generic file read routine
1995 * @iocb:	the iocb to read
1996 * @iter:	data destination
1997 * @written:	already copied
1998 *
1999 * This is a generic file read routine, and uses the
2000 * mapping->a_ops->readpage() function for the actual low-level stuff.
2001 *
2002 * This is really ugly. But the goto's actually try to clarify some
2003 * of the logic when it comes to error handling etc.
2004 *
2005 * Return:
2006 * * total number of bytes copied, including those the were already @written
2007 * * negative error code if nothing was copied
2008 */
2009static ssize_t generic_file_buffered_read(struct kiocb *iocb,
2010		struct iov_iter *iter, ssize_t written)
2011{
2012	struct file *filp = iocb->ki_filp;
2013	struct address_space *mapping = filp->f_mapping;
2014	struct inode *inode = mapping->host;
2015	struct file_ra_state *ra = &filp->f_ra;
2016	loff_t *ppos = &iocb->ki_pos;
2017	pgoff_t index;
2018	pgoff_t last_index;
2019	pgoff_t prev_index;
2020	unsigned long offset;      /* offset into pagecache page */
2021	unsigned int prev_offset;
2022	int error = 0;
2023
2024	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2025		return 0;
2026	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2027
2028	index = *ppos >> PAGE_SHIFT;
2029	prev_index = ra->prev_pos >> PAGE_SHIFT;
2030	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2031	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2032	offset = *ppos & ~PAGE_MASK;
2033
2034	for (;;) {
2035		struct page *page;
2036		pgoff_t end_index;
2037		loff_t isize;
2038		unsigned long nr, ret;
2039
2040		cond_resched();
2041find_page:
2042		if (fatal_signal_pending(current)) {
2043			error = -EINTR;
2044			goto out;
2045		}
2046
2047		page = find_get_page(mapping, index);
2048		if (!page) {
2049			if (iocb->ki_flags & IOCB_NOWAIT)
2050				goto would_block;
2051			page_cache_sync_readahead(mapping,
2052					ra, filp,
2053					index, last_index - index);
2054			page = find_get_page(mapping, index);
2055			if (unlikely(page == NULL))
2056				goto no_cached_page;
2057		}
2058		if (PageReadahead(page)) {
 
 
 
 
2059			page_cache_async_readahead(mapping,
2060					ra, filp, page,
2061					index, last_index - index);
2062		}
2063		if (!PageUptodate(page)) {
2064			if (iocb->ki_flags & IOCB_NOWAIT) {
2065				put_page(page);
2066				goto would_block;
2067			}
2068
2069			/*
2070			 * See comment in do_read_cache_page on why
2071			 * wait_on_page_locked is used to avoid unnecessarily
2072			 * serialisations and why it's safe.
2073			 */
2074			error = wait_on_page_locked_killable(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
2075			if (unlikely(error))
2076				goto readpage_error;
2077			if (PageUptodate(page))
2078				goto page_ok;
2079
2080			if (inode->i_blkbits == PAGE_SHIFT ||
2081					!mapping->a_ops->is_partially_uptodate)
2082				goto page_not_up_to_date;
2083			/* pipes can't handle partially uptodate pages */
2084			if (unlikely(iov_iter_is_pipe(iter)))
2085				goto page_not_up_to_date;
2086			if (!trylock_page(page))
2087				goto page_not_up_to_date;
2088			/* Did it get truncated before we got the lock? */
2089			if (!page->mapping)
2090				goto page_not_up_to_date_locked;
2091			if (!mapping->a_ops->is_partially_uptodate(page,
2092							offset, iter->count))
2093				goto page_not_up_to_date_locked;
2094			unlock_page(page);
2095		}
2096page_ok:
2097		/*
2098		 * i_size must be checked after we know the page is Uptodate.
2099		 *
2100		 * Checking i_size after the check allows us to calculate
2101		 * the correct value for "nr", which means the zero-filled
2102		 * part of the page is not copied back to userspace (unless
2103		 * another truncate extends the file - this is desired though).
2104		 */
2105
2106		isize = i_size_read(inode);
2107		end_index = (isize - 1) >> PAGE_SHIFT;
2108		if (unlikely(!isize || index > end_index)) {
2109			put_page(page);
2110			goto out;
2111		}
2112
2113		/* nr is the maximum number of bytes to copy from this page */
2114		nr = PAGE_SIZE;
2115		if (index == end_index) {
2116			nr = ((isize - 1) & ~PAGE_MASK) + 1;
2117			if (nr <= offset) {
2118				put_page(page);
2119				goto out;
2120			}
2121		}
2122		nr = nr - offset;
2123
2124		/* If users can be writing to this page using arbitrary
2125		 * virtual addresses, take care about potential aliasing
2126		 * before reading the page on the kernel side.
2127		 */
2128		if (mapping_writably_mapped(mapping))
2129			flush_dcache_page(page);
2130
2131		/*
2132		 * When a sequential read accesses a page several times,
2133		 * only mark it as accessed the first time.
2134		 */
2135		if (prev_index != index || offset != prev_offset)
2136			mark_page_accessed(page);
2137		prev_index = index;
2138
2139		/*
2140		 * Ok, we have the page, and it's up-to-date, so
2141		 * now we can copy it to user space...
2142		 */
2143
2144		ret = copy_page_to_iter(page, offset, nr, iter);
2145		offset += ret;
2146		index += offset >> PAGE_SHIFT;
2147		offset &= ~PAGE_MASK;
2148		prev_offset = offset;
2149
2150		put_page(page);
2151		written += ret;
2152		if (!iov_iter_count(iter))
2153			goto out;
2154		if (ret < nr) {
2155			error = -EFAULT;
2156			goto out;
2157		}
2158		continue;
2159
2160page_not_up_to_date:
2161		/* Get exclusive access to the page ... */
2162		error = lock_page_killable(page);
 
 
 
2163		if (unlikely(error))
2164			goto readpage_error;
2165
2166page_not_up_to_date_locked:
2167		/* Did it get truncated before we got the lock? */
2168		if (!page->mapping) {
2169			unlock_page(page);
2170			put_page(page);
2171			continue;
2172		}
2173
2174		/* Did somebody else fill it already? */
2175		if (PageUptodate(page)) {
2176			unlock_page(page);
2177			goto page_ok;
2178		}
2179
2180readpage:
 
 
 
 
 
2181		/*
2182		 * A previous I/O error may have been due to temporary
2183		 * failures, eg. multipath errors.
2184		 * PG_error will be set again if readpage fails.
2185		 */
2186		ClearPageError(page);
2187		/* Start the actual read. The read will unlock the page. */
2188		error = mapping->a_ops->readpage(filp, page);
2189
2190		if (unlikely(error)) {
2191			if (error == AOP_TRUNCATED_PAGE) {
2192				put_page(page);
2193				error = 0;
2194				goto find_page;
2195			}
2196			goto readpage_error;
2197		}
2198
2199		if (!PageUptodate(page)) {
2200			error = lock_page_killable(page);
 
 
 
 
2201			if (unlikely(error))
2202				goto readpage_error;
2203			if (!PageUptodate(page)) {
2204				if (page->mapping == NULL) {
2205					/*
2206					 * invalidate_mapping_pages got it
2207					 */
2208					unlock_page(page);
2209					put_page(page);
2210					goto find_page;
2211				}
2212				unlock_page(page);
2213				shrink_readahead_size_eio(filp, ra);
2214				error = -EIO;
2215				goto readpage_error;
2216			}
2217			unlock_page(page);
2218		}
2219
2220		goto page_ok;
2221
2222readpage_error:
2223		/* UHHUH! A synchronous read error occurred. Report it */
2224		put_page(page);
2225		goto out;
2226
2227no_cached_page:
2228		/*
2229		 * Ok, it wasn't cached, so we need to create a new
2230		 * page..
2231		 */
2232		page = page_cache_alloc(mapping);
2233		if (!page) {
2234			error = -ENOMEM;
2235			goto out;
2236		}
2237		error = add_to_page_cache_lru(page, mapping, index,
2238				mapping_gfp_constraint(mapping, GFP_KERNEL));
2239		if (error) {
2240			put_page(page);
2241			if (error == -EEXIST) {
2242				error = 0;
2243				goto find_page;
2244			}
2245			goto out;
2246		}
2247		goto readpage;
2248	}
2249
2250would_block:
2251	error = -EAGAIN;
2252out:
2253	ra->prev_pos = prev_index;
2254	ra->prev_pos <<= PAGE_SHIFT;
2255	ra->prev_pos |= prev_offset;
2256
2257	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2258	file_accessed(filp);
2259	return written ? written : error;
2260}
 
2261
2262/**
2263 * generic_file_read_iter - generic filesystem read routine
2264 * @iocb:	kernel I/O control block
2265 * @iter:	destination for the data read
2266 *
2267 * This is the "read_iter()" routine for all filesystems
2268 * that can use the page cache directly.
 
 
 
 
 
 
 
 
 
 
2269 * Return:
2270 * * number of bytes copied, even for partial reads
2271 * * negative error code if nothing was read
2272 */
2273ssize_t
2274generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2275{
2276	size_t count = iov_iter_count(iter);
2277	ssize_t retval = 0;
2278
2279	if (!count)
2280		goto out; /* skip atime */
2281
2282	if (iocb->ki_flags & IOCB_DIRECT) {
2283		struct file *file = iocb->ki_filp;
2284		struct address_space *mapping = file->f_mapping;
2285		struct inode *inode = mapping->host;
2286		loff_t size;
2287
2288		size = i_size_read(inode);
2289		if (iocb->ki_flags & IOCB_NOWAIT) {
2290			if (filemap_range_has_page(mapping, iocb->ki_pos,
2291						   iocb->ki_pos + count - 1))
2292				return -EAGAIN;
2293		} else {
2294			retval = filemap_write_and_wait_range(mapping,
2295						iocb->ki_pos,
2296					        iocb->ki_pos + count - 1);
2297			if (retval < 0)
2298				goto out;
2299		}
2300
2301		file_accessed(file);
2302
2303		retval = mapping->a_ops->direct_IO(iocb, iter);
2304		if (retval >= 0) {
2305			iocb->ki_pos += retval;
2306			count -= retval;
2307		}
2308		iov_iter_revert(iter, count - iov_iter_count(iter));
2309
2310		/*
2311		 * Btrfs can have a short DIO read if we encounter
2312		 * compressed extents, so if there was an error, or if
2313		 * we've already read everything we wanted to, or if
2314		 * there was a short read because we hit EOF, go ahead
2315		 * and return.  Otherwise fallthrough to buffered io for
2316		 * the rest of the read.  Buffered reads will not work for
2317		 * DAX files, so don't bother trying.
2318		 */
2319		if (retval < 0 || !count || iocb->ki_pos >= size ||
2320		    IS_DAX(inode))
2321			goto out;
2322	}
2323
2324	retval = generic_file_buffered_read(iocb, iter, retval);
2325out:
2326	return retval;
2327}
2328EXPORT_SYMBOL(generic_file_read_iter);
2329
2330#ifdef CONFIG_MMU
2331#define MMAP_LOTSAMISS  (100)
2332static struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
2333					     struct file *fpin)
2334{
2335	int flags = vmf->flags;
2336
2337	if (fpin)
2338		return fpin;
2339
2340	/*
2341	 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
2342	 * anything, so we only pin the file and drop the mmap_sem if only
2343	 * FAULT_FLAG_ALLOW_RETRY is set.
2344	 */
2345	if ((flags & (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT)) ==
2346	    FAULT_FLAG_ALLOW_RETRY) {
2347		fpin = get_file(vmf->vma->vm_file);
2348		up_read(&vmf->vma->vm_mm->mmap_sem);
2349	}
2350	return fpin;
2351}
2352
2353/*
2354 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem
2355 * @vmf - the vm_fault for this fault.
2356 * @page - the page to lock.
2357 * @fpin - the pointer to the file we may pin (or is already pinned).
2358 *
2359 * This works similar to lock_page_or_retry in that it can drop the mmap_sem.
2360 * It differs in that it actually returns the page locked if it returns 1 and 0
2361 * if it couldn't lock the page.  If we did have to drop the mmap_sem then fpin
2362 * will point to the pinned file and needs to be fput()'ed at a later point.
2363 */
2364static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2365				     struct file **fpin)
2366{
2367	if (trylock_page(page))
2368		return 1;
2369
2370	/*
2371	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2372	 * the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT
2373	 * is supposed to work. We have way too many special cases..
2374	 */
2375	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2376		return 0;
2377
2378	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2379	if (vmf->flags & FAULT_FLAG_KILLABLE) {
2380		if (__lock_page_killable(page)) {
2381			/*
2382			 * We didn't have the right flags to drop the mmap_sem,
2383			 * but all fault_handlers only check for fatal signals
2384			 * if we return VM_FAULT_RETRY, so we need to drop the
2385			 * mmap_sem here and return 0 if we don't have a fpin.
2386			 */
2387			if (*fpin == NULL)
2388				up_read(&vmf->vma->vm_mm->mmap_sem);
2389			return 0;
2390		}
2391	} else
2392		__lock_page(page);
2393	return 1;
2394}
2395
2396
2397/*
2398 * Synchronous readahead happens when we don't even find a page in the page
2399 * cache at all.  We don't want to perform IO under the mmap sem, so if we have
2400 * to drop the mmap sem we return the file that was pinned in order for us to do
2401 * that.  If we didn't pin a file then we return NULL.  The file that is
2402 * returned needs to be fput()'ed when we're done with it.
2403 */
2404static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2405{
2406	struct file *file = vmf->vma->vm_file;
2407	struct file_ra_state *ra = &file->f_ra;
2408	struct address_space *mapping = file->f_mapping;
2409	struct file *fpin = NULL;
2410	pgoff_t offset = vmf->pgoff;
 
2411
2412	/* If we don't want any read-ahead, don't bother */
2413	if (vmf->vma->vm_flags & VM_RAND_READ)
2414		return fpin;
2415	if (!ra->ra_pages)
2416		return fpin;
2417
2418	if (vmf->vma->vm_flags & VM_SEQ_READ) {
2419		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2420		page_cache_sync_readahead(mapping, ra, file, offset,
2421					  ra->ra_pages);
2422		return fpin;
2423	}
2424
2425	/* Avoid banging the cache line if not needed */
2426	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2427		ra->mmap_miss++;
 
2428
2429	/*
2430	 * Do we miss much more than hit in this file? If so,
2431	 * stop bothering with read-ahead. It will only hurt.
2432	 */
2433	if (ra->mmap_miss > MMAP_LOTSAMISS)
2434		return fpin;
2435
2436	/*
2437	 * mmap read-around
2438	 */
2439	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2440	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2441	ra->size = ra->ra_pages;
2442	ra->async_size = ra->ra_pages / 4;
2443	ra_submit(ra, mapping, file);
2444	return fpin;
2445}
2446
2447/*
2448 * Asynchronous readahead happens when we find the page and PG_readahead,
2449 * so we want to possibly extend the readahead further.  We return the file that
2450 * was pinned if we have to drop the mmap_sem in order to do IO.
2451 */
2452static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2453					    struct page *page)
2454{
2455	struct file *file = vmf->vma->vm_file;
2456	struct file_ra_state *ra = &file->f_ra;
2457	struct address_space *mapping = file->f_mapping;
2458	struct file *fpin = NULL;
 
2459	pgoff_t offset = vmf->pgoff;
2460
2461	/* If we don't want any read-ahead, don't bother */
2462	if (vmf->vma->vm_flags & VM_RAND_READ)
2463		return fpin;
2464	if (ra->mmap_miss > 0)
2465		ra->mmap_miss--;
 
2466	if (PageReadahead(page)) {
2467		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2468		page_cache_async_readahead(mapping, ra, file,
2469					   page, offset, ra->ra_pages);
2470	}
2471	return fpin;
2472}
2473
2474/**
2475 * filemap_fault - read in file data for page fault handling
2476 * @vmf:	struct vm_fault containing details of the fault
2477 *
2478 * filemap_fault() is invoked via the vma operations vector for a
2479 * mapped memory region to read in file data during a page fault.
2480 *
2481 * The goto's are kind of ugly, but this streamlines the normal case of having
2482 * it in the page cache, and handles the special cases reasonably without
2483 * having a lot of duplicated code.
2484 *
2485 * vma->vm_mm->mmap_sem must be held on entry.
2486 *
2487 * If our return value has VM_FAULT_RETRY set, it's because the mmap_sem
2488 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2489 *
2490 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2491 * has not been released.
2492 *
2493 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2494 *
2495 * Return: bitwise-OR of %VM_FAULT_ codes.
2496 */
2497vm_fault_t filemap_fault(struct vm_fault *vmf)
2498{
2499	int error;
2500	struct file *file = vmf->vma->vm_file;
2501	struct file *fpin = NULL;
2502	struct address_space *mapping = file->f_mapping;
2503	struct file_ra_state *ra = &file->f_ra;
2504	struct inode *inode = mapping->host;
2505	pgoff_t offset = vmf->pgoff;
2506	pgoff_t max_off;
2507	struct page *page;
2508	vm_fault_t ret = 0;
2509
2510	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2511	if (unlikely(offset >= max_off))
2512		return VM_FAULT_SIGBUS;
2513
2514	/*
2515	 * Do we have something in the page cache already?
2516	 */
2517	page = find_get_page(mapping, offset);
2518	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2519		/*
2520		 * We found the page, so try async readahead before
2521		 * waiting for the lock.
2522		 */
2523		fpin = do_async_mmap_readahead(vmf, page);
2524	} else if (!page) {
2525		/* No page in the page cache at all */
2526		count_vm_event(PGMAJFAULT);
2527		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2528		ret = VM_FAULT_MAJOR;
2529		fpin = do_sync_mmap_readahead(vmf);
2530retry_find:
2531		page = pagecache_get_page(mapping, offset,
2532					  FGP_CREAT|FGP_FOR_MMAP,
2533					  vmf->gfp_mask);
2534		if (!page) {
2535			if (fpin)
2536				goto out_retry;
2537			return vmf_error(-ENOMEM);
2538		}
2539	}
2540
2541	if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2542		goto out_retry;
2543
2544	/* Did it get truncated? */
2545	if (unlikely(compound_head(page)->mapping != mapping)) {
2546		unlock_page(page);
2547		put_page(page);
2548		goto retry_find;
2549	}
2550	VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
2551
2552	/*
2553	 * We have a locked page in the page cache, now we need to check
2554	 * that it's up-to-date. If not, it is going to be due to an error.
2555	 */
2556	if (unlikely(!PageUptodate(page)))
2557		goto page_not_uptodate;
2558
2559	/*
2560	 * We've made it this far and we had to drop our mmap_sem, now is the
2561	 * time to return to the upper layer and have it re-find the vma and
2562	 * redo the fault.
2563	 */
2564	if (fpin) {
2565		unlock_page(page);
2566		goto out_retry;
2567	}
2568
2569	/*
2570	 * Found the page and have a reference on it.
2571	 * We must recheck i_size under page lock.
2572	 */
2573	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2574	if (unlikely(offset >= max_off)) {
2575		unlock_page(page);
2576		put_page(page);
2577		return VM_FAULT_SIGBUS;
2578	}
2579
2580	vmf->page = page;
2581	return ret | VM_FAULT_LOCKED;
2582
2583page_not_uptodate:
2584	/*
2585	 * Umm, take care of errors if the page isn't up-to-date.
2586	 * Try to re-read it _once_. We do this synchronously,
2587	 * because there really aren't any performance issues here
2588	 * and we need to check for errors.
2589	 */
2590	ClearPageError(page);
2591	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2592	error = mapping->a_ops->readpage(file, page);
2593	if (!error) {
2594		wait_on_page_locked(page);
2595		if (!PageUptodate(page))
2596			error = -EIO;
2597	}
2598	if (fpin)
2599		goto out_retry;
2600	put_page(page);
2601
2602	if (!error || error == AOP_TRUNCATED_PAGE)
2603		goto retry_find;
2604
2605	/* Things didn't work out. Return zero to tell the mm layer so. */
2606	shrink_readahead_size_eio(file, ra);
2607	return VM_FAULT_SIGBUS;
2608
2609out_retry:
2610	/*
2611	 * We dropped the mmap_sem, we need to return to the fault handler to
2612	 * re-find the vma and come back and find our hopefully still populated
2613	 * page.
2614	 */
2615	if (page)
2616		put_page(page);
2617	if (fpin)
2618		fput(fpin);
2619	return ret | VM_FAULT_RETRY;
2620}
2621EXPORT_SYMBOL(filemap_fault);
2622
2623void filemap_map_pages(struct vm_fault *vmf,
2624		pgoff_t start_pgoff, pgoff_t end_pgoff)
2625{
2626	struct file *file = vmf->vma->vm_file;
2627	struct address_space *mapping = file->f_mapping;
2628	pgoff_t last_pgoff = start_pgoff;
2629	unsigned long max_idx;
2630	XA_STATE(xas, &mapping->i_pages, start_pgoff);
2631	struct page *page;
 
2632
2633	rcu_read_lock();
2634	xas_for_each(&xas, page, end_pgoff) {
2635		if (xas_retry(&xas, page))
2636			continue;
2637		if (xa_is_value(page))
2638			goto next;
2639
2640		/*
2641		 * Check for a locked page first, as a speculative
2642		 * reference may adversely influence page migration.
2643		 */
2644		if (PageLocked(page))
2645			goto next;
2646		if (!page_cache_get_speculative(page))
2647			goto next;
2648
2649		/* Has the page moved or been split? */
2650		if (unlikely(page != xas_reload(&xas)))
2651			goto skip;
2652		page = find_subpage(page, xas.xa_index);
2653
2654		if (!PageUptodate(page) ||
2655				PageReadahead(page) ||
2656				PageHWPoison(page))
2657			goto skip;
2658		if (!trylock_page(page))
2659			goto skip;
2660
2661		if (page->mapping != mapping || !PageUptodate(page))
2662			goto unlock;
2663
2664		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2665		if (page->index >= max_idx)
2666			goto unlock;
2667
2668		if (file->f_ra.mmap_miss > 0)
2669			file->f_ra.mmap_miss--;
2670
2671		vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
2672		if (vmf->pte)
2673			vmf->pte += xas.xa_index - last_pgoff;
2674		last_pgoff = xas.xa_index;
2675		if (alloc_set_pte(vmf, NULL, page))
2676			goto unlock;
2677		unlock_page(page);
2678		goto next;
2679unlock:
2680		unlock_page(page);
2681skip:
2682		put_page(page);
2683next:
2684		/* Huge page is mapped? No need to proceed. */
2685		if (pmd_trans_huge(*vmf->pmd))
2686			break;
2687	}
2688	rcu_read_unlock();
 
2689}
2690EXPORT_SYMBOL(filemap_map_pages);
2691
2692vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2693{
2694	struct page *page = vmf->page;
2695	struct inode *inode = file_inode(vmf->vma->vm_file);
2696	vm_fault_t ret = VM_FAULT_LOCKED;
2697
2698	sb_start_pagefault(inode->i_sb);
2699	file_update_time(vmf->vma->vm_file);
2700	lock_page(page);
2701	if (page->mapping != inode->i_mapping) {
2702		unlock_page(page);
2703		ret = VM_FAULT_NOPAGE;
2704		goto out;
2705	}
2706	/*
2707	 * We mark the page dirty already here so that when freeze is in
2708	 * progress, we are guaranteed that writeback during freezing will
2709	 * see the dirty page and writeprotect it again.
2710	 */
2711	set_page_dirty(page);
2712	wait_for_stable_page(page);
2713out:
2714	sb_end_pagefault(inode->i_sb);
2715	return ret;
2716}
2717
2718const struct vm_operations_struct generic_file_vm_ops = {
2719	.fault		= filemap_fault,
2720	.map_pages	= filemap_map_pages,
2721	.page_mkwrite	= filemap_page_mkwrite,
2722};
2723
2724/* This is used for a general mmap of a disk file */
2725
2726int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2727{
2728	struct address_space *mapping = file->f_mapping;
2729
2730	if (!mapping->a_ops->readpage)
2731		return -ENOEXEC;
2732	file_accessed(file);
2733	vma->vm_ops = &generic_file_vm_ops;
2734	return 0;
2735}
2736
2737/*
2738 * This is for filesystems which do not implement ->writepage.
2739 */
2740int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2741{
2742	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2743		return -EINVAL;
2744	return generic_file_mmap(file, vma);
2745}
2746#else
2747vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2748{
2749	return VM_FAULT_SIGBUS;
2750}
2751int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2752{
2753	return -ENOSYS;
2754}
2755int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2756{
2757	return -ENOSYS;
2758}
2759#endif /* CONFIG_MMU */
2760
2761EXPORT_SYMBOL(filemap_page_mkwrite);
2762EXPORT_SYMBOL(generic_file_mmap);
2763EXPORT_SYMBOL(generic_file_readonly_mmap);
2764
2765static struct page *wait_on_page_read(struct page *page)
2766{
2767	if (!IS_ERR(page)) {
2768		wait_on_page_locked(page);
2769		if (!PageUptodate(page)) {
2770			put_page(page);
2771			page = ERR_PTR(-EIO);
2772		}
2773	}
2774	return page;
2775}
2776
2777static struct page *do_read_cache_page(struct address_space *mapping,
2778				pgoff_t index,
2779				int (*filler)(void *, struct page *),
2780				void *data,
2781				gfp_t gfp)
2782{
2783	struct page *page;
2784	int err;
2785repeat:
2786	page = find_get_page(mapping, index);
2787	if (!page) {
2788		page = __page_cache_alloc(gfp);
2789		if (!page)
2790			return ERR_PTR(-ENOMEM);
2791		err = add_to_page_cache_lru(page, mapping, index, gfp);
2792		if (unlikely(err)) {
2793			put_page(page);
2794			if (err == -EEXIST)
2795				goto repeat;
2796			/* Presumably ENOMEM for xarray node */
2797			return ERR_PTR(err);
2798		}
2799
2800filler:
2801		if (filler)
2802			err = filler(data, page);
2803		else
2804			err = mapping->a_ops->readpage(data, page);
2805
2806		if (err < 0) {
2807			put_page(page);
2808			return ERR_PTR(err);
2809		}
2810
2811		page = wait_on_page_read(page);
2812		if (IS_ERR(page))
2813			return page;
2814		goto out;
2815	}
2816	if (PageUptodate(page))
2817		goto out;
2818
2819	/*
2820	 * Page is not up to date and may be locked due one of the following
2821	 * case a: Page is being filled and the page lock is held
2822	 * case b: Read/write error clearing the page uptodate status
2823	 * case c: Truncation in progress (page locked)
2824	 * case d: Reclaim in progress
2825	 *
2826	 * Case a, the page will be up to date when the page is unlocked.
2827	 *    There is no need to serialise on the page lock here as the page
2828	 *    is pinned so the lock gives no additional protection. Even if the
2829	 *    the page is truncated, the data is still valid if PageUptodate as
2830	 *    it's a race vs truncate race.
2831	 * Case b, the page will not be up to date
2832	 * Case c, the page may be truncated but in itself, the data may still
2833	 *    be valid after IO completes as it's a read vs truncate race. The
2834	 *    operation must restart if the page is not uptodate on unlock but
2835	 *    otherwise serialising on page lock to stabilise the mapping gives
2836	 *    no additional guarantees to the caller as the page lock is
2837	 *    released before return.
2838	 * Case d, similar to truncation. If reclaim holds the page lock, it
2839	 *    will be a race with remove_mapping that determines if the mapping
2840	 *    is valid on unlock but otherwise the data is valid and there is
2841	 *    no need to serialise with page lock.
2842	 *
2843	 * As the page lock gives no additional guarantee, we optimistically
2844	 * wait on the page to be unlocked and check if it's up to date and
2845	 * use the page if it is. Otherwise, the page lock is required to
2846	 * distinguish between the different cases. The motivation is that we
2847	 * avoid spurious serialisations and wakeups when multiple processes
2848	 * wait on the same page for IO to complete.
2849	 */
2850	wait_on_page_locked(page);
2851	if (PageUptodate(page))
2852		goto out;
2853
2854	/* Distinguish between all the cases under the safety of the lock */
2855	lock_page(page);
2856
2857	/* Case c or d, restart the operation */
2858	if (!page->mapping) {
2859		unlock_page(page);
2860		put_page(page);
2861		goto repeat;
2862	}
2863
2864	/* Someone else locked and filled the page in a very small window */
2865	if (PageUptodate(page)) {
2866		unlock_page(page);
2867		goto out;
2868	}
 
 
 
 
 
 
 
 
2869	goto filler;
2870
2871out:
2872	mark_page_accessed(page);
2873	return page;
2874}
2875
2876/**
2877 * read_cache_page - read into page cache, fill it if needed
2878 * @mapping:	the page's address_space
2879 * @index:	the page index
2880 * @filler:	function to perform the read
2881 * @data:	first arg to filler(data, page) function, often left as NULL
2882 *
2883 * Read into the page cache. If a page already exists, and PageUptodate() is
2884 * not set, try to fill the page and wait for it to become unlocked.
2885 *
2886 * If the page does not get brought uptodate, return -EIO.
2887 *
2888 * Return: up to date page on success, ERR_PTR() on failure.
2889 */
2890struct page *read_cache_page(struct address_space *mapping,
2891				pgoff_t index,
2892				int (*filler)(void *, struct page *),
2893				void *data)
2894{
2895	return do_read_cache_page(mapping, index, filler, data,
2896			mapping_gfp_mask(mapping));
2897}
2898EXPORT_SYMBOL(read_cache_page);
2899
2900/**
2901 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2902 * @mapping:	the page's address_space
2903 * @index:	the page index
2904 * @gfp:	the page allocator flags to use if allocating
2905 *
2906 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2907 * any new page allocations done using the specified allocation flags.
2908 *
2909 * If the page does not get brought uptodate, return -EIO.
2910 *
2911 * Return: up to date page on success, ERR_PTR() on failure.
2912 */
2913struct page *read_cache_page_gfp(struct address_space *mapping,
2914				pgoff_t index,
2915				gfp_t gfp)
2916{
2917	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
2918}
2919EXPORT_SYMBOL(read_cache_page_gfp);
2920
2921/*
2922 * Don't operate on ranges the page cache doesn't support, and don't exceed the
2923 * LFS limits.  If pos is under the limit it becomes a short access.  If it
2924 * exceeds the limit we return -EFBIG.
2925 */
2926static int generic_write_check_limits(struct file *file, loff_t pos,
2927				      loff_t *count)
2928{
2929	struct inode *inode = file->f_mapping->host;
2930	loff_t max_size = inode->i_sb->s_maxbytes;
2931	loff_t limit = rlimit(RLIMIT_FSIZE);
2932
2933	if (limit != RLIM_INFINITY) {
2934		if (pos >= limit) {
2935			send_sig(SIGXFSZ, current, 0);
2936			return -EFBIG;
2937		}
2938		*count = min(*count, limit - pos);
2939	}
2940
2941	if (!(file->f_flags & O_LARGEFILE))
2942		max_size = MAX_NON_LFS;
2943
2944	if (unlikely(pos >= max_size))
2945		return -EFBIG;
2946
2947	*count = min(*count, max_size - pos);
2948
2949	return 0;
2950}
2951
2952/*
2953 * Performs necessary checks before doing a write
2954 *
2955 * Can adjust writing position or amount of bytes to write.
2956 * Returns appropriate error code that caller should return or
2957 * zero in case that write should be allowed.
2958 */
2959inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2960{
2961	struct file *file = iocb->ki_filp;
2962	struct inode *inode = file->f_mapping->host;
2963	loff_t count;
2964	int ret;
2965
2966	if (IS_SWAPFILE(inode))
2967		return -ETXTBSY;
2968
2969	if (!iov_iter_count(from))
2970		return 0;
2971
2972	/* FIXME: this is for backwards compatibility with 2.4 */
2973	if (iocb->ki_flags & IOCB_APPEND)
2974		iocb->ki_pos = i_size_read(inode);
2975
2976	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2977		return -EINVAL;
2978
2979	count = iov_iter_count(from);
2980	ret = generic_write_check_limits(file, iocb->ki_pos, &count);
2981	if (ret)
2982		return ret;
2983
2984	iov_iter_truncate(from, count);
2985	return iov_iter_count(from);
2986}
2987EXPORT_SYMBOL(generic_write_checks);
2988
2989/*
2990 * Performs necessary checks before doing a clone.
2991 *
2992 * Can adjust amount of bytes to clone via @req_count argument.
2993 * Returns appropriate error code that caller should return or
2994 * zero in case the clone should be allowed.
2995 */
2996int generic_remap_checks(struct file *file_in, loff_t pos_in,
2997			 struct file *file_out, loff_t pos_out,
2998			 loff_t *req_count, unsigned int remap_flags)
2999{
3000	struct inode *inode_in = file_in->f_mapping->host;
3001	struct inode *inode_out = file_out->f_mapping->host;
3002	uint64_t count = *req_count;
3003	uint64_t bcount;
3004	loff_t size_in, size_out;
3005	loff_t bs = inode_out->i_sb->s_blocksize;
3006	int ret;
3007
3008	/* The start of both ranges must be aligned to an fs block. */
3009	if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
3010		return -EINVAL;
3011
3012	/* Ensure offsets don't wrap. */
3013	if (pos_in + count < pos_in || pos_out + count < pos_out)
3014		return -EINVAL;
3015
3016	size_in = i_size_read(inode_in);
3017	size_out = i_size_read(inode_out);
3018
3019	/* Dedupe requires both ranges to be within EOF. */
3020	if ((remap_flags & REMAP_FILE_DEDUP) &&
3021	    (pos_in >= size_in || pos_in + count > size_in ||
3022	     pos_out >= size_out || pos_out + count > size_out))
3023		return -EINVAL;
3024
3025	/* Ensure the infile range is within the infile. */
3026	if (pos_in >= size_in)
3027		return -EINVAL;
3028	count = min(count, size_in - (uint64_t)pos_in);
3029
3030	ret = generic_write_check_limits(file_out, pos_out, &count);
3031	if (ret)
3032		return ret;
3033
3034	/*
3035	 * If the user wanted us to link to the infile's EOF, round up to the
3036	 * next block boundary for this check.
3037	 *
3038	 * Otherwise, make sure the count is also block-aligned, having
3039	 * already confirmed the starting offsets' block alignment.
3040	 */
3041	if (pos_in + count == size_in) {
3042		bcount = ALIGN(size_in, bs) - pos_in;
3043	} else {
3044		if (!IS_ALIGNED(count, bs))
3045			count = ALIGN_DOWN(count, bs);
3046		bcount = count;
3047	}
3048
3049	/* Don't allow overlapped cloning within the same file. */
3050	if (inode_in == inode_out &&
3051	    pos_out + bcount > pos_in &&
3052	    pos_out < pos_in + bcount)
3053		return -EINVAL;
3054
3055	/*
3056	 * We shortened the request but the caller can't deal with that, so
3057	 * bounce the request back to userspace.
3058	 */
3059	if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
3060		return -EINVAL;
3061
3062	*req_count = count;
3063	return 0;
3064}
3065
3066
3067/*
3068 * Performs common checks before doing a file copy/clone
3069 * from @file_in to @file_out.
3070 */
3071int generic_file_rw_checks(struct file *file_in, struct file *file_out)
3072{
3073	struct inode *inode_in = file_inode(file_in);
3074	struct inode *inode_out = file_inode(file_out);
3075
3076	/* Don't copy dirs, pipes, sockets... */
3077	if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
3078		return -EISDIR;
3079	if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
3080		return -EINVAL;
3081
3082	if (!(file_in->f_mode & FMODE_READ) ||
3083	    !(file_out->f_mode & FMODE_WRITE) ||
3084	    (file_out->f_flags & O_APPEND))
3085		return -EBADF;
3086
3087	return 0;
3088}
3089
3090/*
3091 * Performs necessary checks before doing a file copy
3092 *
3093 * Can adjust amount of bytes to copy via @req_count argument.
3094 * Returns appropriate error code that caller should return or
3095 * zero in case the copy should be allowed.
3096 */
3097int generic_copy_file_checks(struct file *file_in, loff_t pos_in,
3098			     struct file *file_out, loff_t pos_out,
3099			     size_t *req_count, unsigned int flags)
3100{
3101	struct inode *inode_in = file_inode(file_in);
3102	struct inode *inode_out = file_inode(file_out);
3103	uint64_t count = *req_count;
3104	loff_t size_in;
3105	int ret;
3106
3107	ret = generic_file_rw_checks(file_in, file_out);
3108	if (ret)
3109		return ret;
3110
3111	/* Don't touch certain kinds of inodes */
3112	if (IS_IMMUTABLE(inode_out))
3113		return -EPERM;
3114
3115	if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out))
3116		return -ETXTBSY;
3117
3118	/* Ensure offsets don't wrap. */
3119	if (pos_in + count < pos_in || pos_out + count < pos_out)
3120		return -EOVERFLOW;
3121
3122	/* Shorten the copy to EOF */
3123	size_in = i_size_read(inode_in);
3124	if (pos_in >= size_in)
3125		count = 0;
3126	else
3127		count = min(count, size_in - (uint64_t)pos_in);
3128
3129	ret = generic_write_check_limits(file_out, pos_out, &count);
3130	if (ret)
3131		return ret;
3132
3133	/* Don't allow overlapped copying within the same file. */
3134	if (inode_in == inode_out &&
3135	    pos_out + count > pos_in &&
3136	    pos_out < pos_in + count)
3137		return -EINVAL;
3138
3139	*req_count = count;
3140	return 0;
3141}
3142
3143int pagecache_write_begin(struct file *file, struct address_space *mapping,
3144				loff_t pos, unsigned len, unsigned flags,
3145				struct page **pagep, void **fsdata)
3146{
3147	const struct address_space_operations *aops = mapping->a_ops;
3148
3149	return aops->write_begin(file, mapping, pos, len, flags,
3150							pagep, fsdata);
3151}
3152EXPORT_SYMBOL(pagecache_write_begin);
3153
3154int pagecache_write_end(struct file *file, struct address_space *mapping,
3155				loff_t pos, unsigned len, unsigned copied,
3156				struct page *page, void *fsdata)
3157{
3158	const struct address_space_operations *aops = mapping->a_ops;
3159
3160	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3161}
3162EXPORT_SYMBOL(pagecache_write_end);
3163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3164ssize_t
3165generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3166{
3167	struct file	*file = iocb->ki_filp;
3168	struct address_space *mapping = file->f_mapping;
3169	struct inode	*inode = mapping->host;
3170	loff_t		pos = iocb->ki_pos;
3171	ssize_t		written;
3172	size_t		write_len;
3173	pgoff_t		end;
3174
3175	write_len = iov_iter_count(from);
3176	end = (pos + write_len - 1) >> PAGE_SHIFT;
3177
3178	if (iocb->ki_flags & IOCB_NOWAIT) {
3179		/* If there are pages to writeback, return */
3180		if (filemap_range_has_page(inode->i_mapping, pos,
3181					   pos + write_len - 1))
3182			return -EAGAIN;
3183	} else {
3184		written = filemap_write_and_wait_range(mapping, pos,
3185							pos + write_len - 1);
3186		if (written)
3187			goto out;
3188	}
3189
3190	/*
3191	 * After a write we want buffered reads to be sure to go to disk to get
3192	 * the new data.  We invalidate clean cached page from the region we're
3193	 * about to write.  We do this *before* the write so that we can return
3194	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3195	 */
3196	written = invalidate_inode_pages2_range(mapping,
3197					pos >> PAGE_SHIFT, end);
3198	/*
3199	 * If a page can not be invalidated, return 0 to fall back
3200	 * to buffered write.
3201	 */
3202	if (written) {
3203		if (written == -EBUSY)
3204			return 0;
3205		goto out;
3206	}
3207
3208	written = mapping->a_ops->direct_IO(iocb, from);
3209
3210	/*
3211	 * Finally, try again to invalidate clean pages which might have been
3212	 * cached by non-direct readahead, or faulted in by get_user_pages()
3213	 * if the source of the write was an mmap'ed region of the file
3214	 * we're writing.  Either one is a pretty crazy thing to do,
3215	 * so we don't support it 100%.  If this invalidation
3216	 * fails, tough, the write still worked...
3217	 *
3218	 * Most of the time we do not need this since dio_complete() will do
3219	 * the invalidation for us. However there are some file systems that
3220	 * do not end up with dio_complete() being called, so let's not break
3221	 * them by removing it completely
 
 
 
 
3222	 */
3223	if (mapping->nrpages)
3224		invalidate_inode_pages2_range(mapping,
3225					pos >> PAGE_SHIFT, end);
3226
3227	if (written > 0) {
3228		pos += written;
3229		write_len -= written;
3230		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3231			i_size_write(inode, pos);
3232			mark_inode_dirty(inode);
3233		}
3234		iocb->ki_pos = pos;
3235	}
3236	iov_iter_revert(from, write_len - iov_iter_count(from));
3237out:
3238	return written;
3239}
3240EXPORT_SYMBOL(generic_file_direct_write);
3241
3242/*
3243 * Find or create a page at the given pagecache position. Return the locked
3244 * page. This function is specifically for buffered writes.
3245 */
3246struct page *grab_cache_page_write_begin(struct address_space *mapping,
3247					pgoff_t index, unsigned flags)
3248{
3249	struct page *page;
3250	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3251
3252	if (flags & AOP_FLAG_NOFS)
3253		fgp_flags |= FGP_NOFS;
3254
3255	page = pagecache_get_page(mapping, index, fgp_flags,
3256			mapping_gfp_mask(mapping));
3257	if (page)
3258		wait_for_stable_page(page);
3259
3260	return page;
3261}
3262EXPORT_SYMBOL(grab_cache_page_write_begin);
3263
3264ssize_t generic_perform_write(struct file *file,
3265				struct iov_iter *i, loff_t pos)
3266{
3267	struct address_space *mapping = file->f_mapping;
3268	const struct address_space_operations *a_ops = mapping->a_ops;
3269	long status = 0;
3270	ssize_t written = 0;
3271	unsigned int flags = 0;
3272
3273	do {
3274		struct page *page;
3275		unsigned long offset;	/* Offset into pagecache page */
3276		unsigned long bytes;	/* Bytes to write to page */
3277		size_t copied;		/* Bytes copied from user */
3278		void *fsdata;
3279
3280		offset = (pos & (PAGE_SIZE - 1));
3281		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3282						iov_iter_count(i));
3283
3284again:
3285		/*
3286		 * Bring in the user page that we will copy from _first_.
3287		 * Otherwise there's a nasty deadlock on copying from the
3288		 * same page as we're writing to, without it being marked
3289		 * up-to-date.
3290		 *
3291		 * Not only is this an optimisation, but it is also required
3292		 * to check that the address is actually valid, when atomic
3293		 * usercopies are used, below.
3294		 */
3295		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3296			status = -EFAULT;
3297			break;
3298		}
3299
3300		if (fatal_signal_pending(current)) {
3301			status = -EINTR;
3302			break;
3303		}
3304
3305		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3306						&page, &fsdata);
3307		if (unlikely(status < 0))
3308			break;
3309
3310		if (mapping_writably_mapped(mapping))
3311			flush_dcache_page(page);
3312
3313		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3314		flush_dcache_page(page);
3315
3316		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3317						page, fsdata);
3318		if (unlikely(status < 0))
3319			break;
3320		copied = status;
3321
3322		cond_resched();
3323
3324		iov_iter_advance(i, copied);
3325		if (unlikely(copied == 0)) {
3326			/*
3327			 * If we were unable to copy any data at all, we must
3328			 * fall back to a single segment length write.
3329			 *
3330			 * If we didn't fallback here, we could livelock
3331			 * because not all segments in the iov can be copied at
3332			 * once without a pagefault.
3333			 */
3334			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3335						iov_iter_single_seg_count(i));
3336			goto again;
3337		}
3338		pos += copied;
3339		written += copied;
3340
3341		balance_dirty_pages_ratelimited(mapping);
3342	} while (iov_iter_count(i));
3343
3344	return written ? written : status;
3345}
3346EXPORT_SYMBOL(generic_perform_write);
3347
3348/**
3349 * __generic_file_write_iter - write data to a file
3350 * @iocb:	IO state structure (file, offset, etc.)
3351 * @from:	iov_iter with data to write
3352 *
3353 * This function does all the work needed for actually writing data to a
3354 * file. It does all basic checks, removes SUID from the file, updates
3355 * modification times and calls proper subroutines depending on whether we
3356 * do direct IO or a standard buffered write.
3357 *
3358 * It expects i_mutex to be grabbed unless we work on a block device or similar
3359 * object which does not need locking at all.
3360 *
3361 * This function does *not* take care of syncing data in case of O_SYNC write.
3362 * A caller has to handle it. This is mainly due to the fact that we want to
3363 * avoid syncing under i_mutex.
3364 *
3365 * Return:
3366 * * number of bytes written, even for truncated writes
3367 * * negative error code if no data has been written at all
3368 */
3369ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3370{
3371	struct file *file = iocb->ki_filp;
3372	struct address_space * mapping = file->f_mapping;
3373	struct inode 	*inode = mapping->host;
3374	ssize_t		written = 0;
3375	ssize_t		err;
3376	ssize_t		status;
3377
3378	/* We can write back this queue in page reclaim */
3379	current->backing_dev_info = inode_to_bdi(inode);
3380	err = file_remove_privs(file);
3381	if (err)
3382		goto out;
3383
3384	err = file_update_time(file);
3385	if (err)
3386		goto out;
3387
3388	if (iocb->ki_flags & IOCB_DIRECT) {
3389		loff_t pos, endbyte;
3390
3391		written = generic_file_direct_write(iocb, from);
3392		/*
3393		 * If the write stopped short of completing, fall back to
3394		 * buffered writes.  Some filesystems do this for writes to
3395		 * holes, for example.  For DAX files, a buffered write will
3396		 * not succeed (even if it did, DAX does not handle dirty
3397		 * page-cache pages correctly).
3398		 */
3399		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3400			goto out;
3401
3402		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3403		/*
3404		 * If generic_perform_write() returned a synchronous error
3405		 * then we want to return the number of bytes which were
3406		 * direct-written, or the error code if that was zero.  Note
3407		 * that this differs from normal direct-io semantics, which
3408		 * will return -EFOO even if some bytes were written.
3409		 */
3410		if (unlikely(status < 0)) {
3411			err = status;
3412			goto out;
3413		}
3414		/*
3415		 * We need to ensure that the page cache pages are written to
3416		 * disk and invalidated to preserve the expected O_DIRECT
3417		 * semantics.
3418		 */
3419		endbyte = pos + status - 1;
3420		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3421		if (err == 0) {
3422			iocb->ki_pos = endbyte + 1;
3423			written += status;
3424			invalidate_mapping_pages(mapping,
3425						 pos >> PAGE_SHIFT,
3426						 endbyte >> PAGE_SHIFT);
3427		} else {
3428			/*
3429			 * We don't know how much we wrote, so just return
3430			 * the number of bytes which were direct-written
3431			 */
3432		}
3433	} else {
3434		written = generic_perform_write(file, from, iocb->ki_pos);
3435		if (likely(written > 0))
3436			iocb->ki_pos += written;
3437	}
3438out:
3439	current->backing_dev_info = NULL;
3440	return written ? written : err;
3441}
3442EXPORT_SYMBOL(__generic_file_write_iter);
3443
3444/**
3445 * generic_file_write_iter - write data to a file
3446 * @iocb:	IO state structure
3447 * @from:	iov_iter with data to write
3448 *
3449 * This is a wrapper around __generic_file_write_iter() to be used by most
3450 * filesystems. It takes care of syncing the file in case of O_SYNC file
3451 * and acquires i_mutex as needed.
3452 * Return:
3453 * * negative error code if no data has been written at all of
3454 *   vfs_fsync_range() failed for a synchronous write
3455 * * number of bytes written, even for truncated writes
3456 */
3457ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3458{
3459	struct file *file = iocb->ki_filp;
3460	struct inode *inode = file->f_mapping->host;
3461	ssize_t ret;
3462
3463	inode_lock(inode);
3464	ret = generic_write_checks(iocb, from);
3465	if (ret > 0)
3466		ret = __generic_file_write_iter(iocb, from);
3467	inode_unlock(inode);
3468
3469	if (ret > 0)
3470		ret = generic_write_sync(iocb, ret);
3471	return ret;
3472}
3473EXPORT_SYMBOL(generic_file_write_iter);
3474
3475/**
3476 * try_to_release_page() - release old fs-specific metadata on a page
3477 *
3478 * @page: the page which the kernel is trying to free
3479 * @gfp_mask: memory allocation flags (and I/O mode)
3480 *
3481 * The address_space is to try to release any data against the page
3482 * (presumably at page->private).
3483 *
3484 * This may also be called if PG_fscache is set on a page, indicating that the
3485 * page is known to the local caching routines.
3486 *
3487 * The @gfp_mask argument specifies whether I/O may be performed to release
3488 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3489 *
3490 * Return: %1 if the release was successful, otherwise return zero.
3491 */
3492int try_to_release_page(struct page *page, gfp_t gfp_mask)
3493{
3494	struct address_space * const mapping = page->mapping;
3495
3496	BUG_ON(!PageLocked(page));
3497	if (PageWriteback(page))
3498		return 0;
3499
3500	if (mapping && mapping->a_ops->releasepage)
3501		return mapping->a_ops->releasepage(page, gfp_mask);
3502	return try_to_free_buffers(page);
3503}
3504
3505EXPORT_SYMBOL(try_to_release_page);
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *	linux/mm/filemap.c
   4 *
   5 * Copyright (C) 1994-1999  Linus Torvalds
   6 */
   7
   8/*
   9 * This file handles the generic file mmap semantics used by
  10 * most "normal" filesystems (but you don't /have/ to use this:
  11 * the NFS filesystem used to do this differently, for example)
  12 */
  13#include <linux/export.h>
  14#include <linux/compiler.h>
  15#include <linux/dax.h>
  16#include <linux/fs.h>
  17#include <linux/sched/signal.h>
  18#include <linux/uaccess.h>
  19#include <linux/capability.h>
  20#include <linux/kernel_stat.h>
  21#include <linux/gfp.h>
  22#include <linux/mm.h>
  23#include <linux/swap.h>
  24#include <linux/mman.h>
  25#include <linux/pagemap.h>
  26#include <linux/file.h>
  27#include <linux/uio.h>
  28#include <linux/error-injection.h>
  29#include <linux/hash.h>
  30#include <linux/writeback.h>
  31#include <linux/backing-dev.h>
  32#include <linux/pagevec.h>
  33#include <linux/blkdev.h>
  34#include <linux/security.h>
  35#include <linux/cpuset.h>
  36#include <linux/hugetlb.h>
  37#include <linux/memcontrol.h>
  38#include <linux/cleancache.h>
  39#include <linux/shmem_fs.h>
  40#include <linux/rmap.h>
  41#include <linux/delayacct.h>
  42#include <linux/psi.h>
  43#include <linux/ramfs.h>
  44#include <linux/page_idle.h>
  45#include "internal.h"
  46
  47#define CREATE_TRACE_POINTS
  48#include <trace/events/filemap.h>
  49
  50/*
  51 * FIXME: remove all knowledge of the buffer layer from the core VM
  52 */
  53#include <linux/buffer_head.h> /* for try_to_free_buffers */
  54
  55#include <asm/mman.h>
  56
  57/*
  58 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  59 * though.
  60 *
  61 * Shared mappings now work. 15.8.1995  Bruno.
  62 *
  63 * finished 'unifying' the page and buffer cache and SMP-threaded the
  64 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  65 *
  66 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  67 */
  68
  69/*
  70 * Lock ordering:
  71 *
  72 *  ->i_mmap_rwsem		(truncate_pagecache)
  73 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
  74 *      ->swap_lock		(exclusive_swap_page, others)
  75 *        ->i_pages lock
  76 *
  77 *  ->i_mutex
  78 *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
  79 *
  80 *  ->mmap_lock
  81 *    ->i_mmap_rwsem
  82 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
  83 *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
  84 *
  85 *  ->mmap_lock
  86 *    ->lock_page		(access_process_vm)
  87 *
  88 *  ->i_mutex			(generic_perform_write)
  89 *    ->mmap_lock		(fault_in_pages_readable->do_page_fault)
  90 *
  91 *  bdi->wb.list_lock
  92 *    sb_lock			(fs/fs-writeback.c)
  93 *    ->i_pages lock		(__sync_single_inode)
  94 *
  95 *  ->i_mmap_rwsem
  96 *    ->anon_vma.lock		(vma_adjust)
  97 *
  98 *  ->anon_vma.lock
  99 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
 100 *
 101 *  ->page_table_lock or pte_lock
 102 *    ->swap_lock		(try_to_unmap_one)
 103 *    ->private_lock		(try_to_unmap_one)
 104 *    ->i_pages lock		(try_to_unmap_one)
 105 *    ->pgdat->lru_lock		(follow_page->mark_page_accessed)
 106 *    ->pgdat->lru_lock		(check_pte_range->isolate_lru_page)
 107 *    ->private_lock		(page_remove_rmap->set_page_dirty)
 108 *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
 109 *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
 110 *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
 111 *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
 112 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
 113 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
 114 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
 115 *
 116 * ->i_mmap_rwsem
 117 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
 118 */
 119
 120static void page_cache_delete(struct address_space *mapping,
 121				   struct page *page, void *shadow)
 122{
 123	XA_STATE(xas, &mapping->i_pages, page->index);
 124	unsigned int nr = 1;
 125
 126	mapping_set_update(&xas, mapping);
 127
 128	/* hugetlb pages are represented by a single entry in the xarray */
 129	if (!PageHuge(page)) {
 130		xas_set_order(&xas, page->index, compound_order(page));
 131		nr = compound_nr(page);
 132	}
 133
 134	VM_BUG_ON_PAGE(!PageLocked(page), page);
 135	VM_BUG_ON_PAGE(PageTail(page), page);
 136	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
 137
 138	xas_store(&xas, shadow);
 139	xas_init_marks(&xas);
 140
 141	page->mapping = NULL;
 142	/* Leave page->index set: truncation lookup relies upon it */
 143
 144	if (shadow) {
 145		mapping->nrexceptional += nr;
 146		/*
 147		 * Make sure the nrexceptional update is committed before
 148		 * the nrpages update so that final truncate racing
 149		 * with reclaim does not see both counters 0 at the
 150		 * same time and miss a shadow entry.
 151		 */
 152		smp_wmb();
 153	}
 154	mapping->nrpages -= nr;
 155}
 156
 157static void unaccount_page_cache_page(struct address_space *mapping,
 158				      struct page *page)
 159{
 160	int nr;
 161
 162	/*
 163	 * if we're uptodate, flush out into the cleancache, otherwise
 164	 * invalidate any existing cleancache entries.  We can't leave
 165	 * stale data around in the cleancache once our page is gone
 166	 */
 167	if (PageUptodate(page) && PageMappedToDisk(page))
 168		cleancache_put_page(page);
 169	else
 170		cleancache_invalidate_page(mapping, page);
 171
 172	VM_BUG_ON_PAGE(PageTail(page), page);
 173	VM_BUG_ON_PAGE(page_mapped(page), page);
 174	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
 175		int mapcount;
 176
 177		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
 178			 current->comm, page_to_pfn(page));
 179		dump_page(page, "still mapped when deleted");
 180		dump_stack();
 181		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 182
 183		mapcount = page_mapcount(page);
 184		if (mapping_exiting(mapping) &&
 185		    page_count(page) >= mapcount + 2) {
 186			/*
 187			 * All vmas have already been torn down, so it's
 188			 * a good bet that actually the page is unmapped,
 189			 * and we'd prefer not to leak it: if we're wrong,
 190			 * some other bad page check should catch it later.
 191			 */
 192			page_mapcount_reset(page);
 193			page_ref_sub(page, mapcount);
 194		}
 195	}
 196
 197	/* hugetlb pages do not participate in page cache accounting. */
 198	if (PageHuge(page))
 199		return;
 200
 201	nr = thp_nr_pages(page);
 202
 203	__mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
 204	if (PageSwapBacked(page)) {
 205		__mod_lruvec_page_state(page, NR_SHMEM, -nr);
 206		if (PageTransHuge(page))
 207			__dec_node_page_state(page, NR_SHMEM_THPS);
 208	} else if (PageTransHuge(page)) {
 209		__dec_node_page_state(page, NR_FILE_THPS);
 210		filemap_nr_thps_dec(mapping);
 211	}
 212
 213	/*
 214	 * At this point page must be either written or cleaned by
 215	 * truncate.  Dirty page here signals a bug and loss of
 216	 * unwritten data.
 217	 *
 218	 * This fixes dirty accounting after removing the page entirely
 219	 * but leaves PageDirty set: it has no effect for truncated
 220	 * page and anyway will be cleared before returning page into
 221	 * buddy allocator.
 222	 */
 223	if (WARN_ON_ONCE(PageDirty(page)))
 224		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
 225}
 226
 227/*
 228 * Delete a page from the page cache and free it. Caller has to make
 229 * sure the page is locked and that nobody else uses it - or that usage
 230 * is safe.  The caller must hold the i_pages lock.
 231 */
 232void __delete_from_page_cache(struct page *page, void *shadow)
 233{
 234	struct address_space *mapping = page->mapping;
 235
 236	trace_mm_filemap_delete_from_page_cache(page);
 237
 238	unaccount_page_cache_page(mapping, page);
 239	page_cache_delete(mapping, page, shadow);
 240}
 241
 242static void page_cache_free_page(struct address_space *mapping,
 243				struct page *page)
 244{
 245	void (*freepage)(struct page *);
 246
 247	freepage = mapping->a_ops->freepage;
 248	if (freepage)
 249		freepage(page);
 250
 251	if (PageTransHuge(page) && !PageHuge(page)) {
 252		page_ref_sub(page, HPAGE_PMD_NR);
 253		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
 254	} else {
 255		put_page(page);
 256	}
 257}
 258
 259/**
 260 * delete_from_page_cache - delete page from page cache
 261 * @page: the page which the kernel is trying to remove from page cache
 262 *
 263 * This must be called only on pages that have been verified to be in the page
 264 * cache and locked.  It will never put the page into the free list, the caller
 265 * has a reference on the page.
 266 */
 267void delete_from_page_cache(struct page *page)
 268{
 269	struct address_space *mapping = page_mapping(page);
 270	unsigned long flags;
 271
 272	BUG_ON(!PageLocked(page));
 273	xa_lock_irqsave(&mapping->i_pages, flags);
 274	__delete_from_page_cache(page, NULL);
 275	xa_unlock_irqrestore(&mapping->i_pages, flags);
 276
 277	page_cache_free_page(mapping, page);
 278}
 279EXPORT_SYMBOL(delete_from_page_cache);
 280
 281/*
 282 * page_cache_delete_batch - delete several pages from page cache
 283 * @mapping: the mapping to which pages belong
 284 * @pvec: pagevec with pages to delete
 285 *
 286 * The function walks over mapping->i_pages and removes pages passed in @pvec
 287 * from the mapping. The function expects @pvec to be sorted by page index
 288 * and is optimised for it to be dense.
 289 * It tolerates holes in @pvec (mapping entries at those indices are not
 290 * modified). The function expects only THP head pages to be present in the
 291 * @pvec.
 292 *
 293 * The function expects the i_pages lock to be held.
 294 */
 295static void page_cache_delete_batch(struct address_space *mapping,
 296			     struct pagevec *pvec)
 297{
 298	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
 299	int total_pages = 0;
 300	int i = 0;
 301	struct page *page;
 302
 303	mapping_set_update(&xas, mapping);
 304	xas_for_each(&xas, page, ULONG_MAX) {
 305		if (i >= pagevec_count(pvec))
 306			break;
 307
 308		/* A swap/dax/shadow entry got inserted? Skip it. */
 309		if (xa_is_value(page))
 310			continue;
 311		/*
 312		 * A page got inserted in our range? Skip it. We have our
 313		 * pages locked so they are protected from being removed.
 314		 * If we see a page whose index is higher than ours, it
 315		 * means our page has been removed, which shouldn't be
 316		 * possible because we're holding the PageLock.
 317		 */
 318		if (page != pvec->pages[i]) {
 319			VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
 320					page);
 321			continue;
 322		}
 323
 324		WARN_ON_ONCE(!PageLocked(page));
 325
 326		if (page->index == xas.xa_index)
 327			page->mapping = NULL;
 328		/* Leave page->index set: truncation lookup relies on it */
 329
 330		/*
 331		 * Move to the next page in the vector if this is a regular
 332		 * page or the index is of the last sub-page of this compound
 333		 * page.
 334		 */
 335		if (page->index + compound_nr(page) - 1 == xas.xa_index)
 336			i++;
 337		xas_store(&xas, NULL);
 338		total_pages++;
 339	}
 340	mapping->nrpages -= total_pages;
 341}
 342
 343void delete_from_page_cache_batch(struct address_space *mapping,
 344				  struct pagevec *pvec)
 345{
 346	int i;
 347	unsigned long flags;
 348
 349	if (!pagevec_count(pvec))
 350		return;
 351
 352	xa_lock_irqsave(&mapping->i_pages, flags);
 353	for (i = 0; i < pagevec_count(pvec); i++) {
 354		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
 355
 356		unaccount_page_cache_page(mapping, pvec->pages[i]);
 357	}
 358	page_cache_delete_batch(mapping, pvec);
 359	xa_unlock_irqrestore(&mapping->i_pages, flags);
 360
 361	for (i = 0; i < pagevec_count(pvec); i++)
 362		page_cache_free_page(mapping, pvec->pages[i]);
 363}
 364
 365int filemap_check_errors(struct address_space *mapping)
 366{
 367	int ret = 0;
 368	/* Check for outstanding write errors */
 369	if (test_bit(AS_ENOSPC, &mapping->flags) &&
 370	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 371		ret = -ENOSPC;
 372	if (test_bit(AS_EIO, &mapping->flags) &&
 373	    test_and_clear_bit(AS_EIO, &mapping->flags))
 374		ret = -EIO;
 375	return ret;
 376}
 377EXPORT_SYMBOL(filemap_check_errors);
 378
 379static int filemap_check_and_keep_errors(struct address_space *mapping)
 380{
 381	/* Check for outstanding write errors */
 382	if (test_bit(AS_EIO, &mapping->flags))
 383		return -EIO;
 384	if (test_bit(AS_ENOSPC, &mapping->flags))
 385		return -ENOSPC;
 386	return 0;
 387}
 388
 389/**
 390 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 391 * @mapping:	address space structure to write
 392 * @start:	offset in bytes where the range starts
 393 * @end:	offset in bytes where the range ends (inclusive)
 394 * @sync_mode:	enable synchronous operation
 395 *
 396 * Start writeback against all of a mapping's dirty pages that lie
 397 * within the byte offsets <start, end> inclusive.
 398 *
 399 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 400 * opposed to a regular memory cleansing writeback.  The difference between
 401 * these two operations is that if a dirty page/buffer is encountered, it must
 402 * be waited upon, and not just skipped over.
 403 *
 404 * Return: %0 on success, negative error code otherwise.
 405 */
 406int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 407				loff_t end, int sync_mode)
 408{
 409	int ret;
 410	struct writeback_control wbc = {
 411		.sync_mode = sync_mode,
 412		.nr_to_write = LONG_MAX,
 413		.range_start = start,
 414		.range_end = end,
 415	};
 416
 417	if (!mapping_cap_writeback_dirty(mapping) ||
 418	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
 419		return 0;
 420
 421	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
 422	ret = do_writepages(mapping, &wbc);
 423	wbc_detach_inode(&wbc);
 424	return ret;
 425}
 426
 427static inline int __filemap_fdatawrite(struct address_space *mapping,
 428	int sync_mode)
 429{
 430	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 431}
 432
 433int filemap_fdatawrite(struct address_space *mapping)
 434{
 435	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 436}
 437EXPORT_SYMBOL(filemap_fdatawrite);
 438
 439int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 440				loff_t end)
 441{
 442	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 443}
 444EXPORT_SYMBOL(filemap_fdatawrite_range);
 445
 446/**
 447 * filemap_flush - mostly a non-blocking flush
 448 * @mapping:	target address_space
 449 *
 450 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 451 * purposes - I/O may not be started against all dirty pages.
 452 *
 453 * Return: %0 on success, negative error code otherwise.
 454 */
 455int filemap_flush(struct address_space *mapping)
 456{
 457	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 458}
 459EXPORT_SYMBOL(filemap_flush);
 460
 461/**
 462 * filemap_range_has_page - check if a page exists in range.
 463 * @mapping:           address space within which to check
 464 * @start_byte:        offset in bytes where the range starts
 465 * @end_byte:          offset in bytes where the range ends (inclusive)
 466 *
 467 * Find at least one page in the range supplied, usually used to check if
 468 * direct writing in this range will trigger a writeback.
 469 *
 470 * Return: %true if at least one page exists in the specified range,
 471 * %false otherwise.
 472 */
 473bool filemap_range_has_page(struct address_space *mapping,
 474			   loff_t start_byte, loff_t end_byte)
 475{
 476	struct page *page;
 477	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
 478	pgoff_t max = end_byte >> PAGE_SHIFT;
 479
 480	if (end_byte < start_byte)
 481		return false;
 482
 483	rcu_read_lock();
 484	for (;;) {
 485		page = xas_find(&xas, max);
 486		if (xas_retry(&xas, page))
 487			continue;
 488		/* Shadow entries don't count */
 489		if (xa_is_value(page))
 490			continue;
 491		/*
 492		 * We don't need to try to pin this page; we're about to
 493		 * release the RCU lock anyway.  It is enough to know that
 494		 * there was a page here recently.
 495		 */
 496		break;
 497	}
 498	rcu_read_unlock();
 499
 500	return page != NULL;
 501}
 502EXPORT_SYMBOL(filemap_range_has_page);
 503
 504static void __filemap_fdatawait_range(struct address_space *mapping,
 505				     loff_t start_byte, loff_t end_byte)
 506{
 507	pgoff_t index = start_byte >> PAGE_SHIFT;
 508	pgoff_t end = end_byte >> PAGE_SHIFT;
 509	struct pagevec pvec;
 510	int nr_pages;
 511
 512	if (end_byte < start_byte)
 513		return;
 514
 515	pagevec_init(&pvec);
 516	while (index <= end) {
 517		unsigned i;
 518
 519		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
 520				end, PAGECACHE_TAG_WRITEBACK);
 521		if (!nr_pages)
 522			break;
 523
 524		for (i = 0; i < nr_pages; i++) {
 525			struct page *page = pvec.pages[i];
 526
 527			wait_on_page_writeback(page);
 528			ClearPageError(page);
 529		}
 530		pagevec_release(&pvec);
 531		cond_resched();
 532	}
 533}
 534
 535/**
 536 * filemap_fdatawait_range - wait for writeback to complete
 537 * @mapping:		address space structure to wait for
 538 * @start_byte:		offset in bytes where the range starts
 539 * @end_byte:		offset in bytes where the range ends (inclusive)
 540 *
 541 * Walk the list of under-writeback pages of the given address space
 542 * in the given range and wait for all of them.  Check error status of
 543 * the address space and return it.
 544 *
 545 * Since the error status of the address space is cleared by this function,
 546 * callers are responsible for checking the return value and handling and/or
 547 * reporting the error.
 548 *
 549 * Return: error status of the address space.
 550 */
 551int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 552			    loff_t end_byte)
 553{
 554	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 555	return filemap_check_errors(mapping);
 556}
 557EXPORT_SYMBOL(filemap_fdatawait_range);
 558
 559/**
 560 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
 561 * @mapping:		address space structure to wait for
 562 * @start_byte:		offset in bytes where the range starts
 563 * @end_byte:		offset in bytes where the range ends (inclusive)
 564 *
 565 * Walk the list of under-writeback pages of the given address space in the
 566 * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
 567 * this function does not clear error status of the address space.
 568 *
 569 * Use this function if callers don't handle errors themselves.  Expected
 570 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 571 * fsfreeze(8)
 572 */
 573int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
 574		loff_t start_byte, loff_t end_byte)
 575{
 576	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 577	return filemap_check_and_keep_errors(mapping);
 578}
 579EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
 580
 581/**
 582 * file_fdatawait_range - wait for writeback to complete
 583 * @file:		file pointing to address space structure to wait for
 584 * @start_byte:		offset in bytes where the range starts
 585 * @end_byte:		offset in bytes where the range ends (inclusive)
 586 *
 587 * Walk the list of under-writeback pages of the address space that file
 588 * refers to, in the given range and wait for all of them.  Check error
 589 * status of the address space vs. the file->f_wb_err cursor and return it.
 590 *
 591 * Since the error status of the file is advanced by this function,
 592 * callers are responsible for checking the return value and handling and/or
 593 * reporting the error.
 594 *
 595 * Return: error status of the address space vs. the file->f_wb_err cursor.
 596 */
 597int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
 598{
 599	struct address_space *mapping = file->f_mapping;
 600
 601	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 602	return file_check_and_advance_wb_err(file);
 603}
 604EXPORT_SYMBOL(file_fdatawait_range);
 605
 606/**
 607 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 608 * @mapping: address space structure to wait for
 609 *
 610 * Walk the list of under-writeback pages of the given address space
 611 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 612 * does not clear error status of the address space.
 613 *
 614 * Use this function if callers don't handle errors themselves.  Expected
 615 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 616 * fsfreeze(8)
 617 *
 618 * Return: error status of the address space.
 619 */
 620int filemap_fdatawait_keep_errors(struct address_space *mapping)
 621{
 622	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
 623	return filemap_check_and_keep_errors(mapping);
 624}
 625EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
 626
 627/* Returns true if writeback might be needed or already in progress. */
 628static bool mapping_needs_writeback(struct address_space *mapping)
 629{
 630	if (dax_mapping(mapping))
 631		return mapping->nrexceptional;
 632
 633	return mapping->nrpages;
 634}
 635
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 636/**
 637 * filemap_write_and_wait_range - write out & wait on a file range
 638 * @mapping:	the address_space for the pages
 639 * @lstart:	offset in bytes where the range starts
 640 * @lend:	offset in bytes where the range ends (inclusive)
 641 *
 642 * Write out and wait upon file offsets lstart->lend, inclusive.
 643 *
 644 * Note that @lend is inclusive (describes the last byte to be written) so
 645 * that this function can be used to write to the very end-of-file (end = -1).
 646 *
 647 * Return: error status of the address space.
 648 */
 649int filemap_write_and_wait_range(struct address_space *mapping,
 650				 loff_t lstart, loff_t lend)
 651{
 652	int err = 0;
 653
 654	if (mapping_needs_writeback(mapping)) {
 655		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 656						 WB_SYNC_ALL);
 657		/*
 658		 * Even if the above returned error, the pages may be
 659		 * written partially (e.g. -ENOSPC), so we wait for it.
 660		 * But the -EIO is special case, it may indicate the worst
 661		 * thing (e.g. bug) happened, so we avoid waiting for it.
 662		 */
 663		if (err != -EIO) {
 664			int err2 = filemap_fdatawait_range(mapping,
 665						lstart, lend);
 666			if (!err)
 667				err = err2;
 668		} else {
 669			/* Clear any previously stored errors */
 670			filemap_check_errors(mapping);
 671		}
 672	} else {
 673		err = filemap_check_errors(mapping);
 674	}
 675	return err;
 676}
 677EXPORT_SYMBOL(filemap_write_and_wait_range);
 678
 679void __filemap_set_wb_err(struct address_space *mapping, int err)
 680{
 681	errseq_t eseq = errseq_set(&mapping->wb_err, err);
 682
 683	trace_filemap_set_wb_err(mapping, eseq);
 684}
 685EXPORT_SYMBOL(__filemap_set_wb_err);
 686
 687/**
 688 * file_check_and_advance_wb_err - report wb error (if any) that was previously
 689 * 				   and advance wb_err to current one
 690 * @file: struct file on which the error is being reported
 691 *
 692 * When userland calls fsync (or something like nfsd does the equivalent), we
 693 * want to report any writeback errors that occurred since the last fsync (or
 694 * since the file was opened if there haven't been any).
 695 *
 696 * Grab the wb_err from the mapping. If it matches what we have in the file,
 697 * then just quickly return 0. The file is all caught up.
 698 *
 699 * If it doesn't match, then take the mapping value, set the "seen" flag in
 700 * it and try to swap it into place. If it works, or another task beat us
 701 * to it with the new value, then update the f_wb_err and return the error
 702 * portion. The error at this point must be reported via proper channels
 703 * (a'la fsync, or NFS COMMIT operation, etc.).
 704 *
 705 * While we handle mapping->wb_err with atomic operations, the f_wb_err
 706 * value is protected by the f_lock since we must ensure that it reflects
 707 * the latest value swapped in for this file descriptor.
 708 *
 709 * Return: %0 on success, negative error code otherwise.
 710 */
 711int file_check_and_advance_wb_err(struct file *file)
 712{
 713	int err = 0;
 714	errseq_t old = READ_ONCE(file->f_wb_err);
 715	struct address_space *mapping = file->f_mapping;
 716
 717	/* Locklessly handle the common case where nothing has changed */
 718	if (errseq_check(&mapping->wb_err, old)) {
 719		/* Something changed, must use slow path */
 720		spin_lock(&file->f_lock);
 721		old = file->f_wb_err;
 722		err = errseq_check_and_advance(&mapping->wb_err,
 723						&file->f_wb_err);
 724		trace_file_check_and_advance_wb_err(file, old);
 725		spin_unlock(&file->f_lock);
 726	}
 727
 728	/*
 729	 * We're mostly using this function as a drop in replacement for
 730	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
 731	 * that the legacy code would have had on these flags.
 732	 */
 733	clear_bit(AS_EIO, &mapping->flags);
 734	clear_bit(AS_ENOSPC, &mapping->flags);
 735	return err;
 736}
 737EXPORT_SYMBOL(file_check_and_advance_wb_err);
 738
 739/**
 740 * file_write_and_wait_range - write out & wait on a file range
 741 * @file:	file pointing to address_space with pages
 742 * @lstart:	offset in bytes where the range starts
 743 * @lend:	offset in bytes where the range ends (inclusive)
 744 *
 745 * Write out and wait upon file offsets lstart->lend, inclusive.
 746 *
 747 * Note that @lend is inclusive (describes the last byte to be written) so
 748 * that this function can be used to write to the very end-of-file (end = -1).
 749 *
 750 * After writing out and waiting on the data, we check and advance the
 751 * f_wb_err cursor to the latest value, and return any errors detected there.
 752 *
 753 * Return: %0 on success, negative error code otherwise.
 754 */
 755int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
 756{
 757	int err = 0, err2;
 758	struct address_space *mapping = file->f_mapping;
 759
 760	if (mapping_needs_writeback(mapping)) {
 761		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 762						 WB_SYNC_ALL);
 763		/* See comment of filemap_write_and_wait() */
 764		if (err != -EIO)
 765			__filemap_fdatawait_range(mapping, lstart, lend);
 766	}
 767	err2 = file_check_and_advance_wb_err(file);
 768	if (!err)
 769		err = err2;
 770	return err;
 771}
 772EXPORT_SYMBOL(file_write_and_wait_range);
 773
 774/**
 775 * replace_page_cache_page - replace a pagecache page with a new one
 776 * @old:	page to be replaced
 777 * @new:	page to replace with
 778 * @gfp_mask:	allocation mode
 779 *
 780 * This function replaces a page in the pagecache with a new one.  On
 781 * success it acquires the pagecache reference for the new page and
 782 * drops it for the old page.  Both the old and new pages must be
 783 * locked.  This function does not add the new page to the LRU, the
 784 * caller must do that.
 785 *
 786 * The remove + add is atomic.  This function cannot fail.
 787 *
 788 * Return: %0
 789 */
 790int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
 791{
 792	struct address_space *mapping = old->mapping;
 793	void (*freepage)(struct page *) = mapping->a_ops->freepage;
 794	pgoff_t offset = old->index;
 795	XA_STATE(xas, &mapping->i_pages, offset);
 796	unsigned long flags;
 797
 798	VM_BUG_ON_PAGE(!PageLocked(old), old);
 799	VM_BUG_ON_PAGE(!PageLocked(new), new);
 800	VM_BUG_ON_PAGE(new->mapping, new);
 801
 802	get_page(new);
 803	new->mapping = mapping;
 804	new->index = offset;
 805
 806	mem_cgroup_migrate(old, new);
 807
 808	xas_lock_irqsave(&xas, flags);
 809	xas_store(&xas, new);
 810
 811	old->mapping = NULL;
 812	/* hugetlb pages do not participate in page cache accounting. */
 813	if (!PageHuge(old))
 814		__dec_lruvec_page_state(old, NR_FILE_PAGES);
 815	if (!PageHuge(new))
 816		__inc_lruvec_page_state(new, NR_FILE_PAGES);
 817	if (PageSwapBacked(old))
 818		__dec_lruvec_page_state(old, NR_SHMEM);
 819	if (PageSwapBacked(new))
 820		__inc_lruvec_page_state(new, NR_SHMEM);
 821	xas_unlock_irqrestore(&xas, flags);
 
 822	if (freepage)
 823		freepage(old);
 824	put_page(old);
 825
 826	return 0;
 827}
 828EXPORT_SYMBOL_GPL(replace_page_cache_page);
 829
 830static int __add_to_page_cache_locked(struct page *page,
 831				      struct address_space *mapping,
 832				      pgoff_t offset, gfp_t gfp_mask,
 833				      void **shadowp)
 834{
 835	XA_STATE(xas, &mapping->i_pages, offset);
 836	int huge = PageHuge(page);
 
 837	int error;
 838	void *old;
 839
 840	VM_BUG_ON_PAGE(!PageLocked(page), page);
 841	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
 842	mapping_set_update(&xas, mapping);
 843
 
 
 
 
 
 
 
 844	get_page(page);
 845	page->mapping = mapping;
 846	page->index = offset;
 847
 848	if (!huge) {
 849		error = mem_cgroup_charge(page, current->mm, gfp_mask);
 850		if (error)
 851			goto error;
 852	}
 853
 854	do {
 855		xas_lock_irq(&xas);
 856		old = xas_load(&xas);
 857		if (old && !xa_is_value(old))
 858			xas_set_err(&xas, -EEXIST);
 859		xas_store(&xas, page);
 860		if (xas_error(&xas))
 861			goto unlock;
 862
 863		if (xa_is_value(old)) {
 864			mapping->nrexceptional--;
 865			if (shadowp)
 866				*shadowp = old;
 867		}
 868		mapping->nrpages++;
 869
 870		/* hugetlb pages do not participate in page cache accounting */
 871		if (!huge)
 872			__inc_lruvec_page_state(page, NR_FILE_PAGES);
 873unlock:
 874		xas_unlock_irq(&xas);
 875	} while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
 876
 877	if (xas_error(&xas)) {
 878		error = xas_error(&xas);
 879		goto error;
 880	}
 881
 
 
 882	trace_mm_filemap_add_to_page_cache(page);
 883	return 0;
 884error:
 885	page->mapping = NULL;
 886	/* Leave page->index set: truncation relies upon it */
 
 
 887	put_page(page);
 888	return error;
 889}
 890ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
 891
 892/**
 893 * add_to_page_cache_locked - add a locked page to the pagecache
 894 * @page:	page to add
 895 * @mapping:	the page's address_space
 896 * @offset:	page index
 897 * @gfp_mask:	page allocation mode
 898 *
 899 * This function is used to add a page to the pagecache. It must be locked.
 900 * This function does not add the page to the LRU.  The caller must do that.
 901 *
 902 * Return: %0 on success, negative error code otherwise.
 903 */
 904int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
 905		pgoff_t offset, gfp_t gfp_mask)
 906{
 907	return __add_to_page_cache_locked(page, mapping, offset,
 908					  gfp_mask, NULL);
 909}
 910EXPORT_SYMBOL(add_to_page_cache_locked);
 911
 912int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 913				pgoff_t offset, gfp_t gfp_mask)
 914{
 915	void *shadow = NULL;
 916	int ret;
 917
 918	__SetPageLocked(page);
 919	ret = __add_to_page_cache_locked(page, mapping, offset,
 920					 gfp_mask, &shadow);
 921	if (unlikely(ret))
 922		__ClearPageLocked(page);
 923	else {
 924		/*
 925		 * The page might have been evicted from cache only
 926		 * recently, in which case it should be activated like
 927		 * any other repeatedly accessed page.
 928		 * The exception is pages getting rewritten; evicting other
 929		 * data from the working set, only to cache data that will
 930		 * get overwritten with something else, is a waste of memory.
 931		 */
 932		WARN_ON_ONCE(PageActive(page));
 933		if (!(gfp_mask & __GFP_WRITE) && shadow)
 934			workingset_refault(page, shadow);
 935		lru_cache_add(page);
 936	}
 937	return ret;
 938}
 939EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
 940
 941#ifdef CONFIG_NUMA
 942struct page *__page_cache_alloc(gfp_t gfp)
 943{
 944	int n;
 945	struct page *page;
 946
 947	if (cpuset_do_page_mem_spread()) {
 948		unsigned int cpuset_mems_cookie;
 949		do {
 950			cpuset_mems_cookie = read_mems_allowed_begin();
 951			n = cpuset_mem_spread_node();
 952			page = __alloc_pages_node(n, gfp, 0);
 953		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
 954
 955		return page;
 956	}
 957	return alloc_pages(gfp, 0);
 958}
 959EXPORT_SYMBOL(__page_cache_alloc);
 960#endif
 961
 962/*
 963 * In order to wait for pages to become available there must be
 964 * waitqueues associated with pages. By using a hash table of
 965 * waitqueues where the bucket discipline is to maintain all
 966 * waiters on the same queue and wake all when any of the pages
 967 * become available, and for the woken contexts to check to be
 968 * sure the appropriate page became available, this saves space
 969 * at a cost of "thundering herd" phenomena during rare hash
 970 * collisions.
 971 */
 972#define PAGE_WAIT_TABLE_BITS 8
 973#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
 974static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
 975
 976static wait_queue_head_t *page_waitqueue(struct page *page)
 977{
 978	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
 979}
 980
 981void __init pagecache_init(void)
 982{
 983	int i;
 984
 985	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
 986		init_waitqueue_head(&page_wait_table[i]);
 987
 988	page_writeback_init();
 989}
 990
 991/*
 992 * The page wait code treats the "wait->flags" somewhat unusually, because
 993 * we have multiple different kinds of waits, not just the usual "exclusive"
 994 * one.
 995 *
 996 * We have:
 997 *
 998 *  (a) no special bits set:
 999 *
1000 *	We're just waiting for the bit to be released, and when a waker
1001 *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1002 *	and remove it from the wait queue.
1003 *
1004 *	Simple and straightforward.
1005 *
1006 *  (b) WQ_FLAG_EXCLUSIVE:
1007 *
1008 *	The waiter is waiting to get the lock, and only one waiter should
1009 *	be woken up to avoid any thundering herd behavior. We'll set the
1010 *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1011 *
1012 *	This is the traditional exclusive wait.
1013 *
1014 *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1015 *
1016 *	The waiter is waiting to get the bit, and additionally wants the
1017 *	lock to be transferred to it for fair lock behavior. If the lock
1018 *	cannot be taken, we stop walking the wait queue without waking
1019 *	the waiter.
1020 *
1021 *	This is the "fair lock handoff" case, and in addition to setting
1022 *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1023 *	that it now has the lock.
1024 */
1025static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1026{
1027	unsigned int flags;
1028	struct wait_page_key *key = arg;
1029	struct wait_page_queue *wait_page
1030		= container_of(wait, struct wait_page_queue, wait);
1031
1032	if (!wake_page_match(wait_page, key))
 
 
 
 
1033		return 0;
1034
1035	/*
1036	 * If it's a lock handoff wait, we get the bit for it, and
1037	 * stop walking (and do not wake it up) if we can't.
1038	 */
1039	flags = wait->flags;
1040	if (flags & WQ_FLAG_EXCLUSIVE) {
1041		if (test_bit(key->bit_nr, &key->page->flags))
1042			return -1;
1043		if (flags & WQ_FLAG_CUSTOM) {
1044			if (test_and_set_bit(key->bit_nr, &key->page->flags))
1045				return -1;
1046			flags |= WQ_FLAG_DONE;
1047		}
1048	}
1049
1050	/*
1051	 * We are holding the wait-queue lock, but the waiter that
1052	 * is waiting for this will be checking the flags without
1053	 * any locking.
1054	 *
1055	 * So update the flags atomically, and wake up the waiter
1056	 * afterwards to avoid any races. This store-release pairs
1057	 * with the load-acquire in wait_on_page_bit_common().
1058	 */
1059	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1060	wake_up_state(wait->private, mode);
1061
1062	/*
1063	 * Ok, we have successfully done what we're waiting for,
1064	 * and we can unconditionally remove the wait entry.
1065	 *
1066	 * Note that this pairs with the "finish_wait()" in the
1067	 * waiter, and has to be the absolute last thing we do.
1068	 * After this list_del_init(&wait->entry) the wait entry
1069	 * might be de-allocated and the process might even have
1070	 * exited.
1071	 */
1072	list_del_init_careful(&wait->entry);
1073	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1074}
1075
1076static void wake_up_page_bit(struct page *page, int bit_nr)
1077{
1078	wait_queue_head_t *q = page_waitqueue(page);
1079	struct wait_page_key key;
1080	unsigned long flags;
1081	wait_queue_entry_t bookmark;
1082
1083	key.page = page;
1084	key.bit_nr = bit_nr;
1085	key.page_match = 0;
1086
1087	bookmark.flags = 0;
1088	bookmark.private = NULL;
1089	bookmark.func = NULL;
1090	INIT_LIST_HEAD(&bookmark.entry);
1091
1092	spin_lock_irqsave(&q->lock, flags);
1093	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1094
1095	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1096		/*
1097		 * Take a breather from holding the lock,
1098		 * allow pages that finish wake up asynchronously
1099		 * to acquire the lock and remove themselves
1100		 * from wait queue
1101		 */
1102		spin_unlock_irqrestore(&q->lock, flags);
1103		cpu_relax();
1104		spin_lock_irqsave(&q->lock, flags);
1105		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1106	}
1107
1108	/*
1109	 * It is possible for other pages to have collided on the waitqueue
1110	 * hash, so in that case check for a page match. That prevents a long-
1111	 * term waiter
1112	 *
1113	 * It is still possible to miss a case here, when we woke page waiters
1114	 * and removed them from the waitqueue, but there are still other
1115	 * page waiters.
1116	 */
1117	if (!waitqueue_active(q) || !key.page_match) {
1118		ClearPageWaiters(page);
1119		/*
1120		 * It's possible to miss clearing Waiters here, when we woke
1121		 * our page waiters, but the hashed waitqueue has waiters for
1122		 * other pages on it.
1123		 *
1124		 * That's okay, it's a rare case. The next waker will clear it.
1125		 */
1126	}
1127	spin_unlock_irqrestore(&q->lock, flags);
1128}
1129
1130static void wake_up_page(struct page *page, int bit)
1131{
1132	if (!PageWaiters(page))
1133		return;
1134	wake_up_page_bit(page, bit);
1135}
1136
1137/*
1138 * A choice of three behaviors for wait_on_page_bit_common():
1139 */
1140enum behavior {
1141	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1142			 * __lock_page() waiting on then setting PG_locked.
1143			 */
1144	SHARED,		/* Hold ref to page and check the bit when woken, like
1145			 * wait_on_page_writeback() waiting on PG_writeback.
1146			 */
1147	DROP,		/* Drop ref to page before wait, no check when woken,
1148			 * like put_and_wait_on_page_locked() on PG_locked.
1149			 */
1150};
1151
1152/*
1153 * Attempt to check (or get) the page bit, and mark us done
1154 * if successful.
1155 */
1156static inline bool trylock_page_bit_common(struct page *page, int bit_nr,
1157					struct wait_queue_entry *wait)
1158{
1159	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1160		if (test_and_set_bit(bit_nr, &page->flags))
1161			return false;
1162	} else if (test_bit(bit_nr, &page->flags))
1163		return false;
1164
1165	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1166	return true;
1167}
1168
1169/* How many times do we accept lock stealing from under a waiter? */
1170int sysctl_page_lock_unfairness = 5;
1171
1172static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1173	struct page *page, int bit_nr, int state, enum behavior behavior)
1174{
1175	int unfairness = sysctl_page_lock_unfairness;
1176	struct wait_page_queue wait_page;
1177	wait_queue_entry_t *wait = &wait_page.wait;
 
1178	bool thrashing = false;
1179	bool delayacct = false;
1180	unsigned long pflags;
 
1181
1182	if (bit_nr == PG_locked &&
1183	    !PageUptodate(page) && PageWorkingset(page)) {
1184		if (!PageSwapBacked(page)) {
1185			delayacct_thrashing_start();
1186			delayacct = true;
1187		}
1188		psi_memstall_enter(&pflags);
1189		thrashing = true;
1190	}
1191
1192	init_wait(wait);
 
1193	wait->func = wake_page_function;
1194	wait_page.page = page;
1195	wait_page.bit_nr = bit_nr;
1196
1197repeat:
1198	wait->flags = 0;
1199	if (behavior == EXCLUSIVE) {
1200		wait->flags = WQ_FLAG_EXCLUSIVE;
1201		if (--unfairness < 0)
1202			wait->flags |= WQ_FLAG_CUSTOM;
1203	}
1204
1205	/*
1206	 * Do one last check whether we can get the
1207	 * page bit synchronously.
1208	 *
1209	 * Do the SetPageWaiters() marking before that
1210	 * to let any waker we _just_ missed know they
1211	 * need to wake us up (otherwise they'll never
1212	 * even go to the slow case that looks at the
1213	 * page queue), and add ourselves to the wait
1214	 * queue if we need to sleep.
1215	 *
1216	 * This part needs to be done under the queue
1217	 * lock to avoid races.
1218	 */
1219	spin_lock_irq(&q->lock);
1220	SetPageWaiters(page);
1221	if (!trylock_page_bit_common(page, bit_nr, wait))
1222		__add_wait_queue_entry_tail(q, wait);
1223	spin_unlock_irq(&q->lock);
1224
1225	/*
1226	 * From now on, all the logic will be based on
1227	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1228	 * see whether the page bit testing has already
1229	 * been done by the wake function.
1230	 *
1231	 * We can drop our reference to the page.
1232	 */
1233	if (behavior == DROP)
1234		put_page(page);
1235
1236	/*
1237	 * Note that until the "finish_wait()", or until
1238	 * we see the WQ_FLAG_WOKEN flag, we need to
1239	 * be very careful with the 'wait->flags', because
1240	 * we may race with a waker that sets them.
1241	 */
1242	for (;;) {
1243		unsigned int flags;
1244
1245		set_current_state(state);
 
1246
1247		/* Loop until we've been woken or interrupted */
1248		flags = smp_load_acquire(&wait->flags);
1249		if (!(flags & WQ_FLAG_WOKEN)) {
1250			if (signal_pending_state(state, current))
 
1251				break;
1252
1253			io_schedule();
1254			continue;
1255		}
1256
1257		/* If we were non-exclusive, we're done */
1258		if (behavior != EXCLUSIVE)
1259			break;
 
1260
1261		/* If the waker got the lock for us, we're done */
1262		if (flags & WQ_FLAG_DONE)
 
 
 
 
 
 
1263			break;
1264
1265		/*
1266		 * Otherwise, if we're getting the lock, we need to
1267		 * try to get it ourselves.
1268		 *
1269		 * And if that fails, we'll have to retry this all.
1270		 */
1271		if (unlikely(test_and_set_bit(bit_nr, &page->flags)))
1272			goto repeat;
1273
1274		wait->flags |= WQ_FLAG_DONE;
1275		break;
1276	}
1277
1278	/*
1279	 * If a signal happened, this 'finish_wait()' may remove the last
1280	 * waiter from the wait-queues, but the PageWaiters bit will remain
1281	 * set. That's ok. The next wakeup will take care of it, and trying
1282	 * to do it here would be difficult and prone to races.
1283	 */
1284	finish_wait(q, wait);
1285
1286	if (thrashing) {
1287		if (delayacct)
1288			delayacct_thrashing_end();
1289		psi_memstall_leave(&pflags);
1290	}
1291
1292	/*
1293	 * NOTE! The wait->flags weren't stable until we've done the
1294	 * 'finish_wait()', and we could have exited the loop above due
1295	 * to a signal, and had a wakeup event happen after the signal
1296	 * test but before the 'finish_wait()'.
1297	 *
1298	 * So only after the finish_wait() can we reliably determine
1299	 * if we got woken up or not, so we can now figure out the final
1300	 * return value based on that state without races.
1301	 *
1302	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1303	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1304	 */
1305	if (behavior == EXCLUSIVE)
1306		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1307
1308	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1309}
1310
1311void wait_on_page_bit(struct page *page, int bit_nr)
1312{
1313	wait_queue_head_t *q = page_waitqueue(page);
1314	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1315}
1316EXPORT_SYMBOL(wait_on_page_bit);
1317
1318int wait_on_page_bit_killable(struct page *page, int bit_nr)
1319{
1320	wait_queue_head_t *q = page_waitqueue(page);
1321	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1322}
1323EXPORT_SYMBOL(wait_on_page_bit_killable);
1324
1325static int __wait_on_page_locked_async(struct page *page,
1326				       struct wait_page_queue *wait, bool set)
1327{
1328	struct wait_queue_head *q = page_waitqueue(page);
1329	int ret = 0;
1330
1331	wait->page = page;
1332	wait->bit_nr = PG_locked;
1333
1334	spin_lock_irq(&q->lock);
1335	__add_wait_queue_entry_tail(q, &wait->wait);
1336	SetPageWaiters(page);
1337	if (set)
1338		ret = !trylock_page(page);
1339	else
1340		ret = PageLocked(page);
1341	/*
1342	 * If we were succesful now, we know we're still on the
1343	 * waitqueue as we're still under the lock. This means it's
1344	 * safe to remove and return success, we know the callback
1345	 * isn't going to trigger.
1346	 */
1347	if (!ret)
1348		__remove_wait_queue(q, &wait->wait);
1349	else
1350		ret = -EIOCBQUEUED;
1351	spin_unlock_irq(&q->lock);
1352	return ret;
1353}
1354
1355static int wait_on_page_locked_async(struct page *page,
1356				     struct wait_page_queue *wait)
1357{
1358	if (!PageLocked(page))
1359		return 0;
1360	return __wait_on_page_locked_async(compound_head(page), wait, false);
1361}
1362
1363/**
1364 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1365 * @page: The page to wait for.
1366 *
1367 * The caller should hold a reference on @page.  They expect the page to
1368 * become unlocked relatively soon, but do not wish to hold up migration
1369 * (for example) by holding the reference while waiting for the page to
1370 * come unlocked.  After this function returns, the caller should not
1371 * dereference @page.
1372 */
1373void put_and_wait_on_page_locked(struct page *page)
1374{
1375	wait_queue_head_t *q;
1376
1377	page = compound_head(page);
1378	q = page_waitqueue(page);
1379	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1380}
1381
1382/**
1383 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1384 * @page: Page defining the wait queue of interest
1385 * @waiter: Waiter to add to the queue
1386 *
1387 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1388 */
1389void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1390{
1391	wait_queue_head_t *q = page_waitqueue(page);
1392	unsigned long flags;
1393
1394	spin_lock_irqsave(&q->lock, flags);
1395	__add_wait_queue_entry_tail(q, waiter);
1396	SetPageWaiters(page);
1397	spin_unlock_irqrestore(&q->lock, flags);
1398}
1399EXPORT_SYMBOL_GPL(add_page_wait_queue);
1400
1401#ifndef clear_bit_unlock_is_negative_byte
1402
1403/*
1404 * PG_waiters is the high bit in the same byte as PG_lock.
1405 *
1406 * On x86 (and on many other architectures), we can clear PG_lock and
1407 * test the sign bit at the same time. But if the architecture does
1408 * not support that special operation, we just do this all by hand
1409 * instead.
1410 *
1411 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1412 * being cleared, but a memory barrier should be unnecessary since it is
1413 * in the same byte as PG_locked.
1414 */
1415static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1416{
1417	clear_bit_unlock(nr, mem);
1418	/* smp_mb__after_atomic(); */
1419	return test_bit(PG_waiters, mem);
1420}
1421
1422#endif
1423
1424/**
1425 * unlock_page - unlock a locked page
1426 * @page: the page
1427 *
1428 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1429 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1430 * mechanism between PageLocked pages and PageWriteback pages is shared.
1431 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1432 *
1433 * Note that this depends on PG_waiters being the sign bit in the byte
1434 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1435 * clear the PG_locked bit and test PG_waiters at the same time fairly
1436 * portably (architectures that do LL/SC can test any bit, while x86 can
1437 * test the sign bit).
1438 */
1439void unlock_page(struct page *page)
1440{
1441	BUILD_BUG_ON(PG_waiters != 7);
1442	page = compound_head(page);
1443	VM_BUG_ON_PAGE(!PageLocked(page), page);
1444	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1445		wake_up_page_bit(page, PG_locked);
1446}
1447EXPORT_SYMBOL(unlock_page);
1448
1449/**
1450 * end_page_writeback - end writeback against a page
1451 * @page: the page
1452 */
1453void end_page_writeback(struct page *page)
1454{
1455	/*
1456	 * TestClearPageReclaim could be used here but it is an atomic
1457	 * operation and overkill in this particular case. Failing to
1458	 * shuffle a page marked for immediate reclaim is too mild to
1459	 * justify taking an atomic operation penalty at the end of
1460	 * ever page writeback.
1461	 */
1462	if (PageReclaim(page)) {
1463		ClearPageReclaim(page);
1464		rotate_reclaimable_page(page);
1465	}
1466
1467	if (!test_clear_page_writeback(page))
1468		BUG();
1469
1470	smp_mb__after_atomic();
1471	wake_up_page(page, PG_writeback);
1472}
1473EXPORT_SYMBOL(end_page_writeback);
1474
1475/*
1476 * After completing I/O on a page, call this routine to update the page
1477 * flags appropriately
1478 */
1479void page_endio(struct page *page, bool is_write, int err)
1480{
1481	if (!is_write) {
1482		if (!err) {
1483			SetPageUptodate(page);
1484		} else {
1485			ClearPageUptodate(page);
1486			SetPageError(page);
1487		}
1488		unlock_page(page);
1489	} else {
1490		if (err) {
1491			struct address_space *mapping;
1492
1493			SetPageError(page);
1494			mapping = page_mapping(page);
1495			if (mapping)
1496				mapping_set_error(mapping, err);
1497		}
1498		end_page_writeback(page);
1499	}
1500}
1501EXPORT_SYMBOL_GPL(page_endio);
1502
1503/**
1504 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1505 * @__page: the page to lock
1506 */
1507void __lock_page(struct page *__page)
1508{
1509	struct page *page = compound_head(__page);
1510	wait_queue_head_t *q = page_waitqueue(page);
1511	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1512				EXCLUSIVE);
1513}
1514EXPORT_SYMBOL(__lock_page);
1515
1516int __lock_page_killable(struct page *__page)
1517{
1518	struct page *page = compound_head(__page);
1519	wait_queue_head_t *q = page_waitqueue(page);
1520	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1521					EXCLUSIVE);
1522}
1523EXPORT_SYMBOL_GPL(__lock_page_killable);
1524
1525int __lock_page_async(struct page *page, struct wait_page_queue *wait)
1526{
1527	return __wait_on_page_locked_async(page, wait, true);
1528}
1529
1530/*
1531 * Return values:
1532 * 1 - page is locked; mmap_lock is still held.
1533 * 0 - page is not locked.
1534 *     mmap_lock has been released (mmap_read_unlock(), unless flags had both
1535 *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1536 *     which case mmap_lock is still held.
1537 *
1538 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1539 * with the page locked and the mmap_lock unperturbed.
1540 */
1541int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1542			 unsigned int flags)
1543{
1544	if (fault_flag_allow_retry_first(flags)) {
1545		/*
1546		 * CAUTION! In this case, mmap_lock is not released
1547		 * even though return 0.
1548		 */
1549		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1550			return 0;
1551
1552		mmap_read_unlock(mm);
1553		if (flags & FAULT_FLAG_KILLABLE)
1554			wait_on_page_locked_killable(page);
1555		else
1556			wait_on_page_locked(page);
1557		return 0;
1558	} else {
1559		if (flags & FAULT_FLAG_KILLABLE) {
1560			int ret;
1561
1562			ret = __lock_page_killable(page);
1563			if (ret) {
1564				mmap_read_unlock(mm);
1565				return 0;
1566			}
1567		} else
1568			__lock_page(page);
1569		return 1;
1570	}
1571}
1572
1573/**
1574 * page_cache_next_miss() - Find the next gap in the page cache.
1575 * @mapping: Mapping.
1576 * @index: Index.
1577 * @max_scan: Maximum range to search.
1578 *
1579 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1580 * gap with the lowest index.
1581 *
1582 * This function may be called under the rcu_read_lock.  However, this will
1583 * not atomically search a snapshot of the cache at a single point in time.
1584 * For example, if a gap is created at index 5, then subsequently a gap is
1585 * created at index 10, page_cache_next_miss covering both indices may
1586 * return 10 if called under the rcu_read_lock.
1587 *
1588 * Return: The index of the gap if found, otherwise an index outside the
1589 * range specified (in which case 'return - index >= max_scan' will be true).
1590 * In the rare case of index wrap-around, 0 will be returned.
1591 */
1592pgoff_t page_cache_next_miss(struct address_space *mapping,
1593			     pgoff_t index, unsigned long max_scan)
1594{
1595	XA_STATE(xas, &mapping->i_pages, index);
1596
1597	while (max_scan--) {
1598		void *entry = xas_next(&xas);
1599		if (!entry || xa_is_value(entry))
1600			break;
1601		if (xas.xa_index == 0)
1602			break;
1603	}
1604
1605	return xas.xa_index;
1606}
1607EXPORT_SYMBOL(page_cache_next_miss);
1608
1609/**
1610 * page_cache_prev_miss() - Find the previous gap in the page cache.
1611 * @mapping: Mapping.
1612 * @index: Index.
1613 * @max_scan: Maximum range to search.
1614 *
1615 * Search the range [max(index - max_scan + 1, 0), index] for the
1616 * gap with the highest index.
1617 *
1618 * This function may be called under the rcu_read_lock.  However, this will
1619 * not atomically search a snapshot of the cache at a single point in time.
1620 * For example, if a gap is created at index 10, then subsequently a gap is
1621 * created at index 5, page_cache_prev_miss() covering both indices may
1622 * return 5 if called under the rcu_read_lock.
1623 *
1624 * Return: The index of the gap if found, otherwise an index outside the
1625 * range specified (in which case 'index - return >= max_scan' will be true).
1626 * In the rare case of wrap-around, ULONG_MAX will be returned.
1627 */
1628pgoff_t page_cache_prev_miss(struct address_space *mapping,
1629			     pgoff_t index, unsigned long max_scan)
1630{
1631	XA_STATE(xas, &mapping->i_pages, index);
1632
1633	while (max_scan--) {
1634		void *entry = xas_prev(&xas);
1635		if (!entry || xa_is_value(entry))
1636			break;
1637		if (xas.xa_index == ULONG_MAX)
1638			break;
1639	}
1640
1641	return xas.xa_index;
1642}
1643EXPORT_SYMBOL(page_cache_prev_miss);
1644
1645/**
1646 * find_get_entry - find and get a page cache entry
1647 * @mapping: the address_space to search
1648 * @offset: the page cache index
1649 *
1650 * Looks up the page cache slot at @mapping & @offset.  If there is a
1651 * page cache page, it is returned with an increased refcount.
1652 *
1653 * If the slot holds a shadow entry of a previously evicted page, or a
1654 * swap entry from shmem/tmpfs, it is returned.
1655 *
1656 * Return: the found page or shadow entry, %NULL if nothing is found.
1657 */
1658struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1659{
1660	XA_STATE(xas, &mapping->i_pages, offset);
1661	struct page *page;
1662
1663	rcu_read_lock();
1664repeat:
1665	xas_reset(&xas);
1666	page = xas_load(&xas);
1667	if (xas_retry(&xas, page))
1668		goto repeat;
1669	/*
1670	 * A shadow entry of a recently evicted page, or a swap entry from
1671	 * shmem/tmpfs.  Return it without attempting to raise page count.
1672	 */
1673	if (!page || xa_is_value(page))
1674		goto out;
1675
1676	if (!page_cache_get_speculative(page))
1677		goto repeat;
1678
1679	/*
1680	 * Has the page moved or been split?
1681	 * This is part of the lockless pagecache protocol. See
1682	 * include/linux/pagemap.h for details.
1683	 */
1684	if (unlikely(page != xas_reload(&xas))) {
1685		put_page(page);
1686		goto repeat;
1687	}
1688	page = find_subpage(page, offset);
1689out:
1690	rcu_read_unlock();
1691
1692	return page;
1693}
 
1694
1695/**
1696 * find_lock_entry - locate, pin and lock a page cache entry
1697 * @mapping: the address_space to search
1698 * @offset: the page cache index
1699 *
1700 * Looks up the page cache slot at @mapping & @offset.  If there is a
1701 * page cache page, it is returned locked and with an increased
1702 * refcount.
1703 *
1704 * If the slot holds a shadow entry of a previously evicted page, or a
1705 * swap entry from shmem/tmpfs, it is returned.
1706 *
1707 * find_lock_entry() may sleep.
1708 *
1709 * Return: the found page or shadow entry, %NULL if nothing is found.
1710 */
1711struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1712{
1713	struct page *page;
1714
1715repeat:
1716	page = find_get_entry(mapping, offset);
1717	if (page && !xa_is_value(page)) {
1718		lock_page(page);
1719		/* Has the page been truncated? */
1720		if (unlikely(page_mapping(page) != mapping)) {
1721			unlock_page(page);
1722			put_page(page);
1723			goto repeat;
1724		}
1725		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1726	}
1727	return page;
1728}
1729EXPORT_SYMBOL(find_lock_entry);
1730
1731/**
1732 * pagecache_get_page - Find and get a reference to a page.
1733 * @mapping: The address_space to search.
1734 * @index: The page index.
1735 * @fgp_flags: %FGP flags modify how the page is returned.
1736 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1737 *
1738 * Looks up the page cache entry at @mapping & @index.
1739 *
1740 * @fgp_flags can be zero or more of these flags:
1741 *
1742 * * %FGP_ACCESSED - The page will be marked accessed.
1743 * * %FGP_LOCK - The page is returned locked.
1744 * * %FGP_CREAT - If no page is present then a new page is allocated using
1745 *   @gfp_mask and added to the page cache and the VM's LRU list.
1746 *   The page is returned locked and with an increased refcount.
1747 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1748 *   page is already in cache.  If the page was allocated, unlock it before
1749 *   returning so the caller can do the same dance.
1750 * * %FGP_WRITE - The page will be written
1751 * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask
1752 * * %FGP_NOWAIT - Don't get blocked by page lock
1753 *
1754 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1755 * if the %GFP flags specified for %FGP_CREAT are atomic.
1756 *
1757 * If there is a page cache page, it is returned with an increased refcount.
1758 *
1759 * Return: The found page or %NULL otherwise.
1760 */
1761struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1762		int fgp_flags, gfp_t gfp_mask)
1763{
1764	struct page *page;
1765
1766repeat:
1767	page = find_get_entry(mapping, index);
1768	if (xa_is_value(page))
1769		page = NULL;
1770	if (!page)
1771		goto no_page;
1772
1773	if (fgp_flags & FGP_LOCK) {
1774		if (fgp_flags & FGP_NOWAIT) {
1775			if (!trylock_page(page)) {
1776				put_page(page);
1777				return NULL;
1778			}
1779		} else {
1780			lock_page(page);
1781		}
1782
1783		/* Has the page been truncated? */
1784		if (unlikely(compound_head(page)->mapping != mapping)) {
1785			unlock_page(page);
1786			put_page(page);
1787			goto repeat;
1788		}
1789		VM_BUG_ON_PAGE(page->index != index, page);
1790	}
1791
1792	if (fgp_flags & FGP_ACCESSED)
1793		mark_page_accessed(page);
1794	else if (fgp_flags & FGP_WRITE) {
1795		/* Clear idle flag for buffer write */
1796		if (page_is_idle(page))
1797			clear_page_idle(page);
1798	}
1799
1800no_page:
1801	if (!page && (fgp_flags & FGP_CREAT)) {
1802		int err;
1803		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1804			gfp_mask |= __GFP_WRITE;
1805		if (fgp_flags & FGP_NOFS)
1806			gfp_mask &= ~__GFP_FS;
1807
1808		page = __page_cache_alloc(gfp_mask);
1809		if (!page)
1810			return NULL;
1811
1812		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1813			fgp_flags |= FGP_LOCK;
1814
1815		/* Init accessed so avoid atomic mark_page_accessed later */
1816		if (fgp_flags & FGP_ACCESSED)
1817			__SetPageReferenced(page);
1818
1819		err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
1820		if (unlikely(err)) {
1821			put_page(page);
1822			page = NULL;
1823			if (err == -EEXIST)
1824				goto repeat;
1825		}
1826
1827		/*
1828		 * add_to_page_cache_lru locks the page, and for mmap we expect
1829		 * an unlocked page.
1830		 */
1831		if (page && (fgp_flags & FGP_FOR_MMAP))
1832			unlock_page(page);
1833	}
1834
1835	return page;
1836}
1837EXPORT_SYMBOL(pagecache_get_page);
1838
1839/**
1840 * find_get_entries - gang pagecache lookup
1841 * @mapping:	The address_space to search
1842 * @start:	The starting page cache index
1843 * @nr_entries:	The maximum number of entries
1844 * @entries:	Where the resulting entries are placed
1845 * @indices:	The cache indices corresponding to the entries in @entries
1846 *
1847 * find_get_entries() will search for and return a group of up to
1848 * @nr_entries entries in the mapping.  The entries are placed at
1849 * @entries.  find_get_entries() takes a reference against any actual
1850 * pages it returns.
1851 *
1852 * The search returns a group of mapping-contiguous page cache entries
1853 * with ascending indexes.  There may be holes in the indices due to
1854 * not-present pages.
1855 *
1856 * Any shadow entries of evicted pages, or swap entries from
1857 * shmem/tmpfs, are included in the returned array.
1858 *
1859 * If it finds a Transparent Huge Page, head or tail, find_get_entries()
1860 * stops at that page: the caller is likely to have a better way to handle
1861 * the compound page as a whole, and then skip its extent, than repeatedly
1862 * calling find_get_entries() to return all its tails.
1863 *
1864 * Return: the number of pages and shadow entries which were found.
1865 */
1866unsigned find_get_entries(struct address_space *mapping,
1867			  pgoff_t start, unsigned int nr_entries,
1868			  struct page **entries, pgoff_t *indices)
1869{
1870	XA_STATE(xas, &mapping->i_pages, start);
1871	struct page *page;
1872	unsigned int ret = 0;
1873
1874	if (!nr_entries)
1875		return 0;
1876
1877	rcu_read_lock();
1878	xas_for_each(&xas, page, ULONG_MAX) {
1879		if (xas_retry(&xas, page))
1880			continue;
1881		/*
1882		 * A shadow entry of a recently evicted page, a swap
1883		 * entry from shmem/tmpfs or a DAX entry.  Return it
1884		 * without attempting to raise page count.
1885		 */
1886		if (xa_is_value(page))
1887			goto export;
1888
1889		if (!page_cache_get_speculative(page))
1890			goto retry;
1891
1892		/* Has the page moved or been split? */
1893		if (unlikely(page != xas_reload(&xas)))
1894			goto put_page;
 
1895
1896		/*
1897		 * Terminate early on finding a THP, to allow the caller to
1898		 * handle it all at once; but continue if this is hugetlbfs.
1899		 */
1900		if (PageTransHuge(page) && !PageHuge(page)) {
1901			page = find_subpage(page, xas.xa_index);
1902			nr_entries = ret + 1;
1903		}
1904export:
1905		indices[ret] = xas.xa_index;
1906		entries[ret] = page;
1907		if (++ret == nr_entries)
1908			break;
1909		continue;
1910put_page:
1911		put_page(page);
1912retry:
1913		xas_reset(&xas);
1914	}
1915	rcu_read_unlock();
1916	return ret;
1917}
1918
1919/**
1920 * find_get_pages_range - gang pagecache lookup
1921 * @mapping:	The address_space to search
1922 * @start:	The starting page index
1923 * @end:	The final page index (inclusive)
1924 * @nr_pages:	The maximum number of pages
1925 * @pages:	Where the resulting pages are placed
1926 *
1927 * find_get_pages_range() will search for and return a group of up to @nr_pages
1928 * pages in the mapping starting at index @start and up to index @end
1929 * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
1930 * a reference against the returned pages.
1931 *
1932 * The search returns a group of mapping-contiguous pages with ascending
1933 * indexes.  There may be holes in the indices due to not-present pages.
1934 * We also update @start to index the next page for the traversal.
1935 *
1936 * Return: the number of pages which were found. If this number is
1937 * smaller than @nr_pages, the end of specified range has been
1938 * reached.
1939 */
1940unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1941			      pgoff_t end, unsigned int nr_pages,
1942			      struct page **pages)
1943{
1944	XA_STATE(xas, &mapping->i_pages, *start);
1945	struct page *page;
1946	unsigned ret = 0;
1947
1948	if (unlikely(!nr_pages))
1949		return 0;
1950
1951	rcu_read_lock();
1952	xas_for_each(&xas, page, end) {
1953		if (xas_retry(&xas, page))
1954			continue;
1955		/* Skip over shadow, swap and DAX entries */
1956		if (xa_is_value(page))
1957			continue;
1958
1959		if (!page_cache_get_speculative(page))
1960			goto retry;
1961
1962		/* Has the page moved or been split? */
1963		if (unlikely(page != xas_reload(&xas)))
1964			goto put_page;
1965
1966		pages[ret] = find_subpage(page, xas.xa_index);
1967		if (++ret == nr_pages) {
1968			*start = xas.xa_index + 1;
1969			goto out;
1970		}
1971		continue;
1972put_page:
1973		put_page(page);
1974retry:
1975		xas_reset(&xas);
1976	}
1977
1978	/*
1979	 * We come here when there is no page beyond @end. We take care to not
1980	 * overflow the index @start as it confuses some of the callers. This
1981	 * breaks the iteration when there is a page at index -1 but that is
1982	 * already broken anyway.
1983	 */
1984	if (end == (pgoff_t)-1)
1985		*start = (pgoff_t)-1;
1986	else
1987		*start = end + 1;
1988out:
1989	rcu_read_unlock();
1990
1991	return ret;
1992}
1993
1994/**
1995 * find_get_pages_contig - gang contiguous pagecache lookup
1996 * @mapping:	The address_space to search
1997 * @index:	The starting page index
1998 * @nr_pages:	The maximum number of pages
1999 * @pages:	Where the resulting pages are placed
2000 *
2001 * find_get_pages_contig() works exactly like find_get_pages(), except
2002 * that the returned number of pages are guaranteed to be contiguous.
2003 *
2004 * Return: the number of pages which were found.
2005 */
2006unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2007			       unsigned int nr_pages, struct page **pages)
2008{
2009	XA_STATE(xas, &mapping->i_pages, index);
2010	struct page *page;
2011	unsigned int ret = 0;
2012
2013	if (unlikely(!nr_pages))
2014		return 0;
2015
2016	rcu_read_lock();
2017	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
2018		if (xas_retry(&xas, page))
2019			continue;
2020		/*
2021		 * If the entry has been swapped out, we can stop looking.
2022		 * No current caller is looking for DAX entries.
2023		 */
2024		if (xa_is_value(page))
2025			break;
2026
2027		if (!page_cache_get_speculative(page))
2028			goto retry;
2029
2030		/* Has the page moved or been split? */
2031		if (unlikely(page != xas_reload(&xas)))
2032			goto put_page;
2033
2034		pages[ret] = find_subpage(page, xas.xa_index);
2035		if (++ret == nr_pages)
2036			break;
2037		continue;
2038put_page:
2039		put_page(page);
2040retry:
2041		xas_reset(&xas);
2042	}
2043	rcu_read_unlock();
2044	return ret;
2045}
2046EXPORT_SYMBOL(find_get_pages_contig);
2047
2048/**
2049 * find_get_pages_range_tag - find and return pages in given range matching @tag
2050 * @mapping:	the address_space to search
2051 * @index:	the starting page index
2052 * @end:	The final page index (inclusive)
2053 * @tag:	the tag index
2054 * @nr_pages:	the maximum number of pages
2055 * @pages:	where the resulting pages are placed
2056 *
2057 * Like find_get_pages, except we only return pages which are tagged with
2058 * @tag.   We update @index to index the next page for the traversal.
2059 *
2060 * Return: the number of pages which were found.
2061 */
2062unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2063			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2064			struct page **pages)
2065{
2066	XA_STATE(xas, &mapping->i_pages, *index);
2067	struct page *page;
2068	unsigned ret = 0;
2069
2070	if (unlikely(!nr_pages))
2071		return 0;
2072
2073	rcu_read_lock();
2074	xas_for_each_marked(&xas, page, end, tag) {
2075		if (xas_retry(&xas, page))
2076			continue;
2077		/*
2078		 * Shadow entries should never be tagged, but this iteration
2079		 * is lockless so there is a window for page reclaim to evict
2080		 * a page we saw tagged.  Skip over it.
2081		 */
2082		if (xa_is_value(page))
2083			continue;
2084
2085		if (!page_cache_get_speculative(page))
2086			goto retry;
2087
2088		/* Has the page moved or been split? */
2089		if (unlikely(page != xas_reload(&xas)))
2090			goto put_page;
2091
2092		pages[ret] = find_subpage(page, xas.xa_index);
2093		if (++ret == nr_pages) {
2094			*index = xas.xa_index + 1;
2095			goto out;
2096		}
2097		continue;
2098put_page:
2099		put_page(page);
2100retry:
2101		xas_reset(&xas);
2102	}
2103
2104	/*
2105	 * We come here when we got to @end. We take care to not overflow the
2106	 * index @index as it confuses some of the callers. This breaks the
2107	 * iteration when there is a page at index -1 but that is already
2108	 * broken anyway.
2109	 */
2110	if (end == (pgoff_t)-1)
2111		*index = (pgoff_t)-1;
2112	else
2113		*index = end + 1;
2114out:
2115	rcu_read_unlock();
2116
2117	return ret;
2118}
2119EXPORT_SYMBOL(find_get_pages_range_tag);
2120
2121/*
2122 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2123 * a _large_ part of the i/o request. Imagine the worst scenario:
2124 *
2125 *      ---R__________________________________________B__________
2126 *         ^ reading here                             ^ bad block(assume 4k)
2127 *
2128 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2129 * => failing the whole request => read(R) => read(R+1) =>
2130 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2131 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2132 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2133 *
2134 * It is going insane. Fix it by quickly scaling down the readahead size.
2135 */
2136static void shrink_readahead_size_eio(struct file_ra_state *ra)
 
2137{
2138	ra->ra_pages /= 4;
2139}
2140
2141/**
2142 * generic_file_buffered_read - generic file read routine
2143 * @iocb:	the iocb to read
2144 * @iter:	data destination
2145 * @written:	already copied
2146 *
2147 * This is a generic file read routine, and uses the
2148 * mapping->a_ops->readpage() function for the actual low-level stuff.
2149 *
2150 * This is really ugly. But the goto's actually try to clarify some
2151 * of the logic when it comes to error handling etc.
2152 *
2153 * Return:
2154 * * total number of bytes copied, including those the were already @written
2155 * * negative error code if nothing was copied
2156 */
2157ssize_t generic_file_buffered_read(struct kiocb *iocb,
2158		struct iov_iter *iter, ssize_t written)
2159{
2160	struct file *filp = iocb->ki_filp;
2161	struct address_space *mapping = filp->f_mapping;
2162	struct inode *inode = mapping->host;
2163	struct file_ra_state *ra = &filp->f_ra;
2164	loff_t *ppos = &iocb->ki_pos;
2165	pgoff_t index;
2166	pgoff_t last_index;
2167	pgoff_t prev_index;
2168	unsigned long offset;      /* offset into pagecache page */
2169	unsigned int prev_offset;
2170	int error = 0;
2171
2172	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2173		return 0;
2174	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2175
2176	index = *ppos >> PAGE_SHIFT;
2177	prev_index = ra->prev_pos >> PAGE_SHIFT;
2178	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2179	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2180	offset = *ppos & ~PAGE_MASK;
2181
2182	for (;;) {
2183		struct page *page;
2184		pgoff_t end_index;
2185		loff_t isize;
2186		unsigned long nr, ret;
2187
2188		cond_resched();
2189find_page:
2190		if (fatal_signal_pending(current)) {
2191			error = -EINTR;
2192			goto out;
2193		}
2194
2195		page = find_get_page(mapping, index);
2196		if (!page) {
2197			if (iocb->ki_flags & IOCB_NOIO)
2198				goto would_block;
2199			page_cache_sync_readahead(mapping,
2200					ra, filp,
2201					index, last_index - index);
2202			page = find_get_page(mapping, index);
2203			if (unlikely(page == NULL))
2204				goto no_cached_page;
2205		}
2206		if (PageReadahead(page)) {
2207			if (iocb->ki_flags & IOCB_NOIO) {
2208				put_page(page);
2209				goto out;
2210			}
2211			page_cache_async_readahead(mapping,
2212					ra, filp, page,
2213					index, last_index - index);
2214		}
2215		if (!PageUptodate(page)) {
 
 
 
 
 
2216			/*
2217			 * See comment in do_read_cache_page on why
2218			 * wait_on_page_locked is used to avoid unnecessarily
2219			 * serialisations and why it's safe.
2220			 */
2221			if (iocb->ki_flags & IOCB_WAITQ) {
2222				if (written) {
2223					put_page(page);
2224					goto out;
2225				}
2226				error = wait_on_page_locked_async(page,
2227								iocb->ki_waitq);
2228			} else {
2229				if (iocb->ki_flags & IOCB_NOWAIT) {
2230					put_page(page);
2231					goto would_block;
2232				}
2233				error = wait_on_page_locked_killable(page);
2234			}
2235			if (unlikely(error))
2236				goto readpage_error;
2237			if (PageUptodate(page))
2238				goto page_ok;
2239
2240			if (inode->i_blkbits == PAGE_SHIFT ||
2241					!mapping->a_ops->is_partially_uptodate)
2242				goto page_not_up_to_date;
2243			/* pipes can't handle partially uptodate pages */
2244			if (unlikely(iov_iter_is_pipe(iter)))
2245				goto page_not_up_to_date;
2246			if (!trylock_page(page))
2247				goto page_not_up_to_date;
2248			/* Did it get truncated before we got the lock? */
2249			if (!page->mapping)
2250				goto page_not_up_to_date_locked;
2251			if (!mapping->a_ops->is_partially_uptodate(page,
2252							offset, iter->count))
2253				goto page_not_up_to_date_locked;
2254			unlock_page(page);
2255		}
2256page_ok:
2257		/*
2258		 * i_size must be checked after we know the page is Uptodate.
2259		 *
2260		 * Checking i_size after the check allows us to calculate
2261		 * the correct value for "nr", which means the zero-filled
2262		 * part of the page is not copied back to userspace (unless
2263		 * another truncate extends the file - this is desired though).
2264		 */
2265
2266		isize = i_size_read(inode);
2267		end_index = (isize - 1) >> PAGE_SHIFT;
2268		if (unlikely(!isize || index > end_index)) {
2269			put_page(page);
2270			goto out;
2271		}
2272
2273		/* nr is the maximum number of bytes to copy from this page */
2274		nr = PAGE_SIZE;
2275		if (index == end_index) {
2276			nr = ((isize - 1) & ~PAGE_MASK) + 1;
2277			if (nr <= offset) {
2278				put_page(page);
2279				goto out;
2280			}
2281		}
2282		nr = nr - offset;
2283
2284		/* If users can be writing to this page using arbitrary
2285		 * virtual addresses, take care about potential aliasing
2286		 * before reading the page on the kernel side.
2287		 */
2288		if (mapping_writably_mapped(mapping))
2289			flush_dcache_page(page);
2290
2291		/*
2292		 * When a sequential read accesses a page several times,
2293		 * only mark it as accessed the first time.
2294		 */
2295		if (prev_index != index || offset != prev_offset)
2296			mark_page_accessed(page);
2297		prev_index = index;
2298
2299		/*
2300		 * Ok, we have the page, and it's up-to-date, so
2301		 * now we can copy it to user space...
2302		 */
2303
2304		ret = copy_page_to_iter(page, offset, nr, iter);
2305		offset += ret;
2306		index += offset >> PAGE_SHIFT;
2307		offset &= ~PAGE_MASK;
2308		prev_offset = offset;
2309
2310		put_page(page);
2311		written += ret;
2312		if (!iov_iter_count(iter))
2313			goto out;
2314		if (ret < nr) {
2315			error = -EFAULT;
2316			goto out;
2317		}
2318		continue;
2319
2320page_not_up_to_date:
2321		/* Get exclusive access to the page ... */
2322		if (iocb->ki_flags & IOCB_WAITQ)
2323			error = lock_page_async(page, iocb->ki_waitq);
2324		else
2325			error = lock_page_killable(page);
2326		if (unlikely(error))
2327			goto readpage_error;
2328
2329page_not_up_to_date_locked:
2330		/* Did it get truncated before we got the lock? */
2331		if (!page->mapping) {
2332			unlock_page(page);
2333			put_page(page);
2334			continue;
2335		}
2336
2337		/* Did somebody else fill it already? */
2338		if (PageUptodate(page)) {
2339			unlock_page(page);
2340			goto page_ok;
2341		}
2342
2343readpage:
2344		if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT)) {
2345			unlock_page(page);
2346			put_page(page);
2347			goto would_block;
2348		}
2349		/*
2350		 * A previous I/O error may have been due to temporary
2351		 * failures, eg. multipath errors.
2352		 * PG_error will be set again if readpage fails.
2353		 */
2354		ClearPageError(page);
2355		/* Start the actual read. The read will unlock the page. */
2356		error = mapping->a_ops->readpage(filp, page);
2357
2358		if (unlikely(error)) {
2359			if (error == AOP_TRUNCATED_PAGE) {
2360				put_page(page);
2361				error = 0;
2362				goto find_page;
2363			}
2364			goto readpage_error;
2365		}
2366
2367		if (!PageUptodate(page)) {
2368			if (iocb->ki_flags & IOCB_WAITQ)
2369				error = lock_page_async(page, iocb->ki_waitq);
2370			else
2371				error = lock_page_killable(page);
2372
2373			if (unlikely(error))
2374				goto readpage_error;
2375			if (!PageUptodate(page)) {
2376				if (page->mapping == NULL) {
2377					/*
2378					 * invalidate_mapping_pages got it
2379					 */
2380					unlock_page(page);
2381					put_page(page);
2382					goto find_page;
2383				}
2384				unlock_page(page);
2385				shrink_readahead_size_eio(ra);
2386				error = -EIO;
2387				goto readpage_error;
2388			}
2389			unlock_page(page);
2390		}
2391
2392		goto page_ok;
2393
2394readpage_error:
2395		/* UHHUH! A synchronous read error occurred. Report it */
2396		put_page(page);
2397		goto out;
2398
2399no_cached_page:
2400		/*
2401		 * Ok, it wasn't cached, so we need to create a new
2402		 * page..
2403		 */
2404		page = page_cache_alloc(mapping);
2405		if (!page) {
2406			error = -ENOMEM;
2407			goto out;
2408		}
2409		error = add_to_page_cache_lru(page, mapping, index,
2410				mapping_gfp_constraint(mapping, GFP_KERNEL));
2411		if (error) {
2412			put_page(page);
2413			if (error == -EEXIST) {
2414				error = 0;
2415				goto find_page;
2416			}
2417			goto out;
2418		}
2419		goto readpage;
2420	}
2421
2422would_block:
2423	error = -EAGAIN;
2424out:
2425	ra->prev_pos = prev_index;
2426	ra->prev_pos <<= PAGE_SHIFT;
2427	ra->prev_pos |= prev_offset;
2428
2429	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2430	file_accessed(filp);
2431	return written ? written : error;
2432}
2433EXPORT_SYMBOL_GPL(generic_file_buffered_read);
2434
2435/**
2436 * generic_file_read_iter - generic filesystem read routine
2437 * @iocb:	kernel I/O control block
2438 * @iter:	destination for the data read
2439 *
2440 * This is the "read_iter()" routine for all filesystems
2441 * that can use the page cache directly.
2442 *
2443 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2444 * be returned when no data can be read without waiting for I/O requests
2445 * to complete; it doesn't prevent readahead.
2446 *
2447 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2448 * requests shall be made for the read or for readahead.  When no data
2449 * can be read, -EAGAIN shall be returned.  When readahead would be
2450 * triggered, a partial, possibly empty read shall be returned.
2451 *
2452 * Return:
2453 * * number of bytes copied, even for partial reads
2454 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2455 */
2456ssize_t
2457generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2458{
2459	size_t count = iov_iter_count(iter);
2460	ssize_t retval = 0;
2461
2462	if (!count)
2463		goto out; /* skip atime */
2464
2465	if (iocb->ki_flags & IOCB_DIRECT) {
2466		struct file *file = iocb->ki_filp;
2467		struct address_space *mapping = file->f_mapping;
2468		struct inode *inode = mapping->host;
2469		loff_t size;
2470
2471		size = i_size_read(inode);
2472		if (iocb->ki_flags & IOCB_NOWAIT) {
2473			if (filemap_range_has_page(mapping, iocb->ki_pos,
2474						   iocb->ki_pos + count - 1))
2475				return -EAGAIN;
2476		} else {
2477			retval = filemap_write_and_wait_range(mapping,
2478						iocb->ki_pos,
2479					        iocb->ki_pos + count - 1);
2480			if (retval < 0)
2481				goto out;
2482		}
2483
2484		file_accessed(file);
2485
2486		retval = mapping->a_ops->direct_IO(iocb, iter);
2487		if (retval >= 0) {
2488			iocb->ki_pos += retval;
2489			count -= retval;
2490		}
2491		iov_iter_revert(iter, count - iov_iter_count(iter));
2492
2493		/*
2494		 * Btrfs can have a short DIO read if we encounter
2495		 * compressed extents, so if there was an error, or if
2496		 * we've already read everything we wanted to, or if
2497		 * there was a short read because we hit EOF, go ahead
2498		 * and return.  Otherwise fallthrough to buffered io for
2499		 * the rest of the read.  Buffered reads will not work for
2500		 * DAX files, so don't bother trying.
2501		 */
2502		if (retval < 0 || !count || iocb->ki_pos >= size ||
2503		    IS_DAX(inode))
2504			goto out;
2505	}
2506
2507	retval = generic_file_buffered_read(iocb, iter, retval);
2508out:
2509	return retval;
2510}
2511EXPORT_SYMBOL(generic_file_read_iter);
2512
2513#ifdef CONFIG_MMU
2514#define MMAP_LOTSAMISS  (100)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2515/*
2516 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2517 * @vmf - the vm_fault for this fault.
2518 * @page - the page to lock.
2519 * @fpin - the pointer to the file we may pin (or is already pinned).
2520 *
2521 * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
2522 * It differs in that it actually returns the page locked if it returns 1 and 0
2523 * if it couldn't lock the page.  If we did have to drop the mmap_lock then fpin
2524 * will point to the pinned file and needs to be fput()'ed at a later point.
2525 */
2526static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2527				     struct file **fpin)
2528{
2529	if (trylock_page(page))
2530		return 1;
2531
2532	/*
2533	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2534	 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2535	 * is supposed to work. We have way too many special cases..
2536	 */
2537	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2538		return 0;
2539
2540	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2541	if (vmf->flags & FAULT_FLAG_KILLABLE) {
2542		if (__lock_page_killable(page)) {
2543			/*
2544			 * We didn't have the right flags to drop the mmap_lock,
2545			 * but all fault_handlers only check for fatal signals
2546			 * if we return VM_FAULT_RETRY, so we need to drop the
2547			 * mmap_lock here and return 0 if we don't have a fpin.
2548			 */
2549			if (*fpin == NULL)
2550				mmap_read_unlock(vmf->vma->vm_mm);
2551			return 0;
2552		}
2553	} else
2554		__lock_page(page);
2555	return 1;
2556}
2557
2558
2559/*
2560 * Synchronous readahead happens when we don't even find a page in the page
2561 * cache at all.  We don't want to perform IO under the mmap sem, so if we have
2562 * to drop the mmap sem we return the file that was pinned in order for us to do
2563 * that.  If we didn't pin a file then we return NULL.  The file that is
2564 * returned needs to be fput()'ed when we're done with it.
2565 */
2566static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2567{
2568	struct file *file = vmf->vma->vm_file;
2569	struct file_ra_state *ra = &file->f_ra;
2570	struct address_space *mapping = file->f_mapping;
2571	struct file *fpin = NULL;
2572	pgoff_t offset = vmf->pgoff;
2573	unsigned int mmap_miss;
2574
2575	/* If we don't want any read-ahead, don't bother */
2576	if (vmf->vma->vm_flags & VM_RAND_READ)
2577		return fpin;
2578	if (!ra->ra_pages)
2579		return fpin;
2580
2581	if (vmf->vma->vm_flags & VM_SEQ_READ) {
2582		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2583		page_cache_sync_readahead(mapping, ra, file, offset,
2584					  ra->ra_pages);
2585		return fpin;
2586	}
2587
2588	/* Avoid banging the cache line if not needed */
2589	mmap_miss = READ_ONCE(ra->mmap_miss);
2590	if (mmap_miss < MMAP_LOTSAMISS * 10)
2591		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
2592
2593	/*
2594	 * Do we miss much more than hit in this file? If so,
2595	 * stop bothering with read-ahead. It will only hurt.
2596	 */
2597	if (mmap_miss > MMAP_LOTSAMISS)
2598		return fpin;
2599
2600	/*
2601	 * mmap read-around
2602	 */
2603	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2604	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2605	ra->size = ra->ra_pages;
2606	ra->async_size = ra->ra_pages / 4;
2607	ra_submit(ra, mapping, file);
2608	return fpin;
2609}
2610
2611/*
2612 * Asynchronous readahead happens when we find the page and PG_readahead,
2613 * so we want to possibly extend the readahead further.  We return the file that
2614 * was pinned if we have to drop the mmap_lock in order to do IO.
2615 */
2616static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2617					    struct page *page)
2618{
2619	struct file *file = vmf->vma->vm_file;
2620	struct file_ra_state *ra = &file->f_ra;
2621	struct address_space *mapping = file->f_mapping;
2622	struct file *fpin = NULL;
2623	unsigned int mmap_miss;
2624	pgoff_t offset = vmf->pgoff;
2625
2626	/* If we don't want any read-ahead, don't bother */
2627	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
2628		return fpin;
2629	mmap_miss = READ_ONCE(ra->mmap_miss);
2630	if (mmap_miss)
2631		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
2632	if (PageReadahead(page)) {
2633		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2634		page_cache_async_readahead(mapping, ra, file,
2635					   page, offset, ra->ra_pages);
2636	}
2637	return fpin;
2638}
2639
2640/**
2641 * filemap_fault - read in file data for page fault handling
2642 * @vmf:	struct vm_fault containing details of the fault
2643 *
2644 * filemap_fault() is invoked via the vma operations vector for a
2645 * mapped memory region to read in file data during a page fault.
2646 *
2647 * The goto's are kind of ugly, but this streamlines the normal case of having
2648 * it in the page cache, and handles the special cases reasonably without
2649 * having a lot of duplicated code.
2650 *
2651 * vma->vm_mm->mmap_lock must be held on entry.
2652 *
2653 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
2654 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2655 *
2656 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
2657 * has not been released.
2658 *
2659 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2660 *
2661 * Return: bitwise-OR of %VM_FAULT_ codes.
2662 */
2663vm_fault_t filemap_fault(struct vm_fault *vmf)
2664{
2665	int error;
2666	struct file *file = vmf->vma->vm_file;
2667	struct file *fpin = NULL;
2668	struct address_space *mapping = file->f_mapping;
2669	struct file_ra_state *ra = &file->f_ra;
2670	struct inode *inode = mapping->host;
2671	pgoff_t offset = vmf->pgoff;
2672	pgoff_t max_off;
2673	struct page *page;
2674	vm_fault_t ret = 0;
2675
2676	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2677	if (unlikely(offset >= max_off))
2678		return VM_FAULT_SIGBUS;
2679
2680	/*
2681	 * Do we have something in the page cache already?
2682	 */
2683	page = find_get_page(mapping, offset);
2684	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2685		/*
2686		 * We found the page, so try async readahead before
2687		 * waiting for the lock.
2688		 */
2689		fpin = do_async_mmap_readahead(vmf, page);
2690	} else if (!page) {
2691		/* No page in the page cache at all */
2692		count_vm_event(PGMAJFAULT);
2693		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2694		ret = VM_FAULT_MAJOR;
2695		fpin = do_sync_mmap_readahead(vmf);
2696retry_find:
2697		page = pagecache_get_page(mapping, offset,
2698					  FGP_CREAT|FGP_FOR_MMAP,
2699					  vmf->gfp_mask);
2700		if (!page) {
2701			if (fpin)
2702				goto out_retry;
2703			return VM_FAULT_OOM;
2704		}
2705	}
2706
2707	if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2708		goto out_retry;
2709
2710	/* Did it get truncated? */
2711	if (unlikely(compound_head(page)->mapping != mapping)) {
2712		unlock_page(page);
2713		put_page(page);
2714		goto retry_find;
2715	}
2716	VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
2717
2718	/*
2719	 * We have a locked page in the page cache, now we need to check
2720	 * that it's up-to-date. If not, it is going to be due to an error.
2721	 */
2722	if (unlikely(!PageUptodate(page)))
2723		goto page_not_uptodate;
2724
2725	/*
2726	 * We've made it this far and we had to drop our mmap_lock, now is the
2727	 * time to return to the upper layer and have it re-find the vma and
2728	 * redo the fault.
2729	 */
2730	if (fpin) {
2731		unlock_page(page);
2732		goto out_retry;
2733	}
2734
2735	/*
2736	 * Found the page and have a reference on it.
2737	 * We must recheck i_size under page lock.
2738	 */
2739	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2740	if (unlikely(offset >= max_off)) {
2741		unlock_page(page);
2742		put_page(page);
2743		return VM_FAULT_SIGBUS;
2744	}
2745
2746	vmf->page = page;
2747	return ret | VM_FAULT_LOCKED;
2748
2749page_not_uptodate:
2750	/*
2751	 * Umm, take care of errors if the page isn't up-to-date.
2752	 * Try to re-read it _once_. We do this synchronously,
2753	 * because there really aren't any performance issues here
2754	 * and we need to check for errors.
2755	 */
2756	ClearPageError(page);
2757	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2758	error = mapping->a_ops->readpage(file, page);
2759	if (!error) {
2760		wait_on_page_locked(page);
2761		if (!PageUptodate(page))
2762			error = -EIO;
2763	}
2764	if (fpin)
2765		goto out_retry;
2766	put_page(page);
2767
2768	if (!error || error == AOP_TRUNCATED_PAGE)
2769		goto retry_find;
2770
2771	shrink_readahead_size_eio(ra);
 
2772	return VM_FAULT_SIGBUS;
2773
2774out_retry:
2775	/*
2776	 * We dropped the mmap_lock, we need to return to the fault handler to
2777	 * re-find the vma and come back and find our hopefully still populated
2778	 * page.
2779	 */
2780	if (page)
2781		put_page(page);
2782	if (fpin)
2783		fput(fpin);
2784	return ret | VM_FAULT_RETRY;
2785}
2786EXPORT_SYMBOL(filemap_fault);
2787
2788void filemap_map_pages(struct vm_fault *vmf,
2789		pgoff_t start_pgoff, pgoff_t end_pgoff)
2790{
2791	struct file *file = vmf->vma->vm_file;
2792	struct address_space *mapping = file->f_mapping;
2793	pgoff_t last_pgoff = start_pgoff;
2794	unsigned long max_idx;
2795	XA_STATE(xas, &mapping->i_pages, start_pgoff);
2796	struct page *page;
2797	unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
2798
2799	rcu_read_lock();
2800	xas_for_each(&xas, page, end_pgoff) {
2801		if (xas_retry(&xas, page))
2802			continue;
2803		if (xa_is_value(page))
2804			goto next;
2805
2806		/*
2807		 * Check for a locked page first, as a speculative
2808		 * reference may adversely influence page migration.
2809		 */
2810		if (PageLocked(page))
2811			goto next;
2812		if (!page_cache_get_speculative(page))
2813			goto next;
2814
2815		/* Has the page moved or been split? */
2816		if (unlikely(page != xas_reload(&xas)))
2817			goto skip;
2818		page = find_subpage(page, xas.xa_index);
2819
2820		if (!PageUptodate(page) ||
2821				PageReadahead(page) ||
2822				PageHWPoison(page))
2823			goto skip;
2824		if (!trylock_page(page))
2825			goto skip;
2826
2827		if (page->mapping != mapping || !PageUptodate(page))
2828			goto unlock;
2829
2830		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2831		if (page->index >= max_idx)
2832			goto unlock;
2833
2834		if (mmap_miss > 0)
2835			mmap_miss--;
2836
2837		vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
2838		if (vmf->pte)
2839			vmf->pte += xas.xa_index - last_pgoff;
2840		last_pgoff = xas.xa_index;
2841		if (alloc_set_pte(vmf, page))
2842			goto unlock;
2843		unlock_page(page);
2844		goto next;
2845unlock:
2846		unlock_page(page);
2847skip:
2848		put_page(page);
2849next:
2850		/* Huge page is mapped? No need to proceed. */
2851		if (pmd_trans_huge(*vmf->pmd))
2852			break;
2853	}
2854	rcu_read_unlock();
2855	WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
2856}
2857EXPORT_SYMBOL(filemap_map_pages);
2858
2859vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2860{
2861	struct page *page = vmf->page;
2862	struct inode *inode = file_inode(vmf->vma->vm_file);
2863	vm_fault_t ret = VM_FAULT_LOCKED;
2864
2865	sb_start_pagefault(inode->i_sb);
2866	file_update_time(vmf->vma->vm_file);
2867	lock_page(page);
2868	if (page->mapping != inode->i_mapping) {
2869		unlock_page(page);
2870		ret = VM_FAULT_NOPAGE;
2871		goto out;
2872	}
2873	/*
2874	 * We mark the page dirty already here so that when freeze is in
2875	 * progress, we are guaranteed that writeback during freezing will
2876	 * see the dirty page and writeprotect it again.
2877	 */
2878	set_page_dirty(page);
2879	wait_for_stable_page(page);
2880out:
2881	sb_end_pagefault(inode->i_sb);
2882	return ret;
2883}
2884
2885const struct vm_operations_struct generic_file_vm_ops = {
2886	.fault		= filemap_fault,
2887	.map_pages	= filemap_map_pages,
2888	.page_mkwrite	= filemap_page_mkwrite,
2889};
2890
2891/* This is used for a general mmap of a disk file */
2892
2893int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2894{
2895	struct address_space *mapping = file->f_mapping;
2896
2897	if (!mapping->a_ops->readpage)
2898		return -ENOEXEC;
2899	file_accessed(file);
2900	vma->vm_ops = &generic_file_vm_ops;
2901	return 0;
2902}
2903
2904/*
2905 * This is for filesystems which do not implement ->writepage.
2906 */
2907int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2908{
2909	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2910		return -EINVAL;
2911	return generic_file_mmap(file, vma);
2912}
2913#else
2914vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2915{
2916	return VM_FAULT_SIGBUS;
2917}
2918int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2919{
2920	return -ENOSYS;
2921}
2922int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2923{
2924	return -ENOSYS;
2925}
2926#endif /* CONFIG_MMU */
2927
2928EXPORT_SYMBOL(filemap_page_mkwrite);
2929EXPORT_SYMBOL(generic_file_mmap);
2930EXPORT_SYMBOL(generic_file_readonly_mmap);
2931
2932static struct page *wait_on_page_read(struct page *page)
2933{
2934	if (!IS_ERR(page)) {
2935		wait_on_page_locked(page);
2936		if (!PageUptodate(page)) {
2937			put_page(page);
2938			page = ERR_PTR(-EIO);
2939		}
2940	}
2941	return page;
2942}
2943
2944static struct page *do_read_cache_page(struct address_space *mapping,
2945				pgoff_t index,
2946				int (*filler)(void *, struct page *),
2947				void *data,
2948				gfp_t gfp)
2949{
2950	struct page *page;
2951	int err;
2952repeat:
2953	page = find_get_page(mapping, index);
2954	if (!page) {
2955		page = __page_cache_alloc(gfp);
2956		if (!page)
2957			return ERR_PTR(-ENOMEM);
2958		err = add_to_page_cache_lru(page, mapping, index, gfp);
2959		if (unlikely(err)) {
2960			put_page(page);
2961			if (err == -EEXIST)
2962				goto repeat;
2963			/* Presumably ENOMEM for xarray node */
2964			return ERR_PTR(err);
2965		}
2966
2967filler:
2968		if (filler)
2969			err = filler(data, page);
2970		else
2971			err = mapping->a_ops->readpage(data, page);
2972
2973		if (err < 0) {
2974			put_page(page);
2975			return ERR_PTR(err);
2976		}
2977
2978		page = wait_on_page_read(page);
2979		if (IS_ERR(page))
2980			return page;
2981		goto out;
2982	}
2983	if (PageUptodate(page))
2984		goto out;
2985
2986	/*
2987	 * Page is not up to date and may be locked due one of the following
2988	 * case a: Page is being filled and the page lock is held
2989	 * case b: Read/write error clearing the page uptodate status
2990	 * case c: Truncation in progress (page locked)
2991	 * case d: Reclaim in progress
2992	 *
2993	 * Case a, the page will be up to date when the page is unlocked.
2994	 *    There is no need to serialise on the page lock here as the page
2995	 *    is pinned so the lock gives no additional protection. Even if the
2996	 *    page is truncated, the data is still valid if PageUptodate as
2997	 *    it's a race vs truncate race.
2998	 * Case b, the page will not be up to date
2999	 * Case c, the page may be truncated but in itself, the data may still
3000	 *    be valid after IO completes as it's a read vs truncate race. The
3001	 *    operation must restart if the page is not uptodate on unlock but
3002	 *    otherwise serialising on page lock to stabilise the mapping gives
3003	 *    no additional guarantees to the caller as the page lock is
3004	 *    released before return.
3005	 * Case d, similar to truncation. If reclaim holds the page lock, it
3006	 *    will be a race with remove_mapping that determines if the mapping
3007	 *    is valid on unlock but otherwise the data is valid and there is
3008	 *    no need to serialise with page lock.
3009	 *
3010	 * As the page lock gives no additional guarantee, we optimistically
3011	 * wait on the page to be unlocked and check if it's up to date and
3012	 * use the page if it is. Otherwise, the page lock is required to
3013	 * distinguish between the different cases. The motivation is that we
3014	 * avoid spurious serialisations and wakeups when multiple processes
3015	 * wait on the same page for IO to complete.
3016	 */
3017	wait_on_page_locked(page);
3018	if (PageUptodate(page))
3019		goto out;
3020
3021	/* Distinguish between all the cases under the safety of the lock */
3022	lock_page(page);
3023
3024	/* Case c or d, restart the operation */
3025	if (!page->mapping) {
3026		unlock_page(page);
3027		put_page(page);
3028		goto repeat;
3029	}
3030
3031	/* Someone else locked and filled the page in a very small window */
3032	if (PageUptodate(page)) {
3033		unlock_page(page);
3034		goto out;
3035	}
3036
3037	/*
3038	 * A previous I/O error may have been due to temporary
3039	 * failures.
3040	 * Clear page error before actual read, PG_error will be
3041	 * set again if read page fails.
3042	 */
3043	ClearPageError(page);
3044	goto filler;
3045
3046out:
3047	mark_page_accessed(page);
3048	return page;
3049}
3050
3051/**
3052 * read_cache_page - read into page cache, fill it if needed
3053 * @mapping:	the page's address_space
3054 * @index:	the page index
3055 * @filler:	function to perform the read
3056 * @data:	first arg to filler(data, page) function, often left as NULL
3057 *
3058 * Read into the page cache. If a page already exists, and PageUptodate() is
3059 * not set, try to fill the page and wait for it to become unlocked.
3060 *
3061 * If the page does not get brought uptodate, return -EIO.
3062 *
3063 * Return: up to date page on success, ERR_PTR() on failure.
3064 */
3065struct page *read_cache_page(struct address_space *mapping,
3066				pgoff_t index,
3067				int (*filler)(void *, struct page *),
3068				void *data)
3069{
3070	return do_read_cache_page(mapping, index, filler, data,
3071			mapping_gfp_mask(mapping));
3072}
3073EXPORT_SYMBOL(read_cache_page);
3074
3075/**
3076 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3077 * @mapping:	the page's address_space
3078 * @index:	the page index
3079 * @gfp:	the page allocator flags to use if allocating
3080 *
3081 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3082 * any new page allocations done using the specified allocation flags.
3083 *
3084 * If the page does not get brought uptodate, return -EIO.
3085 *
3086 * Return: up to date page on success, ERR_PTR() on failure.
3087 */
3088struct page *read_cache_page_gfp(struct address_space *mapping,
3089				pgoff_t index,
3090				gfp_t gfp)
3091{
3092	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3093}
3094EXPORT_SYMBOL(read_cache_page_gfp);
3095
3096/*
3097 * Don't operate on ranges the page cache doesn't support, and don't exceed the
3098 * LFS limits.  If pos is under the limit it becomes a short access.  If it
3099 * exceeds the limit we return -EFBIG.
3100 */
3101static int generic_write_check_limits(struct file *file, loff_t pos,
3102				      loff_t *count)
3103{
3104	struct inode *inode = file->f_mapping->host;
3105	loff_t max_size = inode->i_sb->s_maxbytes;
3106	loff_t limit = rlimit(RLIMIT_FSIZE);
3107
3108	if (limit != RLIM_INFINITY) {
3109		if (pos >= limit) {
3110			send_sig(SIGXFSZ, current, 0);
3111			return -EFBIG;
3112		}
3113		*count = min(*count, limit - pos);
3114	}
3115
3116	if (!(file->f_flags & O_LARGEFILE))
3117		max_size = MAX_NON_LFS;
3118
3119	if (unlikely(pos >= max_size))
3120		return -EFBIG;
3121
3122	*count = min(*count, max_size - pos);
3123
3124	return 0;
3125}
3126
3127/*
3128 * Performs necessary checks before doing a write
3129 *
3130 * Can adjust writing position or amount of bytes to write.
3131 * Returns appropriate error code that caller should return or
3132 * zero in case that write should be allowed.
3133 */
3134inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
3135{
3136	struct file *file = iocb->ki_filp;
3137	struct inode *inode = file->f_mapping->host;
3138	loff_t count;
3139	int ret;
3140
3141	if (IS_SWAPFILE(inode))
3142		return -ETXTBSY;
3143
3144	if (!iov_iter_count(from))
3145		return 0;
3146
3147	/* FIXME: this is for backwards compatibility with 2.4 */
3148	if (iocb->ki_flags & IOCB_APPEND)
3149		iocb->ki_pos = i_size_read(inode);
3150
3151	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
3152		return -EINVAL;
3153
3154	count = iov_iter_count(from);
3155	ret = generic_write_check_limits(file, iocb->ki_pos, &count);
3156	if (ret)
3157		return ret;
3158
3159	iov_iter_truncate(from, count);
3160	return iov_iter_count(from);
3161}
3162EXPORT_SYMBOL(generic_write_checks);
3163
3164/*
3165 * Performs necessary checks before doing a clone.
3166 *
3167 * Can adjust amount of bytes to clone via @req_count argument.
3168 * Returns appropriate error code that caller should return or
3169 * zero in case the clone should be allowed.
3170 */
3171int generic_remap_checks(struct file *file_in, loff_t pos_in,
3172			 struct file *file_out, loff_t pos_out,
3173			 loff_t *req_count, unsigned int remap_flags)
3174{
3175	struct inode *inode_in = file_in->f_mapping->host;
3176	struct inode *inode_out = file_out->f_mapping->host;
3177	uint64_t count = *req_count;
3178	uint64_t bcount;
3179	loff_t size_in, size_out;
3180	loff_t bs = inode_out->i_sb->s_blocksize;
3181	int ret;
3182
3183	/* The start of both ranges must be aligned to an fs block. */
3184	if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
3185		return -EINVAL;
3186
3187	/* Ensure offsets don't wrap. */
3188	if (pos_in + count < pos_in || pos_out + count < pos_out)
3189		return -EINVAL;
3190
3191	size_in = i_size_read(inode_in);
3192	size_out = i_size_read(inode_out);
3193
3194	/* Dedupe requires both ranges to be within EOF. */
3195	if ((remap_flags & REMAP_FILE_DEDUP) &&
3196	    (pos_in >= size_in || pos_in + count > size_in ||
3197	     pos_out >= size_out || pos_out + count > size_out))
3198		return -EINVAL;
3199
3200	/* Ensure the infile range is within the infile. */
3201	if (pos_in >= size_in)
3202		return -EINVAL;
3203	count = min(count, size_in - (uint64_t)pos_in);
3204
3205	ret = generic_write_check_limits(file_out, pos_out, &count);
3206	if (ret)
3207		return ret;
3208
3209	/*
3210	 * If the user wanted us to link to the infile's EOF, round up to the
3211	 * next block boundary for this check.
3212	 *
3213	 * Otherwise, make sure the count is also block-aligned, having
3214	 * already confirmed the starting offsets' block alignment.
3215	 */
3216	if (pos_in + count == size_in) {
3217		bcount = ALIGN(size_in, bs) - pos_in;
3218	} else {
3219		if (!IS_ALIGNED(count, bs))
3220			count = ALIGN_DOWN(count, bs);
3221		bcount = count;
3222	}
3223
3224	/* Don't allow overlapped cloning within the same file. */
3225	if (inode_in == inode_out &&
3226	    pos_out + bcount > pos_in &&
3227	    pos_out < pos_in + bcount)
3228		return -EINVAL;
3229
3230	/*
3231	 * We shortened the request but the caller can't deal with that, so
3232	 * bounce the request back to userspace.
3233	 */
3234	if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
3235		return -EINVAL;
3236
3237	*req_count = count;
3238	return 0;
3239}
3240
3241
3242/*
3243 * Performs common checks before doing a file copy/clone
3244 * from @file_in to @file_out.
3245 */
3246int generic_file_rw_checks(struct file *file_in, struct file *file_out)
3247{
3248	struct inode *inode_in = file_inode(file_in);
3249	struct inode *inode_out = file_inode(file_out);
3250
3251	/* Don't copy dirs, pipes, sockets... */
3252	if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
3253		return -EISDIR;
3254	if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
3255		return -EINVAL;
3256
3257	if (!(file_in->f_mode & FMODE_READ) ||
3258	    !(file_out->f_mode & FMODE_WRITE) ||
3259	    (file_out->f_flags & O_APPEND))
3260		return -EBADF;
3261
3262	return 0;
3263}
3264
3265/*
3266 * Performs necessary checks before doing a file copy
3267 *
3268 * Can adjust amount of bytes to copy via @req_count argument.
3269 * Returns appropriate error code that caller should return or
3270 * zero in case the copy should be allowed.
3271 */
3272int generic_copy_file_checks(struct file *file_in, loff_t pos_in,
3273			     struct file *file_out, loff_t pos_out,
3274			     size_t *req_count, unsigned int flags)
3275{
3276	struct inode *inode_in = file_inode(file_in);
3277	struct inode *inode_out = file_inode(file_out);
3278	uint64_t count = *req_count;
3279	loff_t size_in;
3280	int ret;
3281
3282	ret = generic_file_rw_checks(file_in, file_out);
3283	if (ret)
3284		return ret;
3285
3286	/* Don't touch certain kinds of inodes */
3287	if (IS_IMMUTABLE(inode_out))
3288		return -EPERM;
3289
3290	if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out))
3291		return -ETXTBSY;
3292
3293	/* Ensure offsets don't wrap. */
3294	if (pos_in + count < pos_in || pos_out + count < pos_out)
3295		return -EOVERFLOW;
3296
3297	/* Shorten the copy to EOF */
3298	size_in = i_size_read(inode_in);
3299	if (pos_in >= size_in)
3300		count = 0;
3301	else
3302		count = min(count, size_in - (uint64_t)pos_in);
3303
3304	ret = generic_write_check_limits(file_out, pos_out, &count);
3305	if (ret)
3306		return ret;
3307
3308	/* Don't allow overlapped copying within the same file. */
3309	if (inode_in == inode_out &&
3310	    pos_out + count > pos_in &&
3311	    pos_out < pos_in + count)
3312		return -EINVAL;
3313
3314	*req_count = count;
3315	return 0;
3316}
3317
3318int pagecache_write_begin(struct file *file, struct address_space *mapping,
3319				loff_t pos, unsigned len, unsigned flags,
3320				struct page **pagep, void **fsdata)
3321{
3322	const struct address_space_operations *aops = mapping->a_ops;
3323
3324	return aops->write_begin(file, mapping, pos, len, flags,
3325							pagep, fsdata);
3326}
3327EXPORT_SYMBOL(pagecache_write_begin);
3328
3329int pagecache_write_end(struct file *file, struct address_space *mapping,
3330				loff_t pos, unsigned len, unsigned copied,
3331				struct page *page, void *fsdata)
3332{
3333	const struct address_space_operations *aops = mapping->a_ops;
3334
3335	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3336}
3337EXPORT_SYMBOL(pagecache_write_end);
3338
3339/*
3340 * Warn about a page cache invalidation failure during a direct I/O write.
3341 */
3342void dio_warn_stale_pagecache(struct file *filp)
3343{
3344	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3345	char pathname[128];
3346	struct inode *inode = file_inode(filp);
3347	char *path;
3348
3349	errseq_set(&inode->i_mapping->wb_err, -EIO);
3350	if (__ratelimit(&_rs)) {
3351		path = file_path(filp, pathname, sizeof(pathname));
3352		if (IS_ERR(path))
3353			path = "(unknown)";
3354		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3355		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3356			current->comm);
3357	}
3358}
3359
3360ssize_t
3361generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3362{
3363	struct file	*file = iocb->ki_filp;
3364	struct address_space *mapping = file->f_mapping;
3365	struct inode	*inode = mapping->host;
3366	loff_t		pos = iocb->ki_pos;
3367	ssize_t		written;
3368	size_t		write_len;
3369	pgoff_t		end;
3370
3371	write_len = iov_iter_count(from);
3372	end = (pos + write_len - 1) >> PAGE_SHIFT;
3373
3374	if (iocb->ki_flags & IOCB_NOWAIT) {
3375		/* If there are pages to writeback, return */
3376		if (filemap_range_has_page(inode->i_mapping, pos,
3377					   pos + write_len - 1))
3378			return -EAGAIN;
3379	} else {
3380		written = filemap_write_and_wait_range(mapping, pos,
3381							pos + write_len - 1);
3382		if (written)
3383			goto out;
3384	}
3385
3386	/*
3387	 * After a write we want buffered reads to be sure to go to disk to get
3388	 * the new data.  We invalidate clean cached page from the region we're
3389	 * about to write.  We do this *before* the write so that we can return
3390	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3391	 */
3392	written = invalidate_inode_pages2_range(mapping,
3393					pos >> PAGE_SHIFT, end);
3394	/*
3395	 * If a page can not be invalidated, return 0 to fall back
3396	 * to buffered write.
3397	 */
3398	if (written) {
3399		if (written == -EBUSY)
3400			return 0;
3401		goto out;
3402	}
3403
3404	written = mapping->a_ops->direct_IO(iocb, from);
3405
3406	/*
3407	 * Finally, try again to invalidate clean pages which might have been
3408	 * cached by non-direct readahead, or faulted in by get_user_pages()
3409	 * if the source of the write was an mmap'ed region of the file
3410	 * we're writing.  Either one is a pretty crazy thing to do,
3411	 * so we don't support it 100%.  If this invalidation
3412	 * fails, tough, the write still worked...
3413	 *
3414	 * Most of the time we do not need this since dio_complete() will do
3415	 * the invalidation for us. However there are some file systems that
3416	 * do not end up with dio_complete() being called, so let's not break
3417	 * them by removing it completely.
3418	 *
3419	 * Noticeable example is a blkdev_direct_IO().
3420	 *
3421	 * Skip invalidation for async writes or if mapping has no pages.
3422	 */
3423	if (written > 0 && mapping->nrpages &&
3424	    invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3425		dio_warn_stale_pagecache(file);
3426
3427	if (written > 0) {
3428		pos += written;
3429		write_len -= written;
3430		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3431			i_size_write(inode, pos);
3432			mark_inode_dirty(inode);
3433		}
3434		iocb->ki_pos = pos;
3435	}
3436	iov_iter_revert(from, write_len - iov_iter_count(from));
3437out:
3438	return written;
3439}
3440EXPORT_SYMBOL(generic_file_direct_write);
3441
3442/*
3443 * Find or create a page at the given pagecache position. Return the locked
3444 * page. This function is specifically for buffered writes.
3445 */
3446struct page *grab_cache_page_write_begin(struct address_space *mapping,
3447					pgoff_t index, unsigned flags)
3448{
3449	struct page *page;
3450	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3451
3452	if (flags & AOP_FLAG_NOFS)
3453		fgp_flags |= FGP_NOFS;
3454
3455	page = pagecache_get_page(mapping, index, fgp_flags,
3456			mapping_gfp_mask(mapping));
3457	if (page)
3458		wait_for_stable_page(page);
3459
3460	return page;
3461}
3462EXPORT_SYMBOL(grab_cache_page_write_begin);
3463
3464ssize_t generic_perform_write(struct file *file,
3465				struct iov_iter *i, loff_t pos)
3466{
3467	struct address_space *mapping = file->f_mapping;
3468	const struct address_space_operations *a_ops = mapping->a_ops;
3469	long status = 0;
3470	ssize_t written = 0;
3471	unsigned int flags = 0;
3472
3473	do {
3474		struct page *page;
3475		unsigned long offset;	/* Offset into pagecache page */
3476		unsigned long bytes;	/* Bytes to write to page */
3477		size_t copied;		/* Bytes copied from user */
3478		void *fsdata;
3479
3480		offset = (pos & (PAGE_SIZE - 1));
3481		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3482						iov_iter_count(i));
3483
3484again:
3485		/*
3486		 * Bring in the user page that we will copy from _first_.
3487		 * Otherwise there's a nasty deadlock on copying from the
3488		 * same page as we're writing to, without it being marked
3489		 * up-to-date.
3490		 *
3491		 * Not only is this an optimisation, but it is also required
3492		 * to check that the address is actually valid, when atomic
3493		 * usercopies are used, below.
3494		 */
3495		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3496			status = -EFAULT;
3497			break;
3498		}
3499
3500		if (fatal_signal_pending(current)) {
3501			status = -EINTR;
3502			break;
3503		}
3504
3505		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3506						&page, &fsdata);
3507		if (unlikely(status < 0))
3508			break;
3509
3510		if (mapping_writably_mapped(mapping))
3511			flush_dcache_page(page);
3512
3513		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3514		flush_dcache_page(page);
3515
3516		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3517						page, fsdata);
3518		if (unlikely(status < 0))
3519			break;
3520		copied = status;
3521
3522		cond_resched();
3523
3524		iov_iter_advance(i, copied);
3525		if (unlikely(copied == 0)) {
3526			/*
3527			 * If we were unable to copy any data at all, we must
3528			 * fall back to a single segment length write.
3529			 *
3530			 * If we didn't fallback here, we could livelock
3531			 * because not all segments in the iov can be copied at
3532			 * once without a pagefault.
3533			 */
3534			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3535						iov_iter_single_seg_count(i));
3536			goto again;
3537		}
3538		pos += copied;
3539		written += copied;
3540
3541		balance_dirty_pages_ratelimited(mapping);
3542	} while (iov_iter_count(i));
3543
3544	return written ? written : status;
3545}
3546EXPORT_SYMBOL(generic_perform_write);
3547
3548/**
3549 * __generic_file_write_iter - write data to a file
3550 * @iocb:	IO state structure (file, offset, etc.)
3551 * @from:	iov_iter with data to write
3552 *
3553 * This function does all the work needed for actually writing data to a
3554 * file. It does all basic checks, removes SUID from the file, updates
3555 * modification times and calls proper subroutines depending on whether we
3556 * do direct IO or a standard buffered write.
3557 *
3558 * It expects i_mutex to be grabbed unless we work on a block device or similar
3559 * object which does not need locking at all.
3560 *
3561 * This function does *not* take care of syncing data in case of O_SYNC write.
3562 * A caller has to handle it. This is mainly due to the fact that we want to
3563 * avoid syncing under i_mutex.
3564 *
3565 * Return:
3566 * * number of bytes written, even for truncated writes
3567 * * negative error code if no data has been written at all
3568 */
3569ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3570{
3571	struct file *file = iocb->ki_filp;
3572	struct address_space * mapping = file->f_mapping;
3573	struct inode 	*inode = mapping->host;
3574	ssize_t		written = 0;
3575	ssize_t		err;
3576	ssize_t		status;
3577
3578	/* We can write back this queue in page reclaim */
3579	current->backing_dev_info = inode_to_bdi(inode);
3580	err = file_remove_privs(file);
3581	if (err)
3582		goto out;
3583
3584	err = file_update_time(file);
3585	if (err)
3586		goto out;
3587
3588	if (iocb->ki_flags & IOCB_DIRECT) {
3589		loff_t pos, endbyte;
3590
3591		written = generic_file_direct_write(iocb, from);
3592		/*
3593		 * If the write stopped short of completing, fall back to
3594		 * buffered writes.  Some filesystems do this for writes to
3595		 * holes, for example.  For DAX files, a buffered write will
3596		 * not succeed (even if it did, DAX does not handle dirty
3597		 * page-cache pages correctly).
3598		 */
3599		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3600			goto out;
3601
3602		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3603		/*
3604		 * If generic_perform_write() returned a synchronous error
3605		 * then we want to return the number of bytes which were
3606		 * direct-written, or the error code if that was zero.  Note
3607		 * that this differs from normal direct-io semantics, which
3608		 * will return -EFOO even if some bytes were written.
3609		 */
3610		if (unlikely(status < 0)) {
3611			err = status;
3612			goto out;
3613		}
3614		/*
3615		 * We need to ensure that the page cache pages are written to
3616		 * disk and invalidated to preserve the expected O_DIRECT
3617		 * semantics.
3618		 */
3619		endbyte = pos + status - 1;
3620		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3621		if (err == 0) {
3622			iocb->ki_pos = endbyte + 1;
3623			written += status;
3624			invalidate_mapping_pages(mapping,
3625						 pos >> PAGE_SHIFT,
3626						 endbyte >> PAGE_SHIFT);
3627		} else {
3628			/*
3629			 * We don't know how much we wrote, so just return
3630			 * the number of bytes which were direct-written
3631			 */
3632		}
3633	} else {
3634		written = generic_perform_write(file, from, iocb->ki_pos);
3635		if (likely(written > 0))
3636			iocb->ki_pos += written;
3637	}
3638out:
3639	current->backing_dev_info = NULL;
3640	return written ? written : err;
3641}
3642EXPORT_SYMBOL(__generic_file_write_iter);
3643
3644/**
3645 * generic_file_write_iter - write data to a file
3646 * @iocb:	IO state structure
3647 * @from:	iov_iter with data to write
3648 *
3649 * This is a wrapper around __generic_file_write_iter() to be used by most
3650 * filesystems. It takes care of syncing the file in case of O_SYNC file
3651 * and acquires i_mutex as needed.
3652 * Return:
3653 * * negative error code if no data has been written at all of
3654 *   vfs_fsync_range() failed for a synchronous write
3655 * * number of bytes written, even for truncated writes
3656 */
3657ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3658{
3659	struct file *file = iocb->ki_filp;
3660	struct inode *inode = file->f_mapping->host;
3661	ssize_t ret;
3662
3663	inode_lock(inode);
3664	ret = generic_write_checks(iocb, from);
3665	if (ret > 0)
3666		ret = __generic_file_write_iter(iocb, from);
3667	inode_unlock(inode);
3668
3669	if (ret > 0)
3670		ret = generic_write_sync(iocb, ret);
3671	return ret;
3672}
3673EXPORT_SYMBOL(generic_file_write_iter);
3674
3675/**
3676 * try_to_release_page() - release old fs-specific metadata on a page
3677 *
3678 * @page: the page which the kernel is trying to free
3679 * @gfp_mask: memory allocation flags (and I/O mode)
3680 *
3681 * The address_space is to try to release any data against the page
3682 * (presumably at page->private).
3683 *
3684 * This may also be called if PG_fscache is set on a page, indicating that the
3685 * page is known to the local caching routines.
3686 *
3687 * The @gfp_mask argument specifies whether I/O may be performed to release
3688 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3689 *
3690 * Return: %1 if the release was successful, otherwise return zero.
3691 */
3692int try_to_release_page(struct page *page, gfp_t gfp_mask)
3693{
3694	struct address_space * const mapping = page->mapping;
3695
3696	BUG_ON(!PageLocked(page));
3697	if (PageWriteback(page))
3698		return 0;
3699
3700	if (mapping && mapping->a_ops->releasepage)
3701		return mapping->a_ops->releasepage(page, gfp_mask);
3702	return try_to_free_buffers(page);
3703}
3704
3705EXPORT_SYMBOL(try_to_release_page);