Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *	linux/mm/filemap.c
   4 *
   5 * Copyright (C) 1994-1999  Linus Torvalds
   6 */
   7
   8/*
   9 * This file handles the generic file mmap semantics used by
  10 * most "normal" filesystems (but you don't /have/ to use this:
  11 * the NFS filesystem used to do this differently, for example)
  12 */
  13#include <linux/export.h>
  14#include <linux/compiler.h>
  15#include <linux/dax.h>
  16#include <linux/fs.h>
  17#include <linux/sched/signal.h>
  18#include <linux/uaccess.h>
  19#include <linux/capability.h>
  20#include <linux/kernel_stat.h>
  21#include <linux/gfp.h>
  22#include <linux/mm.h>
  23#include <linux/swap.h>
  24#include <linux/mman.h>
  25#include <linux/pagemap.h>
  26#include <linux/file.h>
  27#include <linux/uio.h>
  28#include <linux/error-injection.h>
  29#include <linux/hash.h>
  30#include <linux/writeback.h>
  31#include <linux/backing-dev.h>
  32#include <linux/pagevec.h>
  33#include <linux/blkdev.h>
  34#include <linux/security.h>
  35#include <linux/cpuset.h>
 
  36#include <linux/hugetlb.h>
  37#include <linux/memcontrol.h>
  38#include <linux/cleancache.h>
  39#include <linux/shmem_fs.h>
  40#include <linux/rmap.h>
  41#include <linux/delayacct.h>
  42#include <linux/psi.h>
  43#include <linux/ramfs.h>
  44#include "internal.h"
  45
  46#define CREATE_TRACE_POINTS
  47#include <trace/events/filemap.h>
  48
  49/*
  50 * FIXME: remove all knowledge of the buffer layer from the core VM
  51 */
  52#include <linux/buffer_head.h> /* for try_to_free_buffers */
  53
  54#include <asm/mman.h>
  55
  56/*
  57 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  58 * though.
  59 *
  60 * Shared mappings now work. 15.8.1995  Bruno.
  61 *
  62 * finished 'unifying' the page and buffer cache and SMP-threaded the
  63 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  64 *
  65 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  66 */
  67
  68/*
  69 * Lock ordering:
  70 *
  71 *  ->i_mmap_rwsem		(truncate_pagecache)
  72 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
  73 *      ->swap_lock		(exclusive_swap_page, others)
  74 *        ->i_pages lock
  75 *
  76 *  ->i_mutex
  77 *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
  78 *
  79 *  ->mmap_sem
  80 *    ->i_mmap_rwsem
  81 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
  82 *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
  83 *
  84 *  ->mmap_sem
  85 *    ->lock_page		(access_process_vm)
  86 *
  87 *  ->i_mutex			(generic_perform_write)
  88 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
  89 *
  90 *  bdi->wb.list_lock
  91 *    sb_lock			(fs/fs-writeback.c)
  92 *    ->i_pages lock		(__sync_single_inode)
  93 *
  94 *  ->i_mmap_rwsem
  95 *    ->anon_vma.lock		(vma_adjust)
  96 *
  97 *  ->anon_vma.lock
  98 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
  99 *
 100 *  ->page_table_lock or pte_lock
 101 *    ->swap_lock		(try_to_unmap_one)
 102 *    ->private_lock		(try_to_unmap_one)
 103 *    ->i_pages lock		(try_to_unmap_one)
 104 *    ->pgdat->lru_lock		(follow_page->mark_page_accessed)
 105 *    ->pgdat->lru_lock		(check_pte_range->isolate_lru_page)
 106 *    ->private_lock		(page_remove_rmap->set_page_dirty)
 107 *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
 108 *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
 109 *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
 110 *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
 111 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
 112 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
 113 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
 114 *
 115 * ->i_mmap_rwsem
 116 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
 117 */
 118
 119static void page_cache_delete(struct address_space *mapping,
 120				   struct page *page, void *shadow)
 121{
 122	XA_STATE(xas, &mapping->i_pages, page->index);
 123	unsigned int nr = 1;
 
 124
 125	mapping_set_update(&xas, mapping);
 
 
 
 
 
 
 
 
 
 126
 127	/* hugetlb pages are represented by a single entry in the xarray */
 128	if (!PageHuge(page)) {
 129		xas_set_order(&xas, page->index, compound_order(page));
 130		nr = compound_nr(page);
 
 
 
 
 
 
 
 
 131	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 132
 133	VM_BUG_ON_PAGE(!PageLocked(page), page);
 134	VM_BUG_ON_PAGE(PageTail(page), page);
 135	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
 136
 137	xas_store(&xas, shadow);
 138	xas_init_marks(&xas);
 139
 140	page->mapping = NULL;
 141	/* Leave page->index set: truncation lookup relies upon it */
 
 
 
 
 
 
 
 
 142
 143	if (shadow) {
 144		mapping->nrexceptional += nr;
 145		/*
 146		 * Make sure the nrexceptional update is committed before
 147		 * the nrpages update so that final truncate racing
 148		 * with reclaim does not see both counters 0 at the
 149		 * same time and miss a shadow entry.
 150		 */
 151		smp_wmb();
 152	}
 153	mapping->nrpages -= nr;
 154}
 155
 156static void unaccount_page_cache_page(struct address_space *mapping,
 157				      struct page *page)
 
 
 
 
 158{
 159	int nr;
 
 160
 
 161	/*
 162	 * if we're uptodate, flush out into the cleancache, otherwise
 163	 * invalidate any existing cleancache entries.  We can't leave
 164	 * stale data around in the cleancache once our page is gone
 165	 */
 166	if (PageUptodate(page) && PageMappedToDisk(page))
 167		cleancache_put_page(page);
 168	else
 169		cleancache_invalidate_page(mapping, page);
 170
 171	VM_BUG_ON_PAGE(PageTail(page), page);
 172	VM_BUG_ON_PAGE(page_mapped(page), page);
 173	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
 174		int mapcount;
 175
 176		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
 177			 current->comm, page_to_pfn(page));
 178		dump_page(page, "still mapped when deleted");
 179		dump_stack();
 180		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 181
 182		mapcount = page_mapcount(page);
 183		if (mapping_exiting(mapping) &&
 184		    page_count(page) >= mapcount + 2) {
 185			/*
 186			 * All vmas have already been torn down, so it's
 187			 * a good bet that actually the page is unmapped,
 188			 * and we'd prefer not to leak it: if we're wrong,
 189			 * some other bad page check should catch it later.
 190			 */
 191			page_mapcount_reset(page);
 192			page_ref_sub(page, mapcount);
 193		}
 194	}
 195
 196	/* hugetlb pages do not participate in page cache accounting. */
 197	if (PageHuge(page))
 198		return;
 199
 200	nr = hpage_nr_pages(page);
 
 201
 202	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
 
 
 203	if (PageSwapBacked(page)) {
 204		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
 205		if (PageTransHuge(page))
 206			__dec_node_page_state(page, NR_SHMEM_THPS);
 207	} else if (PageTransHuge(page)) {
 208		__dec_node_page_state(page, NR_FILE_THPS);
 209		filemap_nr_thps_dec(mapping);
 210	}
 211
 212	/*
 213	 * At this point page must be either written or cleaned by
 214	 * truncate.  Dirty page here signals a bug and loss of
 215	 * unwritten data.
 216	 *
 217	 * This fixes dirty accounting after removing the page entirely
 218	 * but leaves PageDirty set: it has no effect for truncated
 219	 * page and anyway will be cleared before returning page into
 220	 * buddy allocator.
 221	 */
 222	if (WARN_ON_ONCE(PageDirty(page)))
 223		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
 224}
 225
 226/*
 227 * Delete a page from the page cache and free it. Caller has to make
 228 * sure the page is locked and that nobody else uses it - or that usage
 229 * is safe.  The caller must hold the i_pages lock.
 230 */
 231void __delete_from_page_cache(struct page *page, void *shadow)
 232{
 233	struct address_space *mapping = page->mapping;
 234
 235	trace_mm_filemap_delete_from_page_cache(page);
 236
 237	unaccount_page_cache_page(mapping, page);
 238	page_cache_delete(mapping, page, shadow);
 239}
 240
 241static void page_cache_free_page(struct address_space *mapping,
 242				struct page *page)
 243{
 244	void (*freepage)(struct page *);
 245
 246	freepage = mapping->a_ops->freepage;
 247	if (freepage)
 248		freepage(page);
 249
 250	if (PageTransHuge(page) && !PageHuge(page)) {
 251		page_ref_sub(page, HPAGE_PMD_NR);
 252		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
 253	} else {
 254		put_page(page);
 255	}
 256}
 257
 258/**
 259 * delete_from_page_cache - delete page from page cache
 260 * @page: the page which the kernel is trying to remove from page cache
 261 *
 262 * This must be called only on pages that have been verified to be in the page
 263 * cache and locked.  It will never put the page into the free list, the caller
 264 * has a reference on the page.
 265 */
 266void delete_from_page_cache(struct page *page)
 267{
 268	struct address_space *mapping = page_mapping(page);
 269	unsigned long flags;
 
 270
 271	BUG_ON(!PageLocked(page));
 272	xa_lock_irqsave(&mapping->i_pages, flags);
 273	__delete_from_page_cache(page, NULL);
 274	xa_unlock_irqrestore(&mapping->i_pages, flags);
 275
 276	page_cache_free_page(mapping, page);
 277}
 278EXPORT_SYMBOL(delete_from_page_cache);
 279
 280/*
 281 * page_cache_delete_batch - delete several pages from page cache
 282 * @mapping: the mapping to which pages belong
 283 * @pvec: pagevec with pages to delete
 284 *
 285 * The function walks over mapping->i_pages and removes pages passed in @pvec
 286 * from the mapping. The function expects @pvec to be sorted by page index
 287 * and is optimised for it to be dense.
 288 * It tolerates holes in @pvec (mapping entries at those indices are not
 289 * modified). The function expects only THP head pages to be present in the
 290 * @pvec.
 291 *
 292 * The function expects the i_pages lock to be held.
 293 */
 294static void page_cache_delete_batch(struct address_space *mapping,
 295			     struct pagevec *pvec)
 296{
 297	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
 298	int total_pages = 0;
 299	int i = 0;
 300	struct page *page;
 301
 302	mapping_set_update(&xas, mapping);
 303	xas_for_each(&xas, page, ULONG_MAX) {
 304		if (i >= pagevec_count(pvec))
 305			break;
 306
 307		/* A swap/dax/shadow entry got inserted? Skip it. */
 308		if (xa_is_value(page))
 309			continue;
 310		/*
 311		 * A page got inserted in our range? Skip it. We have our
 312		 * pages locked so they are protected from being removed.
 313		 * If we see a page whose index is higher than ours, it
 314		 * means our page has been removed, which shouldn't be
 315		 * possible because we're holding the PageLock.
 316		 */
 317		if (page != pvec->pages[i]) {
 318			VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
 319					page);
 320			continue;
 321		}
 322
 323		WARN_ON_ONCE(!PageLocked(page));
 324
 325		if (page->index == xas.xa_index)
 326			page->mapping = NULL;
 327		/* Leave page->index set: truncation lookup relies on it */
 328
 329		/*
 330		 * Move to the next page in the vector if this is a regular
 331		 * page or the index is of the last sub-page of this compound
 332		 * page.
 333		 */
 334		if (page->index + compound_nr(page) - 1 == xas.xa_index)
 335			i++;
 336		xas_store(&xas, NULL);
 337		total_pages++;
 338	}
 339	mapping->nrpages -= total_pages;
 340}
 341
 342void delete_from_page_cache_batch(struct address_space *mapping,
 343				  struct pagevec *pvec)
 344{
 345	int i;
 346	unsigned long flags;
 347
 348	if (!pagevec_count(pvec))
 349		return;
 
 350
 351	xa_lock_irqsave(&mapping->i_pages, flags);
 352	for (i = 0; i < pagevec_count(pvec); i++) {
 353		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
 354
 355		unaccount_page_cache_page(mapping, pvec->pages[i]);
 
 
 
 
 356	}
 357	page_cache_delete_batch(mapping, pvec);
 358	xa_unlock_irqrestore(&mapping->i_pages, flags);
 359
 360	for (i = 0; i < pagevec_count(pvec); i++)
 361		page_cache_free_page(mapping, pvec->pages[i]);
 362}
 
 363
 364int filemap_check_errors(struct address_space *mapping)
 365{
 366	int ret = 0;
 367	/* Check for outstanding write errors */
 368	if (test_bit(AS_ENOSPC, &mapping->flags) &&
 369	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 370		ret = -ENOSPC;
 371	if (test_bit(AS_EIO, &mapping->flags) &&
 372	    test_and_clear_bit(AS_EIO, &mapping->flags))
 373		ret = -EIO;
 374	return ret;
 375}
 376EXPORT_SYMBOL(filemap_check_errors);
 377
 378static int filemap_check_and_keep_errors(struct address_space *mapping)
 379{
 380	/* Check for outstanding write errors */
 381	if (test_bit(AS_EIO, &mapping->flags))
 382		return -EIO;
 383	if (test_bit(AS_ENOSPC, &mapping->flags))
 384		return -ENOSPC;
 385	return 0;
 386}
 387
 388/**
 389 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 390 * @mapping:	address space structure to write
 391 * @start:	offset in bytes where the range starts
 392 * @end:	offset in bytes where the range ends (inclusive)
 393 * @sync_mode:	enable synchronous operation
 394 *
 395 * Start writeback against all of a mapping's dirty pages that lie
 396 * within the byte offsets <start, end> inclusive.
 397 *
 398 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 399 * opposed to a regular memory cleansing writeback.  The difference between
 400 * these two operations is that if a dirty page/buffer is encountered, it must
 401 * be waited upon, and not just skipped over.
 402 *
 403 * Return: %0 on success, negative error code otherwise.
 404 */
 405int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 406				loff_t end, int sync_mode)
 407{
 408	int ret;
 409	struct writeback_control wbc = {
 410		.sync_mode = sync_mode,
 411		.nr_to_write = LONG_MAX,
 412		.range_start = start,
 413		.range_end = end,
 414	};
 415
 416	if (!mapping_cap_writeback_dirty(mapping) ||
 417	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
 418		return 0;
 419
 420	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
 421	ret = do_writepages(mapping, &wbc);
 422	wbc_detach_inode(&wbc);
 423	return ret;
 424}
 425
 426static inline int __filemap_fdatawrite(struct address_space *mapping,
 427	int sync_mode)
 428{
 429	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 430}
 431
 432int filemap_fdatawrite(struct address_space *mapping)
 433{
 434	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 435}
 436EXPORT_SYMBOL(filemap_fdatawrite);
 437
 438int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 439				loff_t end)
 440{
 441	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 442}
 443EXPORT_SYMBOL(filemap_fdatawrite_range);
 444
 445/**
 446 * filemap_flush - mostly a non-blocking flush
 447 * @mapping:	target address_space
 448 *
 449 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 450 * purposes - I/O may not be started against all dirty pages.
 451 *
 452 * Return: %0 on success, negative error code otherwise.
 453 */
 454int filemap_flush(struct address_space *mapping)
 455{
 456	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 457}
 458EXPORT_SYMBOL(filemap_flush);
 459
 460/**
 461 * filemap_range_has_page - check if a page exists in range.
 462 * @mapping:           address space within which to check
 463 * @start_byte:        offset in bytes where the range starts
 464 * @end_byte:          offset in bytes where the range ends (inclusive)
 465 *
 466 * Find at least one page in the range supplied, usually used to check if
 467 * direct writing in this range will trigger a writeback.
 468 *
 469 * Return: %true if at least one page exists in the specified range,
 470 * %false otherwise.
 471 */
 472bool filemap_range_has_page(struct address_space *mapping,
 473			   loff_t start_byte, loff_t end_byte)
 474{
 475	struct page *page;
 476	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
 477	pgoff_t max = end_byte >> PAGE_SHIFT;
 478
 479	if (end_byte < start_byte)
 480		return false;
 481
 482	rcu_read_lock();
 483	for (;;) {
 484		page = xas_find(&xas, max);
 485		if (xas_retry(&xas, page))
 486			continue;
 487		/* Shadow entries don't count */
 488		if (xa_is_value(page))
 489			continue;
 490		/*
 491		 * We don't need to try to pin this page; we're about to
 492		 * release the RCU lock anyway.  It is enough to know that
 493		 * there was a page here recently.
 494		 */
 495		break;
 496	}
 497	rcu_read_unlock();
 498
 499	return page != NULL;
 500}
 501EXPORT_SYMBOL(filemap_range_has_page);
 502
 503static void __filemap_fdatawait_range(struct address_space *mapping,
 504				     loff_t start_byte, loff_t end_byte)
 505{
 506	pgoff_t index = start_byte >> PAGE_SHIFT;
 507	pgoff_t end = end_byte >> PAGE_SHIFT;
 508	struct pagevec pvec;
 509	int nr_pages;
 
 510
 511	if (end_byte < start_byte)
 512		return;
 513
 514	pagevec_init(&pvec);
 515	while (index <= end) {
 
 
 
 516		unsigned i;
 517
 518		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
 519				end, PAGECACHE_TAG_WRITEBACK);
 520		if (!nr_pages)
 521			break;
 522
 523		for (i = 0; i < nr_pages; i++) {
 524			struct page *page = pvec.pages[i];
 525
 
 
 
 
 526			wait_on_page_writeback(page);
 527			ClearPageError(page);
 
 528		}
 529		pagevec_release(&pvec);
 530		cond_resched();
 531	}
 
 
 532}
 533
 534/**
 535 * filemap_fdatawait_range - wait for writeback to complete
 536 * @mapping:		address space structure to wait for
 537 * @start_byte:		offset in bytes where the range starts
 538 * @end_byte:		offset in bytes where the range ends (inclusive)
 539 *
 540 * Walk the list of under-writeback pages of the given address space
 541 * in the given range and wait for all of them.  Check error status of
 542 * the address space and return it.
 543 *
 544 * Since the error status of the address space is cleared by this function,
 545 * callers are responsible for checking the return value and handling and/or
 546 * reporting the error.
 547 *
 548 * Return: error status of the address space.
 549 */
 550int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 551			    loff_t end_byte)
 552{
 553	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 554	return filemap_check_errors(mapping);
 
 
 
 
 
 
 555}
 556EXPORT_SYMBOL(filemap_fdatawait_range);
 557
 558/**
 559 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
 560 * @mapping:		address space structure to wait for
 561 * @start_byte:		offset in bytes where the range starts
 562 * @end_byte:		offset in bytes where the range ends (inclusive)
 563 *
 564 * Walk the list of under-writeback pages of the given address space in the
 565 * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
 566 * this function does not clear error status of the address space.
 567 *
 568 * Use this function if callers don't handle errors themselves.  Expected
 569 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 570 * fsfreeze(8)
 571 */
 572int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
 573		loff_t start_byte, loff_t end_byte)
 574{
 575	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 576	return filemap_check_and_keep_errors(mapping);
 577}
 578EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
 579
 580/**
 581 * file_fdatawait_range - wait for writeback to complete
 582 * @file:		file pointing to address space structure to wait for
 583 * @start_byte:		offset in bytes where the range starts
 584 * @end_byte:		offset in bytes where the range ends (inclusive)
 585 *
 586 * Walk the list of under-writeback pages of the address space that file
 587 * refers to, in the given range and wait for all of them.  Check error
 588 * status of the address space vs. the file->f_wb_err cursor and return it.
 589 *
 590 * Since the error status of the file is advanced by this function,
 591 * callers are responsible for checking the return value and handling and/or
 592 * reporting the error.
 593 *
 594 * Return: error status of the address space vs. the file->f_wb_err cursor.
 595 */
 596int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
 597{
 598	struct address_space *mapping = file->f_mapping;
 599
 600	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 601	return file_check_and_advance_wb_err(file);
 602}
 603EXPORT_SYMBOL(file_fdatawait_range);
 604
 605/**
 606 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 607 * @mapping: address space structure to wait for
 608 *
 609 * Walk the list of under-writeback pages of the given address space
 610 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 611 * does not clear error status of the address space.
 612 *
 613 * Use this function if callers don't handle errors themselves.  Expected
 614 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 615 * fsfreeze(8)
 616 *
 617 * Return: error status of the address space.
 
 
 618 */
 619int filemap_fdatawait_keep_errors(struct address_space *mapping)
 620{
 621	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
 622	return filemap_check_and_keep_errors(mapping);
 623}
 624EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
 625
 626/* Returns true if writeback might be needed or already in progress. */
 627static bool mapping_needs_writeback(struct address_space *mapping)
 628{
 629	if (dax_mapping(mapping))
 630		return mapping->nrexceptional;
 631
 632	return mapping->nrpages;
 633}
 
 634
 635int filemap_write_and_wait(struct address_space *mapping)
 636{
 637	int err = 0;
 638
 639	if (mapping_needs_writeback(mapping)) {
 
 640		err = filemap_fdatawrite(mapping);
 641		/*
 642		 * Even if the above returned error, the pages may be
 643		 * written partially (e.g. -ENOSPC), so we wait for it.
 644		 * But the -EIO is special case, it may indicate the worst
 645		 * thing (e.g. bug) happened, so we avoid waiting for it.
 646		 */
 647		if (err != -EIO) {
 648			int err2 = filemap_fdatawait(mapping);
 649			if (!err)
 650				err = err2;
 651		} else {
 652			/* Clear any previously stored errors */
 653			filemap_check_errors(mapping);
 654		}
 655	} else {
 656		err = filemap_check_errors(mapping);
 657	}
 658	return err;
 659}
 660EXPORT_SYMBOL(filemap_write_and_wait);
 661
 662/**
 663 * filemap_write_and_wait_range - write out & wait on a file range
 664 * @mapping:	the address_space for the pages
 665 * @lstart:	offset in bytes where the range starts
 666 * @lend:	offset in bytes where the range ends (inclusive)
 667 *
 668 * Write out and wait upon file offsets lstart->lend, inclusive.
 669 *
 670 * Note that @lend is inclusive (describes the last byte to be written) so
 671 * that this function can be used to write to the very end-of-file (end = -1).
 672 *
 673 * Return: error status of the address space.
 674 */
 675int filemap_write_and_wait_range(struct address_space *mapping,
 676				 loff_t lstart, loff_t lend)
 677{
 678	int err = 0;
 679
 680	if (mapping_needs_writeback(mapping)) {
 
 681		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 682						 WB_SYNC_ALL);
 683		/* See comment of filemap_write_and_wait() */
 684		if (err != -EIO) {
 685			int err2 = filemap_fdatawait_range(mapping,
 686						lstart, lend);
 687			if (!err)
 688				err = err2;
 689		} else {
 690			/* Clear any previously stored errors */
 691			filemap_check_errors(mapping);
 692		}
 693	} else {
 694		err = filemap_check_errors(mapping);
 695	}
 696	return err;
 697}
 698EXPORT_SYMBOL(filemap_write_and_wait_range);
 699
 700void __filemap_set_wb_err(struct address_space *mapping, int err)
 701{
 702	errseq_t eseq = errseq_set(&mapping->wb_err, err);
 703
 704	trace_filemap_set_wb_err(mapping, eseq);
 705}
 706EXPORT_SYMBOL(__filemap_set_wb_err);
 707
 708/**
 709 * file_check_and_advance_wb_err - report wb error (if any) that was previously
 710 * 				   and advance wb_err to current one
 711 * @file: struct file on which the error is being reported
 712 *
 713 * When userland calls fsync (or something like nfsd does the equivalent), we
 714 * want to report any writeback errors that occurred since the last fsync (or
 715 * since the file was opened if there haven't been any).
 716 *
 717 * Grab the wb_err from the mapping. If it matches what we have in the file,
 718 * then just quickly return 0. The file is all caught up.
 719 *
 720 * If it doesn't match, then take the mapping value, set the "seen" flag in
 721 * it and try to swap it into place. If it works, or another task beat us
 722 * to it with the new value, then update the f_wb_err and return the error
 723 * portion. The error at this point must be reported via proper channels
 724 * (a'la fsync, or NFS COMMIT operation, etc.).
 725 *
 726 * While we handle mapping->wb_err with atomic operations, the f_wb_err
 727 * value is protected by the f_lock since we must ensure that it reflects
 728 * the latest value swapped in for this file descriptor.
 729 *
 730 * Return: %0 on success, negative error code otherwise.
 731 */
 732int file_check_and_advance_wb_err(struct file *file)
 733{
 734	int err = 0;
 735	errseq_t old = READ_ONCE(file->f_wb_err);
 736	struct address_space *mapping = file->f_mapping;
 737
 738	/* Locklessly handle the common case where nothing has changed */
 739	if (errseq_check(&mapping->wb_err, old)) {
 740		/* Something changed, must use slow path */
 741		spin_lock(&file->f_lock);
 742		old = file->f_wb_err;
 743		err = errseq_check_and_advance(&mapping->wb_err,
 744						&file->f_wb_err);
 745		trace_file_check_and_advance_wb_err(file, old);
 746		spin_unlock(&file->f_lock);
 747	}
 748
 749	/*
 750	 * We're mostly using this function as a drop in replacement for
 751	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
 752	 * that the legacy code would have had on these flags.
 753	 */
 754	clear_bit(AS_EIO, &mapping->flags);
 755	clear_bit(AS_ENOSPC, &mapping->flags);
 756	return err;
 757}
 758EXPORT_SYMBOL(file_check_and_advance_wb_err);
 759
 760/**
 761 * file_write_and_wait_range - write out & wait on a file range
 762 * @file:	file pointing to address_space with pages
 763 * @lstart:	offset in bytes where the range starts
 764 * @lend:	offset in bytes where the range ends (inclusive)
 765 *
 766 * Write out and wait upon file offsets lstart->lend, inclusive.
 767 *
 768 * Note that @lend is inclusive (describes the last byte to be written) so
 769 * that this function can be used to write to the very end-of-file (end = -1).
 770 *
 771 * After writing out and waiting on the data, we check and advance the
 772 * f_wb_err cursor to the latest value, and return any errors detected there.
 773 *
 774 * Return: %0 on success, negative error code otherwise.
 775 */
 776int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
 777{
 778	int err = 0, err2;
 779	struct address_space *mapping = file->f_mapping;
 780
 781	if (mapping_needs_writeback(mapping)) {
 782		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 783						 WB_SYNC_ALL);
 784		/* See comment of filemap_write_and_wait() */
 785		if (err != -EIO)
 786			__filemap_fdatawait_range(mapping, lstart, lend);
 787	}
 788	err2 = file_check_and_advance_wb_err(file);
 789	if (!err)
 790		err = err2;
 791	return err;
 792}
 793EXPORT_SYMBOL(file_write_and_wait_range);
 794
 795/**
 796 * replace_page_cache_page - replace a pagecache page with a new one
 797 * @old:	page to be replaced
 798 * @new:	page to replace with
 799 * @gfp_mask:	allocation mode
 800 *
 801 * This function replaces a page in the pagecache with a new one.  On
 802 * success it acquires the pagecache reference for the new page and
 803 * drops it for the old page.  Both the old and new pages must be
 804 * locked.  This function does not add the new page to the LRU, the
 805 * caller must do that.
 806 *
 807 * The remove + add is atomic.  This function cannot fail.
 808 *
 809 * Return: %0
 810 */
 811int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
 812{
 813	struct address_space *mapping = old->mapping;
 814	void (*freepage)(struct page *) = mapping->a_ops->freepage;
 815	pgoff_t offset = old->index;
 816	XA_STATE(xas, &mapping->i_pages, offset);
 817	unsigned long flags;
 818
 819	VM_BUG_ON_PAGE(!PageLocked(old), old);
 820	VM_BUG_ON_PAGE(!PageLocked(new), new);
 821	VM_BUG_ON_PAGE(new->mapping, new);
 822
 823	get_page(new);
 824	new->mapping = mapping;
 825	new->index = offset;
 826
 827	xas_lock_irqsave(&xas, flags);
 828	xas_store(&xas, new);
 829
 830	old->mapping = NULL;
 831	/* hugetlb pages do not participate in page cache accounting. */
 832	if (!PageHuge(old))
 833		__dec_node_page_state(new, NR_FILE_PAGES);
 834	if (!PageHuge(new))
 835		__inc_node_page_state(new, NR_FILE_PAGES);
 836	if (PageSwapBacked(old))
 837		__dec_node_page_state(new, NR_SHMEM);
 838	if (PageSwapBacked(new))
 839		__inc_node_page_state(new, NR_SHMEM);
 840	xas_unlock_irqrestore(&xas, flags);
 841	mem_cgroup_migrate(old, new);
 842	if (freepage)
 843		freepage(old);
 844	put_page(old);
 
 
 
 
 
 
 
 
 
 
 845
 846	return 0;
 847}
 848EXPORT_SYMBOL_GPL(replace_page_cache_page);
 849
 850static int __add_to_page_cache_locked(struct page *page,
 851				      struct address_space *mapping,
 852				      pgoff_t offset, gfp_t gfp_mask,
 853				      void **shadowp)
 854{
 855	XA_STATE(xas, &mapping->i_pages, offset);
 856	int huge = PageHuge(page);
 857	struct mem_cgroup *memcg;
 858	int error;
 859	void *old;
 860
 861	VM_BUG_ON_PAGE(!PageLocked(page), page);
 862	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
 863	mapping_set_update(&xas, mapping);
 864
 865	if (!huge) {
 866		error = mem_cgroup_try_charge(page, current->mm,
 867					      gfp_mask, &memcg, false);
 868		if (error)
 869			return error;
 870	}
 871
 
 
 
 
 
 
 
 872	get_page(page);
 873	page->mapping = mapping;
 874	page->index = offset;
 875
 876	do {
 877		xas_lock_irq(&xas);
 878		old = xas_load(&xas);
 879		if (old && !xa_is_value(old))
 880			xas_set_err(&xas, -EEXIST);
 881		xas_store(&xas, page);
 882		if (xas_error(&xas))
 883			goto unlock;
 884
 885		if (xa_is_value(old)) {
 886			mapping->nrexceptional--;
 887			if (shadowp)
 888				*shadowp = old;
 889		}
 890		mapping->nrpages++;
 891
 892		/* hugetlb pages do not participate in page cache accounting */
 893		if (!huge)
 894			__inc_node_page_state(page, NR_FILE_PAGES);
 895unlock:
 896		xas_unlock_irq(&xas);
 897	} while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
 898
 899	if (xas_error(&xas))
 900		goto error;
 901
 
 
 
 
 902	if (!huge)
 903		mem_cgroup_commit_charge(page, memcg, false, false);
 904	trace_mm_filemap_add_to_page_cache(page);
 905	return 0;
 906error:
 907	page->mapping = NULL;
 908	/* Leave page->index set: truncation relies upon it */
 
 909	if (!huge)
 910		mem_cgroup_cancel_charge(page, memcg, false);
 911	put_page(page);
 912	return xas_error(&xas);
 913}
 914ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
 915
 916/**
 917 * add_to_page_cache_locked - add a locked page to the pagecache
 918 * @page:	page to add
 919 * @mapping:	the page's address_space
 920 * @offset:	page index
 921 * @gfp_mask:	page allocation mode
 922 *
 923 * This function is used to add a page to the pagecache. It must be locked.
 924 * This function does not add the page to the LRU.  The caller must do that.
 925 *
 926 * Return: %0 on success, negative error code otherwise.
 927 */
 928int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
 929		pgoff_t offset, gfp_t gfp_mask)
 930{
 931	return __add_to_page_cache_locked(page, mapping, offset,
 932					  gfp_mask, NULL);
 933}
 934EXPORT_SYMBOL(add_to_page_cache_locked);
 935
 936int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 937				pgoff_t offset, gfp_t gfp_mask)
 938{
 939	void *shadow = NULL;
 940	int ret;
 941
 942	__SetPageLocked(page);
 943	ret = __add_to_page_cache_locked(page, mapping, offset,
 944					 gfp_mask, &shadow);
 945	if (unlikely(ret))
 946		__ClearPageLocked(page);
 947	else {
 948		/*
 949		 * The page might have been evicted from cache only
 950		 * recently, in which case it should be activated like
 951		 * any other repeatedly accessed page.
 952		 * The exception is pages getting rewritten; evicting other
 953		 * data from the working set, only to cache data that will
 954		 * get overwritten with something else, is a waste of memory.
 955		 */
 956		WARN_ON_ONCE(PageActive(page));
 957		if (!(gfp_mask & __GFP_WRITE) && shadow)
 958			workingset_refault(page, shadow);
 
 
 
 959		lru_cache_add(page);
 960	}
 961	return ret;
 962}
 963EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
 964
 965#ifdef CONFIG_NUMA
 966struct page *__page_cache_alloc(gfp_t gfp)
 967{
 968	int n;
 969	struct page *page;
 970
 971	if (cpuset_do_page_mem_spread()) {
 972		unsigned int cpuset_mems_cookie;
 973		do {
 974			cpuset_mems_cookie = read_mems_allowed_begin();
 975			n = cpuset_mem_spread_node();
 976			page = __alloc_pages_node(n, gfp, 0);
 977		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
 978
 979		return page;
 980	}
 981	return alloc_pages(gfp, 0);
 982}
 983EXPORT_SYMBOL(__page_cache_alloc);
 984#endif
 985
 986/*
 987 * In order to wait for pages to become available there must be
 988 * waitqueues associated with pages. By using a hash table of
 989 * waitqueues where the bucket discipline is to maintain all
 990 * waiters on the same queue and wake all when any of the pages
 991 * become available, and for the woken contexts to check to be
 992 * sure the appropriate page became available, this saves space
 993 * at a cost of "thundering herd" phenomena during rare hash
 994 * collisions.
 995 */
 996#define PAGE_WAIT_TABLE_BITS 8
 997#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
 998static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
 999
1000static wait_queue_head_t *page_waitqueue(struct page *page)
1001{
1002	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1003}
1004
1005void __init pagecache_init(void)
1006{
1007	int i;
1008
1009	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1010		init_waitqueue_head(&page_wait_table[i]);
1011
1012	page_writeback_init();
1013}
1014
1015/* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
1016struct wait_page_key {
1017	struct page *page;
1018	int bit_nr;
1019	int page_match;
1020};
1021
1022struct wait_page_queue {
1023	struct page *page;
1024	int bit_nr;
1025	wait_queue_entry_t wait;
1026};
1027
1028static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1029{
1030	struct wait_page_key *key = arg;
1031	struct wait_page_queue *wait_page
1032		= container_of(wait, struct wait_page_queue, wait);
1033
1034	if (wait_page->page != key->page)
1035	       return 0;
1036	key->page_match = 1;
1037
1038	if (wait_page->bit_nr != key->bit_nr)
1039		return 0;
1040
1041	/*
1042	 * Stop walking if it's locked.
1043	 * Is this safe if put_and_wait_on_page_locked() is in use?
1044	 * Yes: the waker must hold a reference to this page, and if PG_locked
1045	 * has now already been set by another task, that task must also hold
1046	 * a reference to the *same usage* of this page; so there is no need
1047	 * to walk on to wake even the put_and_wait_on_page_locked() callers.
1048	 */
1049	if (test_bit(key->bit_nr, &key->page->flags))
1050		return -1;
1051
1052	return autoremove_wake_function(wait, mode, sync, key);
1053}
1054
1055static void wake_up_page_bit(struct page *page, int bit_nr)
1056{
1057	wait_queue_head_t *q = page_waitqueue(page);
1058	struct wait_page_key key;
1059	unsigned long flags;
1060	wait_queue_entry_t bookmark;
1061
1062	key.page = page;
1063	key.bit_nr = bit_nr;
1064	key.page_match = 0;
1065
1066	bookmark.flags = 0;
1067	bookmark.private = NULL;
1068	bookmark.func = NULL;
1069	INIT_LIST_HEAD(&bookmark.entry);
1070
1071	spin_lock_irqsave(&q->lock, flags);
1072	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1073
1074	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1075		/*
1076		 * Take a breather from holding the lock,
1077		 * allow pages that finish wake up asynchronously
1078		 * to acquire the lock and remove themselves
1079		 * from wait queue
1080		 */
1081		spin_unlock_irqrestore(&q->lock, flags);
1082		cpu_relax();
1083		spin_lock_irqsave(&q->lock, flags);
1084		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1085	}
1086
1087	/*
1088	 * It is possible for other pages to have collided on the waitqueue
1089	 * hash, so in that case check for a page match. That prevents a long-
1090	 * term waiter
1091	 *
1092	 * It is still possible to miss a case here, when we woke page waiters
1093	 * and removed them from the waitqueue, but there are still other
1094	 * page waiters.
1095	 */
1096	if (!waitqueue_active(q) || !key.page_match) {
1097		ClearPageWaiters(page);
1098		/*
1099		 * It's possible to miss clearing Waiters here, when we woke
1100		 * our page waiters, but the hashed waitqueue has waiters for
1101		 * other pages on it.
1102		 *
1103		 * That's okay, it's a rare case. The next waker will clear it.
1104		 */
1105	}
1106	spin_unlock_irqrestore(&q->lock, flags);
1107}
1108
1109static void wake_up_page(struct page *page, int bit)
1110{
1111	if (!PageWaiters(page))
1112		return;
1113	wake_up_page_bit(page, bit);
1114}
1115
1116/*
1117 * A choice of three behaviors for wait_on_page_bit_common():
1118 */
1119enum behavior {
1120	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1121			 * __lock_page() waiting on then setting PG_locked.
1122			 */
1123	SHARED,		/* Hold ref to page and check the bit when woken, like
1124			 * wait_on_page_writeback() waiting on PG_writeback.
1125			 */
1126	DROP,		/* Drop ref to page before wait, no check when woken,
1127			 * like put_and_wait_on_page_locked() on PG_locked.
1128			 */
1129};
1130
1131static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1132	struct page *page, int bit_nr, int state, enum behavior behavior)
1133{
1134	struct wait_page_queue wait_page;
1135	wait_queue_entry_t *wait = &wait_page.wait;
1136	bool bit_is_set;
1137	bool thrashing = false;
1138	bool delayacct = false;
1139	unsigned long pflags;
1140	int ret = 0;
1141
1142	if (bit_nr == PG_locked &&
1143	    !PageUptodate(page) && PageWorkingset(page)) {
1144		if (!PageSwapBacked(page)) {
1145			delayacct_thrashing_start();
1146			delayacct = true;
1147		}
1148		psi_memstall_enter(&pflags);
1149		thrashing = true;
1150	}
1151
1152	init_wait(wait);
1153	wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
1154	wait->func = wake_page_function;
1155	wait_page.page = page;
1156	wait_page.bit_nr = bit_nr;
1157
1158	for (;;) {
1159		spin_lock_irq(&q->lock);
1160
1161		if (likely(list_empty(&wait->entry))) {
1162			__add_wait_queue_entry_tail(q, wait);
 
 
 
1163			SetPageWaiters(page);
1164		}
1165
1166		set_current_state(state);
1167
1168		spin_unlock_irq(&q->lock);
1169
1170		bit_is_set = test_bit(bit_nr, &page->flags);
1171		if (behavior == DROP)
1172			put_page(page);
1173
1174		if (likely(bit_is_set))
1175			io_schedule();
 
 
 
 
 
1176
1177		if (behavior == EXCLUSIVE) {
1178			if (!test_and_set_bit_lock(bit_nr, &page->flags))
1179				break;
1180		} else if (behavior == SHARED) {
1181			if (!test_bit(bit_nr, &page->flags))
1182				break;
1183		}
1184
1185		if (signal_pending_state(state, current)) {
1186			ret = -EINTR;
1187			break;
1188		}
1189
1190		if (behavior == DROP) {
1191			/*
1192			 * We can no longer safely access page->flags:
1193			 * even if CONFIG_MEMORY_HOTREMOVE is not enabled,
1194			 * there is a risk of waiting forever on a page reused
1195			 * for something that keeps it locked indefinitely.
1196			 * But best check for -EINTR above before breaking.
1197			 */
1198			break;
1199		}
1200	}
1201
1202	finish_wait(q, wait);
1203
1204	if (thrashing) {
1205		if (delayacct)
1206			delayacct_thrashing_end();
1207		psi_memstall_leave(&pflags);
1208	}
1209
1210	/*
1211	 * A signal could leave PageWaiters set. Clearing it here if
1212	 * !waitqueue_active would be possible (by open-coding finish_wait),
1213	 * but still fail to catch it in the case of wait hash collision. We
1214	 * already can fail to clear wait hash collision cases, so don't
1215	 * bother with signals either.
1216	 */
1217
1218	return ret;
1219}
1220
1221void wait_on_page_bit(struct page *page, int bit_nr)
1222{
1223	wait_queue_head_t *q = page_waitqueue(page);
1224	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1225}
1226EXPORT_SYMBOL(wait_on_page_bit);
1227
1228int wait_on_page_bit_killable(struct page *page, int bit_nr)
1229{
1230	wait_queue_head_t *q = page_waitqueue(page);
1231	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1232}
1233EXPORT_SYMBOL(wait_on_page_bit_killable);
1234
1235/**
1236 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1237 * @page: The page to wait for.
1238 *
1239 * The caller should hold a reference on @page.  They expect the page to
1240 * become unlocked relatively soon, but do not wish to hold up migration
1241 * (for example) by holding the reference while waiting for the page to
1242 * come unlocked.  After this function returns, the caller should not
1243 * dereference @page.
1244 */
1245void put_and_wait_on_page_locked(struct page *page)
1246{
1247	wait_queue_head_t *q;
1248
1249	page = compound_head(page);
1250	q = page_waitqueue(page);
1251	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1252}
1253
1254/**
1255 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1256 * @page: Page defining the wait queue of interest
1257 * @waiter: Waiter to add to the queue
1258 *
1259 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1260 */
1261void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1262{
1263	wait_queue_head_t *q = page_waitqueue(page);
1264	unsigned long flags;
1265
1266	spin_lock_irqsave(&q->lock, flags);
1267	__add_wait_queue_entry_tail(q, waiter);
1268	SetPageWaiters(page);
1269	spin_unlock_irqrestore(&q->lock, flags);
1270}
1271EXPORT_SYMBOL_GPL(add_page_wait_queue);
1272
1273#ifndef clear_bit_unlock_is_negative_byte
1274
1275/*
1276 * PG_waiters is the high bit in the same byte as PG_lock.
1277 *
1278 * On x86 (and on many other architectures), we can clear PG_lock and
1279 * test the sign bit at the same time. But if the architecture does
1280 * not support that special operation, we just do this all by hand
1281 * instead.
1282 *
1283 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1284 * being cleared, but a memory barrier should be unneccssary since it is
1285 * in the same byte as PG_locked.
1286 */
1287static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1288{
1289	clear_bit_unlock(nr, mem);
1290	/* smp_mb__after_atomic(); */
1291	return test_bit(PG_waiters, mem);
1292}
1293
1294#endif
1295
1296/**
1297 * unlock_page - unlock a locked page
1298 * @page: the page
1299 *
1300 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1301 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1302 * mechanism between PageLocked pages and PageWriteback pages is shared.
1303 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1304 *
1305 * Note that this depends on PG_waiters being the sign bit in the byte
1306 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1307 * clear the PG_locked bit and test PG_waiters at the same time fairly
1308 * portably (architectures that do LL/SC can test any bit, while x86 can
1309 * test the sign bit).
1310 */
1311void unlock_page(struct page *page)
1312{
1313	BUILD_BUG_ON(PG_waiters != 7);
1314	page = compound_head(page);
1315	VM_BUG_ON_PAGE(!PageLocked(page), page);
1316	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1317		wake_up_page_bit(page, PG_locked);
1318}
1319EXPORT_SYMBOL(unlock_page);
1320
1321/**
1322 * end_page_writeback - end writeback against a page
1323 * @page: the page
1324 */
1325void end_page_writeback(struct page *page)
1326{
1327	/*
1328	 * TestClearPageReclaim could be used here but it is an atomic
1329	 * operation and overkill in this particular case. Failing to
1330	 * shuffle a page marked for immediate reclaim is too mild to
1331	 * justify taking an atomic operation penalty at the end of
1332	 * ever page writeback.
1333	 */
1334	if (PageReclaim(page)) {
1335		ClearPageReclaim(page);
1336		rotate_reclaimable_page(page);
1337	}
1338
1339	if (!test_clear_page_writeback(page))
1340		BUG();
1341
1342	smp_mb__after_atomic();
1343	wake_up_page(page, PG_writeback);
1344}
1345EXPORT_SYMBOL(end_page_writeback);
1346
1347/*
1348 * After completing I/O on a page, call this routine to update the page
1349 * flags appropriately
1350 */
1351void page_endio(struct page *page, bool is_write, int err)
1352{
1353	if (!is_write) {
1354		if (!err) {
1355			SetPageUptodate(page);
1356		} else {
1357			ClearPageUptodate(page);
1358			SetPageError(page);
1359		}
1360		unlock_page(page);
1361	} else {
1362		if (err) {
1363			struct address_space *mapping;
1364
1365			SetPageError(page);
1366			mapping = page_mapping(page);
1367			if (mapping)
1368				mapping_set_error(mapping, err);
1369		}
1370		end_page_writeback(page);
1371	}
1372}
1373EXPORT_SYMBOL_GPL(page_endio);
1374
1375/**
1376 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1377 * @__page: the page to lock
1378 */
1379void __lock_page(struct page *__page)
1380{
1381	struct page *page = compound_head(__page);
1382	wait_queue_head_t *q = page_waitqueue(page);
1383	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1384				EXCLUSIVE);
1385}
1386EXPORT_SYMBOL(__lock_page);
1387
1388int __lock_page_killable(struct page *__page)
1389{
1390	struct page *page = compound_head(__page);
1391	wait_queue_head_t *q = page_waitqueue(page);
1392	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1393					EXCLUSIVE);
1394}
1395EXPORT_SYMBOL_GPL(__lock_page_killable);
1396
1397/*
1398 * Return values:
1399 * 1 - page is locked; mmap_sem is still held.
1400 * 0 - page is not locked.
1401 *     mmap_sem has been released (up_read()), unless flags had both
1402 *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1403 *     which case mmap_sem is still held.
1404 *
1405 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1406 * with the page locked and the mmap_sem unperturbed.
1407 */
1408int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1409			 unsigned int flags)
1410{
1411	if (flags & FAULT_FLAG_ALLOW_RETRY) {
1412		/*
1413		 * CAUTION! In this case, mmap_sem is not released
1414		 * even though return 0.
1415		 */
1416		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1417			return 0;
1418
1419		up_read(&mm->mmap_sem);
1420		if (flags & FAULT_FLAG_KILLABLE)
1421			wait_on_page_locked_killable(page);
1422		else
1423			wait_on_page_locked(page);
1424		return 0;
1425	} else {
1426		if (flags & FAULT_FLAG_KILLABLE) {
1427			int ret;
1428
1429			ret = __lock_page_killable(page);
1430			if (ret) {
1431				up_read(&mm->mmap_sem);
1432				return 0;
1433			}
1434		} else
1435			__lock_page(page);
1436		return 1;
1437	}
1438}
1439
1440/**
1441 * page_cache_next_miss() - Find the next gap in the page cache.
1442 * @mapping: Mapping.
1443 * @index: Index.
1444 * @max_scan: Maximum range to search.
1445 *
1446 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1447 * gap with the lowest index.
1448 *
1449 * This function may be called under the rcu_read_lock.  However, this will
1450 * not atomically search a snapshot of the cache at a single point in time.
1451 * For example, if a gap is created at index 5, then subsequently a gap is
1452 * created at index 10, page_cache_next_miss covering both indices may
1453 * return 10 if called under the rcu_read_lock.
1454 *
1455 * Return: The index of the gap if found, otherwise an index outside the
1456 * range specified (in which case 'return - index >= max_scan' will be true).
1457 * In the rare case of index wrap-around, 0 will be returned.
 
 
1458 */
1459pgoff_t page_cache_next_miss(struct address_space *mapping,
1460			     pgoff_t index, unsigned long max_scan)
1461{
1462	XA_STATE(xas, &mapping->i_pages, index);
1463
1464	while (max_scan--) {
1465		void *entry = xas_next(&xas);
1466		if (!entry || xa_is_value(entry))
 
 
1467			break;
1468		if (xas.xa_index == 0)
 
1469			break;
1470	}
1471
1472	return xas.xa_index;
1473}
1474EXPORT_SYMBOL(page_cache_next_miss);
1475
1476/**
1477 * page_cache_prev_miss() - Find the previous gap in the page cache.
1478 * @mapping: Mapping.
1479 * @index: Index.
1480 * @max_scan: Maximum range to search.
1481 *
1482 * Search the range [max(index - max_scan + 1, 0), index] for the
1483 * gap with the highest index.
1484 *
1485 * This function may be called under the rcu_read_lock.  However, this will
1486 * not atomically search a snapshot of the cache at a single point in time.
1487 * For example, if a gap is created at index 10, then subsequently a gap is
1488 * created at index 5, page_cache_prev_miss() covering both indices may
1489 * return 5 if called under the rcu_read_lock.
1490 *
1491 * Return: The index of the gap if found, otherwise an index outside the
1492 * range specified (in which case 'index - return >= max_scan' will be true).
1493 * In the rare case of wrap-around, ULONG_MAX will be returned.
 
 
 
1494 */
1495pgoff_t page_cache_prev_miss(struct address_space *mapping,
1496			     pgoff_t index, unsigned long max_scan)
1497{
1498	XA_STATE(xas, &mapping->i_pages, index);
 
 
 
1499
1500	while (max_scan--) {
1501		void *entry = xas_prev(&xas);
1502		if (!entry || xa_is_value(entry))
1503			break;
1504		if (xas.xa_index == ULONG_MAX)
 
1505			break;
1506	}
1507
1508	return xas.xa_index;
1509}
1510EXPORT_SYMBOL(page_cache_prev_miss);
1511
1512/**
1513 * find_get_entry - find and get a page cache entry
1514 * @mapping: the address_space to search
1515 * @offset: the page cache index
1516 *
1517 * Looks up the page cache slot at @mapping & @offset.  If there is a
1518 * page cache page, it is returned with an increased refcount.
1519 *
1520 * If the slot holds a shadow entry of a previously evicted page, or a
1521 * swap entry from shmem/tmpfs, it is returned.
1522 *
1523 * Return: the found page or shadow entry, %NULL if nothing is found.
1524 */
1525struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1526{
1527	XA_STATE(xas, &mapping->i_pages, offset);
1528	struct page *page;
1529
1530	rcu_read_lock();
1531repeat:
1532	xas_reset(&xas);
1533	page = xas_load(&xas);
1534	if (xas_retry(&xas, page))
1535		goto repeat;
1536	/*
1537	 * A shadow entry of a recently evicted page, or a swap entry from
1538	 * shmem/tmpfs.  Return it without attempting to raise page count.
1539	 */
1540	if (!page || xa_is_value(page))
1541		goto out;
 
 
 
 
 
 
1542
1543	if (!page_cache_get_speculative(page))
1544		goto repeat;
 
1545
1546	/*
1547	 * Has the page moved or been split?
1548	 * This is part of the lockless pagecache protocol. See
1549	 * include/linux/pagemap.h for details.
1550	 */
1551	if (unlikely(page != xas_reload(&xas))) {
1552		put_page(page);
1553		goto repeat;
 
 
 
 
 
 
 
1554	}
1555	page = find_subpage(page, offset);
1556out:
1557	rcu_read_unlock();
1558
1559	return page;
1560}
1561EXPORT_SYMBOL(find_get_entry);
1562
1563/**
1564 * find_lock_entry - locate, pin and lock a page cache entry
1565 * @mapping: the address_space to search
1566 * @offset: the page cache index
1567 *
1568 * Looks up the page cache slot at @mapping & @offset.  If there is a
1569 * page cache page, it is returned locked and with an increased
1570 * refcount.
1571 *
1572 * If the slot holds a shadow entry of a previously evicted page, or a
1573 * swap entry from shmem/tmpfs, it is returned.
1574 *
1575 * find_lock_entry() may sleep.
1576 *
1577 * Return: the found page or shadow entry, %NULL if nothing is found.
1578 */
1579struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1580{
1581	struct page *page;
1582
1583repeat:
1584	page = find_get_entry(mapping, offset);
1585	if (page && !xa_is_value(page)) {
1586		lock_page(page);
1587		/* Has the page been truncated? */
1588		if (unlikely(page_mapping(page) != mapping)) {
1589			unlock_page(page);
1590			put_page(page);
1591			goto repeat;
1592		}
1593		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1594	}
1595	return page;
1596}
1597EXPORT_SYMBOL(find_lock_entry);
1598
1599/**
1600 * pagecache_get_page - find and get a page reference
1601 * @mapping: the address_space to search
1602 * @offset: the page index
1603 * @fgp_flags: PCG flags
1604 * @gfp_mask: gfp mask to use for the page cache data page allocation
1605 *
1606 * Looks up the page cache slot at @mapping & @offset.
1607 *
1608 * PCG flags modify how the page is returned.
1609 *
1610 * @fgp_flags can be:
1611 *
1612 * - FGP_ACCESSED: the page will be marked accessed
1613 * - FGP_LOCK: Page is return locked
1614 * - FGP_CREAT: If page is not present then a new page is allocated using
1615 *   @gfp_mask and added to the page cache and the VM's LRU
1616 *   list. The page is returned locked and with an increased
1617 *   refcount.
1618 * - FGP_FOR_MMAP: Similar to FGP_CREAT, only we want to allow the caller to do
1619 *   its own locking dance if the page is already in cache, or unlock the page
1620 *   before returning if we had to add the page to pagecache.
1621 *
1622 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1623 * if the GFP flags specified for FGP_CREAT are atomic.
1624 *
1625 * If there is a page cache page, it is returned with an increased refcount.
1626 *
1627 * Return: the found page or %NULL otherwise.
1628 */
1629struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1630	int fgp_flags, gfp_t gfp_mask)
1631{
1632	struct page *page;
1633
1634repeat:
1635	page = find_get_entry(mapping, offset);
1636	if (xa_is_value(page))
1637		page = NULL;
1638	if (!page)
1639		goto no_page;
1640
1641	if (fgp_flags & FGP_LOCK) {
1642		if (fgp_flags & FGP_NOWAIT) {
1643			if (!trylock_page(page)) {
1644				put_page(page);
1645				return NULL;
1646			}
1647		} else {
1648			lock_page(page);
1649		}
1650
1651		/* Has the page been truncated? */
1652		if (unlikely(compound_head(page)->mapping != mapping)) {
1653			unlock_page(page);
1654			put_page(page);
1655			goto repeat;
1656		}
1657		VM_BUG_ON_PAGE(page->index != offset, page);
1658	}
1659
1660	if (fgp_flags & FGP_ACCESSED)
1661		mark_page_accessed(page);
1662
1663no_page:
1664	if (!page && (fgp_flags & FGP_CREAT)) {
1665		int err;
1666		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1667			gfp_mask |= __GFP_WRITE;
1668		if (fgp_flags & FGP_NOFS)
1669			gfp_mask &= ~__GFP_FS;
1670
1671		page = __page_cache_alloc(gfp_mask);
1672		if (!page)
1673			return NULL;
1674
1675		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1676			fgp_flags |= FGP_LOCK;
1677
1678		/* Init accessed so avoid atomic mark_page_accessed later */
1679		if (fgp_flags & FGP_ACCESSED)
1680			__SetPageReferenced(page);
1681
1682		err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
 
1683		if (unlikely(err)) {
1684			put_page(page);
1685			page = NULL;
1686			if (err == -EEXIST)
1687				goto repeat;
1688		}
1689
1690		/*
1691		 * add_to_page_cache_lru locks the page, and for mmap we expect
1692		 * an unlocked page.
1693		 */
1694		if (page && (fgp_flags & FGP_FOR_MMAP))
1695			unlock_page(page);
1696	}
1697
1698	return page;
1699}
1700EXPORT_SYMBOL(pagecache_get_page);
1701
1702/**
1703 * find_get_entries - gang pagecache lookup
1704 * @mapping:	The address_space to search
1705 * @start:	The starting page cache index
1706 * @nr_entries:	The maximum number of entries
1707 * @entries:	Where the resulting entries are placed
1708 * @indices:	The cache indices corresponding to the entries in @entries
1709 *
1710 * find_get_entries() will search for and return a group of up to
1711 * @nr_entries entries in the mapping.  The entries are placed at
1712 * @entries.  find_get_entries() takes a reference against any actual
1713 * pages it returns.
1714 *
1715 * The search returns a group of mapping-contiguous page cache entries
1716 * with ascending indexes.  There may be holes in the indices due to
1717 * not-present pages.
1718 *
1719 * Any shadow entries of evicted pages, or swap entries from
1720 * shmem/tmpfs, are included in the returned array.
1721 *
1722 * Return: the number of pages and shadow entries which were found.
 
1723 */
1724unsigned find_get_entries(struct address_space *mapping,
1725			  pgoff_t start, unsigned int nr_entries,
1726			  struct page **entries, pgoff_t *indices)
1727{
1728	XA_STATE(xas, &mapping->i_pages, start);
1729	struct page *page;
1730	unsigned int ret = 0;
 
1731
1732	if (!nr_entries)
1733		return 0;
1734
1735	rcu_read_lock();
1736	xas_for_each(&xas, page, ULONG_MAX) {
1737		if (xas_retry(&xas, page))
 
 
 
1738			continue;
1739		/*
1740		 * A shadow entry of a recently evicted page, a swap
1741		 * entry from shmem/tmpfs or a DAX entry.  Return it
1742		 * without attempting to raise page count.
1743		 */
1744		if (xa_is_value(page))
 
 
 
 
1745			goto export;
 
1746
1747		if (!page_cache_get_speculative(page))
1748			goto retry;
 
1749
1750		/* Has the page moved or been split? */
1751		if (unlikely(page != xas_reload(&xas)))
1752			goto put_page;
1753		page = find_subpage(page, xas.xa_index);
 
1754
 
 
 
 
 
1755export:
1756		indices[ret] = xas.xa_index;
1757		entries[ret] = page;
1758		if (++ret == nr_entries)
1759			break;
1760		continue;
1761put_page:
1762		put_page(page);
1763retry:
1764		xas_reset(&xas);
1765	}
1766	rcu_read_unlock();
1767	return ret;
1768}
1769
1770/**
1771 * find_get_pages_range - gang pagecache lookup
1772 * @mapping:	The address_space to search
1773 * @start:	The starting page index
1774 * @end:	The final page index (inclusive)
1775 * @nr_pages:	The maximum number of pages
1776 * @pages:	Where the resulting pages are placed
1777 *
1778 * find_get_pages_range() will search for and return a group of up to @nr_pages
1779 * pages in the mapping starting at index @start and up to index @end
1780 * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
1781 * a reference against the returned pages.
1782 *
1783 * The search returns a group of mapping-contiguous pages with ascending
1784 * indexes.  There may be holes in the indices due to not-present pages.
1785 * We also update @start to index the next page for the traversal.
1786 *
1787 * Return: the number of pages which were found. If this number is
1788 * smaller than @nr_pages, the end of specified range has been
1789 * reached.
1790 */
1791unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1792			      pgoff_t end, unsigned int nr_pages,
1793			      struct page **pages)
1794{
1795	XA_STATE(xas, &mapping->i_pages, *start);
1796	struct page *page;
1797	unsigned ret = 0;
1798
1799	if (unlikely(!nr_pages))
1800		return 0;
1801
1802	rcu_read_lock();
1803	xas_for_each(&xas, page, end) {
1804		if (xas_retry(&xas, page))
 
 
 
1805			continue;
1806		/* Skip over shadow, swap and DAX entries */
1807		if (xa_is_value(page))
 
 
 
 
 
 
 
 
 
1808			continue;
 
1809
1810		if (!page_cache_get_speculative(page))
1811			goto retry;
 
1812
1813		/* Has the page moved or been split? */
1814		if (unlikely(page != xas_reload(&xas)))
1815			goto put_page;
1816
1817		pages[ret] = find_subpage(page, xas.xa_index);
1818		if (++ret == nr_pages) {
1819			*start = xas.xa_index + 1;
1820			goto out;
1821		}
1822		continue;
1823put_page:
1824		put_page(page);
1825retry:
1826		xas_reset(&xas);
 
 
 
 
 
1827	}
1828
1829	/*
1830	 * We come here when there is no page beyond @end. We take care to not
1831	 * overflow the index @start as it confuses some of the callers. This
1832	 * breaks the iteration when there is a page at index -1 but that is
1833	 * already broken anyway.
1834	 */
1835	if (end == (pgoff_t)-1)
1836		*start = (pgoff_t)-1;
1837	else
1838		*start = end + 1;
1839out:
1840	rcu_read_unlock();
1841
1842	return ret;
1843}
1844
1845/**
1846 * find_get_pages_contig - gang contiguous pagecache lookup
1847 * @mapping:	The address_space to search
1848 * @index:	The starting page index
1849 * @nr_pages:	The maximum number of pages
1850 * @pages:	Where the resulting pages are placed
1851 *
1852 * find_get_pages_contig() works exactly like find_get_pages(), except
1853 * that the returned number of pages are guaranteed to be contiguous.
1854 *
1855 * Return: the number of pages which were found.
1856 */
1857unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1858			       unsigned int nr_pages, struct page **pages)
1859{
1860	XA_STATE(xas, &mapping->i_pages, index);
1861	struct page *page;
1862	unsigned int ret = 0;
1863
1864	if (unlikely(!nr_pages))
1865		return 0;
1866
1867	rcu_read_lock();
1868	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1869		if (xas_retry(&xas, page))
1870			continue;
1871		/*
1872		 * If the entry has been swapped out, we can stop looking.
1873		 * No current caller is looking for DAX entries.
1874		 */
1875		if (xa_is_value(page))
1876			break;
1877
1878		if (!page_cache_get_speculative(page))
1879			goto retry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1880
1881		/* Has the page moved or been split? */
1882		if (unlikely(page != xas_reload(&xas)))
1883			goto put_page;
 
 
 
 
 
 
 
 
1884
1885		pages[ret] = find_subpage(page, xas.xa_index);
 
 
 
 
 
 
 
 
 
 
1886		if (++ret == nr_pages)
1887			break;
1888		continue;
1889put_page:
1890		put_page(page);
1891retry:
1892		xas_reset(&xas);
1893	}
1894	rcu_read_unlock();
1895	return ret;
1896}
1897EXPORT_SYMBOL(find_get_pages_contig);
1898
1899/**
1900 * find_get_pages_range_tag - find and return pages in given range matching @tag
1901 * @mapping:	the address_space to search
1902 * @index:	the starting page index
1903 * @end:	The final page index (inclusive)
1904 * @tag:	the tag index
1905 * @nr_pages:	the maximum number of pages
1906 * @pages:	where the resulting pages are placed
1907 *
1908 * Like find_get_pages, except we only return pages which are tagged with
1909 * @tag.   We update @index to index the next page for the traversal.
1910 *
1911 * Return: the number of pages which were found.
1912 */
1913unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1914			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
1915			struct page **pages)
1916{
1917	XA_STATE(xas, &mapping->i_pages, *index);
1918	struct page *page;
1919	unsigned ret = 0;
1920
1921	if (unlikely(!nr_pages))
1922		return 0;
1923
1924	rcu_read_lock();
1925	xas_for_each_marked(&xas, page, end, tag) {
1926		if (xas_retry(&xas, page))
 
 
 
 
1927			continue;
1928		/*
1929		 * Shadow entries should never be tagged, but this iteration
1930		 * is lockless so there is a window for page reclaim to evict
1931		 * a page we saw tagged.  Skip over it.
1932		 */
1933		if (xa_is_value(page))
 
 
 
 
 
 
 
 
 
 
 
1934			continue;
 
1935
1936		if (!page_cache_get_speculative(page))
1937			goto retry;
 
1938
1939		/* Has the page moved or been split? */
1940		if (unlikely(page != xas_reload(&xas)))
1941			goto put_page;
1942
1943		pages[ret] = find_subpage(page, xas.xa_index);
1944		if (++ret == nr_pages) {
1945			*index = xas.xa_index + 1;
1946			goto out;
1947		}
1948		continue;
1949put_page:
1950		put_page(page);
1951retry:
1952		xas_reset(&xas);
 
 
 
 
 
1953	}
1954
1955	/*
1956	 * We come here when we got to @end. We take care to not overflow the
1957	 * index @index as it confuses some of the callers. This breaks the
1958	 * iteration when there is a page at index -1 but that is already
1959	 * broken anyway.
1960	 */
1961	if (end == (pgoff_t)-1)
1962		*index = (pgoff_t)-1;
1963	else
1964		*index = end + 1;
1965out:
1966	rcu_read_unlock();
1967
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1968	return ret;
1969}
1970EXPORT_SYMBOL(find_get_pages_range_tag);
1971
1972/*
1973 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1974 * a _large_ part of the i/o request. Imagine the worst scenario:
1975 *
1976 *      ---R__________________________________________B__________
1977 *         ^ reading here                             ^ bad block(assume 4k)
1978 *
1979 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1980 * => failing the whole request => read(R) => read(R+1) =>
1981 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1982 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1983 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1984 *
1985 * It is going insane. Fix it by quickly scaling down the readahead size.
1986 */
1987static void shrink_readahead_size_eio(struct file *filp,
1988					struct file_ra_state *ra)
1989{
1990	ra->ra_pages /= 4;
1991}
1992
1993/**
1994 * generic_file_buffered_read - generic file read routine
1995 * @iocb:	the iocb to read
 
1996 * @iter:	data destination
1997 * @written:	already copied
1998 *
1999 * This is a generic file read routine, and uses the
2000 * mapping->a_ops->readpage() function for the actual low-level stuff.
2001 *
2002 * This is really ugly. But the goto's actually try to clarify some
2003 * of the logic when it comes to error handling etc.
2004 *
2005 * Return:
2006 * * total number of bytes copied, including those the were already @written
2007 * * negative error code if nothing was copied
2008 */
2009static ssize_t generic_file_buffered_read(struct kiocb *iocb,
2010		struct iov_iter *iter, ssize_t written)
2011{
2012	struct file *filp = iocb->ki_filp;
2013	struct address_space *mapping = filp->f_mapping;
2014	struct inode *inode = mapping->host;
2015	struct file_ra_state *ra = &filp->f_ra;
2016	loff_t *ppos = &iocb->ki_pos;
2017	pgoff_t index;
2018	pgoff_t last_index;
2019	pgoff_t prev_index;
2020	unsigned long offset;      /* offset into pagecache page */
2021	unsigned int prev_offset;
2022	int error = 0;
2023
2024	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2025		return 0;
2026	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2027
2028	index = *ppos >> PAGE_SHIFT;
2029	prev_index = ra->prev_pos >> PAGE_SHIFT;
2030	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2031	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2032	offset = *ppos & ~PAGE_MASK;
2033
2034	for (;;) {
2035		struct page *page;
2036		pgoff_t end_index;
2037		loff_t isize;
2038		unsigned long nr, ret;
2039
2040		cond_resched();
2041find_page:
2042		if (fatal_signal_pending(current)) {
2043			error = -EINTR;
2044			goto out;
2045		}
2046
2047		page = find_get_page(mapping, index);
2048		if (!page) {
2049			if (iocb->ki_flags & IOCB_NOWAIT)
2050				goto would_block;
2051			page_cache_sync_readahead(mapping,
2052					ra, filp,
2053					index, last_index - index);
2054			page = find_get_page(mapping, index);
2055			if (unlikely(page == NULL))
2056				goto no_cached_page;
2057		}
2058		if (PageReadahead(page)) {
2059			page_cache_async_readahead(mapping,
2060					ra, filp, page,
2061					index, last_index - index);
2062		}
2063		if (!PageUptodate(page)) {
2064			if (iocb->ki_flags & IOCB_NOWAIT) {
2065				put_page(page);
2066				goto would_block;
2067			}
2068
2069			/*
2070			 * See comment in do_read_cache_page on why
2071			 * wait_on_page_locked is used to avoid unnecessarily
2072			 * serialisations and why it's safe.
2073			 */
2074			error = wait_on_page_locked_killable(page);
2075			if (unlikely(error))
2076				goto readpage_error;
2077			if (PageUptodate(page))
2078				goto page_ok;
2079
2080			if (inode->i_blkbits == PAGE_SHIFT ||
2081					!mapping->a_ops->is_partially_uptodate)
2082				goto page_not_up_to_date;
2083			/* pipes can't handle partially uptodate pages */
2084			if (unlikely(iov_iter_is_pipe(iter)))
2085				goto page_not_up_to_date;
2086			if (!trylock_page(page))
2087				goto page_not_up_to_date;
2088			/* Did it get truncated before we got the lock? */
2089			if (!page->mapping)
2090				goto page_not_up_to_date_locked;
2091			if (!mapping->a_ops->is_partially_uptodate(page,
2092							offset, iter->count))
2093				goto page_not_up_to_date_locked;
2094			unlock_page(page);
2095		}
2096page_ok:
2097		/*
2098		 * i_size must be checked after we know the page is Uptodate.
2099		 *
2100		 * Checking i_size after the check allows us to calculate
2101		 * the correct value for "nr", which means the zero-filled
2102		 * part of the page is not copied back to userspace (unless
2103		 * another truncate extends the file - this is desired though).
2104		 */
2105
2106		isize = i_size_read(inode);
2107		end_index = (isize - 1) >> PAGE_SHIFT;
2108		if (unlikely(!isize || index > end_index)) {
2109			put_page(page);
2110			goto out;
2111		}
2112
2113		/* nr is the maximum number of bytes to copy from this page */
2114		nr = PAGE_SIZE;
2115		if (index == end_index) {
2116			nr = ((isize - 1) & ~PAGE_MASK) + 1;
2117			if (nr <= offset) {
2118				put_page(page);
2119				goto out;
2120			}
2121		}
2122		nr = nr - offset;
2123
2124		/* If users can be writing to this page using arbitrary
2125		 * virtual addresses, take care about potential aliasing
2126		 * before reading the page on the kernel side.
2127		 */
2128		if (mapping_writably_mapped(mapping))
2129			flush_dcache_page(page);
2130
2131		/*
2132		 * When a sequential read accesses a page several times,
2133		 * only mark it as accessed the first time.
2134		 */
2135		if (prev_index != index || offset != prev_offset)
2136			mark_page_accessed(page);
2137		prev_index = index;
2138
2139		/*
2140		 * Ok, we have the page, and it's up-to-date, so
2141		 * now we can copy it to user space...
2142		 */
2143
2144		ret = copy_page_to_iter(page, offset, nr, iter);
2145		offset += ret;
2146		index += offset >> PAGE_SHIFT;
2147		offset &= ~PAGE_MASK;
2148		prev_offset = offset;
2149
2150		put_page(page);
2151		written += ret;
2152		if (!iov_iter_count(iter))
2153			goto out;
2154		if (ret < nr) {
2155			error = -EFAULT;
2156			goto out;
2157		}
2158		continue;
2159
2160page_not_up_to_date:
2161		/* Get exclusive access to the page ... */
2162		error = lock_page_killable(page);
2163		if (unlikely(error))
2164			goto readpage_error;
2165
2166page_not_up_to_date_locked:
2167		/* Did it get truncated before we got the lock? */
2168		if (!page->mapping) {
2169			unlock_page(page);
2170			put_page(page);
2171			continue;
2172		}
2173
2174		/* Did somebody else fill it already? */
2175		if (PageUptodate(page)) {
2176			unlock_page(page);
2177			goto page_ok;
2178		}
2179
2180readpage:
2181		/*
2182		 * A previous I/O error may have been due to temporary
2183		 * failures, eg. multipath errors.
2184		 * PG_error will be set again if readpage fails.
2185		 */
2186		ClearPageError(page);
2187		/* Start the actual read. The read will unlock the page. */
2188		error = mapping->a_ops->readpage(filp, page);
2189
2190		if (unlikely(error)) {
2191			if (error == AOP_TRUNCATED_PAGE) {
2192				put_page(page);
2193				error = 0;
2194				goto find_page;
2195			}
2196			goto readpage_error;
2197		}
2198
2199		if (!PageUptodate(page)) {
2200			error = lock_page_killable(page);
2201			if (unlikely(error))
2202				goto readpage_error;
2203			if (!PageUptodate(page)) {
2204				if (page->mapping == NULL) {
2205					/*
2206					 * invalidate_mapping_pages got it
2207					 */
2208					unlock_page(page);
2209					put_page(page);
2210					goto find_page;
2211				}
2212				unlock_page(page);
2213				shrink_readahead_size_eio(filp, ra);
2214				error = -EIO;
2215				goto readpage_error;
2216			}
2217			unlock_page(page);
2218		}
2219
2220		goto page_ok;
2221
2222readpage_error:
2223		/* UHHUH! A synchronous read error occurred. Report it */
2224		put_page(page);
2225		goto out;
2226
2227no_cached_page:
2228		/*
2229		 * Ok, it wasn't cached, so we need to create a new
2230		 * page..
2231		 */
2232		page = page_cache_alloc(mapping);
2233		if (!page) {
2234			error = -ENOMEM;
2235			goto out;
2236		}
2237		error = add_to_page_cache_lru(page, mapping, index,
2238				mapping_gfp_constraint(mapping, GFP_KERNEL));
2239		if (error) {
2240			put_page(page);
2241			if (error == -EEXIST) {
2242				error = 0;
2243				goto find_page;
2244			}
2245			goto out;
2246		}
2247		goto readpage;
2248	}
2249
2250would_block:
2251	error = -EAGAIN;
2252out:
2253	ra->prev_pos = prev_index;
2254	ra->prev_pos <<= PAGE_SHIFT;
2255	ra->prev_pos |= prev_offset;
2256
2257	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2258	file_accessed(filp);
2259	return written ? written : error;
2260}
2261
2262/**
2263 * generic_file_read_iter - generic filesystem read routine
2264 * @iocb:	kernel I/O control block
2265 * @iter:	destination for the data read
2266 *
2267 * This is the "read_iter()" routine for all filesystems
2268 * that can use the page cache directly.
2269 * Return:
2270 * * number of bytes copied, even for partial reads
2271 * * negative error code if nothing was read
2272 */
2273ssize_t
2274generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2275{
2276	size_t count = iov_iter_count(iter);
2277	ssize_t retval = 0;
 
2278
2279	if (!count)
2280		goto out; /* skip atime */
2281
2282	if (iocb->ki_flags & IOCB_DIRECT) {
2283		struct file *file = iocb->ki_filp;
2284		struct address_space *mapping = file->f_mapping;
2285		struct inode *inode = mapping->host;
 
2286		loff_t size;
2287
2288		size = i_size_read(inode);
2289		if (iocb->ki_flags & IOCB_NOWAIT) {
2290			if (filemap_range_has_page(mapping, iocb->ki_pos,
2291						   iocb->ki_pos + count - 1))
2292				return -EAGAIN;
2293		} else {
2294			retval = filemap_write_and_wait_range(mapping,
2295						iocb->ki_pos,
2296					        iocb->ki_pos + count - 1);
2297			if (retval < 0)
2298				goto out;
2299		}
2300
2301		file_accessed(file);
2302
2303		retval = mapping->a_ops->direct_IO(iocb, iter);
2304		if (retval >= 0) {
2305			iocb->ki_pos += retval;
2306			count -= retval;
2307		}
2308		iov_iter_revert(iter, count - iov_iter_count(iter));
2309
2310		/*
2311		 * Btrfs can have a short DIO read if we encounter
2312		 * compressed extents, so if there was an error, or if
2313		 * we've already read everything we wanted to, or if
2314		 * there was a short read because we hit EOF, go ahead
2315		 * and return.  Otherwise fallthrough to buffered io for
2316		 * the rest of the read.  Buffered reads will not work for
2317		 * DAX files, so don't bother trying.
2318		 */
2319		if (retval < 0 || !count || iocb->ki_pos >= size ||
2320		    IS_DAX(inode))
2321			goto out;
2322	}
2323
2324	retval = generic_file_buffered_read(iocb, iter, retval);
2325out:
2326	return retval;
2327}
2328EXPORT_SYMBOL(generic_file_read_iter);
2329
2330#ifdef CONFIG_MMU
2331#define MMAP_LOTSAMISS  (100)
2332static struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
2333					     struct file *fpin)
 
 
 
 
 
 
 
2334{
2335	int flags = vmf->flags;
 
 
2336
2337	if (fpin)
2338		return fpin;
 
 
2339
2340	/*
2341	 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
2342	 * anything, so we only pin the file and drop the mmap_sem if only
2343	 * FAULT_FLAG_ALLOW_RETRY is set.
2344	 */
2345	if ((flags & (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT)) ==
2346	    FAULT_FLAG_ALLOW_RETRY) {
2347		fpin = get_file(vmf->vma->vm_file);
2348		up_read(&vmf->vma->vm_mm->mmap_sem);
2349	}
2350	return fpin;
2351}
2352
2353/*
2354 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem
2355 * @vmf - the vm_fault for this fault.
2356 * @page - the page to lock.
2357 * @fpin - the pointer to the file we may pin (or is already pinned).
2358 *
2359 * This works similar to lock_page_or_retry in that it can drop the mmap_sem.
2360 * It differs in that it actually returns the page locked if it returns 1 and 0
2361 * if it couldn't lock the page.  If we did have to drop the mmap_sem then fpin
2362 * will point to the pinned file and needs to be fput()'ed at a later point.
2363 */
2364static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2365				     struct file **fpin)
2366{
2367	if (trylock_page(page))
2368		return 1;
2369
2370	/*
2371	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2372	 * the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT
2373	 * is supposed to work. We have way too many special cases..
2374	 */
2375	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2376		return 0;
2377
2378	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2379	if (vmf->flags & FAULT_FLAG_KILLABLE) {
2380		if (__lock_page_killable(page)) {
2381			/*
2382			 * We didn't have the right flags to drop the mmap_sem,
2383			 * but all fault_handlers only check for fatal signals
2384			 * if we return VM_FAULT_RETRY, so we need to drop the
2385			 * mmap_sem here and return 0 if we don't have a fpin.
2386			 */
2387			if (*fpin == NULL)
2388				up_read(&vmf->vma->vm_mm->mmap_sem);
2389			return 0;
2390		}
2391	} else
2392		__lock_page(page);
2393	return 1;
2394}
2395
 
2396
2397/*
2398 * Synchronous readahead happens when we don't even find a page in the page
2399 * cache at all.  We don't want to perform IO under the mmap sem, so if we have
2400 * to drop the mmap sem we return the file that was pinned in order for us to do
2401 * that.  If we didn't pin a file then we return NULL.  The file that is
2402 * returned needs to be fput()'ed when we're done with it.
2403 */
2404static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
 
 
 
2405{
2406	struct file *file = vmf->vma->vm_file;
2407	struct file_ra_state *ra = &file->f_ra;
2408	struct address_space *mapping = file->f_mapping;
2409	struct file *fpin = NULL;
2410	pgoff_t offset = vmf->pgoff;
2411
2412	/* If we don't want any read-ahead, don't bother */
2413	if (vmf->vma->vm_flags & VM_RAND_READ)
2414		return fpin;
2415	if (!ra->ra_pages)
2416		return fpin;
2417
2418	if (vmf->vma->vm_flags & VM_SEQ_READ) {
2419		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2420		page_cache_sync_readahead(mapping, ra, file, offset,
2421					  ra->ra_pages);
2422		return fpin;
2423	}
2424
2425	/* Avoid banging the cache line if not needed */
2426	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2427		ra->mmap_miss++;
2428
2429	/*
2430	 * Do we miss much more than hit in this file? If so,
2431	 * stop bothering with read-ahead. It will only hurt.
2432	 */
2433	if (ra->mmap_miss > MMAP_LOTSAMISS)
2434		return fpin;
2435
2436	/*
2437	 * mmap read-around
2438	 */
2439	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2440	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2441	ra->size = ra->ra_pages;
2442	ra->async_size = ra->ra_pages / 4;
2443	ra_submit(ra, mapping, file);
2444	return fpin;
2445}
2446
2447/*
2448 * Asynchronous readahead happens when we find the page and PG_readahead,
2449 * so we want to possibly extend the readahead further.  We return the file that
2450 * was pinned if we have to drop the mmap_sem in order to do IO.
2451 */
2452static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2453					    struct page *page)
 
 
 
2454{
2455	struct file *file = vmf->vma->vm_file;
2456	struct file_ra_state *ra = &file->f_ra;
2457	struct address_space *mapping = file->f_mapping;
2458	struct file *fpin = NULL;
2459	pgoff_t offset = vmf->pgoff;
2460
2461	/* If we don't want any read-ahead, don't bother */
2462	if (vmf->vma->vm_flags & VM_RAND_READ)
2463		return fpin;
2464	if (ra->mmap_miss > 0)
2465		ra->mmap_miss--;
2466	if (PageReadahead(page)) {
2467		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2468		page_cache_async_readahead(mapping, ra, file,
2469					   page, offset, ra->ra_pages);
2470	}
2471	return fpin;
2472}
2473
2474/**
2475 * filemap_fault - read in file data for page fault handling
 
2476 * @vmf:	struct vm_fault containing details of the fault
2477 *
2478 * filemap_fault() is invoked via the vma operations vector for a
2479 * mapped memory region to read in file data during a page fault.
2480 *
2481 * The goto's are kind of ugly, but this streamlines the normal case of having
2482 * it in the page cache, and handles the special cases reasonably without
2483 * having a lot of duplicated code.
2484 *
2485 * vma->vm_mm->mmap_sem must be held on entry.
2486 *
2487 * If our return value has VM_FAULT_RETRY set, it's because the mmap_sem
2488 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
 
 
2489 *
2490 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2491 * has not been released.
2492 *
2493 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2494 *
2495 * Return: bitwise-OR of %VM_FAULT_ codes.
2496 */
2497vm_fault_t filemap_fault(struct vm_fault *vmf)
2498{
2499	int error;
2500	struct file *file = vmf->vma->vm_file;
2501	struct file *fpin = NULL;
2502	struct address_space *mapping = file->f_mapping;
2503	struct file_ra_state *ra = &file->f_ra;
2504	struct inode *inode = mapping->host;
2505	pgoff_t offset = vmf->pgoff;
2506	pgoff_t max_off;
2507	struct page *page;
2508	vm_fault_t ret = 0;
 
2509
2510	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2511	if (unlikely(offset >= max_off))
2512		return VM_FAULT_SIGBUS;
2513
2514	/*
2515	 * Do we have something in the page cache already?
2516	 */
2517	page = find_get_page(mapping, offset);
2518	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2519		/*
2520		 * We found the page, so try async readahead before
2521		 * waiting for the lock.
2522		 */
2523		fpin = do_async_mmap_readahead(vmf, page);
2524	} else if (!page) {
2525		/* No page in the page cache at all */
 
2526		count_vm_event(PGMAJFAULT);
2527		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2528		ret = VM_FAULT_MAJOR;
2529		fpin = do_sync_mmap_readahead(vmf);
2530retry_find:
2531		page = pagecache_get_page(mapping, offset,
2532					  FGP_CREAT|FGP_FOR_MMAP,
2533					  vmf->gfp_mask);
2534		if (!page) {
2535			if (fpin)
2536				goto out_retry;
2537			return vmf_error(-ENOMEM);
2538		}
2539	}
2540
2541	if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2542		goto out_retry;
 
 
2543
2544	/* Did it get truncated? */
2545	if (unlikely(compound_head(page)->mapping != mapping)) {
2546		unlock_page(page);
2547		put_page(page);
2548		goto retry_find;
2549	}
2550	VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
2551
2552	/*
2553	 * We have a locked page in the page cache, now we need to check
2554	 * that it's up-to-date. If not, it is going to be due to an error.
2555	 */
2556	if (unlikely(!PageUptodate(page)))
2557		goto page_not_uptodate;
2558
2559	/*
2560	 * We've made it this far and we had to drop our mmap_sem, now is the
2561	 * time to return to the upper layer and have it re-find the vma and
2562	 * redo the fault.
2563	 */
2564	if (fpin) {
2565		unlock_page(page);
2566		goto out_retry;
2567	}
2568
2569	/*
2570	 * Found the page and have a reference on it.
2571	 * We must recheck i_size under page lock.
2572	 */
2573	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2574	if (unlikely(offset >= max_off)) {
2575		unlock_page(page);
2576		put_page(page);
2577		return VM_FAULT_SIGBUS;
2578	}
2579
2580	vmf->page = page;
2581	return ret | VM_FAULT_LOCKED;
2582
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2583page_not_uptodate:
2584	/*
2585	 * Umm, take care of errors if the page isn't up-to-date.
2586	 * Try to re-read it _once_. We do this synchronously,
2587	 * because there really aren't any performance issues here
2588	 * and we need to check for errors.
2589	 */
2590	ClearPageError(page);
2591	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2592	error = mapping->a_ops->readpage(file, page);
2593	if (!error) {
2594		wait_on_page_locked(page);
2595		if (!PageUptodate(page))
2596			error = -EIO;
2597	}
2598	if (fpin)
2599		goto out_retry;
2600	put_page(page);
2601
2602	if (!error || error == AOP_TRUNCATED_PAGE)
2603		goto retry_find;
2604
2605	/* Things didn't work out. Return zero to tell the mm layer so. */
2606	shrink_readahead_size_eio(file, ra);
2607	return VM_FAULT_SIGBUS;
2608
2609out_retry:
2610	/*
2611	 * We dropped the mmap_sem, we need to return to the fault handler to
2612	 * re-find the vma and come back and find our hopefully still populated
2613	 * page.
2614	 */
2615	if (page)
2616		put_page(page);
2617	if (fpin)
2618		fput(fpin);
2619	return ret | VM_FAULT_RETRY;
2620}
2621EXPORT_SYMBOL(filemap_fault);
2622
2623void filemap_map_pages(struct vm_fault *vmf,
2624		pgoff_t start_pgoff, pgoff_t end_pgoff)
2625{
 
 
2626	struct file *file = vmf->vma->vm_file;
2627	struct address_space *mapping = file->f_mapping;
2628	pgoff_t last_pgoff = start_pgoff;
2629	unsigned long max_idx;
2630	XA_STATE(xas, &mapping->i_pages, start_pgoff);
2631	struct page *page;
2632
2633	rcu_read_lock();
2634	xas_for_each(&xas, page, end_pgoff) {
2635		if (xas_retry(&xas, page))
2636			continue;
2637		if (xa_is_value(page))
2638			goto next;
2639
2640		/*
2641		 * Check for a locked page first, as a speculative
2642		 * reference may adversely influence page migration.
2643		 */
2644		if (PageLocked(page))
2645			goto next;
2646		if (!page_cache_get_speculative(page))
 
 
 
 
2647			goto next;
 
2648
2649		/* Has the page moved or been split? */
2650		if (unlikely(page != xas_reload(&xas)))
2651			goto skip;
2652		page = find_subpage(page, xas.xa_index);
 
 
 
 
 
 
 
 
 
 
 
2653
2654		if (!PageUptodate(page) ||
2655				PageReadahead(page) ||
2656				PageHWPoison(page))
2657			goto skip;
2658		if (!trylock_page(page))
2659			goto skip;
2660
2661		if (page->mapping != mapping || !PageUptodate(page))
2662			goto unlock;
2663
2664		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2665		if (page->index >= max_idx)
2666			goto unlock;
2667
2668		if (file->f_ra.mmap_miss > 0)
2669			file->f_ra.mmap_miss--;
2670
2671		vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
2672		if (vmf->pte)
2673			vmf->pte += xas.xa_index - last_pgoff;
2674		last_pgoff = xas.xa_index;
2675		if (alloc_set_pte(vmf, NULL, page))
2676			goto unlock;
2677		unlock_page(page);
2678		goto next;
2679unlock:
2680		unlock_page(page);
2681skip:
2682		put_page(page);
2683next:
2684		/* Huge page is mapped? No need to proceed. */
2685		if (pmd_trans_huge(*vmf->pmd))
2686			break;
 
 
2687	}
2688	rcu_read_unlock();
2689}
2690EXPORT_SYMBOL(filemap_map_pages);
2691
2692vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2693{
2694	struct page *page = vmf->page;
2695	struct inode *inode = file_inode(vmf->vma->vm_file);
2696	vm_fault_t ret = VM_FAULT_LOCKED;
2697
2698	sb_start_pagefault(inode->i_sb);
2699	file_update_time(vmf->vma->vm_file);
2700	lock_page(page);
2701	if (page->mapping != inode->i_mapping) {
2702		unlock_page(page);
2703		ret = VM_FAULT_NOPAGE;
2704		goto out;
2705	}
2706	/*
2707	 * We mark the page dirty already here so that when freeze is in
2708	 * progress, we are guaranteed that writeback during freezing will
2709	 * see the dirty page and writeprotect it again.
2710	 */
2711	set_page_dirty(page);
2712	wait_for_stable_page(page);
2713out:
2714	sb_end_pagefault(inode->i_sb);
2715	return ret;
2716}
 
2717
2718const struct vm_operations_struct generic_file_vm_ops = {
2719	.fault		= filemap_fault,
2720	.map_pages	= filemap_map_pages,
2721	.page_mkwrite	= filemap_page_mkwrite,
2722};
2723
2724/* This is used for a general mmap of a disk file */
2725
2726int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2727{
2728	struct address_space *mapping = file->f_mapping;
2729
2730	if (!mapping->a_ops->readpage)
2731		return -ENOEXEC;
2732	file_accessed(file);
2733	vma->vm_ops = &generic_file_vm_ops;
2734	return 0;
2735}
2736
2737/*
2738 * This is for filesystems which do not implement ->writepage.
2739 */
2740int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2741{
2742	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2743		return -EINVAL;
2744	return generic_file_mmap(file, vma);
2745}
2746#else
2747vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2748{
2749	return VM_FAULT_SIGBUS;
2750}
2751int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2752{
2753	return -ENOSYS;
2754}
2755int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2756{
2757	return -ENOSYS;
2758}
2759#endif /* CONFIG_MMU */
2760
2761EXPORT_SYMBOL(filemap_page_mkwrite);
2762EXPORT_SYMBOL(generic_file_mmap);
2763EXPORT_SYMBOL(generic_file_readonly_mmap);
2764
2765static struct page *wait_on_page_read(struct page *page)
2766{
2767	if (!IS_ERR(page)) {
2768		wait_on_page_locked(page);
2769		if (!PageUptodate(page)) {
2770			put_page(page);
2771			page = ERR_PTR(-EIO);
2772		}
2773	}
2774	return page;
2775}
2776
2777static struct page *do_read_cache_page(struct address_space *mapping,
2778				pgoff_t index,
2779				int (*filler)(void *, struct page *),
2780				void *data,
2781				gfp_t gfp)
2782{
2783	struct page *page;
2784	int err;
2785repeat:
2786	page = find_get_page(mapping, index);
2787	if (!page) {
2788		page = __page_cache_alloc(gfp);
2789		if (!page)
2790			return ERR_PTR(-ENOMEM);
2791		err = add_to_page_cache_lru(page, mapping, index, gfp);
2792		if (unlikely(err)) {
2793			put_page(page);
2794			if (err == -EEXIST)
2795				goto repeat;
2796			/* Presumably ENOMEM for xarray node */
2797			return ERR_PTR(err);
2798		}
2799
2800filler:
2801		if (filler)
2802			err = filler(data, page);
2803		else
2804			err = mapping->a_ops->readpage(data, page);
2805
2806		if (err < 0) {
2807			put_page(page);
2808			return ERR_PTR(err);
2809		}
2810
2811		page = wait_on_page_read(page);
2812		if (IS_ERR(page))
2813			return page;
2814		goto out;
2815	}
2816	if (PageUptodate(page))
2817		goto out;
2818
2819	/*
2820	 * Page is not up to date and may be locked due one of the following
2821	 * case a: Page is being filled and the page lock is held
2822	 * case b: Read/write error clearing the page uptodate status
2823	 * case c: Truncation in progress (page locked)
2824	 * case d: Reclaim in progress
2825	 *
2826	 * Case a, the page will be up to date when the page is unlocked.
2827	 *    There is no need to serialise on the page lock here as the page
2828	 *    is pinned so the lock gives no additional protection. Even if the
2829	 *    the page is truncated, the data is still valid if PageUptodate as
2830	 *    it's a race vs truncate race.
2831	 * Case b, the page will not be up to date
2832	 * Case c, the page may be truncated but in itself, the data may still
2833	 *    be valid after IO completes as it's a read vs truncate race. The
2834	 *    operation must restart if the page is not uptodate on unlock but
2835	 *    otherwise serialising on page lock to stabilise the mapping gives
2836	 *    no additional guarantees to the caller as the page lock is
2837	 *    released before return.
2838	 * Case d, similar to truncation. If reclaim holds the page lock, it
2839	 *    will be a race with remove_mapping that determines if the mapping
2840	 *    is valid on unlock but otherwise the data is valid and there is
2841	 *    no need to serialise with page lock.
2842	 *
2843	 * As the page lock gives no additional guarantee, we optimistically
2844	 * wait on the page to be unlocked and check if it's up to date and
2845	 * use the page if it is. Otherwise, the page lock is required to
2846	 * distinguish between the different cases. The motivation is that we
2847	 * avoid spurious serialisations and wakeups when multiple processes
2848	 * wait on the same page for IO to complete.
2849	 */
2850	wait_on_page_locked(page);
2851	if (PageUptodate(page))
2852		goto out;
2853
2854	/* Distinguish between all the cases under the safety of the lock */
2855	lock_page(page);
2856
2857	/* Case c or d, restart the operation */
2858	if (!page->mapping) {
2859		unlock_page(page);
2860		put_page(page);
2861		goto repeat;
2862	}
2863
2864	/* Someone else locked and filled the page in a very small window */
2865	if (PageUptodate(page)) {
2866		unlock_page(page);
2867		goto out;
2868	}
2869	goto filler;
2870
2871out:
2872	mark_page_accessed(page);
2873	return page;
2874}
2875
2876/**
2877 * read_cache_page - read into page cache, fill it if needed
2878 * @mapping:	the page's address_space
2879 * @index:	the page index
2880 * @filler:	function to perform the read
2881 * @data:	first arg to filler(data, page) function, often left as NULL
2882 *
2883 * Read into the page cache. If a page already exists, and PageUptodate() is
2884 * not set, try to fill the page and wait for it to become unlocked.
2885 *
2886 * If the page does not get brought uptodate, return -EIO.
2887 *
2888 * Return: up to date page on success, ERR_PTR() on failure.
2889 */
2890struct page *read_cache_page(struct address_space *mapping,
2891				pgoff_t index,
2892				int (*filler)(void *, struct page *),
2893				void *data)
2894{
2895	return do_read_cache_page(mapping, index, filler, data,
2896			mapping_gfp_mask(mapping));
2897}
2898EXPORT_SYMBOL(read_cache_page);
2899
2900/**
2901 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2902 * @mapping:	the page's address_space
2903 * @index:	the page index
2904 * @gfp:	the page allocator flags to use if allocating
2905 *
2906 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2907 * any new page allocations done using the specified allocation flags.
2908 *
2909 * If the page does not get brought uptodate, return -EIO.
2910 *
2911 * Return: up to date page on success, ERR_PTR() on failure.
2912 */
2913struct page *read_cache_page_gfp(struct address_space *mapping,
2914				pgoff_t index,
2915				gfp_t gfp)
2916{
2917	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
2918}
2919EXPORT_SYMBOL(read_cache_page_gfp);
2920
2921/*
2922 * Don't operate on ranges the page cache doesn't support, and don't exceed the
2923 * LFS limits.  If pos is under the limit it becomes a short access.  If it
2924 * exceeds the limit we return -EFBIG.
2925 */
2926static int generic_write_check_limits(struct file *file, loff_t pos,
2927				      loff_t *count)
2928{
2929	struct inode *inode = file->f_mapping->host;
2930	loff_t max_size = inode->i_sb->s_maxbytes;
2931	loff_t limit = rlimit(RLIMIT_FSIZE);
2932
2933	if (limit != RLIM_INFINITY) {
2934		if (pos >= limit) {
2935			send_sig(SIGXFSZ, current, 0);
2936			return -EFBIG;
2937		}
2938		*count = min(*count, limit - pos);
2939	}
2940
2941	if (!(file->f_flags & O_LARGEFILE))
2942		max_size = MAX_NON_LFS;
2943
2944	if (unlikely(pos >= max_size))
2945		return -EFBIG;
2946
2947	*count = min(*count, max_size - pos);
2948
2949	return 0;
2950}
 
2951
2952/*
2953 * Performs necessary checks before doing a write
2954 *
2955 * Can adjust writing position or amount of bytes to write.
2956 * Returns appropriate error code that caller should return or
2957 * zero in case that write should be allowed.
2958 */
2959inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2960{
2961	struct file *file = iocb->ki_filp;
2962	struct inode *inode = file->f_mapping->host;
2963	loff_t count;
2964	int ret;
2965
2966	if (IS_SWAPFILE(inode))
2967		return -ETXTBSY;
2968
2969	if (!iov_iter_count(from))
2970		return 0;
2971
2972	/* FIXME: this is for backwards compatibility with 2.4 */
2973	if (iocb->ki_flags & IOCB_APPEND)
2974		iocb->ki_pos = i_size_read(inode);
2975
2976	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2977		return -EINVAL;
2978
2979	count = iov_iter_count(from);
2980	ret = generic_write_check_limits(file, iocb->ki_pos, &count);
2981	if (ret)
2982		return ret;
2983
2984	iov_iter_truncate(from, count);
2985	return iov_iter_count(from);
2986}
2987EXPORT_SYMBOL(generic_write_checks);
2988
2989/*
2990 * Performs necessary checks before doing a clone.
2991 *
2992 * Can adjust amount of bytes to clone via @req_count argument.
2993 * Returns appropriate error code that caller should return or
2994 * zero in case the clone should be allowed.
2995 */
2996int generic_remap_checks(struct file *file_in, loff_t pos_in,
2997			 struct file *file_out, loff_t pos_out,
2998			 loff_t *req_count, unsigned int remap_flags)
2999{
3000	struct inode *inode_in = file_in->f_mapping->host;
3001	struct inode *inode_out = file_out->f_mapping->host;
3002	uint64_t count = *req_count;
3003	uint64_t bcount;
3004	loff_t size_in, size_out;
3005	loff_t bs = inode_out->i_sb->s_blocksize;
3006	int ret;
3007
3008	/* The start of both ranges must be aligned to an fs block. */
3009	if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
3010		return -EINVAL;
3011
3012	/* Ensure offsets don't wrap. */
3013	if (pos_in + count < pos_in || pos_out + count < pos_out)
3014		return -EINVAL;
3015
3016	size_in = i_size_read(inode_in);
3017	size_out = i_size_read(inode_out);
3018
3019	/* Dedupe requires both ranges to be within EOF. */
3020	if ((remap_flags & REMAP_FILE_DEDUP) &&
3021	    (pos_in >= size_in || pos_in + count > size_in ||
3022	     pos_out >= size_out || pos_out + count > size_out))
3023		return -EINVAL;
3024
3025	/* Ensure the infile range is within the infile. */
3026	if (pos_in >= size_in)
3027		return -EINVAL;
3028	count = min(count, size_in - (uint64_t)pos_in);
3029
3030	ret = generic_write_check_limits(file_out, pos_out, &count);
3031	if (ret)
3032		return ret;
3033
3034	/*
3035	 * If the user wanted us to link to the infile's EOF, round up to the
3036	 * next block boundary for this check.
3037	 *
3038	 * Otherwise, make sure the count is also block-aligned, having
3039	 * already confirmed the starting offsets' block alignment.
3040	 */
3041	if (pos_in + count == size_in) {
3042		bcount = ALIGN(size_in, bs) - pos_in;
3043	} else {
3044		if (!IS_ALIGNED(count, bs))
3045			count = ALIGN_DOWN(count, bs);
3046		bcount = count;
3047	}
3048
3049	/* Don't allow overlapped cloning within the same file. */
3050	if (inode_in == inode_out &&
3051	    pos_out + bcount > pos_in &&
3052	    pos_out < pos_in + bcount)
3053		return -EINVAL;
3054
3055	/*
3056	 * We shortened the request but the caller can't deal with that, so
3057	 * bounce the request back to userspace.
 
 
 
3058	 */
3059	if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
3060		return -EINVAL;
3061
3062	*req_count = count;
3063	return 0;
3064}
3065
3066
3067/*
3068 * Performs common checks before doing a file copy/clone
3069 * from @file_in to @file_out.
3070 */
3071int generic_file_rw_checks(struct file *file_in, struct file *file_out)
3072{
3073	struct inode *inode_in = file_inode(file_in);
3074	struct inode *inode_out = file_inode(file_out);
3075
3076	/* Don't copy dirs, pipes, sockets... */
3077	if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
3078		return -EISDIR;
3079	if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
3080		return -EINVAL;
3081
3082	if (!(file_in->f_mode & FMODE_READ) ||
3083	    !(file_out->f_mode & FMODE_WRITE) ||
3084	    (file_out->f_flags & O_APPEND))
3085		return -EBADF;
3086
3087	return 0;
3088}
3089
3090/*
3091 * Performs necessary checks before doing a file copy
3092 *
3093 * Can adjust amount of bytes to copy via @req_count argument.
3094 * Returns appropriate error code that caller should return or
3095 * zero in case the copy should be allowed.
3096 */
3097int generic_copy_file_checks(struct file *file_in, loff_t pos_in,
3098			     struct file *file_out, loff_t pos_out,
3099			     size_t *req_count, unsigned int flags)
3100{
3101	struct inode *inode_in = file_inode(file_in);
3102	struct inode *inode_out = file_inode(file_out);
3103	uint64_t count = *req_count;
3104	loff_t size_in;
3105	int ret;
3106
3107	ret = generic_file_rw_checks(file_in, file_out);
3108	if (ret)
3109		return ret;
3110
3111	/* Don't touch certain kinds of inodes */
3112	if (IS_IMMUTABLE(inode_out))
3113		return -EPERM;
3114
3115	if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out))
3116		return -ETXTBSY;
3117
3118	/* Ensure offsets don't wrap. */
3119	if (pos_in + count < pos_in || pos_out + count < pos_out)
3120		return -EOVERFLOW;
3121
3122	/* Shorten the copy to EOF */
3123	size_in = i_size_read(inode_in);
3124	if (pos_in >= size_in)
3125		count = 0;
3126	else
3127		count = min(count, size_in - (uint64_t)pos_in);
3128
3129	ret = generic_write_check_limits(file_out, pos_out, &count);
3130	if (ret)
3131		return ret;
3132
3133	/* Don't allow overlapped copying within the same file. */
3134	if (inode_in == inode_out &&
3135	    pos_out + count > pos_in &&
3136	    pos_out < pos_in + count)
3137		return -EINVAL;
3138
3139	*req_count = count;
3140	return 0;
3141}
 
3142
3143int pagecache_write_begin(struct file *file, struct address_space *mapping,
3144				loff_t pos, unsigned len, unsigned flags,
3145				struct page **pagep, void **fsdata)
3146{
3147	const struct address_space_operations *aops = mapping->a_ops;
3148
3149	return aops->write_begin(file, mapping, pos, len, flags,
3150							pagep, fsdata);
3151}
3152EXPORT_SYMBOL(pagecache_write_begin);
3153
3154int pagecache_write_end(struct file *file, struct address_space *mapping,
3155				loff_t pos, unsigned len, unsigned copied,
3156				struct page *page, void *fsdata)
3157{
3158	const struct address_space_operations *aops = mapping->a_ops;
3159
3160	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3161}
3162EXPORT_SYMBOL(pagecache_write_end);
3163
3164ssize_t
3165generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3166{
3167	struct file	*file = iocb->ki_filp;
3168	struct address_space *mapping = file->f_mapping;
3169	struct inode	*inode = mapping->host;
3170	loff_t		pos = iocb->ki_pos;
3171	ssize_t		written;
3172	size_t		write_len;
3173	pgoff_t		end;
 
3174
3175	write_len = iov_iter_count(from);
3176	end = (pos + write_len - 1) >> PAGE_SHIFT;
3177
3178	if (iocb->ki_flags & IOCB_NOWAIT) {
3179		/* If there are pages to writeback, return */
3180		if (filemap_range_has_page(inode->i_mapping, pos,
3181					   pos + write_len - 1))
3182			return -EAGAIN;
3183	} else {
3184		written = filemap_write_and_wait_range(mapping, pos,
3185							pos + write_len - 1);
3186		if (written)
3187			goto out;
3188	}
3189
3190	/*
3191	 * After a write we want buffered reads to be sure to go to disk to get
3192	 * the new data.  We invalidate clean cached page from the region we're
3193	 * about to write.  We do this *before* the write so that we can return
3194	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3195	 */
3196	written = invalidate_inode_pages2_range(mapping,
 
3197					pos >> PAGE_SHIFT, end);
3198	/*
3199	 * If a page can not be invalidated, return 0 to fall back
3200	 * to buffered write.
3201	 */
3202	if (written) {
3203		if (written == -EBUSY)
3204			return 0;
3205		goto out;
 
3206	}
3207
3208	written = mapping->a_ops->direct_IO(iocb, from);
 
3209
3210	/*
3211	 * Finally, try again to invalidate clean pages which might have been
3212	 * cached by non-direct readahead, or faulted in by get_user_pages()
3213	 * if the source of the write was an mmap'ed region of the file
3214	 * we're writing.  Either one is a pretty crazy thing to do,
3215	 * so we don't support it 100%.  If this invalidation
3216	 * fails, tough, the write still worked...
3217	 *
3218	 * Most of the time we do not need this since dio_complete() will do
3219	 * the invalidation for us. However there are some file systems that
3220	 * do not end up with dio_complete() being called, so let's not break
3221	 * them by removing it completely
3222	 */
3223	if (mapping->nrpages)
3224		invalidate_inode_pages2_range(mapping,
3225					pos >> PAGE_SHIFT, end);
 
3226
3227	if (written > 0) {
3228		pos += written;
3229		write_len -= written;
3230		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3231			i_size_write(inode, pos);
3232			mark_inode_dirty(inode);
3233		}
3234		iocb->ki_pos = pos;
3235	}
3236	iov_iter_revert(from, write_len - iov_iter_count(from));
3237out:
3238	return written;
3239}
3240EXPORT_SYMBOL(generic_file_direct_write);
3241
3242/*
3243 * Find or create a page at the given pagecache position. Return the locked
3244 * page. This function is specifically for buffered writes.
3245 */
3246struct page *grab_cache_page_write_begin(struct address_space *mapping,
3247					pgoff_t index, unsigned flags)
3248{
3249	struct page *page;
3250	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3251
3252	if (flags & AOP_FLAG_NOFS)
3253		fgp_flags |= FGP_NOFS;
3254
3255	page = pagecache_get_page(mapping, index, fgp_flags,
3256			mapping_gfp_mask(mapping));
3257	if (page)
3258		wait_for_stable_page(page);
3259
3260	return page;
3261}
3262EXPORT_SYMBOL(grab_cache_page_write_begin);
3263
3264ssize_t generic_perform_write(struct file *file,
3265				struct iov_iter *i, loff_t pos)
3266{
3267	struct address_space *mapping = file->f_mapping;
3268	const struct address_space_operations *a_ops = mapping->a_ops;
3269	long status = 0;
3270	ssize_t written = 0;
3271	unsigned int flags = 0;
3272
 
 
 
 
 
 
3273	do {
3274		struct page *page;
3275		unsigned long offset;	/* Offset into pagecache page */
3276		unsigned long bytes;	/* Bytes to write to page */
3277		size_t copied;		/* Bytes copied from user */
3278		void *fsdata;
3279
3280		offset = (pos & (PAGE_SIZE - 1));
3281		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3282						iov_iter_count(i));
3283
3284again:
3285		/*
3286		 * Bring in the user page that we will copy from _first_.
3287		 * Otherwise there's a nasty deadlock on copying from the
3288		 * same page as we're writing to, without it being marked
3289		 * up-to-date.
3290		 *
3291		 * Not only is this an optimisation, but it is also required
3292		 * to check that the address is actually valid, when atomic
3293		 * usercopies are used, below.
3294		 */
3295		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3296			status = -EFAULT;
3297			break;
3298		}
3299
3300		if (fatal_signal_pending(current)) {
3301			status = -EINTR;
3302			break;
3303		}
3304
3305		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3306						&page, &fsdata);
3307		if (unlikely(status < 0))
3308			break;
3309
3310		if (mapping_writably_mapped(mapping))
3311			flush_dcache_page(page);
3312
3313		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3314		flush_dcache_page(page);
3315
3316		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3317						page, fsdata);
3318		if (unlikely(status < 0))
3319			break;
3320		copied = status;
3321
3322		cond_resched();
3323
3324		iov_iter_advance(i, copied);
3325		if (unlikely(copied == 0)) {
3326			/*
3327			 * If we were unable to copy any data at all, we must
3328			 * fall back to a single segment length write.
3329			 *
3330			 * If we didn't fallback here, we could livelock
3331			 * because not all segments in the iov can be copied at
3332			 * once without a pagefault.
3333			 */
3334			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3335						iov_iter_single_seg_count(i));
3336			goto again;
3337		}
3338		pos += copied;
3339		written += copied;
3340
3341		balance_dirty_pages_ratelimited(mapping);
3342	} while (iov_iter_count(i));
3343
3344	return written ? written : status;
3345}
3346EXPORT_SYMBOL(generic_perform_write);
3347
3348/**
3349 * __generic_file_write_iter - write data to a file
3350 * @iocb:	IO state structure (file, offset, etc.)
3351 * @from:	iov_iter with data to write
3352 *
3353 * This function does all the work needed for actually writing data to a
3354 * file. It does all basic checks, removes SUID from the file, updates
3355 * modification times and calls proper subroutines depending on whether we
3356 * do direct IO or a standard buffered write.
3357 *
3358 * It expects i_mutex to be grabbed unless we work on a block device or similar
3359 * object which does not need locking at all.
3360 *
3361 * This function does *not* take care of syncing data in case of O_SYNC write.
3362 * A caller has to handle it. This is mainly due to the fact that we want to
3363 * avoid syncing under i_mutex.
3364 *
3365 * Return:
3366 * * number of bytes written, even for truncated writes
3367 * * negative error code if no data has been written at all
3368 */
3369ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3370{
3371	struct file *file = iocb->ki_filp;
3372	struct address_space * mapping = file->f_mapping;
3373	struct inode 	*inode = mapping->host;
3374	ssize_t		written = 0;
3375	ssize_t		err;
3376	ssize_t		status;
3377
3378	/* We can write back this queue in page reclaim */
3379	current->backing_dev_info = inode_to_bdi(inode);
3380	err = file_remove_privs(file);
3381	if (err)
3382		goto out;
3383
3384	err = file_update_time(file);
3385	if (err)
3386		goto out;
3387
3388	if (iocb->ki_flags & IOCB_DIRECT) {
3389		loff_t pos, endbyte;
3390
3391		written = generic_file_direct_write(iocb, from);
3392		/*
3393		 * If the write stopped short of completing, fall back to
3394		 * buffered writes.  Some filesystems do this for writes to
3395		 * holes, for example.  For DAX files, a buffered write will
3396		 * not succeed (even if it did, DAX does not handle dirty
3397		 * page-cache pages correctly).
3398		 */
3399		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3400			goto out;
3401
3402		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3403		/*
3404		 * If generic_perform_write() returned a synchronous error
3405		 * then we want to return the number of bytes which were
3406		 * direct-written, or the error code if that was zero.  Note
3407		 * that this differs from normal direct-io semantics, which
3408		 * will return -EFOO even if some bytes were written.
3409		 */
3410		if (unlikely(status < 0)) {
3411			err = status;
3412			goto out;
3413		}
3414		/*
3415		 * We need to ensure that the page cache pages are written to
3416		 * disk and invalidated to preserve the expected O_DIRECT
3417		 * semantics.
3418		 */
3419		endbyte = pos + status - 1;
3420		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3421		if (err == 0) {
3422			iocb->ki_pos = endbyte + 1;
3423			written += status;
3424			invalidate_mapping_pages(mapping,
3425						 pos >> PAGE_SHIFT,
3426						 endbyte >> PAGE_SHIFT);
3427		} else {
3428			/*
3429			 * We don't know how much we wrote, so just return
3430			 * the number of bytes which were direct-written
3431			 */
3432		}
3433	} else {
3434		written = generic_perform_write(file, from, iocb->ki_pos);
3435		if (likely(written > 0))
3436			iocb->ki_pos += written;
3437	}
3438out:
3439	current->backing_dev_info = NULL;
3440	return written ? written : err;
3441}
3442EXPORT_SYMBOL(__generic_file_write_iter);
3443
3444/**
3445 * generic_file_write_iter - write data to a file
3446 * @iocb:	IO state structure
3447 * @from:	iov_iter with data to write
3448 *
3449 * This is a wrapper around __generic_file_write_iter() to be used by most
3450 * filesystems. It takes care of syncing the file in case of O_SYNC file
3451 * and acquires i_mutex as needed.
3452 * Return:
3453 * * negative error code if no data has been written at all of
3454 *   vfs_fsync_range() failed for a synchronous write
3455 * * number of bytes written, even for truncated writes
3456 */
3457ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3458{
3459	struct file *file = iocb->ki_filp;
3460	struct inode *inode = file->f_mapping->host;
3461	ssize_t ret;
3462
3463	inode_lock(inode);
3464	ret = generic_write_checks(iocb, from);
3465	if (ret > 0)
3466		ret = __generic_file_write_iter(iocb, from);
3467	inode_unlock(inode);
3468
3469	if (ret > 0)
3470		ret = generic_write_sync(iocb, ret);
3471	return ret;
3472}
3473EXPORT_SYMBOL(generic_file_write_iter);
3474
3475/**
3476 * try_to_release_page() - release old fs-specific metadata on a page
3477 *
3478 * @page: the page which the kernel is trying to free
3479 * @gfp_mask: memory allocation flags (and I/O mode)
3480 *
3481 * The address_space is to try to release any data against the page
3482 * (presumably at page->private).
 
3483 *
3484 * This may also be called if PG_fscache is set on a page, indicating that the
3485 * page is known to the local caching routines.
3486 *
3487 * The @gfp_mask argument specifies whether I/O may be performed to release
3488 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3489 *
3490 * Return: %1 if the release was successful, otherwise return zero.
3491 */
3492int try_to_release_page(struct page *page, gfp_t gfp_mask)
3493{
3494	struct address_space * const mapping = page->mapping;
3495
3496	BUG_ON(!PageLocked(page));
3497	if (PageWriteback(page))
3498		return 0;
3499
3500	if (mapping && mapping->a_ops->releasepage)
3501		return mapping->a_ops->releasepage(page, gfp_mask);
3502	return try_to_free_buffers(page);
3503}
3504
3505EXPORT_SYMBOL(try_to_release_page);
v4.10.11
 
   1/*
   2 *	linux/mm/filemap.c
   3 *
   4 * Copyright (C) 1994-1999  Linus Torvalds
   5 */
   6
   7/*
   8 * This file handles the generic file mmap semantics used by
   9 * most "normal" filesystems (but you don't /have/ to use this:
  10 * the NFS filesystem used to do this differently, for example)
  11 */
  12#include <linux/export.h>
  13#include <linux/compiler.h>
  14#include <linux/dax.h>
  15#include <linux/fs.h>
 
  16#include <linux/uaccess.h>
  17#include <linux/capability.h>
  18#include <linux/kernel_stat.h>
  19#include <linux/gfp.h>
  20#include <linux/mm.h>
  21#include <linux/swap.h>
  22#include <linux/mman.h>
  23#include <linux/pagemap.h>
  24#include <linux/file.h>
  25#include <linux/uio.h>
 
  26#include <linux/hash.h>
  27#include <linux/writeback.h>
  28#include <linux/backing-dev.h>
  29#include <linux/pagevec.h>
  30#include <linux/blkdev.h>
  31#include <linux/security.h>
  32#include <linux/cpuset.h>
  33#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
  34#include <linux/hugetlb.h>
  35#include <linux/memcontrol.h>
  36#include <linux/cleancache.h>
 
  37#include <linux/rmap.h>
 
 
 
  38#include "internal.h"
  39
  40#define CREATE_TRACE_POINTS
  41#include <trace/events/filemap.h>
  42
  43/*
  44 * FIXME: remove all knowledge of the buffer layer from the core VM
  45 */
  46#include <linux/buffer_head.h> /* for try_to_free_buffers */
  47
  48#include <asm/mman.h>
  49
  50/*
  51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  52 * though.
  53 *
  54 * Shared mappings now work. 15.8.1995  Bruno.
  55 *
  56 * finished 'unifying' the page and buffer cache and SMP-threaded the
  57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  58 *
  59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  60 */
  61
  62/*
  63 * Lock ordering:
  64 *
  65 *  ->i_mmap_rwsem		(truncate_pagecache)
  66 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
  67 *      ->swap_lock		(exclusive_swap_page, others)
  68 *        ->mapping->tree_lock
  69 *
  70 *  ->i_mutex
  71 *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
  72 *
  73 *  ->mmap_sem
  74 *    ->i_mmap_rwsem
  75 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
  76 *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
  77 *
  78 *  ->mmap_sem
  79 *    ->lock_page		(access_process_vm)
  80 *
  81 *  ->i_mutex			(generic_perform_write)
  82 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
  83 *
  84 *  bdi->wb.list_lock
  85 *    sb_lock			(fs/fs-writeback.c)
  86 *    ->mapping->tree_lock	(__sync_single_inode)
  87 *
  88 *  ->i_mmap_rwsem
  89 *    ->anon_vma.lock		(vma_adjust)
  90 *
  91 *  ->anon_vma.lock
  92 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
  93 *
  94 *  ->page_table_lock or pte_lock
  95 *    ->swap_lock		(try_to_unmap_one)
  96 *    ->private_lock		(try_to_unmap_one)
  97 *    ->tree_lock		(try_to_unmap_one)
  98 *    ->zone_lru_lock(zone)	(follow_page->mark_page_accessed)
  99 *    ->zone_lru_lock(zone)	(check_pte_range->isolate_lru_page)
 100 *    ->private_lock		(page_remove_rmap->set_page_dirty)
 101 *    ->tree_lock		(page_remove_rmap->set_page_dirty)
 102 *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
 103 *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
 104 *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
 105 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
 106 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
 107 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
 108 *
 109 * ->i_mmap_rwsem
 110 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
 111 */
 112
 113static int page_cache_tree_insert(struct address_space *mapping,
 114				  struct page *page, void **shadowp)
 115{
 116	struct radix_tree_node *node;
 117	void **slot;
 118	int error;
 119
 120	error = __radix_tree_create(&mapping->page_tree, page->index, 0,
 121				    &node, &slot);
 122	if (error)
 123		return error;
 124	if (*slot) {
 125		void *p;
 126
 127		p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
 128		if (!radix_tree_exceptional_entry(p))
 129			return -EEXIST;
 130
 131		mapping->nrexceptional--;
 132		if (!dax_mapping(mapping)) {
 133			if (shadowp)
 134				*shadowp = p;
 135		} else {
 136			/* DAX can replace empty locked entry with a hole */
 137			WARN_ON_ONCE(p !=
 138				dax_radix_locked_entry(0, RADIX_DAX_EMPTY));
 139			/* Wakeup waiters for exceptional entry lock */
 140			dax_wake_mapping_entry_waiter(mapping, page->index, p,
 141						      true);
 142		}
 143	}
 144	__radix_tree_replace(&mapping->page_tree, node, slot, page,
 145			     workingset_update_node, mapping);
 146	mapping->nrpages++;
 147	return 0;
 148}
 149
 150static void page_cache_tree_delete(struct address_space *mapping,
 151				   struct page *page, void *shadow)
 152{
 153	int i, nr;
 154
 155	/* hugetlb pages are represented by one entry in the radix tree */
 156	nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
 157
 158	VM_BUG_ON_PAGE(!PageLocked(page), page);
 159	VM_BUG_ON_PAGE(PageTail(page), page);
 160	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
 161
 162	for (i = 0; i < nr; i++) {
 163		struct radix_tree_node *node;
 164		void **slot;
 165
 166		__radix_tree_lookup(&mapping->page_tree, page->index + i,
 167				    &node, &slot);
 168
 169		VM_BUG_ON_PAGE(!node && nr != 1, page);
 170
 171		radix_tree_clear_tags(&mapping->page_tree, node, slot);
 172		__radix_tree_replace(&mapping->page_tree, node, slot, shadow,
 173				     workingset_update_node, mapping);
 174	}
 175
 176	if (shadow) {
 177		mapping->nrexceptional += nr;
 178		/*
 179		 * Make sure the nrexceptional update is committed before
 180		 * the nrpages update so that final truncate racing
 181		 * with reclaim does not see both counters 0 at the
 182		 * same time and miss a shadow entry.
 183		 */
 184		smp_wmb();
 185	}
 186	mapping->nrpages -= nr;
 187}
 188
 189/*
 190 * Delete a page from the page cache and free it. Caller has to make
 191 * sure the page is locked and that nobody else uses it - or that usage
 192 * is safe.  The caller must hold the mapping's tree_lock.
 193 */
 194void __delete_from_page_cache(struct page *page, void *shadow)
 195{
 196	struct address_space *mapping = page->mapping;
 197	int nr = hpage_nr_pages(page);
 198
 199	trace_mm_filemap_delete_from_page_cache(page);
 200	/*
 201	 * if we're uptodate, flush out into the cleancache, otherwise
 202	 * invalidate any existing cleancache entries.  We can't leave
 203	 * stale data around in the cleancache once our page is gone
 204	 */
 205	if (PageUptodate(page) && PageMappedToDisk(page))
 206		cleancache_put_page(page);
 207	else
 208		cleancache_invalidate_page(mapping, page);
 209
 210	VM_BUG_ON_PAGE(PageTail(page), page);
 211	VM_BUG_ON_PAGE(page_mapped(page), page);
 212	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
 213		int mapcount;
 214
 215		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
 216			 current->comm, page_to_pfn(page));
 217		dump_page(page, "still mapped when deleted");
 218		dump_stack();
 219		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 220
 221		mapcount = page_mapcount(page);
 222		if (mapping_exiting(mapping) &&
 223		    page_count(page) >= mapcount + 2) {
 224			/*
 225			 * All vmas have already been torn down, so it's
 226			 * a good bet that actually the page is unmapped,
 227			 * and we'd prefer not to leak it: if we're wrong,
 228			 * some other bad page check should catch it later.
 229			 */
 230			page_mapcount_reset(page);
 231			page_ref_sub(page, mapcount);
 232		}
 233	}
 234
 235	page_cache_tree_delete(mapping, page, shadow);
 
 
 236
 237	page->mapping = NULL;
 238	/* Leave page->index set: truncation lookup relies upon it */
 239
 240	/* hugetlb pages do not participate in page cache accounting. */
 241	if (!PageHuge(page))
 242		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
 243	if (PageSwapBacked(page)) {
 244		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
 245		if (PageTransHuge(page))
 246			__dec_node_page_state(page, NR_SHMEM_THPS);
 247	} else {
 248		VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
 
 249	}
 250
 251	/*
 252	 * At this point page must be either written or cleaned by truncate.
 253	 * Dirty page here signals a bug and loss of unwritten data.
 
 254	 *
 255	 * This fixes dirty accounting after removing the page entirely but
 256	 * leaves PageDirty set: it has no effect for truncated page and
 257	 * anyway will be cleared before returning page into buddy allocator.
 
 258	 */
 259	if (WARN_ON_ONCE(PageDirty(page)))
 260		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
 261}
 262
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 263/**
 264 * delete_from_page_cache - delete page from page cache
 265 * @page: the page which the kernel is trying to remove from page cache
 266 *
 267 * This must be called only on pages that have been verified to be in the page
 268 * cache and locked.  It will never put the page into the free list, the caller
 269 * has a reference on the page.
 270 */
 271void delete_from_page_cache(struct page *page)
 272{
 273	struct address_space *mapping = page_mapping(page);
 274	unsigned long flags;
 275	void (*freepage)(struct page *);
 276
 277	BUG_ON(!PageLocked(page));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 278
 279	freepage = mapping->a_ops->freepage;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 280
 281	spin_lock_irqsave(&mapping->tree_lock, flags);
 282	__delete_from_page_cache(page, NULL);
 283	spin_unlock_irqrestore(&mapping->tree_lock, flags);
 284
 285	if (freepage)
 286		freepage(page);
 
 287
 288	if (PageTransHuge(page) && !PageHuge(page)) {
 289		page_ref_sub(page, HPAGE_PMD_NR);
 290		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
 291	} else {
 292		put_page(page);
 293	}
 
 
 
 
 
 294}
 295EXPORT_SYMBOL(delete_from_page_cache);
 296
 297int filemap_check_errors(struct address_space *mapping)
 298{
 299	int ret = 0;
 300	/* Check for outstanding write errors */
 301	if (test_bit(AS_ENOSPC, &mapping->flags) &&
 302	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 303		ret = -ENOSPC;
 304	if (test_bit(AS_EIO, &mapping->flags) &&
 305	    test_and_clear_bit(AS_EIO, &mapping->flags))
 306		ret = -EIO;
 307	return ret;
 308}
 309EXPORT_SYMBOL(filemap_check_errors);
 310
 
 
 
 
 
 
 
 
 
 
 311/**
 312 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 313 * @mapping:	address space structure to write
 314 * @start:	offset in bytes where the range starts
 315 * @end:	offset in bytes where the range ends (inclusive)
 316 * @sync_mode:	enable synchronous operation
 317 *
 318 * Start writeback against all of a mapping's dirty pages that lie
 319 * within the byte offsets <start, end> inclusive.
 320 *
 321 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 322 * opposed to a regular memory cleansing writeback.  The difference between
 323 * these two operations is that if a dirty page/buffer is encountered, it must
 324 * be waited upon, and not just skipped over.
 
 
 325 */
 326int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 327				loff_t end, int sync_mode)
 328{
 329	int ret;
 330	struct writeback_control wbc = {
 331		.sync_mode = sync_mode,
 332		.nr_to_write = LONG_MAX,
 333		.range_start = start,
 334		.range_end = end,
 335	};
 336
 337	if (!mapping_cap_writeback_dirty(mapping))
 
 338		return 0;
 339
 340	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
 341	ret = do_writepages(mapping, &wbc);
 342	wbc_detach_inode(&wbc);
 343	return ret;
 344}
 345
 346static inline int __filemap_fdatawrite(struct address_space *mapping,
 347	int sync_mode)
 348{
 349	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 350}
 351
 352int filemap_fdatawrite(struct address_space *mapping)
 353{
 354	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 355}
 356EXPORT_SYMBOL(filemap_fdatawrite);
 357
 358int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 359				loff_t end)
 360{
 361	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 362}
 363EXPORT_SYMBOL(filemap_fdatawrite_range);
 364
 365/**
 366 * filemap_flush - mostly a non-blocking flush
 367 * @mapping:	target address_space
 368 *
 369 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 370 * purposes - I/O may not be started against all dirty pages.
 
 
 371 */
 372int filemap_flush(struct address_space *mapping)
 373{
 374	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 375}
 376EXPORT_SYMBOL(filemap_flush);
 377
 378static int __filemap_fdatawait_range(struct address_space *mapping,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 379				     loff_t start_byte, loff_t end_byte)
 380{
 381	pgoff_t index = start_byte >> PAGE_SHIFT;
 382	pgoff_t end = end_byte >> PAGE_SHIFT;
 383	struct pagevec pvec;
 384	int nr_pages;
 385	int ret = 0;
 386
 387	if (end_byte < start_byte)
 388		goto out;
 389
 390	pagevec_init(&pvec, 0);
 391	while ((index <= end) &&
 392			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 393			PAGECACHE_TAG_WRITEBACK,
 394			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
 395		unsigned i;
 396
 
 
 
 
 
 397		for (i = 0; i < nr_pages; i++) {
 398			struct page *page = pvec.pages[i];
 399
 400			/* until radix tree lookup accepts end_index */
 401			if (page->index > end)
 402				continue;
 403
 404			wait_on_page_writeback(page);
 405			if (TestClearPageError(page))
 406				ret = -EIO;
 407		}
 408		pagevec_release(&pvec);
 409		cond_resched();
 410	}
 411out:
 412	return ret;
 413}
 414
 415/**
 416 * filemap_fdatawait_range - wait for writeback to complete
 417 * @mapping:		address space structure to wait for
 418 * @start_byte:		offset in bytes where the range starts
 419 * @end_byte:		offset in bytes where the range ends (inclusive)
 420 *
 421 * Walk the list of under-writeback pages of the given address space
 422 * in the given range and wait for all of them.  Check error status of
 423 * the address space and return it.
 424 *
 425 * Since the error status of the address space is cleared by this function,
 426 * callers are responsible for checking the return value and handling and/or
 427 * reporting the error.
 
 
 428 */
 429int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 430			    loff_t end_byte)
 431{
 432	int ret, ret2;
 433
 434	ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
 435	ret2 = filemap_check_errors(mapping);
 436	if (!ret)
 437		ret = ret2;
 438
 439	return ret;
 440}
 441EXPORT_SYMBOL(filemap_fdatawait_range);
 442
 443/**
 444 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 445 * @mapping: address space structure to wait for
 
 
 446 *
 447 * Walk the list of under-writeback pages of the given address space
 448 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 449 * does not clear error status of the address space.
 450 *
 451 * Use this function if callers don't handle errors themselves.  Expected
 452 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 453 * fsfreeze(8)
 454 */
 455void filemap_fdatawait_keep_errors(struct address_space *mapping)
 
 456{
 457	loff_t i_size = i_size_read(mapping->host);
 
 
 
 458
 459	if (i_size == 0)
 460		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 461
 462	__filemap_fdatawait_range(mapping, 0, i_size - 1);
 
 463}
 
 464
 465/**
 466 * filemap_fdatawait - wait for all under-writeback pages to complete
 467 * @mapping: address space structure to wait for
 468 *
 469 * Walk the list of under-writeback pages of the given address space
 470 * and wait for all of them.  Check error status of the address space
 471 * and return it.
 
 
 
 
 472 *
 473 * Since the error status of the address space is cleared by this function,
 474 * callers are responsible for checking the return value and handling and/or
 475 * reporting the error.
 476 */
 477int filemap_fdatawait(struct address_space *mapping)
 478{
 479	loff_t i_size = i_size_read(mapping->host);
 
 
 
 480
 481	if (i_size == 0)
 482		return 0;
 
 
 
 483
 484	return filemap_fdatawait_range(mapping, 0, i_size - 1);
 485}
 486EXPORT_SYMBOL(filemap_fdatawait);
 487
 488int filemap_write_and_wait(struct address_space *mapping)
 489{
 490	int err = 0;
 491
 492	if ((!dax_mapping(mapping) && mapping->nrpages) ||
 493	    (dax_mapping(mapping) && mapping->nrexceptional)) {
 494		err = filemap_fdatawrite(mapping);
 495		/*
 496		 * Even if the above returned error, the pages may be
 497		 * written partially (e.g. -ENOSPC), so we wait for it.
 498		 * But the -EIO is special case, it may indicate the worst
 499		 * thing (e.g. bug) happened, so we avoid waiting for it.
 500		 */
 501		if (err != -EIO) {
 502			int err2 = filemap_fdatawait(mapping);
 503			if (!err)
 504				err = err2;
 
 
 
 505		}
 506	} else {
 507		err = filemap_check_errors(mapping);
 508	}
 509	return err;
 510}
 511EXPORT_SYMBOL(filemap_write_and_wait);
 512
 513/**
 514 * filemap_write_and_wait_range - write out & wait on a file range
 515 * @mapping:	the address_space for the pages
 516 * @lstart:	offset in bytes where the range starts
 517 * @lend:	offset in bytes where the range ends (inclusive)
 518 *
 519 * Write out and wait upon file offsets lstart->lend, inclusive.
 520 *
 521 * Note that `lend' is inclusive (describes the last byte to be written) so
 522 * that this function can be used to write to the very end-of-file (end = -1).
 
 
 523 */
 524int filemap_write_and_wait_range(struct address_space *mapping,
 525				 loff_t lstart, loff_t lend)
 526{
 527	int err = 0;
 528
 529	if ((!dax_mapping(mapping) && mapping->nrpages) ||
 530	    (dax_mapping(mapping) && mapping->nrexceptional)) {
 531		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 532						 WB_SYNC_ALL);
 533		/* See comment of filemap_write_and_wait() */
 534		if (err != -EIO) {
 535			int err2 = filemap_fdatawait_range(mapping,
 536						lstart, lend);
 537			if (!err)
 538				err = err2;
 
 
 
 539		}
 540	} else {
 541		err = filemap_check_errors(mapping);
 542	}
 543	return err;
 544}
 545EXPORT_SYMBOL(filemap_write_and_wait_range);
 546
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 547/**
 548 * replace_page_cache_page - replace a pagecache page with a new one
 549 * @old:	page to be replaced
 550 * @new:	page to replace with
 551 * @gfp_mask:	allocation mode
 552 *
 553 * This function replaces a page in the pagecache with a new one.  On
 554 * success it acquires the pagecache reference for the new page and
 555 * drops it for the old page.  Both the old and new pages must be
 556 * locked.  This function does not add the new page to the LRU, the
 557 * caller must do that.
 558 *
 559 * The remove + add is atomic.  The only way this function can fail is
 560 * memory allocation failure.
 
 561 */
 562int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
 563{
 564	int error;
 
 
 
 
 565
 566	VM_BUG_ON_PAGE(!PageLocked(old), old);
 567	VM_BUG_ON_PAGE(!PageLocked(new), new);
 568	VM_BUG_ON_PAGE(new->mapping, new);
 569
 570	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
 571	if (!error) {
 572		struct address_space *mapping = old->mapping;
 573		void (*freepage)(struct page *);
 574		unsigned long flags;
 575
 576		pgoff_t offset = old->index;
 577		freepage = mapping->a_ops->freepage;
 578
 579		get_page(new);
 580		new->mapping = mapping;
 581		new->index = offset;
 582
 583		spin_lock_irqsave(&mapping->tree_lock, flags);
 584		__delete_from_page_cache(old, NULL);
 585		error = page_cache_tree_insert(mapping, new, NULL);
 586		BUG_ON(error);
 587
 588		/*
 589		 * hugetlb pages do not participate in page cache accounting.
 590		 */
 591		if (!PageHuge(new))
 592			__inc_node_page_state(new, NR_FILE_PAGES);
 593		if (PageSwapBacked(new))
 594			__inc_node_page_state(new, NR_SHMEM);
 595		spin_unlock_irqrestore(&mapping->tree_lock, flags);
 596		mem_cgroup_migrate(old, new);
 597		radix_tree_preload_end();
 598		if (freepage)
 599			freepage(old);
 600		put_page(old);
 601	}
 602
 603	return error;
 604}
 605EXPORT_SYMBOL_GPL(replace_page_cache_page);
 606
 607static int __add_to_page_cache_locked(struct page *page,
 608				      struct address_space *mapping,
 609				      pgoff_t offset, gfp_t gfp_mask,
 610				      void **shadowp)
 611{
 
 612	int huge = PageHuge(page);
 613	struct mem_cgroup *memcg;
 614	int error;
 
 615
 616	VM_BUG_ON_PAGE(!PageLocked(page), page);
 617	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
 
 618
 619	if (!huge) {
 620		error = mem_cgroup_try_charge(page, current->mm,
 621					      gfp_mask, &memcg, false);
 622		if (error)
 623			return error;
 624	}
 625
 626	error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
 627	if (error) {
 628		if (!huge)
 629			mem_cgroup_cancel_charge(page, memcg, false);
 630		return error;
 631	}
 632
 633	get_page(page);
 634	page->mapping = mapping;
 635	page->index = offset;
 636
 637	spin_lock_irq(&mapping->tree_lock);
 638	error = page_cache_tree_insert(mapping, page, shadowp);
 639	radix_tree_preload_end();
 640	if (unlikely(error))
 641		goto err_insert;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 642
 643	/* hugetlb pages do not participate in page cache accounting. */
 644	if (!huge)
 645		__inc_node_page_state(page, NR_FILE_PAGES);
 646	spin_unlock_irq(&mapping->tree_lock);
 647	if (!huge)
 648		mem_cgroup_commit_charge(page, memcg, false, false);
 649	trace_mm_filemap_add_to_page_cache(page);
 650	return 0;
 651err_insert:
 652	page->mapping = NULL;
 653	/* Leave page->index set: truncation relies upon it */
 654	spin_unlock_irq(&mapping->tree_lock);
 655	if (!huge)
 656		mem_cgroup_cancel_charge(page, memcg, false);
 657	put_page(page);
 658	return error;
 659}
 
 660
 661/**
 662 * add_to_page_cache_locked - add a locked page to the pagecache
 663 * @page:	page to add
 664 * @mapping:	the page's address_space
 665 * @offset:	page index
 666 * @gfp_mask:	page allocation mode
 667 *
 668 * This function is used to add a page to the pagecache. It must be locked.
 669 * This function does not add the page to the LRU.  The caller must do that.
 
 
 670 */
 671int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
 672		pgoff_t offset, gfp_t gfp_mask)
 673{
 674	return __add_to_page_cache_locked(page, mapping, offset,
 675					  gfp_mask, NULL);
 676}
 677EXPORT_SYMBOL(add_to_page_cache_locked);
 678
 679int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 680				pgoff_t offset, gfp_t gfp_mask)
 681{
 682	void *shadow = NULL;
 683	int ret;
 684
 685	__SetPageLocked(page);
 686	ret = __add_to_page_cache_locked(page, mapping, offset,
 687					 gfp_mask, &shadow);
 688	if (unlikely(ret))
 689		__ClearPageLocked(page);
 690	else {
 691		/*
 692		 * The page might have been evicted from cache only
 693		 * recently, in which case it should be activated like
 694		 * any other repeatedly accessed page.
 695		 * The exception is pages getting rewritten; evicting other
 696		 * data from the working set, only to cache data that will
 697		 * get overwritten with something else, is a waste of memory.
 698		 */
 699		if (!(gfp_mask & __GFP_WRITE) &&
 700		    shadow && workingset_refault(shadow)) {
 701			SetPageActive(page);
 702			workingset_activation(page);
 703		} else
 704			ClearPageActive(page);
 705		lru_cache_add(page);
 706	}
 707	return ret;
 708}
 709EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
 710
 711#ifdef CONFIG_NUMA
 712struct page *__page_cache_alloc(gfp_t gfp)
 713{
 714	int n;
 715	struct page *page;
 716
 717	if (cpuset_do_page_mem_spread()) {
 718		unsigned int cpuset_mems_cookie;
 719		do {
 720			cpuset_mems_cookie = read_mems_allowed_begin();
 721			n = cpuset_mem_spread_node();
 722			page = __alloc_pages_node(n, gfp, 0);
 723		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
 724
 725		return page;
 726	}
 727	return alloc_pages(gfp, 0);
 728}
 729EXPORT_SYMBOL(__page_cache_alloc);
 730#endif
 731
 732/*
 733 * In order to wait for pages to become available there must be
 734 * waitqueues associated with pages. By using a hash table of
 735 * waitqueues where the bucket discipline is to maintain all
 736 * waiters on the same queue and wake all when any of the pages
 737 * become available, and for the woken contexts to check to be
 738 * sure the appropriate page became available, this saves space
 739 * at a cost of "thundering herd" phenomena during rare hash
 740 * collisions.
 741 */
 742#define PAGE_WAIT_TABLE_BITS 8
 743#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
 744static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
 745
 746static wait_queue_head_t *page_waitqueue(struct page *page)
 747{
 748	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
 749}
 750
 751void __init pagecache_init(void)
 752{
 753	int i;
 754
 755	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
 756		init_waitqueue_head(&page_wait_table[i]);
 757
 758	page_writeback_init();
 759}
 760
 
 761struct wait_page_key {
 762	struct page *page;
 763	int bit_nr;
 764	int page_match;
 765};
 766
 767struct wait_page_queue {
 768	struct page *page;
 769	int bit_nr;
 770	wait_queue_t wait;
 771};
 772
 773static int wake_page_function(wait_queue_t *wait, unsigned mode, int sync, void *arg)
 774{
 775	struct wait_page_key *key = arg;
 776	struct wait_page_queue *wait_page
 777		= container_of(wait, struct wait_page_queue, wait);
 778
 779	if (wait_page->page != key->page)
 780	       return 0;
 781	key->page_match = 1;
 782
 783	if (wait_page->bit_nr != key->bit_nr)
 784		return 0;
 
 
 
 
 
 
 
 
 
 785	if (test_bit(key->bit_nr, &key->page->flags))
 786		return 0;
 787
 788	return autoremove_wake_function(wait, mode, sync, key);
 789}
 790
 791void wake_up_page_bit(struct page *page, int bit_nr)
 792{
 793	wait_queue_head_t *q = page_waitqueue(page);
 794	struct wait_page_key key;
 795	unsigned long flags;
 
 796
 797	key.page = page;
 798	key.bit_nr = bit_nr;
 799	key.page_match = 0;
 800
 
 
 
 
 
 801	spin_lock_irqsave(&q->lock, flags);
 802	__wake_up_locked_key(q, TASK_NORMAL, &key);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 803	/*
 804	 * It is possible for other pages to have collided on the waitqueue
 805	 * hash, so in that case check for a page match. That prevents a long-
 806	 * term waiter
 807	 *
 808	 * It is still possible to miss a case here, when we woke page waiters
 809	 * and removed them from the waitqueue, but there are still other
 810	 * page waiters.
 811	 */
 812	if (!waitqueue_active(q) || !key.page_match) {
 813		ClearPageWaiters(page);
 814		/*
 815		 * It's possible to miss clearing Waiters here, when we woke
 816		 * our page waiters, but the hashed waitqueue has waiters for
 817		 * other pages on it.
 818		 *
 819		 * That's okay, it's a rare case. The next waker will clear it.
 820		 */
 821	}
 822	spin_unlock_irqrestore(&q->lock, flags);
 823}
 824EXPORT_SYMBOL(wake_up_page_bit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 825
 826static inline int wait_on_page_bit_common(wait_queue_head_t *q,
 827		struct page *page, int bit_nr, int state, bool lock)
 828{
 829	struct wait_page_queue wait_page;
 830	wait_queue_t *wait = &wait_page.wait;
 
 
 
 
 831	int ret = 0;
 832
 
 
 
 
 
 
 
 
 
 
 833	init_wait(wait);
 
 834	wait->func = wake_page_function;
 835	wait_page.page = page;
 836	wait_page.bit_nr = bit_nr;
 837
 838	for (;;) {
 839		spin_lock_irq(&q->lock);
 840
 841		if (likely(list_empty(&wait->task_list))) {
 842			if (lock)
 843				__add_wait_queue_tail_exclusive(q, wait);
 844			else
 845				__add_wait_queue(q, wait);
 846			SetPageWaiters(page);
 847		}
 848
 849		set_current_state(state);
 850
 851		spin_unlock_irq(&q->lock);
 852
 853		if (likely(test_bit(bit_nr, &page->flags))) {
 
 
 
 
 854			io_schedule();
 855			if (unlikely(signal_pending_state(state, current))) {
 856				ret = -EINTR;
 857				break;
 858			}
 859		}
 860
 861		if (lock) {
 862			if (!test_and_set_bit_lock(bit_nr, &page->flags))
 863				break;
 864		} else {
 865			if (!test_bit(bit_nr, &page->flags))
 866				break;
 867		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 868	}
 869
 870	finish_wait(q, wait);
 871
 
 
 
 
 
 
 872	/*
 873	 * A signal could leave PageWaiters set. Clearing it here if
 874	 * !waitqueue_active would be possible (by open-coding finish_wait),
 875	 * but still fail to catch it in the case of wait hash collision. We
 876	 * already can fail to clear wait hash collision cases, so don't
 877	 * bother with signals either.
 878	 */
 879
 880	return ret;
 881}
 882
 883void wait_on_page_bit(struct page *page, int bit_nr)
 884{
 885	wait_queue_head_t *q = page_waitqueue(page);
 886	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
 887}
 888EXPORT_SYMBOL(wait_on_page_bit);
 889
 890int wait_on_page_bit_killable(struct page *page, int bit_nr)
 891{
 892	wait_queue_head_t *q = page_waitqueue(page);
 893	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 894}
 895
 896/**
 897 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
 898 * @page: Page defining the wait queue of interest
 899 * @waiter: Waiter to add to the queue
 900 *
 901 * Add an arbitrary @waiter to the wait queue for the nominated @page.
 902 */
 903void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
 904{
 905	wait_queue_head_t *q = page_waitqueue(page);
 906	unsigned long flags;
 907
 908	spin_lock_irqsave(&q->lock, flags);
 909	__add_wait_queue(q, waiter);
 910	SetPageWaiters(page);
 911	spin_unlock_irqrestore(&q->lock, flags);
 912}
 913EXPORT_SYMBOL_GPL(add_page_wait_queue);
 914
 915#ifndef clear_bit_unlock_is_negative_byte
 916
 917/*
 918 * PG_waiters is the high bit in the same byte as PG_lock.
 919 *
 920 * On x86 (and on many other architectures), we can clear PG_lock and
 921 * test the sign bit at the same time. But if the architecture does
 922 * not support that special operation, we just do this all by hand
 923 * instead.
 924 *
 925 * The read of PG_waiters has to be after (or concurrently with) PG_locked
 926 * being cleared, but a memory barrier should be unneccssary since it is
 927 * in the same byte as PG_locked.
 928 */
 929static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
 930{
 931	clear_bit_unlock(nr, mem);
 932	/* smp_mb__after_atomic(); */
 933	return test_bit(PG_waiters, mem);
 934}
 935
 936#endif
 937
 938/**
 939 * unlock_page - unlock a locked page
 940 * @page: the page
 941 *
 942 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
 943 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
 944 * mechanism between PageLocked pages and PageWriteback pages is shared.
 945 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
 946 *
 947 * Note that this depends on PG_waiters being the sign bit in the byte
 948 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
 949 * clear the PG_locked bit and test PG_waiters at the same time fairly
 950 * portably (architectures that do LL/SC can test any bit, while x86 can
 951 * test the sign bit).
 952 */
 953void unlock_page(struct page *page)
 954{
 955	BUILD_BUG_ON(PG_waiters != 7);
 956	page = compound_head(page);
 957	VM_BUG_ON_PAGE(!PageLocked(page), page);
 958	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
 959		wake_up_page_bit(page, PG_locked);
 960}
 961EXPORT_SYMBOL(unlock_page);
 962
 963/**
 964 * end_page_writeback - end writeback against a page
 965 * @page: the page
 966 */
 967void end_page_writeback(struct page *page)
 968{
 969	/*
 970	 * TestClearPageReclaim could be used here but it is an atomic
 971	 * operation and overkill in this particular case. Failing to
 972	 * shuffle a page marked for immediate reclaim is too mild to
 973	 * justify taking an atomic operation penalty at the end of
 974	 * ever page writeback.
 975	 */
 976	if (PageReclaim(page)) {
 977		ClearPageReclaim(page);
 978		rotate_reclaimable_page(page);
 979	}
 980
 981	if (!test_clear_page_writeback(page))
 982		BUG();
 983
 984	smp_mb__after_atomic();
 985	wake_up_page(page, PG_writeback);
 986}
 987EXPORT_SYMBOL(end_page_writeback);
 988
 989/*
 990 * After completing I/O on a page, call this routine to update the page
 991 * flags appropriately
 992 */
 993void page_endio(struct page *page, bool is_write, int err)
 994{
 995	if (!is_write) {
 996		if (!err) {
 997			SetPageUptodate(page);
 998		} else {
 999			ClearPageUptodate(page);
1000			SetPageError(page);
1001		}
1002		unlock_page(page);
1003	} else {
1004		if (err) {
1005			struct address_space *mapping;
1006
1007			SetPageError(page);
1008			mapping = page_mapping(page);
1009			if (mapping)
1010				mapping_set_error(mapping, err);
1011		}
1012		end_page_writeback(page);
1013	}
1014}
1015EXPORT_SYMBOL_GPL(page_endio);
1016
1017/**
1018 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1019 * @page: the page to lock
1020 */
1021void __lock_page(struct page *__page)
1022{
1023	struct page *page = compound_head(__page);
1024	wait_queue_head_t *q = page_waitqueue(page);
1025	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
 
1026}
1027EXPORT_SYMBOL(__lock_page);
1028
1029int __lock_page_killable(struct page *__page)
1030{
1031	struct page *page = compound_head(__page);
1032	wait_queue_head_t *q = page_waitqueue(page);
1033	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
 
1034}
1035EXPORT_SYMBOL_GPL(__lock_page_killable);
1036
1037/*
1038 * Return values:
1039 * 1 - page is locked; mmap_sem is still held.
1040 * 0 - page is not locked.
1041 *     mmap_sem has been released (up_read()), unless flags had both
1042 *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1043 *     which case mmap_sem is still held.
1044 *
1045 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1046 * with the page locked and the mmap_sem unperturbed.
1047 */
1048int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1049			 unsigned int flags)
1050{
1051	if (flags & FAULT_FLAG_ALLOW_RETRY) {
1052		/*
1053		 * CAUTION! In this case, mmap_sem is not released
1054		 * even though return 0.
1055		 */
1056		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1057			return 0;
1058
1059		up_read(&mm->mmap_sem);
1060		if (flags & FAULT_FLAG_KILLABLE)
1061			wait_on_page_locked_killable(page);
1062		else
1063			wait_on_page_locked(page);
1064		return 0;
1065	} else {
1066		if (flags & FAULT_FLAG_KILLABLE) {
1067			int ret;
1068
1069			ret = __lock_page_killable(page);
1070			if (ret) {
1071				up_read(&mm->mmap_sem);
1072				return 0;
1073			}
1074		} else
1075			__lock_page(page);
1076		return 1;
1077	}
1078}
1079
1080/**
1081 * page_cache_next_hole - find the next hole (not-present entry)
1082 * @mapping: mapping
1083 * @index: index
1084 * @max_scan: maximum range to search
1085 *
1086 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1087 * lowest indexed hole.
1088 *
1089 * Returns: the index of the hole if found, otherwise returns an index
1090 * outside of the set specified (in which case 'return - index >=
1091 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1092 * be returned.
1093 *
1094 * page_cache_next_hole may be called under rcu_read_lock. However,
1095 * like radix_tree_gang_lookup, this will not atomically search a
1096 * snapshot of the tree at a single point in time. For example, if a
1097 * hole is created at index 5, then subsequently a hole is created at
1098 * index 10, page_cache_next_hole covering both indexes may return 10
1099 * if called under rcu_read_lock.
1100 */
1101pgoff_t page_cache_next_hole(struct address_space *mapping,
1102			     pgoff_t index, unsigned long max_scan)
1103{
1104	unsigned long i;
1105
1106	for (i = 0; i < max_scan; i++) {
1107		struct page *page;
1108
1109		page = radix_tree_lookup(&mapping->page_tree, index);
1110		if (!page || radix_tree_exceptional_entry(page))
1111			break;
1112		index++;
1113		if (index == 0)
1114			break;
1115	}
1116
1117	return index;
1118}
1119EXPORT_SYMBOL(page_cache_next_hole);
1120
1121/**
1122 * page_cache_prev_hole - find the prev hole (not-present entry)
1123 * @mapping: mapping
1124 * @index: index
1125 * @max_scan: maximum range to search
1126 *
1127 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1128 * the first hole.
1129 *
1130 * Returns: the index of the hole if found, otherwise returns an index
1131 * outside of the set specified (in which case 'index - return >=
1132 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1133 * will be returned.
 
1134 *
1135 * page_cache_prev_hole may be called under rcu_read_lock. However,
1136 * like radix_tree_gang_lookup, this will not atomically search a
1137 * snapshot of the tree at a single point in time. For example, if a
1138 * hole is created at index 10, then subsequently a hole is created at
1139 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1140 * called under rcu_read_lock.
1141 */
1142pgoff_t page_cache_prev_hole(struct address_space *mapping,
1143			     pgoff_t index, unsigned long max_scan)
1144{
1145	unsigned long i;
1146
1147	for (i = 0; i < max_scan; i++) {
1148		struct page *page;
1149
1150		page = radix_tree_lookup(&mapping->page_tree, index);
1151		if (!page || radix_tree_exceptional_entry(page))
 
1152			break;
1153		index--;
1154		if (index == ULONG_MAX)
1155			break;
1156	}
1157
1158	return index;
1159}
1160EXPORT_SYMBOL(page_cache_prev_hole);
1161
1162/**
1163 * find_get_entry - find and get a page cache entry
1164 * @mapping: the address_space to search
1165 * @offset: the page cache index
1166 *
1167 * Looks up the page cache slot at @mapping & @offset.  If there is a
1168 * page cache page, it is returned with an increased refcount.
1169 *
1170 * If the slot holds a shadow entry of a previously evicted page, or a
1171 * swap entry from shmem/tmpfs, it is returned.
1172 *
1173 * Otherwise, %NULL is returned.
1174 */
1175struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1176{
1177	void **pagep;
1178	struct page *head, *page;
1179
1180	rcu_read_lock();
1181repeat:
1182	page = NULL;
1183	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1184	if (pagep) {
1185		page = radix_tree_deref_slot(pagep);
1186		if (unlikely(!page))
1187			goto out;
1188		if (radix_tree_exception(page)) {
1189			if (radix_tree_deref_retry(page))
1190				goto repeat;
1191			/*
1192			 * A shadow entry of a recently evicted page,
1193			 * or a swap entry from shmem/tmpfs.  Return
1194			 * it without attempting to raise page count.
1195			 */
1196			goto out;
1197		}
1198
1199		head = compound_head(page);
1200		if (!page_cache_get_speculative(head))
1201			goto repeat;
1202
1203		/* The page was split under us? */
1204		if (compound_head(page) != head) {
1205			put_page(head);
1206			goto repeat;
1207		}
1208
1209		/*
1210		 * Has the page moved?
1211		 * This is part of the lockless pagecache protocol. See
1212		 * include/linux/pagemap.h for details.
1213		 */
1214		if (unlikely(page != *pagep)) {
1215			put_page(head);
1216			goto repeat;
1217		}
1218	}
 
1219out:
1220	rcu_read_unlock();
1221
1222	return page;
1223}
1224EXPORT_SYMBOL(find_get_entry);
1225
1226/**
1227 * find_lock_entry - locate, pin and lock a page cache entry
1228 * @mapping: the address_space to search
1229 * @offset: the page cache index
1230 *
1231 * Looks up the page cache slot at @mapping & @offset.  If there is a
1232 * page cache page, it is returned locked and with an increased
1233 * refcount.
1234 *
1235 * If the slot holds a shadow entry of a previously evicted page, or a
1236 * swap entry from shmem/tmpfs, it is returned.
1237 *
1238 * Otherwise, %NULL is returned.
1239 *
1240 * find_lock_entry() may sleep.
1241 */
1242struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1243{
1244	struct page *page;
1245
1246repeat:
1247	page = find_get_entry(mapping, offset);
1248	if (page && !radix_tree_exception(page)) {
1249		lock_page(page);
1250		/* Has the page been truncated? */
1251		if (unlikely(page_mapping(page) != mapping)) {
1252			unlock_page(page);
1253			put_page(page);
1254			goto repeat;
1255		}
1256		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1257	}
1258	return page;
1259}
1260EXPORT_SYMBOL(find_lock_entry);
1261
1262/**
1263 * pagecache_get_page - find and get a page reference
1264 * @mapping: the address_space to search
1265 * @offset: the page index
1266 * @fgp_flags: PCG flags
1267 * @gfp_mask: gfp mask to use for the page cache data page allocation
1268 *
1269 * Looks up the page cache slot at @mapping & @offset.
1270 *
1271 * PCG flags modify how the page is returned.
1272 *
1273 * FGP_ACCESSED: the page will be marked accessed
1274 * FGP_LOCK: Page is return locked
1275 * FGP_CREAT: If page is not present then a new page is allocated using
1276 *		@gfp_mask and added to the page cache and the VM's LRU
1277 *		list. The page is returned locked and with an increased
1278 *		refcount. Otherwise, %NULL is returned.
 
 
 
 
 
1279 *
1280 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1281 * if the GFP flags specified for FGP_CREAT are atomic.
1282 *
1283 * If there is a page cache page, it is returned with an increased refcount.
 
 
1284 */
1285struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1286	int fgp_flags, gfp_t gfp_mask)
1287{
1288	struct page *page;
1289
1290repeat:
1291	page = find_get_entry(mapping, offset);
1292	if (radix_tree_exceptional_entry(page))
1293		page = NULL;
1294	if (!page)
1295		goto no_page;
1296
1297	if (fgp_flags & FGP_LOCK) {
1298		if (fgp_flags & FGP_NOWAIT) {
1299			if (!trylock_page(page)) {
1300				put_page(page);
1301				return NULL;
1302			}
1303		} else {
1304			lock_page(page);
1305		}
1306
1307		/* Has the page been truncated? */
1308		if (unlikely(page->mapping != mapping)) {
1309			unlock_page(page);
1310			put_page(page);
1311			goto repeat;
1312		}
1313		VM_BUG_ON_PAGE(page->index != offset, page);
1314	}
1315
1316	if (page && (fgp_flags & FGP_ACCESSED))
1317		mark_page_accessed(page);
1318
1319no_page:
1320	if (!page && (fgp_flags & FGP_CREAT)) {
1321		int err;
1322		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1323			gfp_mask |= __GFP_WRITE;
1324		if (fgp_flags & FGP_NOFS)
1325			gfp_mask &= ~__GFP_FS;
1326
1327		page = __page_cache_alloc(gfp_mask);
1328		if (!page)
1329			return NULL;
1330
1331		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1332			fgp_flags |= FGP_LOCK;
1333
1334		/* Init accessed so avoid atomic mark_page_accessed later */
1335		if (fgp_flags & FGP_ACCESSED)
1336			__SetPageReferenced(page);
1337
1338		err = add_to_page_cache_lru(page, mapping, offset,
1339				gfp_mask & GFP_RECLAIM_MASK);
1340		if (unlikely(err)) {
1341			put_page(page);
1342			page = NULL;
1343			if (err == -EEXIST)
1344				goto repeat;
1345		}
 
 
 
 
 
 
 
1346	}
1347
1348	return page;
1349}
1350EXPORT_SYMBOL(pagecache_get_page);
1351
1352/**
1353 * find_get_entries - gang pagecache lookup
1354 * @mapping:	The address_space to search
1355 * @start:	The starting page cache index
1356 * @nr_entries:	The maximum number of entries
1357 * @entries:	Where the resulting entries are placed
1358 * @indices:	The cache indices corresponding to the entries in @entries
1359 *
1360 * find_get_entries() will search for and return a group of up to
1361 * @nr_entries entries in the mapping.  The entries are placed at
1362 * @entries.  find_get_entries() takes a reference against any actual
1363 * pages it returns.
1364 *
1365 * The search returns a group of mapping-contiguous page cache entries
1366 * with ascending indexes.  There may be holes in the indices due to
1367 * not-present pages.
1368 *
1369 * Any shadow entries of evicted pages, or swap entries from
1370 * shmem/tmpfs, are included in the returned array.
1371 *
1372 * find_get_entries() returns the number of pages and shadow entries
1373 * which were found.
1374 */
1375unsigned find_get_entries(struct address_space *mapping,
1376			  pgoff_t start, unsigned int nr_entries,
1377			  struct page **entries, pgoff_t *indices)
1378{
1379	void **slot;
 
1380	unsigned int ret = 0;
1381	struct radix_tree_iter iter;
1382
1383	if (!nr_entries)
1384		return 0;
1385
1386	rcu_read_lock();
1387	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1388		struct page *head, *page;
1389repeat:
1390		page = radix_tree_deref_slot(slot);
1391		if (unlikely(!page))
1392			continue;
1393		if (radix_tree_exception(page)) {
1394			if (radix_tree_deref_retry(page)) {
1395				slot = radix_tree_iter_retry(&iter);
1396				continue;
1397			}
1398			/*
1399			 * A shadow entry of a recently evicted page, a swap
1400			 * entry from shmem/tmpfs or a DAX entry.  Return it
1401			 * without attempting to raise page count.
1402			 */
1403			goto export;
1404		}
1405
1406		head = compound_head(page);
1407		if (!page_cache_get_speculative(head))
1408			goto repeat;
1409
1410		/* The page was split under us? */
1411		if (compound_head(page) != head) {
1412			put_page(head);
1413			goto repeat;
1414		}
1415
1416		/* Has the page moved? */
1417		if (unlikely(page != *slot)) {
1418			put_page(head);
1419			goto repeat;
1420		}
1421export:
1422		indices[ret] = iter.index;
1423		entries[ret] = page;
1424		if (++ret == nr_entries)
1425			break;
 
 
 
 
 
1426	}
1427	rcu_read_unlock();
1428	return ret;
1429}
1430
1431/**
1432 * find_get_pages - gang pagecache lookup
1433 * @mapping:	The address_space to search
1434 * @start:	The starting page index
 
1435 * @nr_pages:	The maximum number of pages
1436 * @pages:	Where the resulting pages are placed
1437 *
1438 * find_get_pages() will search for and return a group of up to
1439 * @nr_pages pages in the mapping.  The pages are placed at @pages.
1440 * find_get_pages() takes a reference against the returned pages.
 
1441 *
1442 * The search returns a group of mapping-contiguous pages with ascending
1443 * indexes.  There may be holes in the indices due to not-present pages.
 
1444 *
1445 * find_get_pages() returns the number of pages which were found.
 
 
1446 */
1447unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1448			    unsigned int nr_pages, struct page **pages)
 
1449{
1450	struct radix_tree_iter iter;
1451	void **slot;
1452	unsigned ret = 0;
1453
1454	if (unlikely(!nr_pages))
1455		return 0;
1456
1457	rcu_read_lock();
1458	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1459		struct page *head, *page;
1460repeat:
1461		page = radix_tree_deref_slot(slot);
1462		if (unlikely(!page))
1463			continue;
1464
1465		if (radix_tree_exception(page)) {
1466			if (radix_tree_deref_retry(page)) {
1467				slot = radix_tree_iter_retry(&iter);
1468				continue;
1469			}
1470			/*
1471			 * A shadow entry of a recently evicted page,
1472			 * or a swap entry from shmem/tmpfs.  Skip
1473			 * over it.
1474			 */
1475			continue;
1476		}
1477
1478		head = compound_head(page);
1479		if (!page_cache_get_speculative(head))
1480			goto repeat;
1481
1482		/* The page was split under us? */
1483		if (compound_head(page) != head) {
1484			put_page(head);
1485			goto repeat;
 
 
 
 
1486		}
1487
1488		/* Has the page moved? */
1489		if (unlikely(page != *slot)) {
1490			put_page(head);
1491			goto repeat;
1492		}
1493
1494		pages[ret] = page;
1495		if (++ret == nr_pages)
1496			break;
1497	}
1498
 
 
 
 
 
 
 
 
 
 
 
1499	rcu_read_unlock();
 
1500	return ret;
1501}
1502
1503/**
1504 * find_get_pages_contig - gang contiguous pagecache lookup
1505 * @mapping:	The address_space to search
1506 * @index:	The starting page index
1507 * @nr_pages:	The maximum number of pages
1508 * @pages:	Where the resulting pages are placed
1509 *
1510 * find_get_pages_contig() works exactly like find_get_pages(), except
1511 * that the returned number of pages are guaranteed to be contiguous.
1512 *
1513 * find_get_pages_contig() returns the number of pages which were found.
1514 */
1515unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1516			       unsigned int nr_pages, struct page **pages)
1517{
1518	struct radix_tree_iter iter;
1519	void **slot;
1520	unsigned int ret = 0;
1521
1522	if (unlikely(!nr_pages))
1523		return 0;
1524
1525	rcu_read_lock();
1526	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1527		struct page *head, *page;
1528repeat:
1529		page = radix_tree_deref_slot(slot);
1530		/* The hole, there no reason to continue */
1531		if (unlikely(!page))
 
 
1532			break;
1533
1534		if (radix_tree_exception(page)) {
1535			if (radix_tree_deref_retry(page)) {
1536				slot = radix_tree_iter_retry(&iter);
1537				continue;
1538			}
1539			/*
1540			 * A shadow entry of a recently evicted page,
1541			 * or a swap entry from shmem/tmpfs.  Stop
1542			 * looking for contiguous pages.
1543			 */
1544			break;
1545		}
1546
1547		head = compound_head(page);
1548		if (!page_cache_get_speculative(head))
1549			goto repeat;
1550
1551		/* The page was split under us? */
1552		if (compound_head(page) != head) {
1553			put_page(head);
1554			goto repeat;
1555		}
1556
1557		/* Has the page moved? */
1558		if (unlikely(page != *slot)) {
1559			put_page(head);
1560			goto repeat;
1561		}
1562
1563		/*
1564		 * must check mapping and index after taking the ref.
1565		 * otherwise we can get both false positives and false
1566		 * negatives, which is just confusing to the caller.
1567		 */
1568		if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1569			put_page(page);
1570			break;
1571		}
1572
1573		pages[ret] = page;
1574		if (++ret == nr_pages)
1575			break;
 
 
 
 
 
1576	}
1577	rcu_read_unlock();
1578	return ret;
1579}
1580EXPORT_SYMBOL(find_get_pages_contig);
1581
1582/**
1583 * find_get_pages_tag - find and return pages that match @tag
1584 * @mapping:	the address_space to search
1585 * @index:	the starting page index
 
1586 * @tag:	the tag index
1587 * @nr_pages:	the maximum number of pages
1588 * @pages:	where the resulting pages are placed
1589 *
1590 * Like find_get_pages, except we only return pages which are tagged with
1591 * @tag.   We update @index to index the next page for the traversal.
 
 
1592 */
1593unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1594			int tag, unsigned int nr_pages, struct page **pages)
 
1595{
1596	struct radix_tree_iter iter;
1597	void **slot;
1598	unsigned ret = 0;
1599
1600	if (unlikely(!nr_pages))
1601		return 0;
1602
1603	rcu_read_lock();
1604	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1605				   &iter, *index, tag) {
1606		struct page *head, *page;
1607repeat:
1608		page = radix_tree_deref_slot(slot);
1609		if (unlikely(!page))
1610			continue;
1611
1612		if (radix_tree_exception(page)) {
1613			if (radix_tree_deref_retry(page)) {
1614				slot = radix_tree_iter_retry(&iter);
1615				continue;
1616			}
1617			/*
1618			 * A shadow entry of a recently evicted page.
1619			 *
1620			 * Those entries should never be tagged, but
1621			 * this tree walk is lockless and the tags are
1622			 * looked up in bulk, one radix tree node at a
1623			 * time, so there is a sizable window for page
1624			 * reclaim to evict a page we saw tagged.
1625			 *
1626			 * Skip over it.
1627			 */
1628			continue;
1629		}
1630
1631		head = compound_head(page);
1632		if (!page_cache_get_speculative(head))
1633			goto repeat;
1634
1635		/* The page was split under us? */
1636		if (compound_head(page) != head) {
1637			put_page(head);
1638			goto repeat;
 
 
 
 
1639		}
1640
1641		/* Has the page moved? */
1642		if (unlikely(page != *slot)) {
1643			put_page(head);
1644			goto repeat;
1645		}
1646
1647		pages[ret] = page;
1648		if (++ret == nr_pages)
1649			break;
1650	}
1651
 
 
 
 
 
 
 
 
 
 
 
1652	rcu_read_unlock();
1653
1654	if (ret)
1655		*index = pages[ret - 1]->index + 1;
1656
1657	return ret;
1658}
1659EXPORT_SYMBOL(find_get_pages_tag);
1660
1661/**
1662 * find_get_entries_tag - find and return entries that match @tag
1663 * @mapping:	the address_space to search
1664 * @start:	the starting page cache index
1665 * @tag:	the tag index
1666 * @nr_entries:	the maximum number of entries
1667 * @entries:	where the resulting entries are placed
1668 * @indices:	the cache indices corresponding to the entries in @entries
1669 *
1670 * Like find_get_entries, except we only return entries which are tagged with
1671 * @tag.
1672 */
1673unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1674			int tag, unsigned int nr_entries,
1675			struct page **entries, pgoff_t *indices)
1676{
1677	void **slot;
1678	unsigned int ret = 0;
1679	struct radix_tree_iter iter;
1680
1681	if (!nr_entries)
1682		return 0;
1683
1684	rcu_read_lock();
1685	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1686				   &iter, start, tag) {
1687		struct page *head, *page;
1688repeat:
1689		page = radix_tree_deref_slot(slot);
1690		if (unlikely(!page))
1691			continue;
1692		if (radix_tree_exception(page)) {
1693			if (radix_tree_deref_retry(page)) {
1694				slot = radix_tree_iter_retry(&iter);
1695				continue;
1696			}
1697
1698			/*
1699			 * A shadow entry of a recently evicted page, a swap
1700			 * entry from shmem/tmpfs or a DAX entry.  Return it
1701			 * without attempting to raise page count.
1702			 */
1703			goto export;
1704		}
1705
1706		head = compound_head(page);
1707		if (!page_cache_get_speculative(head))
1708			goto repeat;
1709
1710		/* The page was split under us? */
1711		if (compound_head(page) != head) {
1712			put_page(head);
1713			goto repeat;
1714		}
1715
1716		/* Has the page moved? */
1717		if (unlikely(page != *slot)) {
1718			put_page(head);
1719			goto repeat;
1720		}
1721export:
1722		indices[ret] = iter.index;
1723		entries[ret] = page;
1724		if (++ret == nr_entries)
1725			break;
1726	}
1727	rcu_read_unlock();
1728	return ret;
1729}
1730EXPORT_SYMBOL(find_get_entries_tag);
1731
1732/*
1733 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1734 * a _large_ part of the i/o request. Imagine the worst scenario:
1735 *
1736 *      ---R__________________________________________B__________
1737 *         ^ reading here                             ^ bad block(assume 4k)
1738 *
1739 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1740 * => failing the whole request => read(R) => read(R+1) =>
1741 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1742 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1743 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1744 *
1745 * It is going insane. Fix it by quickly scaling down the readahead size.
1746 */
1747static void shrink_readahead_size_eio(struct file *filp,
1748					struct file_ra_state *ra)
1749{
1750	ra->ra_pages /= 4;
1751}
1752
1753/**
1754 * do_generic_file_read - generic file read routine
1755 * @filp:	the file to read
1756 * @ppos:	current file position
1757 * @iter:	data destination
1758 * @written:	already copied
1759 *
1760 * This is a generic file read routine, and uses the
1761 * mapping->a_ops->readpage() function for the actual low-level stuff.
1762 *
1763 * This is really ugly. But the goto's actually try to clarify some
1764 * of the logic when it comes to error handling etc.
 
 
 
 
1765 */
1766static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1767		struct iov_iter *iter, ssize_t written)
1768{
 
1769	struct address_space *mapping = filp->f_mapping;
1770	struct inode *inode = mapping->host;
1771	struct file_ra_state *ra = &filp->f_ra;
 
1772	pgoff_t index;
1773	pgoff_t last_index;
1774	pgoff_t prev_index;
1775	unsigned long offset;      /* offset into pagecache page */
1776	unsigned int prev_offset;
1777	int error = 0;
1778
1779	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1780		return 0;
1781	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1782
1783	index = *ppos >> PAGE_SHIFT;
1784	prev_index = ra->prev_pos >> PAGE_SHIFT;
1785	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1786	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1787	offset = *ppos & ~PAGE_MASK;
1788
1789	for (;;) {
1790		struct page *page;
1791		pgoff_t end_index;
1792		loff_t isize;
1793		unsigned long nr, ret;
1794
1795		cond_resched();
1796find_page:
1797		if (fatal_signal_pending(current)) {
1798			error = -EINTR;
1799			goto out;
1800		}
1801
1802		page = find_get_page(mapping, index);
1803		if (!page) {
 
 
1804			page_cache_sync_readahead(mapping,
1805					ra, filp,
1806					index, last_index - index);
1807			page = find_get_page(mapping, index);
1808			if (unlikely(page == NULL))
1809				goto no_cached_page;
1810		}
1811		if (PageReadahead(page)) {
1812			page_cache_async_readahead(mapping,
1813					ra, filp, page,
1814					index, last_index - index);
1815		}
1816		if (!PageUptodate(page)) {
 
 
 
 
 
1817			/*
1818			 * See comment in do_read_cache_page on why
1819			 * wait_on_page_locked is used to avoid unnecessarily
1820			 * serialisations and why it's safe.
1821			 */
1822			error = wait_on_page_locked_killable(page);
1823			if (unlikely(error))
1824				goto readpage_error;
1825			if (PageUptodate(page))
1826				goto page_ok;
1827
1828			if (inode->i_blkbits == PAGE_SHIFT ||
1829					!mapping->a_ops->is_partially_uptodate)
1830				goto page_not_up_to_date;
1831			/* pipes can't handle partially uptodate pages */
1832			if (unlikely(iter->type & ITER_PIPE))
1833				goto page_not_up_to_date;
1834			if (!trylock_page(page))
1835				goto page_not_up_to_date;
1836			/* Did it get truncated before we got the lock? */
1837			if (!page->mapping)
1838				goto page_not_up_to_date_locked;
1839			if (!mapping->a_ops->is_partially_uptodate(page,
1840							offset, iter->count))
1841				goto page_not_up_to_date_locked;
1842			unlock_page(page);
1843		}
1844page_ok:
1845		/*
1846		 * i_size must be checked after we know the page is Uptodate.
1847		 *
1848		 * Checking i_size after the check allows us to calculate
1849		 * the correct value for "nr", which means the zero-filled
1850		 * part of the page is not copied back to userspace (unless
1851		 * another truncate extends the file - this is desired though).
1852		 */
1853
1854		isize = i_size_read(inode);
1855		end_index = (isize - 1) >> PAGE_SHIFT;
1856		if (unlikely(!isize || index > end_index)) {
1857			put_page(page);
1858			goto out;
1859		}
1860
1861		/* nr is the maximum number of bytes to copy from this page */
1862		nr = PAGE_SIZE;
1863		if (index == end_index) {
1864			nr = ((isize - 1) & ~PAGE_MASK) + 1;
1865			if (nr <= offset) {
1866				put_page(page);
1867				goto out;
1868			}
1869		}
1870		nr = nr - offset;
1871
1872		/* If users can be writing to this page using arbitrary
1873		 * virtual addresses, take care about potential aliasing
1874		 * before reading the page on the kernel side.
1875		 */
1876		if (mapping_writably_mapped(mapping))
1877			flush_dcache_page(page);
1878
1879		/*
1880		 * When a sequential read accesses a page several times,
1881		 * only mark it as accessed the first time.
1882		 */
1883		if (prev_index != index || offset != prev_offset)
1884			mark_page_accessed(page);
1885		prev_index = index;
1886
1887		/*
1888		 * Ok, we have the page, and it's up-to-date, so
1889		 * now we can copy it to user space...
1890		 */
1891
1892		ret = copy_page_to_iter(page, offset, nr, iter);
1893		offset += ret;
1894		index += offset >> PAGE_SHIFT;
1895		offset &= ~PAGE_MASK;
1896		prev_offset = offset;
1897
1898		put_page(page);
1899		written += ret;
1900		if (!iov_iter_count(iter))
1901			goto out;
1902		if (ret < nr) {
1903			error = -EFAULT;
1904			goto out;
1905		}
1906		continue;
1907
1908page_not_up_to_date:
1909		/* Get exclusive access to the page ... */
1910		error = lock_page_killable(page);
1911		if (unlikely(error))
1912			goto readpage_error;
1913
1914page_not_up_to_date_locked:
1915		/* Did it get truncated before we got the lock? */
1916		if (!page->mapping) {
1917			unlock_page(page);
1918			put_page(page);
1919			continue;
1920		}
1921
1922		/* Did somebody else fill it already? */
1923		if (PageUptodate(page)) {
1924			unlock_page(page);
1925			goto page_ok;
1926		}
1927
1928readpage:
1929		/*
1930		 * A previous I/O error may have been due to temporary
1931		 * failures, eg. multipath errors.
1932		 * PG_error will be set again if readpage fails.
1933		 */
1934		ClearPageError(page);
1935		/* Start the actual read. The read will unlock the page. */
1936		error = mapping->a_ops->readpage(filp, page);
1937
1938		if (unlikely(error)) {
1939			if (error == AOP_TRUNCATED_PAGE) {
1940				put_page(page);
1941				error = 0;
1942				goto find_page;
1943			}
1944			goto readpage_error;
1945		}
1946
1947		if (!PageUptodate(page)) {
1948			error = lock_page_killable(page);
1949			if (unlikely(error))
1950				goto readpage_error;
1951			if (!PageUptodate(page)) {
1952				if (page->mapping == NULL) {
1953					/*
1954					 * invalidate_mapping_pages got it
1955					 */
1956					unlock_page(page);
1957					put_page(page);
1958					goto find_page;
1959				}
1960				unlock_page(page);
1961				shrink_readahead_size_eio(filp, ra);
1962				error = -EIO;
1963				goto readpage_error;
1964			}
1965			unlock_page(page);
1966		}
1967
1968		goto page_ok;
1969
1970readpage_error:
1971		/* UHHUH! A synchronous read error occurred. Report it */
1972		put_page(page);
1973		goto out;
1974
1975no_cached_page:
1976		/*
1977		 * Ok, it wasn't cached, so we need to create a new
1978		 * page..
1979		 */
1980		page = page_cache_alloc_cold(mapping);
1981		if (!page) {
1982			error = -ENOMEM;
1983			goto out;
1984		}
1985		error = add_to_page_cache_lru(page, mapping, index,
1986				mapping_gfp_constraint(mapping, GFP_KERNEL));
1987		if (error) {
1988			put_page(page);
1989			if (error == -EEXIST) {
1990				error = 0;
1991				goto find_page;
1992			}
1993			goto out;
1994		}
1995		goto readpage;
1996	}
1997
 
 
1998out:
1999	ra->prev_pos = prev_index;
2000	ra->prev_pos <<= PAGE_SHIFT;
2001	ra->prev_pos |= prev_offset;
2002
2003	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2004	file_accessed(filp);
2005	return written ? written : error;
2006}
2007
2008/**
2009 * generic_file_read_iter - generic filesystem read routine
2010 * @iocb:	kernel I/O control block
2011 * @iter:	destination for the data read
2012 *
2013 * This is the "read_iter()" routine for all filesystems
2014 * that can use the page cache directly.
 
 
 
2015 */
2016ssize_t
2017generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2018{
2019	struct file *file = iocb->ki_filp;
2020	ssize_t retval = 0;
2021	size_t count = iov_iter_count(iter);
2022
2023	if (!count)
2024		goto out; /* skip atime */
2025
2026	if (iocb->ki_flags & IOCB_DIRECT) {
 
2027		struct address_space *mapping = file->f_mapping;
2028		struct inode *inode = mapping->host;
2029		struct iov_iter data = *iter;
2030		loff_t size;
2031
2032		size = i_size_read(inode);
2033		retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
2034					iocb->ki_pos + count - 1);
2035		if (retval < 0)
2036			goto out;
 
 
 
 
 
 
 
2037
2038		file_accessed(file);
2039
2040		retval = mapping->a_ops->direct_IO(iocb, &data);
2041		if (retval >= 0) {
2042			iocb->ki_pos += retval;
2043			iov_iter_advance(iter, retval);
2044		}
 
2045
2046		/*
2047		 * Btrfs can have a short DIO read if we encounter
2048		 * compressed extents, so if there was an error, or if
2049		 * we've already read everything we wanted to, or if
2050		 * there was a short read because we hit EOF, go ahead
2051		 * and return.  Otherwise fallthrough to buffered io for
2052		 * the rest of the read.  Buffered reads will not work for
2053		 * DAX files, so don't bother trying.
2054		 */
2055		if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
2056		    IS_DAX(inode))
2057			goto out;
2058	}
2059
2060	retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
2061out:
2062	return retval;
2063}
2064EXPORT_SYMBOL(generic_file_read_iter);
2065
2066#ifdef CONFIG_MMU
2067/**
2068 * page_cache_read - adds requested page to the page cache if not already there
2069 * @file:	file to read
2070 * @offset:	page index
2071 * @gfp_mask:	memory allocation flags
2072 *
2073 * This adds the requested page to the page cache if it isn't already there,
2074 * and schedules an I/O to read in its contents from disk.
2075 */
2076static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2077{
2078	struct address_space *mapping = file->f_mapping;
2079	struct page *page;
2080	int ret;
2081
2082	do {
2083		page = __page_cache_alloc(gfp_mask|__GFP_COLD);
2084		if (!page)
2085			return -ENOMEM;
2086
2087		ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
2088		if (ret == 0)
2089			ret = mapping->a_ops->readpage(file, page);
2090		else if (ret == -EEXIST)
2091			ret = 0; /* losing race to add is OK */
 
 
 
 
 
 
 
2092
2093		put_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2094
2095	} while (ret == AOP_TRUNCATED_PAGE);
 
 
 
 
 
 
2096
2097	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2098}
2099
2100#define MMAP_LOTSAMISS  (100)
2101
2102/*
2103 * Synchronous readahead happens when we don't even find
2104 * a page in the page cache at all.
 
 
 
2105 */
2106static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2107				   struct file_ra_state *ra,
2108				   struct file *file,
2109				   pgoff_t offset)
2110{
 
 
2111	struct address_space *mapping = file->f_mapping;
 
 
2112
2113	/* If we don't want any read-ahead, don't bother */
2114	if (vma->vm_flags & VM_RAND_READ)
2115		return;
2116	if (!ra->ra_pages)
2117		return;
2118
2119	if (vma->vm_flags & VM_SEQ_READ) {
 
2120		page_cache_sync_readahead(mapping, ra, file, offset,
2121					  ra->ra_pages);
2122		return;
2123	}
2124
2125	/* Avoid banging the cache line if not needed */
2126	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2127		ra->mmap_miss++;
2128
2129	/*
2130	 * Do we miss much more than hit in this file? If so,
2131	 * stop bothering with read-ahead. It will only hurt.
2132	 */
2133	if (ra->mmap_miss > MMAP_LOTSAMISS)
2134		return;
2135
2136	/*
2137	 * mmap read-around
2138	 */
 
2139	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2140	ra->size = ra->ra_pages;
2141	ra->async_size = ra->ra_pages / 4;
2142	ra_submit(ra, mapping, file);
 
2143}
2144
2145/*
2146 * Asynchronous readahead happens when we find the page and PG_readahead,
2147 * so we want to possibly extend the readahead further..
 
2148 */
2149static void do_async_mmap_readahead(struct vm_area_struct *vma,
2150				    struct file_ra_state *ra,
2151				    struct file *file,
2152				    struct page *page,
2153				    pgoff_t offset)
2154{
 
 
2155	struct address_space *mapping = file->f_mapping;
 
 
2156
2157	/* If we don't want any read-ahead, don't bother */
2158	if (vma->vm_flags & VM_RAND_READ)
2159		return;
2160	if (ra->mmap_miss > 0)
2161		ra->mmap_miss--;
2162	if (PageReadahead(page))
 
2163		page_cache_async_readahead(mapping, ra, file,
2164					   page, offset, ra->ra_pages);
 
 
2165}
2166
2167/**
2168 * filemap_fault - read in file data for page fault handling
2169 * @vma:	vma in which the fault was taken
2170 * @vmf:	struct vm_fault containing details of the fault
2171 *
2172 * filemap_fault() is invoked via the vma operations vector for a
2173 * mapped memory region to read in file data during a page fault.
2174 *
2175 * The goto's are kind of ugly, but this streamlines the normal case of having
2176 * it in the page cache, and handles the special cases reasonably without
2177 * having a lot of duplicated code.
2178 *
2179 * vma->vm_mm->mmap_sem must be held on entry.
2180 *
2181 * If our return value has VM_FAULT_RETRY set, it's because
2182 * lock_page_or_retry() returned 0.
2183 * The mmap_sem has usually been released in this case.
2184 * See __lock_page_or_retry() for the exception.
2185 *
2186 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2187 * has not been released.
2188 *
2189 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
 
 
2190 */
2191int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2192{
2193	int error;
2194	struct file *file = vma->vm_file;
 
2195	struct address_space *mapping = file->f_mapping;
2196	struct file_ra_state *ra = &file->f_ra;
2197	struct inode *inode = mapping->host;
2198	pgoff_t offset = vmf->pgoff;
 
2199	struct page *page;
2200	loff_t size;
2201	int ret = 0;
2202
2203	size = round_up(i_size_read(inode), PAGE_SIZE);
2204	if (offset >= size >> PAGE_SHIFT)
2205		return VM_FAULT_SIGBUS;
2206
2207	/*
2208	 * Do we have something in the page cache already?
2209	 */
2210	page = find_get_page(mapping, offset);
2211	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2212		/*
2213		 * We found the page, so try async readahead before
2214		 * waiting for the lock.
2215		 */
2216		do_async_mmap_readahead(vma, ra, file, page, offset);
2217	} else if (!page) {
2218		/* No page in the page cache at all */
2219		do_sync_mmap_readahead(vma, ra, file, offset);
2220		count_vm_event(PGMAJFAULT);
2221		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2222		ret = VM_FAULT_MAJOR;
 
2223retry_find:
2224		page = find_get_page(mapping, offset);
2225		if (!page)
2226			goto no_cached_page;
 
 
 
 
 
2227	}
2228
2229	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2230		put_page(page);
2231		return ret | VM_FAULT_RETRY;
2232	}
2233
2234	/* Did it get truncated? */
2235	if (unlikely(page->mapping != mapping)) {
2236		unlock_page(page);
2237		put_page(page);
2238		goto retry_find;
2239	}
2240	VM_BUG_ON_PAGE(page->index != offset, page);
2241
2242	/*
2243	 * We have a locked page in the page cache, now we need to check
2244	 * that it's up-to-date. If not, it is going to be due to an error.
2245	 */
2246	if (unlikely(!PageUptodate(page)))
2247		goto page_not_uptodate;
2248
2249	/*
 
 
 
 
 
 
 
 
 
 
2250	 * Found the page and have a reference on it.
2251	 * We must recheck i_size under page lock.
2252	 */
2253	size = round_up(i_size_read(inode), PAGE_SIZE);
2254	if (unlikely(offset >= size >> PAGE_SHIFT)) {
2255		unlock_page(page);
2256		put_page(page);
2257		return VM_FAULT_SIGBUS;
2258	}
2259
2260	vmf->page = page;
2261	return ret | VM_FAULT_LOCKED;
2262
2263no_cached_page:
2264	/*
2265	 * We're only likely to ever get here if MADV_RANDOM is in
2266	 * effect.
2267	 */
2268	error = page_cache_read(file, offset, vmf->gfp_mask);
2269
2270	/*
2271	 * The page we want has now been added to the page cache.
2272	 * In the unlikely event that someone removed it in the
2273	 * meantime, we'll just come back here and read it again.
2274	 */
2275	if (error >= 0)
2276		goto retry_find;
2277
2278	/*
2279	 * An error return from page_cache_read can result if the
2280	 * system is low on memory, or a problem occurs while trying
2281	 * to schedule I/O.
2282	 */
2283	if (error == -ENOMEM)
2284		return VM_FAULT_OOM;
2285	return VM_FAULT_SIGBUS;
2286
2287page_not_uptodate:
2288	/*
2289	 * Umm, take care of errors if the page isn't up-to-date.
2290	 * Try to re-read it _once_. We do this synchronously,
2291	 * because there really aren't any performance issues here
2292	 * and we need to check for errors.
2293	 */
2294	ClearPageError(page);
 
2295	error = mapping->a_ops->readpage(file, page);
2296	if (!error) {
2297		wait_on_page_locked(page);
2298		if (!PageUptodate(page))
2299			error = -EIO;
2300	}
 
 
2301	put_page(page);
2302
2303	if (!error || error == AOP_TRUNCATED_PAGE)
2304		goto retry_find;
2305
2306	/* Things didn't work out. Return zero to tell the mm layer so. */
2307	shrink_readahead_size_eio(file, ra);
2308	return VM_FAULT_SIGBUS;
 
 
 
 
 
 
 
 
 
 
 
 
2309}
2310EXPORT_SYMBOL(filemap_fault);
2311
2312void filemap_map_pages(struct vm_fault *vmf,
2313		pgoff_t start_pgoff, pgoff_t end_pgoff)
2314{
2315	struct radix_tree_iter iter;
2316	void **slot;
2317	struct file *file = vmf->vma->vm_file;
2318	struct address_space *mapping = file->f_mapping;
2319	pgoff_t last_pgoff = start_pgoff;
2320	loff_t size;
2321	struct page *head, *page;
 
2322
2323	rcu_read_lock();
2324	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2325			start_pgoff) {
2326		if (iter.index > end_pgoff)
2327			break;
2328repeat:
2329		page = radix_tree_deref_slot(slot);
2330		if (unlikely(!page))
 
 
 
 
2331			goto next;
2332		if (radix_tree_exception(page)) {
2333			if (radix_tree_deref_retry(page)) {
2334				slot = radix_tree_iter_retry(&iter);
2335				continue;
2336			}
2337			goto next;
2338		}
2339
2340		head = compound_head(page);
2341		if (!page_cache_get_speculative(head))
2342			goto repeat;
2343
2344		/* The page was split under us? */
2345		if (compound_head(page) != head) {
2346			put_page(head);
2347			goto repeat;
2348		}
2349
2350		/* Has the page moved? */
2351		if (unlikely(page != *slot)) {
2352			put_page(head);
2353			goto repeat;
2354		}
2355
2356		if (!PageUptodate(page) ||
2357				PageReadahead(page) ||
2358				PageHWPoison(page))
2359			goto skip;
2360		if (!trylock_page(page))
2361			goto skip;
2362
2363		if (page->mapping != mapping || !PageUptodate(page))
2364			goto unlock;
2365
2366		size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2367		if (page->index >= size >> PAGE_SHIFT)
2368			goto unlock;
2369
2370		if (file->f_ra.mmap_miss > 0)
2371			file->f_ra.mmap_miss--;
2372
2373		vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2374		if (vmf->pte)
2375			vmf->pte += iter.index - last_pgoff;
2376		last_pgoff = iter.index;
2377		if (alloc_set_pte(vmf, NULL, page))
2378			goto unlock;
2379		unlock_page(page);
2380		goto next;
2381unlock:
2382		unlock_page(page);
2383skip:
2384		put_page(page);
2385next:
2386		/* Huge page is mapped? No need to proceed. */
2387		if (pmd_trans_huge(*vmf->pmd))
2388			break;
2389		if (iter.index == end_pgoff)
2390			break;
2391	}
2392	rcu_read_unlock();
2393}
2394EXPORT_SYMBOL(filemap_map_pages);
2395
2396int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2397{
2398	struct page *page = vmf->page;
2399	struct inode *inode = file_inode(vma->vm_file);
2400	int ret = VM_FAULT_LOCKED;
2401
2402	sb_start_pagefault(inode->i_sb);
2403	file_update_time(vma->vm_file);
2404	lock_page(page);
2405	if (page->mapping != inode->i_mapping) {
2406		unlock_page(page);
2407		ret = VM_FAULT_NOPAGE;
2408		goto out;
2409	}
2410	/*
2411	 * We mark the page dirty already here so that when freeze is in
2412	 * progress, we are guaranteed that writeback during freezing will
2413	 * see the dirty page and writeprotect it again.
2414	 */
2415	set_page_dirty(page);
2416	wait_for_stable_page(page);
2417out:
2418	sb_end_pagefault(inode->i_sb);
2419	return ret;
2420}
2421EXPORT_SYMBOL(filemap_page_mkwrite);
2422
2423const struct vm_operations_struct generic_file_vm_ops = {
2424	.fault		= filemap_fault,
2425	.map_pages	= filemap_map_pages,
2426	.page_mkwrite	= filemap_page_mkwrite,
2427};
2428
2429/* This is used for a general mmap of a disk file */
2430
2431int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2432{
2433	struct address_space *mapping = file->f_mapping;
2434
2435	if (!mapping->a_ops->readpage)
2436		return -ENOEXEC;
2437	file_accessed(file);
2438	vma->vm_ops = &generic_file_vm_ops;
2439	return 0;
2440}
2441
2442/*
2443 * This is for filesystems which do not implement ->writepage.
2444 */
2445int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2446{
2447	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2448		return -EINVAL;
2449	return generic_file_mmap(file, vma);
2450}
2451#else
 
 
 
 
2452int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2453{
2454	return -ENOSYS;
2455}
2456int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2457{
2458	return -ENOSYS;
2459}
2460#endif /* CONFIG_MMU */
2461
 
2462EXPORT_SYMBOL(generic_file_mmap);
2463EXPORT_SYMBOL(generic_file_readonly_mmap);
2464
2465static struct page *wait_on_page_read(struct page *page)
2466{
2467	if (!IS_ERR(page)) {
2468		wait_on_page_locked(page);
2469		if (!PageUptodate(page)) {
2470			put_page(page);
2471			page = ERR_PTR(-EIO);
2472		}
2473	}
2474	return page;
2475}
2476
2477static struct page *do_read_cache_page(struct address_space *mapping,
2478				pgoff_t index,
2479				int (*filler)(void *, struct page *),
2480				void *data,
2481				gfp_t gfp)
2482{
2483	struct page *page;
2484	int err;
2485repeat:
2486	page = find_get_page(mapping, index);
2487	if (!page) {
2488		page = __page_cache_alloc(gfp | __GFP_COLD);
2489		if (!page)
2490			return ERR_PTR(-ENOMEM);
2491		err = add_to_page_cache_lru(page, mapping, index, gfp);
2492		if (unlikely(err)) {
2493			put_page(page);
2494			if (err == -EEXIST)
2495				goto repeat;
2496			/* Presumably ENOMEM for radix tree node */
2497			return ERR_PTR(err);
2498		}
2499
2500filler:
2501		err = filler(data, page);
 
 
 
 
2502		if (err < 0) {
2503			put_page(page);
2504			return ERR_PTR(err);
2505		}
2506
2507		page = wait_on_page_read(page);
2508		if (IS_ERR(page))
2509			return page;
2510		goto out;
2511	}
2512	if (PageUptodate(page))
2513		goto out;
2514
2515	/*
2516	 * Page is not up to date and may be locked due one of the following
2517	 * case a: Page is being filled and the page lock is held
2518	 * case b: Read/write error clearing the page uptodate status
2519	 * case c: Truncation in progress (page locked)
2520	 * case d: Reclaim in progress
2521	 *
2522	 * Case a, the page will be up to date when the page is unlocked.
2523	 *    There is no need to serialise on the page lock here as the page
2524	 *    is pinned so the lock gives no additional protection. Even if the
2525	 *    the page is truncated, the data is still valid if PageUptodate as
2526	 *    it's a race vs truncate race.
2527	 * Case b, the page will not be up to date
2528	 * Case c, the page may be truncated but in itself, the data may still
2529	 *    be valid after IO completes as it's a read vs truncate race. The
2530	 *    operation must restart if the page is not uptodate on unlock but
2531	 *    otherwise serialising on page lock to stabilise the mapping gives
2532	 *    no additional guarantees to the caller as the page lock is
2533	 *    released before return.
2534	 * Case d, similar to truncation. If reclaim holds the page lock, it
2535	 *    will be a race with remove_mapping that determines if the mapping
2536	 *    is valid on unlock but otherwise the data is valid and there is
2537	 *    no need to serialise with page lock.
2538	 *
2539	 * As the page lock gives no additional guarantee, we optimistically
2540	 * wait on the page to be unlocked and check if it's up to date and
2541	 * use the page if it is. Otherwise, the page lock is required to
2542	 * distinguish between the different cases. The motivation is that we
2543	 * avoid spurious serialisations and wakeups when multiple processes
2544	 * wait on the same page for IO to complete.
2545	 */
2546	wait_on_page_locked(page);
2547	if (PageUptodate(page))
2548		goto out;
2549
2550	/* Distinguish between all the cases under the safety of the lock */
2551	lock_page(page);
2552
2553	/* Case c or d, restart the operation */
2554	if (!page->mapping) {
2555		unlock_page(page);
2556		put_page(page);
2557		goto repeat;
2558	}
2559
2560	/* Someone else locked and filled the page in a very small window */
2561	if (PageUptodate(page)) {
2562		unlock_page(page);
2563		goto out;
2564	}
2565	goto filler;
2566
2567out:
2568	mark_page_accessed(page);
2569	return page;
2570}
2571
2572/**
2573 * read_cache_page - read into page cache, fill it if needed
2574 * @mapping:	the page's address_space
2575 * @index:	the page index
2576 * @filler:	function to perform the read
2577 * @data:	first arg to filler(data, page) function, often left as NULL
2578 *
2579 * Read into the page cache. If a page already exists, and PageUptodate() is
2580 * not set, try to fill the page and wait for it to become unlocked.
2581 *
2582 * If the page does not get brought uptodate, return -EIO.
 
 
2583 */
2584struct page *read_cache_page(struct address_space *mapping,
2585				pgoff_t index,
2586				int (*filler)(void *, struct page *),
2587				void *data)
2588{
2589	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
 
2590}
2591EXPORT_SYMBOL(read_cache_page);
2592
2593/**
2594 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2595 * @mapping:	the page's address_space
2596 * @index:	the page index
2597 * @gfp:	the page allocator flags to use if allocating
2598 *
2599 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2600 * any new page allocations done using the specified allocation flags.
2601 *
2602 * If the page does not get brought uptodate, return -EIO.
 
 
2603 */
2604struct page *read_cache_page_gfp(struct address_space *mapping,
2605				pgoff_t index,
2606				gfp_t gfp)
2607{
2608	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
 
 
2609
2610	return do_read_cache_page(mapping, index, filler, NULL, gfp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2611}
2612EXPORT_SYMBOL(read_cache_page_gfp);
2613
2614/*
2615 * Performs necessary checks before doing a write
2616 *
2617 * Can adjust writing position or amount of bytes to write.
2618 * Returns appropriate error code that caller should return or
2619 * zero in case that write should be allowed.
2620 */
2621inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2622{
2623	struct file *file = iocb->ki_filp;
2624	struct inode *inode = file->f_mapping->host;
2625	unsigned long limit = rlimit(RLIMIT_FSIZE);
2626	loff_t pos;
 
 
 
2627
2628	if (!iov_iter_count(from))
2629		return 0;
2630
2631	/* FIXME: this is for backwards compatibility with 2.4 */
2632	if (iocb->ki_flags & IOCB_APPEND)
2633		iocb->ki_pos = i_size_read(inode);
2634
2635	pos = iocb->ki_pos;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2636
2637	if (limit != RLIM_INFINITY) {
2638		if (iocb->ki_pos >= limit) {
2639			send_sig(SIGXFSZ, current, 0);
2640			return -EFBIG;
2641		}
2642		iov_iter_truncate(from, limit - (unsigned long)pos);
2643	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2644
2645	/*
2646	 * LFS rule
 
 
 
 
2647	 */
2648	if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2649				!(file->f_flags & O_LARGEFILE))) {
2650		if (pos >= MAX_NON_LFS)
2651			return -EFBIG;
2652		iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
 
2653	}
2654
 
 
 
 
 
 
2655	/*
2656	 * Are we about to exceed the fs block limit ?
2657	 *
2658	 * If we have written data it becomes a short write.  If we have
2659	 * exceeded without writing data we send a signal and return EFBIG.
2660	 * Linus frestrict idea will clean these up nicely..
2661	 */
2662	if (unlikely(pos >= inode->i_sb->s_maxbytes))
2663		return -EFBIG;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2664
2665	iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2666	return iov_iter_count(from);
2667}
2668EXPORT_SYMBOL(generic_write_checks);
2669
2670int pagecache_write_begin(struct file *file, struct address_space *mapping,
2671				loff_t pos, unsigned len, unsigned flags,
2672				struct page **pagep, void **fsdata)
2673{
2674	const struct address_space_operations *aops = mapping->a_ops;
2675
2676	return aops->write_begin(file, mapping, pos, len, flags,
2677							pagep, fsdata);
2678}
2679EXPORT_SYMBOL(pagecache_write_begin);
2680
2681int pagecache_write_end(struct file *file, struct address_space *mapping,
2682				loff_t pos, unsigned len, unsigned copied,
2683				struct page *page, void *fsdata)
2684{
2685	const struct address_space_operations *aops = mapping->a_ops;
2686
2687	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2688}
2689EXPORT_SYMBOL(pagecache_write_end);
2690
2691ssize_t
2692generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2693{
2694	struct file	*file = iocb->ki_filp;
2695	struct address_space *mapping = file->f_mapping;
2696	struct inode	*inode = mapping->host;
2697	loff_t		pos = iocb->ki_pos;
2698	ssize_t		written;
2699	size_t		write_len;
2700	pgoff_t		end;
2701	struct iov_iter data;
2702
2703	write_len = iov_iter_count(from);
2704	end = (pos + write_len - 1) >> PAGE_SHIFT;
2705
2706	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2707	if (written)
2708		goto out;
 
 
 
 
 
 
 
 
2709
2710	/*
2711	 * After a write we want buffered reads to be sure to go to disk to get
2712	 * the new data.  We invalidate clean cached page from the region we're
2713	 * about to write.  We do this *before* the write so that we can return
2714	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2715	 */
2716	if (mapping->nrpages) {
2717		written = invalidate_inode_pages2_range(mapping,
2718					pos >> PAGE_SHIFT, end);
2719		/*
2720		 * If a page can not be invalidated, return 0 to fall back
2721		 * to buffered write.
2722		 */
2723		if (written) {
2724			if (written == -EBUSY)
2725				return 0;
2726			goto out;
2727		}
2728	}
2729
2730	data = *from;
2731	written = mapping->a_ops->direct_IO(iocb, &data);
2732
2733	/*
2734	 * Finally, try again to invalidate clean pages which might have been
2735	 * cached by non-direct readahead, or faulted in by get_user_pages()
2736	 * if the source of the write was an mmap'ed region of the file
2737	 * we're writing.  Either one is a pretty crazy thing to do,
2738	 * so we don't support it 100%.  If this invalidation
2739	 * fails, tough, the write still worked...
 
 
 
 
 
2740	 */
2741	if (mapping->nrpages) {
2742		invalidate_inode_pages2_range(mapping,
2743					      pos >> PAGE_SHIFT, end);
2744	}
2745
2746	if (written > 0) {
2747		pos += written;
2748		iov_iter_advance(from, written);
2749		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2750			i_size_write(inode, pos);
2751			mark_inode_dirty(inode);
2752		}
2753		iocb->ki_pos = pos;
2754	}
 
2755out:
2756	return written;
2757}
2758EXPORT_SYMBOL(generic_file_direct_write);
2759
2760/*
2761 * Find or create a page at the given pagecache position. Return the locked
2762 * page. This function is specifically for buffered writes.
2763 */
2764struct page *grab_cache_page_write_begin(struct address_space *mapping,
2765					pgoff_t index, unsigned flags)
2766{
2767	struct page *page;
2768	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2769
2770	if (flags & AOP_FLAG_NOFS)
2771		fgp_flags |= FGP_NOFS;
2772
2773	page = pagecache_get_page(mapping, index, fgp_flags,
2774			mapping_gfp_mask(mapping));
2775	if (page)
2776		wait_for_stable_page(page);
2777
2778	return page;
2779}
2780EXPORT_SYMBOL(grab_cache_page_write_begin);
2781
2782ssize_t generic_perform_write(struct file *file,
2783				struct iov_iter *i, loff_t pos)
2784{
2785	struct address_space *mapping = file->f_mapping;
2786	const struct address_space_operations *a_ops = mapping->a_ops;
2787	long status = 0;
2788	ssize_t written = 0;
2789	unsigned int flags = 0;
2790
2791	/*
2792	 * Copies from kernel address space cannot fail (NFSD is a big user).
2793	 */
2794	if (!iter_is_iovec(i))
2795		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2796
2797	do {
2798		struct page *page;
2799		unsigned long offset;	/* Offset into pagecache page */
2800		unsigned long bytes;	/* Bytes to write to page */
2801		size_t copied;		/* Bytes copied from user */
2802		void *fsdata;
2803
2804		offset = (pos & (PAGE_SIZE - 1));
2805		bytes = min_t(unsigned long, PAGE_SIZE - offset,
2806						iov_iter_count(i));
2807
2808again:
2809		/*
2810		 * Bring in the user page that we will copy from _first_.
2811		 * Otherwise there's a nasty deadlock on copying from the
2812		 * same page as we're writing to, without it being marked
2813		 * up-to-date.
2814		 *
2815		 * Not only is this an optimisation, but it is also required
2816		 * to check that the address is actually valid, when atomic
2817		 * usercopies are used, below.
2818		 */
2819		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2820			status = -EFAULT;
2821			break;
2822		}
2823
2824		if (fatal_signal_pending(current)) {
2825			status = -EINTR;
2826			break;
2827		}
2828
2829		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2830						&page, &fsdata);
2831		if (unlikely(status < 0))
2832			break;
2833
2834		if (mapping_writably_mapped(mapping))
2835			flush_dcache_page(page);
2836
2837		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2838		flush_dcache_page(page);
2839
2840		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2841						page, fsdata);
2842		if (unlikely(status < 0))
2843			break;
2844		copied = status;
2845
2846		cond_resched();
2847
2848		iov_iter_advance(i, copied);
2849		if (unlikely(copied == 0)) {
2850			/*
2851			 * If we were unable to copy any data at all, we must
2852			 * fall back to a single segment length write.
2853			 *
2854			 * If we didn't fallback here, we could livelock
2855			 * because not all segments in the iov can be copied at
2856			 * once without a pagefault.
2857			 */
2858			bytes = min_t(unsigned long, PAGE_SIZE - offset,
2859						iov_iter_single_seg_count(i));
2860			goto again;
2861		}
2862		pos += copied;
2863		written += copied;
2864
2865		balance_dirty_pages_ratelimited(mapping);
2866	} while (iov_iter_count(i));
2867
2868	return written ? written : status;
2869}
2870EXPORT_SYMBOL(generic_perform_write);
2871
2872/**
2873 * __generic_file_write_iter - write data to a file
2874 * @iocb:	IO state structure (file, offset, etc.)
2875 * @from:	iov_iter with data to write
2876 *
2877 * This function does all the work needed for actually writing data to a
2878 * file. It does all basic checks, removes SUID from the file, updates
2879 * modification times and calls proper subroutines depending on whether we
2880 * do direct IO or a standard buffered write.
2881 *
2882 * It expects i_mutex to be grabbed unless we work on a block device or similar
2883 * object which does not need locking at all.
2884 *
2885 * This function does *not* take care of syncing data in case of O_SYNC write.
2886 * A caller has to handle it. This is mainly due to the fact that we want to
2887 * avoid syncing under i_mutex.
 
 
 
 
2888 */
2889ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2890{
2891	struct file *file = iocb->ki_filp;
2892	struct address_space * mapping = file->f_mapping;
2893	struct inode 	*inode = mapping->host;
2894	ssize_t		written = 0;
2895	ssize_t		err;
2896	ssize_t		status;
2897
2898	/* We can write back this queue in page reclaim */
2899	current->backing_dev_info = inode_to_bdi(inode);
2900	err = file_remove_privs(file);
2901	if (err)
2902		goto out;
2903
2904	err = file_update_time(file);
2905	if (err)
2906		goto out;
2907
2908	if (iocb->ki_flags & IOCB_DIRECT) {
2909		loff_t pos, endbyte;
2910
2911		written = generic_file_direct_write(iocb, from);
2912		/*
2913		 * If the write stopped short of completing, fall back to
2914		 * buffered writes.  Some filesystems do this for writes to
2915		 * holes, for example.  For DAX files, a buffered write will
2916		 * not succeed (even if it did, DAX does not handle dirty
2917		 * page-cache pages correctly).
2918		 */
2919		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2920			goto out;
2921
2922		status = generic_perform_write(file, from, pos = iocb->ki_pos);
2923		/*
2924		 * If generic_perform_write() returned a synchronous error
2925		 * then we want to return the number of bytes which were
2926		 * direct-written, or the error code if that was zero.  Note
2927		 * that this differs from normal direct-io semantics, which
2928		 * will return -EFOO even if some bytes were written.
2929		 */
2930		if (unlikely(status < 0)) {
2931			err = status;
2932			goto out;
2933		}
2934		/*
2935		 * We need to ensure that the page cache pages are written to
2936		 * disk and invalidated to preserve the expected O_DIRECT
2937		 * semantics.
2938		 */
2939		endbyte = pos + status - 1;
2940		err = filemap_write_and_wait_range(mapping, pos, endbyte);
2941		if (err == 0) {
2942			iocb->ki_pos = endbyte + 1;
2943			written += status;
2944			invalidate_mapping_pages(mapping,
2945						 pos >> PAGE_SHIFT,
2946						 endbyte >> PAGE_SHIFT);
2947		} else {
2948			/*
2949			 * We don't know how much we wrote, so just return
2950			 * the number of bytes which were direct-written
2951			 */
2952		}
2953	} else {
2954		written = generic_perform_write(file, from, iocb->ki_pos);
2955		if (likely(written > 0))
2956			iocb->ki_pos += written;
2957	}
2958out:
2959	current->backing_dev_info = NULL;
2960	return written ? written : err;
2961}
2962EXPORT_SYMBOL(__generic_file_write_iter);
2963
2964/**
2965 * generic_file_write_iter - write data to a file
2966 * @iocb:	IO state structure
2967 * @from:	iov_iter with data to write
2968 *
2969 * This is a wrapper around __generic_file_write_iter() to be used by most
2970 * filesystems. It takes care of syncing the file in case of O_SYNC file
2971 * and acquires i_mutex as needed.
 
 
 
 
2972 */
2973ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2974{
2975	struct file *file = iocb->ki_filp;
2976	struct inode *inode = file->f_mapping->host;
2977	ssize_t ret;
2978
2979	inode_lock(inode);
2980	ret = generic_write_checks(iocb, from);
2981	if (ret > 0)
2982		ret = __generic_file_write_iter(iocb, from);
2983	inode_unlock(inode);
2984
2985	if (ret > 0)
2986		ret = generic_write_sync(iocb, ret);
2987	return ret;
2988}
2989EXPORT_SYMBOL(generic_file_write_iter);
2990
2991/**
2992 * try_to_release_page() - release old fs-specific metadata on a page
2993 *
2994 * @page: the page which the kernel is trying to free
2995 * @gfp_mask: memory allocation flags (and I/O mode)
2996 *
2997 * The address_space is to try to release any data against the page
2998 * (presumably at page->private).  If the release was successful, return `1'.
2999 * Otherwise return zero.
3000 *
3001 * This may also be called if PG_fscache is set on a page, indicating that the
3002 * page is known to the local caching routines.
3003 *
3004 * The @gfp_mask argument specifies whether I/O may be performed to release
3005 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3006 *
 
3007 */
3008int try_to_release_page(struct page *page, gfp_t gfp_mask)
3009{
3010	struct address_space * const mapping = page->mapping;
3011
3012	BUG_ON(!PageLocked(page));
3013	if (PageWriteback(page))
3014		return 0;
3015
3016	if (mapping && mapping->a_ops->releasepage)
3017		return mapping->a_ops->releasepage(page, gfp_mask);
3018	return try_to_free_buffers(page);
3019}
3020
3021EXPORT_SYMBOL(try_to_release_page);