Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Generic ring buffer
   4 *
   5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
   6 */
   7#include <linux/trace_events.h>
   8#include <linux/ring_buffer.h>
   9#include <linux/trace_clock.h>
  10#include <linux/sched/clock.h>
  11#include <linux/trace_seq.h>
  12#include <linux/spinlock.h>
  13#include <linux/irq_work.h>
 
  14#include <linux/uaccess.h>
  15#include <linux/hardirq.h>
  16#include <linux/kthread.h>	/* for self test */
  17#include <linux/module.h>
  18#include <linux/percpu.h>
  19#include <linux/mutex.h>
  20#include <linux/delay.h>
  21#include <linux/slab.h>
  22#include <linux/init.h>
  23#include <linux/hash.h>
  24#include <linux/list.h>
  25#include <linux/cpu.h>
  26#include <linux/oom.h>
  27
  28#include <asm/local.h>
  29
  30static void update_pages_handler(struct work_struct *work);
  31
  32/*
  33 * The ring buffer header is special. We must manually up keep it.
  34 */
  35int ring_buffer_print_entry_header(struct trace_seq *s)
  36{
  37	trace_seq_puts(s, "# compressed entry header\n");
  38	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
  39	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
  40	trace_seq_puts(s, "\tarray       :   32 bits\n");
  41	trace_seq_putc(s, '\n');
  42	trace_seq_printf(s, "\tpadding     : type == %d\n",
  43			 RINGBUF_TYPE_PADDING);
  44	trace_seq_printf(s, "\ttime_extend : type == %d\n",
  45			 RINGBUF_TYPE_TIME_EXTEND);
  46	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
  47			 RINGBUF_TYPE_TIME_STAMP);
  48	trace_seq_printf(s, "\tdata max type_len  == %d\n",
  49			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
  50
  51	return !trace_seq_has_overflowed(s);
  52}
  53
  54/*
  55 * The ring buffer is made up of a list of pages. A separate list of pages is
  56 * allocated for each CPU. A writer may only write to a buffer that is
  57 * associated with the CPU it is currently executing on.  A reader may read
  58 * from any per cpu buffer.
  59 *
  60 * The reader is special. For each per cpu buffer, the reader has its own
  61 * reader page. When a reader has read the entire reader page, this reader
  62 * page is swapped with another page in the ring buffer.
  63 *
  64 * Now, as long as the writer is off the reader page, the reader can do what
  65 * ever it wants with that page. The writer will never write to that page
  66 * again (as long as it is out of the ring buffer).
  67 *
  68 * Here's some silly ASCII art.
  69 *
  70 *   +------+
  71 *   |reader|          RING BUFFER
  72 *   |page  |
  73 *   +------+        +---+   +---+   +---+
  74 *                   |   |-->|   |-->|   |
  75 *                   +---+   +---+   +---+
  76 *                     ^               |
  77 *                     |               |
  78 *                     +---------------+
  79 *
  80 *
  81 *   +------+
  82 *   |reader|          RING BUFFER
  83 *   |page  |------------------v
  84 *   +------+        +---+   +---+   +---+
  85 *                   |   |-->|   |-->|   |
  86 *                   +---+   +---+   +---+
  87 *                     ^               |
  88 *                     |               |
  89 *                     +---------------+
  90 *
  91 *
  92 *   +------+
  93 *   |reader|          RING BUFFER
  94 *   |page  |------------------v
  95 *   +------+        +---+   +---+   +---+
  96 *      ^            |   |-->|   |-->|   |
  97 *      |            +---+   +---+   +---+
  98 *      |                              |
  99 *      |                              |
 100 *      +------------------------------+
 101 *
 102 *
 103 *   +------+
 104 *   |buffer|          RING BUFFER
 105 *   |page  |------------------v
 106 *   +------+        +---+   +---+   +---+
 107 *      ^            |   |   |   |-->|   |
 108 *      |   New      +---+   +---+   +---+
 109 *      |  Reader------^               |
 110 *      |   page                       |
 111 *      +------------------------------+
 112 *
 113 *
 114 * After we make this swap, the reader can hand this page off to the splice
 115 * code and be done with it. It can even allocate a new page if it needs to
 116 * and swap that into the ring buffer.
 117 *
 118 * We will be using cmpxchg soon to make all this lockless.
 119 *
 120 */
 121
 122/* Used for individual buffers (after the counter) */
 123#define RB_BUFFER_OFF		(1 << 20)
 124
 125#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
 126
 127#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
 128#define RB_ALIGNMENT		4U
 129#define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 130#define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
 131#define RB_ALIGN_DATA		__aligned(RB_ALIGNMENT)
 132
 133/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
 134#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
 135
 136enum {
 137	RB_LEN_TIME_EXTEND = 8,
 138	RB_LEN_TIME_STAMP =  8,
 139};
 140
 141#define skip_time_extend(event) \
 142	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
 143
 144#define extended_time(event) \
 145	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
 146
 147static inline int rb_null_event(struct ring_buffer_event *event)
 148{
 149	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
 150}
 151
 152static void rb_event_set_padding(struct ring_buffer_event *event)
 153{
 154	/* padding has a NULL time_delta */
 155	event->type_len = RINGBUF_TYPE_PADDING;
 156	event->time_delta = 0;
 157}
 158
 159static unsigned
 160rb_event_data_length(struct ring_buffer_event *event)
 161{
 162	unsigned length;
 163
 164	if (event->type_len)
 165		length = event->type_len * RB_ALIGNMENT;
 166	else
 167		length = event->array[0];
 168	return length + RB_EVNT_HDR_SIZE;
 169}
 170
 171/*
 172 * Return the length of the given event. Will return
 173 * the length of the time extend if the event is a
 174 * time extend.
 175 */
 176static inline unsigned
 177rb_event_length(struct ring_buffer_event *event)
 178{
 179	switch (event->type_len) {
 180	case RINGBUF_TYPE_PADDING:
 181		if (rb_null_event(event))
 182			/* undefined */
 183			return -1;
 184		return  event->array[0] + RB_EVNT_HDR_SIZE;
 185
 186	case RINGBUF_TYPE_TIME_EXTEND:
 187		return RB_LEN_TIME_EXTEND;
 188
 189	case RINGBUF_TYPE_TIME_STAMP:
 190		return RB_LEN_TIME_STAMP;
 191
 192	case RINGBUF_TYPE_DATA:
 193		return rb_event_data_length(event);
 194	default:
 195		BUG();
 196	}
 197	/* not hit */
 198	return 0;
 199}
 200
 201/*
 202 * Return total length of time extend and data,
 203 *   or just the event length for all other events.
 204 */
 205static inline unsigned
 206rb_event_ts_length(struct ring_buffer_event *event)
 207{
 208	unsigned len = 0;
 209
 210	if (extended_time(event)) {
 211		/* time extends include the data event after it */
 212		len = RB_LEN_TIME_EXTEND;
 213		event = skip_time_extend(event);
 214	}
 215	return len + rb_event_length(event);
 216}
 217
 218/**
 219 * ring_buffer_event_length - return the length of the event
 220 * @event: the event to get the length of
 221 *
 222 * Returns the size of the data load of a data event.
 223 * If the event is something other than a data event, it
 224 * returns the size of the event itself. With the exception
 225 * of a TIME EXTEND, where it still returns the size of the
 226 * data load of the data event after it.
 227 */
 228unsigned ring_buffer_event_length(struct ring_buffer_event *event)
 229{
 230	unsigned length;
 231
 232	if (extended_time(event))
 233		event = skip_time_extend(event);
 234
 235	length = rb_event_length(event);
 236	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 237		return length;
 238	length -= RB_EVNT_HDR_SIZE;
 239	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
 240                length -= sizeof(event->array[0]);
 241	return length;
 242}
 243EXPORT_SYMBOL_GPL(ring_buffer_event_length);
 244
 245/* inline for ring buffer fast paths */
 246static __always_inline void *
 247rb_event_data(struct ring_buffer_event *event)
 248{
 249	if (extended_time(event))
 250		event = skip_time_extend(event);
 251	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
 252	/* If length is in len field, then array[0] has the data */
 253	if (event->type_len)
 254		return (void *)&event->array[0];
 255	/* Otherwise length is in array[0] and array[1] has the data */
 256	return (void *)&event->array[1];
 257}
 258
 259/**
 260 * ring_buffer_event_data - return the data of the event
 261 * @event: the event to get the data from
 262 */
 263void *ring_buffer_event_data(struct ring_buffer_event *event)
 264{
 265	return rb_event_data(event);
 266}
 267EXPORT_SYMBOL_GPL(ring_buffer_event_data);
 268
 269#define for_each_buffer_cpu(buffer, cpu)		\
 270	for_each_cpu(cpu, buffer->cpumask)
 271
 
 
 
 272#define TS_SHIFT	27
 273#define TS_MASK		((1ULL << TS_SHIFT) - 1)
 274#define TS_DELTA_TEST	(~TS_MASK)
 275
 276/**
 277 * ring_buffer_event_time_stamp - return the event's extended timestamp
 278 * @event: the event to get the timestamp of
 279 *
 280 * Returns the extended timestamp associated with a data event.
 281 * An extended time_stamp is a 64-bit timestamp represented
 282 * internally in a special way that makes the best use of space
 283 * contained within a ring buffer event.  This function decodes
 284 * it and maps it to a straight u64 value.
 285 */
 286u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
 287{
 288	u64 ts;
 289
 290	ts = event->array[0];
 291	ts <<= TS_SHIFT;
 292	ts += event->time_delta;
 293
 294	return ts;
 295}
 296
 297/* Flag when events were overwritten */
 298#define RB_MISSED_EVENTS	(1 << 31)
 299/* Missed count stored at end */
 300#define RB_MISSED_STORED	(1 << 30)
 301
 302#define RB_MISSED_FLAGS		(RB_MISSED_EVENTS|RB_MISSED_STORED)
 303
 304struct buffer_data_page {
 305	u64		 time_stamp;	/* page time stamp */
 306	local_t		 commit;	/* write committed index */
 307	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
 308};
 309
 310/*
 311 * Note, the buffer_page list must be first. The buffer pages
 312 * are allocated in cache lines, which means that each buffer
 313 * page will be at the beginning of a cache line, and thus
 314 * the least significant bits will be zero. We use this to
 315 * add flags in the list struct pointers, to make the ring buffer
 316 * lockless.
 317 */
 318struct buffer_page {
 319	struct list_head list;		/* list of buffer pages */
 320	local_t		 write;		/* index for next write */
 321	unsigned	 read;		/* index for next read */
 322	local_t		 entries;	/* entries on this page */
 323	unsigned long	 real_end;	/* real end of data */
 324	struct buffer_data_page *page;	/* Actual data page */
 325};
 326
 327/*
 328 * The buffer page counters, write and entries, must be reset
 329 * atomically when crossing page boundaries. To synchronize this
 330 * update, two counters are inserted into the number. One is
 331 * the actual counter for the write position or count on the page.
 332 *
 333 * The other is a counter of updaters. Before an update happens
 334 * the update partition of the counter is incremented. This will
 335 * allow the updater to update the counter atomically.
 336 *
 337 * The counter is 20 bits, and the state data is 12.
 338 */
 339#define RB_WRITE_MASK		0xfffff
 340#define RB_WRITE_INTCNT		(1 << 20)
 341
 342static void rb_init_page(struct buffer_data_page *bpage)
 343{
 344	local_set(&bpage->commit, 0);
 345}
 346
 347/*
 348 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
 349 * this issue out.
 350 */
 351static void free_buffer_page(struct buffer_page *bpage)
 352{
 353	free_page((unsigned long)bpage->page);
 354	kfree(bpage);
 355}
 356
 357/*
 358 * We need to fit the time_stamp delta into 27 bits.
 359 */
 360static inline int test_time_stamp(u64 delta)
 361{
 362	if (delta & TS_DELTA_TEST)
 363		return 1;
 364	return 0;
 365}
 366
 367#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
 368
 369/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
 370#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
 371
 372int ring_buffer_print_page_header(struct trace_seq *s)
 373{
 374	struct buffer_data_page field;
 375
 376	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
 377			 "offset:0;\tsize:%u;\tsigned:%u;\n",
 378			 (unsigned int)sizeof(field.time_stamp),
 379			 (unsigned int)is_signed_type(u64));
 380
 381	trace_seq_printf(s, "\tfield: local_t commit;\t"
 382			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
 383			 (unsigned int)offsetof(typeof(field), commit),
 384			 (unsigned int)sizeof(field.commit),
 385			 (unsigned int)is_signed_type(long));
 386
 387	trace_seq_printf(s, "\tfield: int overwrite;\t"
 388			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
 389			 (unsigned int)offsetof(typeof(field), commit),
 390			 1,
 391			 (unsigned int)is_signed_type(long));
 392
 393	trace_seq_printf(s, "\tfield: char data;\t"
 394			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
 395			 (unsigned int)offsetof(typeof(field), data),
 396			 (unsigned int)BUF_PAGE_SIZE,
 397			 (unsigned int)is_signed_type(char));
 398
 399	return !trace_seq_has_overflowed(s);
 400}
 401
 402struct rb_irq_work {
 403	struct irq_work			work;
 404	wait_queue_head_t		waiters;
 405	wait_queue_head_t		full_waiters;
 406	bool				waiters_pending;
 407	bool				full_waiters_pending;
 408	bool				wakeup_full;
 409};
 410
 411/*
 412 * Structure to hold event state and handle nested events.
 413 */
 414struct rb_event_info {
 415	u64			ts;
 416	u64			delta;
 
 
 417	unsigned long		length;
 418	struct buffer_page	*tail_page;
 419	int			add_timestamp;
 420};
 421
 422/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 423 * Used for which event context the event is in.
 424 *  NMI     = 0
 425 *  IRQ     = 1
 426 *  SOFTIRQ = 2
 427 *  NORMAL  = 3
 428 *
 429 * See trace_recursive_lock() comment below for more details.
 430 */
 431enum {
 432	RB_CTX_NMI,
 433	RB_CTX_IRQ,
 434	RB_CTX_SOFTIRQ,
 435	RB_CTX_NORMAL,
 436	RB_CTX_MAX
 437};
 438
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 439/*
 440 * head_page == tail_page && head == tail then buffer is empty.
 441 */
 442struct ring_buffer_per_cpu {
 443	int				cpu;
 444	atomic_t			record_disabled;
 445	struct ring_buffer		*buffer;
 
 446	raw_spinlock_t			reader_lock;	/* serialize readers */
 447	arch_spinlock_t			lock;
 448	struct lock_class_key		lock_key;
 449	struct buffer_data_page		*free_page;
 450	unsigned long			nr_pages;
 451	unsigned int			current_context;
 452	struct list_head		*pages;
 453	struct buffer_page		*head_page;	/* read from head */
 454	struct buffer_page		*tail_page;	/* write to tail */
 455	struct buffer_page		*commit_page;	/* committed pages */
 456	struct buffer_page		*reader_page;
 457	unsigned long			lost_events;
 458	unsigned long			last_overrun;
 459	unsigned long			nest;
 460	local_t				entries_bytes;
 461	local_t				entries;
 462	local_t				overrun;
 463	local_t				commit_overrun;
 464	local_t				dropped_events;
 465	local_t				committing;
 466	local_t				commits;
 467	local_t				pages_touched;
 468	local_t				pages_read;
 469	long				last_pages_touch;
 470	size_t				shortest_full;
 471	unsigned long			read;
 472	unsigned long			read_bytes;
 473	u64				write_stamp;
 
 474	u64				read_stamp;
 475	/* ring buffer pages to update, > 0 to add, < 0 to remove */
 476	long				nr_pages_to_update;
 477	struct list_head		new_pages; /* new pages to add */
 478	struct work_struct		update_pages_work;
 479	struct completion		update_done;
 480
 481	struct rb_irq_work		irq_work;
 482};
 483
 484struct ring_buffer {
 485	unsigned			flags;
 486	int				cpus;
 487	atomic_t			record_disabled;
 488	atomic_t			resize_disabled;
 489	cpumask_var_t			cpumask;
 490
 491	struct lock_class_key		*reader_lock_key;
 492
 493	struct mutex			mutex;
 494
 495	struct ring_buffer_per_cpu	**buffers;
 496
 497	struct hlist_node		node;
 498	u64				(*clock)(void);
 499
 500	struct rb_irq_work		irq_work;
 501	bool				time_stamp_abs;
 502};
 503
 504struct ring_buffer_iter {
 505	struct ring_buffer_per_cpu	*cpu_buffer;
 506	unsigned long			head;
 
 507	struct buffer_page		*head_page;
 508	struct buffer_page		*cache_reader_page;
 509	unsigned long			cache_read;
 510	u64				read_stamp;
 
 
 
 511};
 512
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 513/**
 514 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
 515 * @buffer: The ring_buffer to get the number of pages from
 516 * @cpu: The cpu of the ring_buffer to get the number of pages from
 517 *
 518 * Returns the number of pages used by a per_cpu buffer of the ring buffer.
 519 */
 520size_t ring_buffer_nr_pages(struct ring_buffer *buffer, int cpu)
 521{
 522	return buffer->buffers[cpu]->nr_pages;
 523}
 524
 525/**
 526 * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer
 527 * @buffer: The ring_buffer to get the number of pages from
 528 * @cpu: The cpu of the ring_buffer to get the number of pages from
 529 *
 530 * Returns the number of pages that have content in the ring buffer.
 531 */
 532size_t ring_buffer_nr_dirty_pages(struct ring_buffer *buffer, int cpu)
 533{
 534	size_t read;
 535	size_t cnt;
 536
 537	read = local_read(&buffer->buffers[cpu]->pages_read);
 538	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
 539	/* The reader can read an empty page, but not more than that */
 540	if (cnt < read) {
 541		WARN_ON_ONCE(read > cnt + 1);
 542		return 0;
 543	}
 544
 545	return cnt - read;
 546}
 547
 548/*
 549 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
 550 *
 551 * Schedules a delayed work to wake up any task that is blocked on the
 552 * ring buffer waiters queue.
 553 */
 554static void rb_wake_up_waiters(struct irq_work *work)
 555{
 556	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
 557
 558	wake_up_all(&rbwork->waiters);
 559	if (rbwork->wakeup_full) {
 560		rbwork->wakeup_full = false;
 561		wake_up_all(&rbwork->full_waiters);
 562	}
 563}
 564
 565/**
 566 * ring_buffer_wait - wait for input to the ring buffer
 567 * @buffer: buffer to wait on
 568 * @cpu: the cpu buffer to wait on
 569 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
 570 *
 571 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 572 * as data is added to any of the @buffer's cpu buffers. Otherwise
 573 * it will wait for data to be added to a specific cpu buffer.
 574 */
 575int ring_buffer_wait(struct ring_buffer *buffer, int cpu, int full)
 576{
 577	struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
 578	DEFINE_WAIT(wait);
 579	struct rb_irq_work *work;
 580	int ret = 0;
 581
 582	/*
 583	 * Depending on what the caller is waiting for, either any
 584	 * data in any cpu buffer, or a specific buffer, put the
 585	 * caller on the appropriate wait queue.
 586	 */
 587	if (cpu == RING_BUFFER_ALL_CPUS) {
 588		work = &buffer->irq_work;
 589		/* Full only makes sense on per cpu reads */
 590		full = 0;
 591	} else {
 592		if (!cpumask_test_cpu(cpu, buffer->cpumask))
 593			return -ENODEV;
 594		cpu_buffer = buffer->buffers[cpu];
 595		work = &cpu_buffer->irq_work;
 596	}
 597
 598
 599	while (true) {
 600		if (full)
 601			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
 602		else
 603			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
 604
 605		/*
 606		 * The events can happen in critical sections where
 607		 * checking a work queue can cause deadlocks.
 608		 * After adding a task to the queue, this flag is set
 609		 * only to notify events to try to wake up the queue
 610		 * using irq_work.
 611		 *
 612		 * We don't clear it even if the buffer is no longer
 613		 * empty. The flag only causes the next event to run
 614		 * irq_work to do the work queue wake up. The worse
 615		 * that can happen if we race with !trace_empty() is that
 616		 * an event will cause an irq_work to try to wake up
 617		 * an empty queue.
 618		 *
 619		 * There's no reason to protect this flag either, as
 620		 * the work queue and irq_work logic will do the necessary
 621		 * synchronization for the wake ups. The only thing
 622		 * that is necessary is that the wake up happens after
 623		 * a task has been queued. It's OK for spurious wake ups.
 624		 */
 625		if (full)
 626			work->full_waiters_pending = true;
 627		else
 628			work->waiters_pending = true;
 629
 630		if (signal_pending(current)) {
 631			ret = -EINTR;
 632			break;
 633		}
 634
 635		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
 636			break;
 637
 638		if (cpu != RING_BUFFER_ALL_CPUS &&
 639		    !ring_buffer_empty_cpu(buffer, cpu)) {
 640			unsigned long flags;
 641			bool pagebusy;
 642			size_t nr_pages;
 643			size_t dirty;
 644
 645			if (!full)
 646				break;
 647
 648			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
 649			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
 650			nr_pages = cpu_buffer->nr_pages;
 651			dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
 652			if (!cpu_buffer->shortest_full ||
 653			    cpu_buffer->shortest_full < full)
 654				cpu_buffer->shortest_full = full;
 655			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
 656			if (!pagebusy &&
 657			    (!nr_pages || (dirty * 100) > full * nr_pages))
 658				break;
 659		}
 660
 661		schedule();
 662	}
 663
 664	if (full)
 665		finish_wait(&work->full_waiters, &wait);
 666	else
 667		finish_wait(&work->waiters, &wait);
 668
 669	return ret;
 670}
 671
 672/**
 673 * ring_buffer_poll_wait - poll on buffer input
 674 * @buffer: buffer to wait on
 675 * @cpu: the cpu buffer to wait on
 676 * @filp: the file descriptor
 677 * @poll_table: The poll descriptor
 678 *
 679 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 680 * as data is added to any of the @buffer's cpu buffers. Otherwise
 681 * it will wait for data to be added to a specific cpu buffer.
 682 *
 683 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
 684 * zero otherwise.
 685 */
 686__poll_t ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
 687			  struct file *filp, poll_table *poll_table)
 688{
 689	struct ring_buffer_per_cpu *cpu_buffer;
 690	struct rb_irq_work *work;
 691
 692	if (cpu == RING_BUFFER_ALL_CPUS)
 693		work = &buffer->irq_work;
 694	else {
 695		if (!cpumask_test_cpu(cpu, buffer->cpumask))
 696			return -EINVAL;
 697
 698		cpu_buffer = buffer->buffers[cpu];
 699		work = &cpu_buffer->irq_work;
 700	}
 701
 702	poll_wait(filp, &work->waiters, poll_table);
 703	work->waiters_pending = true;
 704	/*
 705	 * There's a tight race between setting the waiters_pending and
 706	 * checking if the ring buffer is empty.  Once the waiters_pending bit
 707	 * is set, the next event will wake the task up, but we can get stuck
 708	 * if there's only a single event in.
 709	 *
 710	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
 711	 * but adding a memory barrier to all events will cause too much of a
 712	 * performance hit in the fast path.  We only need a memory barrier when
 713	 * the buffer goes from empty to having content.  But as this race is
 714	 * extremely small, and it's not a problem if another event comes in, we
 715	 * will fix it later.
 716	 */
 717	smp_mb();
 718
 719	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
 720	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
 721		return EPOLLIN | EPOLLRDNORM;
 722	return 0;
 723}
 724
 725/* buffer may be either ring_buffer or ring_buffer_per_cpu */
 726#define RB_WARN_ON(b, cond)						\
 727	({								\
 728		int _____ret = unlikely(cond);				\
 729		if (_____ret) {						\
 730			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
 731				struct ring_buffer_per_cpu *__b =	\
 732					(void *)b;			\
 733				atomic_inc(&__b->buffer->record_disabled); \
 734			} else						\
 735				atomic_inc(&b->record_disabled);	\
 736			WARN_ON(1);					\
 737		}							\
 738		_____ret;						\
 739	})
 740
 741/* Up this if you want to test the TIME_EXTENTS and normalization */
 742#define DEBUG_SHIFT 0
 743
 744static inline u64 rb_time_stamp(struct ring_buffer *buffer)
 745{
 
 
 
 
 
 
 
 
 746	/* shift to debug/test normalization and TIME_EXTENTS */
 747	return buffer->clock() << DEBUG_SHIFT;
 748}
 749
 750u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
 751{
 752	u64 time;
 753
 754	preempt_disable_notrace();
 755	time = rb_time_stamp(buffer);
 756	preempt_enable_notrace();
 757
 758	return time;
 759}
 760EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
 761
 762void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
 763				      int cpu, u64 *ts)
 764{
 765	/* Just stupid testing the normalize function and deltas */
 766	*ts >>= DEBUG_SHIFT;
 767}
 768EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
 769
 770/*
 771 * Making the ring buffer lockless makes things tricky.
 772 * Although writes only happen on the CPU that they are on,
 773 * and they only need to worry about interrupts. Reads can
 774 * happen on any CPU.
 775 *
 776 * The reader page is always off the ring buffer, but when the
 777 * reader finishes with a page, it needs to swap its page with
 778 * a new one from the buffer. The reader needs to take from
 779 * the head (writes go to the tail). But if a writer is in overwrite
 780 * mode and wraps, it must push the head page forward.
 781 *
 782 * Here lies the problem.
 783 *
 784 * The reader must be careful to replace only the head page, and
 785 * not another one. As described at the top of the file in the
 786 * ASCII art, the reader sets its old page to point to the next
 787 * page after head. It then sets the page after head to point to
 788 * the old reader page. But if the writer moves the head page
 789 * during this operation, the reader could end up with the tail.
 790 *
 791 * We use cmpxchg to help prevent this race. We also do something
 792 * special with the page before head. We set the LSB to 1.
 793 *
 794 * When the writer must push the page forward, it will clear the
 795 * bit that points to the head page, move the head, and then set
 796 * the bit that points to the new head page.
 797 *
 798 * We also don't want an interrupt coming in and moving the head
 799 * page on another writer. Thus we use the second LSB to catch
 800 * that too. Thus:
 801 *
 802 * head->list->prev->next        bit 1          bit 0
 803 *                              -------        -------
 804 * Normal page                     0              0
 805 * Points to head page             0              1
 806 * New head page                   1              0
 807 *
 808 * Note we can not trust the prev pointer of the head page, because:
 809 *
 810 * +----+       +-----+        +-----+
 811 * |    |------>|  T  |---X--->|  N  |
 812 * |    |<------|     |        |     |
 813 * +----+       +-----+        +-----+
 814 *   ^                           ^ |
 815 *   |          +-----+          | |
 816 *   +----------|  R  |----------+ |
 817 *              |     |<-----------+
 818 *              +-----+
 819 *
 820 * Key:  ---X-->  HEAD flag set in pointer
 821 *         T      Tail page
 822 *         R      Reader page
 823 *         N      Next page
 824 *
 825 * (see __rb_reserve_next() to see where this happens)
 826 *
 827 *  What the above shows is that the reader just swapped out
 828 *  the reader page with a page in the buffer, but before it
 829 *  could make the new header point back to the new page added
 830 *  it was preempted by a writer. The writer moved forward onto
 831 *  the new page added by the reader and is about to move forward
 832 *  again.
 833 *
 834 *  You can see, it is legitimate for the previous pointer of
 835 *  the head (or any page) not to point back to itself. But only
 836 *  temporarily.
 837 */
 838
 839#define RB_PAGE_NORMAL		0UL
 840#define RB_PAGE_HEAD		1UL
 841#define RB_PAGE_UPDATE		2UL
 842
 843
 844#define RB_FLAG_MASK		3UL
 845
 846/* PAGE_MOVED is not part of the mask */
 847#define RB_PAGE_MOVED		4UL
 848
 849/*
 850 * rb_list_head - remove any bit
 851 */
 852static struct list_head *rb_list_head(struct list_head *list)
 853{
 854	unsigned long val = (unsigned long)list;
 855
 856	return (struct list_head *)(val & ~RB_FLAG_MASK);
 857}
 858
 859/*
 860 * rb_is_head_page - test if the given page is the head page
 861 *
 862 * Because the reader may move the head_page pointer, we can
 863 * not trust what the head page is (it may be pointing to
 864 * the reader page). But if the next page is a header page,
 865 * its flags will be non zero.
 866 */
 867static inline int
 868rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
 869		struct buffer_page *page, struct list_head *list)
 870{
 871	unsigned long val;
 872
 873	val = (unsigned long)list->next;
 874
 875	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
 876		return RB_PAGE_MOVED;
 877
 878	return val & RB_FLAG_MASK;
 879}
 880
 881/*
 882 * rb_is_reader_page
 883 *
 884 * The unique thing about the reader page, is that, if the
 885 * writer is ever on it, the previous pointer never points
 886 * back to the reader page.
 887 */
 888static bool rb_is_reader_page(struct buffer_page *page)
 889{
 890	struct list_head *list = page->list.prev;
 891
 892	return rb_list_head(list->next) != &page->list;
 893}
 894
 895/*
 896 * rb_set_list_to_head - set a list_head to be pointing to head.
 897 */
 898static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
 899				struct list_head *list)
 900{
 901	unsigned long *ptr;
 902
 903	ptr = (unsigned long *)&list->next;
 904	*ptr |= RB_PAGE_HEAD;
 905	*ptr &= ~RB_PAGE_UPDATE;
 906}
 907
 908/*
 909 * rb_head_page_activate - sets up head page
 910 */
 911static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
 912{
 913	struct buffer_page *head;
 914
 915	head = cpu_buffer->head_page;
 916	if (!head)
 917		return;
 918
 919	/*
 920	 * Set the previous list pointer to have the HEAD flag.
 921	 */
 922	rb_set_list_to_head(cpu_buffer, head->list.prev);
 923}
 924
 925static void rb_list_head_clear(struct list_head *list)
 926{
 927	unsigned long *ptr = (unsigned long *)&list->next;
 928
 929	*ptr &= ~RB_FLAG_MASK;
 930}
 931
 932/*
 933 * rb_head_page_deactivate - clears head page ptr (for free list)
 934 */
 935static void
 936rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
 937{
 938	struct list_head *hd;
 939
 940	/* Go through the whole list and clear any pointers found. */
 941	rb_list_head_clear(cpu_buffer->pages);
 942
 943	list_for_each(hd, cpu_buffer->pages)
 944		rb_list_head_clear(hd);
 945}
 946
 947static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
 948			    struct buffer_page *head,
 949			    struct buffer_page *prev,
 950			    int old_flag, int new_flag)
 951{
 952	struct list_head *list;
 953	unsigned long val = (unsigned long)&head->list;
 954	unsigned long ret;
 955
 956	list = &prev->list;
 957
 958	val &= ~RB_FLAG_MASK;
 959
 960	ret = cmpxchg((unsigned long *)&list->next,
 961		      val | old_flag, val | new_flag);
 962
 963	/* check if the reader took the page */
 964	if ((ret & ~RB_FLAG_MASK) != val)
 965		return RB_PAGE_MOVED;
 966
 967	return ret & RB_FLAG_MASK;
 968}
 969
 970static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
 971				   struct buffer_page *head,
 972				   struct buffer_page *prev,
 973				   int old_flag)
 974{
 975	return rb_head_page_set(cpu_buffer, head, prev,
 976				old_flag, RB_PAGE_UPDATE);
 977}
 978
 979static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
 980				 struct buffer_page *head,
 981				 struct buffer_page *prev,
 982				 int old_flag)
 983{
 984	return rb_head_page_set(cpu_buffer, head, prev,
 985				old_flag, RB_PAGE_HEAD);
 986}
 987
 988static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
 989				   struct buffer_page *head,
 990				   struct buffer_page *prev,
 991				   int old_flag)
 992{
 993	return rb_head_page_set(cpu_buffer, head, prev,
 994				old_flag, RB_PAGE_NORMAL);
 995}
 996
 997static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
 998			       struct buffer_page **bpage)
 999{
1000	struct list_head *p = rb_list_head((*bpage)->list.next);
1001
1002	*bpage = list_entry(p, struct buffer_page, list);
1003}
1004
1005static struct buffer_page *
1006rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1007{
1008	struct buffer_page *head;
1009	struct buffer_page *page;
1010	struct list_head *list;
1011	int i;
1012
1013	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1014		return NULL;
1015
1016	/* sanity check */
1017	list = cpu_buffer->pages;
1018	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1019		return NULL;
1020
1021	page = head = cpu_buffer->head_page;
1022	/*
1023	 * It is possible that the writer moves the header behind
1024	 * where we started, and we miss in one loop.
1025	 * A second loop should grab the header, but we'll do
1026	 * three loops just because I'm paranoid.
1027	 */
1028	for (i = 0; i < 3; i++) {
1029		do {
1030			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
1031				cpu_buffer->head_page = page;
1032				return page;
1033			}
1034			rb_inc_page(cpu_buffer, &page);
1035		} while (page != head);
1036	}
1037
1038	RB_WARN_ON(cpu_buffer, 1);
1039
1040	return NULL;
1041}
1042
1043static int rb_head_page_replace(struct buffer_page *old,
1044				struct buffer_page *new)
1045{
1046	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1047	unsigned long val;
1048	unsigned long ret;
1049
1050	val = *ptr & ~RB_FLAG_MASK;
1051	val |= RB_PAGE_HEAD;
1052
1053	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1054
1055	return ret == val;
1056}
1057
1058/*
1059 * rb_tail_page_update - move the tail page forward
1060 */
1061static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1062			       struct buffer_page *tail_page,
1063			       struct buffer_page *next_page)
1064{
1065	unsigned long old_entries;
1066	unsigned long old_write;
1067
1068	/*
1069	 * The tail page now needs to be moved forward.
1070	 *
1071	 * We need to reset the tail page, but without messing
1072	 * with possible erasing of data brought in by interrupts
1073	 * that have moved the tail page and are currently on it.
1074	 *
1075	 * We add a counter to the write field to denote this.
1076	 */
1077	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1078	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1079
1080	local_inc(&cpu_buffer->pages_touched);
1081	/*
1082	 * Just make sure we have seen our old_write and synchronize
1083	 * with any interrupts that come in.
1084	 */
1085	barrier();
1086
1087	/*
1088	 * If the tail page is still the same as what we think
1089	 * it is, then it is up to us to update the tail
1090	 * pointer.
1091	 */
1092	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1093		/* Zero the write counter */
1094		unsigned long val = old_write & ~RB_WRITE_MASK;
1095		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1096
1097		/*
1098		 * This will only succeed if an interrupt did
1099		 * not come in and change it. In which case, we
1100		 * do not want to modify it.
1101		 *
1102		 * We add (void) to let the compiler know that we do not care
1103		 * about the return value of these functions. We use the
1104		 * cmpxchg to only update if an interrupt did not already
1105		 * do it for us. If the cmpxchg fails, we don't care.
1106		 */
1107		(void)local_cmpxchg(&next_page->write, old_write, val);
1108		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1109
1110		/*
1111		 * No need to worry about races with clearing out the commit.
1112		 * it only can increment when a commit takes place. But that
1113		 * only happens in the outer most nested commit.
1114		 */
1115		local_set(&next_page->page->commit, 0);
1116
1117		/* Again, either we update tail_page or an interrupt does */
1118		(void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1119	}
1120}
1121
1122static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1123			  struct buffer_page *bpage)
1124{
1125	unsigned long val = (unsigned long)bpage;
1126
1127	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1128		return 1;
1129
1130	return 0;
1131}
1132
1133/**
1134 * rb_check_list - make sure a pointer to a list has the last bits zero
1135 */
1136static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1137			 struct list_head *list)
1138{
1139	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1140		return 1;
1141	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1142		return 1;
1143	return 0;
1144}
1145
1146/**
1147 * rb_check_pages - integrity check of buffer pages
1148 * @cpu_buffer: CPU buffer with pages to test
1149 *
1150 * As a safety measure we check to make sure the data pages have not
1151 * been corrupted.
1152 */
1153static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1154{
1155	struct list_head *head = cpu_buffer->pages;
1156	struct buffer_page *bpage, *tmp;
1157
1158	/* Reset the head page if it exists */
1159	if (cpu_buffer->head_page)
1160		rb_set_head_page(cpu_buffer);
1161
1162	rb_head_page_deactivate(cpu_buffer);
1163
1164	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1165		return -1;
1166	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1167		return -1;
1168
1169	if (rb_check_list(cpu_buffer, head))
1170		return -1;
1171
1172	list_for_each_entry_safe(bpage, tmp, head, list) {
1173		if (RB_WARN_ON(cpu_buffer,
1174			       bpage->list.next->prev != &bpage->list))
1175			return -1;
1176		if (RB_WARN_ON(cpu_buffer,
1177			       bpage->list.prev->next != &bpage->list))
1178			return -1;
1179		if (rb_check_list(cpu_buffer, &bpage->list))
1180			return -1;
1181	}
1182
1183	rb_head_page_activate(cpu_buffer);
1184
1185	return 0;
1186}
1187
1188static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1189{
1190	struct buffer_page *bpage, *tmp;
1191	bool user_thread = current->mm != NULL;
1192	gfp_t mflags;
1193	long i;
1194
1195	/*
1196	 * Check if the available memory is there first.
1197	 * Note, si_mem_available() only gives us a rough estimate of available
1198	 * memory. It may not be accurate. But we don't care, we just want
1199	 * to prevent doing any allocation when it is obvious that it is
1200	 * not going to succeed.
1201	 */
1202	i = si_mem_available();
1203	if (i < nr_pages)
1204		return -ENOMEM;
1205
1206	/*
1207	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1208	 * gracefully without invoking oom-killer and the system is not
1209	 * destabilized.
1210	 */
1211	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1212
1213	/*
1214	 * If a user thread allocates too much, and si_mem_available()
1215	 * reports there's enough memory, even though there is not.
1216	 * Make sure the OOM killer kills this thread. This can happen
1217	 * even with RETRY_MAYFAIL because another task may be doing
1218	 * an allocation after this task has taken all memory.
1219	 * This is the task the OOM killer needs to take out during this
1220	 * loop, even if it was triggered by an allocation somewhere else.
1221	 */
1222	if (user_thread)
1223		set_current_oom_origin();
1224	for (i = 0; i < nr_pages; i++) {
1225		struct page *page;
1226
1227		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1228				    mflags, cpu_to_node(cpu));
1229		if (!bpage)
1230			goto free_pages;
1231
1232		list_add(&bpage->list, pages);
1233
1234		page = alloc_pages_node(cpu_to_node(cpu), mflags, 0);
1235		if (!page)
1236			goto free_pages;
1237		bpage->page = page_address(page);
1238		rb_init_page(bpage->page);
1239
1240		if (user_thread && fatal_signal_pending(current))
1241			goto free_pages;
1242	}
1243	if (user_thread)
1244		clear_current_oom_origin();
1245
1246	return 0;
1247
1248free_pages:
1249	list_for_each_entry_safe(bpage, tmp, pages, list) {
1250		list_del_init(&bpage->list);
1251		free_buffer_page(bpage);
1252	}
1253	if (user_thread)
1254		clear_current_oom_origin();
1255
1256	return -ENOMEM;
1257}
1258
1259static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1260			     unsigned long nr_pages)
1261{
1262	LIST_HEAD(pages);
1263
1264	WARN_ON(!nr_pages);
1265
1266	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1267		return -ENOMEM;
1268
1269	/*
1270	 * The ring buffer page list is a circular list that does not
1271	 * start and end with a list head. All page list items point to
1272	 * other pages.
1273	 */
1274	cpu_buffer->pages = pages.next;
1275	list_del(&pages);
1276
1277	cpu_buffer->nr_pages = nr_pages;
1278
1279	rb_check_pages(cpu_buffer);
1280
1281	return 0;
1282}
1283
1284static struct ring_buffer_per_cpu *
1285rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1286{
1287	struct ring_buffer_per_cpu *cpu_buffer;
1288	struct buffer_page *bpage;
1289	struct page *page;
1290	int ret;
1291
1292	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1293				  GFP_KERNEL, cpu_to_node(cpu));
1294	if (!cpu_buffer)
1295		return NULL;
1296
1297	cpu_buffer->cpu = cpu;
1298	cpu_buffer->buffer = buffer;
1299	raw_spin_lock_init(&cpu_buffer->reader_lock);
1300	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1301	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1302	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1303	init_completion(&cpu_buffer->update_done);
1304	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1305	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1306	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1307
1308	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1309			    GFP_KERNEL, cpu_to_node(cpu));
1310	if (!bpage)
1311		goto fail_free_buffer;
1312
1313	rb_check_bpage(cpu_buffer, bpage);
1314
1315	cpu_buffer->reader_page = bpage;
1316	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1317	if (!page)
1318		goto fail_free_reader;
1319	bpage->page = page_address(page);
1320	rb_init_page(bpage->page);
1321
1322	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1323	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1324
1325	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1326	if (ret < 0)
1327		goto fail_free_reader;
1328
1329	cpu_buffer->head_page
1330		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1331	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1332
1333	rb_head_page_activate(cpu_buffer);
1334
1335	return cpu_buffer;
1336
1337 fail_free_reader:
1338	free_buffer_page(cpu_buffer->reader_page);
1339
1340 fail_free_buffer:
1341	kfree(cpu_buffer);
1342	return NULL;
1343}
1344
1345static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1346{
1347	struct list_head *head = cpu_buffer->pages;
1348	struct buffer_page *bpage, *tmp;
1349
1350	free_buffer_page(cpu_buffer->reader_page);
1351
1352	rb_head_page_deactivate(cpu_buffer);
1353
1354	if (head) {
1355		list_for_each_entry_safe(bpage, tmp, head, list) {
1356			list_del_init(&bpage->list);
1357			free_buffer_page(bpage);
1358		}
1359		bpage = list_entry(head, struct buffer_page, list);
1360		free_buffer_page(bpage);
1361	}
1362
1363	kfree(cpu_buffer);
1364}
1365
1366/**
1367 * __ring_buffer_alloc - allocate a new ring_buffer
1368 * @size: the size in bytes per cpu that is needed.
1369 * @flags: attributes to set for the ring buffer.
 
1370 *
1371 * Currently the only flag that is available is the RB_FL_OVERWRITE
1372 * flag. This flag means that the buffer will overwrite old data
1373 * when the buffer wraps. If this flag is not set, the buffer will
1374 * drop data when the tail hits the head.
1375 */
1376struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1377					struct lock_class_key *key)
1378{
1379	struct ring_buffer *buffer;
1380	long nr_pages;
1381	int bsize;
1382	int cpu;
1383	int ret;
1384
1385	/* keep it in its own cache line */
1386	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1387			 GFP_KERNEL);
1388	if (!buffer)
1389		return NULL;
1390
1391	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1392		goto fail_free_buffer;
1393
1394	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1395	buffer->flags = flags;
1396	buffer->clock = trace_clock_local;
1397	buffer->reader_lock_key = key;
1398
1399	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1400	init_waitqueue_head(&buffer->irq_work.waiters);
1401
1402	/* need at least two pages */
1403	if (nr_pages < 2)
1404		nr_pages = 2;
1405
1406	buffer->cpus = nr_cpu_ids;
1407
1408	bsize = sizeof(void *) * nr_cpu_ids;
1409	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1410				  GFP_KERNEL);
1411	if (!buffer->buffers)
1412		goto fail_free_cpumask;
1413
1414	cpu = raw_smp_processor_id();
1415	cpumask_set_cpu(cpu, buffer->cpumask);
1416	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1417	if (!buffer->buffers[cpu])
1418		goto fail_free_buffers;
1419
1420	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1421	if (ret < 0)
1422		goto fail_free_buffers;
1423
1424	mutex_init(&buffer->mutex);
1425
1426	return buffer;
1427
1428 fail_free_buffers:
1429	for_each_buffer_cpu(buffer, cpu) {
1430		if (buffer->buffers[cpu])
1431			rb_free_cpu_buffer(buffer->buffers[cpu]);
1432	}
1433	kfree(buffer->buffers);
1434
1435 fail_free_cpumask:
1436	free_cpumask_var(buffer->cpumask);
1437
1438 fail_free_buffer:
1439	kfree(buffer);
1440	return NULL;
1441}
1442EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1443
1444/**
1445 * ring_buffer_free - free a ring buffer.
1446 * @buffer: the buffer to free.
1447 */
1448void
1449ring_buffer_free(struct ring_buffer *buffer)
1450{
1451	int cpu;
1452
1453	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1454
1455	for_each_buffer_cpu(buffer, cpu)
1456		rb_free_cpu_buffer(buffer->buffers[cpu]);
1457
1458	kfree(buffer->buffers);
1459	free_cpumask_var(buffer->cpumask);
1460
1461	kfree(buffer);
1462}
1463EXPORT_SYMBOL_GPL(ring_buffer_free);
1464
1465void ring_buffer_set_clock(struct ring_buffer *buffer,
1466			   u64 (*clock)(void))
1467{
1468	buffer->clock = clock;
1469}
1470
1471void ring_buffer_set_time_stamp_abs(struct ring_buffer *buffer, bool abs)
1472{
1473	buffer->time_stamp_abs = abs;
1474}
1475
1476bool ring_buffer_time_stamp_abs(struct ring_buffer *buffer)
1477{
1478	return buffer->time_stamp_abs;
1479}
1480
1481static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1482
1483static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1484{
1485	return local_read(&bpage->entries) & RB_WRITE_MASK;
1486}
1487
1488static inline unsigned long rb_page_write(struct buffer_page *bpage)
1489{
1490	return local_read(&bpage->write) & RB_WRITE_MASK;
1491}
1492
1493static int
1494rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1495{
1496	struct list_head *tail_page, *to_remove, *next_page;
1497	struct buffer_page *to_remove_page, *tmp_iter_page;
1498	struct buffer_page *last_page, *first_page;
1499	unsigned long nr_removed;
1500	unsigned long head_bit;
1501	int page_entries;
1502
1503	head_bit = 0;
1504
1505	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1506	atomic_inc(&cpu_buffer->record_disabled);
1507	/*
1508	 * We don't race with the readers since we have acquired the reader
1509	 * lock. We also don't race with writers after disabling recording.
1510	 * This makes it easy to figure out the first and the last page to be
1511	 * removed from the list. We unlink all the pages in between including
1512	 * the first and last pages. This is done in a busy loop so that we
1513	 * lose the least number of traces.
1514	 * The pages are freed after we restart recording and unlock readers.
1515	 */
1516	tail_page = &cpu_buffer->tail_page->list;
1517
1518	/*
1519	 * tail page might be on reader page, we remove the next page
1520	 * from the ring buffer
1521	 */
1522	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1523		tail_page = rb_list_head(tail_page->next);
1524	to_remove = tail_page;
1525
1526	/* start of pages to remove */
1527	first_page = list_entry(rb_list_head(to_remove->next),
1528				struct buffer_page, list);
1529
1530	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1531		to_remove = rb_list_head(to_remove)->next;
1532		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1533	}
1534
1535	next_page = rb_list_head(to_remove)->next;
1536
1537	/*
1538	 * Now we remove all pages between tail_page and next_page.
1539	 * Make sure that we have head_bit value preserved for the
1540	 * next page
1541	 */
1542	tail_page->next = (struct list_head *)((unsigned long)next_page |
1543						head_bit);
1544	next_page = rb_list_head(next_page);
1545	next_page->prev = tail_page;
1546
1547	/* make sure pages points to a valid page in the ring buffer */
1548	cpu_buffer->pages = next_page;
1549
1550	/* update head page */
1551	if (head_bit)
1552		cpu_buffer->head_page = list_entry(next_page,
1553						struct buffer_page, list);
1554
1555	/*
1556	 * change read pointer to make sure any read iterators reset
1557	 * themselves
1558	 */
1559	cpu_buffer->read = 0;
1560
1561	/* pages are removed, resume tracing and then free the pages */
1562	atomic_dec(&cpu_buffer->record_disabled);
1563	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1564
1565	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1566
1567	/* last buffer page to remove */
1568	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1569				list);
1570	tmp_iter_page = first_page;
1571
1572	do {
1573		cond_resched();
1574
1575		to_remove_page = tmp_iter_page;
1576		rb_inc_page(cpu_buffer, &tmp_iter_page);
1577
1578		/* update the counters */
1579		page_entries = rb_page_entries(to_remove_page);
1580		if (page_entries) {
1581			/*
1582			 * If something was added to this page, it was full
1583			 * since it is not the tail page. So we deduct the
1584			 * bytes consumed in ring buffer from here.
1585			 * Increment overrun to account for the lost events.
1586			 */
1587			local_add(page_entries, &cpu_buffer->overrun);
1588			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1589		}
1590
1591		/*
1592		 * We have already removed references to this list item, just
1593		 * free up the buffer_page and its page
1594		 */
1595		free_buffer_page(to_remove_page);
1596		nr_removed--;
1597
1598	} while (to_remove_page != last_page);
1599
1600	RB_WARN_ON(cpu_buffer, nr_removed);
1601
1602	return nr_removed == 0;
1603}
1604
1605static int
1606rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1607{
1608	struct list_head *pages = &cpu_buffer->new_pages;
1609	int retries, success;
1610
1611	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1612	/*
1613	 * We are holding the reader lock, so the reader page won't be swapped
1614	 * in the ring buffer. Now we are racing with the writer trying to
1615	 * move head page and the tail page.
1616	 * We are going to adapt the reader page update process where:
1617	 * 1. We first splice the start and end of list of new pages between
1618	 *    the head page and its previous page.
1619	 * 2. We cmpxchg the prev_page->next to point from head page to the
1620	 *    start of new pages list.
1621	 * 3. Finally, we update the head->prev to the end of new list.
1622	 *
1623	 * We will try this process 10 times, to make sure that we don't keep
1624	 * spinning.
1625	 */
1626	retries = 10;
1627	success = 0;
1628	while (retries--) {
1629		struct list_head *head_page, *prev_page, *r;
1630		struct list_head *last_page, *first_page;
1631		struct list_head *head_page_with_bit;
1632
1633		head_page = &rb_set_head_page(cpu_buffer)->list;
1634		if (!head_page)
1635			break;
1636		prev_page = head_page->prev;
1637
1638		first_page = pages->next;
1639		last_page  = pages->prev;
1640
1641		head_page_with_bit = (struct list_head *)
1642				     ((unsigned long)head_page | RB_PAGE_HEAD);
1643
1644		last_page->next = head_page_with_bit;
1645		first_page->prev = prev_page;
1646
1647		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1648
1649		if (r == head_page_with_bit) {
1650			/*
1651			 * yay, we replaced the page pointer to our new list,
1652			 * now, we just have to update to head page's prev
1653			 * pointer to point to end of list
1654			 */
1655			head_page->prev = last_page;
1656			success = 1;
1657			break;
1658		}
1659	}
1660
1661	if (success)
1662		INIT_LIST_HEAD(pages);
1663	/*
1664	 * If we weren't successful in adding in new pages, warn and stop
1665	 * tracing
1666	 */
1667	RB_WARN_ON(cpu_buffer, !success);
1668	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1669
1670	/* free pages if they weren't inserted */
1671	if (!success) {
1672		struct buffer_page *bpage, *tmp;
1673		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1674					 list) {
1675			list_del_init(&bpage->list);
1676			free_buffer_page(bpage);
1677		}
1678	}
1679	return success;
1680}
1681
1682static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1683{
1684	int success;
1685
1686	if (cpu_buffer->nr_pages_to_update > 0)
1687		success = rb_insert_pages(cpu_buffer);
1688	else
1689		success = rb_remove_pages(cpu_buffer,
1690					-cpu_buffer->nr_pages_to_update);
1691
1692	if (success)
1693		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1694}
1695
1696static void update_pages_handler(struct work_struct *work)
1697{
1698	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1699			struct ring_buffer_per_cpu, update_pages_work);
1700	rb_update_pages(cpu_buffer);
1701	complete(&cpu_buffer->update_done);
1702}
1703
1704/**
1705 * ring_buffer_resize - resize the ring buffer
1706 * @buffer: the buffer to resize.
1707 * @size: the new size.
1708 * @cpu_id: the cpu buffer to resize
1709 *
1710 * Minimum size is 2 * BUF_PAGE_SIZE.
1711 *
1712 * Returns 0 on success and < 0 on failure.
1713 */
1714int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1715			int cpu_id)
1716{
1717	struct ring_buffer_per_cpu *cpu_buffer;
1718	unsigned long nr_pages;
1719	int cpu, err = 0;
1720
1721	/*
1722	 * Always succeed at resizing a non-existent buffer:
1723	 */
1724	if (!buffer)
1725		return size;
1726
1727	/* Make sure the requested buffer exists */
1728	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1729	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1730		return size;
1731
1732	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1733
1734	/* we need a minimum of two pages */
1735	if (nr_pages < 2)
1736		nr_pages = 2;
1737
1738	size = nr_pages * BUF_PAGE_SIZE;
1739
1740	/*
1741	 * Don't succeed if resizing is disabled, as a reader might be
1742	 * manipulating the ring buffer and is expecting a sane state while
1743	 * this is true.
1744	 */
1745	if (atomic_read(&buffer->resize_disabled))
1746		return -EBUSY;
1747
1748	/* prevent another thread from changing buffer sizes */
1749	mutex_lock(&buffer->mutex);
1750
 
1751	if (cpu_id == RING_BUFFER_ALL_CPUS) {
 
 
 
 
 
 
 
 
 
 
 
 
 
1752		/* calculate the pages to update */
1753		for_each_buffer_cpu(buffer, cpu) {
1754			cpu_buffer = buffer->buffers[cpu];
1755
1756			cpu_buffer->nr_pages_to_update = nr_pages -
1757							cpu_buffer->nr_pages;
1758			/*
1759			 * nothing more to do for removing pages or no update
1760			 */
1761			if (cpu_buffer->nr_pages_to_update <= 0)
1762				continue;
1763			/*
1764			 * to add pages, make sure all new pages can be
1765			 * allocated without receiving ENOMEM
1766			 */
1767			INIT_LIST_HEAD(&cpu_buffer->new_pages);
1768			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1769						&cpu_buffer->new_pages, cpu)) {
1770				/* not enough memory for new pages */
1771				err = -ENOMEM;
1772				goto out_err;
1773			}
1774		}
1775
1776		get_online_cpus();
1777		/*
1778		 * Fire off all the required work handlers
1779		 * We can't schedule on offline CPUs, but it's not necessary
1780		 * since we can change their buffer sizes without any race.
1781		 */
1782		for_each_buffer_cpu(buffer, cpu) {
1783			cpu_buffer = buffer->buffers[cpu];
1784			if (!cpu_buffer->nr_pages_to_update)
1785				continue;
1786
1787			/* Can't run something on an offline CPU. */
1788			if (!cpu_online(cpu)) {
1789				rb_update_pages(cpu_buffer);
1790				cpu_buffer->nr_pages_to_update = 0;
1791			} else {
1792				schedule_work_on(cpu,
1793						&cpu_buffer->update_pages_work);
1794			}
1795		}
1796
1797		/* wait for all the updates to complete */
1798		for_each_buffer_cpu(buffer, cpu) {
1799			cpu_buffer = buffer->buffers[cpu];
1800			if (!cpu_buffer->nr_pages_to_update)
1801				continue;
1802
1803			if (cpu_online(cpu))
1804				wait_for_completion(&cpu_buffer->update_done);
1805			cpu_buffer->nr_pages_to_update = 0;
1806		}
1807
1808		put_online_cpus();
1809	} else {
1810		/* Make sure this CPU has been initialized */
1811		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1812			goto out;
1813
1814		cpu_buffer = buffer->buffers[cpu_id];
1815
1816		if (nr_pages == cpu_buffer->nr_pages)
1817			goto out;
1818
 
 
 
 
 
 
 
 
 
 
1819		cpu_buffer->nr_pages_to_update = nr_pages -
1820						cpu_buffer->nr_pages;
1821
1822		INIT_LIST_HEAD(&cpu_buffer->new_pages);
1823		if (cpu_buffer->nr_pages_to_update > 0 &&
1824			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1825					    &cpu_buffer->new_pages, cpu_id)) {
1826			err = -ENOMEM;
1827			goto out_err;
1828		}
1829
1830		get_online_cpus();
1831
1832		/* Can't run something on an offline CPU. */
1833		if (!cpu_online(cpu_id))
1834			rb_update_pages(cpu_buffer);
1835		else {
1836			schedule_work_on(cpu_id,
1837					 &cpu_buffer->update_pages_work);
1838			wait_for_completion(&cpu_buffer->update_done);
1839		}
1840
1841		cpu_buffer->nr_pages_to_update = 0;
1842		put_online_cpus();
1843	}
1844
1845 out:
1846	/*
1847	 * The ring buffer resize can happen with the ring buffer
1848	 * enabled, so that the update disturbs the tracing as little
1849	 * as possible. But if the buffer is disabled, we do not need
1850	 * to worry about that, and we can take the time to verify
1851	 * that the buffer is not corrupt.
1852	 */
1853	if (atomic_read(&buffer->record_disabled)) {
1854		atomic_inc(&buffer->record_disabled);
1855		/*
1856		 * Even though the buffer was disabled, we must make sure
1857		 * that it is truly disabled before calling rb_check_pages.
1858		 * There could have been a race between checking
1859		 * record_disable and incrementing it.
1860		 */
1861		synchronize_rcu();
1862		for_each_buffer_cpu(buffer, cpu) {
1863			cpu_buffer = buffer->buffers[cpu];
1864			rb_check_pages(cpu_buffer);
1865		}
1866		atomic_dec(&buffer->record_disabled);
1867	}
1868
1869	mutex_unlock(&buffer->mutex);
1870	return size;
1871
1872 out_err:
1873	for_each_buffer_cpu(buffer, cpu) {
1874		struct buffer_page *bpage, *tmp;
1875
1876		cpu_buffer = buffer->buffers[cpu];
1877		cpu_buffer->nr_pages_to_update = 0;
1878
1879		if (list_empty(&cpu_buffer->new_pages))
1880			continue;
1881
1882		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1883					list) {
1884			list_del_init(&bpage->list);
1885			free_buffer_page(bpage);
1886		}
1887	}
 
1888	mutex_unlock(&buffer->mutex);
1889	return err;
1890}
1891EXPORT_SYMBOL_GPL(ring_buffer_resize);
1892
1893void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1894{
1895	mutex_lock(&buffer->mutex);
1896	if (val)
1897		buffer->flags |= RB_FL_OVERWRITE;
1898	else
1899		buffer->flags &= ~RB_FL_OVERWRITE;
1900	mutex_unlock(&buffer->mutex);
1901}
1902EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1903
1904static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1905{
1906	return bpage->page->data + index;
1907}
1908
1909static __always_inline struct ring_buffer_event *
1910rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1911{
1912	return __rb_page_index(cpu_buffer->reader_page,
1913			       cpu_buffer->reader_page->read);
1914}
1915
1916static __always_inline struct ring_buffer_event *
1917rb_iter_head_event(struct ring_buffer_iter *iter)
1918{
1919	return __rb_page_index(iter->head_page, iter->head);
1920}
1921
1922static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
 
1923{
1924	return local_read(&bpage->page->commit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1925}
1926
1927/* Size is determined by what has been committed */
1928static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1929{
1930	return rb_page_commit(bpage);
1931}
1932
1933static __always_inline unsigned
1934rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1935{
1936	return rb_page_commit(cpu_buffer->commit_page);
1937}
1938
1939static __always_inline unsigned
1940rb_event_index(struct ring_buffer_event *event)
1941{
1942	unsigned long addr = (unsigned long)event;
1943
1944	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1945}
1946
1947static void rb_inc_iter(struct ring_buffer_iter *iter)
1948{
1949	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1950
1951	/*
1952	 * The iterator could be on the reader page (it starts there).
1953	 * But the head could have moved, since the reader was
1954	 * found. Check for this case and assign the iterator
1955	 * to the head page instead of next.
1956	 */
1957	if (iter->head_page == cpu_buffer->reader_page)
1958		iter->head_page = rb_set_head_page(cpu_buffer);
1959	else
1960		rb_inc_page(cpu_buffer, &iter->head_page);
1961
1962	iter->read_stamp = iter->head_page->page->time_stamp;
1963	iter->head = 0;
 
1964}
1965
1966/*
1967 * rb_handle_head_page - writer hit the head page
1968 *
1969 * Returns: +1 to retry page
1970 *           0 to continue
1971 *          -1 on error
1972 */
1973static int
1974rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1975		    struct buffer_page *tail_page,
1976		    struct buffer_page *next_page)
1977{
1978	struct buffer_page *new_head;
1979	int entries;
1980	int type;
1981	int ret;
1982
1983	entries = rb_page_entries(next_page);
1984
1985	/*
1986	 * The hard part is here. We need to move the head
1987	 * forward, and protect against both readers on
1988	 * other CPUs and writers coming in via interrupts.
1989	 */
1990	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1991				       RB_PAGE_HEAD);
1992
1993	/*
1994	 * type can be one of four:
1995	 *  NORMAL - an interrupt already moved it for us
1996	 *  HEAD   - we are the first to get here.
1997	 *  UPDATE - we are the interrupt interrupting
1998	 *           a current move.
1999	 *  MOVED  - a reader on another CPU moved the next
2000	 *           pointer to its reader page. Give up
2001	 *           and try again.
2002	 */
2003
2004	switch (type) {
2005	case RB_PAGE_HEAD:
2006		/*
2007		 * We changed the head to UPDATE, thus
2008		 * it is our responsibility to update
2009		 * the counters.
2010		 */
2011		local_add(entries, &cpu_buffer->overrun);
2012		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2013
2014		/*
2015		 * The entries will be zeroed out when we move the
2016		 * tail page.
2017		 */
2018
2019		/* still more to do */
2020		break;
2021
2022	case RB_PAGE_UPDATE:
2023		/*
2024		 * This is an interrupt that interrupt the
2025		 * previous update. Still more to do.
2026		 */
2027		break;
2028	case RB_PAGE_NORMAL:
2029		/*
2030		 * An interrupt came in before the update
2031		 * and processed this for us.
2032		 * Nothing left to do.
2033		 */
2034		return 1;
2035	case RB_PAGE_MOVED:
2036		/*
2037		 * The reader is on another CPU and just did
2038		 * a swap with our next_page.
2039		 * Try again.
2040		 */
2041		return 1;
2042	default:
2043		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2044		return -1;
2045	}
2046
2047	/*
2048	 * Now that we are here, the old head pointer is
2049	 * set to UPDATE. This will keep the reader from
2050	 * swapping the head page with the reader page.
2051	 * The reader (on another CPU) will spin till
2052	 * we are finished.
2053	 *
2054	 * We just need to protect against interrupts
2055	 * doing the job. We will set the next pointer
2056	 * to HEAD. After that, we set the old pointer
2057	 * to NORMAL, but only if it was HEAD before.
2058	 * otherwise we are an interrupt, and only
2059	 * want the outer most commit to reset it.
2060	 */
2061	new_head = next_page;
2062	rb_inc_page(cpu_buffer, &new_head);
2063
2064	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2065				    RB_PAGE_NORMAL);
2066
2067	/*
2068	 * Valid returns are:
2069	 *  HEAD   - an interrupt came in and already set it.
2070	 *  NORMAL - One of two things:
2071	 *            1) We really set it.
2072	 *            2) A bunch of interrupts came in and moved
2073	 *               the page forward again.
2074	 */
2075	switch (ret) {
2076	case RB_PAGE_HEAD:
2077	case RB_PAGE_NORMAL:
2078		/* OK */
2079		break;
2080	default:
2081		RB_WARN_ON(cpu_buffer, 1);
2082		return -1;
2083	}
2084
2085	/*
2086	 * It is possible that an interrupt came in,
2087	 * set the head up, then more interrupts came in
2088	 * and moved it again. When we get back here,
2089	 * the page would have been set to NORMAL but we
2090	 * just set it back to HEAD.
2091	 *
2092	 * How do you detect this? Well, if that happened
2093	 * the tail page would have moved.
2094	 */
2095	if (ret == RB_PAGE_NORMAL) {
2096		struct buffer_page *buffer_tail_page;
2097
2098		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2099		/*
2100		 * If the tail had moved passed next, then we need
2101		 * to reset the pointer.
2102		 */
2103		if (buffer_tail_page != tail_page &&
2104		    buffer_tail_page != next_page)
2105			rb_head_page_set_normal(cpu_buffer, new_head,
2106						next_page,
2107						RB_PAGE_HEAD);
2108	}
2109
2110	/*
2111	 * If this was the outer most commit (the one that
2112	 * changed the original pointer from HEAD to UPDATE),
2113	 * then it is up to us to reset it to NORMAL.
2114	 */
2115	if (type == RB_PAGE_HEAD) {
2116		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2117					      tail_page,
2118					      RB_PAGE_UPDATE);
2119		if (RB_WARN_ON(cpu_buffer,
2120			       ret != RB_PAGE_UPDATE))
2121			return -1;
2122	}
2123
2124	return 0;
2125}
2126
2127static inline void
2128rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2129	      unsigned long tail, struct rb_event_info *info)
2130{
2131	struct buffer_page *tail_page = info->tail_page;
2132	struct ring_buffer_event *event;
2133	unsigned long length = info->length;
2134
2135	/*
2136	 * Only the event that crossed the page boundary
2137	 * must fill the old tail_page with padding.
2138	 */
2139	if (tail >= BUF_PAGE_SIZE) {
2140		/*
2141		 * If the page was filled, then we still need
2142		 * to update the real_end. Reset it to zero
2143		 * and the reader will ignore it.
2144		 */
2145		if (tail == BUF_PAGE_SIZE)
2146			tail_page->real_end = 0;
2147
2148		local_sub(length, &tail_page->write);
2149		return;
2150	}
2151
2152	event = __rb_page_index(tail_page, tail);
2153
2154	/* account for padding bytes */
2155	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2156
2157	/*
2158	 * Save the original length to the meta data.
2159	 * This will be used by the reader to add lost event
2160	 * counter.
2161	 */
2162	tail_page->real_end = tail;
2163
2164	/*
2165	 * If this event is bigger than the minimum size, then
2166	 * we need to be careful that we don't subtract the
2167	 * write counter enough to allow another writer to slip
2168	 * in on this page.
2169	 * We put in a discarded commit instead, to make sure
2170	 * that this space is not used again.
2171	 *
2172	 * If we are less than the minimum size, we don't need to
2173	 * worry about it.
2174	 */
2175	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2176		/* No room for any events */
2177
2178		/* Mark the rest of the page with padding */
2179		rb_event_set_padding(event);
2180
2181		/* Set the write back to the previous setting */
2182		local_sub(length, &tail_page->write);
2183		return;
2184	}
2185
2186	/* Put in a discarded event */
2187	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2188	event->type_len = RINGBUF_TYPE_PADDING;
2189	/* time delta must be non zero */
2190	event->time_delta = 1;
2191
2192	/* Set write to end of buffer */
2193	length = (tail + length) - BUF_PAGE_SIZE;
2194	local_sub(length, &tail_page->write);
2195}
2196
2197static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2198
2199/*
2200 * This is the slow path, force gcc not to inline it.
2201 */
2202static noinline struct ring_buffer_event *
2203rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2204	     unsigned long tail, struct rb_event_info *info)
2205{
2206	struct buffer_page *tail_page = info->tail_page;
2207	struct buffer_page *commit_page = cpu_buffer->commit_page;
2208	struct ring_buffer *buffer = cpu_buffer->buffer;
2209	struct buffer_page *next_page;
2210	int ret;
2211
2212	next_page = tail_page;
2213
2214	rb_inc_page(cpu_buffer, &next_page);
2215
2216	/*
2217	 * If for some reason, we had an interrupt storm that made
2218	 * it all the way around the buffer, bail, and warn
2219	 * about it.
2220	 */
2221	if (unlikely(next_page == commit_page)) {
2222		local_inc(&cpu_buffer->commit_overrun);
2223		goto out_reset;
2224	}
2225
2226	/*
2227	 * This is where the fun begins!
2228	 *
2229	 * We are fighting against races between a reader that
2230	 * could be on another CPU trying to swap its reader
2231	 * page with the buffer head.
2232	 *
2233	 * We are also fighting against interrupts coming in and
2234	 * moving the head or tail on us as well.
2235	 *
2236	 * If the next page is the head page then we have filled
2237	 * the buffer, unless the commit page is still on the
2238	 * reader page.
2239	 */
2240	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2241
2242		/*
2243		 * If the commit is not on the reader page, then
2244		 * move the header page.
2245		 */
2246		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2247			/*
2248			 * If we are not in overwrite mode,
2249			 * this is easy, just stop here.
2250			 */
2251			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2252				local_inc(&cpu_buffer->dropped_events);
2253				goto out_reset;
2254			}
2255
2256			ret = rb_handle_head_page(cpu_buffer,
2257						  tail_page,
2258						  next_page);
2259			if (ret < 0)
2260				goto out_reset;
2261			if (ret)
2262				goto out_again;
2263		} else {
2264			/*
2265			 * We need to be careful here too. The
2266			 * commit page could still be on the reader
2267			 * page. We could have a small buffer, and
2268			 * have filled up the buffer with events
2269			 * from interrupts and such, and wrapped.
2270			 *
2271			 * Note, if the tail page is also the on the
2272			 * reader_page, we let it move out.
2273			 */
2274			if (unlikely((cpu_buffer->commit_page !=
2275				      cpu_buffer->tail_page) &&
2276				     (cpu_buffer->commit_page ==
2277				      cpu_buffer->reader_page))) {
2278				local_inc(&cpu_buffer->commit_overrun);
2279				goto out_reset;
2280			}
2281		}
2282	}
2283
2284	rb_tail_page_update(cpu_buffer, tail_page, next_page);
2285
2286 out_again:
2287
2288	rb_reset_tail(cpu_buffer, tail, info);
2289
2290	/* Commit what we have for now. */
2291	rb_end_commit(cpu_buffer);
2292	/* rb_end_commit() decs committing */
2293	local_inc(&cpu_buffer->committing);
2294
2295	/* fail and let the caller try again */
2296	return ERR_PTR(-EAGAIN);
2297
2298 out_reset:
2299	/* reset write */
2300	rb_reset_tail(cpu_buffer, tail, info);
2301
2302	return NULL;
2303}
2304
2305/* Slow path, do not inline */
2306static noinline struct ring_buffer_event *
2307rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2308{
2309	if (abs)
2310		event->type_len = RINGBUF_TYPE_TIME_STAMP;
2311	else
2312		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2313
2314	/* Not the first event on the page, or not delta? */
2315	if (abs || rb_event_index(event)) {
2316		event->time_delta = delta & TS_MASK;
2317		event->array[0] = delta >> TS_SHIFT;
2318	} else {
2319		/* nope, just zero it */
2320		event->time_delta = 0;
2321		event->array[0] = 0;
2322	}
2323
2324	return skip_time_extend(event);
2325}
2326
2327static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2328				     struct ring_buffer_event *event);
2329
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2330/**
2331 * rb_update_event - update event type and data
 
2332 * @event: the event to update
2333 * @type: the type of event
2334 * @length: the size of the event field in the ring buffer
2335 *
2336 * Update the type and data fields of the event. The length
2337 * is the actual size that is written to the ring buffer,
2338 * and with this, we can determine what to place into the
2339 * data field.
2340 */
2341static void
2342rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2343		struct ring_buffer_event *event,
2344		struct rb_event_info *info)
2345{
2346	unsigned length = info->length;
2347	u64 delta = info->delta;
2348
2349	/* Only a commit updates the timestamp */
2350	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2351		delta = 0;
2352
2353	/*
2354	 * If we need to add a timestamp, then we
2355	 * add it to the start of the reserved space.
2356	 */
2357	if (unlikely(info->add_timestamp)) {
2358		bool abs = ring_buffer_time_stamp_abs(cpu_buffer->buffer);
2359
2360		event = rb_add_time_stamp(event, info->delta, abs);
2361		length -= RB_LEN_TIME_EXTEND;
2362		delta = 0;
2363	}
2364
2365	event->time_delta = delta;
2366	length -= RB_EVNT_HDR_SIZE;
2367	if (length > RB_MAX_SMALL_DATA) {
2368		event->type_len = 0;
2369		event->array[0] = length;
2370	} else
2371		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2372}
2373
2374static unsigned rb_calculate_event_length(unsigned length)
2375{
2376	struct ring_buffer_event event; /* Used only for sizeof array */
2377
2378	/* zero length can cause confusions */
2379	if (!length)
2380		length++;
2381
2382	if (length > RB_MAX_SMALL_DATA)
2383		length += sizeof(event.array[0]);
2384
2385	length += RB_EVNT_HDR_SIZE;
2386	length = ALIGN(length, RB_ALIGNMENT);
2387
2388	/*
2389	 * In case the time delta is larger than the 27 bits for it
2390	 * in the header, we need to add a timestamp. If another
2391	 * event comes in when trying to discard this one to increase
2392	 * the length, then the timestamp will be added in the allocated
2393	 * space of this event. If length is bigger than the size needed
2394	 * for the TIME_EXTEND, then padding has to be used. The events
2395	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2396	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2397	 * As length is a multiple of 4, we only need to worry if it
2398	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2399	 */
2400	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2401		length += RB_ALIGNMENT;
2402
2403	return length;
2404}
2405
2406#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2407static inline bool sched_clock_stable(void)
 
2408{
2409	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2410}
2411#endif
2412
2413static inline int
2414rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2415		  struct ring_buffer_event *event)
2416{
2417	unsigned long new_index, old_index;
2418	struct buffer_page *bpage;
2419	unsigned long index;
2420	unsigned long addr;
 
 
2421
2422	new_index = rb_event_index(event);
2423	old_index = new_index + rb_event_ts_length(event);
2424	addr = (unsigned long)event;
2425	addr &= PAGE_MASK;
2426
2427	bpage = READ_ONCE(cpu_buffer->tail_page);
2428
 
 
 
 
 
 
 
 
2429	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2430		unsigned long write_mask =
2431			local_read(&bpage->write) & ~RB_WRITE_MASK;
2432		unsigned long event_length = rb_event_length(event);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2433		/*
2434		 * This is on the tail page. It is possible that
2435		 * a write could come in and move the tail page
2436		 * and write to the next page. That is fine
2437		 * because we just shorten what is on this page.
2438		 */
2439		old_index += write_mask;
2440		new_index += write_mask;
2441		index = local_cmpxchg(&bpage->write, old_index, new_index);
2442		if (index == old_index) {
2443			/* update counters */
2444			local_sub(event_length, &cpu_buffer->entries_bytes);
2445			return 1;
2446		}
2447	}
2448
2449	/* could not discard */
2450	return 0;
2451}
2452
2453static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2454{
2455	local_inc(&cpu_buffer->committing);
2456	local_inc(&cpu_buffer->commits);
2457}
2458
2459static __always_inline void
2460rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2461{
2462	unsigned long max_count;
2463
2464	/*
2465	 * We only race with interrupts and NMIs on this CPU.
2466	 * If we own the commit event, then we can commit
2467	 * all others that interrupted us, since the interruptions
2468	 * are in stack format (they finish before they come
2469	 * back to us). This allows us to do a simple loop to
2470	 * assign the commit to the tail.
2471	 */
2472 again:
2473	max_count = cpu_buffer->nr_pages * 100;
2474
2475	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2476		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2477			return;
2478		if (RB_WARN_ON(cpu_buffer,
2479			       rb_is_reader_page(cpu_buffer->tail_page)))
2480			return;
2481		local_set(&cpu_buffer->commit_page->page->commit,
2482			  rb_page_write(cpu_buffer->commit_page));
2483		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2484		/* Only update the write stamp if the page has an event */
2485		if (rb_page_write(cpu_buffer->commit_page))
2486			cpu_buffer->write_stamp =
2487				cpu_buffer->commit_page->page->time_stamp;
2488		/* add barrier to keep gcc from optimizing too much */
2489		barrier();
2490	}
2491	while (rb_commit_index(cpu_buffer) !=
2492	       rb_page_write(cpu_buffer->commit_page)) {
2493
2494		local_set(&cpu_buffer->commit_page->page->commit,
2495			  rb_page_write(cpu_buffer->commit_page));
2496		RB_WARN_ON(cpu_buffer,
2497			   local_read(&cpu_buffer->commit_page->page->commit) &
2498			   ~RB_WRITE_MASK);
2499		barrier();
2500	}
2501
2502	/* again, keep gcc from optimizing */
2503	barrier();
2504
2505	/*
2506	 * If an interrupt came in just after the first while loop
2507	 * and pushed the tail page forward, we will be left with
2508	 * a dangling commit that will never go forward.
2509	 */
2510	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2511		goto again;
2512}
2513
2514static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2515{
2516	unsigned long commits;
2517
2518	if (RB_WARN_ON(cpu_buffer,
2519		       !local_read(&cpu_buffer->committing)))
2520		return;
2521
2522 again:
2523	commits = local_read(&cpu_buffer->commits);
2524	/* synchronize with interrupts */
2525	barrier();
2526	if (local_read(&cpu_buffer->committing) == 1)
2527		rb_set_commit_to_write(cpu_buffer);
2528
2529	local_dec(&cpu_buffer->committing);
2530
2531	/* synchronize with interrupts */
2532	barrier();
2533
2534	/*
2535	 * Need to account for interrupts coming in between the
2536	 * updating of the commit page and the clearing of the
2537	 * committing counter.
2538	 */
2539	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2540	    !local_read(&cpu_buffer->committing)) {
2541		local_inc(&cpu_buffer->committing);
2542		goto again;
2543	}
2544}
2545
2546static inline void rb_event_discard(struct ring_buffer_event *event)
2547{
2548	if (extended_time(event))
2549		event = skip_time_extend(event);
2550
2551	/* array[0] holds the actual length for the discarded event */
2552	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2553	event->type_len = RINGBUF_TYPE_PADDING;
2554	/* time delta must be non zero */
2555	if (!event->time_delta)
2556		event->time_delta = 1;
2557}
2558
2559static __always_inline bool
2560rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2561		   struct ring_buffer_event *event)
2562{
2563	unsigned long addr = (unsigned long)event;
2564	unsigned long index;
2565
2566	index = rb_event_index(event);
2567	addr &= PAGE_MASK;
2568
2569	return cpu_buffer->commit_page->page == (void *)addr &&
2570		rb_commit_index(cpu_buffer) == index;
2571}
2572
2573static __always_inline void
2574rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2575		      struct ring_buffer_event *event)
2576{
2577	u64 delta;
2578
2579	/*
2580	 * The event first in the commit queue updates the
2581	 * time stamp.
2582	 */
2583	if (rb_event_is_commit(cpu_buffer, event)) {
2584		/*
2585		 * A commit event that is first on a page
2586		 * updates the write timestamp with the page stamp
2587		 */
2588		if (!rb_event_index(event))
2589			cpu_buffer->write_stamp =
2590				cpu_buffer->commit_page->page->time_stamp;
2591		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2592			delta = ring_buffer_event_time_stamp(event);
2593			cpu_buffer->write_stamp += delta;
2594		} else if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
2595			delta = ring_buffer_event_time_stamp(event);
2596			cpu_buffer->write_stamp = delta;
2597		} else
2598			cpu_buffer->write_stamp += event->time_delta;
2599	}
2600}
2601
2602static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2603		      struct ring_buffer_event *event)
2604{
2605	local_inc(&cpu_buffer->entries);
2606	rb_update_write_stamp(cpu_buffer, event);
2607	rb_end_commit(cpu_buffer);
2608}
2609
2610static __always_inline void
2611rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2612{
2613	size_t nr_pages;
2614	size_t dirty;
2615	size_t full;
2616
2617	if (buffer->irq_work.waiters_pending) {
2618		buffer->irq_work.waiters_pending = false;
2619		/* irq_work_queue() supplies it's own memory barriers */
2620		irq_work_queue(&buffer->irq_work.work);
2621	}
2622
2623	if (cpu_buffer->irq_work.waiters_pending) {
2624		cpu_buffer->irq_work.waiters_pending = false;
2625		/* irq_work_queue() supplies it's own memory barriers */
2626		irq_work_queue(&cpu_buffer->irq_work.work);
2627	}
2628
2629	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
2630		return;
2631
2632	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
2633		return;
2634
2635	if (!cpu_buffer->irq_work.full_waiters_pending)
2636		return;
2637
2638	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
2639
2640	full = cpu_buffer->shortest_full;
2641	nr_pages = cpu_buffer->nr_pages;
2642	dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu);
2643	if (full && nr_pages && (dirty * 100) <= full * nr_pages)
2644		return;
2645
2646	cpu_buffer->irq_work.wakeup_full = true;
2647	cpu_buffer->irq_work.full_waiters_pending = false;
2648	/* irq_work_queue() supplies it's own memory barriers */
2649	irq_work_queue(&cpu_buffer->irq_work.work);
2650}
2651
2652/*
2653 * The lock and unlock are done within a preempt disable section.
2654 * The current_context per_cpu variable can only be modified
2655 * by the current task between lock and unlock. But it can
2656 * be modified more than once via an interrupt. To pass this
2657 * information from the lock to the unlock without having to
2658 * access the 'in_interrupt()' functions again (which do show
2659 * a bit of overhead in something as critical as function tracing,
2660 * we use a bitmask trick.
2661 *
2662 *  bit 0 =  NMI context
2663 *  bit 1 =  IRQ context
2664 *  bit 2 =  SoftIRQ context
2665 *  bit 3 =  normal context.
2666 *
2667 * This works because this is the order of contexts that can
2668 * preempt other contexts. A SoftIRQ never preempts an IRQ
2669 * context.
2670 *
2671 * When the context is determined, the corresponding bit is
2672 * checked and set (if it was set, then a recursion of that context
2673 * happened).
2674 *
2675 * On unlock, we need to clear this bit. To do so, just subtract
2676 * 1 from the current_context and AND it to itself.
2677 *
2678 * (binary)
2679 *  101 - 1 = 100
2680 *  101 & 100 = 100 (clearing bit zero)
2681 *
2682 *  1010 - 1 = 1001
2683 *  1010 & 1001 = 1000 (clearing bit 1)
2684 *
2685 * The least significant bit can be cleared this way, and it
2686 * just so happens that it is the same bit corresponding to
2687 * the current context.
2688 */
2689
2690static __always_inline int
2691trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2692{
2693	unsigned int val = cpu_buffer->current_context;
2694	unsigned long pc = preempt_count();
2695	int bit;
2696
2697	if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
2698		bit = RB_CTX_NORMAL;
2699	else
2700		bit = pc & NMI_MASK ? RB_CTX_NMI :
2701			pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
2702
2703	if (unlikely(val & (1 << (bit + cpu_buffer->nest))))
2704		return 1;
2705
2706	val |= (1 << (bit + cpu_buffer->nest));
2707	cpu_buffer->current_context = val;
2708
2709	return 0;
2710}
2711
2712static __always_inline void
2713trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2714{
2715	cpu_buffer->current_context &=
2716		cpu_buffer->current_context - (1 << cpu_buffer->nest);
2717}
2718
2719/* The recursive locking above uses 4 bits */
2720#define NESTED_BITS 4
2721
2722/**
2723 * ring_buffer_nest_start - Allow to trace while nested
2724 * @buffer: The ring buffer to modify
2725 *
2726 * The ring buffer has a safety mechanism to prevent recursion.
2727 * But there may be a case where a trace needs to be done while
2728 * tracing something else. In this case, calling this function
2729 * will allow this function to nest within a currently active
2730 * ring_buffer_lock_reserve().
2731 *
2732 * Call this function before calling another ring_buffer_lock_reserve() and
2733 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
2734 */
2735void ring_buffer_nest_start(struct ring_buffer *buffer)
2736{
2737	struct ring_buffer_per_cpu *cpu_buffer;
2738	int cpu;
2739
2740	/* Enabled by ring_buffer_nest_end() */
2741	preempt_disable_notrace();
2742	cpu = raw_smp_processor_id();
2743	cpu_buffer = buffer->buffers[cpu];
2744	/* This is the shift value for the above recursive locking */
2745	cpu_buffer->nest += NESTED_BITS;
2746}
2747
2748/**
2749 * ring_buffer_nest_end - Allow to trace while nested
2750 * @buffer: The ring buffer to modify
2751 *
2752 * Must be called after ring_buffer_nest_start() and after the
2753 * ring_buffer_unlock_commit().
2754 */
2755void ring_buffer_nest_end(struct ring_buffer *buffer)
2756{
2757	struct ring_buffer_per_cpu *cpu_buffer;
2758	int cpu;
2759
2760	/* disabled by ring_buffer_nest_start() */
2761	cpu = raw_smp_processor_id();
2762	cpu_buffer = buffer->buffers[cpu];
2763	/* This is the shift value for the above recursive locking */
2764	cpu_buffer->nest -= NESTED_BITS;
2765	preempt_enable_notrace();
2766}
2767
2768/**
2769 * ring_buffer_unlock_commit - commit a reserved
2770 * @buffer: The buffer to commit to
2771 * @event: The event pointer to commit.
2772 *
2773 * This commits the data to the ring buffer, and releases any locks held.
2774 *
2775 * Must be paired with ring_buffer_lock_reserve.
2776 */
2777int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2778			      struct ring_buffer_event *event)
2779{
2780	struct ring_buffer_per_cpu *cpu_buffer;
2781	int cpu = raw_smp_processor_id();
2782
2783	cpu_buffer = buffer->buffers[cpu];
2784
2785	rb_commit(cpu_buffer, event);
2786
2787	rb_wakeups(buffer, cpu_buffer);
2788
2789	trace_recursive_unlock(cpu_buffer);
2790
2791	preempt_enable_notrace();
2792
2793	return 0;
2794}
2795EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2796
2797static noinline void
2798rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2799		    struct rb_event_info *info)
2800{
2801	WARN_ONCE(info->delta > (1ULL << 59),
2802		  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2803		  (unsigned long long)info->delta,
2804		  (unsigned long long)info->ts,
2805		  (unsigned long long)cpu_buffer->write_stamp,
2806		  sched_clock_stable() ? "" :
2807		  "If you just came from a suspend/resume,\n"
2808		  "please switch to the trace global clock:\n"
2809		  "  echo global > /sys/kernel/debug/tracing/trace_clock\n"
2810		  "or add trace_clock=global to the kernel command line\n");
2811	info->add_timestamp = 1;
2812}
2813
2814static struct ring_buffer_event *
2815__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2816		  struct rb_event_info *info)
2817{
2818	struct ring_buffer_event *event;
2819	struct buffer_page *tail_page;
2820	unsigned long tail, write;
2821
2822	/*
2823	 * If the time delta since the last event is too big to
2824	 * hold in the time field of the event, then we append a
2825	 * TIME EXTEND event ahead of the data event.
2826	 */
2827	if (unlikely(info->add_timestamp))
2828		info->length += RB_LEN_TIME_EXTEND;
2829
2830	/* Don't let the compiler play games with cpu_buffer->tail_page */
2831	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2832	write = local_add_return(info->length, &tail_page->write);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2833
2834	/* set write to only the index of the write */
2835	write &= RB_WRITE_MASK;
 
2836	tail = write - info->length;
2837
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2838	/*
2839	 * If this is the first commit on the page, then it has the same
2840	 * timestamp as the page itself.
2841	 */
2842	if (!tail && !ring_buffer_time_stamp_abs(cpu_buffer->buffer))
 
2843		info->delta = 0;
2844
2845	/* See if we shot pass the end of this buffer page */
2846	if (unlikely(write > BUF_PAGE_SIZE))
2847		return rb_move_tail(cpu_buffer, tail, info);
2848
2849	/* We reserved something on the buffer */
2850
2851	event = __rb_page_index(tail_page, tail);
2852	rb_update_event(cpu_buffer, event, info);
2853
2854	local_inc(&tail_page->entries);
2855
2856	/*
2857	 * If this is the first commit on the page, then update
2858	 * its timestamp.
2859	 */
2860	if (!tail)
2861		tail_page->page->time_stamp = info->ts;
2862
2863	/* account for these added bytes */
2864	local_add(info->length, &cpu_buffer->entries_bytes);
2865
2866	return event;
2867}
2868
2869static __always_inline struct ring_buffer_event *
2870rb_reserve_next_event(struct ring_buffer *buffer,
2871		      struct ring_buffer_per_cpu *cpu_buffer,
2872		      unsigned long length)
2873{
2874	struct ring_buffer_event *event;
2875	struct rb_event_info info;
2876	int nr_loops = 0;
2877	u64 diff;
2878
2879	rb_start_commit(cpu_buffer);
 
2880
2881#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2882	/*
2883	 * Due to the ability to swap a cpu buffer from a buffer
2884	 * it is possible it was swapped before we committed.
2885	 * (committing stops a swap). We check for it here and
2886	 * if it happened, we have to fail the write.
2887	 */
2888	barrier();
2889	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
2890		local_dec(&cpu_buffer->committing);
2891		local_dec(&cpu_buffer->commits);
2892		return NULL;
2893	}
2894#endif
2895
2896	info.length = rb_calculate_event_length(length);
 
 
 
 
 
 
 
 
2897 again:
2898	info.add_timestamp = 0;
2899	info.delta = 0;
2900
2901	/*
2902	 * We allow for interrupts to reenter here and do a trace.
2903	 * If one does, it will cause this original code to loop
2904	 * back here. Even with heavy interrupts happening, this
2905	 * should only happen a few times in a row. If this happens
2906	 * 1000 times in a row, there must be either an interrupt
2907	 * storm or we have something buggy.
2908	 * Bail!
2909	 */
2910	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2911		goto out_fail;
2912
2913	info.ts = rb_time_stamp(cpu_buffer->buffer);
2914	diff = info.ts - cpu_buffer->write_stamp;
2915
2916	/* make sure this diff is calculated here */
2917	barrier();
2918
2919	if (ring_buffer_time_stamp_abs(buffer)) {
2920		info.delta = info.ts;
2921		rb_handle_timestamp(cpu_buffer, &info);
2922	} else /* Did the write stamp get updated already? */
2923		if (likely(info.ts >= cpu_buffer->write_stamp)) {
2924		info.delta = diff;
2925		if (unlikely(test_time_stamp(info.delta)))
2926			rb_handle_timestamp(cpu_buffer, &info);
2927	}
2928
2929	event = __rb_reserve_next(cpu_buffer, &info);
2930
2931	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2932		if (info.add_timestamp)
2933			info.length -= RB_LEN_TIME_EXTEND;
2934		goto again;
2935	}
2936
2937	if (!event)
2938		goto out_fail;
2939
2940	return event;
2941
2942 out_fail:
2943	rb_end_commit(cpu_buffer);
2944	return NULL;
2945}
2946
2947/**
2948 * ring_buffer_lock_reserve - reserve a part of the buffer
2949 * @buffer: the ring buffer to reserve from
2950 * @length: the length of the data to reserve (excluding event header)
2951 *
2952 * Returns a reserved event on the ring buffer to copy directly to.
2953 * The user of this interface will need to get the body to write into
2954 * and can use the ring_buffer_event_data() interface.
2955 *
2956 * The length is the length of the data needed, not the event length
2957 * which also includes the event header.
2958 *
2959 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2960 * If NULL is returned, then nothing has been allocated or locked.
2961 */
2962struct ring_buffer_event *
2963ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2964{
2965	struct ring_buffer_per_cpu *cpu_buffer;
2966	struct ring_buffer_event *event;
2967	int cpu;
2968
2969	/* If we are tracing schedule, we don't want to recurse */
2970	preempt_disable_notrace();
2971
2972	if (unlikely(atomic_read(&buffer->record_disabled)))
2973		goto out;
2974
2975	cpu = raw_smp_processor_id();
2976
2977	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2978		goto out;
2979
2980	cpu_buffer = buffer->buffers[cpu];
2981
2982	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2983		goto out;
2984
2985	if (unlikely(length > BUF_MAX_DATA_SIZE))
2986		goto out;
2987
2988	if (unlikely(trace_recursive_lock(cpu_buffer)))
2989		goto out;
2990
2991	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2992	if (!event)
2993		goto out_unlock;
2994
2995	return event;
2996
2997 out_unlock:
2998	trace_recursive_unlock(cpu_buffer);
2999 out:
3000	preempt_enable_notrace();
3001	return NULL;
3002}
3003EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3004
3005/*
3006 * Decrement the entries to the page that an event is on.
3007 * The event does not even need to exist, only the pointer
3008 * to the page it is on. This may only be called before the commit
3009 * takes place.
3010 */
3011static inline void
3012rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3013		   struct ring_buffer_event *event)
3014{
3015	unsigned long addr = (unsigned long)event;
3016	struct buffer_page *bpage = cpu_buffer->commit_page;
3017	struct buffer_page *start;
3018
3019	addr &= PAGE_MASK;
3020
3021	/* Do the likely case first */
3022	if (likely(bpage->page == (void *)addr)) {
3023		local_dec(&bpage->entries);
3024		return;
3025	}
3026
3027	/*
3028	 * Because the commit page may be on the reader page we
3029	 * start with the next page and check the end loop there.
3030	 */
3031	rb_inc_page(cpu_buffer, &bpage);
3032	start = bpage;
3033	do {
3034		if (bpage->page == (void *)addr) {
3035			local_dec(&bpage->entries);
3036			return;
3037		}
3038		rb_inc_page(cpu_buffer, &bpage);
3039	} while (bpage != start);
3040
3041	/* commit not part of this buffer?? */
3042	RB_WARN_ON(cpu_buffer, 1);
3043}
3044
3045/**
3046 * ring_buffer_commit_discard - discard an event that has not been committed
3047 * @buffer: the ring buffer
3048 * @event: non committed event to discard
3049 *
3050 * Sometimes an event that is in the ring buffer needs to be ignored.
3051 * This function lets the user discard an event in the ring buffer
3052 * and then that event will not be read later.
3053 *
3054 * This function only works if it is called before the item has been
3055 * committed. It will try to free the event from the ring buffer
3056 * if another event has not been added behind it.
3057 *
3058 * If another event has been added behind it, it will set the event
3059 * up as discarded, and perform the commit.
3060 *
3061 * If this function is called, do not call ring_buffer_unlock_commit on
3062 * the event.
3063 */
3064void ring_buffer_discard_commit(struct ring_buffer *buffer,
3065				struct ring_buffer_event *event)
3066{
3067	struct ring_buffer_per_cpu *cpu_buffer;
3068	int cpu;
3069
3070	/* The event is discarded regardless */
3071	rb_event_discard(event);
3072
3073	cpu = smp_processor_id();
3074	cpu_buffer = buffer->buffers[cpu];
3075
3076	/*
3077	 * This must only be called if the event has not been
3078	 * committed yet. Thus we can assume that preemption
3079	 * is still disabled.
3080	 */
3081	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3082
3083	rb_decrement_entry(cpu_buffer, event);
3084	if (rb_try_to_discard(cpu_buffer, event))
3085		goto out;
3086
3087	/*
3088	 * The commit is still visible by the reader, so we
3089	 * must still update the timestamp.
3090	 */
3091	rb_update_write_stamp(cpu_buffer, event);
3092 out:
3093	rb_end_commit(cpu_buffer);
3094
3095	trace_recursive_unlock(cpu_buffer);
3096
3097	preempt_enable_notrace();
3098
3099}
3100EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3101
3102/**
3103 * ring_buffer_write - write data to the buffer without reserving
3104 * @buffer: The ring buffer to write to.
3105 * @length: The length of the data being written (excluding the event header)
3106 * @data: The data to write to the buffer.
3107 *
3108 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3109 * one function. If you already have the data to write to the buffer, it
3110 * may be easier to simply call this function.
3111 *
3112 * Note, like ring_buffer_lock_reserve, the length is the length of the data
3113 * and not the length of the event which would hold the header.
3114 */
3115int ring_buffer_write(struct ring_buffer *buffer,
3116		      unsigned long length,
3117		      void *data)
3118{
3119	struct ring_buffer_per_cpu *cpu_buffer;
3120	struct ring_buffer_event *event;
3121	void *body;
3122	int ret = -EBUSY;
3123	int cpu;
3124
3125	preempt_disable_notrace();
3126
3127	if (atomic_read(&buffer->record_disabled))
3128		goto out;
3129
3130	cpu = raw_smp_processor_id();
3131
3132	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3133		goto out;
3134
3135	cpu_buffer = buffer->buffers[cpu];
3136
3137	if (atomic_read(&cpu_buffer->record_disabled))
3138		goto out;
3139
3140	if (length > BUF_MAX_DATA_SIZE)
3141		goto out;
3142
3143	if (unlikely(trace_recursive_lock(cpu_buffer)))
3144		goto out;
3145
3146	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3147	if (!event)
3148		goto out_unlock;
3149
3150	body = rb_event_data(event);
3151
3152	memcpy(body, data, length);
3153
3154	rb_commit(cpu_buffer, event);
3155
3156	rb_wakeups(buffer, cpu_buffer);
3157
3158	ret = 0;
3159
3160 out_unlock:
3161	trace_recursive_unlock(cpu_buffer);
3162
3163 out:
3164	preempt_enable_notrace();
3165
3166	return ret;
3167}
3168EXPORT_SYMBOL_GPL(ring_buffer_write);
3169
3170static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3171{
3172	struct buffer_page *reader = cpu_buffer->reader_page;
3173	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3174	struct buffer_page *commit = cpu_buffer->commit_page;
3175
3176	/* In case of error, head will be NULL */
3177	if (unlikely(!head))
3178		return true;
3179
3180	return reader->read == rb_page_commit(reader) &&
3181		(commit == reader ||
3182		 (commit == head &&
3183		  head->read == rb_page_commit(commit)));
3184}
3185
3186/**
3187 * ring_buffer_record_disable - stop all writes into the buffer
3188 * @buffer: The ring buffer to stop writes to.
3189 *
3190 * This prevents all writes to the buffer. Any attempt to write
3191 * to the buffer after this will fail and return NULL.
3192 *
3193 * The caller should call synchronize_rcu() after this.
3194 */
3195void ring_buffer_record_disable(struct ring_buffer *buffer)
3196{
3197	atomic_inc(&buffer->record_disabled);
3198}
3199EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3200
3201/**
3202 * ring_buffer_record_enable - enable writes to the buffer
3203 * @buffer: The ring buffer to enable writes
3204 *
3205 * Note, multiple disables will need the same number of enables
3206 * to truly enable the writing (much like preempt_disable).
3207 */
3208void ring_buffer_record_enable(struct ring_buffer *buffer)
3209{
3210	atomic_dec(&buffer->record_disabled);
3211}
3212EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3213
3214/**
3215 * ring_buffer_record_off - stop all writes into the buffer
3216 * @buffer: The ring buffer to stop writes to.
3217 *
3218 * This prevents all writes to the buffer. Any attempt to write
3219 * to the buffer after this will fail and return NULL.
3220 *
3221 * This is different than ring_buffer_record_disable() as
3222 * it works like an on/off switch, where as the disable() version
3223 * must be paired with a enable().
3224 */
3225void ring_buffer_record_off(struct ring_buffer *buffer)
3226{
3227	unsigned int rd;
3228	unsigned int new_rd;
3229
3230	do {
3231		rd = atomic_read(&buffer->record_disabled);
3232		new_rd = rd | RB_BUFFER_OFF;
3233	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3234}
3235EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3236
3237/**
3238 * ring_buffer_record_on - restart writes into the buffer
3239 * @buffer: The ring buffer to start writes to.
3240 *
3241 * This enables all writes to the buffer that was disabled by
3242 * ring_buffer_record_off().
3243 *
3244 * This is different than ring_buffer_record_enable() as
3245 * it works like an on/off switch, where as the enable() version
3246 * must be paired with a disable().
3247 */
3248void ring_buffer_record_on(struct ring_buffer *buffer)
3249{
3250	unsigned int rd;
3251	unsigned int new_rd;
3252
3253	do {
3254		rd = atomic_read(&buffer->record_disabled);
3255		new_rd = rd & ~RB_BUFFER_OFF;
3256	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3257}
3258EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3259
3260/**
3261 * ring_buffer_record_is_on - return true if the ring buffer can write
3262 * @buffer: The ring buffer to see if write is enabled
3263 *
3264 * Returns true if the ring buffer is in a state that it accepts writes.
3265 */
3266bool ring_buffer_record_is_on(struct ring_buffer *buffer)
3267{
3268	return !atomic_read(&buffer->record_disabled);
3269}
3270
3271/**
3272 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3273 * @buffer: The ring buffer to see if write is set enabled
3274 *
3275 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3276 * Note that this does NOT mean it is in a writable state.
3277 *
3278 * It may return true when the ring buffer has been disabled by
3279 * ring_buffer_record_disable(), as that is a temporary disabling of
3280 * the ring buffer.
3281 */
3282bool ring_buffer_record_is_set_on(struct ring_buffer *buffer)
3283{
3284	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3285}
3286
3287/**
3288 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3289 * @buffer: The ring buffer to stop writes to.
3290 * @cpu: The CPU buffer to stop
3291 *
3292 * This prevents all writes to the buffer. Any attempt to write
3293 * to the buffer after this will fail and return NULL.
3294 *
3295 * The caller should call synchronize_rcu() after this.
3296 */
3297void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3298{
3299	struct ring_buffer_per_cpu *cpu_buffer;
3300
3301	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3302		return;
3303
3304	cpu_buffer = buffer->buffers[cpu];
3305	atomic_inc(&cpu_buffer->record_disabled);
3306}
3307EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3308
3309/**
3310 * ring_buffer_record_enable_cpu - enable writes to the buffer
3311 * @buffer: The ring buffer to enable writes
3312 * @cpu: The CPU to enable.
3313 *
3314 * Note, multiple disables will need the same number of enables
3315 * to truly enable the writing (much like preempt_disable).
3316 */
3317void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3318{
3319	struct ring_buffer_per_cpu *cpu_buffer;
3320
3321	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3322		return;
3323
3324	cpu_buffer = buffer->buffers[cpu];
3325	atomic_dec(&cpu_buffer->record_disabled);
3326}
3327EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3328
3329/*
3330 * The total entries in the ring buffer is the running counter
3331 * of entries entered into the ring buffer, minus the sum of
3332 * the entries read from the ring buffer and the number of
3333 * entries that were overwritten.
3334 */
3335static inline unsigned long
3336rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3337{
3338	return local_read(&cpu_buffer->entries) -
3339		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3340}
3341
3342/**
3343 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3344 * @buffer: The ring buffer
3345 * @cpu: The per CPU buffer to read from.
3346 */
3347u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3348{
3349	unsigned long flags;
3350	struct ring_buffer_per_cpu *cpu_buffer;
3351	struct buffer_page *bpage;
3352	u64 ret = 0;
3353
3354	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3355		return 0;
3356
3357	cpu_buffer = buffer->buffers[cpu];
3358	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3359	/*
3360	 * if the tail is on reader_page, oldest time stamp is on the reader
3361	 * page
3362	 */
3363	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3364		bpage = cpu_buffer->reader_page;
3365	else
3366		bpage = rb_set_head_page(cpu_buffer);
3367	if (bpage)
3368		ret = bpage->page->time_stamp;
3369	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3370
3371	return ret;
3372}
3373EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3374
3375/**
3376 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3377 * @buffer: The ring buffer
3378 * @cpu: The per CPU buffer to read from.
3379 */
3380unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3381{
3382	struct ring_buffer_per_cpu *cpu_buffer;
3383	unsigned long ret;
3384
3385	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3386		return 0;
3387
3388	cpu_buffer = buffer->buffers[cpu];
3389	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3390
3391	return ret;
3392}
3393EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3394
3395/**
3396 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3397 * @buffer: The ring buffer
3398 * @cpu: The per CPU buffer to get the entries from.
3399 */
3400unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3401{
3402	struct ring_buffer_per_cpu *cpu_buffer;
3403
3404	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3405		return 0;
3406
3407	cpu_buffer = buffer->buffers[cpu];
3408
3409	return rb_num_of_entries(cpu_buffer);
3410}
3411EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3412
3413/**
3414 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3415 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3416 * @buffer: The ring buffer
3417 * @cpu: The per CPU buffer to get the number of overruns from
3418 */
3419unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3420{
3421	struct ring_buffer_per_cpu *cpu_buffer;
3422	unsigned long ret;
3423
3424	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3425		return 0;
3426
3427	cpu_buffer = buffer->buffers[cpu];
3428	ret = local_read(&cpu_buffer->overrun);
3429
3430	return ret;
3431}
3432EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3433
3434/**
3435 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3436 * commits failing due to the buffer wrapping around while there are uncommitted
3437 * events, such as during an interrupt storm.
3438 * @buffer: The ring buffer
3439 * @cpu: The per CPU buffer to get the number of overruns from
3440 */
3441unsigned long
3442ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3443{
3444	struct ring_buffer_per_cpu *cpu_buffer;
3445	unsigned long ret;
3446
3447	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3448		return 0;
3449
3450	cpu_buffer = buffer->buffers[cpu];
3451	ret = local_read(&cpu_buffer->commit_overrun);
3452
3453	return ret;
3454}
3455EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3456
3457/**
3458 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3459 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3460 * @buffer: The ring buffer
3461 * @cpu: The per CPU buffer to get the number of overruns from
3462 */
3463unsigned long
3464ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3465{
3466	struct ring_buffer_per_cpu *cpu_buffer;
3467	unsigned long ret;
3468
3469	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3470		return 0;
3471
3472	cpu_buffer = buffer->buffers[cpu];
3473	ret = local_read(&cpu_buffer->dropped_events);
3474
3475	return ret;
3476}
3477EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3478
3479/**
3480 * ring_buffer_read_events_cpu - get the number of events successfully read
3481 * @buffer: The ring buffer
3482 * @cpu: The per CPU buffer to get the number of events read
3483 */
3484unsigned long
3485ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3486{
3487	struct ring_buffer_per_cpu *cpu_buffer;
3488
3489	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3490		return 0;
3491
3492	cpu_buffer = buffer->buffers[cpu];
3493	return cpu_buffer->read;
3494}
3495EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3496
3497/**
3498 * ring_buffer_entries - get the number of entries in a buffer
3499 * @buffer: The ring buffer
3500 *
3501 * Returns the total number of entries in the ring buffer
3502 * (all CPU entries)
3503 */
3504unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3505{
3506	struct ring_buffer_per_cpu *cpu_buffer;
3507	unsigned long entries = 0;
3508	int cpu;
3509
3510	/* if you care about this being correct, lock the buffer */
3511	for_each_buffer_cpu(buffer, cpu) {
3512		cpu_buffer = buffer->buffers[cpu];
3513		entries += rb_num_of_entries(cpu_buffer);
3514	}
3515
3516	return entries;
3517}
3518EXPORT_SYMBOL_GPL(ring_buffer_entries);
3519
3520/**
3521 * ring_buffer_overruns - get the number of overruns in buffer
3522 * @buffer: The ring buffer
3523 *
3524 * Returns the total number of overruns in the ring buffer
3525 * (all CPU entries)
3526 */
3527unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3528{
3529	struct ring_buffer_per_cpu *cpu_buffer;
3530	unsigned long overruns = 0;
3531	int cpu;
3532
3533	/* if you care about this being correct, lock the buffer */
3534	for_each_buffer_cpu(buffer, cpu) {
3535		cpu_buffer = buffer->buffers[cpu];
3536		overruns += local_read(&cpu_buffer->overrun);
3537	}
3538
3539	return overruns;
3540}
3541EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3542
3543static void rb_iter_reset(struct ring_buffer_iter *iter)
3544{
3545	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3546
3547	/* Iterator usage is expected to have record disabled */
3548	iter->head_page = cpu_buffer->reader_page;
3549	iter->head = cpu_buffer->reader_page->read;
 
3550
3551	iter->cache_reader_page = iter->head_page;
3552	iter->cache_read = cpu_buffer->read;
3553
3554	if (iter->head)
3555		iter->read_stamp = cpu_buffer->read_stamp;
3556	else
 
3557		iter->read_stamp = iter->head_page->page->time_stamp;
 
 
3558}
3559
3560/**
3561 * ring_buffer_iter_reset - reset an iterator
3562 * @iter: The iterator to reset
3563 *
3564 * Resets the iterator, so that it will start from the beginning
3565 * again.
3566 */
3567void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3568{
3569	struct ring_buffer_per_cpu *cpu_buffer;
3570	unsigned long flags;
3571
3572	if (!iter)
3573		return;
3574
3575	cpu_buffer = iter->cpu_buffer;
3576
3577	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3578	rb_iter_reset(iter);
3579	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3580}
3581EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3582
3583/**
3584 * ring_buffer_iter_empty - check if an iterator has no more to read
3585 * @iter: The iterator to check
3586 */
3587int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3588{
3589	struct ring_buffer_per_cpu *cpu_buffer;
3590	struct buffer_page *reader;
3591	struct buffer_page *head_page;
3592	struct buffer_page *commit_page;
 
3593	unsigned commit;
 
 
3594
3595	cpu_buffer = iter->cpu_buffer;
3596
3597	/* Remember, trace recording is off when iterator is in use */
3598	reader = cpu_buffer->reader_page;
3599	head_page = cpu_buffer->head_page;
3600	commit_page = cpu_buffer->commit_page;
 
 
 
 
 
 
 
 
3601	commit = rb_page_commit(commit_page);
 
 
3602
3603	return ((iter->head_page == commit_page && iter->head == commit) ||
 
 
 
 
 
 
 
 
 
 
3604		(iter->head_page == reader && commit_page == head_page &&
3605		 head_page->read == commit &&
3606		 iter->head == rb_page_commit(cpu_buffer->reader_page)));
3607}
3608EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3609
3610static void
3611rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3612		     struct ring_buffer_event *event)
3613{
3614	u64 delta;
3615
3616	switch (event->type_len) {
3617	case RINGBUF_TYPE_PADDING:
3618		return;
3619
3620	case RINGBUF_TYPE_TIME_EXTEND:
3621		delta = ring_buffer_event_time_stamp(event);
3622		cpu_buffer->read_stamp += delta;
3623		return;
3624
3625	case RINGBUF_TYPE_TIME_STAMP:
3626		delta = ring_buffer_event_time_stamp(event);
3627		cpu_buffer->read_stamp = delta;
3628		return;
3629
3630	case RINGBUF_TYPE_DATA:
3631		cpu_buffer->read_stamp += event->time_delta;
3632		return;
3633
3634	default:
3635		BUG();
3636	}
3637	return;
3638}
3639
3640static void
3641rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3642			  struct ring_buffer_event *event)
3643{
3644	u64 delta;
3645
3646	switch (event->type_len) {
3647	case RINGBUF_TYPE_PADDING:
3648		return;
3649
3650	case RINGBUF_TYPE_TIME_EXTEND:
3651		delta = ring_buffer_event_time_stamp(event);
3652		iter->read_stamp += delta;
3653		return;
3654
3655	case RINGBUF_TYPE_TIME_STAMP:
3656		delta = ring_buffer_event_time_stamp(event);
3657		iter->read_stamp = delta;
3658		return;
3659
3660	case RINGBUF_TYPE_DATA:
3661		iter->read_stamp += event->time_delta;
3662		return;
3663
3664	default:
3665		BUG();
3666	}
3667	return;
3668}
3669
3670static struct buffer_page *
3671rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3672{
3673	struct buffer_page *reader = NULL;
3674	unsigned long overwrite;
3675	unsigned long flags;
3676	int nr_loops = 0;
3677	int ret;
3678
3679	local_irq_save(flags);
3680	arch_spin_lock(&cpu_buffer->lock);
3681
3682 again:
3683	/*
3684	 * This should normally only loop twice. But because the
3685	 * start of the reader inserts an empty page, it causes
3686	 * a case where we will loop three times. There should be no
3687	 * reason to loop four times (that I know of).
3688	 */
3689	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3690		reader = NULL;
3691		goto out;
3692	}
3693
3694	reader = cpu_buffer->reader_page;
3695
3696	/* If there's more to read, return this page */
3697	if (cpu_buffer->reader_page->read < rb_page_size(reader))
3698		goto out;
3699
3700	/* Never should we have an index greater than the size */
3701	if (RB_WARN_ON(cpu_buffer,
3702		       cpu_buffer->reader_page->read > rb_page_size(reader)))
3703		goto out;
3704
3705	/* check if we caught up to the tail */
3706	reader = NULL;
3707	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3708		goto out;
3709
3710	/* Don't bother swapping if the ring buffer is empty */
3711	if (rb_num_of_entries(cpu_buffer) == 0)
3712		goto out;
3713
3714	/*
3715	 * Reset the reader page to size zero.
3716	 */
3717	local_set(&cpu_buffer->reader_page->write, 0);
3718	local_set(&cpu_buffer->reader_page->entries, 0);
3719	local_set(&cpu_buffer->reader_page->page->commit, 0);
3720	cpu_buffer->reader_page->real_end = 0;
3721
3722 spin:
3723	/*
3724	 * Splice the empty reader page into the list around the head.
3725	 */
3726	reader = rb_set_head_page(cpu_buffer);
3727	if (!reader)
3728		goto out;
3729	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3730	cpu_buffer->reader_page->list.prev = reader->list.prev;
3731
3732	/*
3733	 * cpu_buffer->pages just needs to point to the buffer, it
3734	 *  has no specific buffer page to point to. Lets move it out
3735	 *  of our way so we don't accidentally swap it.
3736	 */
3737	cpu_buffer->pages = reader->list.prev;
3738
3739	/* The reader page will be pointing to the new head */
3740	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3741
3742	/*
3743	 * We want to make sure we read the overruns after we set up our
3744	 * pointers to the next object. The writer side does a
3745	 * cmpxchg to cross pages which acts as the mb on the writer
3746	 * side. Note, the reader will constantly fail the swap
3747	 * while the writer is updating the pointers, so this
3748	 * guarantees that the overwrite recorded here is the one we
3749	 * want to compare with the last_overrun.
3750	 */
3751	smp_mb();
3752	overwrite = local_read(&(cpu_buffer->overrun));
3753
3754	/*
3755	 * Here's the tricky part.
3756	 *
3757	 * We need to move the pointer past the header page.
3758	 * But we can only do that if a writer is not currently
3759	 * moving it. The page before the header page has the
3760	 * flag bit '1' set if it is pointing to the page we want.
3761	 * but if the writer is in the process of moving it
3762	 * than it will be '2' or already moved '0'.
3763	 */
3764
3765	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3766
3767	/*
3768	 * If we did not convert it, then we must try again.
3769	 */
3770	if (!ret)
3771		goto spin;
3772
3773	/*
3774	 * Yay! We succeeded in replacing the page.
3775	 *
3776	 * Now make the new head point back to the reader page.
3777	 */
3778	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3779	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3780
3781	local_inc(&cpu_buffer->pages_read);
3782
3783	/* Finally update the reader page to the new head */
3784	cpu_buffer->reader_page = reader;
3785	cpu_buffer->reader_page->read = 0;
3786
3787	if (overwrite != cpu_buffer->last_overrun) {
3788		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3789		cpu_buffer->last_overrun = overwrite;
3790	}
3791
3792	goto again;
3793
3794 out:
3795	/* Update the read_stamp on the first event */
3796	if (reader && reader->read == 0)
3797		cpu_buffer->read_stamp = reader->page->time_stamp;
3798
3799	arch_spin_unlock(&cpu_buffer->lock);
3800	local_irq_restore(flags);
3801
3802	return reader;
3803}
3804
3805static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3806{
3807	struct ring_buffer_event *event;
3808	struct buffer_page *reader;
3809	unsigned length;
3810
3811	reader = rb_get_reader_page(cpu_buffer);
3812
3813	/* This function should not be called when buffer is empty */
3814	if (RB_WARN_ON(cpu_buffer, !reader))
3815		return;
3816
3817	event = rb_reader_event(cpu_buffer);
3818
3819	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3820		cpu_buffer->read++;
3821
3822	rb_update_read_stamp(cpu_buffer, event);
3823
3824	length = rb_event_length(event);
3825	cpu_buffer->reader_page->read += length;
3826}
3827
3828static void rb_advance_iter(struct ring_buffer_iter *iter)
3829{
3830	struct ring_buffer_per_cpu *cpu_buffer;
3831	struct ring_buffer_event *event;
3832	unsigned length;
3833
3834	cpu_buffer = iter->cpu_buffer;
3835
 
 
 
 
 
 
 
 
 
3836	/*
3837	 * Check if we are at the end of the buffer.
3838	 */
3839	if (iter->head >= rb_page_size(iter->head_page)) {
3840		/* discarded commits can make the page empty */
3841		if (iter->head_page == cpu_buffer->commit_page)
3842			return;
3843		rb_inc_iter(iter);
3844		return;
3845	}
3846
3847	event = rb_iter_head_event(iter);
3848
3849	length = rb_event_length(event);
3850
3851	/*
3852	 * This should not be called to advance the header if we are
3853	 * at the tail of the buffer.
3854	 */
3855	if (RB_WARN_ON(cpu_buffer,
3856		       (iter->head_page == cpu_buffer->commit_page) &&
3857		       (iter->head + length > rb_commit_index(cpu_buffer))))
3858		return;
3859
3860	rb_update_iter_read_stamp(iter, event);
3861
3862	iter->head += length;
3863
3864	/* check for end of page padding */
3865	if ((iter->head >= rb_page_size(iter->head_page)) &&
3866	    (iter->head_page != cpu_buffer->commit_page))
3867		rb_inc_iter(iter);
3868}
3869
3870static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3871{
3872	return cpu_buffer->lost_events;
3873}
3874
3875static struct ring_buffer_event *
3876rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3877	       unsigned long *lost_events)
3878{
3879	struct ring_buffer_event *event;
3880	struct buffer_page *reader;
3881	int nr_loops = 0;
3882
3883	if (ts)
3884		*ts = 0;
3885 again:
3886	/*
3887	 * We repeat when a time extend is encountered.
3888	 * Since the time extend is always attached to a data event,
3889	 * we should never loop more than once.
3890	 * (We never hit the following condition more than twice).
3891	 */
3892	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3893		return NULL;
3894
3895	reader = rb_get_reader_page(cpu_buffer);
3896	if (!reader)
3897		return NULL;
3898
3899	event = rb_reader_event(cpu_buffer);
3900
3901	switch (event->type_len) {
3902	case RINGBUF_TYPE_PADDING:
3903		if (rb_null_event(event))
3904			RB_WARN_ON(cpu_buffer, 1);
3905		/*
3906		 * Because the writer could be discarding every
3907		 * event it creates (which would probably be bad)
3908		 * if we were to go back to "again" then we may never
3909		 * catch up, and will trigger the warn on, or lock
3910		 * the box. Return the padding, and we will release
3911		 * the current locks, and try again.
3912		 */
3913		return event;
3914
3915	case RINGBUF_TYPE_TIME_EXTEND:
3916		/* Internal data, OK to advance */
3917		rb_advance_reader(cpu_buffer);
3918		goto again;
3919
3920	case RINGBUF_TYPE_TIME_STAMP:
3921		if (ts) {
3922			*ts = ring_buffer_event_time_stamp(event);
3923			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3924							 cpu_buffer->cpu, ts);
3925		}
3926		/* Internal data, OK to advance */
3927		rb_advance_reader(cpu_buffer);
3928		goto again;
3929
3930	case RINGBUF_TYPE_DATA:
3931		if (ts && !(*ts)) {
3932			*ts = cpu_buffer->read_stamp + event->time_delta;
3933			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3934							 cpu_buffer->cpu, ts);
3935		}
3936		if (lost_events)
3937			*lost_events = rb_lost_events(cpu_buffer);
3938		return event;
3939
3940	default:
3941		BUG();
3942	}
3943
3944	return NULL;
3945}
3946EXPORT_SYMBOL_GPL(ring_buffer_peek);
3947
3948static struct ring_buffer_event *
3949rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3950{
3951	struct ring_buffer *buffer;
3952	struct ring_buffer_per_cpu *cpu_buffer;
3953	struct ring_buffer_event *event;
3954	int nr_loops = 0;
3955
3956	if (ts)
3957		*ts = 0;
3958
3959	cpu_buffer = iter->cpu_buffer;
3960	buffer = cpu_buffer->buffer;
3961
3962	/*
3963	 * Check if someone performed a consuming read to
3964	 * the buffer. A consuming read invalidates the iterator
3965	 * and we need to reset the iterator in this case.
3966	 */
3967	if (unlikely(iter->cache_read != cpu_buffer->read ||
3968		     iter->cache_reader_page != cpu_buffer->reader_page))
3969		rb_iter_reset(iter);
3970
3971 again:
3972	if (ring_buffer_iter_empty(iter))
3973		return NULL;
3974
3975	/*
3976	 * We repeat when a time extend is encountered or we hit
3977	 * the end of the page. Since the time extend is always attached
3978	 * to a data event, we should never loop more than three times.
3979	 * Once for going to next page, once on time extend, and
3980	 * finally once to get the event.
3981	 * (We never hit the following condition more than thrice).
3982	 */
3983	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3984		return NULL;
3985
3986	if (rb_per_cpu_empty(cpu_buffer))
3987		return NULL;
3988
3989	if (iter->head >= rb_page_size(iter->head_page)) {
3990		rb_inc_iter(iter);
3991		goto again;
3992	}
3993
3994	event = rb_iter_head_event(iter);
 
 
3995
3996	switch (event->type_len) {
3997	case RINGBUF_TYPE_PADDING:
3998		if (rb_null_event(event)) {
3999			rb_inc_iter(iter);
4000			goto again;
4001		}
4002		rb_advance_iter(iter);
4003		return event;
4004
4005	case RINGBUF_TYPE_TIME_EXTEND:
4006		/* Internal data, OK to advance */
4007		rb_advance_iter(iter);
4008		goto again;
4009
4010	case RINGBUF_TYPE_TIME_STAMP:
4011		if (ts) {
4012			*ts = ring_buffer_event_time_stamp(event);
4013			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4014							 cpu_buffer->cpu, ts);
4015		}
4016		/* Internal data, OK to advance */
4017		rb_advance_iter(iter);
4018		goto again;
4019
4020	case RINGBUF_TYPE_DATA:
4021		if (ts && !(*ts)) {
4022			*ts = iter->read_stamp + event->time_delta;
4023			ring_buffer_normalize_time_stamp(buffer,
4024							 cpu_buffer->cpu, ts);
4025		}
4026		return event;
4027
4028	default:
4029		BUG();
4030	}
4031
4032	return NULL;
4033}
4034EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4035
4036static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4037{
4038	if (likely(!in_nmi())) {
4039		raw_spin_lock(&cpu_buffer->reader_lock);
4040		return true;
4041	}
4042
4043	/*
4044	 * If an NMI die dumps out the content of the ring buffer
4045	 * trylock must be used to prevent a deadlock if the NMI
4046	 * preempted a task that holds the ring buffer locks. If
4047	 * we get the lock then all is fine, if not, then continue
4048	 * to do the read, but this can corrupt the ring buffer,
4049	 * so it must be permanently disabled from future writes.
4050	 * Reading from NMI is a oneshot deal.
4051	 */
4052	if (raw_spin_trylock(&cpu_buffer->reader_lock))
4053		return true;
4054
4055	/* Continue without locking, but disable the ring buffer */
4056	atomic_inc(&cpu_buffer->record_disabled);
4057	return false;
4058}
4059
4060static inline void
4061rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4062{
4063	if (likely(locked))
4064		raw_spin_unlock(&cpu_buffer->reader_lock);
4065	return;
4066}
4067
4068/**
4069 * ring_buffer_peek - peek at the next event to be read
4070 * @buffer: The ring buffer to read
4071 * @cpu: The cpu to peak at
4072 * @ts: The timestamp counter of this event.
4073 * @lost_events: a variable to store if events were lost (may be NULL)
4074 *
4075 * This will return the event that will be read next, but does
4076 * not consume the data.
4077 */
4078struct ring_buffer_event *
4079ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
4080		 unsigned long *lost_events)
4081{
4082	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4083	struct ring_buffer_event *event;
4084	unsigned long flags;
4085	bool dolock;
4086
4087	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4088		return NULL;
4089
4090 again:
4091	local_irq_save(flags);
4092	dolock = rb_reader_lock(cpu_buffer);
4093	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4094	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4095		rb_advance_reader(cpu_buffer);
4096	rb_reader_unlock(cpu_buffer, dolock);
4097	local_irq_restore(flags);
4098
4099	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4100		goto again;
4101
4102	return event;
4103}
4104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4105/**
4106 * ring_buffer_iter_peek - peek at the next event to be read
4107 * @iter: The ring buffer iterator
4108 * @ts: The timestamp counter of this event.
4109 *
4110 * This will return the event that will be read next, but does
4111 * not increment the iterator.
4112 */
4113struct ring_buffer_event *
4114ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4115{
4116	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4117	struct ring_buffer_event *event;
4118	unsigned long flags;
4119
4120 again:
4121	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4122	event = rb_iter_peek(iter, ts);
4123	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4124
4125	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4126		goto again;
4127
4128	return event;
4129}
4130
4131/**
4132 * ring_buffer_consume - return an event and consume it
4133 * @buffer: The ring buffer to get the next event from
4134 * @cpu: the cpu to read the buffer from
4135 * @ts: a variable to store the timestamp (may be NULL)
4136 * @lost_events: a variable to store if events were lost (may be NULL)
4137 *
4138 * Returns the next event in the ring buffer, and that event is consumed.
4139 * Meaning, that sequential reads will keep returning a different event,
4140 * and eventually empty the ring buffer if the producer is slower.
4141 */
4142struct ring_buffer_event *
4143ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
4144		    unsigned long *lost_events)
4145{
4146	struct ring_buffer_per_cpu *cpu_buffer;
4147	struct ring_buffer_event *event = NULL;
4148	unsigned long flags;
4149	bool dolock;
4150
4151 again:
4152	/* might be called in atomic */
4153	preempt_disable();
4154
4155	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4156		goto out;
4157
4158	cpu_buffer = buffer->buffers[cpu];
4159	local_irq_save(flags);
4160	dolock = rb_reader_lock(cpu_buffer);
4161
4162	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4163	if (event) {
4164		cpu_buffer->lost_events = 0;
4165		rb_advance_reader(cpu_buffer);
4166	}
4167
4168	rb_reader_unlock(cpu_buffer, dolock);
4169	local_irq_restore(flags);
4170
4171 out:
4172	preempt_enable();
4173
4174	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4175		goto again;
4176
4177	return event;
4178}
4179EXPORT_SYMBOL_GPL(ring_buffer_consume);
4180
4181/**
4182 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4183 * @buffer: The ring buffer to read from
4184 * @cpu: The cpu buffer to iterate over
4185 * @flags: gfp flags to use for memory allocation
4186 *
4187 * This performs the initial preparations necessary to iterate
4188 * through the buffer.  Memory is allocated, buffer recording
4189 * is disabled, and the iterator pointer is returned to the caller.
4190 *
4191 * Disabling buffer recording prevents the reading from being
4192 * corrupted. This is not a consuming read, so a producer is not
4193 * expected.
4194 *
4195 * After a sequence of ring_buffer_read_prepare calls, the user is
4196 * expected to make at least one call to ring_buffer_read_prepare_sync.
4197 * Afterwards, ring_buffer_read_start is invoked to get things going
4198 * for real.
4199 *
4200 * This overall must be paired with ring_buffer_read_finish.
4201 */
4202struct ring_buffer_iter *
4203ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu, gfp_t flags)
4204{
4205	struct ring_buffer_per_cpu *cpu_buffer;
4206	struct ring_buffer_iter *iter;
4207
4208	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4209		return NULL;
4210
4211	iter = kmalloc(sizeof(*iter), flags);
4212	if (!iter)
4213		return NULL;
4214
 
 
 
 
 
 
4215	cpu_buffer = buffer->buffers[cpu];
4216
4217	iter->cpu_buffer = cpu_buffer;
4218
4219	atomic_inc(&buffer->resize_disabled);
4220	atomic_inc(&cpu_buffer->record_disabled);
4221
4222	return iter;
4223}
4224EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4225
4226/**
4227 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4228 *
4229 * All previously invoked ring_buffer_read_prepare calls to prepare
4230 * iterators will be synchronized.  Afterwards, read_buffer_read_start
4231 * calls on those iterators are allowed.
4232 */
4233void
4234ring_buffer_read_prepare_sync(void)
4235{
4236	synchronize_rcu();
4237}
4238EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4239
4240/**
4241 * ring_buffer_read_start - start a non consuming read of the buffer
4242 * @iter: The iterator returned by ring_buffer_read_prepare
4243 *
4244 * This finalizes the startup of an iteration through the buffer.
4245 * The iterator comes from a call to ring_buffer_read_prepare and
4246 * an intervening ring_buffer_read_prepare_sync must have been
4247 * performed.
4248 *
4249 * Must be paired with ring_buffer_read_finish.
4250 */
4251void
4252ring_buffer_read_start(struct ring_buffer_iter *iter)
4253{
4254	struct ring_buffer_per_cpu *cpu_buffer;
4255	unsigned long flags;
4256
4257	if (!iter)
4258		return;
4259
4260	cpu_buffer = iter->cpu_buffer;
4261
4262	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4263	arch_spin_lock(&cpu_buffer->lock);
4264	rb_iter_reset(iter);
4265	arch_spin_unlock(&cpu_buffer->lock);
4266	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4267}
4268EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4269
4270/**
4271 * ring_buffer_read_finish - finish reading the iterator of the buffer
4272 * @iter: The iterator retrieved by ring_buffer_start
4273 *
4274 * This re-enables the recording to the buffer, and frees the
4275 * iterator.
4276 */
4277void
4278ring_buffer_read_finish(struct ring_buffer_iter *iter)
4279{
4280	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4281	unsigned long flags;
4282
4283	/*
4284	 * Ring buffer is disabled from recording, here's a good place
4285	 * to check the integrity of the ring buffer.
4286	 * Must prevent readers from trying to read, as the check
4287	 * clears the HEAD page and readers require it.
4288	 */
4289	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4290	rb_check_pages(cpu_buffer);
4291	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4292
4293	atomic_dec(&cpu_buffer->record_disabled);
4294	atomic_dec(&cpu_buffer->buffer->resize_disabled);
4295	kfree(iter);
4296}
4297EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4298
4299/**
4300 * ring_buffer_read - read the next item in the ring buffer by the iterator
4301 * @iter: The ring buffer iterator
4302 * @ts: The time stamp of the event read.
4303 *
4304 * This reads the next event in the ring buffer and increments the iterator.
 
4305 */
4306struct ring_buffer_event *
4307ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4308{
4309	struct ring_buffer_event *event;
4310	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4311	unsigned long flags;
4312
4313	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4314 again:
4315	event = rb_iter_peek(iter, ts);
4316	if (!event)
4317		goto out;
4318
4319	if (event->type_len == RINGBUF_TYPE_PADDING)
4320		goto again;
4321
4322	rb_advance_iter(iter);
4323 out:
4324	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4325
4326	return event;
4327}
4328EXPORT_SYMBOL_GPL(ring_buffer_read);
4329
4330/**
4331 * ring_buffer_size - return the size of the ring buffer (in bytes)
4332 * @buffer: The ring buffer.
 
4333 */
4334unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4335{
4336	/*
4337	 * Earlier, this method returned
4338	 *	BUF_PAGE_SIZE * buffer->nr_pages
4339	 * Since the nr_pages field is now removed, we have converted this to
4340	 * return the per cpu buffer value.
4341	 */
4342	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4343		return 0;
4344
4345	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4346}
4347EXPORT_SYMBOL_GPL(ring_buffer_size);
4348
4349static void
4350rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4351{
4352	rb_head_page_deactivate(cpu_buffer);
4353
4354	cpu_buffer->head_page
4355		= list_entry(cpu_buffer->pages, struct buffer_page, list);
4356	local_set(&cpu_buffer->head_page->write, 0);
4357	local_set(&cpu_buffer->head_page->entries, 0);
4358	local_set(&cpu_buffer->head_page->page->commit, 0);
4359
4360	cpu_buffer->head_page->read = 0;
4361
4362	cpu_buffer->tail_page = cpu_buffer->head_page;
4363	cpu_buffer->commit_page = cpu_buffer->head_page;
4364
4365	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4366	INIT_LIST_HEAD(&cpu_buffer->new_pages);
4367	local_set(&cpu_buffer->reader_page->write, 0);
4368	local_set(&cpu_buffer->reader_page->entries, 0);
4369	local_set(&cpu_buffer->reader_page->page->commit, 0);
4370	cpu_buffer->reader_page->read = 0;
4371
4372	local_set(&cpu_buffer->entries_bytes, 0);
4373	local_set(&cpu_buffer->overrun, 0);
4374	local_set(&cpu_buffer->commit_overrun, 0);
4375	local_set(&cpu_buffer->dropped_events, 0);
4376	local_set(&cpu_buffer->entries, 0);
4377	local_set(&cpu_buffer->committing, 0);
4378	local_set(&cpu_buffer->commits, 0);
4379	local_set(&cpu_buffer->pages_touched, 0);
4380	local_set(&cpu_buffer->pages_read, 0);
4381	cpu_buffer->last_pages_touch = 0;
4382	cpu_buffer->shortest_full = 0;
4383	cpu_buffer->read = 0;
4384	cpu_buffer->read_bytes = 0;
4385
4386	cpu_buffer->write_stamp = 0;
4387	cpu_buffer->read_stamp = 0;
4388
4389	cpu_buffer->lost_events = 0;
4390	cpu_buffer->last_overrun = 0;
4391
4392	rb_head_page_activate(cpu_buffer);
4393}
4394
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4395/**
4396 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4397 * @buffer: The ring buffer to reset a per cpu buffer of
4398 * @cpu: The CPU buffer to be reset
4399 */
4400void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4401{
4402	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4403	unsigned long flags;
4404
4405	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4406		return;
4407
4408	atomic_inc(&buffer->resize_disabled);
4409	atomic_inc(&cpu_buffer->record_disabled);
4410
4411	/* Make sure all commits have finished */
4412	synchronize_rcu();
4413
4414	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4415
4416	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4417		goto out;
 
 
4418
4419	arch_spin_lock(&cpu_buffer->lock);
 
 
 
 
 
 
 
 
4420
4421	rb_reset_cpu(cpu_buffer);
 
4422
4423	arch_spin_unlock(&cpu_buffer->lock);
 
 
4424
4425 out:
4426	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4427
4428	atomic_dec(&cpu_buffer->record_disabled);
4429	atomic_dec(&buffer->resize_disabled);
 
 
 
 
 
 
4430}
4431EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4432
4433/**
4434 * ring_buffer_reset - reset a ring buffer
4435 * @buffer: The ring buffer to reset all cpu buffers
4436 */
4437void ring_buffer_reset(struct ring_buffer *buffer)
4438{
 
4439	int cpu;
4440
4441	for_each_buffer_cpu(buffer, cpu)
4442		ring_buffer_reset_cpu(buffer, cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4443}
4444EXPORT_SYMBOL_GPL(ring_buffer_reset);
4445
4446/**
4447 * rind_buffer_empty - is the ring buffer empty?
4448 * @buffer: The ring buffer to test
4449 */
4450bool ring_buffer_empty(struct ring_buffer *buffer)
4451{
4452	struct ring_buffer_per_cpu *cpu_buffer;
4453	unsigned long flags;
4454	bool dolock;
4455	int cpu;
4456	int ret;
4457
4458	/* yes this is racy, but if you don't like the race, lock the buffer */
4459	for_each_buffer_cpu(buffer, cpu) {
4460		cpu_buffer = buffer->buffers[cpu];
4461		local_irq_save(flags);
4462		dolock = rb_reader_lock(cpu_buffer);
4463		ret = rb_per_cpu_empty(cpu_buffer);
4464		rb_reader_unlock(cpu_buffer, dolock);
4465		local_irq_restore(flags);
4466
4467		if (!ret)
4468			return false;
4469	}
4470
4471	return true;
4472}
4473EXPORT_SYMBOL_GPL(ring_buffer_empty);
4474
4475/**
4476 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4477 * @buffer: The ring buffer
4478 * @cpu: The CPU buffer to test
4479 */
4480bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4481{
4482	struct ring_buffer_per_cpu *cpu_buffer;
4483	unsigned long flags;
4484	bool dolock;
4485	int ret;
4486
4487	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4488		return true;
4489
4490	cpu_buffer = buffer->buffers[cpu];
4491	local_irq_save(flags);
4492	dolock = rb_reader_lock(cpu_buffer);
4493	ret = rb_per_cpu_empty(cpu_buffer);
4494	rb_reader_unlock(cpu_buffer, dolock);
4495	local_irq_restore(flags);
4496
4497	return ret;
4498}
4499EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4500
4501#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4502/**
4503 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4504 * @buffer_a: One buffer to swap with
4505 * @buffer_b: The other buffer to swap with
 
4506 *
4507 * This function is useful for tracers that want to take a "snapshot"
4508 * of a CPU buffer and has another back up buffer lying around.
4509 * it is expected that the tracer handles the cpu buffer not being
4510 * used at the moment.
4511 */
4512int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4513			 struct ring_buffer *buffer_b, int cpu)
4514{
4515	struct ring_buffer_per_cpu *cpu_buffer_a;
4516	struct ring_buffer_per_cpu *cpu_buffer_b;
4517	int ret = -EINVAL;
4518
4519	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4520	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
4521		goto out;
4522
4523	cpu_buffer_a = buffer_a->buffers[cpu];
4524	cpu_buffer_b = buffer_b->buffers[cpu];
4525
4526	/* At least make sure the two buffers are somewhat the same */
4527	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4528		goto out;
4529
4530	ret = -EAGAIN;
4531
4532	if (atomic_read(&buffer_a->record_disabled))
4533		goto out;
4534
4535	if (atomic_read(&buffer_b->record_disabled))
4536		goto out;
4537
4538	if (atomic_read(&cpu_buffer_a->record_disabled))
4539		goto out;
4540
4541	if (atomic_read(&cpu_buffer_b->record_disabled))
4542		goto out;
4543
4544	/*
4545	 * We can't do a synchronize_rcu here because this
4546	 * function can be called in atomic context.
4547	 * Normally this will be called from the same CPU as cpu.
4548	 * If not it's up to the caller to protect this.
4549	 */
4550	atomic_inc(&cpu_buffer_a->record_disabled);
4551	atomic_inc(&cpu_buffer_b->record_disabled);
4552
4553	ret = -EBUSY;
4554	if (local_read(&cpu_buffer_a->committing))
4555		goto out_dec;
4556	if (local_read(&cpu_buffer_b->committing))
4557		goto out_dec;
4558
4559	buffer_a->buffers[cpu] = cpu_buffer_b;
4560	buffer_b->buffers[cpu] = cpu_buffer_a;
4561
4562	cpu_buffer_b->buffer = buffer_a;
4563	cpu_buffer_a->buffer = buffer_b;
4564
4565	ret = 0;
4566
4567out_dec:
4568	atomic_dec(&cpu_buffer_a->record_disabled);
4569	atomic_dec(&cpu_buffer_b->record_disabled);
4570out:
4571	return ret;
4572}
4573EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4574#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4575
4576/**
4577 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4578 * @buffer: the buffer to allocate for.
4579 * @cpu: the cpu buffer to allocate.
4580 *
4581 * This function is used in conjunction with ring_buffer_read_page.
4582 * When reading a full page from the ring buffer, these functions
4583 * can be used to speed up the process. The calling function should
4584 * allocate a few pages first with this function. Then when it
4585 * needs to get pages from the ring buffer, it passes the result
4586 * of this function into ring_buffer_read_page, which will swap
4587 * the page that was allocated, with the read page of the buffer.
4588 *
4589 * Returns:
4590 *  The page allocated, or ERR_PTR
4591 */
4592void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4593{
4594	struct ring_buffer_per_cpu *cpu_buffer;
4595	struct buffer_data_page *bpage = NULL;
4596	unsigned long flags;
4597	struct page *page;
4598
4599	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4600		return ERR_PTR(-ENODEV);
4601
4602	cpu_buffer = buffer->buffers[cpu];
4603	local_irq_save(flags);
4604	arch_spin_lock(&cpu_buffer->lock);
4605
4606	if (cpu_buffer->free_page) {
4607		bpage = cpu_buffer->free_page;
4608		cpu_buffer->free_page = NULL;
4609	}
4610
4611	arch_spin_unlock(&cpu_buffer->lock);
4612	local_irq_restore(flags);
4613
4614	if (bpage)
4615		goto out;
4616
4617	page = alloc_pages_node(cpu_to_node(cpu),
4618				GFP_KERNEL | __GFP_NORETRY, 0);
4619	if (!page)
4620		return ERR_PTR(-ENOMEM);
4621
4622	bpage = page_address(page);
4623
4624 out:
4625	rb_init_page(bpage);
4626
4627	return bpage;
4628}
4629EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4630
4631/**
4632 * ring_buffer_free_read_page - free an allocated read page
4633 * @buffer: the buffer the page was allocate for
4634 * @cpu: the cpu buffer the page came from
4635 * @data: the page to free
4636 *
4637 * Free a page allocated from ring_buffer_alloc_read_page.
4638 */
4639void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data)
4640{
4641	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4642	struct buffer_data_page *bpage = data;
4643	struct page *page = virt_to_page(bpage);
4644	unsigned long flags;
4645
4646	/* If the page is still in use someplace else, we can't reuse it */
4647	if (page_ref_count(page) > 1)
4648		goto out;
4649
4650	local_irq_save(flags);
4651	arch_spin_lock(&cpu_buffer->lock);
4652
4653	if (!cpu_buffer->free_page) {
4654		cpu_buffer->free_page = bpage;
4655		bpage = NULL;
4656	}
4657
4658	arch_spin_unlock(&cpu_buffer->lock);
4659	local_irq_restore(flags);
4660
4661 out:
4662	free_page((unsigned long)bpage);
4663}
4664EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4665
4666/**
4667 * ring_buffer_read_page - extract a page from the ring buffer
4668 * @buffer: buffer to extract from
4669 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4670 * @len: amount to extract
4671 * @cpu: the cpu of the buffer to extract
4672 * @full: should the extraction only happen when the page is full.
4673 *
4674 * This function will pull out a page from the ring buffer and consume it.
4675 * @data_page must be the address of the variable that was returned
4676 * from ring_buffer_alloc_read_page. This is because the page might be used
4677 * to swap with a page in the ring buffer.
4678 *
4679 * for example:
4680 *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
4681 *	if (IS_ERR(rpage))
4682 *		return PTR_ERR(rpage);
4683 *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4684 *	if (ret >= 0)
4685 *		process_page(rpage, ret);
4686 *
4687 * When @full is set, the function will not return true unless
4688 * the writer is off the reader page.
4689 *
4690 * Note: it is up to the calling functions to handle sleeps and wakeups.
4691 *  The ring buffer can be used anywhere in the kernel and can not
4692 *  blindly call wake_up. The layer that uses the ring buffer must be
4693 *  responsible for that.
4694 *
4695 * Returns:
4696 *  >=0 if data has been transferred, returns the offset of consumed data.
4697 *  <0 if no data has been transferred.
4698 */
4699int ring_buffer_read_page(struct ring_buffer *buffer,
4700			  void **data_page, size_t len, int cpu, int full)
4701{
4702	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4703	struct ring_buffer_event *event;
4704	struct buffer_data_page *bpage;
4705	struct buffer_page *reader;
4706	unsigned long missed_events;
4707	unsigned long flags;
4708	unsigned int commit;
4709	unsigned int read;
4710	u64 save_timestamp;
4711	int ret = -1;
4712
4713	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4714		goto out;
4715
4716	/*
4717	 * If len is not big enough to hold the page header, then
4718	 * we can not copy anything.
4719	 */
4720	if (len <= BUF_PAGE_HDR_SIZE)
4721		goto out;
4722
4723	len -= BUF_PAGE_HDR_SIZE;
4724
4725	if (!data_page)
4726		goto out;
4727
4728	bpage = *data_page;
4729	if (!bpage)
4730		goto out;
4731
4732	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4733
4734	reader = rb_get_reader_page(cpu_buffer);
4735	if (!reader)
4736		goto out_unlock;
4737
4738	event = rb_reader_event(cpu_buffer);
4739
4740	read = reader->read;
4741	commit = rb_page_commit(reader);
4742
4743	/* Check if any events were dropped */
4744	missed_events = cpu_buffer->lost_events;
4745
4746	/*
4747	 * If this page has been partially read or
4748	 * if len is not big enough to read the rest of the page or
4749	 * a writer is still on the page, then
4750	 * we must copy the data from the page to the buffer.
4751	 * Otherwise, we can simply swap the page with the one passed in.
4752	 */
4753	if (read || (len < (commit - read)) ||
4754	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
4755		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4756		unsigned int rpos = read;
4757		unsigned int pos = 0;
4758		unsigned int size;
4759
4760		if (full)
4761			goto out_unlock;
4762
4763		if (len > (commit - read))
4764			len = (commit - read);
4765
4766		/* Always keep the time extend and data together */
4767		size = rb_event_ts_length(event);
4768
4769		if (len < size)
4770			goto out_unlock;
4771
4772		/* save the current timestamp, since the user will need it */
4773		save_timestamp = cpu_buffer->read_stamp;
4774
4775		/* Need to copy one event at a time */
4776		do {
4777			/* We need the size of one event, because
4778			 * rb_advance_reader only advances by one event,
4779			 * whereas rb_event_ts_length may include the size of
4780			 * one or two events.
4781			 * We have already ensured there's enough space if this
4782			 * is a time extend. */
4783			size = rb_event_length(event);
4784			memcpy(bpage->data + pos, rpage->data + rpos, size);
4785
4786			len -= size;
4787
4788			rb_advance_reader(cpu_buffer);
4789			rpos = reader->read;
4790			pos += size;
4791
4792			if (rpos >= commit)
4793				break;
4794
4795			event = rb_reader_event(cpu_buffer);
4796			/* Always keep the time extend and data together */
4797			size = rb_event_ts_length(event);
4798		} while (len >= size);
4799
4800		/* update bpage */
4801		local_set(&bpage->commit, pos);
4802		bpage->time_stamp = save_timestamp;
4803
4804		/* we copied everything to the beginning */
4805		read = 0;
4806	} else {
4807		/* update the entry counter */
4808		cpu_buffer->read += rb_page_entries(reader);
4809		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4810
4811		/* swap the pages */
4812		rb_init_page(bpage);
4813		bpage = reader->page;
4814		reader->page = *data_page;
4815		local_set(&reader->write, 0);
4816		local_set(&reader->entries, 0);
4817		reader->read = 0;
4818		*data_page = bpage;
4819
4820		/*
4821		 * Use the real_end for the data size,
4822		 * This gives us a chance to store the lost events
4823		 * on the page.
4824		 */
4825		if (reader->real_end)
4826			local_set(&bpage->commit, reader->real_end);
4827	}
4828	ret = read;
4829
4830	cpu_buffer->lost_events = 0;
4831
4832	commit = local_read(&bpage->commit);
4833	/*
4834	 * Set a flag in the commit field if we lost events
4835	 */
4836	if (missed_events) {
4837		/* If there is room at the end of the page to save the
4838		 * missed events, then record it there.
4839		 */
4840		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4841			memcpy(&bpage->data[commit], &missed_events,
4842			       sizeof(missed_events));
4843			local_add(RB_MISSED_STORED, &bpage->commit);
4844			commit += sizeof(missed_events);
4845		}
4846		local_add(RB_MISSED_EVENTS, &bpage->commit);
4847	}
4848
4849	/*
4850	 * This page may be off to user land. Zero it out here.
4851	 */
4852	if (commit < BUF_PAGE_SIZE)
4853		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4854
4855 out_unlock:
4856	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4857
4858 out:
4859	return ret;
4860}
4861EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4862
4863/*
4864 * We only allocate new buffers, never free them if the CPU goes down.
4865 * If we were to free the buffer, then the user would lose any trace that was in
4866 * the buffer.
4867 */
4868int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4869{
4870	struct ring_buffer *buffer;
4871	long nr_pages_same;
4872	int cpu_i;
4873	unsigned long nr_pages;
4874
4875	buffer = container_of(node, struct ring_buffer, node);
4876	if (cpumask_test_cpu(cpu, buffer->cpumask))
4877		return 0;
4878
4879	nr_pages = 0;
4880	nr_pages_same = 1;
4881	/* check if all cpu sizes are same */
4882	for_each_buffer_cpu(buffer, cpu_i) {
4883		/* fill in the size from first enabled cpu */
4884		if (nr_pages == 0)
4885			nr_pages = buffer->buffers[cpu_i]->nr_pages;
4886		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4887			nr_pages_same = 0;
4888			break;
4889		}
4890	}
4891	/* allocate minimum pages, user can later expand it */
4892	if (!nr_pages_same)
4893		nr_pages = 2;
4894	buffer->buffers[cpu] =
4895		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4896	if (!buffer->buffers[cpu]) {
4897		WARN(1, "failed to allocate ring buffer on CPU %u\n",
4898		     cpu);
4899		return -ENOMEM;
4900	}
4901	smp_wmb();
4902	cpumask_set_cpu(cpu, buffer->cpumask);
4903	return 0;
4904}
4905
4906#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4907/*
4908 * This is a basic integrity check of the ring buffer.
4909 * Late in the boot cycle this test will run when configured in.
4910 * It will kick off a thread per CPU that will go into a loop
4911 * writing to the per cpu ring buffer various sizes of data.
4912 * Some of the data will be large items, some small.
4913 *
4914 * Another thread is created that goes into a spin, sending out
4915 * IPIs to the other CPUs to also write into the ring buffer.
4916 * this is to test the nesting ability of the buffer.
4917 *
4918 * Basic stats are recorded and reported. If something in the
4919 * ring buffer should happen that's not expected, a big warning
4920 * is displayed and all ring buffers are disabled.
4921 */
4922static struct task_struct *rb_threads[NR_CPUS] __initdata;
4923
4924struct rb_test_data {
4925	struct ring_buffer	*buffer;
4926	unsigned long		events;
4927	unsigned long		bytes_written;
4928	unsigned long		bytes_alloc;
4929	unsigned long		bytes_dropped;
4930	unsigned long		events_nested;
4931	unsigned long		bytes_written_nested;
4932	unsigned long		bytes_alloc_nested;
4933	unsigned long		bytes_dropped_nested;
4934	int			min_size_nested;
4935	int			max_size_nested;
4936	int			max_size;
4937	int			min_size;
4938	int			cpu;
4939	int			cnt;
4940};
4941
4942static struct rb_test_data rb_data[NR_CPUS] __initdata;
4943
4944/* 1 meg per cpu */
4945#define RB_TEST_BUFFER_SIZE	1048576
4946
4947static char rb_string[] __initdata =
4948	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4949	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4950	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4951
4952static bool rb_test_started __initdata;
4953
4954struct rb_item {
4955	int size;
4956	char str[];
4957};
4958
4959static __init int rb_write_something(struct rb_test_data *data, bool nested)
4960{
4961	struct ring_buffer_event *event;
4962	struct rb_item *item;
4963	bool started;
4964	int event_len;
4965	int size;
4966	int len;
4967	int cnt;
4968
4969	/* Have nested writes different that what is written */
4970	cnt = data->cnt + (nested ? 27 : 0);
4971
4972	/* Multiply cnt by ~e, to make some unique increment */
4973	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
4974
4975	len = size + sizeof(struct rb_item);
4976
4977	started = rb_test_started;
4978	/* read rb_test_started before checking buffer enabled */
4979	smp_rmb();
4980
4981	event = ring_buffer_lock_reserve(data->buffer, len);
4982	if (!event) {
4983		/* Ignore dropped events before test starts. */
4984		if (started) {
4985			if (nested)
4986				data->bytes_dropped += len;
4987			else
4988				data->bytes_dropped_nested += len;
4989		}
4990		return len;
4991	}
4992
4993	event_len = ring_buffer_event_length(event);
4994
4995	if (RB_WARN_ON(data->buffer, event_len < len))
4996		goto out;
4997
4998	item = ring_buffer_event_data(event);
4999	item->size = size;
5000	memcpy(item->str, rb_string, size);
5001
5002	if (nested) {
5003		data->bytes_alloc_nested += event_len;
5004		data->bytes_written_nested += len;
5005		data->events_nested++;
5006		if (!data->min_size_nested || len < data->min_size_nested)
5007			data->min_size_nested = len;
5008		if (len > data->max_size_nested)
5009			data->max_size_nested = len;
5010	} else {
5011		data->bytes_alloc += event_len;
5012		data->bytes_written += len;
5013		data->events++;
5014		if (!data->min_size || len < data->min_size)
5015			data->max_size = len;
5016		if (len > data->max_size)
5017			data->max_size = len;
5018	}
5019
5020 out:
5021	ring_buffer_unlock_commit(data->buffer, event);
5022
5023	return 0;
5024}
5025
5026static __init int rb_test(void *arg)
5027{
5028	struct rb_test_data *data = arg;
5029
5030	while (!kthread_should_stop()) {
5031		rb_write_something(data, false);
5032		data->cnt++;
5033
5034		set_current_state(TASK_INTERRUPTIBLE);
5035		/* Now sleep between a min of 100-300us and a max of 1ms */
5036		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
5037	}
5038
5039	return 0;
5040}
5041
5042static __init void rb_ipi(void *ignore)
5043{
5044	struct rb_test_data *data;
5045	int cpu = smp_processor_id();
5046
5047	data = &rb_data[cpu];
5048	rb_write_something(data, true);
5049}
5050
5051static __init int rb_hammer_test(void *arg)
5052{
5053	while (!kthread_should_stop()) {
5054
5055		/* Send an IPI to all cpus to write data! */
5056		smp_call_function(rb_ipi, NULL, 1);
5057		/* No sleep, but for non preempt, let others run */
5058		schedule();
5059	}
5060
5061	return 0;
5062}
5063
5064static __init int test_ringbuffer(void)
5065{
5066	struct task_struct *rb_hammer;
5067	struct ring_buffer *buffer;
5068	int cpu;
5069	int ret = 0;
 
 
 
 
 
5070
5071	pr_info("Running ring buffer tests...\n");
5072
5073	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5074	if (WARN_ON(!buffer))
5075		return 0;
5076
5077	/* Disable buffer so that threads can't write to it yet */
5078	ring_buffer_record_off(buffer);
5079
5080	for_each_online_cpu(cpu) {
5081		rb_data[cpu].buffer = buffer;
5082		rb_data[cpu].cpu = cpu;
5083		rb_data[cpu].cnt = cpu;
5084		rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5085						 "rbtester/%d", cpu);
5086		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5087			pr_cont("FAILED\n");
5088			ret = PTR_ERR(rb_threads[cpu]);
5089			goto out_free;
5090		}
5091
5092		kthread_bind(rb_threads[cpu], cpu);
5093 		wake_up_process(rb_threads[cpu]);
5094	}
5095
5096	/* Now create the rb hammer! */
5097	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5098	if (WARN_ON(IS_ERR(rb_hammer))) {
5099		pr_cont("FAILED\n");
5100		ret = PTR_ERR(rb_hammer);
5101		goto out_free;
5102	}
5103
5104	ring_buffer_record_on(buffer);
5105	/*
5106	 * Show buffer is enabled before setting rb_test_started.
5107	 * Yes there's a small race window where events could be
5108	 * dropped and the thread wont catch it. But when a ring
5109	 * buffer gets enabled, there will always be some kind of
5110	 * delay before other CPUs see it. Thus, we don't care about
5111	 * those dropped events. We care about events dropped after
5112	 * the threads see that the buffer is active.
5113	 */
5114	smp_wmb();
5115	rb_test_started = true;
5116
5117	set_current_state(TASK_INTERRUPTIBLE);
5118	/* Just run for 10 seconds */;
5119	schedule_timeout(10 * HZ);
5120
5121	kthread_stop(rb_hammer);
5122
5123 out_free:
5124	for_each_online_cpu(cpu) {
5125		if (!rb_threads[cpu])
5126			break;
5127		kthread_stop(rb_threads[cpu]);
5128	}
5129	if (ret) {
5130		ring_buffer_free(buffer);
5131		return ret;
5132	}
5133
5134	/* Report! */
5135	pr_info("finished\n");
5136	for_each_online_cpu(cpu) {
5137		struct ring_buffer_event *event;
5138		struct rb_test_data *data = &rb_data[cpu];
5139		struct rb_item *item;
5140		unsigned long total_events;
5141		unsigned long total_dropped;
5142		unsigned long total_written;
5143		unsigned long total_alloc;
5144		unsigned long total_read = 0;
5145		unsigned long total_size = 0;
5146		unsigned long total_len = 0;
5147		unsigned long total_lost = 0;
5148		unsigned long lost;
5149		int big_event_size;
5150		int small_event_size;
5151
5152		ret = -1;
5153
5154		total_events = data->events + data->events_nested;
5155		total_written = data->bytes_written + data->bytes_written_nested;
5156		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5157		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5158
5159		big_event_size = data->max_size + data->max_size_nested;
5160		small_event_size = data->min_size + data->min_size_nested;
5161
5162		pr_info("CPU %d:\n", cpu);
5163		pr_info("              events:    %ld\n", total_events);
5164		pr_info("       dropped bytes:    %ld\n", total_dropped);
5165		pr_info("       alloced bytes:    %ld\n", total_alloc);
5166		pr_info("       written bytes:    %ld\n", total_written);
5167		pr_info("       biggest event:    %d\n", big_event_size);
5168		pr_info("      smallest event:    %d\n", small_event_size);
5169
5170		if (RB_WARN_ON(buffer, total_dropped))
5171			break;
5172
5173		ret = 0;
5174
5175		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5176			total_lost += lost;
5177			item = ring_buffer_event_data(event);
5178			total_len += ring_buffer_event_length(event);
5179			total_size += item->size + sizeof(struct rb_item);
5180			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5181				pr_info("FAILED!\n");
5182				pr_info("buffer had: %.*s\n", item->size, item->str);
5183				pr_info("expected:   %.*s\n", item->size, rb_string);
5184				RB_WARN_ON(buffer, 1);
5185				ret = -1;
5186				break;
5187			}
5188			total_read++;
5189		}
5190		if (ret)
5191			break;
5192
5193		ret = -1;
5194
5195		pr_info("         read events:   %ld\n", total_read);
5196		pr_info("         lost events:   %ld\n", total_lost);
5197		pr_info("        total events:   %ld\n", total_lost + total_read);
5198		pr_info("  recorded len bytes:   %ld\n", total_len);
5199		pr_info(" recorded size bytes:   %ld\n", total_size);
5200		if (total_lost)
5201			pr_info(" With dropped events, record len and size may not match\n"
5202				" alloced and written from above\n");
5203		if (!total_lost) {
5204			if (RB_WARN_ON(buffer, total_len != total_alloc ||
5205				       total_size != total_written))
5206				break;
5207		}
5208		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5209			break;
5210
5211		ret = 0;
5212	}
5213	if (!ret)
5214		pr_info("Ring buffer PASSED!\n");
5215
5216	ring_buffer_free(buffer);
5217	return 0;
5218}
5219
5220late_initcall(test_ringbuffer);
5221#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Generic ring buffer
   4 *
   5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
   6 */
   7#include <linux/trace_events.h>
   8#include <linux/ring_buffer.h>
   9#include <linux/trace_clock.h>
  10#include <linux/sched/clock.h>
  11#include <linux/trace_seq.h>
  12#include <linux/spinlock.h>
  13#include <linux/irq_work.h>
  14#include <linux/security.h>
  15#include <linux/uaccess.h>
  16#include <linux/hardirq.h>
  17#include <linux/kthread.h>	/* for self test */
  18#include <linux/module.h>
  19#include <linux/percpu.h>
  20#include <linux/mutex.h>
  21#include <linux/delay.h>
  22#include <linux/slab.h>
  23#include <linux/init.h>
  24#include <linux/hash.h>
  25#include <linux/list.h>
  26#include <linux/cpu.h>
  27#include <linux/oom.h>
  28
  29#include <asm/local.h>
  30
  31static void update_pages_handler(struct work_struct *work);
  32
  33/*
  34 * The ring buffer header is special. We must manually up keep it.
  35 */
  36int ring_buffer_print_entry_header(struct trace_seq *s)
  37{
  38	trace_seq_puts(s, "# compressed entry header\n");
  39	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
  40	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
  41	trace_seq_puts(s, "\tarray       :   32 bits\n");
  42	trace_seq_putc(s, '\n');
  43	trace_seq_printf(s, "\tpadding     : type == %d\n",
  44			 RINGBUF_TYPE_PADDING);
  45	trace_seq_printf(s, "\ttime_extend : type == %d\n",
  46			 RINGBUF_TYPE_TIME_EXTEND);
  47	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
  48			 RINGBUF_TYPE_TIME_STAMP);
  49	trace_seq_printf(s, "\tdata max type_len  == %d\n",
  50			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
  51
  52	return !trace_seq_has_overflowed(s);
  53}
  54
  55/*
  56 * The ring buffer is made up of a list of pages. A separate list of pages is
  57 * allocated for each CPU. A writer may only write to a buffer that is
  58 * associated with the CPU it is currently executing on.  A reader may read
  59 * from any per cpu buffer.
  60 *
  61 * The reader is special. For each per cpu buffer, the reader has its own
  62 * reader page. When a reader has read the entire reader page, this reader
  63 * page is swapped with another page in the ring buffer.
  64 *
  65 * Now, as long as the writer is off the reader page, the reader can do what
  66 * ever it wants with that page. The writer will never write to that page
  67 * again (as long as it is out of the ring buffer).
  68 *
  69 * Here's some silly ASCII art.
  70 *
  71 *   +------+
  72 *   |reader|          RING BUFFER
  73 *   |page  |
  74 *   +------+        +---+   +---+   +---+
  75 *                   |   |-->|   |-->|   |
  76 *                   +---+   +---+   +---+
  77 *                     ^               |
  78 *                     |               |
  79 *                     +---------------+
  80 *
  81 *
  82 *   +------+
  83 *   |reader|          RING BUFFER
  84 *   |page  |------------------v
  85 *   +------+        +---+   +---+   +---+
  86 *                   |   |-->|   |-->|   |
  87 *                   +---+   +---+   +---+
  88 *                     ^               |
  89 *                     |               |
  90 *                     +---------------+
  91 *
  92 *
  93 *   +------+
  94 *   |reader|          RING BUFFER
  95 *   |page  |------------------v
  96 *   +------+        +---+   +---+   +---+
  97 *      ^            |   |-->|   |-->|   |
  98 *      |            +---+   +---+   +---+
  99 *      |                              |
 100 *      |                              |
 101 *      +------------------------------+
 102 *
 103 *
 104 *   +------+
 105 *   |buffer|          RING BUFFER
 106 *   |page  |------------------v
 107 *   +------+        +---+   +---+   +---+
 108 *      ^            |   |   |   |-->|   |
 109 *      |   New      +---+   +---+   +---+
 110 *      |  Reader------^               |
 111 *      |   page                       |
 112 *      +------------------------------+
 113 *
 114 *
 115 * After we make this swap, the reader can hand this page off to the splice
 116 * code and be done with it. It can even allocate a new page if it needs to
 117 * and swap that into the ring buffer.
 118 *
 119 * We will be using cmpxchg soon to make all this lockless.
 120 *
 121 */
 122
 123/* Used for individual buffers (after the counter) */
 124#define RB_BUFFER_OFF		(1 << 20)
 125
 126#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
 127
 128#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
 129#define RB_ALIGNMENT		4U
 130#define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 131#define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
 132#define RB_ALIGN_DATA		__aligned(RB_ALIGNMENT)
 133
 134/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
 135#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
 136
 137enum {
 138	RB_LEN_TIME_EXTEND = 8,
 139	RB_LEN_TIME_STAMP =  8,
 140};
 141
 142#define skip_time_extend(event) \
 143	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
 144
 145#define extended_time(event) \
 146	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
 147
 148static inline int rb_null_event(struct ring_buffer_event *event)
 149{
 150	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
 151}
 152
 153static void rb_event_set_padding(struct ring_buffer_event *event)
 154{
 155	/* padding has a NULL time_delta */
 156	event->type_len = RINGBUF_TYPE_PADDING;
 157	event->time_delta = 0;
 158}
 159
 160static unsigned
 161rb_event_data_length(struct ring_buffer_event *event)
 162{
 163	unsigned length;
 164
 165	if (event->type_len)
 166		length = event->type_len * RB_ALIGNMENT;
 167	else
 168		length = event->array[0];
 169	return length + RB_EVNT_HDR_SIZE;
 170}
 171
 172/*
 173 * Return the length of the given event. Will return
 174 * the length of the time extend if the event is a
 175 * time extend.
 176 */
 177static inline unsigned
 178rb_event_length(struct ring_buffer_event *event)
 179{
 180	switch (event->type_len) {
 181	case RINGBUF_TYPE_PADDING:
 182		if (rb_null_event(event))
 183			/* undefined */
 184			return -1;
 185		return  event->array[0] + RB_EVNT_HDR_SIZE;
 186
 187	case RINGBUF_TYPE_TIME_EXTEND:
 188		return RB_LEN_TIME_EXTEND;
 189
 190	case RINGBUF_TYPE_TIME_STAMP:
 191		return RB_LEN_TIME_STAMP;
 192
 193	case RINGBUF_TYPE_DATA:
 194		return rb_event_data_length(event);
 195	default:
 196		WARN_ON_ONCE(1);
 197	}
 198	/* not hit */
 199	return 0;
 200}
 201
 202/*
 203 * Return total length of time extend and data,
 204 *   or just the event length for all other events.
 205 */
 206static inline unsigned
 207rb_event_ts_length(struct ring_buffer_event *event)
 208{
 209	unsigned len = 0;
 210
 211	if (extended_time(event)) {
 212		/* time extends include the data event after it */
 213		len = RB_LEN_TIME_EXTEND;
 214		event = skip_time_extend(event);
 215	}
 216	return len + rb_event_length(event);
 217}
 218
 219/**
 220 * ring_buffer_event_length - return the length of the event
 221 * @event: the event to get the length of
 222 *
 223 * Returns the size of the data load of a data event.
 224 * If the event is something other than a data event, it
 225 * returns the size of the event itself. With the exception
 226 * of a TIME EXTEND, where it still returns the size of the
 227 * data load of the data event after it.
 228 */
 229unsigned ring_buffer_event_length(struct ring_buffer_event *event)
 230{
 231	unsigned length;
 232
 233	if (extended_time(event))
 234		event = skip_time_extend(event);
 235
 236	length = rb_event_length(event);
 237	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 238		return length;
 239	length -= RB_EVNT_HDR_SIZE;
 240	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
 241                length -= sizeof(event->array[0]);
 242	return length;
 243}
 244EXPORT_SYMBOL_GPL(ring_buffer_event_length);
 245
 246/* inline for ring buffer fast paths */
 247static __always_inline void *
 248rb_event_data(struct ring_buffer_event *event)
 249{
 250	if (extended_time(event))
 251		event = skip_time_extend(event);
 252	WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
 253	/* If length is in len field, then array[0] has the data */
 254	if (event->type_len)
 255		return (void *)&event->array[0];
 256	/* Otherwise length is in array[0] and array[1] has the data */
 257	return (void *)&event->array[1];
 258}
 259
 260/**
 261 * ring_buffer_event_data - return the data of the event
 262 * @event: the event to get the data from
 263 */
 264void *ring_buffer_event_data(struct ring_buffer_event *event)
 265{
 266	return rb_event_data(event);
 267}
 268EXPORT_SYMBOL_GPL(ring_buffer_event_data);
 269
 270#define for_each_buffer_cpu(buffer, cpu)		\
 271	for_each_cpu(cpu, buffer->cpumask)
 272
 273#define for_each_online_buffer_cpu(buffer, cpu)		\
 274	for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
 275
 276#define TS_SHIFT	27
 277#define TS_MASK		((1ULL << TS_SHIFT) - 1)
 278#define TS_DELTA_TEST	(~TS_MASK)
 279
 280/**
 281 * ring_buffer_event_time_stamp - return the event's extended timestamp
 282 * @event: the event to get the timestamp of
 283 *
 284 * Returns the extended timestamp associated with a data event.
 285 * An extended time_stamp is a 64-bit timestamp represented
 286 * internally in a special way that makes the best use of space
 287 * contained within a ring buffer event.  This function decodes
 288 * it and maps it to a straight u64 value.
 289 */
 290u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
 291{
 292	u64 ts;
 293
 294	ts = event->array[0];
 295	ts <<= TS_SHIFT;
 296	ts += event->time_delta;
 297
 298	return ts;
 299}
 300
 301/* Flag when events were overwritten */
 302#define RB_MISSED_EVENTS	(1 << 31)
 303/* Missed count stored at end */
 304#define RB_MISSED_STORED	(1 << 30)
 305
 
 
 306struct buffer_data_page {
 307	u64		 time_stamp;	/* page time stamp */
 308	local_t		 commit;	/* write committed index */
 309	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
 310};
 311
 312/*
 313 * Note, the buffer_page list must be first. The buffer pages
 314 * are allocated in cache lines, which means that each buffer
 315 * page will be at the beginning of a cache line, and thus
 316 * the least significant bits will be zero. We use this to
 317 * add flags in the list struct pointers, to make the ring buffer
 318 * lockless.
 319 */
 320struct buffer_page {
 321	struct list_head list;		/* list of buffer pages */
 322	local_t		 write;		/* index for next write */
 323	unsigned	 read;		/* index for next read */
 324	local_t		 entries;	/* entries on this page */
 325	unsigned long	 real_end;	/* real end of data */
 326	struct buffer_data_page *page;	/* Actual data page */
 327};
 328
 329/*
 330 * The buffer page counters, write and entries, must be reset
 331 * atomically when crossing page boundaries. To synchronize this
 332 * update, two counters are inserted into the number. One is
 333 * the actual counter for the write position or count on the page.
 334 *
 335 * The other is a counter of updaters. Before an update happens
 336 * the update partition of the counter is incremented. This will
 337 * allow the updater to update the counter atomically.
 338 *
 339 * The counter is 20 bits, and the state data is 12.
 340 */
 341#define RB_WRITE_MASK		0xfffff
 342#define RB_WRITE_INTCNT		(1 << 20)
 343
 344static void rb_init_page(struct buffer_data_page *bpage)
 345{
 346	local_set(&bpage->commit, 0);
 347}
 348
 349/*
 350 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
 351 * this issue out.
 352 */
 353static void free_buffer_page(struct buffer_page *bpage)
 354{
 355	free_page((unsigned long)bpage->page);
 356	kfree(bpage);
 357}
 358
 359/*
 360 * We need to fit the time_stamp delta into 27 bits.
 361 */
 362static inline int test_time_stamp(u64 delta)
 363{
 364	if (delta & TS_DELTA_TEST)
 365		return 1;
 366	return 0;
 367}
 368
 369#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
 370
 371/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
 372#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
 373
 374int ring_buffer_print_page_header(struct trace_seq *s)
 375{
 376	struct buffer_data_page field;
 377
 378	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
 379			 "offset:0;\tsize:%u;\tsigned:%u;\n",
 380			 (unsigned int)sizeof(field.time_stamp),
 381			 (unsigned int)is_signed_type(u64));
 382
 383	trace_seq_printf(s, "\tfield: local_t commit;\t"
 384			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
 385			 (unsigned int)offsetof(typeof(field), commit),
 386			 (unsigned int)sizeof(field.commit),
 387			 (unsigned int)is_signed_type(long));
 388
 389	trace_seq_printf(s, "\tfield: int overwrite;\t"
 390			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
 391			 (unsigned int)offsetof(typeof(field), commit),
 392			 1,
 393			 (unsigned int)is_signed_type(long));
 394
 395	trace_seq_printf(s, "\tfield: char data;\t"
 396			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
 397			 (unsigned int)offsetof(typeof(field), data),
 398			 (unsigned int)BUF_PAGE_SIZE,
 399			 (unsigned int)is_signed_type(char));
 400
 401	return !trace_seq_has_overflowed(s);
 402}
 403
 404struct rb_irq_work {
 405	struct irq_work			work;
 406	wait_queue_head_t		waiters;
 407	wait_queue_head_t		full_waiters;
 408	bool				waiters_pending;
 409	bool				full_waiters_pending;
 410	bool				wakeup_full;
 411};
 412
 413/*
 414 * Structure to hold event state and handle nested events.
 415 */
 416struct rb_event_info {
 417	u64			ts;
 418	u64			delta;
 419	u64			before;
 420	u64			after;
 421	unsigned long		length;
 422	struct buffer_page	*tail_page;
 423	int			add_timestamp;
 424};
 425
 426/*
 427 * Used for the add_timestamp
 428 *  NONE
 429 *  EXTEND - wants a time extend
 430 *  ABSOLUTE - the buffer requests all events to have absolute time stamps
 431 *  FORCE - force a full time stamp.
 432 */
 433enum {
 434	RB_ADD_STAMP_NONE		= 0,
 435	RB_ADD_STAMP_EXTEND		= BIT(1),
 436	RB_ADD_STAMP_ABSOLUTE		= BIT(2),
 437	RB_ADD_STAMP_FORCE		= BIT(3)
 438};
 439/*
 440 * Used for which event context the event is in.
 441 *  NMI     = 0
 442 *  IRQ     = 1
 443 *  SOFTIRQ = 2
 444 *  NORMAL  = 3
 445 *
 446 * See trace_recursive_lock() comment below for more details.
 447 */
 448enum {
 449	RB_CTX_NMI,
 450	RB_CTX_IRQ,
 451	RB_CTX_SOFTIRQ,
 452	RB_CTX_NORMAL,
 453	RB_CTX_MAX
 454};
 455
 456#if BITS_PER_LONG == 32
 457#define RB_TIME_32
 458#endif
 459
 460/* To test on 64 bit machines */
 461//#define RB_TIME_32
 462
 463#ifdef RB_TIME_32
 464
 465struct rb_time_struct {
 466	local_t		cnt;
 467	local_t		top;
 468	local_t		bottom;
 469};
 470#else
 471#include <asm/local64.h>
 472struct rb_time_struct {
 473	local64_t	time;
 474};
 475#endif
 476typedef struct rb_time_struct rb_time_t;
 477
 478/*
 479 * head_page == tail_page && head == tail then buffer is empty.
 480 */
 481struct ring_buffer_per_cpu {
 482	int				cpu;
 483	atomic_t			record_disabled;
 484	atomic_t			resize_disabled;
 485	struct trace_buffer	*buffer;
 486	raw_spinlock_t			reader_lock;	/* serialize readers */
 487	arch_spinlock_t			lock;
 488	struct lock_class_key		lock_key;
 489	struct buffer_data_page		*free_page;
 490	unsigned long			nr_pages;
 491	unsigned int			current_context;
 492	struct list_head		*pages;
 493	struct buffer_page		*head_page;	/* read from head */
 494	struct buffer_page		*tail_page;	/* write to tail */
 495	struct buffer_page		*commit_page;	/* committed pages */
 496	struct buffer_page		*reader_page;
 497	unsigned long			lost_events;
 498	unsigned long			last_overrun;
 499	unsigned long			nest;
 500	local_t				entries_bytes;
 501	local_t				entries;
 502	local_t				overrun;
 503	local_t				commit_overrun;
 504	local_t				dropped_events;
 505	local_t				committing;
 506	local_t				commits;
 507	local_t				pages_touched;
 508	local_t				pages_read;
 509	long				last_pages_touch;
 510	size_t				shortest_full;
 511	unsigned long			read;
 512	unsigned long			read_bytes;
 513	rb_time_t			write_stamp;
 514	rb_time_t			before_stamp;
 515	u64				read_stamp;
 516	/* ring buffer pages to update, > 0 to add, < 0 to remove */
 517	long				nr_pages_to_update;
 518	struct list_head		new_pages; /* new pages to add */
 519	struct work_struct		update_pages_work;
 520	struct completion		update_done;
 521
 522	struct rb_irq_work		irq_work;
 523};
 524
 525struct trace_buffer {
 526	unsigned			flags;
 527	int				cpus;
 528	atomic_t			record_disabled;
 
 529	cpumask_var_t			cpumask;
 530
 531	struct lock_class_key		*reader_lock_key;
 532
 533	struct mutex			mutex;
 534
 535	struct ring_buffer_per_cpu	**buffers;
 536
 537	struct hlist_node		node;
 538	u64				(*clock)(void);
 539
 540	struct rb_irq_work		irq_work;
 541	bool				time_stamp_abs;
 542};
 543
 544struct ring_buffer_iter {
 545	struct ring_buffer_per_cpu	*cpu_buffer;
 546	unsigned long			head;
 547	unsigned long			next_event;
 548	struct buffer_page		*head_page;
 549	struct buffer_page		*cache_reader_page;
 550	unsigned long			cache_read;
 551	u64				read_stamp;
 552	u64				page_stamp;
 553	struct ring_buffer_event	*event;
 554	int				missed_events;
 555};
 556
 557#ifdef RB_TIME_32
 558
 559/*
 560 * On 32 bit machines, local64_t is very expensive. As the ring
 561 * buffer doesn't need all the features of a true 64 bit atomic,
 562 * on 32 bit, it uses these functions (64 still uses local64_t).
 563 *
 564 * For the ring buffer, 64 bit required operations for the time is
 565 * the following:
 566 *
 567 *  - Only need 59 bits (uses 60 to make it even).
 568 *  - Reads may fail if it interrupted a modification of the time stamp.
 569 *      It will succeed if it did not interrupt another write even if
 570 *      the read itself is interrupted by a write.
 571 *      It returns whether it was successful or not.
 572 *
 573 *  - Writes always succeed and will overwrite other writes and writes
 574 *      that were done by events interrupting the current write.
 575 *
 576 *  - A write followed by a read of the same time stamp will always succeed,
 577 *      but may not contain the same value.
 578 *
 579 *  - A cmpxchg will fail if it interrupted another write or cmpxchg.
 580 *      Other than that, it acts like a normal cmpxchg.
 581 *
 582 * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
 583 *  (bottom being the least significant 30 bits of the 60 bit time stamp).
 584 *
 585 * The two most significant bits of each half holds a 2 bit counter (0-3).
 586 * Each update will increment this counter by one.
 587 * When reading the top and bottom, if the two counter bits match then the
 588 *  top and bottom together make a valid 60 bit number.
 589 */
 590#define RB_TIME_SHIFT	30
 591#define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
 592
 593static inline int rb_time_cnt(unsigned long val)
 594{
 595	return (val >> RB_TIME_SHIFT) & 3;
 596}
 597
 598static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
 599{
 600	u64 val;
 601
 602	val = top & RB_TIME_VAL_MASK;
 603	val <<= RB_TIME_SHIFT;
 604	val |= bottom & RB_TIME_VAL_MASK;
 605
 606	return val;
 607}
 608
 609static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
 610{
 611	unsigned long top, bottom;
 612	unsigned long c;
 613
 614	/*
 615	 * If the read is interrupted by a write, then the cnt will
 616	 * be different. Loop until both top and bottom have been read
 617	 * without interruption.
 618	 */
 619	do {
 620		c = local_read(&t->cnt);
 621		top = local_read(&t->top);
 622		bottom = local_read(&t->bottom);
 623	} while (c != local_read(&t->cnt));
 624
 625	*cnt = rb_time_cnt(top);
 626
 627	/* If top and bottom counts don't match, this interrupted a write */
 628	if (*cnt != rb_time_cnt(bottom))
 629		return false;
 630
 631	*ret = rb_time_val(top, bottom);
 632	return true;
 633}
 634
 635static bool rb_time_read(rb_time_t *t, u64 *ret)
 636{
 637	unsigned long cnt;
 638
 639	return __rb_time_read(t, ret, &cnt);
 640}
 641
 642static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
 643{
 644	return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
 645}
 646
 647static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom)
 648{
 649	*top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
 650	*bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
 651}
 652
 653static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
 654{
 655	val = rb_time_val_cnt(val, cnt);
 656	local_set(t, val);
 657}
 658
 659static void rb_time_set(rb_time_t *t, u64 val)
 660{
 661	unsigned long cnt, top, bottom;
 662
 663	rb_time_split(val, &top, &bottom);
 664
 665	/* Writes always succeed with a valid number even if it gets interrupted. */
 666	do {
 667		cnt = local_inc_return(&t->cnt);
 668		rb_time_val_set(&t->top, top, cnt);
 669		rb_time_val_set(&t->bottom, bottom, cnt);
 670	} while (cnt != local_read(&t->cnt));
 671}
 672
 673static inline bool
 674rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
 675{
 676	unsigned long ret;
 677
 678	ret = local_cmpxchg(l, expect, set);
 679	return ret == expect;
 680}
 681
 682static int rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
 683{
 684	unsigned long cnt, top, bottom;
 685	unsigned long cnt2, top2, bottom2;
 686	u64 val;
 687
 688	/* The cmpxchg always fails if it interrupted an update */
 689	 if (!__rb_time_read(t, &val, &cnt2))
 690		 return false;
 691
 692	 if (val != expect)
 693		 return false;
 694
 695	 cnt = local_read(&t->cnt);
 696	 if ((cnt & 3) != cnt2)
 697		 return false;
 698
 699	 cnt2 = cnt + 1;
 700
 701	 rb_time_split(val, &top, &bottom);
 702	 top = rb_time_val_cnt(top, cnt);
 703	 bottom = rb_time_val_cnt(bottom, cnt);
 704
 705	 rb_time_split(set, &top2, &bottom2);
 706	 top2 = rb_time_val_cnt(top2, cnt2);
 707	 bottom2 = rb_time_val_cnt(bottom2, cnt2);
 708
 709	if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2))
 710		return false;
 711	if (!rb_time_read_cmpxchg(&t->top, top, top2))
 712		return false;
 713	if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2))
 714		return false;
 715	return true;
 716}
 717
 718#else /* 64 bits */
 719
 720/* local64_t always succeeds */
 721
 722static inline bool rb_time_read(rb_time_t *t, u64 *ret)
 723{
 724	*ret = local64_read(&t->time);
 725	return true;
 726}
 727static void rb_time_set(rb_time_t *t, u64 val)
 728{
 729	local64_set(&t->time, val);
 730}
 731
 732static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
 733{
 734	u64 val;
 735	val = local64_cmpxchg(&t->time, expect, set);
 736	return val == expect;
 737}
 738#endif
 739
 740/**
 741 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
 742 * @buffer: The ring_buffer to get the number of pages from
 743 * @cpu: The cpu of the ring_buffer to get the number of pages from
 744 *
 745 * Returns the number of pages used by a per_cpu buffer of the ring buffer.
 746 */
 747size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
 748{
 749	return buffer->buffers[cpu]->nr_pages;
 750}
 751
 752/**
 753 * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer
 754 * @buffer: The ring_buffer to get the number of pages from
 755 * @cpu: The cpu of the ring_buffer to get the number of pages from
 756 *
 757 * Returns the number of pages that have content in the ring buffer.
 758 */
 759size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
 760{
 761	size_t read;
 762	size_t cnt;
 763
 764	read = local_read(&buffer->buffers[cpu]->pages_read);
 765	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
 766	/* The reader can read an empty page, but not more than that */
 767	if (cnt < read) {
 768		WARN_ON_ONCE(read > cnt + 1);
 769		return 0;
 770	}
 771
 772	return cnt - read;
 773}
 774
 775/*
 776 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
 777 *
 778 * Schedules a delayed work to wake up any task that is blocked on the
 779 * ring buffer waiters queue.
 780 */
 781static void rb_wake_up_waiters(struct irq_work *work)
 782{
 783	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
 784
 785	wake_up_all(&rbwork->waiters);
 786	if (rbwork->wakeup_full) {
 787		rbwork->wakeup_full = false;
 788		wake_up_all(&rbwork->full_waiters);
 789	}
 790}
 791
 792/**
 793 * ring_buffer_wait - wait for input to the ring buffer
 794 * @buffer: buffer to wait on
 795 * @cpu: the cpu buffer to wait on
 796 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
 797 *
 798 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 799 * as data is added to any of the @buffer's cpu buffers. Otherwise
 800 * it will wait for data to be added to a specific cpu buffer.
 801 */
 802int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
 803{
 804	struct ring_buffer_per_cpu *cpu_buffer;
 805	DEFINE_WAIT(wait);
 806	struct rb_irq_work *work;
 807	int ret = 0;
 808
 809	/*
 810	 * Depending on what the caller is waiting for, either any
 811	 * data in any cpu buffer, or a specific buffer, put the
 812	 * caller on the appropriate wait queue.
 813	 */
 814	if (cpu == RING_BUFFER_ALL_CPUS) {
 815		work = &buffer->irq_work;
 816		/* Full only makes sense on per cpu reads */
 817		full = 0;
 818	} else {
 819		if (!cpumask_test_cpu(cpu, buffer->cpumask))
 820			return -ENODEV;
 821		cpu_buffer = buffer->buffers[cpu];
 822		work = &cpu_buffer->irq_work;
 823	}
 824
 825
 826	while (true) {
 827		if (full)
 828			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
 829		else
 830			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
 831
 832		/*
 833		 * The events can happen in critical sections where
 834		 * checking a work queue can cause deadlocks.
 835		 * After adding a task to the queue, this flag is set
 836		 * only to notify events to try to wake up the queue
 837		 * using irq_work.
 838		 *
 839		 * We don't clear it even if the buffer is no longer
 840		 * empty. The flag only causes the next event to run
 841		 * irq_work to do the work queue wake up. The worse
 842		 * that can happen if we race with !trace_empty() is that
 843		 * an event will cause an irq_work to try to wake up
 844		 * an empty queue.
 845		 *
 846		 * There's no reason to protect this flag either, as
 847		 * the work queue and irq_work logic will do the necessary
 848		 * synchronization for the wake ups. The only thing
 849		 * that is necessary is that the wake up happens after
 850		 * a task has been queued. It's OK for spurious wake ups.
 851		 */
 852		if (full)
 853			work->full_waiters_pending = true;
 854		else
 855			work->waiters_pending = true;
 856
 857		if (signal_pending(current)) {
 858			ret = -EINTR;
 859			break;
 860		}
 861
 862		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
 863			break;
 864
 865		if (cpu != RING_BUFFER_ALL_CPUS &&
 866		    !ring_buffer_empty_cpu(buffer, cpu)) {
 867			unsigned long flags;
 868			bool pagebusy;
 869			size_t nr_pages;
 870			size_t dirty;
 871
 872			if (!full)
 873				break;
 874
 875			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
 876			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
 877			nr_pages = cpu_buffer->nr_pages;
 878			dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
 879			if (!cpu_buffer->shortest_full ||
 880			    cpu_buffer->shortest_full < full)
 881				cpu_buffer->shortest_full = full;
 882			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
 883			if (!pagebusy &&
 884			    (!nr_pages || (dirty * 100) > full * nr_pages))
 885				break;
 886		}
 887
 888		schedule();
 889	}
 890
 891	if (full)
 892		finish_wait(&work->full_waiters, &wait);
 893	else
 894		finish_wait(&work->waiters, &wait);
 895
 896	return ret;
 897}
 898
 899/**
 900 * ring_buffer_poll_wait - poll on buffer input
 901 * @buffer: buffer to wait on
 902 * @cpu: the cpu buffer to wait on
 903 * @filp: the file descriptor
 904 * @poll_table: The poll descriptor
 905 *
 906 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 907 * as data is added to any of the @buffer's cpu buffers. Otherwise
 908 * it will wait for data to be added to a specific cpu buffer.
 909 *
 910 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
 911 * zero otherwise.
 912 */
 913__poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
 914			  struct file *filp, poll_table *poll_table)
 915{
 916	struct ring_buffer_per_cpu *cpu_buffer;
 917	struct rb_irq_work *work;
 918
 919	if (cpu == RING_BUFFER_ALL_CPUS)
 920		work = &buffer->irq_work;
 921	else {
 922		if (!cpumask_test_cpu(cpu, buffer->cpumask))
 923			return -EINVAL;
 924
 925		cpu_buffer = buffer->buffers[cpu];
 926		work = &cpu_buffer->irq_work;
 927	}
 928
 929	poll_wait(filp, &work->waiters, poll_table);
 930	work->waiters_pending = true;
 931	/*
 932	 * There's a tight race between setting the waiters_pending and
 933	 * checking if the ring buffer is empty.  Once the waiters_pending bit
 934	 * is set, the next event will wake the task up, but we can get stuck
 935	 * if there's only a single event in.
 936	 *
 937	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
 938	 * but adding a memory barrier to all events will cause too much of a
 939	 * performance hit in the fast path.  We only need a memory barrier when
 940	 * the buffer goes from empty to having content.  But as this race is
 941	 * extremely small, and it's not a problem if another event comes in, we
 942	 * will fix it later.
 943	 */
 944	smp_mb();
 945
 946	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
 947	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
 948		return EPOLLIN | EPOLLRDNORM;
 949	return 0;
 950}
 951
 952/* buffer may be either ring_buffer or ring_buffer_per_cpu */
 953#define RB_WARN_ON(b, cond)						\
 954	({								\
 955		int _____ret = unlikely(cond);				\
 956		if (_____ret) {						\
 957			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
 958				struct ring_buffer_per_cpu *__b =	\
 959					(void *)b;			\
 960				atomic_inc(&__b->buffer->record_disabled); \
 961			} else						\
 962				atomic_inc(&b->record_disabled);	\
 963			WARN_ON(1);					\
 964		}							\
 965		_____ret;						\
 966	})
 967
 968/* Up this if you want to test the TIME_EXTENTS and normalization */
 969#define DEBUG_SHIFT 0
 970
 971static inline u64 rb_time_stamp(struct trace_buffer *buffer)
 972{
 973	u64 ts;
 974
 975	/* Skip retpolines :-( */
 976	if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
 977		ts = trace_clock_local();
 978	else
 979		ts = buffer->clock();
 980
 981	/* shift to debug/test normalization and TIME_EXTENTS */
 982	return ts << DEBUG_SHIFT;
 983}
 984
 985u64 ring_buffer_time_stamp(struct trace_buffer *buffer, int cpu)
 986{
 987	u64 time;
 988
 989	preempt_disable_notrace();
 990	time = rb_time_stamp(buffer);
 991	preempt_enable_notrace();
 992
 993	return time;
 994}
 995EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
 996
 997void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
 998				      int cpu, u64 *ts)
 999{
1000	/* Just stupid testing the normalize function and deltas */
1001	*ts >>= DEBUG_SHIFT;
1002}
1003EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1004
1005/*
1006 * Making the ring buffer lockless makes things tricky.
1007 * Although writes only happen on the CPU that they are on,
1008 * and they only need to worry about interrupts. Reads can
1009 * happen on any CPU.
1010 *
1011 * The reader page is always off the ring buffer, but when the
1012 * reader finishes with a page, it needs to swap its page with
1013 * a new one from the buffer. The reader needs to take from
1014 * the head (writes go to the tail). But if a writer is in overwrite
1015 * mode and wraps, it must push the head page forward.
1016 *
1017 * Here lies the problem.
1018 *
1019 * The reader must be careful to replace only the head page, and
1020 * not another one. As described at the top of the file in the
1021 * ASCII art, the reader sets its old page to point to the next
1022 * page after head. It then sets the page after head to point to
1023 * the old reader page. But if the writer moves the head page
1024 * during this operation, the reader could end up with the tail.
1025 *
1026 * We use cmpxchg to help prevent this race. We also do something
1027 * special with the page before head. We set the LSB to 1.
1028 *
1029 * When the writer must push the page forward, it will clear the
1030 * bit that points to the head page, move the head, and then set
1031 * the bit that points to the new head page.
1032 *
1033 * We also don't want an interrupt coming in and moving the head
1034 * page on another writer. Thus we use the second LSB to catch
1035 * that too. Thus:
1036 *
1037 * head->list->prev->next        bit 1          bit 0
1038 *                              -------        -------
1039 * Normal page                     0              0
1040 * Points to head page             0              1
1041 * New head page                   1              0
1042 *
1043 * Note we can not trust the prev pointer of the head page, because:
1044 *
1045 * +----+       +-----+        +-----+
1046 * |    |------>|  T  |---X--->|  N  |
1047 * |    |<------|     |        |     |
1048 * +----+       +-----+        +-----+
1049 *   ^                           ^ |
1050 *   |          +-----+          | |
1051 *   +----------|  R  |----------+ |
1052 *              |     |<-----------+
1053 *              +-----+
1054 *
1055 * Key:  ---X-->  HEAD flag set in pointer
1056 *         T      Tail page
1057 *         R      Reader page
1058 *         N      Next page
1059 *
1060 * (see __rb_reserve_next() to see where this happens)
1061 *
1062 *  What the above shows is that the reader just swapped out
1063 *  the reader page with a page in the buffer, but before it
1064 *  could make the new header point back to the new page added
1065 *  it was preempted by a writer. The writer moved forward onto
1066 *  the new page added by the reader and is about to move forward
1067 *  again.
1068 *
1069 *  You can see, it is legitimate for the previous pointer of
1070 *  the head (or any page) not to point back to itself. But only
1071 *  temporarily.
1072 */
1073
1074#define RB_PAGE_NORMAL		0UL
1075#define RB_PAGE_HEAD		1UL
1076#define RB_PAGE_UPDATE		2UL
1077
1078
1079#define RB_FLAG_MASK		3UL
1080
1081/* PAGE_MOVED is not part of the mask */
1082#define RB_PAGE_MOVED		4UL
1083
1084/*
1085 * rb_list_head - remove any bit
1086 */
1087static struct list_head *rb_list_head(struct list_head *list)
1088{
1089	unsigned long val = (unsigned long)list;
1090
1091	return (struct list_head *)(val & ~RB_FLAG_MASK);
1092}
1093
1094/*
1095 * rb_is_head_page - test if the given page is the head page
1096 *
1097 * Because the reader may move the head_page pointer, we can
1098 * not trust what the head page is (it may be pointing to
1099 * the reader page). But if the next page is a header page,
1100 * its flags will be non zero.
1101 */
1102static inline int
1103rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1104		struct buffer_page *page, struct list_head *list)
1105{
1106	unsigned long val;
1107
1108	val = (unsigned long)list->next;
1109
1110	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1111		return RB_PAGE_MOVED;
1112
1113	return val & RB_FLAG_MASK;
1114}
1115
1116/*
1117 * rb_is_reader_page
1118 *
1119 * The unique thing about the reader page, is that, if the
1120 * writer is ever on it, the previous pointer never points
1121 * back to the reader page.
1122 */
1123static bool rb_is_reader_page(struct buffer_page *page)
1124{
1125	struct list_head *list = page->list.prev;
1126
1127	return rb_list_head(list->next) != &page->list;
1128}
1129
1130/*
1131 * rb_set_list_to_head - set a list_head to be pointing to head.
1132 */
1133static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
1134				struct list_head *list)
1135{
1136	unsigned long *ptr;
1137
1138	ptr = (unsigned long *)&list->next;
1139	*ptr |= RB_PAGE_HEAD;
1140	*ptr &= ~RB_PAGE_UPDATE;
1141}
1142
1143/*
1144 * rb_head_page_activate - sets up head page
1145 */
1146static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1147{
1148	struct buffer_page *head;
1149
1150	head = cpu_buffer->head_page;
1151	if (!head)
1152		return;
1153
1154	/*
1155	 * Set the previous list pointer to have the HEAD flag.
1156	 */
1157	rb_set_list_to_head(cpu_buffer, head->list.prev);
1158}
1159
1160static void rb_list_head_clear(struct list_head *list)
1161{
1162	unsigned long *ptr = (unsigned long *)&list->next;
1163
1164	*ptr &= ~RB_FLAG_MASK;
1165}
1166
1167/*
1168 * rb_head_page_deactivate - clears head page ptr (for free list)
1169 */
1170static void
1171rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1172{
1173	struct list_head *hd;
1174
1175	/* Go through the whole list and clear any pointers found. */
1176	rb_list_head_clear(cpu_buffer->pages);
1177
1178	list_for_each(hd, cpu_buffer->pages)
1179		rb_list_head_clear(hd);
1180}
1181
1182static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1183			    struct buffer_page *head,
1184			    struct buffer_page *prev,
1185			    int old_flag, int new_flag)
1186{
1187	struct list_head *list;
1188	unsigned long val = (unsigned long)&head->list;
1189	unsigned long ret;
1190
1191	list = &prev->list;
1192
1193	val &= ~RB_FLAG_MASK;
1194
1195	ret = cmpxchg((unsigned long *)&list->next,
1196		      val | old_flag, val | new_flag);
1197
1198	/* check if the reader took the page */
1199	if ((ret & ~RB_FLAG_MASK) != val)
1200		return RB_PAGE_MOVED;
1201
1202	return ret & RB_FLAG_MASK;
1203}
1204
1205static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1206				   struct buffer_page *head,
1207				   struct buffer_page *prev,
1208				   int old_flag)
1209{
1210	return rb_head_page_set(cpu_buffer, head, prev,
1211				old_flag, RB_PAGE_UPDATE);
1212}
1213
1214static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1215				 struct buffer_page *head,
1216				 struct buffer_page *prev,
1217				 int old_flag)
1218{
1219	return rb_head_page_set(cpu_buffer, head, prev,
1220				old_flag, RB_PAGE_HEAD);
1221}
1222
1223static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1224				   struct buffer_page *head,
1225				   struct buffer_page *prev,
1226				   int old_flag)
1227{
1228	return rb_head_page_set(cpu_buffer, head, prev,
1229				old_flag, RB_PAGE_NORMAL);
1230}
1231
1232static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
1233			       struct buffer_page **bpage)
1234{
1235	struct list_head *p = rb_list_head((*bpage)->list.next);
1236
1237	*bpage = list_entry(p, struct buffer_page, list);
1238}
1239
1240static struct buffer_page *
1241rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1242{
1243	struct buffer_page *head;
1244	struct buffer_page *page;
1245	struct list_head *list;
1246	int i;
1247
1248	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1249		return NULL;
1250
1251	/* sanity check */
1252	list = cpu_buffer->pages;
1253	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1254		return NULL;
1255
1256	page = head = cpu_buffer->head_page;
1257	/*
1258	 * It is possible that the writer moves the header behind
1259	 * where we started, and we miss in one loop.
1260	 * A second loop should grab the header, but we'll do
1261	 * three loops just because I'm paranoid.
1262	 */
1263	for (i = 0; i < 3; i++) {
1264		do {
1265			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
1266				cpu_buffer->head_page = page;
1267				return page;
1268			}
1269			rb_inc_page(cpu_buffer, &page);
1270		} while (page != head);
1271	}
1272
1273	RB_WARN_ON(cpu_buffer, 1);
1274
1275	return NULL;
1276}
1277
1278static int rb_head_page_replace(struct buffer_page *old,
1279				struct buffer_page *new)
1280{
1281	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1282	unsigned long val;
1283	unsigned long ret;
1284
1285	val = *ptr & ~RB_FLAG_MASK;
1286	val |= RB_PAGE_HEAD;
1287
1288	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1289
1290	return ret == val;
1291}
1292
1293/*
1294 * rb_tail_page_update - move the tail page forward
1295 */
1296static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1297			       struct buffer_page *tail_page,
1298			       struct buffer_page *next_page)
1299{
1300	unsigned long old_entries;
1301	unsigned long old_write;
1302
1303	/*
1304	 * The tail page now needs to be moved forward.
1305	 *
1306	 * We need to reset the tail page, but without messing
1307	 * with possible erasing of data brought in by interrupts
1308	 * that have moved the tail page and are currently on it.
1309	 *
1310	 * We add a counter to the write field to denote this.
1311	 */
1312	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1313	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1314
1315	local_inc(&cpu_buffer->pages_touched);
1316	/*
1317	 * Just make sure we have seen our old_write and synchronize
1318	 * with any interrupts that come in.
1319	 */
1320	barrier();
1321
1322	/*
1323	 * If the tail page is still the same as what we think
1324	 * it is, then it is up to us to update the tail
1325	 * pointer.
1326	 */
1327	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1328		/* Zero the write counter */
1329		unsigned long val = old_write & ~RB_WRITE_MASK;
1330		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1331
1332		/*
1333		 * This will only succeed if an interrupt did
1334		 * not come in and change it. In which case, we
1335		 * do not want to modify it.
1336		 *
1337		 * We add (void) to let the compiler know that we do not care
1338		 * about the return value of these functions. We use the
1339		 * cmpxchg to only update if an interrupt did not already
1340		 * do it for us. If the cmpxchg fails, we don't care.
1341		 */
1342		(void)local_cmpxchg(&next_page->write, old_write, val);
1343		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1344
1345		/*
1346		 * No need to worry about races with clearing out the commit.
1347		 * it only can increment when a commit takes place. But that
1348		 * only happens in the outer most nested commit.
1349		 */
1350		local_set(&next_page->page->commit, 0);
1351
1352		/* Again, either we update tail_page or an interrupt does */
1353		(void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1354	}
1355}
1356
1357static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1358			  struct buffer_page *bpage)
1359{
1360	unsigned long val = (unsigned long)bpage;
1361
1362	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1363		return 1;
1364
1365	return 0;
1366}
1367
1368/**
1369 * rb_check_list - make sure a pointer to a list has the last bits zero
1370 */
1371static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1372			 struct list_head *list)
1373{
1374	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1375		return 1;
1376	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1377		return 1;
1378	return 0;
1379}
1380
1381/**
1382 * rb_check_pages - integrity check of buffer pages
1383 * @cpu_buffer: CPU buffer with pages to test
1384 *
1385 * As a safety measure we check to make sure the data pages have not
1386 * been corrupted.
1387 */
1388static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1389{
1390	struct list_head *head = cpu_buffer->pages;
1391	struct buffer_page *bpage, *tmp;
1392
1393	/* Reset the head page if it exists */
1394	if (cpu_buffer->head_page)
1395		rb_set_head_page(cpu_buffer);
1396
1397	rb_head_page_deactivate(cpu_buffer);
1398
1399	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1400		return -1;
1401	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1402		return -1;
1403
1404	if (rb_check_list(cpu_buffer, head))
1405		return -1;
1406
1407	list_for_each_entry_safe(bpage, tmp, head, list) {
1408		if (RB_WARN_ON(cpu_buffer,
1409			       bpage->list.next->prev != &bpage->list))
1410			return -1;
1411		if (RB_WARN_ON(cpu_buffer,
1412			       bpage->list.prev->next != &bpage->list))
1413			return -1;
1414		if (rb_check_list(cpu_buffer, &bpage->list))
1415			return -1;
1416	}
1417
1418	rb_head_page_activate(cpu_buffer);
1419
1420	return 0;
1421}
1422
1423static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1424{
1425	struct buffer_page *bpage, *tmp;
1426	bool user_thread = current->mm != NULL;
1427	gfp_t mflags;
1428	long i;
1429
1430	/*
1431	 * Check if the available memory is there first.
1432	 * Note, si_mem_available() only gives us a rough estimate of available
1433	 * memory. It may not be accurate. But we don't care, we just want
1434	 * to prevent doing any allocation when it is obvious that it is
1435	 * not going to succeed.
1436	 */
1437	i = si_mem_available();
1438	if (i < nr_pages)
1439		return -ENOMEM;
1440
1441	/*
1442	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1443	 * gracefully without invoking oom-killer and the system is not
1444	 * destabilized.
1445	 */
1446	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1447
1448	/*
1449	 * If a user thread allocates too much, and si_mem_available()
1450	 * reports there's enough memory, even though there is not.
1451	 * Make sure the OOM killer kills this thread. This can happen
1452	 * even with RETRY_MAYFAIL because another task may be doing
1453	 * an allocation after this task has taken all memory.
1454	 * This is the task the OOM killer needs to take out during this
1455	 * loop, even if it was triggered by an allocation somewhere else.
1456	 */
1457	if (user_thread)
1458		set_current_oom_origin();
1459	for (i = 0; i < nr_pages; i++) {
1460		struct page *page;
1461
1462		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1463				    mflags, cpu_to_node(cpu));
1464		if (!bpage)
1465			goto free_pages;
1466
1467		list_add(&bpage->list, pages);
1468
1469		page = alloc_pages_node(cpu_to_node(cpu), mflags, 0);
1470		if (!page)
1471			goto free_pages;
1472		bpage->page = page_address(page);
1473		rb_init_page(bpage->page);
1474
1475		if (user_thread && fatal_signal_pending(current))
1476			goto free_pages;
1477	}
1478	if (user_thread)
1479		clear_current_oom_origin();
1480
1481	return 0;
1482
1483free_pages:
1484	list_for_each_entry_safe(bpage, tmp, pages, list) {
1485		list_del_init(&bpage->list);
1486		free_buffer_page(bpage);
1487	}
1488	if (user_thread)
1489		clear_current_oom_origin();
1490
1491	return -ENOMEM;
1492}
1493
1494static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1495			     unsigned long nr_pages)
1496{
1497	LIST_HEAD(pages);
1498
1499	WARN_ON(!nr_pages);
1500
1501	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1502		return -ENOMEM;
1503
1504	/*
1505	 * The ring buffer page list is a circular list that does not
1506	 * start and end with a list head. All page list items point to
1507	 * other pages.
1508	 */
1509	cpu_buffer->pages = pages.next;
1510	list_del(&pages);
1511
1512	cpu_buffer->nr_pages = nr_pages;
1513
1514	rb_check_pages(cpu_buffer);
1515
1516	return 0;
1517}
1518
1519static struct ring_buffer_per_cpu *
1520rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1521{
1522	struct ring_buffer_per_cpu *cpu_buffer;
1523	struct buffer_page *bpage;
1524	struct page *page;
1525	int ret;
1526
1527	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1528				  GFP_KERNEL, cpu_to_node(cpu));
1529	if (!cpu_buffer)
1530		return NULL;
1531
1532	cpu_buffer->cpu = cpu;
1533	cpu_buffer->buffer = buffer;
1534	raw_spin_lock_init(&cpu_buffer->reader_lock);
1535	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1536	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1537	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1538	init_completion(&cpu_buffer->update_done);
1539	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1540	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1541	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1542
1543	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1544			    GFP_KERNEL, cpu_to_node(cpu));
1545	if (!bpage)
1546		goto fail_free_buffer;
1547
1548	rb_check_bpage(cpu_buffer, bpage);
1549
1550	cpu_buffer->reader_page = bpage;
1551	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1552	if (!page)
1553		goto fail_free_reader;
1554	bpage->page = page_address(page);
1555	rb_init_page(bpage->page);
1556
1557	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1558	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1559
1560	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1561	if (ret < 0)
1562		goto fail_free_reader;
1563
1564	cpu_buffer->head_page
1565		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1566	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1567
1568	rb_head_page_activate(cpu_buffer);
1569
1570	return cpu_buffer;
1571
1572 fail_free_reader:
1573	free_buffer_page(cpu_buffer->reader_page);
1574
1575 fail_free_buffer:
1576	kfree(cpu_buffer);
1577	return NULL;
1578}
1579
1580static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1581{
1582	struct list_head *head = cpu_buffer->pages;
1583	struct buffer_page *bpage, *tmp;
1584
1585	free_buffer_page(cpu_buffer->reader_page);
1586
1587	rb_head_page_deactivate(cpu_buffer);
1588
1589	if (head) {
1590		list_for_each_entry_safe(bpage, tmp, head, list) {
1591			list_del_init(&bpage->list);
1592			free_buffer_page(bpage);
1593		}
1594		bpage = list_entry(head, struct buffer_page, list);
1595		free_buffer_page(bpage);
1596	}
1597
1598	kfree(cpu_buffer);
1599}
1600
1601/**
1602 * __ring_buffer_alloc - allocate a new ring_buffer
1603 * @size: the size in bytes per cpu that is needed.
1604 * @flags: attributes to set for the ring buffer.
1605 * @key: ring buffer reader_lock_key.
1606 *
1607 * Currently the only flag that is available is the RB_FL_OVERWRITE
1608 * flag. This flag means that the buffer will overwrite old data
1609 * when the buffer wraps. If this flag is not set, the buffer will
1610 * drop data when the tail hits the head.
1611 */
1612struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1613					struct lock_class_key *key)
1614{
1615	struct trace_buffer *buffer;
1616	long nr_pages;
1617	int bsize;
1618	int cpu;
1619	int ret;
1620
1621	/* keep it in its own cache line */
1622	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1623			 GFP_KERNEL);
1624	if (!buffer)
1625		return NULL;
1626
1627	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1628		goto fail_free_buffer;
1629
1630	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1631	buffer->flags = flags;
1632	buffer->clock = trace_clock_local;
1633	buffer->reader_lock_key = key;
1634
1635	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1636	init_waitqueue_head(&buffer->irq_work.waiters);
1637
1638	/* need at least two pages */
1639	if (nr_pages < 2)
1640		nr_pages = 2;
1641
1642	buffer->cpus = nr_cpu_ids;
1643
1644	bsize = sizeof(void *) * nr_cpu_ids;
1645	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1646				  GFP_KERNEL);
1647	if (!buffer->buffers)
1648		goto fail_free_cpumask;
1649
1650	cpu = raw_smp_processor_id();
1651	cpumask_set_cpu(cpu, buffer->cpumask);
1652	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1653	if (!buffer->buffers[cpu])
1654		goto fail_free_buffers;
1655
1656	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1657	if (ret < 0)
1658		goto fail_free_buffers;
1659
1660	mutex_init(&buffer->mutex);
1661
1662	return buffer;
1663
1664 fail_free_buffers:
1665	for_each_buffer_cpu(buffer, cpu) {
1666		if (buffer->buffers[cpu])
1667			rb_free_cpu_buffer(buffer->buffers[cpu]);
1668	}
1669	kfree(buffer->buffers);
1670
1671 fail_free_cpumask:
1672	free_cpumask_var(buffer->cpumask);
1673
1674 fail_free_buffer:
1675	kfree(buffer);
1676	return NULL;
1677}
1678EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1679
1680/**
1681 * ring_buffer_free - free a ring buffer.
1682 * @buffer: the buffer to free.
1683 */
1684void
1685ring_buffer_free(struct trace_buffer *buffer)
1686{
1687	int cpu;
1688
1689	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1690
1691	for_each_buffer_cpu(buffer, cpu)
1692		rb_free_cpu_buffer(buffer->buffers[cpu]);
1693
1694	kfree(buffer->buffers);
1695	free_cpumask_var(buffer->cpumask);
1696
1697	kfree(buffer);
1698}
1699EXPORT_SYMBOL_GPL(ring_buffer_free);
1700
1701void ring_buffer_set_clock(struct trace_buffer *buffer,
1702			   u64 (*clock)(void))
1703{
1704	buffer->clock = clock;
1705}
1706
1707void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1708{
1709	buffer->time_stamp_abs = abs;
1710}
1711
1712bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1713{
1714	return buffer->time_stamp_abs;
1715}
1716
1717static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1718
1719static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1720{
1721	return local_read(&bpage->entries) & RB_WRITE_MASK;
1722}
1723
1724static inline unsigned long rb_page_write(struct buffer_page *bpage)
1725{
1726	return local_read(&bpage->write) & RB_WRITE_MASK;
1727}
1728
1729static int
1730rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1731{
1732	struct list_head *tail_page, *to_remove, *next_page;
1733	struct buffer_page *to_remove_page, *tmp_iter_page;
1734	struct buffer_page *last_page, *first_page;
1735	unsigned long nr_removed;
1736	unsigned long head_bit;
1737	int page_entries;
1738
1739	head_bit = 0;
1740
1741	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1742	atomic_inc(&cpu_buffer->record_disabled);
1743	/*
1744	 * We don't race with the readers since we have acquired the reader
1745	 * lock. We also don't race with writers after disabling recording.
1746	 * This makes it easy to figure out the first and the last page to be
1747	 * removed from the list. We unlink all the pages in between including
1748	 * the first and last pages. This is done in a busy loop so that we
1749	 * lose the least number of traces.
1750	 * The pages are freed after we restart recording and unlock readers.
1751	 */
1752	tail_page = &cpu_buffer->tail_page->list;
1753
1754	/*
1755	 * tail page might be on reader page, we remove the next page
1756	 * from the ring buffer
1757	 */
1758	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1759		tail_page = rb_list_head(tail_page->next);
1760	to_remove = tail_page;
1761
1762	/* start of pages to remove */
1763	first_page = list_entry(rb_list_head(to_remove->next),
1764				struct buffer_page, list);
1765
1766	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1767		to_remove = rb_list_head(to_remove)->next;
1768		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1769	}
1770
1771	next_page = rb_list_head(to_remove)->next;
1772
1773	/*
1774	 * Now we remove all pages between tail_page and next_page.
1775	 * Make sure that we have head_bit value preserved for the
1776	 * next page
1777	 */
1778	tail_page->next = (struct list_head *)((unsigned long)next_page |
1779						head_bit);
1780	next_page = rb_list_head(next_page);
1781	next_page->prev = tail_page;
1782
1783	/* make sure pages points to a valid page in the ring buffer */
1784	cpu_buffer->pages = next_page;
1785
1786	/* update head page */
1787	if (head_bit)
1788		cpu_buffer->head_page = list_entry(next_page,
1789						struct buffer_page, list);
1790
1791	/*
1792	 * change read pointer to make sure any read iterators reset
1793	 * themselves
1794	 */
1795	cpu_buffer->read = 0;
1796
1797	/* pages are removed, resume tracing and then free the pages */
1798	atomic_dec(&cpu_buffer->record_disabled);
1799	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1800
1801	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1802
1803	/* last buffer page to remove */
1804	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1805				list);
1806	tmp_iter_page = first_page;
1807
1808	do {
1809		cond_resched();
1810
1811		to_remove_page = tmp_iter_page;
1812		rb_inc_page(cpu_buffer, &tmp_iter_page);
1813
1814		/* update the counters */
1815		page_entries = rb_page_entries(to_remove_page);
1816		if (page_entries) {
1817			/*
1818			 * If something was added to this page, it was full
1819			 * since it is not the tail page. So we deduct the
1820			 * bytes consumed in ring buffer from here.
1821			 * Increment overrun to account for the lost events.
1822			 */
1823			local_add(page_entries, &cpu_buffer->overrun);
1824			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1825		}
1826
1827		/*
1828		 * We have already removed references to this list item, just
1829		 * free up the buffer_page and its page
1830		 */
1831		free_buffer_page(to_remove_page);
1832		nr_removed--;
1833
1834	} while (to_remove_page != last_page);
1835
1836	RB_WARN_ON(cpu_buffer, nr_removed);
1837
1838	return nr_removed == 0;
1839}
1840
1841static int
1842rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1843{
1844	struct list_head *pages = &cpu_buffer->new_pages;
1845	int retries, success;
1846
1847	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1848	/*
1849	 * We are holding the reader lock, so the reader page won't be swapped
1850	 * in the ring buffer. Now we are racing with the writer trying to
1851	 * move head page and the tail page.
1852	 * We are going to adapt the reader page update process where:
1853	 * 1. We first splice the start and end of list of new pages between
1854	 *    the head page and its previous page.
1855	 * 2. We cmpxchg the prev_page->next to point from head page to the
1856	 *    start of new pages list.
1857	 * 3. Finally, we update the head->prev to the end of new list.
1858	 *
1859	 * We will try this process 10 times, to make sure that we don't keep
1860	 * spinning.
1861	 */
1862	retries = 10;
1863	success = 0;
1864	while (retries--) {
1865		struct list_head *head_page, *prev_page, *r;
1866		struct list_head *last_page, *first_page;
1867		struct list_head *head_page_with_bit;
1868
1869		head_page = &rb_set_head_page(cpu_buffer)->list;
1870		if (!head_page)
1871			break;
1872		prev_page = head_page->prev;
1873
1874		first_page = pages->next;
1875		last_page  = pages->prev;
1876
1877		head_page_with_bit = (struct list_head *)
1878				     ((unsigned long)head_page | RB_PAGE_HEAD);
1879
1880		last_page->next = head_page_with_bit;
1881		first_page->prev = prev_page;
1882
1883		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1884
1885		if (r == head_page_with_bit) {
1886			/*
1887			 * yay, we replaced the page pointer to our new list,
1888			 * now, we just have to update to head page's prev
1889			 * pointer to point to end of list
1890			 */
1891			head_page->prev = last_page;
1892			success = 1;
1893			break;
1894		}
1895	}
1896
1897	if (success)
1898		INIT_LIST_HEAD(pages);
1899	/*
1900	 * If we weren't successful in adding in new pages, warn and stop
1901	 * tracing
1902	 */
1903	RB_WARN_ON(cpu_buffer, !success);
1904	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1905
1906	/* free pages if they weren't inserted */
1907	if (!success) {
1908		struct buffer_page *bpage, *tmp;
1909		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1910					 list) {
1911			list_del_init(&bpage->list);
1912			free_buffer_page(bpage);
1913		}
1914	}
1915	return success;
1916}
1917
1918static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1919{
1920	int success;
1921
1922	if (cpu_buffer->nr_pages_to_update > 0)
1923		success = rb_insert_pages(cpu_buffer);
1924	else
1925		success = rb_remove_pages(cpu_buffer,
1926					-cpu_buffer->nr_pages_to_update);
1927
1928	if (success)
1929		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1930}
1931
1932static void update_pages_handler(struct work_struct *work)
1933{
1934	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1935			struct ring_buffer_per_cpu, update_pages_work);
1936	rb_update_pages(cpu_buffer);
1937	complete(&cpu_buffer->update_done);
1938}
1939
1940/**
1941 * ring_buffer_resize - resize the ring buffer
1942 * @buffer: the buffer to resize.
1943 * @size: the new size.
1944 * @cpu_id: the cpu buffer to resize
1945 *
1946 * Minimum size is 2 * BUF_PAGE_SIZE.
1947 *
1948 * Returns 0 on success and < 0 on failure.
1949 */
1950int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
1951			int cpu_id)
1952{
1953	struct ring_buffer_per_cpu *cpu_buffer;
1954	unsigned long nr_pages;
1955	int cpu, err = 0;
1956
1957	/*
1958	 * Always succeed at resizing a non-existent buffer:
1959	 */
1960	if (!buffer)
1961		return size;
1962
1963	/* Make sure the requested buffer exists */
1964	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1965	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1966		return size;
1967
1968	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1969
1970	/* we need a minimum of two pages */
1971	if (nr_pages < 2)
1972		nr_pages = 2;
1973
1974	size = nr_pages * BUF_PAGE_SIZE;
1975
 
 
 
 
 
 
 
 
1976	/* prevent another thread from changing buffer sizes */
1977	mutex_lock(&buffer->mutex);
1978
1979
1980	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1981		/*
1982		 * Don't succeed if resizing is disabled, as a reader might be
1983		 * manipulating the ring buffer and is expecting a sane state while
1984		 * this is true.
1985		 */
1986		for_each_buffer_cpu(buffer, cpu) {
1987			cpu_buffer = buffer->buffers[cpu];
1988			if (atomic_read(&cpu_buffer->resize_disabled)) {
1989				err = -EBUSY;
1990				goto out_err_unlock;
1991			}
1992		}
1993
1994		/* calculate the pages to update */
1995		for_each_buffer_cpu(buffer, cpu) {
1996			cpu_buffer = buffer->buffers[cpu];
1997
1998			cpu_buffer->nr_pages_to_update = nr_pages -
1999							cpu_buffer->nr_pages;
2000			/*
2001			 * nothing more to do for removing pages or no update
2002			 */
2003			if (cpu_buffer->nr_pages_to_update <= 0)
2004				continue;
2005			/*
2006			 * to add pages, make sure all new pages can be
2007			 * allocated without receiving ENOMEM
2008			 */
2009			INIT_LIST_HEAD(&cpu_buffer->new_pages);
2010			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
2011						&cpu_buffer->new_pages, cpu)) {
2012				/* not enough memory for new pages */
2013				err = -ENOMEM;
2014				goto out_err;
2015			}
2016		}
2017
2018		get_online_cpus();
2019		/*
2020		 * Fire off all the required work handlers
2021		 * We can't schedule on offline CPUs, but it's not necessary
2022		 * since we can change their buffer sizes without any race.
2023		 */
2024		for_each_buffer_cpu(buffer, cpu) {
2025			cpu_buffer = buffer->buffers[cpu];
2026			if (!cpu_buffer->nr_pages_to_update)
2027				continue;
2028
2029			/* Can't run something on an offline CPU. */
2030			if (!cpu_online(cpu)) {
2031				rb_update_pages(cpu_buffer);
2032				cpu_buffer->nr_pages_to_update = 0;
2033			} else {
2034				schedule_work_on(cpu,
2035						&cpu_buffer->update_pages_work);
2036			}
2037		}
2038
2039		/* wait for all the updates to complete */
2040		for_each_buffer_cpu(buffer, cpu) {
2041			cpu_buffer = buffer->buffers[cpu];
2042			if (!cpu_buffer->nr_pages_to_update)
2043				continue;
2044
2045			if (cpu_online(cpu))
2046				wait_for_completion(&cpu_buffer->update_done);
2047			cpu_buffer->nr_pages_to_update = 0;
2048		}
2049
2050		put_online_cpus();
2051	} else {
2052		/* Make sure this CPU has been initialized */
2053		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
2054			goto out;
2055
2056		cpu_buffer = buffer->buffers[cpu_id];
2057
2058		if (nr_pages == cpu_buffer->nr_pages)
2059			goto out;
2060
2061		/*
2062		 * Don't succeed if resizing is disabled, as a reader might be
2063		 * manipulating the ring buffer and is expecting a sane state while
2064		 * this is true.
2065		 */
2066		if (atomic_read(&cpu_buffer->resize_disabled)) {
2067			err = -EBUSY;
2068			goto out_err_unlock;
2069		}
2070
2071		cpu_buffer->nr_pages_to_update = nr_pages -
2072						cpu_buffer->nr_pages;
2073
2074		INIT_LIST_HEAD(&cpu_buffer->new_pages);
2075		if (cpu_buffer->nr_pages_to_update > 0 &&
2076			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
2077					    &cpu_buffer->new_pages, cpu_id)) {
2078			err = -ENOMEM;
2079			goto out_err;
2080		}
2081
2082		get_online_cpus();
2083
2084		/* Can't run something on an offline CPU. */
2085		if (!cpu_online(cpu_id))
2086			rb_update_pages(cpu_buffer);
2087		else {
2088			schedule_work_on(cpu_id,
2089					 &cpu_buffer->update_pages_work);
2090			wait_for_completion(&cpu_buffer->update_done);
2091		}
2092
2093		cpu_buffer->nr_pages_to_update = 0;
2094		put_online_cpus();
2095	}
2096
2097 out:
2098	/*
2099	 * The ring buffer resize can happen with the ring buffer
2100	 * enabled, so that the update disturbs the tracing as little
2101	 * as possible. But if the buffer is disabled, we do not need
2102	 * to worry about that, and we can take the time to verify
2103	 * that the buffer is not corrupt.
2104	 */
2105	if (atomic_read(&buffer->record_disabled)) {
2106		atomic_inc(&buffer->record_disabled);
2107		/*
2108		 * Even though the buffer was disabled, we must make sure
2109		 * that it is truly disabled before calling rb_check_pages.
2110		 * There could have been a race between checking
2111		 * record_disable and incrementing it.
2112		 */
2113		synchronize_rcu();
2114		for_each_buffer_cpu(buffer, cpu) {
2115			cpu_buffer = buffer->buffers[cpu];
2116			rb_check_pages(cpu_buffer);
2117		}
2118		atomic_dec(&buffer->record_disabled);
2119	}
2120
2121	mutex_unlock(&buffer->mutex);
2122	return size;
2123
2124 out_err:
2125	for_each_buffer_cpu(buffer, cpu) {
2126		struct buffer_page *bpage, *tmp;
2127
2128		cpu_buffer = buffer->buffers[cpu];
2129		cpu_buffer->nr_pages_to_update = 0;
2130
2131		if (list_empty(&cpu_buffer->new_pages))
2132			continue;
2133
2134		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2135					list) {
2136			list_del_init(&bpage->list);
2137			free_buffer_page(bpage);
2138		}
2139	}
2140 out_err_unlock:
2141	mutex_unlock(&buffer->mutex);
2142	return err;
2143}
2144EXPORT_SYMBOL_GPL(ring_buffer_resize);
2145
2146void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2147{
2148	mutex_lock(&buffer->mutex);
2149	if (val)
2150		buffer->flags |= RB_FL_OVERWRITE;
2151	else
2152		buffer->flags &= ~RB_FL_OVERWRITE;
2153	mutex_unlock(&buffer->mutex);
2154}
2155EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2156
2157static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2158{
2159	return bpage->page->data + index;
2160}
2161
2162static __always_inline struct ring_buffer_event *
2163rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2164{
2165	return __rb_page_index(cpu_buffer->reader_page,
2166			       cpu_buffer->reader_page->read);
2167}
2168
2169static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
 
2170{
2171	return local_read(&bpage->page->commit);
2172}
2173
2174static struct ring_buffer_event *
2175rb_iter_head_event(struct ring_buffer_iter *iter)
2176{
2177	struct ring_buffer_event *event;
2178	struct buffer_page *iter_head_page = iter->head_page;
2179	unsigned long commit;
2180	unsigned length;
2181
2182	if (iter->head != iter->next_event)
2183		return iter->event;
2184
2185	/*
2186	 * When the writer goes across pages, it issues a cmpxchg which
2187	 * is a mb(), which will synchronize with the rmb here.
2188	 * (see rb_tail_page_update() and __rb_reserve_next())
2189	 */
2190	commit = rb_page_commit(iter_head_page);
2191	smp_rmb();
2192	event = __rb_page_index(iter_head_page, iter->head);
2193	length = rb_event_length(event);
2194
2195	/*
2196	 * READ_ONCE() doesn't work on functions and we don't want the
2197	 * compiler doing any crazy optimizations with length.
2198	 */
2199	barrier();
2200
2201	if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE)
2202		/* Writer corrupted the read? */
2203		goto reset;
2204
2205	memcpy(iter->event, event, length);
2206	/*
2207	 * If the page stamp is still the same after this rmb() then the
2208	 * event was safely copied without the writer entering the page.
2209	 */
2210	smp_rmb();
2211
2212	/* Make sure the page didn't change since we read this */
2213	if (iter->page_stamp != iter_head_page->page->time_stamp ||
2214	    commit > rb_page_commit(iter_head_page))
2215		goto reset;
2216
2217	iter->next_event = iter->head + length;
2218	return iter->event;
2219 reset:
2220	/* Reset to the beginning */
2221	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2222	iter->head = 0;
2223	iter->next_event = 0;
2224	iter->missed_events = 1;
2225	return NULL;
2226}
2227
2228/* Size is determined by what has been committed */
2229static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2230{
2231	return rb_page_commit(bpage);
2232}
2233
2234static __always_inline unsigned
2235rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2236{
2237	return rb_page_commit(cpu_buffer->commit_page);
2238}
2239
2240static __always_inline unsigned
2241rb_event_index(struct ring_buffer_event *event)
2242{
2243	unsigned long addr = (unsigned long)event;
2244
2245	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2246}
2247
2248static void rb_inc_iter(struct ring_buffer_iter *iter)
2249{
2250	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2251
2252	/*
2253	 * The iterator could be on the reader page (it starts there).
2254	 * But the head could have moved, since the reader was
2255	 * found. Check for this case and assign the iterator
2256	 * to the head page instead of next.
2257	 */
2258	if (iter->head_page == cpu_buffer->reader_page)
2259		iter->head_page = rb_set_head_page(cpu_buffer);
2260	else
2261		rb_inc_page(cpu_buffer, &iter->head_page);
2262
2263	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2264	iter->head = 0;
2265	iter->next_event = 0;
2266}
2267
2268/*
2269 * rb_handle_head_page - writer hit the head page
2270 *
2271 * Returns: +1 to retry page
2272 *           0 to continue
2273 *          -1 on error
2274 */
2275static int
2276rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2277		    struct buffer_page *tail_page,
2278		    struct buffer_page *next_page)
2279{
2280	struct buffer_page *new_head;
2281	int entries;
2282	int type;
2283	int ret;
2284
2285	entries = rb_page_entries(next_page);
2286
2287	/*
2288	 * The hard part is here. We need to move the head
2289	 * forward, and protect against both readers on
2290	 * other CPUs and writers coming in via interrupts.
2291	 */
2292	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2293				       RB_PAGE_HEAD);
2294
2295	/*
2296	 * type can be one of four:
2297	 *  NORMAL - an interrupt already moved it for us
2298	 *  HEAD   - we are the first to get here.
2299	 *  UPDATE - we are the interrupt interrupting
2300	 *           a current move.
2301	 *  MOVED  - a reader on another CPU moved the next
2302	 *           pointer to its reader page. Give up
2303	 *           and try again.
2304	 */
2305
2306	switch (type) {
2307	case RB_PAGE_HEAD:
2308		/*
2309		 * We changed the head to UPDATE, thus
2310		 * it is our responsibility to update
2311		 * the counters.
2312		 */
2313		local_add(entries, &cpu_buffer->overrun);
2314		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2315
2316		/*
2317		 * The entries will be zeroed out when we move the
2318		 * tail page.
2319		 */
2320
2321		/* still more to do */
2322		break;
2323
2324	case RB_PAGE_UPDATE:
2325		/*
2326		 * This is an interrupt that interrupt the
2327		 * previous update. Still more to do.
2328		 */
2329		break;
2330	case RB_PAGE_NORMAL:
2331		/*
2332		 * An interrupt came in before the update
2333		 * and processed this for us.
2334		 * Nothing left to do.
2335		 */
2336		return 1;
2337	case RB_PAGE_MOVED:
2338		/*
2339		 * The reader is on another CPU and just did
2340		 * a swap with our next_page.
2341		 * Try again.
2342		 */
2343		return 1;
2344	default:
2345		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2346		return -1;
2347	}
2348
2349	/*
2350	 * Now that we are here, the old head pointer is
2351	 * set to UPDATE. This will keep the reader from
2352	 * swapping the head page with the reader page.
2353	 * The reader (on another CPU) will spin till
2354	 * we are finished.
2355	 *
2356	 * We just need to protect against interrupts
2357	 * doing the job. We will set the next pointer
2358	 * to HEAD. After that, we set the old pointer
2359	 * to NORMAL, but only if it was HEAD before.
2360	 * otherwise we are an interrupt, and only
2361	 * want the outer most commit to reset it.
2362	 */
2363	new_head = next_page;
2364	rb_inc_page(cpu_buffer, &new_head);
2365
2366	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2367				    RB_PAGE_NORMAL);
2368
2369	/*
2370	 * Valid returns are:
2371	 *  HEAD   - an interrupt came in and already set it.
2372	 *  NORMAL - One of two things:
2373	 *            1) We really set it.
2374	 *            2) A bunch of interrupts came in and moved
2375	 *               the page forward again.
2376	 */
2377	switch (ret) {
2378	case RB_PAGE_HEAD:
2379	case RB_PAGE_NORMAL:
2380		/* OK */
2381		break;
2382	default:
2383		RB_WARN_ON(cpu_buffer, 1);
2384		return -1;
2385	}
2386
2387	/*
2388	 * It is possible that an interrupt came in,
2389	 * set the head up, then more interrupts came in
2390	 * and moved it again. When we get back here,
2391	 * the page would have been set to NORMAL but we
2392	 * just set it back to HEAD.
2393	 *
2394	 * How do you detect this? Well, if that happened
2395	 * the tail page would have moved.
2396	 */
2397	if (ret == RB_PAGE_NORMAL) {
2398		struct buffer_page *buffer_tail_page;
2399
2400		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2401		/*
2402		 * If the tail had moved passed next, then we need
2403		 * to reset the pointer.
2404		 */
2405		if (buffer_tail_page != tail_page &&
2406		    buffer_tail_page != next_page)
2407			rb_head_page_set_normal(cpu_buffer, new_head,
2408						next_page,
2409						RB_PAGE_HEAD);
2410	}
2411
2412	/*
2413	 * If this was the outer most commit (the one that
2414	 * changed the original pointer from HEAD to UPDATE),
2415	 * then it is up to us to reset it to NORMAL.
2416	 */
2417	if (type == RB_PAGE_HEAD) {
2418		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2419					      tail_page,
2420					      RB_PAGE_UPDATE);
2421		if (RB_WARN_ON(cpu_buffer,
2422			       ret != RB_PAGE_UPDATE))
2423			return -1;
2424	}
2425
2426	return 0;
2427}
2428
2429static inline void
2430rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2431	      unsigned long tail, struct rb_event_info *info)
2432{
2433	struct buffer_page *tail_page = info->tail_page;
2434	struct ring_buffer_event *event;
2435	unsigned long length = info->length;
2436
2437	/*
2438	 * Only the event that crossed the page boundary
2439	 * must fill the old tail_page with padding.
2440	 */
2441	if (tail >= BUF_PAGE_SIZE) {
2442		/*
2443		 * If the page was filled, then we still need
2444		 * to update the real_end. Reset it to zero
2445		 * and the reader will ignore it.
2446		 */
2447		if (tail == BUF_PAGE_SIZE)
2448			tail_page->real_end = 0;
2449
2450		local_sub(length, &tail_page->write);
2451		return;
2452	}
2453
2454	event = __rb_page_index(tail_page, tail);
2455
2456	/* account for padding bytes */
2457	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2458
2459	/*
2460	 * Save the original length to the meta data.
2461	 * This will be used by the reader to add lost event
2462	 * counter.
2463	 */
2464	tail_page->real_end = tail;
2465
2466	/*
2467	 * If this event is bigger than the minimum size, then
2468	 * we need to be careful that we don't subtract the
2469	 * write counter enough to allow another writer to slip
2470	 * in on this page.
2471	 * We put in a discarded commit instead, to make sure
2472	 * that this space is not used again.
2473	 *
2474	 * If we are less than the minimum size, we don't need to
2475	 * worry about it.
2476	 */
2477	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2478		/* No room for any events */
2479
2480		/* Mark the rest of the page with padding */
2481		rb_event_set_padding(event);
2482
2483		/* Set the write back to the previous setting */
2484		local_sub(length, &tail_page->write);
2485		return;
2486	}
2487
2488	/* Put in a discarded event */
2489	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2490	event->type_len = RINGBUF_TYPE_PADDING;
2491	/* time delta must be non zero */
2492	event->time_delta = 1;
2493
2494	/* Set write to end of buffer */
2495	length = (tail + length) - BUF_PAGE_SIZE;
2496	local_sub(length, &tail_page->write);
2497}
2498
2499static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2500
2501/*
2502 * This is the slow path, force gcc not to inline it.
2503 */
2504static noinline struct ring_buffer_event *
2505rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2506	     unsigned long tail, struct rb_event_info *info)
2507{
2508	struct buffer_page *tail_page = info->tail_page;
2509	struct buffer_page *commit_page = cpu_buffer->commit_page;
2510	struct trace_buffer *buffer = cpu_buffer->buffer;
2511	struct buffer_page *next_page;
2512	int ret;
2513
2514	next_page = tail_page;
2515
2516	rb_inc_page(cpu_buffer, &next_page);
2517
2518	/*
2519	 * If for some reason, we had an interrupt storm that made
2520	 * it all the way around the buffer, bail, and warn
2521	 * about it.
2522	 */
2523	if (unlikely(next_page == commit_page)) {
2524		local_inc(&cpu_buffer->commit_overrun);
2525		goto out_reset;
2526	}
2527
2528	/*
2529	 * This is where the fun begins!
2530	 *
2531	 * We are fighting against races between a reader that
2532	 * could be on another CPU trying to swap its reader
2533	 * page with the buffer head.
2534	 *
2535	 * We are also fighting against interrupts coming in and
2536	 * moving the head or tail on us as well.
2537	 *
2538	 * If the next page is the head page then we have filled
2539	 * the buffer, unless the commit page is still on the
2540	 * reader page.
2541	 */
2542	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2543
2544		/*
2545		 * If the commit is not on the reader page, then
2546		 * move the header page.
2547		 */
2548		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2549			/*
2550			 * If we are not in overwrite mode,
2551			 * this is easy, just stop here.
2552			 */
2553			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2554				local_inc(&cpu_buffer->dropped_events);
2555				goto out_reset;
2556			}
2557
2558			ret = rb_handle_head_page(cpu_buffer,
2559						  tail_page,
2560						  next_page);
2561			if (ret < 0)
2562				goto out_reset;
2563			if (ret)
2564				goto out_again;
2565		} else {
2566			/*
2567			 * We need to be careful here too. The
2568			 * commit page could still be on the reader
2569			 * page. We could have a small buffer, and
2570			 * have filled up the buffer with events
2571			 * from interrupts and such, and wrapped.
2572			 *
2573			 * Note, if the tail page is also the on the
2574			 * reader_page, we let it move out.
2575			 */
2576			if (unlikely((cpu_buffer->commit_page !=
2577				      cpu_buffer->tail_page) &&
2578				     (cpu_buffer->commit_page ==
2579				      cpu_buffer->reader_page))) {
2580				local_inc(&cpu_buffer->commit_overrun);
2581				goto out_reset;
2582			}
2583		}
2584	}
2585
2586	rb_tail_page_update(cpu_buffer, tail_page, next_page);
2587
2588 out_again:
2589
2590	rb_reset_tail(cpu_buffer, tail, info);
2591
2592	/* Commit what we have for now. */
2593	rb_end_commit(cpu_buffer);
2594	/* rb_end_commit() decs committing */
2595	local_inc(&cpu_buffer->committing);
2596
2597	/* fail and let the caller try again */
2598	return ERR_PTR(-EAGAIN);
2599
2600 out_reset:
2601	/* reset write */
2602	rb_reset_tail(cpu_buffer, tail, info);
2603
2604	return NULL;
2605}
2606
2607/* Slow path */
2608static struct ring_buffer_event *
2609rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2610{
2611	if (abs)
2612		event->type_len = RINGBUF_TYPE_TIME_STAMP;
2613	else
2614		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2615
2616	/* Not the first event on the page, or not delta? */
2617	if (abs || rb_event_index(event)) {
2618		event->time_delta = delta & TS_MASK;
2619		event->array[0] = delta >> TS_SHIFT;
2620	} else {
2621		/* nope, just zero it */
2622		event->time_delta = 0;
2623		event->array[0] = 0;
2624	}
2625
2626	return skip_time_extend(event);
2627}
2628
2629static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2630				     struct ring_buffer_event *event);
2631
2632#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2633static inline bool sched_clock_stable(void)
2634{
2635	return true;
2636}
2637#endif
2638
2639static void
2640rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2641		   struct rb_event_info *info)
2642{
2643	u64 write_stamp;
2644
2645	WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2646		  (unsigned long long)info->delta,
2647		  (unsigned long long)info->ts,
2648		  (unsigned long long)info->before,
2649		  (unsigned long long)info->after,
2650		  (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2651		  sched_clock_stable() ? "" :
2652		  "If you just came from a suspend/resume,\n"
2653		  "please switch to the trace global clock:\n"
2654		  "  echo global > /sys/kernel/debug/tracing/trace_clock\n"
2655		  "or add trace_clock=global to the kernel command line\n");
2656}
2657
2658static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2659				      struct ring_buffer_event **event,
2660				      struct rb_event_info *info,
2661				      u64 *delta,
2662				      unsigned int *length)
2663{
2664	bool abs = info->add_timestamp &
2665		(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2666
2667	if (unlikely(info->delta > (1ULL << 59))) {
2668		/* did the clock go backwards */
2669		if (info->before == info->after && info->before > info->ts) {
2670			/* not interrupted */
2671			static int once;
2672
2673			/*
2674			 * This is possible with a recalibrating of the TSC.
2675			 * Do not produce a call stack, but just report it.
2676			 */
2677			if (!once) {
2678				once++;
2679				pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2680					info->before, info->ts);
2681			}
2682		} else
2683			rb_check_timestamp(cpu_buffer, info);
2684		if (!abs)
2685			info->delta = 0;
2686	}
2687	*event = rb_add_time_stamp(*event, info->delta, abs);
2688	*length -= RB_LEN_TIME_EXTEND;
2689	*delta = 0;
2690}
2691
2692/**
2693 * rb_update_event - update event type and data
2694 * @cpu_buffer: The per cpu buffer of the @event
2695 * @event: the event to update
2696 * @info: The info to update the @event with (contains length and delta)
 
2697 *
2698 * Update the type and data fields of the @event. The length
2699 * is the actual size that is written to the ring buffer,
2700 * and with this, we can determine what to place into the
2701 * data field.
2702 */
2703static void
2704rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2705		struct ring_buffer_event *event,
2706		struct rb_event_info *info)
2707{
2708	unsigned length = info->length;
2709	u64 delta = info->delta;
2710
 
 
 
 
2711	/*
2712	 * If we need to add a timestamp, then we
2713	 * add it to the start of the reserved space.
2714	 */
2715	if (unlikely(info->add_timestamp))
2716		rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
 
 
 
 
 
2717
2718	event->time_delta = delta;
2719	length -= RB_EVNT_HDR_SIZE;
2720	if (length > RB_MAX_SMALL_DATA) {
2721		event->type_len = 0;
2722		event->array[0] = length;
2723	} else
2724		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2725}
2726
2727static unsigned rb_calculate_event_length(unsigned length)
2728{
2729	struct ring_buffer_event event; /* Used only for sizeof array */
2730
2731	/* zero length can cause confusions */
2732	if (!length)
2733		length++;
2734
2735	if (length > RB_MAX_SMALL_DATA)
2736		length += sizeof(event.array[0]);
2737
2738	length += RB_EVNT_HDR_SIZE;
2739	length = ALIGN(length, RB_ALIGNMENT);
2740
2741	/*
2742	 * In case the time delta is larger than the 27 bits for it
2743	 * in the header, we need to add a timestamp. If another
2744	 * event comes in when trying to discard this one to increase
2745	 * the length, then the timestamp will be added in the allocated
2746	 * space of this event. If length is bigger than the size needed
2747	 * for the TIME_EXTEND, then padding has to be used. The events
2748	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2749	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2750	 * As length is a multiple of 4, we only need to worry if it
2751	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2752	 */
2753	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2754		length += RB_ALIGNMENT;
2755
2756	return length;
2757}
2758
2759static __always_inline bool
2760rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2761		   struct ring_buffer_event *event)
2762{
2763	unsigned long addr = (unsigned long)event;
2764	unsigned long index;
2765
2766	index = rb_event_index(event);
2767	addr &= PAGE_MASK;
2768
2769	return cpu_buffer->commit_page->page == (void *)addr &&
2770		rb_commit_index(cpu_buffer) == index;
2771}
2772
2773static u64 rb_time_delta(struct ring_buffer_event *event)
2774{
2775	switch (event->type_len) {
2776	case RINGBUF_TYPE_PADDING:
2777		return 0;
2778
2779	case RINGBUF_TYPE_TIME_EXTEND:
2780		return ring_buffer_event_time_stamp(event);
2781
2782	case RINGBUF_TYPE_TIME_STAMP:
2783		return 0;
2784
2785	case RINGBUF_TYPE_DATA:
2786		return event->time_delta;
2787	default:
2788		return 0;
2789	}
2790}
 
2791
2792static inline int
2793rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2794		  struct ring_buffer_event *event)
2795{
2796	unsigned long new_index, old_index;
2797	struct buffer_page *bpage;
2798	unsigned long index;
2799	unsigned long addr;
2800	u64 write_stamp;
2801	u64 delta;
2802
2803	new_index = rb_event_index(event);
2804	old_index = new_index + rb_event_ts_length(event);
2805	addr = (unsigned long)event;
2806	addr &= PAGE_MASK;
2807
2808	bpage = READ_ONCE(cpu_buffer->tail_page);
2809
2810	delta = rb_time_delta(event);
2811
2812	if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp))
2813		return 0;
2814
2815	/* Make sure the write stamp is read before testing the location */
2816	barrier();
2817
2818	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2819		unsigned long write_mask =
2820			local_read(&bpage->write) & ~RB_WRITE_MASK;
2821		unsigned long event_length = rb_event_length(event);
2822
2823		/* Something came in, can't discard */
2824		if (!rb_time_cmpxchg(&cpu_buffer->write_stamp,
2825				       write_stamp, write_stamp - delta))
2826			return 0;
2827
2828		/*
2829		 * If an event were to come in now, it would see that the
2830		 * write_stamp and the before_stamp are different, and assume
2831		 * that this event just added itself before updating
2832		 * the write stamp. The interrupting event will fix the
2833		 * write stamp for us, and use the before stamp as its delta.
2834		 */
2835
2836		/*
2837		 * This is on the tail page. It is possible that
2838		 * a write could come in and move the tail page
2839		 * and write to the next page. That is fine
2840		 * because we just shorten what is on this page.
2841		 */
2842		old_index += write_mask;
2843		new_index += write_mask;
2844		index = local_cmpxchg(&bpage->write, old_index, new_index);
2845		if (index == old_index) {
2846			/* update counters */
2847			local_sub(event_length, &cpu_buffer->entries_bytes);
2848			return 1;
2849		}
2850	}
2851
2852	/* could not discard */
2853	return 0;
2854}
2855
2856static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2857{
2858	local_inc(&cpu_buffer->committing);
2859	local_inc(&cpu_buffer->commits);
2860}
2861
2862static __always_inline void
2863rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2864{
2865	unsigned long max_count;
2866
2867	/*
2868	 * We only race with interrupts and NMIs on this CPU.
2869	 * If we own the commit event, then we can commit
2870	 * all others that interrupted us, since the interruptions
2871	 * are in stack format (they finish before they come
2872	 * back to us). This allows us to do a simple loop to
2873	 * assign the commit to the tail.
2874	 */
2875 again:
2876	max_count = cpu_buffer->nr_pages * 100;
2877
2878	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2879		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2880			return;
2881		if (RB_WARN_ON(cpu_buffer,
2882			       rb_is_reader_page(cpu_buffer->tail_page)))
2883			return;
2884		local_set(&cpu_buffer->commit_page->page->commit,
2885			  rb_page_write(cpu_buffer->commit_page));
2886		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
 
 
 
 
2887		/* add barrier to keep gcc from optimizing too much */
2888		barrier();
2889	}
2890	while (rb_commit_index(cpu_buffer) !=
2891	       rb_page_write(cpu_buffer->commit_page)) {
2892
2893		local_set(&cpu_buffer->commit_page->page->commit,
2894			  rb_page_write(cpu_buffer->commit_page));
2895		RB_WARN_ON(cpu_buffer,
2896			   local_read(&cpu_buffer->commit_page->page->commit) &
2897			   ~RB_WRITE_MASK);
2898		barrier();
2899	}
2900
2901	/* again, keep gcc from optimizing */
2902	barrier();
2903
2904	/*
2905	 * If an interrupt came in just after the first while loop
2906	 * and pushed the tail page forward, we will be left with
2907	 * a dangling commit that will never go forward.
2908	 */
2909	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2910		goto again;
2911}
2912
2913static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2914{
2915	unsigned long commits;
2916
2917	if (RB_WARN_ON(cpu_buffer,
2918		       !local_read(&cpu_buffer->committing)))
2919		return;
2920
2921 again:
2922	commits = local_read(&cpu_buffer->commits);
2923	/* synchronize with interrupts */
2924	barrier();
2925	if (local_read(&cpu_buffer->committing) == 1)
2926		rb_set_commit_to_write(cpu_buffer);
2927
2928	local_dec(&cpu_buffer->committing);
2929
2930	/* synchronize with interrupts */
2931	barrier();
2932
2933	/*
2934	 * Need to account for interrupts coming in between the
2935	 * updating of the commit page and the clearing of the
2936	 * committing counter.
2937	 */
2938	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2939	    !local_read(&cpu_buffer->committing)) {
2940		local_inc(&cpu_buffer->committing);
2941		goto again;
2942	}
2943}
2944
2945static inline void rb_event_discard(struct ring_buffer_event *event)
2946{
2947	if (extended_time(event))
2948		event = skip_time_extend(event);
2949
2950	/* array[0] holds the actual length for the discarded event */
2951	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2952	event->type_len = RINGBUF_TYPE_PADDING;
2953	/* time delta must be non zero */
2954	if (!event->time_delta)
2955		event->time_delta = 1;
2956}
2957
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2958static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2959		      struct ring_buffer_event *event)
2960{
2961	local_inc(&cpu_buffer->entries);
 
2962	rb_end_commit(cpu_buffer);
2963}
2964
2965static __always_inline void
2966rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2967{
2968	size_t nr_pages;
2969	size_t dirty;
2970	size_t full;
2971
2972	if (buffer->irq_work.waiters_pending) {
2973		buffer->irq_work.waiters_pending = false;
2974		/* irq_work_queue() supplies it's own memory barriers */
2975		irq_work_queue(&buffer->irq_work.work);
2976	}
2977
2978	if (cpu_buffer->irq_work.waiters_pending) {
2979		cpu_buffer->irq_work.waiters_pending = false;
2980		/* irq_work_queue() supplies it's own memory barriers */
2981		irq_work_queue(&cpu_buffer->irq_work.work);
2982	}
2983
2984	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
2985		return;
2986
2987	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
2988		return;
2989
2990	if (!cpu_buffer->irq_work.full_waiters_pending)
2991		return;
2992
2993	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
2994
2995	full = cpu_buffer->shortest_full;
2996	nr_pages = cpu_buffer->nr_pages;
2997	dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu);
2998	if (full && nr_pages && (dirty * 100) <= full * nr_pages)
2999		return;
3000
3001	cpu_buffer->irq_work.wakeup_full = true;
3002	cpu_buffer->irq_work.full_waiters_pending = false;
3003	/* irq_work_queue() supplies it's own memory barriers */
3004	irq_work_queue(&cpu_buffer->irq_work.work);
3005}
3006
3007/*
3008 * The lock and unlock are done within a preempt disable section.
3009 * The current_context per_cpu variable can only be modified
3010 * by the current task between lock and unlock. But it can
3011 * be modified more than once via an interrupt. To pass this
3012 * information from the lock to the unlock without having to
3013 * access the 'in_interrupt()' functions again (which do show
3014 * a bit of overhead in something as critical as function tracing,
3015 * we use a bitmask trick.
3016 *
3017 *  bit 0 =  NMI context
3018 *  bit 1 =  IRQ context
3019 *  bit 2 =  SoftIRQ context
3020 *  bit 3 =  normal context.
3021 *
3022 * This works because this is the order of contexts that can
3023 * preempt other contexts. A SoftIRQ never preempts an IRQ
3024 * context.
3025 *
3026 * When the context is determined, the corresponding bit is
3027 * checked and set (if it was set, then a recursion of that context
3028 * happened).
3029 *
3030 * On unlock, we need to clear this bit. To do so, just subtract
3031 * 1 from the current_context and AND it to itself.
3032 *
3033 * (binary)
3034 *  101 - 1 = 100
3035 *  101 & 100 = 100 (clearing bit zero)
3036 *
3037 *  1010 - 1 = 1001
3038 *  1010 & 1001 = 1000 (clearing bit 1)
3039 *
3040 * The least significant bit can be cleared this way, and it
3041 * just so happens that it is the same bit corresponding to
3042 * the current context.
3043 */
3044
3045static __always_inline int
3046trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3047{
3048	unsigned int val = cpu_buffer->current_context;
3049	unsigned long pc = preempt_count();
3050	int bit;
3051
3052	if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
3053		bit = RB_CTX_NORMAL;
3054	else
3055		bit = pc & NMI_MASK ? RB_CTX_NMI :
3056			pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
3057
3058	if (unlikely(val & (1 << (bit + cpu_buffer->nest))))
3059		return 1;
3060
3061	val |= (1 << (bit + cpu_buffer->nest));
3062	cpu_buffer->current_context = val;
3063
3064	return 0;
3065}
3066
3067static __always_inline void
3068trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3069{
3070	cpu_buffer->current_context &=
3071		cpu_buffer->current_context - (1 << cpu_buffer->nest);
3072}
3073
3074/* The recursive locking above uses 4 bits */
3075#define NESTED_BITS 4
3076
3077/**
3078 * ring_buffer_nest_start - Allow to trace while nested
3079 * @buffer: The ring buffer to modify
3080 *
3081 * The ring buffer has a safety mechanism to prevent recursion.
3082 * But there may be a case where a trace needs to be done while
3083 * tracing something else. In this case, calling this function
3084 * will allow this function to nest within a currently active
3085 * ring_buffer_lock_reserve().
3086 *
3087 * Call this function before calling another ring_buffer_lock_reserve() and
3088 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3089 */
3090void ring_buffer_nest_start(struct trace_buffer *buffer)
3091{
3092	struct ring_buffer_per_cpu *cpu_buffer;
3093	int cpu;
3094
3095	/* Enabled by ring_buffer_nest_end() */
3096	preempt_disable_notrace();
3097	cpu = raw_smp_processor_id();
3098	cpu_buffer = buffer->buffers[cpu];
3099	/* This is the shift value for the above recursive locking */
3100	cpu_buffer->nest += NESTED_BITS;
3101}
3102
3103/**
3104 * ring_buffer_nest_end - Allow to trace while nested
3105 * @buffer: The ring buffer to modify
3106 *
3107 * Must be called after ring_buffer_nest_start() and after the
3108 * ring_buffer_unlock_commit().
3109 */
3110void ring_buffer_nest_end(struct trace_buffer *buffer)
3111{
3112	struct ring_buffer_per_cpu *cpu_buffer;
3113	int cpu;
3114
3115	/* disabled by ring_buffer_nest_start() */
3116	cpu = raw_smp_processor_id();
3117	cpu_buffer = buffer->buffers[cpu];
3118	/* This is the shift value for the above recursive locking */
3119	cpu_buffer->nest -= NESTED_BITS;
3120	preempt_enable_notrace();
3121}
3122
3123/**
3124 * ring_buffer_unlock_commit - commit a reserved
3125 * @buffer: The buffer to commit to
3126 * @event: The event pointer to commit.
3127 *
3128 * This commits the data to the ring buffer, and releases any locks held.
3129 *
3130 * Must be paired with ring_buffer_lock_reserve.
3131 */
3132int ring_buffer_unlock_commit(struct trace_buffer *buffer,
3133			      struct ring_buffer_event *event)
3134{
3135	struct ring_buffer_per_cpu *cpu_buffer;
3136	int cpu = raw_smp_processor_id();
3137
3138	cpu_buffer = buffer->buffers[cpu];
3139
3140	rb_commit(cpu_buffer, event);
3141
3142	rb_wakeups(buffer, cpu_buffer);
3143
3144	trace_recursive_unlock(cpu_buffer);
3145
3146	preempt_enable_notrace();
3147
3148	return 0;
3149}
3150EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3151
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3152static struct ring_buffer_event *
3153__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3154		  struct rb_event_info *info)
3155{
3156	struct ring_buffer_event *event;
3157	struct buffer_page *tail_page;
3158	unsigned long tail, write, w;
3159	bool a_ok;
3160	bool b_ok;
 
 
 
 
 
 
3161
3162	/* Don't let the compiler play games with cpu_buffer->tail_page */
3163	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3164
3165 /*A*/	w = local_read(&tail_page->write) & RB_WRITE_MASK;
3166	barrier();
3167	b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3168	a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3169	barrier();
3170	info->ts = rb_time_stamp(cpu_buffer->buffer);
3171
3172	if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3173		info->delta = info->ts;
3174	} else {
3175		/*
3176		 * If interrupting an event time update, we may need an
3177		 * absolute timestamp.
3178		 * Don't bother if this is the start of a new page (w == 0).
3179		 */
3180		if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) {
3181			info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3182			info->length += RB_LEN_TIME_EXTEND;
3183		} else {
3184			info->delta = info->ts - info->after;
3185			if (unlikely(test_time_stamp(info->delta))) {
3186				info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3187				info->length += RB_LEN_TIME_EXTEND;
3188			}
3189		}
3190	}
3191
3192 /*B*/	rb_time_set(&cpu_buffer->before_stamp, info->ts);
3193
3194 /*C*/	write = local_add_return(info->length, &tail_page->write);
3195
3196	/* set write to only the index of the write */
3197	write &= RB_WRITE_MASK;
3198
3199	tail = write - info->length;
3200
3201	/* See if we shot pass the end of this buffer page */
3202	if (unlikely(write > BUF_PAGE_SIZE)) {
3203		if (tail != w) {
3204			/* before and after may now different, fix it up*/
3205			b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3206			a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3207			if (a_ok && b_ok && info->before != info->after)
3208				(void)rb_time_cmpxchg(&cpu_buffer->before_stamp,
3209						      info->before, info->after);
3210		}
3211		return rb_move_tail(cpu_buffer, tail, info);
3212	}
3213
3214	if (likely(tail == w)) {
3215		u64 save_before;
3216		bool s_ok;
3217
3218		/* Nothing interrupted us between A and C */
3219 /*D*/		rb_time_set(&cpu_buffer->write_stamp, info->ts);
3220		barrier();
3221 /*E*/		s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before);
3222		RB_WARN_ON(cpu_buffer, !s_ok);
3223		if (likely(!(info->add_timestamp &
3224			     (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3225			/* This did not interrupt any time update */
3226			info->delta = info->ts - info->after;
3227		else
3228			/* Just use full timestamp for inerrupting event */
3229			info->delta = info->ts;
3230		barrier();
3231		if (unlikely(info->ts != save_before)) {
3232			/* SLOW PATH - Interrupted between C and E */
3233
3234			a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3235			RB_WARN_ON(cpu_buffer, !a_ok);
3236
3237			/* Write stamp must only go forward */
3238			if (save_before > info->after) {
3239				/*
3240				 * We do not care about the result, only that
3241				 * it gets updated atomically.
3242				 */
3243				(void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3244						      info->after, save_before);
3245			}
3246		}
3247	} else {
3248		u64 ts;
3249		/* SLOW PATH - Interrupted between A and C */
3250		a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3251		/* Was interrupted before here, write_stamp must be valid */
3252		RB_WARN_ON(cpu_buffer, !a_ok);
3253		ts = rb_time_stamp(cpu_buffer->buffer);
3254		barrier();
3255 /*E*/		if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3256		    info->after < ts) {
3257			/* Nothing came after this event between C and E */
3258			info->delta = ts - info->after;
3259			(void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3260					      info->after, info->ts);
3261			info->ts = ts;
3262		} else {
3263			/*
3264			 * Interrupted beween C and E:
3265			 * Lost the previous events time stamp. Just set the
3266			 * delta to zero, and this will be the same time as
3267			 * the event this event interrupted. And the events that
3268			 * came after this will still be correct (as they would
3269			 * have built their delta on the previous event.
3270			 */
3271			info->delta = 0;
3272		}
3273		info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3274	}
3275
3276	/*
3277	 * If this is the first commit on the page, then it has the same
3278	 * timestamp as the page itself.
3279	 */
3280	if (unlikely(!tail && !(info->add_timestamp &
3281				(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3282		info->delta = 0;
3283
 
 
 
 
3284	/* We reserved something on the buffer */
3285
3286	event = __rb_page_index(tail_page, tail);
3287	rb_update_event(cpu_buffer, event, info);
3288
3289	local_inc(&tail_page->entries);
3290
3291	/*
3292	 * If this is the first commit on the page, then update
3293	 * its timestamp.
3294	 */
3295	if (unlikely(!tail))
3296		tail_page->page->time_stamp = info->ts;
3297
3298	/* account for these added bytes */
3299	local_add(info->length, &cpu_buffer->entries_bytes);
3300
3301	return event;
3302}
3303
3304static __always_inline struct ring_buffer_event *
3305rb_reserve_next_event(struct trace_buffer *buffer,
3306		      struct ring_buffer_per_cpu *cpu_buffer,
3307		      unsigned long length)
3308{
3309	struct ring_buffer_event *event;
3310	struct rb_event_info info;
3311	int nr_loops = 0;
3312	int add_ts_default;
3313
3314	rb_start_commit(cpu_buffer);
3315	/* The commit page can not change after this */
3316
3317#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3318	/*
3319	 * Due to the ability to swap a cpu buffer from a buffer
3320	 * it is possible it was swapped before we committed.
3321	 * (committing stops a swap). We check for it here and
3322	 * if it happened, we have to fail the write.
3323	 */
3324	barrier();
3325	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3326		local_dec(&cpu_buffer->committing);
3327		local_dec(&cpu_buffer->commits);
3328		return NULL;
3329	}
3330#endif
3331
3332	info.length = rb_calculate_event_length(length);
3333
3334	if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3335		add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3336		info.length += RB_LEN_TIME_EXTEND;
3337	} else {
3338		add_ts_default = RB_ADD_STAMP_NONE;
3339	}
3340
3341 again:
3342	info.add_timestamp = add_ts_default;
3343	info.delta = 0;
3344
3345	/*
3346	 * We allow for interrupts to reenter here and do a trace.
3347	 * If one does, it will cause this original code to loop
3348	 * back here. Even with heavy interrupts happening, this
3349	 * should only happen a few times in a row. If this happens
3350	 * 1000 times in a row, there must be either an interrupt
3351	 * storm or we have something buggy.
3352	 * Bail!
3353	 */
3354	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3355		goto out_fail;
3356
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3357	event = __rb_reserve_next(cpu_buffer, &info);
3358
3359	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3360		if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3361			info.length -= RB_LEN_TIME_EXTEND;
3362		goto again;
3363	}
3364
3365	if (likely(event))
3366		return event;
 
 
 
3367 out_fail:
3368	rb_end_commit(cpu_buffer);
3369	return NULL;
3370}
3371
3372/**
3373 * ring_buffer_lock_reserve - reserve a part of the buffer
3374 * @buffer: the ring buffer to reserve from
3375 * @length: the length of the data to reserve (excluding event header)
3376 *
3377 * Returns a reserved event on the ring buffer to copy directly to.
3378 * The user of this interface will need to get the body to write into
3379 * and can use the ring_buffer_event_data() interface.
3380 *
3381 * The length is the length of the data needed, not the event length
3382 * which also includes the event header.
3383 *
3384 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3385 * If NULL is returned, then nothing has been allocated or locked.
3386 */
3387struct ring_buffer_event *
3388ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3389{
3390	struct ring_buffer_per_cpu *cpu_buffer;
3391	struct ring_buffer_event *event;
3392	int cpu;
3393
3394	/* If we are tracing schedule, we don't want to recurse */
3395	preempt_disable_notrace();
3396
3397	if (unlikely(atomic_read(&buffer->record_disabled)))
3398		goto out;
3399
3400	cpu = raw_smp_processor_id();
3401
3402	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3403		goto out;
3404
3405	cpu_buffer = buffer->buffers[cpu];
3406
3407	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3408		goto out;
3409
3410	if (unlikely(length > BUF_MAX_DATA_SIZE))
3411		goto out;
3412
3413	if (unlikely(trace_recursive_lock(cpu_buffer)))
3414		goto out;
3415
3416	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3417	if (!event)
3418		goto out_unlock;
3419
3420	return event;
3421
3422 out_unlock:
3423	trace_recursive_unlock(cpu_buffer);
3424 out:
3425	preempt_enable_notrace();
3426	return NULL;
3427}
3428EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3429
3430/*
3431 * Decrement the entries to the page that an event is on.
3432 * The event does not even need to exist, only the pointer
3433 * to the page it is on. This may only be called before the commit
3434 * takes place.
3435 */
3436static inline void
3437rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3438		   struct ring_buffer_event *event)
3439{
3440	unsigned long addr = (unsigned long)event;
3441	struct buffer_page *bpage = cpu_buffer->commit_page;
3442	struct buffer_page *start;
3443
3444	addr &= PAGE_MASK;
3445
3446	/* Do the likely case first */
3447	if (likely(bpage->page == (void *)addr)) {
3448		local_dec(&bpage->entries);
3449		return;
3450	}
3451
3452	/*
3453	 * Because the commit page may be on the reader page we
3454	 * start with the next page and check the end loop there.
3455	 */
3456	rb_inc_page(cpu_buffer, &bpage);
3457	start = bpage;
3458	do {
3459		if (bpage->page == (void *)addr) {
3460			local_dec(&bpage->entries);
3461			return;
3462		}
3463		rb_inc_page(cpu_buffer, &bpage);
3464	} while (bpage != start);
3465
3466	/* commit not part of this buffer?? */
3467	RB_WARN_ON(cpu_buffer, 1);
3468}
3469
3470/**
3471 * ring_buffer_commit_discard - discard an event that has not been committed
3472 * @buffer: the ring buffer
3473 * @event: non committed event to discard
3474 *
3475 * Sometimes an event that is in the ring buffer needs to be ignored.
3476 * This function lets the user discard an event in the ring buffer
3477 * and then that event will not be read later.
3478 *
3479 * This function only works if it is called before the item has been
3480 * committed. It will try to free the event from the ring buffer
3481 * if another event has not been added behind it.
3482 *
3483 * If another event has been added behind it, it will set the event
3484 * up as discarded, and perform the commit.
3485 *
3486 * If this function is called, do not call ring_buffer_unlock_commit on
3487 * the event.
3488 */
3489void ring_buffer_discard_commit(struct trace_buffer *buffer,
3490				struct ring_buffer_event *event)
3491{
3492	struct ring_buffer_per_cpu *cpu_buffer;
3493	int cpu;
3494
3495	/* The event is discarded regardless */
3496	rb_event_discard(event);
3497
3498	cpu = smp_processor_id();
3499	cpu_buffer = buffer->buffers[cpu];
3500
3501	/*
3502	 * This must only be called if the event has not been
3503	 * committed yet. Thus we can assume that preemption
3504	 * is still disabled.
3505	 */
3506	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3507
3508	rb_decrement_entry(cpu_buffer, event);
3509	if (rb_try_to_discard(cpu_buffer, event))
3510		goto out;
3511
 
 
 
 
 
3512 out:
3513	rb_end_commit(cpu_buffer);
3514
3515	trace_recursive_unlock(cpu_buffer);
3516
3517	preempt_enable_notrace();
3518
3519}
3520EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3521
3522/**
3523 * ring_buffer_write - write data to the buffer without reserving
3524 * @buffer: The ring buffer to write to.
3525 * @length: The length of the data being written (excluding the event header)
3526 * @data: The data to write to the buffer.
3527 *
3528 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3529 * one function. If you already have the data to write to the buffer, it
3530 * may be easier to simply call this function.
3531 *
3532 * Note, like ring_buffer_lock_reserve, the length is the length of the data
3533 * and not the length of the event which would hold the header.
3534 */
3535int ring_buffer_write(struct trace_buffer *buffer,
3536		      unsigned long length,
3537		      void *data)
3538{
3539	struct ring_buffer_per_cpu *cpu_buffer;
3540	struct ring_buffer_event *event;
3541	void *body;
3542	int ret = -EBUSY;
3543	int cpu;
3544
3545	preempt_disable_notrace();
3546
3547	if (atomic_read(&buffer->record_disabled))
3548		goto out;
3549
3550	cpu = raw_smp_processor_id();
3551
3552	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3553		goto out;
3554
3555	cpu_buffer = buffer->buffers[cpu];
3556
3557	if (atomic_read(&cpu_buffer->record_disabled))
3558		goto out;
3559
3560	if (length > BUF_MAX_DATA_SIZE)
3561		goto out;
3562
3563	if (unlikely(trace_recursive_lock(cpu_buffer)))
3564		goto out;
3565
3566	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3567	if (!event)
3568		goto out_unlock;
3569
3570	body = rb_event_data(event);
3571
3572	memcpy(body, data, length);
3573
3574	rb_commit(cpu_buffer, event);
3575
3576	rb_wakeups(buffer, cpu_buffer);
3577
3578	ret = 0;
3579
3580 out_unlock:
3581	trace_recursive_unlock(cpu_buffer);
3582
3583 out:
3584	preempt_enable_notrace();
3585
3586	return ret;
3587}
3588EXPORT_SYMBOL_GPL(ring_buffer_write);
3589
3590static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3591{
3592	struct buffer_page *reader = cpu_buffer->reader_page;
3593	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3594	struct buffer_page *commit = cpu_buffer->commit_page;
3595
3596	/* In case of error, head will be NULL */
3597	if (unlikely(!head))
3598		return true;
3599
3600	return reader->read == rb_page_commit(reader) &&
3601		(commit == reader ||
3602		 (commit == head &&
3603		  head->read == rb_page_commit(commit)));
3604}
3605
3606/**
3607 * ring_buffer_record_disable - stop all writes into the buffer
3608 * @buffer: The ring buffer to stop writes to.
3609 *
3610 * This prevents all writes to the buffer. Any attempt to write
3611 * to the buffer after this will fail and return NULL.
3612 *
3613 * The caller should call synchronize_rcu() after this.
3614 */
3615void ring_buffer_record_disable(struct trace_buffer *buffer)
3616{
3617	atomic_inc(&buffer->record_disabled);
3618}
3619EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3620
3621/**
3622 * ring_buffer_record_enable - enable writes to the buffer
3623 * @buffer: The ring buffer to enable writes
3624 *
3625 * Note, multiple disables will need the same number of enables
3626 * to truly enable the writing (much like preempt_disable).
3627 */
3628void ring_buffer_record_enable(struct trace_buffer *buffer)
3629{
3630	atomic_dec(&buffer->record_disabled);
3631}
3632EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3633
3634/**
3635 * ring_buffer_record_off - stop all writes into the buffer
3636 * @buffer: The ring buffer to stop writes to.
3637 *
3638 * This prevents all writes to the buffer. Any attempt to write
3639 * to the buffer after this will fail and return NULL.
3640 *
3641 * This is different than ring_buffer_record_disable() as
3642 * it works like an on/off switch, where as the disable() version
3643 * must be paired with a enable().
3644 */
3645void ring_buffer_record_off(struct trace_buffer *buffer)
3646{
3647	unsigned int rd;
3648	unsigned int new_rd;
3649
3650	do {
3651		rd = atomic_read(&buffer->record_disabled);
3652		new_rd = rd | RB_BUFFER_OFF;
3653	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3654}
3655EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3656
3657/**
3658 * ring_buffer_record_on - restart writes into the buffer
3659 * @buffer: The ring buffer to start writes to.
3660 *
3661 * This enables all writes to the buffer that was disabled by
3662 * ring_buffer_record_off().
3663 *
3664 * This is different than ring_buffer_record_enable() as
3665 * it works like an on/off switch, where as the enable() version
3666 * must be paired with a disable().
3667 */
3668void ring_buffer_record_on(struct trace_buffer *buffer)
3669{
3670	unsigned int rd;
3671	unsigned int new_rd;
3672
3673	do {
3674		rd = atomic_read(&buffer->record_disabled);
3675		new_rd = rd & ~RB_BUFFER_OFF;
3676	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3677}
3678EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3679
3680/**
3681 * ring_buffer_record_is_on - return true if the ring buffer can write
3682 * @buffer: The ring buffer to see if write is enabled
3683 *
3684 * Returns true if the ring buffer is in a state that it accepts writes.
3685 */
3686bool ring_buffer_record_is_on(struct trace_buffer *buffer)
3687{
3688	return !atomic_read(&buffer->record_disabled);
3689}
3690
3691/**
3692 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3693 * @buffer: The ring buffer to see if write is set enabled
3694 *
3695 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3696 * Note that this does NOT mean it is in a writable state.
3697 *
3698 * It may return true when the ring buffer has been disabled by
3699 * ring_buffer_record_disable(), as that is a temporary disabling of
3700 * the ring buffer.
3701 */
3702bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
3703{
3704	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3705}
3706
3707/**
3708 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3709 * @buffer: The ring buffer to stop writes to.
3710 * @cpu: The CPU buffer to stop
3711 *
3712 * This prevents all writes to the buffer. Any attempt to write
3713 * to the buffer after this will fail and return NULL.
3714 *
3715 * The caller should call synchronize_rcu() after this.
3716 */
3717void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
3718{
3719	struct ring_buffer_per_cpu *cpu_buffer;
3720
3721	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3722		return;
3723
3724	cpu_buffer = buffer->buffers[cpu];
3725	atomic_inc(&cpu_buffer->record_disabled);
3726}
3727EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3728
3729/**
3730 * ring_buffer_record_enable_cpu - enable writes to the buffer
3731 * @buffer: The ring buffer to enable writes
3732 * @cpu: The CPU to enable.
3733 *
3734 * Note, multiple disables will need the same number of enables
3735 * to truly enable the writing (much like preempt_disable).
3736 */
3737void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
3738{
3739	struct ring_buffer_per_cpu *cpu_buffer;
3740
3741	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3742		return;
3743
3744	cpu_buffer = buffer->buffers[cpu];
3745	atomic_dec(&cpu_buffer->record_disabled);
3746}
3747EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3748
3749/*
3750 * The total entries in the ring buffer is the running counter
3751 * of entries entered into the ring buffer, minus the sum of
3752 * the entries read from the ring buffer and the number of
3753 * entries that were overwritten.
3754 */
3755static inline unsigned long
3756rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3757{
3758	return local_read(&cpu_buffer->entries) -
3759		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3760}
3761
3762/**
3763 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3764 * @buffer: The ring buffer
3765 * @cpu: The per CPU buffer to read from.
3766 */
3767u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
3768{
3769	unsigned long flags;
3770	struct ring_buffer_per_cpu *cpu_buffer;
3771	struct buffer_page *bpage;
3772	u64 ret = 0;
3773
3774	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3775		return 0;
3776
3777	cpu_buffer = buffer->buffers[cpu];
3778	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3779	/*
3780	 * if the tail is on reader_page, oldest time stamp is on the reader
3781	 * page
3782	 */
3783	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3784		bpage = cpu_buffer->reader_page;
3785	else
3786		bpage = rb_set_head_page(cpu_buffer);
3787	if (bpage)
3788		ret = bpage->page->time_stamp;
3789	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3790
3791	return ret;
3792}
3793EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3794
3795/**
3796 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3797 * @buffer: The ring buffer
3798 * @cpu: The per CPU buffer to read from.
3799 */
3800unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
3801{
3802	struct ring_buffer_per_cpu *cpu_buffer;
3803	unsigned long ret;
3804
3805	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3806		return 0;
3807
3808	cpu_buffer = buffer->buffers[cpu];
3809	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3810
3811	return ret;
3812}
3813EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3814
3815/**
3816 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3817 * @buffer: The ring buffer
3818 * @cpu: The per CPU buffer to get the entries from.
3819 */
3820unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
3821{
3822	struct ring_buffer_per_cpu *cpu_buffer;
3823
3824	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3825		return 0;
3826
3827	cpu_buffer = buffer->buffers[cpu];
3828
3829	return rb_num_of_entries(cpu_buffer);
3830}
3831EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3832
3833/**
3834 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3835 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3836 * @buffer: The ring buffer
3837 * @cpu: The per CPU buffer to get the number of overruns from
3838 */
3839unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
3840{
3841	struct ring_buffer_per_cpu *cpu_buffer;
3842	unsigned long ret;
3843
3844	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3845		return 0;
3846
3847	cpu_buffer = buffer->buffers[cpu];
3848	ret = local_read(&cpu_buffer->overrun);
3849
3850	return ret;
3851}
3852EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3853
3854/**
3855 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3856 * commits failing due to the buffer wrapping around while there are uncommitted
3857 * events, such as during an interrupt storm.
3858 * @buffer: The ring buffer
3859 * @cpu: The per CPU buffer to get the number of overruns from
3860 */
3861unsigned long
3862ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
3863{
3864	struct ring_buffer_per_cpu *cpu_buffer;
3865	unsigned long ret;
3866
3867	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3868		return 0;
3869
3870	cpu_buffer = buffer->buffers[cpu];
3871	ret = local_read(&cpu_buffer->commit_overrun);
3872
3873	return ret;
3874}
3875EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3876
3877/**
3878 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3879 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3880 * @buffer: The ring buffer
3881 * @cpu: The per CPU buffer to get the number of overruns from
3882 */
3883unsigned long
3884ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
3885{
3886	struct ring_buffer_per_cpu *cpu_buffer;
3887	unsigned long ret;
3888
3889	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3890		return 0;
3891
3892	cpu_buffer = buffer->buffers[cpu];
3893	ret = local_read(&cpu_buffer->dropped_events);
3894
3895	return ret;
3896}
3897EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3898
3899/**
3900 * ring_buffer_read_events_cpu - get the number of events successfully read
3901 * @buffer: The ring buffer
3902 * @cpu: The per CPU buffer to get the number of events read
3903 */
3904unsigned long
3905ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
3906{
3907	struct ring_buffer_per_cpu *cpu_buffer;
3908
3909	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3910		return 0;
3911
3912	cpu_buffer = buffer->buffers[cpu];
3913	return cpu_buffer->read;
3914}
3915EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3916
3917/**
3918 * ring_buffer_entries - get the number of entries in a buffer
3919 * @buffer: The ring buffer
3920 *
3921 * Returns the total number of entries in the ring buffer
3922 * (all CPU entries)
3923 */
3924unsigned long ring_buffer_entries(struct trace_buffer *buffer)
3925{
3926	struct ring_buffer_per_cpu *cpu_buffer;
3927	unsigned long entries = 0;
3928	int cpu;
3929
3930	/* if you care about this being correct, lock the buffer */
3931	for_each_buffer_cpu(buffer, cpu) {
3932		cpu_buffer = buffer->buffers[cpu];
3933		entries += rb_num_of_entries(cpu_buffer);
3934	}
3935
3936	return entries;
3937}
3938EXPORT_SYMBOL_GPL(ring_buffer_entries);
3939
3940/**
3941 * ring_buffer_overruns - get the number of overruns in buffer
3942 * @buffer: The ring buffer
3943 *
3944 * Returns the total number of overruns in the ring buffer
3945 * (all CPU entries)
3946 */
3947unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
3948{
3949	struct ring_buffer_per_cpu *cpu_buffer;
3950	unsigned long overruns = 0;
3951	int cpu;
3952
3953	/* if you care about this being correct, lock the buffer */
3954	for_each_buffer_cpu(buffer, cpu) {
3955		cpu_buffer = buffer->buffers[cpu];
3956		overruns += local_read(&cpu_buffer->overrun);
3957	}
3958
3959	return overruns;
3960}
3961EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3962
3963static void rb_iter_reset(struct ring_buffer_iter *iter)
3964{
3965	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3966
3967	/* Iterator usage is expected to have record disabled */
3968	iter->head_page = cpu_buffer->reader_page;
3969	iter->head = cpu_buffer->reader_page->read;
3970	iter->next_event = iter->head;
3971
3972	iter->cache_reader_page = iter->head_page;
3973	iter->cache_read = cpu_buffer->read;
3974
3975	if (iter->head) {
3976		iter->read_stamp = cpu_buffer->read_stamp;
3977		iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
3978	} else {
3979		iter->read_stamp = iter->head_page->page->time_stamp;
3980		iter->page_stamp = iter->read_stamp;
3981	}
3982}
3983
3984/**
3985 * ring_buffer_iter_reset - reset an iterator
3986 * @iter: The iterator to reset
3987 *
3988 * Resets the iterator, so that it will start from the beginning
3989 * again.
3990 */
3991void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3992{
3993	struct ring_buffer_per_cpu *cpu_buffer;
3994	unsigned long flags;
3995
3996	if (!iter)
3997		return;
3998
3999	cpu_buffer = iter->cpu_buffer;
4000
4001	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4002	rb_iter_reset(iter);
4003	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4004}
4005EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4006
4007/**
4008 * ring_buffer_iter_empty - check if an iterator has no more to read
4009 * @iter: The iterator to check
4010 */
4011int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4012{
4013	struct ring_buffer_per_cpu *cpu_buffer;
4014	struct buffer_page *reader;
4015	struct buffer_page *head_page;
4016	struct buffer_page *commit_page;
4017	struct buffer_page *curr_commit_page;
4018	unsigned commit;
4019	u64 curr_commit_ts;
4020	u64 commit_ts;
4021
4022	cpu_buffer = iter->cpu_buffer;
 
 
4023	reader = cpu_buffer->reader_page;
4024	head_page = cpu_buffer->head_page;
4025	commit_page = cpu_buffer->commit_page;
4026	commit_ts = commit_page->page->time_stamp;
4027
4028	/*
4029	 * When the writer goes across pages, it issues a cmpxchg which
4030	 * is a mb(), which will synchronize with the rmb here.
4031	 * (see rb_tail_page_update())
4032	 */
4033	smp_rmb();
4034	commit = rb_page_commit(commit_page);
4035	/* We want to make sure that the commit page doesn't change */
4036	smp_rmb();
4037
4038	/* Make sure commit page didn't change */
4039	curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4040	curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4041
4042	/* If the commit page changed, then there's more data */
4043	if (curr_commit_page != commit_page ||
4044	    curr_commit_ts != commit_ts)
4045		return 0;
4046
4047	/* Still racy, as it may return a false positive, but that's OK */
4048	return ((iter->head_page == commit_page && iter->head >= commit) ||
4049		(iter->head_page == reader && commit_page == head_page &&
4050		 head_page->read == commit &&
4051		 iter->head == rb_page_commit(cpu_buffer->reader_page)));
4052}
4053EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4054
4055static void
4056rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4057		     struct ring_buffer_event *event)
4058{
4059	u64 delta;
4060
4061	switch (event->type_len) {
4062	case RINGBUF_TYPE_PADDING:
4063		return;
4064
4065	case RINGBUF_TYPE_TIME_EXTEND:
4066		delta = ring_buffer_event_time_stamp(event);
4067		cpu_buffer->read_stamp += delta;
4068		return;
4069
4070	case RINGBUF_TYPE_TIME_STAMP:
4071		delta = ring_buffer_event_time_stamp(event);
4072		cpu_buffer->read_stamp = delta;
4073		return;
4074
4075	case RINGBUF_TYPE_DATA:
4076		cpu_buffer->read_stamp += event->time_delta;
4077		return;
4078
4079	default:
4080		RB_WARN_ON(cpu_buffer, 1);
4081	}
4082	return;
4083}
4084
4085static void
4086rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4087			  struct ring_buffer_event *event)
4088{
4089	u64 delta;
4090
4091	switch (event->type_len) {
4092	case RINGBUF_TYPE_PADDING:
4093		return;
4094
4095	case RINGBUF_TYPE_TIME_EXTEND:
4096		delta = ring_buffer_event_time_stamp(event);
4097		iter->read_stamp += delta;
4098		return;
4099
4100	case RINGBUF_TYPE_TIME_STAMP:
4101		delta = ring_buffer_event_time_stamp(event);
4102		iter->read_stamp = delta;
4103		return;
4104
4105	case RINGBUF_TYPE_DATA:
4106		iter->read_stamp += event->time_delta;
4107		return;
4108
4109	default:
4110		RB_WARN_ON(iter->cpu_buffer, 1);
4111	}
4112	return;
4113}
4114
4115static struct buffer_page *
4116rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4117{
4118	struct buffer_page *reader = NULL;
4119	unsigned long overwrite;
4120	unsigned long flags;
4121	int nr_loops = 0;
4122	int ret;
4123
4124	local_irq_save(flags);
4125	arch_spin_lock(&cpu_buffer->lock);
4126
4127 again:
4128	/*
4129	 * This should normally only loop twice. But because the
4130	 * start of the reader inserts an empty page, it causes
4131	 * a case where we will loop three times. There should be no
4132	 * reason to loop four times (that I know of).
4133	 */
4134	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4135		reader = NULL;
4136		goto out;
4137	}
4138
4139	reader = cpu_buffer->reader_page;
4140
4141	/* If there's more to read, return this page */
4142	if (cpu_buffer->reader_page->read < rb_page_size(reader))
4143		goto out;
4144
4145	/* Never should we have an index greater than the size */
4146	if (RB_WARN_ON(cpu_buffer,
4147		       cpu_buffer->reader_page->read > rb_page_size(reader)))
4148		goto out;
4149
4150	/* check if we caught up to the tail */
4151	reader = NULL;
4152	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4153		goto out;
4154
4155	/* Don't bother swapping if the ring buffer is empty */
4156	if (rb_num_of_entries(cpu_buffer) == 0)
4157		goto out;
4158
4159	/*
4160	 * Reset the reader page to size zero.
4161	 */
4162	local_set(&cpu_buffer->reader_page->write, 0);
4163	local_set(&cpu_buffer->reader_page->entries, 0);
4164	local_set(&cpu_buffer->reader_page->page->commit, 0);
4165	cpu_buffer->reader_page->real_end = 0;
4166
4167 spin:
4168	/*
4169	 * Splice the empty reader page into the list around the head.
4170	 */
4171	reader = rb_set_head_page(cpu_buffer);
4172	if (!reader)
4173		goto out;
4174	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4175	cpu_buffer->reader_page->list.prev = reader->list.prev;
4176
4177	/*
4178	 * cpu_buffer->pages just needs to point to the buffer, it
4179	 *  has no specific buffer page to point to. Lets move it out
4180	 *  of our way so we don't accidentally swap it.
4181	 */
4182	cpu_buffer->pages = reader->list.prev;
4183
4184	/* The reader page will be pointing to the new head */
4185	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
4186
4187	/*
4188	 * We want to make sure we read the overruns after we set up our
4189	 * pointers to the next object. The writer side does a
4190	 * cmpxchg to cross pages which acts as the mb on the writer
4191	 * side. Note, the reader will constantly fail the swap
4192	 * while the writer is updating the pointers, so this
4193	 * guarantees that the overwrite recorded here is the one we
4194	 * want to compare with the last_overrun.
4195	 */
4196	smp_mb();
4197	overwrite = local_read(&(cpu_buffer->overrun));
4198
4199	/*
4200	 * Here's the tricky part.
4201	 *
4202	 * We need to move the pointer past the header page.
4203	 * But we can only do that if a writer is not currently
4204	 * moving it. The page before the header page has the
4205	 * flag bit '1' set if it is pointing to the page we want.
4206	 * but if the writer is in the process of moving it
4207	 * than it will be '2' or already moved '0'.
4208	 */
4209
4210	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4211
4212	/*
4213	 * If we did not convert it, then we must try again.
4214	 */
4215	if (!ret)
4216		goto spin;
4217
4218	/*
4219	 * Yay! We succeeded in replacing the page.
4220	 *
4221	 * Now make the new head point back to the reader page.
4222	 */
4223	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4224	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
4225
4226	local_inc(&cpu_buffer->pages_read);
4227
4228	/* Finally update the reader page to the new head */
4229	cpu_buffer->reader_page = reader;
4230	cpu_buffer->reader_page->read = 0;
4231
4232	if (overwrite != cpu_buffer->last_overrun) {
4233		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4234		cpu_buffer->last_overrun = overwrite;
4235	}
4236
4237	goto again;
4238
4239 out:
4240	/* Update the read_stamp on the first event */
4241	if (reader && reader->read == 0)
4242		cpu_buffer->read_stamp = reader->page->time_stamp;
4243
4244	arch_spin_unlock(&cpu_buffer->lock);
4245	local_irq_restore(flags);
4246
4247	return reader;
4248}
4249
4250static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4251{
4252	struct ring_buffer_event *event;
4253	struct buffer_page *reader;
4254	unsigned length;
4255
4256	reader = rb_get_reader_page(cpu_buffer);
4257
4258	/* This function should not be called when buffer is empty */
4259	if (RB_WARN_ON(cpu_buffer, !reader))
4260		return;
4261
4262	event = rb_reader_event(cpu_buffer);
4263
4264	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4265		cpu_buffer->read++;
4266
4267	rb_update_read_stamp(cpu_buffer, event);
4268
4269	length = rb_event_length(event);
4270	cpu_buffer->reader_page->read += length;
4271}
4272
4273static void rb_advance_iter(struct ring_buffer_iter *iter)
4274{
4275	struct ring_buffer_per_cpu *cpu_buffer;
 
 
4276
4277	cpu_buffer = iter->cpu_buffer;
4278
4279	/* If head == next_event then we need to jump to the next event */
4280	if (iter->head == iter->next_event) {
4281		/* If the event gets overwritten again, there's nothing to do */
4282		if (rb_iter_head_event(iter) == NULL)
4283			return;
4284	}
4285
4286	iter->head = iter->next_event;
4287
4288	/*
4289	 * Check if we are at the end of the buffer.
4290	 */
4291	if (iter->next_event >= rb_page_size(iter->head_page)) {
4292		/* discarded commits can make the page empty */
4293		if (iter->head_page == cpu_buffer->commit_page)
4294			return;
4295		rb_inc_iter(iter);
4296		return;
4297	}
4298
4299	rb_update_iter_read_stamp(iter, iter->event);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4300}
4301
4302static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4303{
4304	return cpu_buffer->lost_events;
4305}
4306
4307static struct ring_buffer_event *
4308rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4309	       unsigned long *lost_events)
4310{
4311	struct ring_buffer_event *event;
4312	struct buffer_page *reader;
4313	int nr_loops = 0;
4314
4315	if (ts)
4316		*ts = 0;
4317 again:
4318	/*
4319	 * We repeat when a time extend is encountered.
4320	 * Since the time extend is always attached to a data event,
4321	 * we should never loop more than once.
4322	 * (We never hit the following condition more than twice).
4323	 */
4324	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4325		return NULL;
4326
4327	reader = rb_get_reader_page(cpu_buffer);
4328	if (!reader)
4329		return NULL;
4330
4331	event = rb_reader_event(cpu_buffer);
4332
4333	switch (event->type_len) {
4334	case RINGBUF_TYPE_PADDING:
4335		if (rb_null_event(event))
4336			RB_WARN_ON(cpu_buffer, 1);
4337		/*
4338		 * Because the writer could be discarding every
4339		 * event it creates (which would probably be bad)
4340		 * if we were to go back to "again" then we may never
4341		 * catch up, and will trigger the warn on, or lock
4342		 * the box. Return the padding, and we will release
4343		 * the current locks, and try again.
4344		 */
4345		return event;
4346
4347	case RINGBUF_TYPE_TIME_EXTEND:
4348		/* Internal data, OK to advance */
4349		rb_advance_reader(cpu_buffer);
4350		goto again;
4351
4352	case RINGBUF_TYPE_TIME_STAMP:
4353		if (ts) {
4354			*ts = ring_buffer_event_time_stamp(event);
4355			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4356							 cpu_buffer->cpu, ts);
4357		}
4358		/* Internal data, OK to advance */
4359		rb_advance_reader(cpu_buffer);
4360		goto again;
4361
4362	case RINGBUF_TYPE_DATA:
4363		if (ts && !(*ts)) {
4364			*ts = cpu_buffer->read_stamp + event->time_delta;
4365			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4366							 cpu_buffer->cpu, ts);
4367		}
4368		if (lost_events)
4369			*lost_events = rb_lost_events(cpu_buffer);
4370		return event;
4371
4372	default:
4373		RB_WARN_ON(cpu_buffer, 1);
4374	}
4375
4376	return NULL;
4377}
4378EXPORT_SYMBOL_GPL(ring_buffer_peek);
4379
4380static struct ring_buffer_event *
4381rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4382{
4383	struct trace_buffer *buffer;
4384	struct ring_buffer_per_cpu *cpu_buffer;
4385	struct ring_buffer_event *event;
4386	int nr_loops = 0;
4387
4388	if (ts)
4389		*ts = 0;
4390
4391	cpu_buffer = iter->cpu_buffer;
4392	buffer = cpu_buffer->buffer;
4393
4394	/*
4395	 * Check if someone performed a consuming read to
4396	 * the buffer. A consuming read invalidates the iterator
4397	 * and we need to reset the iterator in this case.
4398	 */
4399	if (unlikely(iter->cache_read != cpu_buffer->read ||
4400		     iter->cache_reader_page != cpu_buffer->reader_page))
4401		rb_iter_reset(iter);
4402
4403 again:
4404	if (ring_buffer_iter_empty(iter))
4405		return NULL;
4406
4407	/*
4408	 * As the writer can mess with what the iterator is trying
4409	 * to read, just give up if we fail to get an event after
4410	 * three tries. The iterator is not as reliable when reading
4411	 * the ring buffer with an active write as the consumer is.
4412	 * Do not warn if the three failures is reached.
 
4413	 */
4414	if (++nr_loops > 3)
4415		return NULL;
4416
4417	if (rb_per_cpu_empty(cpu_buffer))
4418		return NULL;
4419
4420	if (iter->head >= rb_page_size(iter->head_page)) {
4421		rb_inc_iter(iter);
4422		goto again;
4423	}
4424
4425	event = rb_iter_head_event(iter);
4426	if (!event)
4427		goto again;
4428
4429	switch (event->type_len) {
4430	case RINGBUF_TYPE_PADDING:
4431		if (rb_null_event(event)) {
4432			rb_inc_iter(iter);
4433			goto again;
4434		}
4435		rb_advance_iter(iter);
4436		return event;
4437
4438	case RINGBUF_TYPE_TIME_EXTEND:
4439		/* Internal data, OK to advance */
4440		rb_advance_iter(iter);
4441		goto again;
4442
4443	case RINGBUF_TYPE_TIME_STAMP:
4444		if (ts) {
4445			*ts = ring_buffer_event_time_stamp(event);
4446			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4447							 cpu_buffer->cpu, ts);
4448		}
4449		/* Internal data, OK to advance */
4450		rb_advance_iter(iter);
4451		goto again;
4452
4453	case RINGBUF_TYPE_DATA:
4454		if (ts && !(*ts)) {
4455			*ts = iter->read_stamp + event->time_delta;
4456			ring_buffer_normalize_time_stamp(buffer,
4457							 cpu_buffer->cpu, ts);
4458		}
4459		return event;
4460
4461	default:
4462		RB_WARN_ON(cpu_buffer, 1);
4463	}
4464
4465	return NULL;
4466}
4467EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4468
4469static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4470{
4471	if (likely(!in_nmi())) {
4472		raw_spin_lock(&cpu_buffer->reader_lock);
4473		return true;
4474	}
4475
4476	/*
4477	 * If an NMI die dumps out the content of the ring buffer
4478	 * trylock must be used to prevent a deadlock if the NMI
4479	 * preempted a task that holds the ring buffer locks. If
4480	 * we get the lock then all is fine, if not, then continue
4481	 * to do the read, but this can corrupt the ring buffer,
4482	 * so it must be permanently disabled from future writes.
4483	 * Reading from NMI is a oneshot deal.
4484	 */
4485	if (raw_spin_trylock(&cpu_buffer->reader_lock))
4486		return true;
4487
4488	/* Continue without locking, but disable the ring buffer */
4489	atomic_inc(&cpu_buffer->record_disabled);
4490	return false;
4491}
4492
4493static inline void
4494rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4495{
4496	if (likely(locked))
4497		raw_spin_unlock(&cpu_buffer->reader_lock);
4498	return;
4499}
4500
4501/**
4502 * ring_buffer_peek - peek at the next event to be read
4503 * @buffer: The ring buffer to read
4504 * @cpu: The cpu to peak at
4505 * @ts: The timestamp counter of this event.
4506 * @lost_events: a variable to store if events were lost (may be NULL)
4507 *
4508 * This will return the event that will be read next, but does
4509 * not consume the data.
4510 */
4511struct ring_buffer_event *
4512ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4513		 unsigned long *lost_events)
4514{
4515	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4516	struct ring_buffer_event *event;
4517	unsigned long flags;
4518	bool dolock;
4519
4520	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4521		return NULL;
4522
4523 again:
4524	local_irq_save(flags);
4525	dolock = rb_reader_lock(cpu_buffer);
4526	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4527	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4528		rb_advance_reader(cpu_buffer);
4529	rb_reader_unlock(cpu_buffer, dolock);
4530	local_irq_restore(flags);
4531
4532	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4533		goto again;
4534
4535	return event;
4536}
4537
4538/** ring_buffer_iter_dropped - report if there are dropped events
4539 * @iter: The ring buffer iterator
4540 *
4541 * Returns true if there was dropped events since the last peek.
4542 */
4543bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4544{
4545	bool ret = iter->missed_events != 0;
4546
4547	iter->missed_events = 0;
4548	return ret;
4549}
4550EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4551
4552/**
4553 * ring_buffer_iter_peek - peek at the next event to be read
4554 * @iter: The ring buffer iterator
4555 * @ts: The timestamp counter of this event.
4556 *
4557 * This will return the event that will be read next, but does
4558 * not increment the iterator.
4559 */
4560struct ring_buffer_event *
4561ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4562{
4563	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4564	struct ring_buffer_event *event;
4565	unsigned long flags;
4566
4567 again:
4568	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4569	event = rb_iter_peek(iter, ts);
4570	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4571
4572	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4573		goto again;
4574
4575	return event;
4576}
4577
4578/**
4579 * ring_buffer_consume - return an event and consume it
4580 * @buffer: The ring buffer to get the next event from
4581 * @cpu: the cpu to read the buffer from
4582 * @ts: a variable to store the timestamp (may be NULL)
4583 * @lost_events: a variable to store if events were lost (may be NULL)
4584 *
4585 * Returns the next event in the ring buffer, and that event is consumed.
4586 * Meaning, that sequential reads will keep returning a different event,
4587 * and eventually empty the ring buffer if the producer is slower.
4588 */
4589struct ring_buffer_event *
4590ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
4591		    unsigned long *lost_events)
4592{
4593	struct ring_buffer_per_cpu *cpu_buffer;
4594	struct ring_buffer_event *event = NULL;
4595	unsigned long flags;
4596	bool dolock;
4597
4598 again:
4599	/* might be called in atomic */
4600	preempt_disable();
4601
4602	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4603		goto out;
4604
4605	cpu_buffer = buffer->buffers[cpu];
4606	local_irq_save(flags);
4607	dolock = rb_reader_lock(cpu_buffer);
4608
4609	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4610	if (event) {
4611		cpu_buffer->lost_events = 0;
4612		rb_advance_reader(cpu_buffer);
4613	}
4614
4615	rb_reader_unlock(cpu_buffer, dolock);
4616	local_irq_restore(flags);
4617
4618 out:
4619	preempt_enable();
4620
4621	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4622		goto again;
4623
4624	return event;
4625}
4626EXPORT_SYMBOL_GPL(ring_buffer_consume);
4627
4628/**
4629 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4630 * @buffer: The ring buffer to read from
4631 * @cpu: The cpu buffer to iterate over
4632 * @flags: gfp flags to use for memory allocation
4633 *
4634 * This performs the initial preparations necessary to iterate
4635 * through the buffer.  Memory is allocated, buffer recording
4636 * is disabled, and the iterator pointer is returned to the caller.
4637 *
4638 * Disabling buffer recording prevents the reading from being
4639 * corrupted. This is not a consuming read, so a producer is not
4640 * expected.
4641 *
4642 * After a sequence of ring_buffer_read_prepare calls, the user is
4643 * expected to make at least one call to ring_buffer_read_prepare_sync.
4644 * Afterwards, ring_buffer_read_start is invoked to get things going
4645 * for real.
4646 *
4647 * This overall must be paired with ring_buffer_read_finish.
4648 */
4649struct ring_buffer_iter *
4650ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
4651{
4652	struct ring_buffer_per_cpu *cpu_buffer;
4653	struct ring_buffer_iter *iter;
4654
4655	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4656		return NULL;
4657
4658	iter = kzalloc(sizeof(*iter), flags);
4659	if (!iter)
4660		return NULL;
4661
4662	iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags);
4663	if (!iter->event) {
4664		kfree(iter);
4665		return NULL;
4666	}
4667
4668	cpu_buffer = buffer->buffers[cpu];
4669
4670	iter->cpu_buffer = cpu_buffer;
4671
4672	atomic_inc(&cpu_buffer->resize_disabled);
 
4673
4674	return iter;
4675}
4676EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4677
4678/**
4679 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4680 *
4681 * All previously invoked ring_buffer_read_prepare calls to prepare
4682 * iterators will be synchronized.  Afterwards, read_buffer_read_start
4683 * calls on those iterators are allowed.
4684 */
4685void
4686ring_buffer_read_prepare_sync(void)
4687{
4688	synchronize_rcu();
4689}
4690EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4691
4692/**
4693 * ring_buffer_read_start - start a non consuming read of the buffer
4694 * @iter: The iterator returned by ring_buffer_read_prepare
4695 *
4696 * This finalizes the startup of an iteration through the buffer.
4697 * The iterator comes from a call to ring_buffer_read_prepare and
4698 * an intervening ring_buffer_read_prepare_sync must have been
4699 * performed.
4700 *
4701 * Must be paired with ring_buffer_read_finish.
4702 */
4703void
4704ring_buffer_read_start(struct ring_buffer_iter *iter)
4705{
4706	struct ring_buffer_per_cpu *cpu_buffer;
4707	unsigned long flags;
4708
4709	if (!iter)
4710		return;
4711
4712	cpu_buffer = iter->cpu_buffer;
4713
4714	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4715	arch_spin_lock(&cpu_buffer->lock);
4716	rb_iter_reset(iter);
4717	arch_spin_unlock(&cpu_buffer->lock);
4718	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4719}
4720EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4721
4722/**
4723 * ring_buffer_read_finish - finish reading the iterator of the buffer
4724 * @iter: The iterator retrieved by ring_buffer_start
4725 *
4726 * This re-enables the recording to the buffer, and frees the
4727 * iterator.
4728 */
4729void
4730ring_buffer_read_finish(struct ring_buffer_iter *iter)
4731{
4732	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4733	unsigned long flags;
4734
4735	/*
4736	 * Ring buffer is disabled from recording, here's a good place
4737	 * to check the integrity of the ring buffer.
4738	 * Must prevent readers from trying to read, as the check
4739	 * clears the HEAD page and readers require it.
4740	 */
4741	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4742	rb_check_pages(cpu_buffer);
4743	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4744
4745	atomic_dec(&cpu_buffer->resize_disabled);
4746	kfree(iter->event);
4747	kfree(iter);
4748}
4749EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4750
4751/**
4752 * ring_buffer_iter_advance - advance the iterator to the next location
4753 * @iter: The ring buffer iterator
 
4754 *
4755 * Move the location of the iterator such that the next read will
4756 * be the next location of the iterator.
4757 */
4758void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
 
4759{
 
4760	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4761	unsigned long flags;
4762
4763	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
 
 
 
 
 
 
 
4764
4765	rb_advance_iter(iter);
 
 
4766
4767	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4768}
4769EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
4770
4771/**
4772 * ring_buffer_size - return the size of the ring buffer (in bytes)
4773 * @buffer: The ring buffer.
4774 * @cpu: The CPU to get ring buffer size from.
4775 */
4776unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
4777{
4778	/*
4779	 * Earlier, this method returned
4780	 *	BUF_PAGE_SIZE * buffer->nr_pages
4781	 * Since the nr_pages field is now removed, we have converted this to
4782	 * return the per cpu buffer value.
4783	 */
4784	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4785		return 0;
4786
4787	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4788}
4789EXPORT_SYMBOL_GPL(ring_buffer_size);
4790
4791static void
4792rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4793{
4794	rb_head_page_deactivate(cpu_buffer);
4795
4796	cpu_buffer->head_page
4797		= list_entry(cpu_buffer->pages, struct buffer_page, list);
4798	local_set(&cpu_buffer->head_page->write, 0);
4799	local_set(&cpu_buffer->head_page->entries, 0);
4800	local_set(&cpu_buffer->head_page->page->commit, 0);
4801
4802	cpu_buffer->head_page->read = 0;
4803
4804	cpu_buffer->tail_page = cpu_buffer->head_page;
4805	cpu_buffer->commit_page = cpu_buffer->head_page;
4806
4807	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4808	INIT_LIST_HEAD(&cpu_buffer->new_pages);
4809	local_set(&cpu_buffer->reader_page->write, 0);
4810	local_set(&cpu_buffer->reader_page->entries, 0);
4811	local_set(&cpu_buffer->reader_page->page->commit, 0);
4812	cpu_buffer->reader_page->read = 0;
4813
4814	local_set(&cpu_buffer->entries_bytes, 0);
4815	local_set(&cpu_buffer->overrun, 0);
4816	local_set(&cpu_buffer->commit_overrun, 0);
4817	local_set(&cpu_buffer->dropped_events, 0);
4818	local_set(&cpu_buffer->entries, 0);
4819	local_set(&cpu_buffer->committing, 0);
4820	local_set(&cpu_buffer->commits, 0);
4821	local_set(&cpu_buffer->pages_touched, 0);
4822	local_set(&cpu_buffer->pages_read, 0);
4823	cpu_buffer->last_pages_touch = 0;
4824	cpu_buffer->shortest_full = 0;
4825	cpu_buffer->read = 0;
4826	cpu_buffer->read_bytes = 0;
4827
4828	rb_time_set(&cpu_buffer->write_stamp, 0);
4829	rb_time_set(&cpu_buffer->before_stamp, 0);
4830
4831	cpu_buffer->lost_events = 0;
4832	cpu_buffer->last_overrun = 0;
4833
4834	rb_head_page_activate(cpu_buffer);
4835}
4836
4837/* Must have disabled the cpu buffer then done a synchronize_rcu */
4838static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
4839{
4840	unsigned long flags;
4841
4842	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4843
4844	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4845		goto out;
4846
4847	arch_spin_lock(&cpu_buffer->lock);
4848
4849	rb_reset_cpu(cpu_buffer);
4850
4851	arch_spin_unlock(&cpu_buffer->lock);
4852
4853 out:
4854	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4855}
4856
4857/**
4858 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4859 * @buffer: The ring buffer to reset a per cpu buffer of
4860 * @cpu: The CPU buffer to be reset
4861 */
4862void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
4863{
4864	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
 
4865
4866	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4867		return;
4868
4869	atomic_inc(&cpu_buffer->resize_disabled);
4870	atomic_inc(&cpu_buffer->record_disabled);
4871
4872	/* Make sure all commits have finished */
4873	synchronize_rcu();
4874
4875	reset_disabled_cpu_buffer(cpu_buffer);
4876
4877	atomic_dec(&cpu_buffer->record_disabled);
4878	atomic_dec(&cpu_buffer->resize_disabled);
4879}
4880EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4881
4882/**
4883 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4884 * @buffer: The ring buffer to reset a per cpu buffer of
4885 * @cpu: The CPU buffer to be reset
4886 */
4887void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
4888{
4889	struct ring_buffer_per_cpu *cpu_buffer;
4890	int cpu;
4891
4892	for_each_online_buffer_cpu(buffer, cpu) {
4893		cpu_buffer = buffer->buffers[cpu];
4894
4895		atomic_inc(&cpu_buffer->resize_disabled);
4896		atomic_inc(&cpu_buffer->record_disabled);
4897	}
4898
4899	/* Make sure all commits have finished */
4900	synchronize_rcu();
4901
4902	for_each_online_buffer_cpu(buffer, cpu) {
4903		cpu_buffer = buffer->buffers[cpu];
4904
4905		reset_disabled_cpu_buffer(cpu_buffer);
4906
4907		atomic_dec(&cpu_buffer->record_disabled);
4908		atomic_dec(&cpu_buffer->resize_disabled);
4909	}
4910}
 
4911
4912/**
4913 * ring_buffer_reset - reset a ring buffer
4914 * @buffer: The ring buffer to reset all cpu buffers
4915 */
4916void ring_buffer_reset(struct trace_buffer *buffer)
4917{
4918	struct ring_buffer_per_cpu *cpu_buffer;
4919	int cpu;
4920
4921	for_each_buffer_cpu(buffer, cpu) {
4922		cpu_buffer = buffer->buffers[cpu];
4923
4924		atomic_inc(&cpu_buffer->resize_disabled);
4925		atomic_inc(&cpu_buffer->record_disabled);
4926	}
4927
4928	/* Make sure all commits have finished */
4929	synchronize_rcu();
4930
4931	for_each_buffer_cpu(buffer, cpu) {
4932		cpu_buffer = buffer->buffers[cpu];
4933
4934		reset_disabled_cpu_buffer(cpu_buffer);
4935
4936		atomic_dec(&cpu_buffer->record_disabled);
4937		atomic_dec(&cpu_buffer->resize_disabled);
4938	}
4939}
4940EXPORT_SYMBOL_GPL(ring_buffer_reset);
4941
4942/**
4943 * rind_buffer_empty - is the ring buffer empty?
4944 * @buffer: The ring buffer to test
4945 */
4946bool ring_buffer_empty(struct trace_buffer *buffer)
4947{
4948	struct ring_buffer_per_cpu *cpu_buffer;
4949	unsigned long flags;
4950	bool dolock;
4951	int cpu;
4952	int ret;
4953
4954	/* yes this is racy, but if you don't like the race, lock the buffer */
4955	for_each_buffer_cpu(buffer, cpu) {
4956		cpu_buffer = buffer->buffers[cpu];
4957		local_irq_save(flags);
4958		dolock = rb_reader_lock(cpu_buffer);
4959		ret = rb_per_cpu_empty(cpu_buffer);
4960		rb_reader_unlock(cpu_buffer, dolock);
4961		local_irq_restore(flags);
4962
4963		if (!ret)
4964			return false;
4965	}
4966
4967	return true;
4968}
4969EXPORT_SYMBOL_GPL(ring_buffer_empty);
4970
4971/**
4972 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4973 * @buffer: The ring buffer
4974 * @cpu: The CPU buffer to test
4975 */
4976bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
4977{
4978	struct ring_buffer_per_cpu *cpu_buffer;
4979	unsigned long flags;
4980	bool dolock;
4981	int ret;
4982
4983	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4984		return true;
4985
4986	cpu_buffer = buffer->buffers[cpu];
4987	local_irq_save(flags);
4988	dolock = rb_reader_lock(cpu_buffer);
4989	ret = rb_per_cpu_empty(cpu_buffer);
4990	rb_reader_unlock(cpu_buffer, dolock);
4991	local_irq_restore(flags);
4992
4993	return ret;
4994}
4995EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4996
4997#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4998/**
4999 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5000 * @buffer_a: One buffer to swap with
5001 * @buffer_b: The other buffer to swap with
5002 * @cpu: the CPU of the buffers to swap
5003 *
5004 * This function is useful for tracers that want to take a "snapshot"
5005 * of a CPU buffer and has another back up buffer lying around.
5006 * it is expected that the tracer handles the cpu buffer not being
5007 * used at the moment.
5008 */
5009int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5010			 struct trace_buffer *buffer_b, int cpu)
5011{
5012	struct ring_buffer_per_cpu *cpu_buffer_a;
5013	struct ring_buffer_per_cpu *cpu_buffer_b;
5014	int ret = -EINVAL;
5015
5016	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5017	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
5018		goto out;
5019
5020	cpu_buffer_a = buffer_a->buffers[cpu];
5021	cpu_buffer_b = buffer_b->buffers[cpu];
5022
5023	/* At least make sure the two buffers are somewhat the same */
5024	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5025		goto out;
5026
5027	ret = -EAGAIN;
5028
5029	if (atomic_read(&buffer_a->record_disabled))
5030		goto out;
5031
5032	if (atomic_read(&buffer_b->record_disabled))
5033		goto out;
5034
5035	if (atomic_read(&cpu_buffer_a->record_disabled))
5036		goto out;
5037
5038	if (atomic_read(&cpu_buffer_b->record_disabled))
5039		goto out;
5040
5041	/*
5042	 * We can't do a synchronize_rcu here because this
5043	 * function can be called in atomic context.
5044	 * Normally this will be called from the same CPU as cpu.
5045	 * If not it's up to the caller to protect this.
5046	 */
5047	atomic_inc(&cpu_buffer_a->record_disabled);
5048	atomic_inc(&cpu_buffer_b->record_disabled);
5049
5050	ret = -EBUSY;
5051	if (local_read(&cpu_buffer_a->committing))
5052		goto out_dec;
5053	if (local_read(&cpu_buffer_b->committing))
5054		goto out_dec;
5055
5056	buffer_a->buffers[cpu] = cpu_buffer_b;
5057	buffer_b->buffers[cpu] = cpu_buffer_a;
5058
5059	cpu_buffer_b->buffer = buffer_a;
5060	cpu_buffer_a->buffer = buffer_b;
5061
5062	ret = 0;
5063
5064out_dec:
5065	atomic_dec(&cpu_buffer_a->record_disabled);
5066	atomic_dec(&cpu_buffer_b->record_disabled);
5067out:
5068	return ret;
5069}
5070EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5071#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5072
5073/**
5074 * ring_buffer_alloc_read_page - allocate a page to read from buffer
5075 * @buffer: the buffer to allocate for.
5076 * @cpu: the cpu buffer to allocate.
5077 *
5078 * This function is used in conjunction with ring_buffer_read_page.
5079 * When reading a full page from the ring buffer, these functions
5080 * can be used to speed up the process. The calling function should
5081 * allocate a few pages first with this function. Then when it
5082 * needs to get pages from the ring buffer, it passes the result
5083 * of this function into ring_buffer_read_page, which will swap
5084 * the page that was allocated, with the read page of the buffer.
5085 *
5086 * Returns:
5087 *  The page allocated, or ERR_PTR
5088 */
5089void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5090{
5091	struct ring_buffer_per_cpu *cpu_buffer;
5092	struct buffer_data_page *bpage = NULL;
5093	unsigned long flags;
5094	struct page *page;
5095
5096	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5097		return ERR_PTR(-ENODEV);
5098
5099	cpu_buffer = buffer->buffers[cpu];
5100	local_irq_save(flags);
5101	arch_spin_lock(&cpu_buffer->lock);
5102
5103	if (cpu_buffer->free_page) {
5104		bpage = cpu_buffer->free_page;
5105		cpu_buffer->free_page = NULL;
5106	}
5107
5108	arch_spin_unlock(&cpu_buffer->lock);
5109	local_irq_restore(flags);
5110
5111	if (bpage)
5112		goto out;
5113
5114	page = alloc_pages_node(cpu_to_node(cpu),
5115				GFP_KERNEL | __GFP_NORETRY, 0);
5116	if (!page)
5117		return ERR_PTR(-ENOMEM);
5118
5119	bpage = page_address(page);
5120
5121 out:
5122	rb_init_page(bpage);
5123
5124	return bpage;
5125}
5126EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5127
5128/**
5129 * ring_buffer_free_read_page - free an allocated read page
5130 * @buffer: the buffer the page was allocate for
5131 * @cpu: the cpu buffer the page came from
5132 * @data: the page to free
5133 *
5134 * Free a page allocated from ring_buffer_alloc_read_page.
5135 */
5136void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
5137{
5138	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5139	struct buffer_data_page *bpage = data;
5140	struct page *page = virt_to_page(bpage);
5141	unsigned long flags;
5142
5143	/* If the page is still in use someplace else, we can't reuse it */
5144	if (page_ref_count(page) > 1)
5145		goto out;
5146
5147	local_irq_save(flags);
5148	arch_spin_lock(&cpu_buffer->lock);
5149
5150	if (!cpu_buffer->free_page) {
5151		cpu_buffer->free_page = bpage;
5152		bpage = NULL;
5153	}
5154
5155	arch_spin_unlock(&cpu_buffer->lock);
5156	local_irq_restore(flags);
5157
5158 out:
5159	free_page((unsigned long)bpage);
5160}
5161EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5162
5163/**
5164 * ring_buffer_read_page - extract a page from the ring buffer
5165 * @buffer: buffer to extract from
5166 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5167 * @len: amount to extract
5168 * @cpu: the cpu of the buffer to extract
5169 * @full: should the extraction only happen when the page is full.
5170 *
5171 * This function will pull out a page from the ring buffer and consume it.
5172 * @data_page must be the address of the variable that was returned
5173 * from ring_buffer_alloc_read_page. This is because the page might be used
5174 * to swap with a page in the ring buffer.
5175 *
5176 * for example:
5177 *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
5178 *	if (IS_ERR(rpage))
5179 *		return PTR_ERR(rpage);
5180 *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
5181 *	if (ret >= 0)
5182 *		process_page(rpage, ret);
5183 *
5184 * When @full is set, the function will not return true unless
5185 * the writer is off the reader page.
5186 *
5187 * Note: it is up to the calling functions to handle sleeps and wakeups.
5188 *  The ring buffer can be used anywhere in the kernel and can not
5189 *  blindly call wake_up. The layer that uses the ring buffer must be
5190 *  responsible for that.
5191 *
5192 * Returns:
5193 *  >=0 if data has been transferred, returns the offset of consumed data.
5194 *  <0 if no data has been transferred.
5195 */
5196int ring_buffer_read_page(struct trace_buffer *buffer,
5197			  void **data_page, size_t len, int cpu, int full)
5198{
5199	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5200	struct ring_buffer_event *event;
5201	struct buffer_data_page *bpage;
5202	struct buffer_page *reader;
5203	unsigned long missed_events;
5204	unsigned long flags;
5205	unsigned int commit;
5206	unsigned int read;
5207	u64 save_timestamp;
5208	int ret = -1;
5209
5210	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5211		goto out;
5212
5213	/*
5214	 * If len is not big enough to hold the page header, then
5215	 * we can not copy anything.
5216	 */
5217	if (len <= BUF_PAGE_HDR_SIZE)
5218		goto out;
5219
5220	len -= BUF_PAGE_HDR_SIZE;
5221
5222	if (!data_page)
5223		goto out;
5224
5225	bpage = *data_page;
5226	if (!bpage)
5227		goto out;
5228
5229	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5230
5231	reader = rb_get_reader_page(cpu_buffer);
5232	if (!reader)
5233		goto out_unlock;
5234
5235	event = rb_reader_event(cpu_buffer);
5236
5237	read = reader->read;
5238	commit = rb_page_commit(reader);
5239
5240	/* Check if any events were dropped */
5241	missed_events = cpu_buffer->lost_events;
5242
5243	/*
5244	 * If this page has been partially read or
5245	 * if len is not big enough to read the rest of the page or
5246	 * a writer is still on the page, then
5247	 * we must copy the data from the page to the buffer.
5248	 * Otherwise, we can simply swap the page with the one passed in.
5249	 */
5250	if (read || (len < (commit - read)) ||
5251	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
5252		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5253		unsigned int rpos = read;
5254		unsigned int pos = 0;
5255		unsigned int size;
5256
5257		if (full)
5258			goto out_unlock;
5259
5260		if (len > (commit - read))
5261			len = (commit - read);
5262
5263		/* Always keep the time extend and data together */
5264		size = rb_event_ts_length(event);
5265
5266		if (len < size)
5267			goto out_unlock;
5268
5269		/* save the current timestamp, since the user will need it */
5270		save_timestamp = cpu_buffer->read_stamp;
5271
5272		/* Need to copy one event at a time */
5273		do {
5274			/* We need the size of one event, because
5275			 * rb_advance_reader only advances by one event,
5276			 * whereas rb_event_ts_length may include the size of
5277			 * one or two events.
5278			 * We have already ensured there's enough space if this
5279			 * is a time extend. */
5280			size = rb_event_length(event);
5281			memcpy(bpage->data + pos, rpage->data + rpos, size);
5282
5283			len -= size;
5284
5285			rb_advance_reader(cpu_buffer);
5286			rpos = reader->read;
5287			pos += size;
5288
5289			if (rpos >= commit)
5290				break;
5291
5292			event = rb_reader_event(cpu_buffer);
5293			/* Always keep the time extend and data together */
5294			size = rb_event_ts_length(event);
5295		} while (len >= size);
5296
5297		/* update bpage */
5298		local_set(&bpage->commit, pos);
5299		bpage->time_stamp = save_timestamp;
5300
5301		/* we copied everything to the beginning */
5302		read = 0;
5303	} else {
5304		/* update the entry counter */
5305		cpu_buffer->read += rb_page_entries(reader);
5306		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
5307
5308		/* swap the pages */
5309		rb_init_page(bpage);
5310		bpage = reader->page;
5311		reader->page = *data_page;
5312		local_set(&reader->write, 0);
5313		local_set(&reader->entries, 0);
5314		reader->read = 0;
5315		*data_page = bpage;
5316
5317		/*
5318		 * Use the real_end for the data size,
5319		 * This gives us a chance to store the lost events
5320		 * on the page.
5321		 */
5322		if (reader->real_end)
5323			local_set(&bpage->commit, reader->real_end);
5324	}
5325	ret = read;
5326
5327	cpu_buffer->lost_events = 0;
5328
5329	commit = local_read(&bpage->commit);
5330	/*
5331	 * Set a flag in the commit field if we lost events
5332	 */
5333	if (missed_events) {
5334		/* If there is room at the end of the page to save the
5335		 * missed events, then record it there.
5336		 */
5337		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5338			memcpy(&bpage->data[commit], &missed_events,
5339			       sizeof(missed_events));
5340			local_add(RB_MISSED_STORED, &bpage->commit);
5341			commit += sizeof(missed_events);
5342		}
5343		local_add(RB_MISSED_EVENTS, &bpage->commit);
5344	}
5345
5346	/*
5347	 * This page may be off to user land. Zero it out here.
5348	 */
5349	if (commit < BUF_PAGE_SIZE)
5350		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5351
5352 out_unlock:
5353	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5354
5355 out:
5356	return ret;
5357}
5358EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5359
5360/*
5361 * We only allocate new buffers, never free them if the CPU goes down.
5362 * If we were to free the buffer, then the user would lose any trace that was in
5363 * the buffer.
5364 */
5365int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
5366{
5367	struct trace_buffer *buffer;
5368	long nr_pages_same;
5369	int cpu_i;
5370	unsigned long nr_pages;
5371
5372	buffer = container_of(node, struct trace_buffer, node);
5373	if (cpumask_test_cpu(cpu, buffer->cpumask))
5374		return 0;
5375
5376	nr_pages = 0;
5377	nr_pages_same = 1;
5378	/* check if all cpu sizes are same */
5379	for_each_buffer_cpu(buffer, cpu_i) {
5380		/* fill in the size from first enabled cpu */
5381		if (nr_pages == 0)
5382			nr_pages = buffer->buffers[cpu_i]->nr_pages;
5383		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5384			nr_pages_same = 0;
5385			break;
5386		}
5387	}
5388	/* allocate minimum pages, user can later expand it */
5389	if (!nr_pages_same)
5390		nr_pages = 2;
5391	buffer->buffers[cpu] =
5392		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5393	if (!buffer->buffers[cpu]) {
5394		WARN(1, "failed to allocate ring buffer on CPU %u\n",
5395		     cpu);
5396		return -ENOMEM;
5397	}
5398	smp_wmb();
5399	cpumask_set_cpu(cpu, buffer->cpumask);
5400	return 0;
5401}
5402
5403#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5404/*
5405 * This is a basic integrity check of the ring buffer.
5406 * Late in the boot cycle this test will run when configured in.
5407 * It will kick off a thread per CPU that will go into a loop
5408 * writing to the per cpu ring buffer various sizes of data.
5409 * Some of the data will be large items, some small.
5410 *
5411 * Another thread is created that goes into a spin, sending out
5412 * IPIs to the other CPUs to also write into the ring buffer.
5413 * this is to test the nesting ability of the buffer.
5414 *
5415 * Basic stats are recorded and reported. If something in the
5416 * ring buffer should happen that's not expected, a big warning
5417 * is displayed and all ring buffers are disabled.
5418 */
5419static struct task_struct *rb_threads[NR_CPUS] __initdata;
5420
5421struct rb_test_data {
5422	struct trace_buffer *buffer;
5423	unsigned long		events;
5424	unsigned long		bytes_written;
5425	unsigned long		bytes_alloc;
5426	unsigned long		bytes_dropped;
5427	unsigned long		events_nested;
5428	unsigned long		bytes_written_nested;
5429	unsigned long		bytes_alloc_nested;
5430	unsigned long		bytes_dropped_nested;
5431	int			min_size_nested;
5432	int			max_size_nested;
5433	int			max_size;
5434	int			min_size;
5435	int			cpu;
5436	int			cnt;
5437};
5438
5439static struct rb_test_data rb_data[NR_CPUS] __initdata;
5440
5441/* 1 meg per cpu */
5442#define RB_TEST_BUFFER_SIZE	1048576
5443
5444static char rb_string[] __initdata =
5445	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5446	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5447	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5448
5449static bool rb_test_started __initdata;
5450
5451struct rb_item {
5452	int size;
5453	char str[];
5454};
5455
5456static __init int rb_write_something(struct rb_test_data *data, bool nested)
5457{
5458	struct ring_buffer_event *event;
5459	struct rb_item *item;
5460	bool started;
5461	int event_len;
5462	int size;
5463	int len;
5464	int cnt;
5465
5466	/* Have nested writes different that what is written */
5467	cnt = data->cnt + (nested ? 27 : 0);
5468
5469	/* Multiply cnt by ~e, to make some unique increment */
5470	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5471
5472	len = size + sizeof(struct rb_item);
5473
5474	started = rb_test_started;
5475	/* read rb_test_started before checking buffer enabled */
5476	smp_rmb();
5477
5478	event = ring_buffer_lock_reserve(data->buffer, len);
5479	if (!event) {
5480		/* Ignore dropped events before test starts. */
5481		if (started) {
5482			if (nested)
5483				data->bytes_dropped += len;
5484			else
5485				data->bytes_dropped_nested += len;
5486		}
5487		return len;
5488	}
5489
5490	event_len = ring_buffer_event_length(event);
5491
5492	if (RB_WARN_ON(data->buffer, event_len < len))
5493		goto out;
5494
5495	item = ring_buffer_event_data(event);
5496	item->size = size;
5497	memcpy(item->str, rb_string, size);
5498
5499	if (nested) {
5500		data->bytes_alloc_nested += event_len;
5501		data->bytes_written_nested += len;
5502		data->events_nested++;
5503		if (!data->min_size_nested || len < data->min_size_nested)
5504			data->min_size_nested = len;
5505		if (len > data->max_size_nested)
5506			data->max_size_nested = len;
5507	} else {
5508		data->bytes_alloc += event_len;
5509		data->bytes_written += len;
5510		data->events++;
5511		if (!data->min_size || len < data->min_size)
5512			data->max_size = len;
5513		if (len > data->max_size)
5514			data->max_size = len;
5515	}
5516
5517 out:
5518	ring_buffer_unlock_commit(data->buffer, event);
5519
5520	return 0;
5521}
5522
5523static __init int rb_test(void *arg)
5524{
5525	struct rb_test_data *data = arg;
5526
5527	while (!kthread_should_stop()) {
5528		rb_write_something(data, false);
5529		data->cnt++;
5530
5531		set_current_state(TASK_INTERRUPTIBLE);
5532		/* Now sleep between a min of 100-300us and a max of 1ms */
5533		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
5534	}
5535
5536	return 0;
5537}
5538
5539static __init void rb_ipi(void *ignore)
5540{
5541	struct rb_test_data *data;
5542	int cpu = smp_processor_id();
5543
5544	data = &rb_data[cpu];
5545	rb_write_something(data, true);
5546}
5547
5548static __init int rb_hammer_test(void *arg)
5549{
5550	while (!kthread_should_stop()) {
5551
5552		/* Send an IPI to all cpus to write data! */
5553		smp_call_function(rb_ipi, NULL, 1);
5554		/* No sleep, but for non preempt, let others run */
5555		schedule();
5556	}
5557
5558	return 0;
5559}
5560
5561static __init int test_ringbuffer(void)
5562{
5563	struct task_struct *rb_hammer;
5564	struct trace_buffer *buffer;
5565	int cpu;
5566	int ret = 0;
5567
5568	if (security_locked_down(LOCKDOWN_TRACEFS)) {
5569		pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
5570		return 0;
5571	}
5572
5573	pr_info("Running ring buffer tests...\n");
5574
5575	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5576	if (WARN_ON(!buffer))
5577		return 0;
5578
5579	/* Disable buffer so that threads can't write to it yet */
5580	ring_buffer_record_off(buffer);
5581
5582	for_each_online_cpu(cpu) {
5583		rb_data[cpu].buffer = buffer;
5584		rb_data[cpu].cpu = cpu;
5585		rb_data[cpu].cnt = cpu;
5586		rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5587						 "rbtester/%d", cpu);
5588		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5589			pr_cont("FAILED\n");
5590			ret = PTR_ERR(rb_threads[cpu]);
5591			goto out_free;
5592		}
5593
5594		kthread_bind(rb_threads[cpu], cpu);
5595 		wake_up_process(rb_threads[cpu]);
5596	}
5597
5598	/* Now create the rb hammer! */
5599	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5600	if (WARN_ON(IS_ERR(rb_hammer))) {
5601		pr_cont("FAILED\n");
5602		ret = PTR_ERR(rb_hammer);
5603		goto out_free;
5604	}
5605
5606	ring_buffer_record_on(buffer);
5607	/*
5608	 * Show buffer is enabled before setting rb_test_started.
5609	 * Yes there's a small race window where events could be
5610	 * dropped and the thread wont catch it. But when a ring
5611	 * buffer gets enabled, there will always be some kind of
5612	 * delay before other CPUs see it. Thus, we don't care about
5613	 * those dropped events. We care about events dropped after
5614	 * the threads see that the buffer is active.
5615	 */
5616	smp_wmb();
5617	rb_test_started = true;
5618
5619	set_current_state(TASK_INTERRUPTIBLE);
5620	/* Just run for 10 seconds */;
5621	schedule_timeout(10 * HZ);
5622
5623	kthread_stop(rb_hammer);
5624
5625 out_free:
5626	for_each_online_cpu(cpu) {
5627		if (!rb_threads[cpu])
5628			break;
5629		kthread_stop(rb_threads[cpu]);
5630	}
5631	if (ret) {
5632		ring_buffer_free(buffer);
5633		return ret;
5634	}
5635
5636	/* Report! */
5637	pr_info("finished\n");
5638	for_each_online_cpu(cpu) {
5639		struct ring_buffer_event *event;
5640		struct rb_test_data *data = &rb_data[cpu];
5641		struct rb_item *item;
5642		unsigned long total_events;
5643		unsigned long total_dropped;
5644		unsigned long total_written;
5645		unsigned long total_alloc;
5646		unsigned long total_read = 0;
5647		unsigned long total_size = 0;
5648		unsigned long total_len = 0;
5649		unsigned long total_lost = 0;
5650		unsigned long lost;
5651		int big_event_size;
5652		int small_event_size;
5653
5654		ret = -1;
5655
5656		total_events = data->events + data->events_nested;
5657		total_written = data->bytes_written + data->bytes_written_nested;
5658		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5659		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5660
5661		big_event_size = data->max_size + data->max_size_nested;
5662		small_event_size = data->min_size + data->min_size_nested;
5663
5664		pr_info("CPU %d:\n", cpu);
5665		pr_info("              events:    %ld\n", total_events);
5666		pr_info("       dropped bytes:    %ld\n", total_dropped);
5667		pr_info("       alloced bytes:    %ld\n", total_alloc);
5668		pr_info("       written bytes:    %ld\n", total_written);
5669		pr_info("       biggest event:    %d\n", big_event_size);
5670		pr_info("      smallest event:    %d\n", small_event_size);
5671
5672		if (RB_WARN_ON(buffer, total_dropped))
5673			break;
5674
5675		ret = 0;
5676
5677		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5678			total_lost += lost;
5679			item = ring_buffer_event_data(event);
5680			total_len += ring_buffer_event_length(event);
5681			total_size += item->size + sizeof(struct rb_item);
5682			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5683				pr_info("FAILED!\n");
5684				pr_info("buffer had: %.*s\n", item->size, item->str);
5685				pr_info("expected:   %.*s\n", item->size, rb_string);
5686				RB_WARN_ON(buffer, 1);
5687				ret = -1;
5688				break;
5689			}
5690			total_read++;
5691		}
5692		if (ret)
5693			break;
5694
5695		ret = -1;
5696
5697		pr_info("         read events:   %ld\n", total_read);
5698		pr_info("         lost events:   %ld\n", total_lost);
5699		pr_info("        total events:   %ld\n", total_lost + total_read);
5700		pr_info("  recorded len bytes:   %ld\n", total_len);
5701		pr_info(" recorded size bytes:   %ld\n", total_size);
5702		if (total_lost)
5703			pr_info(" With dropped events, record len and size may not match\n"
5704				" alloced and written from above\n");
5705		if (!total_lost) {
5706			if (RB_WARN_ON(buffer, total_len != total_alloc ||
5707				       total_size != total_written))
5708				break;
5709		}
5710		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5711			break;
5712
5713		ret = 0;
5714	}
5715	if (!ret)
5716		pr_info("Ring buffer PASSED!\n");
5717
5718	ring_buffer_free(buffer);
5719	return 0;
5720}
5721
5722late_initcall(test_ringbuffer);
5723#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */