Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Generic ring buffer
   4 *
   5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
   6 */
   7#include <linux/trace_events.h>
   8#include <linux/ring_buffer.h>
   9#include <linux/trace_clock.h>
  10#include <linux/sched/clock.h>
  11#include <linux/trace_seq.h>
  12#include <linux/spinlock.h>
  13#include <linux/irq_work.h>
  14#include <linux/uaccess.h>
  15#include <linux/hardirq.h>
  16#include <linux/kthread.h>	/* for self test */
  17#include <linux/module.h>
  18#include <linux/percpu.h>
  19#include <linux/mutex.h>
  20#include <linux/delay.h>
  21#include <linux/slab.h>
  22#include <linux/init.h>
  23#include <linux/hash.h>
  24#include <linux/list.h>
  25#include <linux/cpu.h>
  26#include <linux/oom.h>
  27
  28#include <asm/local.h>
 
  29
  30static void update_pages_handler(struct work_struct *work);
  31
  32/*
  33 * The ring buffer header is special. We must manually up keep it.
  34 */
  35int ring_buffer_print_entry_header(struct trace_seq *s)
  36{
  37	trace_seq_puts(s, "# compressed entry header\n");
  38	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
  39	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
  40	trace_seq_puts(s, "\tarray       :   32 bits\n");
  41	trace_seq_putc(s, '\n');
  42	trace_seq_printf(s, "\tpadding     : type == %d\n",
  43			 RINGBUF_TYPE_PADDING);
  44	trace_seq_printf(s, "\ttime_extend : type == %d\n",
  45			 RINGBUF_TYPE_TIME_EXTEND);
  46	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
  47			 RINGBUF_TYPE_TIME_STAMP);
  48	trace_seq_printf(s, "\tdata max type_len  == %d\n",
  49			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
  50
  51	return !trace_seq_has_overflowed(s);
  52}
  53
  54/*
  55 * The ring buffer is made up of a list of pages. A separate list of pages is
  56 * allocated for each CPU. A writer may only write to a buffer that is
  57 * associated with the CPU it is currently executing on.  A reader may read
  58 * from any per cpu buffer.
  59 *
  60 * The reader is special. For each per cpu buffer, the reader has its own
  61 * reader page. When a reader has read the entire reader page, this reader
  62 * page is swapped with another page in the ring buffer.
  63 *
  64 * Now, as long as the writer is off the reader page, the reader can do what
  65 * ever it wants with that page. The writer will never write to that page
  66 * again (as long as it is out of the ring buffer).
  67 *
  68 * Here's some silly ASCII art.
  69 *
  70 *   +------+
  71 *   |reader|          RING BUFFER
  72 *   |page  |
  73 *   +------+        +---+   +---+   +---+
  74 *                   |   |-->|   |-->|   |
  75 *                   +---+   +---+   +---+
  76 *                     ^               |
  77 *                     |               |
  78 *                     +---------------+
  79 *
  80 *
  81 *   +------+
  82 *   |reader|          RING BUFFER
  83 *   |page  |------------------v
  84 *   +------+        +---+   +---+   +---+
  85 *                   |   |-->|   |-->|   |
  86 *                   +---+   +---+   +---+
  87 *                     ^               |
  88 *                     |               |
  89 *                     +---------------+
  90 *
  91 *
  92 *   +------+
  93 *   |reader|          RING BUFFER
  94 *   |page  |------------------v
  95 *   +------+        +---+   +---+   +---+
  96 *      ^            |   |-->|   |-->|   |
  97 *      |            +---+   +---+   +---+
  98 *      |                              |
  99 *      |                              |
 100 *      +------------------------------+
 101 *
 102 *
 103 *   +------+
 104 *   |buffer|          RING BUFFER
 105 *   |page  |------------------v
 106 *   +------+        +---+   +---+   +---+
 107 *      ^            |   |   |   |-->|   |
 108 *      |   New      +---+   +---+   +---+
 109 *      |  Reader------^               |
 110 *      |   page                       |
 111 *      +------------------------------+
 112 *
 113 *
 114 * After we make this swap, the reader can hand this page off to the splice
 115 * code and be done with it. It can even allocate a new page if it needs to
 116 * and swap that into the ring buffer.
 117 *
 118 * We will be using cmpxchg soon to make all this lockless.
 119 *
 120 */
 121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 122/* Used for individual buffers (after the counter) */
 123#define RB_BUFFER_OFF		(1 << 20)
 124
 125#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
 126
 
 
 
 
 
 
 
 
 
 
 
 127#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
 128#define RB_ALIGNMENT		4U
 129#define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 130#define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
 131#define RB_ALIGN_DATA		__aligned(RB_ALIGNMENT)
 
 
 
 
 
 
 
 132
 133/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
 134#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
 135
 136enum {
 137	RB_LEN_TIME_EXTEND = 8,
 138	RB_LEN_TIME_STAMP =  8,
 139};
 140
 141#define skip_time_extend(event) \
 142	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
 143
 144#define extended_time(event) \
 145	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
 146
 147static inline int rb_null_event(struct ring_buffer_event *event)
 148{
 149	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
 150}
 151
 152static void rb_event_set_padding(struct ring_buffer_event *event)
 153{
 154	/* padding has a NULL time_delta */
 155	event->type_len = RINGBUF_TYPE_PADDING;
 156	event->time_delta = 0;
 157}
 158
 159static unsigned
 160rb_event_data_length(struct ring_buffer_event *event)
 161{
 162	unsigned length;
 163
 164	if (event->type_len)
 165		length = event->type_len * RB_ALIGNMENT;
 166	else
 167		length = event->array[0];
 168	return length + RB_EVNT_HDR_SIZE;
 169}
 170
 171/*
 172 * Return the length of the given event. Will return
 173 * the length of the time extend if the event is a
 174 * time extend.
 175 */
 176static inline unsigned
 177rb_event_length(struct ring_buffer_event *event)
 178{
 179	switch (event->type_len) {
 180	case RINGBUF_TYPE_PADDING:
 181		if (rb_null_event(event))
 182			/* undefined */
 183			return -1;
 184		return  event->array[0] + RB_EVNT_HDR_SIZE;
 185
 186	case RINGBUF_TYPE_TIME_EXTEND:
 187		return RB_LEN_TIME_EXTEND;
 188
 189	case RINGBUF_TYPE_TIME_STAMP:
 190		return RB_LEN_TIME_STAMP;
 191
 192	case RINGBUF_TYPE_DATA:
 193		return rb_event_data_length(event);
 194	default:
 195		BUG();
 196	}
 197	/* not hit */
 198	return 0;
 199}
 200
 201/*
 202 * Return total length of time extend and data,
 203 *   or just the event length for all other events.
 204 */
 205static inline unsigned
 206rb_event_ts_length(struct ring_buffer_event *event)
 207{
 208	unsigned len = 0;
 209
 210	if (extended_time(event)) {
 211		/* time extends include the data event after it */
 212		len = RB_LEN_TIME_EXTEND;
 213		event = skip_time_extend(event);
 214	}
 215	return len + rb_event_length(event);
 216}
 217
 218/**
 219 * ring_buffer_event_length - return the length of the event
 220 * @event: the event to get the length of
 221 *
 222 * Returns the size of the data load of a data event.
 223 * If the event is something other than a data event, it
 224 * returns the size of the event itself. With the exception
 225 * of a TIME EXTEND, where it still returns the size of the
 226 * data load of the data event after it.
 227 */
 228unsigned ring_buffer_event_length(struct ring_buffer_event *event)
 229{
 230	unsigned length;
 231
 232	if (extended_time(event))
 233		event = skip_time_extend(event);
 234
 235	length = rb_event_length(event);
 236	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 237		return length;
 238	length -= RB_EVNT_HDR_SIZE;
 239	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
 240                length -= sizeof(event->array[0]);
 241	return length;
 242}
 243EXPORT_SYMBOL_GPL(ring_buffer_event_length);
 244
 245/* inline for ring buffer fast paths */
 246static __always_inline void *
 247rb_event_data(struct ring_buffer_event *event)
 248{
 249	if (extended_time(event))
 250		event = skip_time_extend(event);
 251	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
 252	/* If length is in len field, then array[0] has the data */
 253	if (event->type_len)
 254		return (void *)&event->array[0];
 255	/* Otherwise length is in array[0] and array[1] has the data */
 256	return (void *)&event->array[1];
 257}
 258
 259/**
 260 * ring_buffer_event_data - return the data of the event
 261 * @event: the event to get the data from
 262 */
 263void *ring_buffer_event_data(struct ring_buffer_event *event)
 264{
 265	return rb_event_data(event);
 266}
 267EXPORT_SYMBOL_GPL(ring_buffer_event_data);
 268
 269#define for_each_buffer_cpu(buffer, cpu)		\
 270	for_each_cpu(cpu, buffer->cpumask)
 271
 272#define TS_SHIFT	27
 273#define TS_MASK		((1ULL << TS_SHIFT) - 1)
 274#define TS_DELTA_TEST	(~TS_MASK)
 275
 276/**
 277 * ring_buffer_event_time_stamp - return the event's extended timestamp
 278 * @event: the event to get the timestamp of
 279 *
 280 * Returns the extended timestamp associated with a data event.
 281 * An extended time_stamp is a 64-bit timestamp represented
 282 * internally in a special way that makes the best use of space
 283 * contained within a ring buffer event.  This function decodes
 284 * it and maps it to a straight u64 value.
 285 */
 286u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
 287{
 288	u64 ts;
 289
 290	ts = event->array[0];
 291	ts <<= TS_SHIFT;
 292	ts += event->time_delta;
 293
 294	return ts;
 295}
 296
 297/* Flag when events were overwritten */
 298#define RB_MISSED_EVENTS	(1 << 31)
 299/* Missed count stored at end */
 300#define RB_MISSED_STORED	(1 << 30)
 301
 302#define RB_MISSED_FLAGS		(RB_MISSED_EVENTS|RB_MISSED_STORED)
 303
 304struct buffer_data_page {
 305	u64		 time_stamp;	/* page time stamp */
 306	local_t		 commit;	/* write committed index */
 307	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
 308};
 309
 310/*
 311 * Note, the buffer_page list must be first. The buffer pages
 312 * are allocated in cache lines, which means that each buffer
 313 * page will be at the beginning of a cache line, and thus
 314 * the least significant bits will be zero. We use this to
 315 * add flags in the list struct pointers, to make the ring buffer
 316 * lockless.
 317 */
 318struct buffer_page {
 319	struct list_head list;		/* list of buffer pages */
 320	local_t		 write;		/* index for next write */
 321	unsigned	 read;		/* index for next read */
 322	local_t		 entries;	/* entries on this page */
 323	unsigned long	 real_end;	/* real end of data */
 324	struct buffer_data_page *page;	/* Actual data page */
 325};
 326
 327/*
 328 * The buffer page counters, write and entries, must be reset
 329 * atomically when crossing page boundaries. To synchronize this
 330 * update, two counters are inserted into the number. One is
 331 * the actual counter for the write position or count on the page.
 332 *
 333 * The other is a counter of updaters. Before an update happens
 334 * the update partition of the counter is incremented. This will
 335 * allow the updater to update the counter atomically.
 336 *
 337 * The counter is 20 bits, and the state data is 12.
 338 */
 339#define RB_WRITE_MASK		0xfffff
 340#define RB_WRITE_INTCNT		(1 << 20)
 341
 342static void rb_init_page(struct buffer_data_page *bpage)
 343{
 344	local_set(&bpage->commit, 0);
 345}
 346
 
 
 
 
 
 
 
 
 
 
 
 
 347/*
 348 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
 349 * this issue out.
 350 */
 351static void free_buffer_page(struct buffer_page *bpage)
 352{
 353	free_page((unsigned long)bpage->page);
 354	kfree(bpage);
 355}
 356
 357/*
 358 * We need to fit the time_stamp delta into 27 bits.
 359 */
 360static inline int test_time_stamp(u64 delta)
 361{
 362	if (delta & TS_DELTA_TEST)
 363		return 1;
 364	return 0;
 365}
 366
 367#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
 368
 369/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
 370#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
 371
 372int ring_buffer_print_page_header(struct trace_seq *s)
 373{
 374	struct buffer_data_page field;
 
 375
 376	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
 377			 "offset:0;\tsize:%u;\tsigned:%u;\n",
 378			 (unsigned int)sizeof(field.time_stamp),
 379			 (unsigned int)is_signed_type(u64));
 380
 381	trace_seq_printf(s, "\tfield: local_t commit;\t"
 382			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
 383			 (unsigned int)offsetof(typeof(field), commit),
 384			 (unsigned int)sizeof(field.commit),
 385			 (unsigned int)is_signed_type(long));
 386
 387	trace_seq_printf(s, "\tfield: int overwrite;\t"
 388			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
 389			 (unsigned int)offsetof(typeof(field), commit),
 390			 1,
 391			 (unsigned int)is_signed_type(long));
 392
 393	trace_seq_printf(s, "\tfield: char data;\t"
 394			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
 395			 (unsigned int)offsetof(typeof(field), data),
 396			 (unsigned int)BUF_PAGE_SIZE,
 397			 (unsigned int)is_signed_type(char));
 398
 399	return !trace_seq_has_overflowed(s);
 400}
 401
 402struct rb_irq_work {
 403	struct irq_work			work;
 404	wait_queue_head_t		waiters;
 405	wait_queue_head_t		full_waiters;
 406	bool				waiters_pending;
 407	bool				full_waiters_pending;
 408	bool				wakeup_full;
 409};
 410
 411/*
 412 * Structure to hold event state and handle nested events.
 413 */
 414struct rb_event_info {
 415	u64			ts;
 416	u64			delta;
 417	unsigned long		length;
 418	struct buffer_page	*tail_page;
 419	int			add_timestamp;
 420};
 421
 422/*
 423 * Used for which event context the event is in.
 424 *  NMI     = 0
 425 *  IRQ     = 1
 426 *  SOFTIRQ = 2
 427 *  NORMAL  = 3
 428 *
 429 * See trace_recursive_lock() comment below for more details.
 430 */
 431enum {
 432	RB_CTX_NMI,
 433	RB_CTX_IRQ,
 434	RB_CTX_SOFTIRQ,
 435	RB_CTX_NORMAL,
 436	RB_CTX_MAX
 437};
 438
 439/*
 440 * head_page == tail_page && head == tail then buffer is empty.
 441 */
 442struct ring_buffer_per_cpu {
 443	int				cpu;
 444	atomic_t			record_disabled;
 445	struct ring_buffer		*buffer;
 446	raw_spinlock_t			reader_lock;	/* serialize readers */
 447	arch_spinlock_t			lock;
 448	struct lock_class_key		lock_key;
 449	struct buffer_data_page		*free_page;
 450	unsigned long			nr_pages;
 451	unsigned int			current_context;
 452	struct list_head		*pages;
 453	struct buffer_page		*head_page;	/* read from head */
 454	struct buffer_page		*tail_page;	/* write to tail */
 455	struct buffer_page		*commit_page;	/* committed pages */
 456	struct buffer_page		*reader_page;
 457	unsigned long			lost_events;
 458	unsigned long			last_overrun;
 459	unsigned long			nest;
 460	local_t				entries_bytes;
 461	local_t				entries;
 462	local_t				overrun;
 463	local_t				commit_overrun;
 464	local_t				dropped_events;
 
 465	local_t				committing;
 466	local_t				commits;
 467	local_t				pages_touched;
 468	local_t				pages_read;
 469	long				last_pages_touch;
 470	size_t				shortest_full;
 471	unsigned long			read;
 472	unsigned long			read_bytes;
 473	u64				write_stamp;
 474	u64				read_stamp;
 475	/* ring buffer pages to update, > 0 to add, < 0 to remove */
 476	long				nr_pages_to_update;
 477	struct list_head		new_pages; /* new pages to add */
 478	struct work_struct		update_pages_work;
 479	struct completion		update_done;
 480
 481	struct rb_irq_work		irq_work;
 482};
 483
 484struct ring_buffer {
 485	unsigned			flags;
 486	int				cpus;
 487	atomic_t			record_disabled;
 488	atomic_t			resize_disabled;
 489	cpumask_var_t			cpumask;
 490
 491	struct lock_class_key		*reader_lock_key;
 492
 493	struct mutex			mutex;
 494
 495	struct ring_buffer_per_cpu	**buffers;
 496
 497	struct hlist_node		node;
 
 
 498	u64				(*clock)(void);
 499
 500	struct rb_irq_work		irq_work;
 501	bool				time_stamp_abs;
 502};
 503
 504struct ring_buffer_iter {
 505	struct ring_buffer_per_cpu	*cpu_buffer;
 506	unsigned long			head;
 507	struct buffer_page		*head_page;
 508	struct buffer_page		*cache_reader_page;
 509	unsigned long			cache_read;
 510	u64				read_stamp;
 511};
 512
 513/**
 514 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
 515 * @buffer: The ring_buffer to get the number of pages from
 516 * @cpu: The cpu of the ring_buffer to get the number of pages from
 517 *
 518 * Returns the number of pages used by a per_cpu buffer of the ring buffer.
 519 */
 520size_t ring_buffer_nr_pages(struct ring_buffer *buffer, int cpu)
 521{
 522	return buffer->buffers[cpu]->nr_pages;
 523}
 524
 525/**
 526 * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer
 527 * @buffer: The ring_buffer to get the number of pages from
 528 * @cpu: The cpu of the ring_buffer to get the number of pages from
 529 *
 530 * Returns the number of pages that have content in the ring buffer.
 531 */
 532size_t ring_buffer_nr_dirty_pages(struct ring_buffer *buffer, int cpu)
 533{
 534	size_t read;
 535	size_t cnt;
 536
 537	read = local_read(&buffer->buffers[cpu]->pages_read);
 538	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
 539	/* The reader can read an empty page, but not more than that */
 540	if (cnt < read) {
 541		WARN_ON_ONCE(read > cnt + 1);
 542		return 0;
 543	}
 544
 545	return cnt - read;
 546}
 547
 548/*
 549 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
 550 *
 551 * Schedules a delayed work to wake up any task that is blocked on the
 552 * ring buffer waiters queue.
 553 */
 554static void rb_wake_up_waiters(struct irq_work *work)
 555{
 556	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
 557
 558	wake_up_all(&rbwork->waiters);
 559	if (rbwork->wakeup_full) {
 560		rbwork->wakeup_full = false;
 561		wake_up_all(&rbwork->full_waiters);
 562	}
 563}
 564
 565/**
 566 * ring_buffer_wait - wait for input to the ring buffer
 567 * @buffer: buffer to wait on
 568 * @cpu: the cpu buffer to wait on
 569 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
 570 *
 571 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 572 * as data is added to any of the @buffer's cpu buffers. Otherwise
 573 * it will wait for data to be added to a specific cpu buffer.
 574 */
 575int ring_buffer_wait(struct ring_buffer *buffer, int cpu, int full)
 576{
 577	struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
 578	DEFINE_WAIT(wait);
 579	struct rb_irq_work *work;
 580	int ret = 0;
 581
 582	/*
 583	 * Depending on what the caller is waiting for, either any
 584	 * data in any cpu buffer, or a specific buffer, put the
 585	 * caller on the appropriate wait queue.
 586	 */
 587	if (cpu == RING_BUFFER_ALL_CPUS) {
 588		work = &buffer->irq_work;
 589		/* Full only makes sense on per cpu reads */
 590		full = 0;
 591	} else {
 592		if (!cpumask_test_cpu(cpu, buffer->cpumask))
 593			return -ENODEV;
 594		cpu_buffer = buffer->buffers[cpu];
 595		work = &cpu_buffer->irq_work;
 596	}
 597
 598
 599	while (true) {
 600		if (full)
 601			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
 602		else
 603			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
 604
 605		/*
 606		 * The events can happen in critical sections where
 607		 * checking a work queue can cause deadlocks.
 608		 * After adding a task to the queue, this flag is set
 609		 * only to notify events to try to wake up the queue
 610		 * using irq_work.
 611		 *
 612		 * We don't clear it even if the buffer is no longer
 613		 * empty. The flag only causes the next event to run
 614		 * irq_work to do the work queue wake up. The worse
 615		 * that can happen if we race with !trace_empty() is that
 616		 * an event will cause an irq_work to try to wake up
 617		 * an empty queue.
 618		 *
 619		 * There's no reason to protect this flag either, as
 620		 * the work queue and irq_work logic will do the necessary
 621		 * synchronization for the wake ups. The only thing
 622		 * that is necessary is that the wake up happens after
 623		 * a task has been queued. It's OK for spurious wake ups.
 624		 */
 625		if (full)
 626			work->full_waiters_pending = true;
 627		else
 628			work->waiters_pending = true;
 629
 630		if (signal_pending(current)) {
 631			ret = -EINTR;
 632			break;
 633		}
 634
 635		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
 636			break;
 637
 638		if (cpu != RING_BUFFER_ALL_CPUS &&
 639		    !ring_buffer_empty_cpu(buffer, cpu)) {
 640			unsigned long flags;
 641			bool pagebusy;
 642			size_t nr_pages;
 643			size_t dirty;
 644
 645			if (!full)
 646				break;
 647
 648			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
 649			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
 650			nr_pages = cpu_buffer->nr_pages;
 651			dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
 652			if (!cpu_buffer->shortest_full ||
 653			    cpu_buffer->shortest_full < full)
 654				cpu_buffer->shortest_full = full;
 655			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
 656			if (!pagebusy &&
 657			    (!nr_pages || (dirty * 100) > full * nr_pages))
 658				break;
 659		}
 660
 661		schedule();
 662	}
 663
 664	if (full)
 665		finish_wait(&work->full_waiters, &wait);
 666	else
 667		finish_wait(&work->waiters, &wait);
 668
 669	return ret;
 670}
 671
 672/**
 673 * ring_buffer_poll_wait - poll on buffer input
 674 * @buffer: buffer to wait on
 675 * @cpu: the cpu buffer to wait on
 676 * @filp: the file descriptor
 677 * @poll_table: The poll descriptor
 678 *
 679 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 680 * as data is added to any of the @buffer's cpu buffers. Otherwise
 681 * it will wait for data to be added to a specific cpu buffer.
 682 *
 683 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
 684 * zero otherwise.
 685 */
 686__poll_t ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
 687			  struct file *filp, poll_table *poll_table)
 688{
 689	struct ring_buffer_per_cpu *cpu_buffer;
 690	struct rb_irq_work *work;
 691
 692	if (cpu == RING_BUFFER_ALL_CPUS)
 693		work = &buffer->irq_work;
 694	else {
 695		if (!cpumask_test_cpu(cpu, buffer->cpumask))
 696			return -EINVAL;
 697
 698		cpu_buffer = buffer->buffers[cpu];
 699		work = &cpu_buffer->irq_work;
 700	}
 701
 702	poll_wait(filp, &work->waiters, poll_table);
 703	work->waiters_pending = true;
 704	/*
 705	 * There's a tight race between setting the waiters_pending and
 706	 * checking if the ring buffer is empty.  Once the waiters_pending bit
 707	 * is set, the next event will wake the task up, but we can get stuck
 708	 * if there's only a single event in.
 709	 *
 710	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
 711	 * but adding a memory barrier to all events will cause too much of a
 712	 * performance hit in the fast path.  We only need a memory barrier when
 713	 * the buffer goes from empty to having content.  But as this race is
 714	 * extremely small, and it's not a problem if another event comes in, we
 715	 * will fix it later.
 716	 */
 717	smp_mb();
 718
 719	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
 720	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
 721		return EPOLLIN | EPOLLRDNORM;
 722	return 0;
 723}
 724
 725/* buffer may be either ring_buffer or ring_buffer_per_cpu */
 726#define RB_WARN_ON(b, cond)						\
 727	({								\
 728		int _____ret = unlikely(cond);				\
 729		if (_____ret) {						\
 730			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
 731				struct ring_buffer_per_cpu *__b =	\
 732					(void *)b;			\
 733				atomic_inc(&__b->buffer->record_disabled); \
 734			} else						\
 735				atomic_inc(&b->record_disabled);	\
 736			WARN_ON(1);					\
 737		}							\
 738		_____ret;						\
 739	})
 740
 741/* Up this if you want to test the TIME_EXTENTS and normalization */
 742#define DEBUG_SHIFT 0
 743
 744static inline u64 rb_time_stamp(struct ring_buffer *buffer)
 745{
 746	/* shift to debug/test normalization and TIME_EXTENTS */
 747	return buffer->clock() << DEBUG_SHIFT;
 748}
 749
 750u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
 751{
 752	u64 time;
 753
 754	preempt_disable_notrace();
 755	time = rb_time_stamp(buffer);
 756	preempt_enable_notrace();
 757
 758	return time;
 759}
 760EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
 761
 762void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
 763				      int cpu, u64 *ts)
 764{
 765	/* Just stupid testing the normalize function and deltas */
 766	*ts >>= DEBUG_SHIFT;
 767}
 768EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
 769
 770/*
 771 * Making the ring buffer lockless makes things tricky.
 772 * Although writes only happen on the CPU that they are on,
 773 * and they only need to worry about interrupts. Reads can
 774 * happen on any CPU.
 775 *
 776 * The reader page is always off the ring buffer, but when the
 777 * reader finishes with a page, it needs to swap its page with
 778 * a new one from the buffer. The reader needs to take from
 779 * the head (writes go to the tail). But if a writer is in overwrite
 780 * mode and wraps, it must push the head page forward.
 781 *
 782 * Here lies the problem.
 783 *
 784 * The reader must be careful to replace only the head page, and
 785 * not another one. As described at the top of the file in the
 786 * ASCII art, the reader sets its old page to point to the next
 787 * page after head. It then sets the page after head to point to
 788 * the old reader page. But if the writer moves the head page
 789 * during this operation, the reader could end up with the tail.
 790 *
 791 * We use cmpxchg to help prevent this race. We also do something
 792 * special with the page before head. We set the LSB to 1.
 793 *
 794 * When the writer must push the page forward, it will clear the
 795 * bit that points to the head page, move the head, and then set
 796 * the bit that points to the new head page.
 797 *
 798 * We also don't want an interrupt coming in and moving the head
 799 * page on another writer. Thus we use the second LSB to catch
 800 * that too. Thus:
 801 *
 802 * head->list->prev->next        bit 1          bit 0
 803 *                              -------        -------
 804 * Normal page                     0              0
 805 * Points to head page             0              1
 806 * New head page                   1              0
 807 *
 808 * Note we can not trust the prev pointer of the head page, because:
 809 *
 810 * +----+       +-----+        +-----+
 811 * |    |------>|  T  |---X--->|  N  |
 812 * |    |<------|     |        |     |
 813 * +----+       +-----+        +-----+
 814 *   ^                           ^ |
 815 *   |          +-----+          | |
 816 *   +----------|  R  |----------+ |
 817 *              |     |<-----------+
 818 *              +-----+
 819 *
 820 * Key:  ---X-->  HEAD flag set in pointer
 821 *         T      Tail page
 822 *         R      Reader page
 823 *         N      Next page
 824 *
 825 * (see __rb_reserve_next() to see where this happens)
 826 *
 827 *  What the above shows is that the reader just swapped out
 828 *  the reader page with a page in the buffer, but before it
 829 *  could make the new header point back to the new page added
 830 *  it was preempted by a writer. The writer moved forward onto
 831 *  the new page added by the reader and is about to move forward
 832 *  again.
 833 *
 834 *  You can see, it is legitimate for the previous pointer of
 835 *  the head (or any page) not to point back to itself. But only
 836 *  temporarily.
 837 */
 838
 839#define RB_PAGE_NORMAL		0UL
 840#define RB_PAGE_HEAD		1UL
 841#define RB_PAGE_UPDATE		2UL
 842
 843
 844#define RB_FLAG_MASK		3UL
 845
 846/* PAGE_MOVED is not part of the mask */
 847#define RB_PAGE_MOVED		4UL
 848
 849/*
 850 * rb_list_head - remove any bit
 851 */
 852static struct list_head *rb_list_head(struct list_head *list)
 853{
 854	unsigned long val = (unsigned long)list;
 855
 856	return (struct list_head *)(val & ~RB_FLAG_MASK);
 857}
 858
 859/*
 860 * rb_is_head_page - test if the given page is the head page
 861 *
 862 * Because the reader may move the head_page pointer, we can
 863 * not trust what the head page is (it may be pointing to
 864 * the reader page). But if the next page is a header page,
 865 * its flags will be non zero.
 866 */
 867static inline int
 868rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
 869		struct buffer_page *page, struct list_head *list)
 870{
 871	unsigned long val;
 872
 873	val = (unsigned long)list->next;
 874
 875	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
 876		return RB_PAGE_MOVED;
 877
 878	return val & RB_FLAG_MASK;
 879}
 880
 881/*
 882 * rb_is_reader_page
 883 *
 884 * The unique thing about the reader page, is that, if the
 885 * writer is ever on it, the previous pointer never points
 886 * back to the reader page.
 887 */
 888static bool rb_is_reader_page(struct buffer_page *page)
 889{
 890	struct list_head *list = page->list.prev;
 891
 892	return rb_list_head(list->next) != &page->list;
 893}
 894
 895/*
 896 * rb_set_list_to_head - set a list_head to be pointing to head.
 897 */
 898static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
 899				struct list_head *list)
 900{
 901	unsigned long *ptr;
 902
 903	ptr = (unsigned long *)&list->next;
 904	*ptr |= RB_PAGE_HEAD;
 905	*ptr &= ~RB_PAGE_UPDATE;
 906}
 907
 908/*
 909 * rb_head_page_activate - sets up head page
 910 */
 911static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
 912{
 913	struct buffer_page *head;
 914
 915	head = cpu_buffer->head_page;
 916	if (!head)
 917		return;
 918
 919	/*
 920	 * Set the previous list pointer to have the HEAD flag.
 921	 */
 922	rb_set_list_to_head(cpu_buffer, head->list.prev);
 923}
 924
 925static void rb_list_head_clear(struct list_head *list)
 926{
 927	unsigned long *ptr = (unsigned long *)&list->next;
 928
 929	*ptr &= ~RB_FLAG_MASK;
 930}
 931
 932/*
 933 * rb_head_page_deactivate - clears head page ptr (for free list)
 934 */
 935static void
 936rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
 937{
 938	struct list_head *hd;
 939
 940	/* Go through the whole list and clear any pointers found. */
 941	rb_list_head_clear(cpu_buffer->pages);
 942
 943	list_for_each(hd, cpu_buffer->pages)
 944		rb_list_head_clear(hd);
 945}
 946
 947static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
 948			    struct buffer_page *head,
 949			    struct buffer_page *prev,
 950			    int old_flag, int new_flag)
 951{
 952	struct list_head *list;
 953	unsigned long val = (unsigned long)&head->list;
 954	unsigned long ret;
 955
 956	list = &prev->list;
 957
 958	val &= ~RB_FLAG_MASK;
 959
 960	ret = cmpxchg((unsigned long *)&list->next,
 961		      val | old_flag, val | new_flag);
 962
 963	/* check if the reader took the page */
 964	if ((ret & ~RB_FLAG_MASK) != val)
 965		return RB_PAGE_MOVED;
 966
 967	return ret & RB_FLAG_MASK;
 968}
 969
 970static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
 971				   struct buffer_page *head,
 972				   struct buffer_page *prev,
 973				   int old_flag)
 974{
 975	return rb_head_page_set(cpu_buffer, head, prev,
 976				old_flag, RB_PAGE_UPDATE);
 977}
 978
 979static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
 980				 struct buffer_page *head,
 981				 struct buffer_page *prev,
 982				 int old_flag)
 983{
 984	return rb_head_page_set(cpu_buffer, head, prev,
 985				old_flag, RB_PAGE_HEAD);
 986}
 987
 988static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
 989				   struct buffer_page *head,
 990				   struct buffer_page *prev,
 991				   int old_flag)
 992{
 993	return rb_head_page_set(cpu_buffer, head, prev,
 994				old_flag, RB_PAGE_NORMAL);
 995}
 996
 997static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
 998			       struct buffer_page **bpage)
 999{
1000	struct list_head *p = rb_list_head((*bpage)->list.next);
1001
1002	*bpage = list_entry(p, struct buffer_page, list);
1003}
1004
1005static struct buffer_page *
1006rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1007{
1008	struct buffer_page *head;
1009	struct buffer_page *page;
1010	struct list_head *list;
1011	int i;
1012
1013	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1014		return NULL;
1015
1016	/* sanity check */
1017	list = cpu_buffer->pages;
1018	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1019		return NULL;
1020
1021	page = head = cpu_buffer->head_page;
1022	/*
1023	 * It is possible that the writer moves the header behind
1024	 * where we started, and we miss in one loop.
1025	 * A second loop should grab the header, but we'll do
1026	 * three loops just because I'm paranoid.
1027	 */
1028	for (i = 0; i < 3; i++) {
1029		do {
1030			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
1031				cpu_buffer->head_page = page;
1032				return page;
1033			}
1034			rb_inc_page(cpu_buffer, &page);
1035		} while (page != head);
1036	}
1037
1038	RB_WARN_ON(cpu_buffer, 1);
1039
1040	return NULL;
1041}
1042
1043static int rb_head_page_replace(struct buffer_page *old,
1044				struct buffer_page *new)
1045{
1046	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1047	unsigned long val;
1048	unsigned long ret;
1049
1050	val = *ptr & ~RB_FLAG_MASK;
1051	val |= RB_PAGE_HEAD;
1052
1053	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1054
1055	return ret == val;
1056}
1057
1058/*
1059 * rb_tail_page_update - move the tail page forward
 
 
1060 */
1061static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1062			       struct buffer_page *tail_page,
1063			       struct buffer_page *next_page)
1064{
 
1065	unsigned long old_entries;
1066	unsigned long old_write;
 
1067
1068	/*
1069	 * The tail page now needs to be moved forward.
1070	 *
1071	 * We need to reset the tail page, but without messing
1072	 * with possible erasing of data brought in by interrupts
1073	 * that have moved the tail page and are currently on it.
1074	 *
1075	 * We add a counter to the write field to denote this.
1076	 */
1077	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1078	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1079
1080	local_inc(&cpu_buffer->pages_touched);
1081	/*
1082	 * Just make sure we have seen our old_write and synchronize
1083	 * with any interrupts that come in.
1084	 */
1085	barrier();
1086
1087	/*
1088	 * If the tail page is still the same as what we think
1089	 * it is, then it is up to us to update the tail
1090	 * pointer.
1091	 */
1092	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1093		/* Zero the write counter */
1094		unsigned long val = old_write & ~RB_WRITE_MASK;
1095		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1096
1097		/*
1098		 * This will only succeed if an interrupt did
1099		 * not come in and change it. In which case, we
1100		 * do not want to modify it.
1101		 *
1102		 * We add (void) to let the compiler know that we do not care
1103		 * about the return value of these functions. We use the
1104		 * cmpxchg to only update if an interrupt did not already
1105		 * do it for us. If the cmpxchg fails, we don't care.
1106		 */
1107		(void)local_cmpxchg(&next_page->write, old_write, val);
1108		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1109
1110		/*
1111		 * No need to worry about races with clearing out the commit.
1112		 * it only can increment when a commit takes place. But that
1113		 * only happens in the outer most nested commit.
1114		 */
1115		local_set(&next_page->page->commit, 0);
1116
1117		/* Again, either we update tail_page or an interrupt does */
1118		(void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
 
 
 
1119	}
 
 
1120}
1121
1122static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1123			  struct buffer_page *bpage)
1124{
1125	unsigned long val = (unsigned long)bpage;
1126
1127	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1128		return 1;
1129
1130	return 0;
1131}
1132
1133/**
1134 * rb_check_list - make sure a pointer to a list has the last bits zero
1135 */
1136static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1137			 struct list_head *list)
1138{
1139	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1140		return 1;
1141	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1142		return 1;
1143	return 0;
1144}
1145
1146/**
1147 * rb_check_pages - integrity check of buffer pages
1148 * @cpu_buffer: CPU buffer with pages to test
1149 *
1150 * As a safety measure we check to make sure the data pages have not
1151 * been corrupted.
1152 */
1153static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1154{
1155	struct list_head *head = cpu_buffer->pages;
1156	struct buffer_page *bpage, *tmp;
1157
1158	/* Reset the head page if it exists */
1159	if (cpu_buffer->head_page)
1160		rb_set_head_page(cpu_buffer);
1161
1162	rb_head_page_deactivate(cpu_buffer);
1163
1164	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1165		return -1;
1166	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1167		return -1;
1168
1169	if (rb_check_list(cpu_buffer, head))
1170		return -1;
1171
1172	list_for_each_entry_safe(bpage, tmp, head, list) {
1173		if (RB_WARN_ON(cpu_buffer,
1174			       bpage->list.next->prev != &bpage->list))
1175			return -1;
1176		if (RB_WARN_ON(cpu_buffer,
1177			       bpage->list.prev->next != &bpage->list))
1178			return -1;
1179		if (rb_check_list(cpu_buffer, &bpage->list))
1180			return -1;
1181	}
1182
1183	rb_head_page_activate(cpu_buffer);
1184
1185	return 0;
1186}
1187
1188static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1189{
 
1190	struct buffer_page *bpage, *tmp;
1191	bool user_thread = current->mm != NULL;
1192	gfp_t mflags;
1193	long i;
1194
1195	/*
1196	 * Check if the available memory is there first.
1197	 * Note, si_mem_available() only gives us a rough estimate of available
1198	 * memory. It may not be accurate. But we don't care, we just want
1199	 * to prevent doing any allocation when it is obvious that it is
1200	 * not going to succeed.
1201	 */
1202	i = si_mem_available();
1203	if (i < nr_pages)
1204		return -ENOMEM;
1205
1206	/*
1207	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1208	 * gracefully without invoking oom-killer and the system is not
1209	 * destabilized.
1210	 */
1211	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1212
1213	/*
1214	 * If a user thread allocates too much, and si_mem_available()
1215	 * reports there's enough memory, even though there is not.
1216	 * Make sure the OOM killer kills this thread. This can happen
1217	 * even with RETRY_MAYFAIL because another task may be doing
1218	 * an allocation after this task has taken all memory.
1219	 * This is the task the OOM killer needs to take out during this
1220	 * loop, even if it was triggered by an allocation somewhere else.
1221	 */
1222	if (user_thread)
1223		set_current_oom_origin();
1224	for (i = 0; i < nr_pages; i++) {
1225		struct page *page;
1226
 
 
 
 
1227		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1228				    mflags, cpu_to_node(cpu));
 
1229		if (!bpage)
1230			goto free_pages;
1231
1232		list_add(&bpage->list, pages);
1233
1234		page = alloc_pages_node(cpu_to_node(cpu), mflags, 0);
 
1235		if (!page)
1236			goto free_pages;
1237		bpage->page = page_address(page);
1238		rb_init_page(bpage->page);
1239
1240		if (user_thread && fatal_signal_pending(current))
1241			goto free_pages;
1242	}
1243	if (user_thread)
1244		clear_current_oom_origin();
1245
1246	return 0;
1247
1248free_pages:
1249	list_for_each_entry_safe(bpage, tmp, pages, list) {
1250		list_del_init(&bpage->list);
1251		free_buffer_page(bpage);
1252	}
1253	if (user_thread)
1254		clear_current_oom_origin();
1255
1256	return -ENOMEM;
1257}
1258
1259static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1260			     unsigned long nr_pages)
1261{
1262	LIST_HEAD(pages);
1263
1264	WARN_ON(!nr_pages);
1265
1266	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1267		return -ENOMEM;
1268
1269	/*
1270	 * The ring buffer page list is a circular list that does not
1271	 * start and end with a list head. All page list items point to
1272	 * other pages.
1273	 */
1274	cpu_buffer->pages = pages.next;
1275	list_del(&pages);
1276
1277	cpu_buffer->nr_pages = nr_pages;
1278
1279	rb_check_pages(cpu_buffer);
1280
1281	return 0;
1282}
1283
1284static struct ring_buffer_per_cpu *
1285rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1286{
1287	struct ring_buffer_per_cpu *cpu_buffer;
1288	struct buffer_page *bpage;
1289	struct page *page;
1290	int ret;
1291
1292	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1293				  GFP_KERNEL, cpu_to_node(cpu));
1294	if (!cpu_buffer)
1295		return NULL;
1296
1297	cpu_buffer->cpu = cpu;
1298	cpu_buffer->buffer = buffer;
1299	raw_spin_lock_init(&cpu_buffer->reader_lock);
1300	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1301	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1302	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1303	init_completion(&cpu_buffer->update_done);
1304	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1305	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1306	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1307
1308	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1309			    GFP_KERNEL, cpu_to_node(cpu));
1310	if (!bpage)
1311		goto fail_free_buffer;
1312
1313	rb_check_bpage(cpu_buffer, bpage);
1314
1315	cpu_buffer->reader_page = bpage;
1316	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1317	if (!page)
1318		goto fail_free_reader;
1319	bpage->page = page_address(page);
1320	rb_init_page(bpage->page);
1321
1322	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1323	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1324
1325	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1326	if (ret < 0)
1327		goto fail_free_reader;
1328
1329	cpu_buffer->head_page
1330		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1331	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1332
1333	rb_head_page_activate(cpu_buffer);
1334
1335	return cpu_buffer;
1336
1337 fail_free_reader:
1338	free_buffer_page(cpu_buffer->reader_page);
1339
1340 fail_free_buffer:
1341	kfree(cpu_buffer);
1342	return NULL;
1343}
1344
1345static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1346{
1347	struct list_head *head = cpu_buffer->pages;
1348	struct buffer_page *bpage, *tmp;
1349
1350	free_buffer_page(cpu_buffer->reader_page);
1351
1352	rb_head_page_deactivate(cpu_buffer);
1353
1354	if (head) {
1355		list_for_each_entry_safe(bpage, tmp, head, list) {
1356			list_del_init(&bpage->list);
1357			free_buffer_page(bpage);
1358		}
1359		bpage = list_entry(head, struct buffer_page, list);
1360		free_buffer_page(bpage);
1361	}
1362
1363	kfree(cpu_buffer);
1364}
1365
 
 
 
 
 
1366/**
1367 * __ring_buffer_alloc - allocate a new ring_buffer
1368 * @size: the size in bytes per cpu that is needed.
1369 * @flags: attributes to set for the ring buffer.
1370 *
1371 * Currently the only flag that is available is the RB_FL_OVERWRITE
1372 * flag. This flag means that the buffer will overwrite old data
1373 * when the buffer wraps. If this flag is not set, the buffer will
1374 * drop data when the tail hits the head.
1375 */
1376struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1377					struct lock_class_key *key)
1378{
1379	struct ring_buffer *buffer;
1380	long nr_pages;
1381	int bsize;
1382	int cpu;
1383	int ret;
1384
1385	/* keep it in its own cache line */
1386	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1387			 GFP_KERNEL);
1388	if (!buffer)
1389		return NULL;
1390
1391	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1392		goto fail_free_buffer;
1393
1394	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1395	buffer->flags = flags;
1396	buffer->clock = trace_clock_local;
1397	buffer->reader_lock_key = key;
1398
1399	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1400	init_waitqueue_head(&buffer->irq_work.waiters);
1401
1402	/* need at least two pages */
1403	if (nr_pages < 2)
1404		nr_pages = 2;
1405
 
 
 
 
 
 
 
 
 
 
 
1406	buffer->cpus = nr_cpu_ids;
1407
1408	bsize = sizeof(void *) * nr_cpu_ids;
1409	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1410				  GFP_KERNEL);
1411	if (!buffer->buffers)
1412		goto fail_free_cpumask;
1413
1414	cpu = raw_smp_processor_id();
1415	cpumask_set_cpu(cpu, buffer->cpumask);
1416	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1417	if (!buffer->buffers[cpu])
1418		goto fail_free_buffers;
 
1419
1420	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1421	if (ret < 0)
1422		goto fail_free_buffers;
 
 
1423
 
1424	mutex_init(&buffer->mutex);
1425
1426	return buffer;
1427
1428 fail_free_buffers:
1429	for_each_buffer_cpu(buffer, cpu) {
1430		if (buffer->buffers[cpu])
1431			rb_free_cpu_buffer(buffer->buffers[cpu]);
1432	}
1433	kfree(buffer->buffers);
1434
1435 fail_free_cpumask:
1436	free_cpumask_var(buffer->cpumask);
 
1437
1438 fail_free_buffer:
1439	kfree(buffer);
1440	return NULL;
1441}
1442EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1443
1444/**
1445 * ring_buffer_free - free a ring buffer.
1446 * @buffer: the buffer to free.
1447 */
1448void
1449ring_buffer_free(struct ring_buffer *buffer)
1450{
1451	int cpu;
1452
1453	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
 
 
 
 
1454
1455	for_each_buffer_cpu(buffer, cpu)
1456		rb_free_cpu_buffer(buffer->buffers[cpu]);
1457
 
 
1458	kfree(buffer->buffers);
1459	free_cpumask_var(buffer->cpumask);
1460
1461	kfree(buffer);
1462}
1463EXPORT_SYMBOL_GPL(ring_buffer_free);
1464
1465void ring_buffer_set_clock(struct ring_buffer *buffer,
1466			   u64 (*clock)(void))
1467{
1468	buffer->clock = clock;
1469}
1470
1471void ring_buffer_set_time_stamp_abs(struct ring_buffer *buffer, bool abs)
1472{
1473	buffer->time_stamp_abs = abs;
1474}
1475
1476bool ring_buffer_time_stamp_abs(struct ring_buffer *buffer)
1477{
1478	return buffer->time_stamp_abs;
1479}
1480
1481static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1482
1483static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1484{
1485	return local_read(&bpage->entries) & RB_WRITE_MASK;
1486}
1487
1488static inline unsigned long rb_page_write(struct buffer_page *bpage)
1489{
1490	return local_read(&bpage->write) & RB_WRITE_MASK;
1491}
1492
1493static int
1494rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1495{
1496	struct list_head *tail_page, *to_remove, *next_page;
1497	struct buffer_page *to_remove_page, *tmp_iter_page;
1498	struct buffer_page *last_page, *first_page;
1499	unsigned long nr_removed;
1500	unsigned long head_bit;
1501	int page_entries;
1502
1503	head_bit = 0;
1504
1505	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1506	atomic_inc(&cpu_buffer->record_disabled);
1507	/*
1508	 * We don't race with the readers since we have acquired the reader
1509	 * lock. We also don't race with writers after disabling recording.
1510	 * This makes it easy to figure out the first and the last page to be
1511	 * removed from the list. We unlink all the pages in between including
1512	 * the first and last pages. This is done in a busy loop so that we
1513	 * lose the least number of traces.
1514	 * The pages are freed after we restart recording and unlock readers.
1515	 */
1516	tail_page = &cpu_buffer->tail_page->list;
1517
1518	/*
1519	 * tail page might be on reader page, we remove the next page
1520	 * from the ring buffer
1521	 */
1522	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1523		tail_page = rb_list_head(tail_page->next);
1524	to_remove = tail_page;
1525
1526	/* start of pages to remove */
1527	first_page = list_entry(rb_list_head(to_remove->next),
1528				struct buffer_page, list);
1529
1530	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1531		to_remove = rb_list_head(to_remove)->next;
1532		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1533	}
1534
1535	next_page = rb_list_head(to_remove)->next;
1536
1537	/*
1538	 * Now we remove all pages between tail_page and next_page.
1539	 * Make sure that we have head_bit value preserved for the
1540	 * next page
1541	 */
1542	tail_page->next = (struct list_head *)((unsigned long)next_page |
1543						head_bit);
1544	next_page = rb_list_head(next_page);
1545	next_page->prev = tail_page;
1546
1547	/* make sure pages points to a valid page in the ring buffer */
1548	cpu_buffer->pages = next_page;
1549
1550	/* update head page */
1551	if (head_bit)
1552		cpu_buffer->head_page = list_entry(next_page,
1553						struct buffer_page, list);
1554
1555	/*
1556	 * change read pointer to make sure any read iterators reset
1557	 * themselves
1558	 */
1559	cpu_buffer->read = 0;
1560
1561	/* pages are removed, resume tracing and then free the pages */
1562	atomic_dec(&cpu_buffer->record_disabled);
1563	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1564
1565	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1566
1567	/* last buffer page to remove */
1568	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1569				list);
1570	tmp_iter_page = first_page;
1571
1572	do {
1573		cond_resched();
1574
1575		to_remove_page = tmp_iter_page;
1576		rb_inc_page(cpu_buffer, &tmp_iter_page);
1577
1578		/* update the counters */
1579		page_entries = rb_page_entries(to_remove_page);
1580		if (page_entries) {
1581			/*
1582			 * If something was added to this page, it was full
1583			 * since it is not the tail page. So we deduct the
1584			 * bytes consumed in ring buffer from here.
1585			 * Increment overrun to account for the lost events.
1586			 */
1587			local_add(page_entries, &cpu_buffer->overrun);
1588			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1589		}
1590
1591		/*
1592		 * We have already removed references to this list item, just
1593		 * free up the buffer_page and its page
1594		 */
1595		free_buffer_page(to_remove_page);
1596		nr_removed--;
1597
1598	} while (to_remove_page != last_page);
1599
1600	RB_WARN_ON(cpu_buffer, nr_removed);
1601
1602	return nr_removed == 0;
1603}
1604
1605static int
1606rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1607{
1608	struct list_head *pages = &cpu_buffer->new_pages;
1609	int retries, success;
1610
1611	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1612	/*
1613	 * We are holding the reader lock, so the reader page won't be swapped
1614	 * in the ring buffer. Now we are racing with the writer trying to
1615	 * move head page and the tail page.
1616	 * We are going to adapt the reader page update process where:
1617	 * 1. We first splice the start and end of list of new pages between
1618	 *    the head page and its previous page.
1619	 * 2. We cmpxchg the prev_page->next to point from head page to the
1620	 *    start of new pages list.
1621	 * 3. Finally, we update the head->prev to the end of new list.
1622	 *
1623	 * We will try this process 10 times, to make sure that we don't keep
1624	 * spinning.
1625	 */
1626	retries = 10;
1627	success = 0;
1628	while (retries--) {
1629		struct list_head *head_page, *prev_page, *r;
1630		struct list_head *last_page, *first_page;
1631		struct list_head *head_page_with_bit;
1632
1633		head_page = &rb_set_head_page(cpu_buffer)->list;
1634		if (!head_page)
1635			break;
1636		prev_page = head_page->prev;
1637
1638		first_page = pages->next;
1639		last_page  = pages->prev;
1640
1641		head_page_with_bit = (struct list_head *)
1642				     ((unsigned long)head_page | RB_PAGE_HEAD);
1643
1644		last_page->next = head_page_with_bit;
1645		first_page->prev = prev_page;
1646
1647		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1648
1649		if (r == head_page_with_bit) {
1650			/*
1651			 * yay, we replaced the page pointer to our new list,
1652			 * now, we just have to update to head page's prev
1653			 * pointer to point to end of list
1654			 */
1655			head_page->prev = last_page;
1656			success = 1;
1657			break;
1658		}
1659	}
1660
1661	if (success)
1662		INIT_LIST_HEAD(pages);
1663	/*
1664	 * If we weren't successful in adding in new pages, warn and stop
1665	 * tracing
1666	 */
1667	RB_WARN_ON(cpu_buffer, !success);
1668	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1669
1670	/* free pages if they weren't inserted */
1671	if (!success) {
1672		struct buffer_page *bpage, *tmp;
1673		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1674					 list) {
1675			list_del_init(&bpage->list);
1676			free_buffer_page(bpage);
1677		}
1678	}
1679	return success;
1680}
1681
1682static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1683{
1684	int success;
1685
1686	if (cpu_buffer->nr_pages_to_update > 0)
1687		success = rb_insert_pages(cpu_buffer);
1688	else
1689		success = rb_remove_pages(cpu_buffer,
1690					-cpu_buffer->nr_pages_to_update);
1691
1692	if (success)
1693		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1694}
1695
1696static void update_pages_handler(struct work_struct *work)
1697{
1698	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1699			struct ring_buffer_per_cpu, update_pages_work);
1700	rb_update_pages(cpu_buffer);
1701	complete(&cpu_buffer->update_done);
1702}
1703
1704/**
1705 * ring_buffer_resize - resize the ring buffer
1706 * @buffer: the buffer to resize.
1707 * @size: the new size.
1708 * @cpu_id: the cpu buffer to resize
1709 *
1710 * Minimum size is 2 * BUF_PAGE_SIZE.
1711 *
1712 * Returns 0 on success and < 0 on failure.
1713 */
1714int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1715			int cpu_id)
1716{
1717	struct ring_buffer_per_cpu *cpu_buffer;
1718	unsigned long nr_pages;
1719	int cpu, err = 0;
1720
1721	/*
1722	 * Always succeed at resizing a non-existent buffer:
1723	 */
1724	if (!buffer)
1725		return size;
1726
1727	/* Make sure the requested buffer exists */
1728	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1729	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1730		return size;
1731
1732	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
 
1733
1734	/* we need a minimum of two pages */
1735	if (nr_pages < 2)
1736		nr_pages = 2;
1737
1738	size = nr_pages * BUF_PAGE_SIZE;
1739
1740	/*
1741	 * Don't succeed if resizing is disabled, as a reader might be
1742	 * manipulating the ring buffer and is expecting a sane state while
1743	 * this is true.
1744	 */
1745	if (atomic_read(&buffer->resize_disabled))
1746		return -EBUSY;
1747
1748	/* prevent another thread from changing buffer sizes */
1749	mutex_lock(&buffer->mutex);
1750
1751	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1752		/* calculate the pages to update */
1753		for_each_buffer_cpu(buffer, cpu) {
1754			cpu_buffer = buffer->buffers[cpu];
1755
1756			cpu_buffer->nr_pages_to_update = nr_pages -
1757							cpu_buffer->nr_pages;
1758			/*
1759			 * nothing more to do for removing pages or no update
1760			 */
1761			if (cpu_buffer->nr_pages_to_update <= 0)
1762				continue;
1763			/*
1764			 * to add pages, make sure all new pages can be
1765			 * allocated without receiving ENOMEM
1766			 */
1767			INIT_LIST_HEAD(&cpu_buffer->new_pages);
1768			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1769						&cpu_buffer->new_pages, cpu)) {
1770				/* not enough memory for new pages */
1771				err = -ENOMEM;
1772				goto out_err;
1773			}
1774		}
1775
1776		get_online_cpus();
1777		/*
1778		 * Fire off all the required work handlers
1779		 * We can't schedule on offline CPUs, but it's not necessary
1780		 * since we can change their buffer sizes without any race.
1781		 */
1782		for_each_buffer_cpu(buffer, cpu) {
1783			cpu_buffer = buffer->buffers[cpu];
1784			if (!cpu_buffer->nr_pages_to_update)
1785				continue;
1786
1787			/* Can't run something on an offline CPU. */
1788			if (!cpu_online(cpu)) {
1789				rb_update_pages(cpu_buffer);
1790				cpu_buffer->nr_pages_to_update = 0;
1791			} else {
1792				schedule_work_on(cpu,
1793						&cpu_buffer->update_pages_work);
1794			}
 
1795		}
1796
1797		/* wait for all the updates to complete */
1798		for_each_buffer_cpu(buffer, cpu) {
1799			cpu_buffer = buffer->buffers[cpu];
1800			if (!cpu_buffer->nr_pages_to_update)
1801				continue;
1802
1803			if (cpu_online(cpu))
1804				wait_for_completion(&cpu_buffer->update_done);
1805			cpu_buffer->nr_pages_to_update = 0;
1806		}
1807
1808		put_online_cpus();
1809	} else {
1810		/* Make sure this CPU has been initialized */
1811		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1812			goto out;
1813
1814		cpu_buffer = buffer->buffers[cpu_id];
1815
1816		if (nr_pages == cpu_buffer->nr_pages)
1817			goto out;
1818
1819		cpu_buffer->nr_pages_to_update = nr_pages -
1820						cpu_buffer->nr_pages;
1821
1822		INIT_LIST_HEAD(&cpu_buffer->new_pages);
1823		if (cpu_buffer->nr_pages_to_update > 0 &&
1824			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1825					    &cpu_buffer->new_pages, cpu_id)) {
1826			err = -ENOMEM;
1827			goto out_err;
1828		}
1829
1830		get_online_cpus();
1831
1832		/* Can't run something on an offline CPU. */
1833		if (!cpu_online(cpu_id))
1834			rb_update_pages(cpu_buffer);
1835		else {
1836			schedule_work_on(cpu_id,
1837					 &cpu_buffer->update_pages_work);
1838			wait_for_completion(&cpu_buffer->update_done);
1839		}
 
1840
1841		cpu_buffer->nr_pages_to_update = 0;
1842		put_online_cpus();
1843	}
1844
1845 out:
1846	/*
1847	 * The ring buffer resize can happen with the ring buffer
1848	 * enabled, so that the update disturbs the tracing as little
1849	 * as possible. But if the buffer is disabled, we do not need
1850	 * to worry about that, and we can take the time to verify
1851	 * that the buffer is not corrupt.
1852	 */
1853	if (atomic_read(&buffer->record_disabled)) {
1854		atomic_inc(&buffer->record_disabled);
1855		/*
1856		 * Even though the buffer was disabled, we must make sure
1857		 * that it is truly disabled before calling rb_check_pages.
1858		 * There could have been a race between checking
1859		 * record_disable and incrementing it.
1860		 */
1861		synchronize_rcu();
1862		for_each_buffer_cpu(buffer, cpu) {
1863			cpu_buffer = buffer->buffers[cpu];
1864			rb_check_pages(cpu_buffer);
1865		}
1866		atomic_dec(&buffer->record_disabled);
1867	}
1868
1869	mutex_unlock(&buffer->mutex);
1870	return size;
1871
1872 out_err:
1873	for_each_buffer_cpu(buffer, cpu) {
1874		struct buffer_page *bpage, *tmp;
1875
1876		cpu_buffer = buffer->buffers[cpu];
1877		cpu_buffer->nr_pages_to_update = 0;
1878
1879		if (list_empty(&cpu_buffer->new_pages))
1880			continue;
1881
1882		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1883					list) {
1884			list_del_init(&bpage->list);
1885			free_buffer_page(bpage);
1886		}
1887	}
1888	mutex_unlock(&buffer->mutex);
1889	return err;
1890}
1891EXPORT_SYMBOL_GPL(ring_buffer_resize);
1892
1893void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1894{
1895	mutex_lock(&buffer->mutex);
1896	if (val)
1897		buffer->flags |= RB_FL_OVERWRITE;
1898	else
1899		buffer->flags &= ~RB_FL_OVERWRITE;
1900	mutex_unlock(&buffer->mutex);
1901}
1902EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1903
1904static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
 
 
 
 
 
 
1905{
1906	return bpage->page->data + index;
1907}
1908
1909static __always_inline struct ring_buffer_event *
1910rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1911{
1912	return __rb_page_index(cpu_buffer->reader_page,
1913			       cpu_buffer->reader_page->read);
1914}
1915
1916static __always_inline struct ring_buffer_event *
1917rb_iter_head_event(struct ring_buffer_iter *iter)
1918{
1919	return __rb_page_index(iter->head_page, iter->head);
1920}
1921
1922static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1923{
1924	return local_read(&bpage->page->commit);
1925}
1926
1927/* Size is determined by what has been committed */
1928static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1929{
1930	return rb_page_commit(bpage);
1931}
1932
1933static __always_inline unsigned
1934rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1935{
1936	return rb_page_commit(cpu_buffer->commit_page);
1937}
1938
1939static __always_inline unsigned
1940rb_event_index(struct ring_buffer_event *event)
1941{
1942	unsigned long addr = (unsigned long)event;
1943
1944	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1945}
1946
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1947static void rb_inc_iter(struct ring_buffer_iter *iter)
1948{
1949	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1950
1951	/*
1952	 * The iterator could be on the reader page (it starts there).
1953	 * But the head could have moved, since the reader was
1954	 * found. Check for this case and assign the iterator
1955	 * to the head page instead of next.
1956	 */
1957	if (iter->head_page == cpu_buffer->reader_page)
1958		iter->head_page = rb_set_head_page(cpu_buffer);
1959	else
1960		rb_inc_page(cpu_buffer, &iter->head_page);
1961
1962	iter->read_stamp = iter->head_page->page->time_stamp;
1963	iter->head = 0;
1964}
1965
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1966/*
1967 * rb_handle_head_page - writer hit the head page
1968 *
1969 * Returns: +1 to retry page
1970 *           0 to continue
1971 *          -1 on error
1972 */
1973static int
1974rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1975		    struct buffer_page *tail_page,
1976		    struct buffer_page *next_page)
1977{
1978	struct buffer_page *new_head;
1979	int entries;
1980	int type;
1981	int ret;
1982
1983	entries = rb_page_entries(next_page);
1984
1985	/*
1986	 * The hard part is here. We need to move the head
1987	 * forward, and protect against both readers on
1988	 * other CPUs and writers coming in via interrupts.
1989	 */
1990	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1991				       RB_PAGE_HEAD);
1992
1993	/*
1994	 * type can be one of four:
1995	 *  NORMAL - an interrupt already moved it for us
1996	 *  HEAD   - we are the first to get here.
1997	 *  UPDATE - we are the interrupt interrupting
1998	 *           a current move.
1999	 *  MOVED  - a reader on another CPU moved the next
2000	 *           pointer to its reader page. Give up
2001	 *           and try again.
2002	 */
2003
2004	switch (type) {
2005	case RB_PAGE_HEAD:
2006		/*
2007		 * We changed the head to UPDATE, thus
2008		 * it is our responsibility to update
2009		 * the counters.
2010		 */
2011		local_add(entries, &cpu_buffer->overrun);
2012		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2013
2014		/*
2015		 * The entries will be zeroed out when we move the
2016		 * tail page.
2017		 */
2018
2019		/* still more to do */
2020		break;
2021
2022	case RB_PAGE_UPDATE:
2023		/*
2024		 * This is an interrupt that interrupt the
2025		 * previous update. Still more to do.
2026		 */
2027		break;
2028	case RB_PAGE_NORMAL:
2029		/*
2030		 * An interrupt came in before the update
2031		 * and processed this for us.
2032		 * Nothing left to do.
2033		 */
2034		return 1;
2035	case RB_PAGE_MOVED:
2036		/*
2037		 * The reader is on another CPU and just did
2038		 * a swap with our next_page.
2039		 * Try again.
2040		 */
2041		return 1;
2042	default:
2043		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2044		return -1;
2045	}
2046
2047	/*
2048	 * Now that we are here, the old head pointer is
2049	 * set to UPDATE. This will keep the reader from
2050	 * swapping the head page with the reader page.
2051	 * The reader (on another CPU) will spin till
2052	 * we are finished.
2053	 *
2054	 * We just need to protect against interrupts
2055	 * doing the job. We will set the next pointer
2056	 * to HEAD. After that, we set the old pointer
2057	 * to NORMAL, but only if it was HEAD before.
2058	 * otherwise we are an interrupt, and only
2059	 * want the outer most commit to reset it.
2060	 */
2061	new_head = next_page;
2062	rb_inc_page(cpu_buffer, &new_head);
2063
2064	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2065				    RB_PAGE_NORMAL);
2066
2067	/*
2068	 * Valid returns are:
2069	 *  HEAD   - an interrupt came in and already set it.
2070	 *  NORMAL - One of two things:
2071	 *            1) We really set it.
2072	 *            2) A bunch of interrupts came in and moved
2073	 *               the page forward again.
2074	 */
2075	switch (ret) {
2076	case RB_PAGE_HEAD:
2077	case RB_PAGE_NORMAL:
2078		/* OK */
2079		break;
2080	default:
2081		RB_WARN_ON(cpu_buffer, 1);
2082		return -1;
2083	}
2084
2085	/*
2086	 * It is possible that an interrupt came in,
2087	 * set the head up, then more interrupts came in
2088	 * and moved it again. When we get back here,
2089	 * the page would have been set to NORMAL but we
2090	 * just set it back to HEAD.
2091	 *
2092	 * How do you detect this? Well, if that happened
2093	 * the tail page would have moved.
2094	 */
2095	if (ret == RB_PAGE_NORMAL) {
2096		struct buffer_page *buffer_tail_page;
2097
2098		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2099		/*
2100		 * If the tail had moved passed next, then we need
2101		 * to reset the pointer.
2102		 */
2103		if (buffer_tail_page != tail_page &&
2104		    buffer_tail_page != next_page)
2105			rb_head_page_set_normal(cpu_buffer, new_head,
2106						next_page,
2107						RB_PAGE_HEAD);
2108	}
2109
2110	/*
2111	 * If this was the outer most commit (the one that
2112	 * changed the original pointer from HEAD to UPDATE),
2113	 * then it is up to us to reset it to NORMAL.
2114	 */
2115	if (type == RB_PAGE_HEAD) {
2116		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2117					      tail_page,
2118					      RB_PAGE_UPDATE);
2119		if (RB_WARN_ON(cpu_buffer,
2120			       ret != RB_PAGE_UPDATE))
2121			return -1;
2122	}
2123
2124	return 0;
2125}
2126
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2127static inline void
2128rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2129	      unsigned long tail, struct rb_event_info *info)
 
2130{
2131	struct buffer_page *tail_page = info->tail_page;
2132	struct ring_buffer_event *event;
2133	unsigned long length = info->length;
2134
2135	/*
2136	 * Only the event that crossed the page boundary
2137	 * must fill the old tail_page with padding.
2138	 */
2139	if (tail >= BUF_PAGE_SIZE) {
2140		/*
2141		 * If the page was filled, then we still need
2142		 * to update the real_end. Reset it to zero
2143		 * and the reader will ignore it.
2144		 */
2145		if (tail == BUF_PAGE_SIZE)
2146			tail_page->real_end = 0;
2147
2148		local_sub(length, &tail_page->write);
2149		return;
2150	}
2151
2152	event = __rb_page_index(tail_page, tail);
 
2153
2154	/* account for padding bytes */
2155	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2156
2157	/*
2158	 * Save the original length to the meta data.
2159	 * This will be used by the reader to add lost event
2160	 * counter.
2161	 */
2162	tail_page->real_end = tail;
2163
2164	/*
2165	 * If this event is bigger than the minimum size, then
2166	 * we need to be careful that we don't subtract the
2167	 * write counter enough to allow another writer to slip
2168	 * in on this page.
2169	 * We put in a discarded commit instead, to make sure
2170	 * that this space is not used again.
2171	 *
2172	 * If we are less than the minimum size, we don't need to
2173	 * worry about it.
2174	 */
2175	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2176		/* No room for any events */
2177
2178		/* Mark the rest of the page with padding */
2179		rb_event_set_padding(event);
2180
2181		/* Set the write back to the previous setting */
2182		local_sub(length, &tail_page->write);
2183		return;
2184	}
2185
2186	/* Put in a discarded event */
2187	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2188	event->type_len = RINGBUF_TYPE_PADDING;
2189	/* time delta must be non zero */
2190	event->time_delta = 1;
2191
2192	/* Set write to end of buffer */
2193	length = (tail + length) - BUF_PAGE_SIZE;
2194	local_sub(length, &tail_page->write);
2195}
2196
2197static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2198
2199/*
2200 * This is the slow path, force gcc not to inline it.
2201 */
2202static noinline struct ring_buffer_event *
2203rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2204	     unsigned long tail, struct rb_event_info *info)
 
2205{
2206	struct buffer_page *tail_page = info->tail_page;
2207	struct buffer_page *commit_page = cpu_buffer->commit_page;
2208	struct ring_buffer *buffer = cpu_buffer->buffer;
2209	struct buffer_page *next_page;
2210	int ret;
2211
2212	next_page = tail_page;
2213
2214	rb_inc_page(cpu_buffer, &next_page);
2215
2216	/*
2217	 * If for some reason, we had an interrupt storm that made
2218	 * it all the way around the buffer, bail, and warn
2219	 * about it.
2220	 */
2221	if (unlikely(next_page == commit_page)) {
2222		local_inc(&cpu_buffer->commit_overrun);
2223		goto out_reset;
2224	}
2225
2226	/*
2227	 * This is where the fun begins!
2228	 *
2229	 * We are fighting against races between a reader that
2230	 * could be on another CPU trying to swap its reader
2231	 * page with the buffer head.
2232	 *
2233	 * We are also fighting against interrupts coming in and
2234	 * moving the head or tail on us as well.
2235	 *
2236	 * If the next page is the head page then we have filled
2237	 * the buffer, unless the commit page is still on the
2238	 * reader page.
2239	 */
2240	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2241
2242		/*
2243		 * If the commit is not on the reader page, then
2244		 * move the header page.
2245		 */
2246		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2247			/*
2248			 * If we are not in overwrite mode,
2249			 * this is easy, just stop here.
2250			 */
2251			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2252				local_inc(&cpu_buffer->dropped_events);
2253				goto out_reset;
2254			}
2255
2256			ret = rb_handle_head_page(cpu_buffer,
2257						  tail_page,
2258						  next_page);
2259			if (ret < 0)
2260				goto out_reset;
2261			if (ret)
2262				goto out_again;
2263		} else {
2264			/*
2265			 * We need to be careful here too. The
2266			 * commit page could still be on the reader
2267			 * page. We could have a small buffer, and
2268			 * have filled up the buffer with events
2269			 * from interrupts and such, and wrapped.
2270			 *
2271			 * Note, if the tail page is also the on the
2272			 * reader_page, we let it move out.
2273			 */
2274			if (unlikely((cpu_buffer->commit_page !=
2275				      cpu_buffer->tail_page) &&
2276				     (cpu_buffer->commit_page ==
2277				      cpu_buffer->reader_page))) {
2278				local_inc(&cpu_buffer->commit_overrun);
2279				goto out_reset;
2280			}
2281		}
2282	}
2283
2284	rb_tail_page_update(cpu_buffer, tail_page, next_page);
 
 
 
 
 
 
 
 
2285
2286 out_again:
2287
2288	rb_reset_tail(cpu_buffer, tail, info);
2289
2290	/* Commit what we have for now. */
2291	rb_end_commit(cpu_buffer);
2292	/* rb_end_commit() decs committing */
2293	local_inc(&cpu_buffer->committing);
2294
2295	/* fail and let the caller try again */
2296	return ERR_PTR(-EAGAIN);
2297
2298 out_reset:
2299	/* reset write */
2300	rb_reset_tail(cpu_buffer, tail, info);
2301
2302	return NULL;
2303}
2304
2305/* Slow path, do not inline */
2306static noinline struct ring_buffer_event *
2307rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2308{
2309	if (abs)
2310		event->type_len = RINGBUF_TYPE_TIME_STAMP;
2311	else
2312		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2313
2314	/* Not the first event on the page, or not delta? */
2315	if (abs || rb_event_index(event)) {
2316		event->time_delta = delta & TS_MASK;
2317		event->array[0] = delta >> TS_SHIFT;
2318	} else {
2319		/* nope, just zero it */
2320		event->time_delta = 0;
2321		event->array[0] = 0;
2322	}
2323
2324	return skip_time_extend(event);
2325}
2326
2327static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2328				     struct ring_buffer_event *event);
2329
2330/**
2331 * rb_update_event - update event type and data
2332 * @event: the event to update
2333 * @type: the type of event
2334 * @length: the size of the event field in the ring buffer
2335 *
2336 * Update the type and data fields of the event. The length
2337 * is the actual size that is written to the ring buffer,
2338 * and with this, we can determine what to place into the
2339 * data field.
2340 */
2341static void
2342rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2343		struct ring_buffer_event *event,
2344		struct rb_event_info *info)
2345{
2346	unsigned length = info->length;
2347	u64 delta = info->delta;
2348
2349	/* Only a commit updates the timestamp */
2350	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2351		delta = 0;
2352
2353	/*
2354	 * If we need to add a timestamp, then we
2355	 * add it to the start of the reserved space.
 
2356	 */
2357	if (unlikely(info->add_timestamp)) {
2358		bool abs = ring_buffer_time_stamp_abs(cpu_buffer->buffer);
2359
2360		event = rb_add_time_stamp(event, info->delta, abs);
2361		length -= RB_LEN_TIME_EXTEND;
2362		delta = 0;
2363	}
2364
2365	event->time_delta = delta;
2366	length -= RB_EVNT_HDR_SIZE;
2367	if (length > RB_MAX_SMALL_DATA) {
2368		event->type_len = 0;
2369		event->array[0] = length;
2370	} else
2371		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2372}
2373
2374static unsigned rb_calculate_event_length(unsigned length)
2375{
2376	struct ring_buffer_event event; /* Used only for sizeof array */
 
2377
2378	/* zero length can cause confusions */
2379	if (!length)
2380		length++;
2381
2382	if (length > RB_MAX_SMALL_DATA)
2383		length += sizeof(event.array[0]);
 
2384
2385	length += RB_EVNT_HDR_SIZE;
2386	length = ALIGN(length, RB_ALIGNMENT);
2387
2388	/*
2389	 * In case the time delta is larger than the 27 bits for it
2390	 * in the header, we need to add a timestamp. If another
2391	 * event comes in when trying to discard this one to increase
2392	 * the length, then the timestamp will be added in the allocated
2393	 * space of this event. If length is bigger than the size needed
2394	 * for the TIME_EXTEND, then padding has to be used. The events
2395	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2396	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2397	 * As length is a multiple of 4, we only need to worry if it
2398	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2399	 */
2400	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2401		length += RB_ALIGNMENT;
2402
2403	return length;
2404}
2405
2406#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2407static inline bool sched_clock_stable(void)
2408{
2409	return true;
2410}
2411#endif
2412
2413static inline int
2414rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2415		  struct ring_buffer_event *event)
2416{
2417	unsigned long new_index, old_index;
2418	struct buffer_page *bpage;
2419	unsigned long index;
2420	unsigned long addr;
2421
2422	new_index = rb_event_index(event);
2423	old_index = new_index + rb_event_ts_length(event);
2424	addr = (unsigned long)event;
2425	addr &= PAGE_MASK;
2426
2427	bpage = READ_ONCE(cpu_buffer->tail_page);
2428
2429	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2430		unsigned long write_mask =
2431			local_read(&bpage->write) & ~RB_WRITE_MASK;
2432		unsigned long event_length = rb_event_length(event);
2433		/*
2434		 * This is on the tail page. It is possible that
2435		 * a write could come in and move the tail page
2436		 * and write to the next page. That is fine
2437		 * because we just shorten what is on this page.
2438		 */
2439		old_index += write_mask;
2440		new_index += write_mask;
2441		index = local_cmpxchg(&bpage->write, old_index, new_index);
2442		if (index == old_index) {
2443			/* update counters */
2444			local_sub(event_length, &cpu_buffer->entries_bytes);
2445			return 1;
2446		}
2447	}
2448
2449	/* could not discard */
2450	return 0;
2451}
2452
2453static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2454{
2455	local_inc(&cpu_buffer->committing);
2456	local_inc(&cpu_buffer->commits);
2457}
2458
2459static __always_inline void
2460rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2461{
2462	unsigned long max_count;
2463
2464	/*
2465	 * We only race with interrupts and NMIs on this CPU.
2466	 * If we own the commit event, then we can commit
2467	 * all others that interrupted us, since the interruptions
2468	 * are in stack format (they finish before they come
2469	 * back to us). This allows us to do a simple loop to
2470	 * assign the commit to the tail.
2471	 */
2472 again:
2473	max_count = cpu_buffer->nr_pages * 100;
2474
2475	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2476		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2477			return;
2478		if (RB_WARN_ON(cpu_buffer,
2479			       rb_is_reader_page(cpu_buffer->tail_page)))
2480			return;
2481		local_set(&cpu_buffer->commit_page->page->commit,
2482			  rb_page_write(cpu_buffer->commit_page));
2483		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2484		/* Only update the write stamp if the page has an event */
2485		if (rb_page_write(cpu_buffer->commit_page))
2486			cpu_buffer->write_stamp =
2487				cpu_buffer->commit_page->page->time_stamp;
2488		/* add barrier to keep gcc from optimizing too much */
2489		barrier();
2490	}
2491	while (rb_commit_index(cpu_buffer) !=
2492	       rb_page_write(cpu_buffer->commit_page)) {
2493
2494		local_set(&cpu_buffer->commit_page->page->commit,
2495			  rb_page_write(cpu_buffer->commit_page));
2496		RB_WARN_ON(cpu_buffer,
2497			   local_read(&cpu_buffer->commit_page->page->commit) &
2498			   ~RB_WRITE_MASK);
2499		barrier();
2500	}
2501
2502	/* again, keep gcc from optimizing */
2503	barrier();
2504
2505	/*
2506	 * If an interrupt came in just after the first while loop
2507	 * and pushed the tail page forward, we will be left with
2508	 * a dangling commit that will never go forward.
2509	 */
2510	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2511		goto again;
2512}
2513
2514static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2515{
2516	unsigned long commits;
2517
2518	if (RB_WARN_ON(cpu_buffer,
2519		       !local_read(&cpu_buffer->committing)))
2520		return;
2521
2522 again:
2523	commits = local_read(&cpu_buffer->commits);
2524	/* synchronize with interrupts */
2525	barrier();
2526	if (local_read(&cpu_buffer->committing) == 1)
2527		rb_set_commit_to_write(cpu_buffer);
2528
2529	local_dec(&cpu_buffer->committing);
2530
2531	/* synchronize with interrupts */
2532	barrier();
2533
2534	/*
2535	 * Need to account for interrupts coming in between the
2536	 * updating of the commit page and the clearing of the
2537	 * committing counter.
2538	 */
2539	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2540	    !local_read(&cpu_buffer->committing)) {
2541		local_inc(&cpu_buffer->committing);
2542		goto again;
2543	}
2544}
2545
2546static inline void rb_event_discard(struct ring_buffer_event *event)
2547{
2548	if (extended_time(event))
2549		event = skip_time_extend(event);
2550
2551	/* array[0] holds the actual length for the discarded event */
2552	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2553	event->type_len = RINGBUF_TYPE_PADDING;
2554	/* time delta must be non zero */
2555	if (!event->time_delta)
2556		event->time_delta = 1;
2557}
2558
2559static __always_inline bool
2560rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2561		   struct ring_buffer_event *event)
2562{
2563	unsigned long addr = (unsigned long)event;
2564	unsigned long index;
2565
2566	index = rb_event_index(event);
2567	addr &= PAGE_MASK;
2568
2569	return cpu_buffer->commit_page->page == (void *)addr &&
2570		rb_commit_index(cpu_buffer) == index;
2571}
2572
2573static __always_inline void
2574rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2575		      struct ring_buffer_event *event)
2576{
2577	u64 delta;
2578
2579	/*
2580	 * The event first in the commit queue updates the
2581	 * time stamp.
2582	 */
2583	if (rb_event_is_commit(cpu_buffer, event)) {
2584		/*
2585		 * A commit event that is first on a page
2586		 * updates the write timestamp with the page stamp
2587		 */
2588		if (!rb_event_index(event))
2589			cpu_buffer->write_stamp =
2590				cpu_buffer->commit_page->page->time_stamp;
2591		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2592			delta = ring_buffer_event_time_stamp(event);
2593			cpu_buffer->write_stamp += delta;
2594		} else if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
2595			delta = ring_buffer_event_time_stamp(event);
2596			cpu_buffer->write_stamp = delta;
2597		} else
2598			cpu_buffer->write_stamp += event->time_delta;
2599	}
2600}
2601
2602static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2603		      struct ring_buffer_event *event)
2604{
2605	local_inc(&cpu_buffer->entries);
2606	rb_update_write_stamp(cpu_buffer, event);
2607	rb_end_commit(cpu_buffer);
2608}
2609
2610static __always_inline void
2611rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2612{
2613	size_t nr_pages;
2614	size_t dirty;
2615	size_t full;
2616
2617	if (buffer->irq_work.waiters_pending) {
2618		buffer->irq_work.waiters_pending = false;
2619		/* irq_work_queue() supplies it's own memory barriers */
2620		irq_work_queue(&buffer->irq_work.work);
2621	}
2622
2623	if (cpu_buffer->irq_work.waiters_pending) {
2624		cpu_buffer->irq_work.waiters_pending = false;
2625		/* irq_work_queue() supplies it's own memory barriers */
2626		irq_work_queue(&cpu_buffer->irq_work.work);
2627	}
2628
2629	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
2630		return;
2631
2632	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
2633		return;
2634
2635	if (!cpu_buffer->irq_work.full_waiters_pending)
2636		return;
2637
2638	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
2639
2640	full = cpu_buffer->shortest_full;
2641	nr_pages = cpu_buffer->nr_pages;
2642	dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu);
2643	if (full && nr_pages && (dirty * 100) <= full * nr_pages)
2644		return;
2645
2646	cpu_buffer->irq_work.wakeup_full = true;
2647	cpu_buffer->irq_work.full_waiters_pending = false;
2648	/* irq_work_queue() supplies it's own memory barriers */
2649	irq_work_queue(&cpu_buffer->irq_work.work);
2650}
2651
2652/*
2653 * The lock and unlock are done within a preempt disable section.
2654 * The current_context per_cpu variable can only be modified
2655 * by the current task between lock and unlock. But it can
2656 * be modified more than once via an interrupt. To pass this
2657 * information from the lock to the unlock without having to
2658 * access the 'in_interrupt()' functions again (which do show
2659 * a bit of overhead in something as critical as function tracing,
2660 * we use a bitmask trick.
2661 *
2662 *  bit 0 =  NMI context
2663 *  bit 1 =  IRQ context
2664 *  bit 2 =  SoftIRQ context
2665 *  bit 3 =  normal context.
2666 *
2667 * This works because this is the order of contexts that can
2668 * preempt other contexts. A SoftIRQ never preempts an IRQ
2669 * context.
2670 *
2671 * When the context is determined, the corresponding bit is
2672 * checked and set (if it was set, then a recursion of that context
2673 * happened).
2674 *
2675 * On unlock, we need to clear this bit. To do so, just subtract
2676 * 1 from the current_context and AND it to itself.
2677 *
2678 * (binary)
2679 *  101 - 1 = 100
2680 *  101 & 100 = 100 (clearing bit zero)
2681 *
2682 *  1010 - 1 = 1001
2683 *  1010 & 1001 = 1000 (clearing bit 1)
2684 *
2685 * The least significant bit can be cleared this way, and it
2686 * just so happens that it is the same bit corresponding to
2687 * the current context.
2688 */
2689
2690static __always_inline int
2691trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2692{
2693	unsigned int val = cpu_buffer->current_context;
2694	unsigned long pc = preempt_count();
2695	int bit;
2696
2697	if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
2698		bit = RB_CTX_NORMAL;
2699	else
2700		bit = pc & NMI_MASK ? RB_CTX_NMI :
2701			pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
2702
2703	if (unlikely(val & (1 << (bit + cpu_buffer->nest))))
2704		return 1;
2705
2706	val |= (1 << (bit + cpu_buffer->nest));
2707	cpu_buffer->current_context = val;
2708
2709	return 0;
2710}
2711
2712static __always_inline void
2713trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2714{
2715	cpu_buffer->current_context &=
2716		cpu_buffer->current_context - (1 << cpu_buffer->nest);
2717}
2718
2719/* The recursive locking above uses 4 bits */
2720#define NESTED_BITS 4
2721
2722/**
2723 * ring_buffer_nest_start - Allow to trace while nested
2724 * @buffer: The ring buffer to modify
2725 *
2726 * The ring buffer has a safety mechanism to prevent recursion.
2727 * But there may be a case where a trace needs to be done while
2728 * tracing something else. In this case, calling this function
2729 * will allow this function to nest within a currently active
2730 * ring_buffer_lock_reserve().
2731 *
2732 * Call this function before calling another ring_buffer_lock_reserve() and
2733 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
2734 */
2735void ring_buffer_nest_start(struct ring_buffer *buffer)
2736{
2737	struct ring_buffer_per_cpu *cpu_buffer;
2738	int cpu;
2739
2740	/* Enabled by ring_buffer_nest_end() */
2741	preempt_disable_notrace();
2742	cpu = raw_smp_processor_id();
2743	cpu_buffer = buffer->buffers[cpu];
2744	/* This is the shift value for the above recursive locking */
2745	cpu_buffer->nest += NESTED_BITS;
2746}
2747
2748/**
2749 * ring_buffer_nest_end - Allow to trace while nested
2750 * @buffer: The ring buffer to modify
2751 *
2752 * Must be called after ring_buffer_nest_start() and after the
2753 * ring_buffer_unlock_commit().
2754 */
2755void ring_buffer_nest_end(struct ring_buffer *buffer)
2756{
2757	struct ring_buffer_per_cpu *cpu_buffer;
2758	int cpu;
2759
2760	/* disabled by ring_buffer_nest_start() */
2761	cpu = raw_smp_processor_id();
2762	cpu_buffer = buffer->buffers[cpu];
2763	/* This is the shift value for the above recursive locking */
2764	cpu_buffer->nest -= NESTED_BITS;
2765	preempt_enable_notrace();
2766}
2767
2768/**
2769 * ring_buffer_unlock_commit - commit a reserved
2770 * @buffer: The buffer to commit to
2771 * @event: The event pointer to commit.
2772 *
2773 * This commits the data to the ring buffer, and releases any locks held.
2774 *
2775 * Must be paired with ring_buffer_lock_reserve.
2776 */
2777int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2778			      struct ring_buffer_event *event)
2779{
2780	struct ring_buffer_per_cpu *cpu_buffer;
2781	int cpu = raw_smp_processor_id();
2782
2783	cpu_buffer = buffer->buffers[cpu];
2784
2785	rb_commit(cpu_buffer, event);
2786
2787	rb_wakeups(buffer, cpu_buffer);
2788
2789	trace_recursive_unlock(cpu_buffer);
2790
2791	preempt_enable_notrace();
2792
2793	return 0;
2794}
2795EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2796
2797static noinline void
2798rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2799		    struct rb_event_info *info)
2800{
2801	WARN_ONCE(info->delta > (1ULL << 59),
2802		  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2803		  (unsigned long long)info->delta,
2804		  (unsigned long long)info->ts,
2805		  (unsigned long long)cpu_buffer->write_stamp,
2806		  sched_clock_stable() ? "" :
2807		  "If you just came from a suspend/resume,\n"
2808		  "please switch to the trace global clock:\n"
2809		  "  echo global > /sys/kernel/debug/tracing/trace_clock\n"
2810		  "or add trace_clock=global to the kernel command line\n");
2811	info->add_timestamp = 1;
2812}
2813
2814static struct ring_buffer_event *
2815__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2816		  struct rb_event_info *info)
2817{
2818	struct ring_buffer_event *event;
2819	struct buffer_page *tail_page;
2820	unsigned long tail, write;
2821
2822	/*
2823	 * If the time delta since the last event is too big to
2824	 * hold in the time field of the event, then we append a
2825	 * TIME EXTEND event ahead of the data event.
2826	 */
2827	if (unlikely(info->add_timestamp))
2828		info->length += RB_LEN_TIME_EXTEND;
2829
2830	/* Don't let the compiler play games with cpu_buffer->tail_page */
2831	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2832	write = local_add_return(info->length, &tail_page->write);
2833
2834	/* set write to only the index of the write */
2835	write &= RB_WRITE_MASK;
2836	tail = write - info->length;
2837
2838	/*
2839	 * If this is the first commit on the page, then it has the same
2840	 * timestamp as the page itself.
2841	 */
2842	if (!tail && !ring_buffer_time_stamp_abs(cpu_buffer->buffer))
2843		info->delta = 0;
2844
2845	/* See if we shot pass the end of this buffer page */
2846	if (unlikely(write > BUF_PAGE_SIZE))
2847		return rb_move_tail(cpu_buffer, tail, info);
2848
2849	/* We reserved something on the buffer */
2850
2851	event = __rb_page_index(tail_page, tail);
2852	rb_update_event(cpu_buffer, event, info);
2853
2854	local_inc(&tail_page->entries);
2855
2856	/*
2857	 * If this is the first commit on the page, then update
2858	 * its timestamp.
2859	 */
2860	if (!tail)
2861		tail_page->page->time_stamp = info->ts;
2862
2863	/* account for these added bytes */
2864	local_add(info->length, &cpu_buffer->entries_bytes);
2865
2866	return event;
2867}
2868
2869static __always_inline struct ring_buffer_event *
2870rb_reserve_next_event(struct ring_buffer *buffer,
2871		      struct ring_buffer_per_cpu *cpu_buffer,
2872		      unsigned long length)
2873{
2874	struct ring_buffer_event *event;
2875	struct rb_event_info info;
2876	int nr_loops = 0;
 
2877	u64 diff;
2878
2879	rb_start_commit(cpu_buffer);
2880
2881#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2882	/*
2883	 * Due to the ability to swap a cpu buffer from a buffer
2884	 * it is possible it was swapped before we committed.
2885	 * (committing stops a swap). We check for it here and
2886	 * if it happened, we have to fail the write.
2887	 */
2888	barrier();
2889	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
2890		local_dec(&cpu_buffer->committing);
2891		local_dec(&cpu_buffer->commits);
2892		return NULL;
2893	}
2894#endif
2895
2896	info.length = rb_calculate_event_length(length);
2897 again:
2898	info.add_timestamp = 0;
2899	info.delta = 0;
2900
2901	/*
2902	 * We allow for interrupts to reenter here and do a trace.
2903	 * If one does, it will cause this original code to loop
2904	 * back here. Even with heavy interrupts happening, this
2905	 * should only happen a few times in a row. If this happens
2906	 * 1000 times in a row, there must be either an interrupt
2907	 * storm or we have something buggy.
2908	 * Bail!
2909	 */
2910	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2911		goto out_fail;
2912
2913	info.ts = rb_time_stamp(cpu_buffer->buffer);
2914	diff = info.ts - cpu_buffer->write_stamp;
2915
2916	/* make sure this diff is calculated here */
2917	barrier();
2918
2919	if (ring_buffer_time_stamp_abs(buffer)) {
2920		info.delta = info.ts;
2921		rb_handle_timestamp(cpu_buffer, &info);
2922	} else /* Did the write stamp get updated already? */
2923		if (likely(info.ts >= cpu_buffer->write_stamp)) {
2924		info.delta = diff;
2925		if (unlikely(test_time_stamp(info.delta)))
2926			rb_handle_timestamp(cpu_buffer, &info);
 
 
 
 
 
 
 
 
 
 
 
2927	}
2928
2929	event = __rb_reserve_next(cpu_buffer, &info);
2930
2931	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2932		if (info.add_timestamp)
2933			info.length -= RB_LEN_TIME_EXTEND;
2934		goto again;
2935	}
2936
2937	if (!event)
2938		goto out_fail;
2939
2940	return event;
2941
2942 out_fail:
2943	rb_end_commit(cpu_buffer);
2944	return NULL;
2945}
2946
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2947/**
2948 * ring_buffer_lock_reserve - reserve a part of the buffer
2949 * @buffer: the ring buffer to reserve from
2950 * @length: the length of the data to reserve (excluding event header)
2951 *
2952 * Returns a reserved event on the ring buffer to copy directly to.
2953 * The user of this interface will need to get the body to write into
2954 * and can use the ring_buffer_event_data() interface.
2955 *
2956 * The length is the length of the data needed, not the event length
2957 * which also includes the event header.
2958 *
2959 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2960 * If NULL is returned, then nothing has been allocated or locked.
2961 */
2962struct ring_buffer_event *
2963ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2964{
2965	struct ring_buffer_per_cpu *cpu_buffer;
2966	struct ring_buffer_event *event;
2967	int cpu;
2968
 
 
 
2969	/* If we are tracing schedule, we don't want to recurse */
2970	preempt_disable_notrace();
2971
2972	if (unlikely(atomic_read(&buffer->record_disabled)))
2973		goto out;
 
 
 
2974
2975	cpu = raw_smp_processor_id();
2976
2977	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2978		goto out;
2979
2980	cpu_buffer = buffer->buffers[cpu];
2981
2982	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2983		goto out;
2984
2985	if (unlikely(length > BUF_MAX_DATA_SIZE))
2986		goto out;
2987
2988	if (unlikely(trace_recursive_lock(cpu_buffer)))
2989		goto out;
2990
2991	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2992	if (!event)
2993		goto out_unlock;
2994
2995	return event;
2996
2997 out_unlock:
2998	trace_recursive_unlock(cpu_buffer);
2999 out:
 
 
 
3000	preempt_enable_notrace();
3001	return NULL;
3002}
3003EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3004
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3005/*
3006 * Decrement the entries to the page that an event is on.
3007 * The event does not even need to exist, only the pointer
3008 * to the page it is on. This may only be called before the commit
3009 * takes place.
3010 */
3011static inline void
3012rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3013		   struct ring_buffer_event *event)
3014{
3015	unsigned long addr = (unsigned long)event;
3016	struct buffer_page *bpage = cpu_buffer->commit_page;
3017	struct buffer_page *start;
3018
3019	addr &= PAGE_MASK;
3020
3021	/* Do the likely case first */
3022	if (likely(bpage->page == (void *)addr)) {
3023		local_dec(&bpage->entries);
3024		return;
3025	}
3026
3027	/*
3028	 * Because the commit page may be on the reader page we
3029	 * start with the next page and check the end loop there.
3030	 */
3031	rb_inc_page(cpu_buffer, &bpage);
3032	start = bpage;
3033	do {
3034		if (bpage->page == (void *)addr) {
3035			local_dec(&bpage->entries);
3036			return;
3037		}
3038		rb_inc_page(cpu_buffer, &bpage);
3039	} while (bpage != start);
3040
3041	/* commit not part of this buffer?? */
3042	RB_WARN_ON(cpu_buffer, 1);
3043}
3044
3045/**
3046 * ring_buffer_commit_discard - discard an event that has not been committed
3047 * @buffer: the ring buffer
3048 * @event: non committed event to discard
3049 *
3050 * Sometimes an event that is in the ring buffer needs to be ignored.
3051 * This function lets the user discard an event in the ring buffer
3052 * and then that event will not be read later.
3053 *
3054 * This function only works if it is called before the item has been
3055 * committed. It will try to free the event from the ring buffer
3056 * if another event has not been added behind it.
3057 *
3058 * If another event has been added behind it, it will set the event
3059 * up as discarded, and perform the commit.
3060 *
3061 * If this function is called, do not call ring_buffer_unlock_commit on
3062 * the event.
3063 */
3064void ring_buffer_discard_commit(struct ring_buffer *buffer,
3065				struct ring_buffer_event *event)
3066{
3067	struct ring_buffer_per_cpu *cpu_buffer;
3068	int cpu;
3069
3070	/* The event is discarded regardless */
3071	rb_event_discard(event);
3072
3073	cpu = smp_processor_id();
3074	cpu_buffer = buffer->buffers[cpu];
3075
3076	/*
3077	 * This must only be called if the event has not been
3078	 * committed yet. Thus we can assume that preemption
3079	 * is still disabled.
3080	 */
3081	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3082
3083	rb_decrement_entry(cpu_buffer, event);
3084	if (rb_try_to_discard(cpu_buffer, event))
3085		goto out;
3086
3087	/*
3088	 * The commit is still visible by the reader, so we
3089	 * must still update the timestamp.
3090	 */
3091	rb_update_write_stamp(cpu_buffer, event);
3092 out:
3093	rb_end_commit(cpu_buffer);
3094
3095	trace_recursive_unlock(cpu_buffer);
3096
3097	preempt_enable_notrace();
3098
3099}
3100EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3101
3102/**
3103 * ring_buffer_write - write data to the buffer without reserving
3104 * @buffer: The ring buffer to write to.
3105 * @length: The length of the data being written (excluding the event header)
3106 * @data: The data to write to the buffer.
3107 *
3108 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3109 * one function. If you already have the data to write to the buffer, it
3110 * may be easier to simply call this function.
3111 *
3112 * Note, like ring_buffer_lock_reserve, the length is the length of the data
3113 * and not the length of the event which would hold the header.
3114 */
3115int ring_buffer_write(struct ring_buffer *buffer,
3116		      unsigned long length,
3117		      void *data)
3118{
3119	struct ring_buffer_per_cpu *cpu_buffer;
3120	struct ring_buffer_event *event;
3121	void *body;
3122	int ret = -EBUSY;
3123	int cpu;
3124
 
 
 
3125	preempt_disable_notrace();
3126
3127	if (atomic_read(&buffer->record_disabled))
3128		goto out;
3129
3130	cpu = raw_smp_processor_id();
3131
3132	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3133		goto out;
3134
3135	cpu_buffer = buffer->buffers[cpu];
3136
3137	if (atomic_read(&cpu_buffer->record_disabled))
3138		goto out;
3139
3140	if (length > BUF_MAX_DATA_SIZE)
3141		goto out;
3142
3143	if (unlikely(trace_recursive_lock(cpu_buffer)))
3144		goto out;
3145
3146	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3147	if (!event)
3148		goto out_unlock;
3149
3150	body = rb_event_data(event);
3151
3152	memcpy(body, data, length);
3153
3154	rb_commit(cpu_buffer, event);
3155
3156	rb_wakeups(buffer, cpu_buffer);
3157
3158	ret = 0;
3159
3160 out_unlock:
3161	trace_recursive_unlock(cpu_buffer);
3162
3163 out:
3164	preempt_enable_notrace();
3165
3166	return ret;
3167}
3168EXPORT_SYMBOL_GPL(ring_buffer_write);
3169
3170static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3171{
3172	struct buffer_page *reader = cpu_buffer->reader_page;
3173	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3174	struct buffer_page *commit = cpu_buffer->commit_page;
3175
3176	/* In case of error, head will be NULL */
3177	if (unlikely(!head))
3178		return true;
3179
3180	return reader->read == rb_page_commit(reader) &&
3181		(commit == reader ||
3182		 (commit == head &&
3183		  head->read == rb_page_commit(commit)));
3184}
3185
3186/**
3187 * ring_buffer_record_disable - stop all writes into the buffer
3188 * @buffer: The ring buffer to stop writes to.
3189 *
3190 * This prevents all writes to the buffer. Any attempt to write
3191 * to the buffer after this will fail and return NULL.
3192 *
3193 * The caller should call synchronize_rcu() after this.
3194 */
3195void ring_buffer_record_disable(struct ring_buffer *buffer)
3196{
3197	atomic_inc(&buffer->record_disabled);
3198}
3199EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3200
3201/**
3202 * ring_buffer_record_enable - enable writes to the buffer
3203 * @buffer: The ring buffer to enable writes
3204 *
3205 * Note, multiple disables will need the same number of enables
3206 * to truly enable the writing (much like preempt_disable).
3207 */
3208void ring_buffer_record_enable(struct ring_buffer *buffer)
3209{
3210	atomic_dec(&buffer->record_disabled);
3211}
3212EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3213
3214/**
3215 * ring_buffer_record_off - stop all writes into the buffer
3216 * @buffer: The ring buffer to stop writes to.
3217 *
3218 * This prevents all writes to the buffer. Any attempt to write
3219 * to the buffer after this will fail and return NULL.
3220 *
3221 * This is different than ring_buffer_record_disable() as
3222 * it works like an on/off switch, where as the disable() version
3223 * must be paired with a enable().
3224 */
3225void ring_buffer_record_off(struct ring_buffer *buffer)
3226{
3227	unsigned int rd;
3228	unsigned int new_rd;
3229
3230	do {
3231		rd = atomic_read(&buffer->record_disabled);
3232		new_rd = rd | RB_BUFFER_OFF;
3233	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3234}
3235EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3236
3237/**
3238 * ring_buffer_record_on - restart writes into the buffer
3239 * @buffer: The ring buffer to start writes to.
3240 *
3241 * This enables all writes to the buffer that was disabled by
3242 * ring_buffer_record_off().
3243 *
3244 * This is different than ring_buffer_record_enable() as
3245 * it works like an on/off switch, where as the enable() version
3246 * must be paired with a disable().
3247 */
3248void ring_buffer_record_on(struct ring_buffer *buffer)
3249{
3250	unsigned int rd;
3251	unsigned int new_rd;
3252
3253	do {
3254		rd = atomic_read(&buffer->record_disabled);
3255		new_rd = rd & ~RB_BUFFER_OFF;
3256	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3257}
3258EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3259
3260/**
3261 * ring_buffer_record_is_on - return true if the ring buffer can write
3262 * @buffer: The ring buffer to see if write is enabled
3263 *
3264 * Returns true if the ring buffer is in a state that it accepts writes.
3265 */
3266bool ring_buffer_record_is_on(struct ring_buffer *buffer)
3267{
3268	return !atomic_read(&buffer->record_disabled);
3269}
3270
3271/**
3272 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3273 * @buffer: The ring buffer to see if write is set enabled
3274 *
3275 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3276 * Note that this does NOT mean it is in a writable state.
3277 *
3278 * It may return true when the ring buffer has been disabled by
3279 * ring_buffer_record_disable(), as that is a temporary disabling of
3280 * the ring buffer.
3281 */
3282bool ring_buffer_record_is_set_on(struct ring_buffer *buffer)
3283{
3284	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3285}
3286
3287/**
3288 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3289 * @buffer: The ring buffer to stop writes to.
3290 * @cpu: The CPU buffer to stop
3291 *
3292 * This prevents all writes to the buffer. Any attempt to write
3293 * to the buffer after this will fail and return NULL.
3294 *
3295 * The caller should call synchronize_rcu() after this.
3296 */
3297void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3298{
3299	struct ring_buffer_per_cpu *cpu_buffer;
3300
3301	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3302		return;
3303
3304	cpu_buffer = buffer->buffers[cpu];
3305	atomic_inc(&cpu_buffer->record_disabled);
3306}
3307EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3308
3309/**
3310 * ring_buffer_record_enable_cpu - enable writes to the buffer
3311 * @buffer: The ring buffer to enable writes
3312 * @cpu: The CPU to enable.
3313 *
3314 * Note, multiple disables will need the same number of enables
3315 * to truly enable the writing (much like preempt_disable).
3316 */
3317void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3318{
3319	struct ring_buffer_per_cpu *cpu_buffer;
3320
3321	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3322		return;
3323
3324	cpu_buffer = buffer->buffers[cpu];
3325	atomic_dec(&cpu_buffer->record_disabled);
3326}
3327EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3328
3329/*
3330 * The total entries in the ring buffer is the running counter
3331 * of entries entered into the ring buffer, minus the sum of
3332 * the entries read from the ring buffer and the number of
3333 * entries that were overwritten.
3334 */
3335static inline unsigned long
3336rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3337{
3338	return local_read(&cpu_buffer->entries) -
3339		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3340}
3341
3342/**
3343 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3344 * @buffer: The ring buffer
3345 * @cpu: The per CPU buffer to read from.
3346 */
3347u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3348{
3349	unsigned long flags;
3350	struct ring_buffer_per_cpu *cpu_buffer;
3351	struct buffer_page *bpage;
3352	u64 ret = 0;
3353
3354	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3355		return 0;
3356
3357	cpu_buffer = buffer->buffers[cpu];
3358	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3359	/*
3360	 * if the tail is on reader_page, oldest time stamp is on the reader
3361	 * page
3362	 */
3363	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3364		bpage = cpu_buffer->reader_page;
3365	else
3366		bpage = rb_set_head_page(cpu_buffer);
3367	if (bpage)
3368		ret = bpage->page->time_stamp;
3369	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3370
3371	return ret;
3372}
3373EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3374
3375/**
3376 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3377 * @buffer: The ring buffer
3378 * @cpu: The per CPU buffer to read from.
3379 */
3380unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3381{
3382	struct ring_buffer_per_cpu *cpu_buffer;
3383	unsigned long ret;
3384
3385	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3386		return 0;
3387
3388	cpu_buffer = buffer->buffers[cpu];
3389	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3390
3391	return ret;
3392}
3393EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3394
3395/**
3396 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3397 * @buffer: The ring buffer
3398 * @cpu: The per CPU buffer to get the entries from.
3399 */
3400unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3401{
3402	struct ring_buffer_per_cpu *cpu_buffer;
3403
3404	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3405		return 0;
3406
3407	cpu_buffer = buffer->buffers[cpu];
3408
3409	return rb_num_of_entries(cpu_buffer);
3410}
3411EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3412
3413/**
3414 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3415 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3416 * @buffer: The ring buffer
3417 * @cpu: The per CPU buffer to get the number of overruns from
3418 */
3419unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3420{
3421	struct ring_buffer_per_cpu *cpu_buffer;
3422	unsigned long ret;
3423
3424	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3425		return 0;
3426
3427	cpu_buffer = buffer->buffers[cpu];
3428	ret = local_read(&cpu_buffer->overrun);
3429
3430	return ret;
3431}
3432EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3433
3434/**
3435 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3436 * commits failing due to the buffer wrapping around while there are uncommitted
3437 * events, such as during an interrupt storm.
3438 * @buffer: The ring buffer
3439 * @cpu: The per CPU buffer to get the number of overruns from
3440 */
3441unsigned long
3442ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3443{
3444	struct ring_buffer_per_cpu *cpu_buffer;
3445	unsigned long ret;
3446
3447	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3448		return 0;
3449
3450	cpu_buffer = buffer->buffers[cpu];
3451	ret = local_read(&cpu_buffer->commit_overrun);
3452
3453	return ret;
3454}
3455EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3456
3457/**
3458 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3459 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3460 * @buffer: The ring buffer
3461 * @cpu: The per CPU buffer to get the number of overruns from
3462 */
3463unsigned long
3464ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3465{
3466	struct ring_buffer_per_cpu *cpu_buffer;
3467	unsigned long ret;
3468
3469	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3470		return 0;
3471
3472	cpu_buffer = buffer->buffers[cpu];
3473	ret = local_read(&cpu_buffer->dropped_events);
3474
3475	return ret;
3476}
3477EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3478
3479/**
3480 * ring_buffer_read_events_cpu - get the number of events successfully read
3481 * @buffer: The ring buffer
3482 * @cpu: The per CPU buffer to get the number of events read
3483 */
3484unsigned long
3485ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3486{
3487	struct ring_buffer_per_cpu *cpu_buffer;
3488
3489	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3490		return 0;
3491
3492	cpu_buffer = buffer->buffers[cpu];
3493	return cpu_buffer->read;
3494}
3495EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3496
3497/**
3498 * ring_buffer_entries - get the number of entries in a buffer
3499 * @buffer: The ring buffer
3500 *
3501 * Returns the total number of entries in the ring buffer
3502 * (all CPU entries)
3503 */
3504unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3505{
3506	struct ring_buffer_per_cpu *cpu_buffer;
3507	unsigned long entries = 0;
3508	int cpu;
3509
3510	/* if you care about this being correct, lock the buffer */
3511	for_each_buffer_cpu(buffer, cpu) {
3512		cpu_buffer = buffer->buffers[cpu];
3513		entries += rb_num_of_entries(cpu_buffer);
3514	}
3515
3516	return entries;
3517}
3518EXPORT_SYMBOL_GPL(ring_buffer_entries);
3519
3520/**
3521 * ring_buffer_overruns - get the number of overruns in buffer
3522 * @buffer: The ring buffer
3523 *
3524 * Returns the total number of overruns in the ring buffer
3525 * (all CPU entries)
3526 */
3527unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3528{
3529	struct ring_buffer_per_cpu *cpu_buffer;
3530	unsigned long overruns = 0;
3531	int cpu;
3532
3533	/* if you care about this being correct, lock the buffer */
3534	for_each_buffer_cpu(buffer, cpu) {
3535		cpu_buffer = buffer->buffers[cpu];
3536		overruns += local_read(&cpu_buffer->overrun);
3537	}
3538
3539	return overruns;
3540}
3541EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3542
3543static void rb_iter_reset(struct ring_buffer_iter *iter)
3544{
3545	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3546
3547	/* Iterator usage is expected to have record disabled */
3548	iter->head_page = cpu_buffer->reader_page;
3549	iter->head = cpu_buffer->reader_page->read;
3550
3551	iter->cache_reader_page = iter->head_page;
3552	iter->cache_read = cpu_buffer->read;
3553
 
 
 
3554	if (iter->head)
3555		iter->read_stamp = cpu_buffer->read_stamp;
3556	else
3557		iter->read_stamp = iter->head_page->page->time_stamp;
 
 
3558}
3559
3560/**
3561 * ring_buffer_iter_reset - reset an iterator
3562 * @iter: The iterator to reset
3563 *
3564 * Resets the iterator, so that it will start from the beginning
3565 * again.
3566 */
3567void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3568{
3569	struct ring_buffer_per_cpu *cpu_buffer;
3570	unsigned long flags;
3571
3572	if (!iter)
3573		return;
3574
3575	cpu_buffer = iter->cpu_buffer;
3576
3577	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3578	rb_iter_reset(iter);
3579	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3580}
3581EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3582
3583/**
3584 * ring_buffer_iter_empty - check if an iterator has no more to read
3585 * @iter: The iterator to check
3586 */
3587int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3588{
3589	struct ring_buffer_per_cpu *cpu_buffer;
3590	struct buffer_page *reader;
3591	struct buffer_page *head_page;
3592	struct buffer_page *commit_page;
3593	unsigned commit;
3594
3595	cpu_buffer = iter->cpu_buffer;
3596
3597	/* Remember, trace recording is off when iterator is in use */
3598	reader = cpu_buffer->reader_page;
3599	head_page = cpu_buffer->head_page;
3600	commit_page = cpu_buffer->commit_page;
3601	commit = rb_page_commit(commit_page);
3602
3603	return ((iter->head_page == commit_page && iter->head == commit) ||
3604		(iter->head_page == reader && commit_page == head_page &&
3605		 head_page->read == commit &&
3606		 iter->head == rb_page_commit(cpu_buffer->reader_page)));
3607}
3608EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3609
3610static void
3611rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3612		     struct ring_buffer_event *event)
3613{
3614	u64 delta;
3615
3616	switch (event->type_len) {
3617	case RINGBUF_TYPE_PADDING:
3618		return;
3619
3620	case RINGBUF_TYPE_TIME_EXTEND:
3621		delta = ring_buffer_event_time_stamp(event);
 
 
3622		cpu_buffer->read_stamp += delta;
3623		return;
3624
3625	case RINGBUF_TYPE_TIME_STAMP:
3626		delta = ring_buffer_event_time_stamp(event);
3627		cpu_buffer->read_stamp = delta;
3628		return;
3629
3630	case RINGBUF_TYPE_DATA:
3631		cpu_buffer->read_stamp += event->time_delta;
3632		return;
3633
3634	default:
3635		BUG();
3636	}
3637	return;
3638}
3639
3640static void
3641rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3642			  struct ring_buffer_event *event)
3643{
3644	u64 delta;
3645
3646	switch (event->type_len) {
3647	case RINGBUF_TYPE_PADDING:
3648		return;
3649
3650	case RINGBUF_TYPE_TIME_EXTEND:
3651		delta = ring_buffer_event_time_stamp(event);
 
 
3652		iter->read_stamp += delta;
3653		return;
3654
3655	case RINGBUF_TYPE_TIME_STAMP:
3656		delta = ring_buffer_event_time_stamp(event);
3657		iter->read_stamp = delta;
3658		return;
3659
3660	case RINGBUF_TYPE_DATA:
3661		iter->read_stamp += event->time_delta;
3662		return;
3663
3664	default:
3665		BUG();
3666	}
3667	return;
3668}
3669
3670static struct buffer_page *
3671rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3672{
3673	struct buffer_page *reader = NULL;
3674	unsigned long overwrite;
3675	unsigned long flags;
3676	int nr_loops = 0;
3677	int ret;
3678
3679	local_irq_save(flags);
3680	arch_spin_lock(&cpu_buffer->lock);
3681
3682 again:
3683	/*
3684	 * This should normally only loop twice. But because the
3685	 * start of the reader inserts an empty page, it causes
3686	 * a case where we will loop three times. There should be no
3687	 * reason to loop four times (that I know of).
3688	 */
3689	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3690		reader = NULL;
3691		goto out;
3692	}
3693
3694	reader = cpu_buffer->reader_page;
3695
3696	/* If there's more to read, return this page */
3697	if (cpu_buffer->reader_page->read < rb_page_size(reader))
3698		goto out;
3699
3700	/* Never should we have an index greater than the size */
3701	if (RB_WARN_ON(cpu_buffer,
3702		       cpu_buffer->reader_page->read > rb_page_size(reader)))
3703		goto out;
3704
3705	/* check if we caught up to the tail */
3706	reader = NULL;
3707	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3708		goto out;
3709
3710	/* Don't bother swapping if the ring buffer is empty */
3711	if (rb_num_of_entries(cpu_buffer) == 0)
3712		goto out;
3713
3714	/*
3715	 * Reset the reader page to size zero.
3716	 */
3717	local_set(&cpu_buffer->reader_page->write, 0);
3718	local_set(&cpu_buffer->reader_page->entries, 0);
3719	local_set(&cpu_buffer->reader_page->page->commit, 0);
3720	cpu_buffer->reader_page->real_end = 0;
3721
3722 spin:
3723	/*
3724	 * Splice the empty reader page into the list around the head.
3725	 */
3726	reader = rb_set_head_page(cpu_buffer);
3727	if (!reader)
3728		goto out;
3729	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3730	cpu_buffer->reader_page->list.prev = reader->list.prev;
3731
3732	/*
3733	 * cpu_buffer->pages just needs to point to the buffer, it
3734	 *  has no specific buffer page to point to. Lets move it out
3735	 *  of our way so we don't accidentally swap it.
3736	 */
3737	cpu_buffer->pages = reader->list.prev;
3738
3739	/* The reader page will be pointing to the new head */
3740	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3741
3742	/*
3743	 * We want to make sure we read the overruns after we set up our
3744	 * pointers to the next object. The writer side does a
3745	 * cmpxchg to cross pages which acts as the mb on the writer
3746	 * side. Note, the reader will constantly fail the swap
3747	 * while the writer is updating the pointers, so this
3748	 * guarantees that the overwrite recorded here is the one we
3749	 * want to compare with the last_overrun.
3750	 */
3751	smp_mb();
3752	overwrite = local_read(&(cpu_buffer->overrun));
3753
3754	/*
3755	 * Here's the tricky part.
3756	 *
3757	 * We need to move the pointer past the header page.
3758	 * But we can only do that if a writer is not currently
3759	 * moving it. The page before the header page has the
3760	 * flag bit '1' set if it is pointing to the page we want.
3761	 * but if the writer is in the process of moving it
3762	 * than it will be '2' or already moved '0'.
3763	 */
3764
3765	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3766
3767	/*
3768	 * If we did not convert it, then we must try again.
3769	 */
3770	if (!ret)
3771		goto spin;
3772
3773	/*
3774	 * Yay! We succeeded in replacing the page.
3775	 *
3776	 * Now make the new head point back to the reader page.
3777	 */
3778	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3779	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3780
3781	local_inc(&cpu_buffer->pages_read);
3782
3783	/* Finally update the reader page to the new head */
3784	cpu_buffer->reader_page = reader;
3785	cpu_buffer->reader_page->read = 0;
3786
3787	if (overwrite != cpu_buffer->last_overrun) {
3788		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3789		cpu_buffer->last_overrun = overwrite;
3790	}
3791
3792	goto again;
3793
3794 out:
3795	/* Update the read_stamp on the first event */
3796	if (reader && reader->read == 0)
3797		cpu_buffer->read_stamp = reader->page->time_stamp;
3798
3799	arch_spin_unlock(&cpu_buffer->lock);
3800	local_irq_restore(flags);
3801
3802	return reader;
3803}
3804
3805static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3806{
3807	struct ring_buffer_event *event;
3808	struct buffer_page *reader;
3809	unsigned length;
3810
3811	reader = rb_get_reader_page(cpu_buffer);
3812
3813	/* This function should not be called when buffer is empty */
3814	if (RB_WARN_ON(cpu_buffer, !reader))
3815		return;
3816
3817	event = rb_reader_event(cpu_buffer);
3818
3819	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3820		cpu_buffer->read++;
3821
3822	rb_update_read_stamp(cpu_buffer, event);
3823
3824	length = rb_event_length(event);
3825	cpu_buffer->reader_page->read += length;
3826}
3827
3828static void rb_advance_iter(struct ring_buffer_iter *iter)
3829{
3830	struct ring_buffer_per_cpu *cpu_buffer;
3831	struct ring_buffer_event *event;
3832	unsigned length;
3833
3834	cpu_buffer = iter->cpu_buffer;
3835
3836	/*
3837	 * Check if we are at the end of the buffer.
3838	 */
3839	if (iter->head >= rb_page_size(iter->head_page)) {
3840		/* discarded commits can make the page empty */
3841		if (iter->head_page == cpu_buffer->commit_page)
3842			return;
3843		rb_inc_iter(iter);
3844		return;
3845	}
3846
3847	event = rb_iter_head_event(iter);
3848
3849	length = rb_event_length(event);
3850
3851	/*
3852	 * This should not be called to advance the header if we are
3853	 * at the tail of the buffer.
3854	 */
3855	if (RB_WARN_ON(cpu_buffer,
3856		       (iter->head_page == cpu_buffer->commit_page) &&
3857		       (iter->head + length > rb_commit_index(cpu_buffer))))
3858		return;
3859
3860	rb_update_iter_read_stamp(iter, event);
3861
3862	iter->head += length;
3863
3864	/* check for end of page padding */
3865	if ((iter->head >= rb_page_size(iter->head_page)) &&
3866	    (iter->head_page != cpu_buffer->commit_page))
3867		rb_inc_iter(iter);
3868}
3869
3870static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3871{
3872	return cpu_buffer->lost_events;
3873}
3874
3875static struct ring_buffer_event *
3876rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3877	       unsigned long *lost_events)
3878{
3879	struct ring_buffer_event *event;
3880	struct buffer_page *reader;
3881	int nr_loops = 0;
3882
3883	if (ts)
3884		*ts = 0;
3885 again:
3886	/*
3887	 * We repeat when a time extend is encountered.
3888	 * Since the time extend is always attached to a data event,
3889	 * we should never loop more than once.
3890	 * (We never hit the following condition more than twice).
3891	 */
3892	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3893		return NULL;
3894
3895	reader = rb_get_reader_page(cpu_buffer);
3896	if (!reader)
3897		return NULL;
3898
3899	event = rb_reader_event(cpu_buffer);
3900
3901	switch (event->type_len) {
3902	case RINGBUF_TYPE_PADDING:
3903		if (rb_null_event(event))
3904			RB_WARN_ON(cpu_buffer, 1);
3905		/*
3906		 * Because the writer could be discarding every
3907		 * event it creates (which would probably be bad)
3908		 * if we were to go back to "again" then we may never
3909		 * catch up, and will trigger the warn on, or lock
3910		 * the box. Return the padding, and we will release
3911		 * the current locks, and try again.
3912		 */
3913		return event;
3914
3915	case RINGBUF_TYPE_TIME_EXTEND:
3916		/* Internal data, OK to advance */
3917		rb_advance_reader(cpu_buffer);
3918		goto again;
3919
3920	case RINGBUF_TYPE_TIME_STAMP:
3921		if (ts) {
3922			*ts = ring_buffer_event_time_stamp(event);
3923			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3924							 cpu_buffer->cpu, ts);
3925		}
3926		/* Internal data, OK to advance */
3927		rb_advance_reader(cpu_buffer);
3928		goto again;
3929
3930	case RINGBUF_TYPE_DATA:
3931		if (ts && !(*ts)) {
3932			*ts = cpu_buffer->read_stamp + event->time_delta;
3933			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3934							 cpu_buffer->cpu, ts);
3935		}
3936		if (lost_events)
3937			*lost_events = rb_lost_events(cpu_buffer);
3938		return event;
3939
3940	default:
3941		BUG();
3942	}
3943
3944	return NULL;
3945}
3946EXPORT_SYMBOL_GPL(ring_buffer_peek);
3947
3948static struct ring_buffer_event *
3949rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3950{
3951	struct ring_buffer *buffer;
3952	struct ring_buffer_per_cpu *cpu_buffer;
3953	struct ring_buffer_event *event;
3954	int nr_loops = 0;
3955
3956	if (ts)
3957		*ts = 0;
3958
3959	cpu_buffer = iter->cpu_buffer;
3960	buffer = cpu_buffer->buffer;
3961
3962	/*
3963	 * Check if someone performed a consuming read to
3964	 * the buffer. A consuming read invalidates the iterator
3965	 * and we need to reset the iterator in this case.
3966	 */
3967	if (unlikely(iter->cache_read != cpu_buffer->read ||
3968		     iter->cache_reader_page != cpu_buffer->reader_page))
3969		rb_iter_reset(iter);
3970
3971 again:
3972	if (ring_buffer_iter_empty(iter))
3973		return NULL;
3974
3975	/*
3976	 * We repeat when a time extend is encountered or we hit
3977	 * the end of the page. Since the time extend is always attached
3978	 * to a data event, we should never loop more than three times.
3979	 * Once for going to next page, once on time extend, and
3980	 * finally once to get the event.
3981	 * (We never hit the following condition more than thrice).
3982	 */
3983	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3984		return NULL;
3985
3986	if (rb_per_cpu_empty(cpu_buffer))
3987		return NULL;
3988
3989	if (iter->head >= rb_page_size(iter->head_page)) {
3990		rb_inc_iter(iter);
3991		goto again;
3992	}
3993
3994	event = rb_iter_head_event(iter);
3995
3996	switch (event->type_len) {
3997	case RINGBUF_TYPE_PADDING:
3998		if (rb_null_event(event)) {
3999			rb_inc_iter(iter);
4000			goto again;
4001		}
4002		rb_advance_iter(iter);
4003		return event;
4004
4005	case RINGBUF_TYPE_TIME_EXTEND:
4006		/* Internal data, OK to advance */
4007		rb_advance_iter(iter);
4008		goto again;
4009
4010	case RINGBUF_TYPE_TIME_STAMP:
4011		if (ts) {
4012			*ts = ring_buffer_event_time_stamp(event);
4013			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4014							 cpu_buffer->cpu, ts);
4015		}
4016		/* Internal data, OK to advance */
4017		rb_advance_iter(iter);
4018		goto again;
4019
4020	case RINGBUF_TYPE_DATA:
4021		if (ts && !(*ts)) {
4022			*ts = iter->read_stamp + event->time_delta;
4023			ring_buffer_normalize_time_stamp(buffer,
4024							 cpu_buffer->cpu, ts);
4025		}
4026		return event;
4027
4028	default:
4029		BUG();
4030	}
4031
4032	return NULL;
4033}
4034EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4035
4036static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4037{
4038	if (likely(!in_nmi())) {
4039		raw_spin_lock(&cpu_buffer->reader_lock);
4040		return true;
4041	}
4042
4043	/*
4044	 * If an NMI die dumps out the content of the ring buffer
4045	 * trylock must be used to prevent a deadlock if the NMI
4046	 * preempted a task that holds the ring buffer locks. If
4047	 * we get the lock then all is fine, if not, then continue
4048	 * to do the read, but this can corrupt the ring buffer,
4049	 * so it must be permanently disabled from future writes.
4050	 * Reading from NMI is a oneshot deal.
4051	 */
4052	if (raw_spin_trylock(&cpu_buffer->reader_lock))
4053		return true;
4054
4055	/* Continue without locking, but disable the ring buffer */
4056	atomic_inc(&cpu_buffer->record_disabled);
4057	return false;
4058}
4059
4060static inline void
4061rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4062{
4063	if (likely(locked))
4064		raw_spin_unlock(&cpu_buffer->reader_lock);
4065	return;
4066}
4067
4068/**
4069 * ring_buffer_peek - peek at the next event to be read
4070 * @buffer: The ring buffer to read
4071 * @cpu: The cpu to peak at
4072 * @ts: The timestamp counter of this event.
4073 * @lost_events: a variable to store if events were lost (may be NULL)
4074 *
4075 * This will return the event that will be read next, but does
4076 * not consume the data.
4077 */
4078struct ring_buffer_event *
4079ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
4080		 unsigned long *lost_events)
4081{
4082	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4083	struct ring_buffer_event *event;
4084	unsigned long flags;
4085	bool dolock;
4086
4087	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4088		return NULL;
4089
 
4090 again:
4091	local_irq_save(flags);
4092	dolock = rb_reader_lock(cpu_buffer);
 
4093	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4094	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4095		rb_advance_reader(cpu_buffer);
4096	rb_reader_unlock(cpu_buffer, dolock);
 
4097	local_irq_restore(flags);
4098
4099	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4100		goto again;
4101
4102	return event;
4103}
4104
4105/**
4106 * ring_buffer_iter_peek - peek at the next event to be read
4107 * @iter: The ring buffer iterator
4108 * @ts: The timestamp counter of this event.
4109 *
4110 * This will return the event that will be read next, but does
4111 * not increment the iterator.
4112 */
4113struct ring_buffer_event *
4114ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4115{
4116	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4117	struct ring_buffer_event *event;
4118	unsigned long flags;
4119
4120 again:
4121	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4122	event = rb_iter_peek(iter, ts);
4123	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4124
4125	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4126		goto again;
4127
4128	return event;
4129}
4130
4131/**
4132 * ring_buffer_consume - return an event and consume it
4133 * @buffer: The ring buffer to get the next event from
4134 * @cpu: the cpu to read the buffer from
4135 * @ts: a variable to store the timestamp (may be NULL)
4136 * @lost_events: a variable to store if events were lost (may be NULL)
4137 *
4138 * Returns the next event in the ring buffer, and that event is consumed.
4139 * Meaning, that sequential reads will keep returning a different event,
4140 * and eventually empty the ring buffer if the producer is slower.
4141 */
4142struct ring_buffer_event *
4143ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
4144		    unsigned long *lost_events)
4145{
4146	struct ring_buffer_per_cpu *cpu_buffer;
4147	struct ring_buffer_event *event = NULL;
4148	unsigned long flags;
4149	bool dolock;
 
 
4150
4151 again:
4152	/* might be called in atomic */
4153	preempt_disable();
4154
4155	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4156		goto out;
4157
4158	cpu_buffer = buffer->buffers[cpu];
4159	local_irq_save(flags);
4160	dolock = rb_reader_lock(cpu_buffer);
 
4161
4162	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4163	if (event) {
4164		cpu_buffer->lost_events = 0;
4165		rb_advance_reader(cpu_buffer);
4166	}
4167
4168	rb_reader_unlock(cpu_buffer, dolock);
 
4169	local_irq_restore(flags);
4170
4171 out:
4172	preempt_enable();
4173
4174	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4175		goto again;
4176
4177	return event;
4178}
4179EXPORT_SYMBOL_GPL(ring_buffer_consume);
4180
4181/**
4182 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4183 * @buffer: The ring buffer to read from
4184 * @cpu: The cpu buffer to iterate over
4185 * @flags: gfp flags to use for memory allocation
4186 *
4187 * This performs the initial preparations necessary to iterate
4188 * through the buffer.  Memory is allocated, buffer recording
4189 * is disabled, and the iterator pointer is returned to the caller.
4190 *
4191 * Disabling buffer recording prevents the reading from being
4192 * corrupted. This is not a consuming read, so a producer is not
4193 * expected.
4194 *
4195 * After a sequence of ring_buffer_read_prepare calls, the user is
4196 * expected to make at least one call to ring_buffer_read_prepare_sync.
4197 * Afterwards, ring_buffer_read_start is invoked to get things going
4198 * for real.
4199 *
4200 * This overall must be paired with ring_buffer_read_finish.
4201 */
4202struct ring_buffer_iter *
4203ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu, gfp_t flags)
4204{
4205	struct ring_buffer_per_cpu *cpu_buffer;
4206	struct ring_buffer_iter *iter;
4207
4208	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4209		return NULL;
4210
4211	iter = kmalloc(sizeof(*iter), flags);
4212	if (!iter)
4213		return NULL;
4214
4215	cpu_buffer = buffer->buffers[cpu];
4216
4217	iter->cpu_buffer = cpu_buffer;
4218
4219	atomic_inc(&buffer->resize_disabled);
4220	atomic_inc(&cpu_buffer->record_disabled);
4221
4222	return iter;
4223}
4224EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4225
4226/**
4227 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4228 *
4229 * All previously invoked ring_buffer_read_prepare calls to prepare
4230 * iterators will be synchronized.  Afterwards, read_buffer_read_start
4231 * calls on those iterators are allowed.
4232 */
4233void
4234ring_buffer_read_prepare_sync(void)
4235{
4236	synchronize_rcu();
4237}
4238EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4239
4240/**
4241 * ring_buffer_read_start - start a non consuming read of the buffer
4242 * @iter: The iterator returned by ring_buffer_read_prepare
4243 *
4244 * This finalizes the startup of an iteration through the buffer.
4245 * The iterator comes from a call to ring_buffer_read_prepare and
4246 * an intervening ring_buffer_read_prepare_sync must have been
4247 * performed.
4248 *
4249 * Must be paired with ring_buffer_read_finish.
4250 */
4251void
4252ring_buffer_read_start(struct ring_buffer_iter *iter)
4253{
4254	struct ring_buffer_per_cpu *cpu_buffer;
4255	unsigned long flags;
4256
4257	if (!iter)
4258		return;
4259
4260	cpu_buffer = iter->cpu_buffer;
4261
4262	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4263	arch_spin_lock(&cpu_buffer->lock);
4264	rb_iter_reset(iter);
4265	arch_spin_unlock(&cpu_buffer->lock);
4266	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4267}
4268EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4269
4270/**
4271 * ring_buffer_read_finish - finish reading the iterator of the buffer
4272 * @iter: The iterator retrieved by ring_buffer_start
4273 *
4274 * This re-enables the recording to the buffer, and frees the
4275 * iterator.
4276 */
4277void
4278ring_buffer_read_finish(struct ring_buffer_iter *iter)
4279{
4280	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4281	unsigned long flags;
4282
4283	/*
4284	 * Ring buffer is disabled from recording, here's a good place
4285	 * to check the integrity of the ring buffer.
4286	 * Must prevent readers from trying to read, as the check
4287	 * clears the HEAD page and readers require it.
4288	 */
4289	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4290	rb_check_pages(cpu_buffer);
4291	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4292
4293	atomic_dec(&cpu_buffer->record_disabled);
4294	atomic_dec(&cpu_buffer->buffer->resize_disabled);
4295	kfree(iter);
4296}
4297EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4298
4299/**
4300 * ring_buffer_read - read the next item in the ring buffer by the iterator
4301 * @iter: The ring buffer iterator
4302 * @ts: The time stamp of the event read.
4303 *
4304 * This reads the next event in the ring buffer and increments the iterator.
4305 */
4306struct ring_buffer_event *
4307ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4308{
4309	struct ring_buffer_event *event;
4310	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4311	unsigned long flags;
4312
4313	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4314 again:
4315	event = rb_iter_peek(iter, ts);
4316	if (!event)
4317		goto out;
4318
4319	if (event->type_len == RINGBUF_TYPE_PADDING)
4320		goto again;
4321
4322	rb_advance_iter(iter);
4323 out:
4324	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4325
4326	return event;
4327}
4328EXPORT_SYMBOL_GPL(ring_buffer_read);
4329
4330/**
4331 * ring_buffer_size - return the size of the ring buffer (in bytes)
4332 * @buffer: The ring buffer.
4333 */
4334unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4335{
4336	/*
4337	 * Earlier, this method returned
4338	 *	BUF_PAGE_SIZE * buffer->nr_pages
4339	 * Since the nr_pages field is now removed, we have converted this to
4340	 * return the per cpu buffer value.
4341	 */
4342	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4343		return 0;
4344
4345	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4346}
4347EXPORT_SYMBOL_GPL(ring_buffer_size);
4348
4349static void
4350rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4351{
4352	rb_head_page_deactivate(cpu_buffer);
4353
4354	cpu_buffer->head_page
4355		= list_entry(cpu_buffer->pages, struct buffer_page, list);
4356	local_set(&cpu_buffer->head_page->write, 0);
4357	local_set(&cpu_buffer->head_page->entries, 0);
4358	local_set(&cpu_buffer->head_page->page->commit, 0);
4359
4360	cpu_buffer->head_page->read = 0;
4361
4362	cpu_buffer->tail_page = cpu_buffer->head_page;
4363	cpu_buffer->commit_page = cpu_buffer->head_page;
4364
4365	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4366	INIT_LIST_HEAD(&cpu_buffer->new_pages);
4367	local_set(&cpu_buffer->reader_page->write, 0);
4368	local_set(&cpu_buffer->reader_page->entries, 0);
4369	local_set(&cpu_buffer->reader_page->page->commit, 0);
4370	cpu_buffer->reader_page->read = 0;
4371
 
4372	local_set(&cpu_buffer->entries_bytes, 0);
4373	local_set(&cpu_buffer->overrun, 0);
4374	local_set(&cpu_buffer->commit_overrun, 0);
4375	local_set(&cpu_buffer->dropped_events, 0);
4376	local_set(&cpu_buffer->entries, 0);
4377	local_set(&cpu_buffer->committing, 0);
4378	local_set(&cpu_buffer->commits, 0);
4379	local_set(&cpu_buffer->pages_touched, 0);
4380	local_set(&cpu_buffer->pages_read, 0);
4381	cpu_buffer->last_pages_touch = 0;
4382	cpu_buffer->shortest_full = 0;
4383	cpu_buffer->read = 0;
4384	cpu_buffer->read_bytes = 0;
4385
4386	cpu_buffer->write_stamp = 0;
4387	cpu_buffer->read_stamp = 0;
4388
4389	cpu_buffer->lost_events = 0;
4390	cpu_buffer->last_overrun = 0;
4391
4392	rb_head_page_activate(cpu_buffer);
4393}
4394
4395/**
4396 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4397 * @buffer: The ring buffer to reset a per cpu buffer of
4398 * @cpu: The CPU buffer to be reset
4399 */
4400void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4401{
4402	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4403	unsigned long flags;
4404
4405	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4406		return;
4407
4408	atomic_inc(&buffer->resize_disabled);
4409	atomic_inc(&cpu_buffer->record_disabled);
4410
4411	/* Make sure all commits have finished */
4412	synchronize_rcu();
4413
4414	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4415
4416	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4417		goto out;
4418
4419	arch_spin_lock(&cpu_buffer->lock);
4420
4421	rb_reset_cpu(cpu_buffer);
4422
4423	arch_spin_unlock(&cpu_buffer->lock);
4424
4425 out:
4426	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4427
4428	atomic_dec(&cpu_buffer->record_disabled);
4429	atomic_dec(&buffer->resize_disabled);
4430}
4431EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4432
4433/**
4434 * ring_buffer_reset - reset a ring buffer
4435 * @buffer: The ring buffer to reset all cpu buffers
4436 */
4437void ring_buffer_reset(struct ring_buffer *buffer)
4438{
4439	int cpu;
4440
4441	for_each_buffer_cpu(buffer, cpu)
4442		ring_buffer_reset_cpu(buffer, cpu);
4443}
4444EXPORT_SYMBOL_GPL(ring_buffer_reset);
4445
4446/**
4447 * rind_buffer_empty - is the ring buffer empty?
4448 * @buffer: The ring buffer to test
4449 */
4450bool ring_buffer_empty(struct ring_buffer *buffer)
4451{
4452	struct ring_buffer_per_cpu *cpu_buffer;
4453	unsigned long flags;
4454	bool dolock;
4455	int cpu;
4456	int ret;
4457
 
 
4458	/* yes this is racy, but if you don't like the race, lock the buffer */
4459	for_each_buffer_cpu(buffer, cpu) {
4460		cpu_buffer = buffer->buffers[cpu];
4461		local_irq_save(flags);
4462		dolock = rb_reader_lock(cpu_buffer);
 
4463		ret = rb_per_cpu_empty(cpu_buffer);
4464		rb_reader_unlock(cpu_buffer, dolock);
 
4465		local_irq_restore(flags);
4466
4467		if (!ret)
4468			return false;
4469	}
4470
4471	return true;
4472}
4473EXPORT_SYMBOL_GPL(ring_buffer_empty);
4474
4475/**
4476 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4477 * @buffer: The ring buffer
4478 * @cpu: The CPU buffer to test
4479 */
4480bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4481{
4482	struct ring_buffer_per_cpu *cpu_buffer;
4483	unsigned long flags;
4484	bool dolock;
4485	int ret;
4486
4487	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4488		return true;
 
 
4489
4490	cpu_buffer = buffer->buffers[cpu];
4491	local_irq_save(flags);
4492	dolock = rb_reader_lock(cpu_buffer);
 
4493	ret = rb_per_cpu_empty(cpu_buffer);
4494	rb_reader_unlock(cpu_buffer, dolock);
 
4495	local_irq_restore(flags);
4496
4497	return ret;
4498}
4499EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4500
4501#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4502/**
4503 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4504 * @buffer_a: One buffer to swap with
4505 * @buffer_b: The other buffer to swap with
4506 *
4507 * This function is useful for tracers that want to take a "snapshot"
4508 * of a CPU buffer and has another back up buffer lying around.
4509 * it is expected that the tracer handles the cpu buffer not being
4510 * used at the moment.
4511 */
4512int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4513			 struct ring_buffer *buffer_b, int cpu)
4514{
4515	struct ring_buffer_per_cpu *cpu_buffer_a;
4516	struct ring_buffer_per_cpu *cpu_buffer_b;
4517	int ret = -EINVAL;
4518
4519	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4520	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
4521		goto out;
4522
4523	cpu_buffer_a = buffer_a->buffers[cpu];
4524	cpu_buffer_b = buffer_b->buffers[cpu];
4525
4526	/* At least make sure the two buffers are somewhat the same */
4527	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4528		goto out;
4529
4530	ret = -EAGAIN;
4531
 
 
 
4532	if (atomic_read(&buffer_a->record_disabled))
4533		goto out;
4534
4535	if (atomic_read(&buffer_b->record_disabled))
4536		goto out;
4537
4538	if (atomic_read(&cpu_buffer_a->record_disabled))
4539		goto out;
4540
4541	if (atomic_read(&cpu_buffer_b->record_disabled))
4542		goto out;
4543
4544	/*
4545	 * We can't do a synchronize_rcu here because this
4546	 * function can be called in atomic context.
4547	 * Normally this will be called from the same CPU as cpu.
4548	 * If not it's up to the caller to protect this.
4549	 */
4550	atomic_inc(&cpu_buffer_a->record_disabled);
4551	atomic_inc(&cpu_buffer_b->record_disabled);
4552
4553	ret = -EBUSY;
4554	if (local_read(&cpu_buffer_a->committing))
4555		goto out_dec;
4556	if (local_read(&cpu_buffer_b->committing))
4557		goto out_dec;
4558
4559	buffer_a->buffers[cpu] = cpu_buffer_b;
4560	buffer_b->buffers[cpu] = cpu_buffer_a;
4561
4562	cpu_buffer_b->buffer = buffer_a;
4563	cpu_buffer_a->buffer = buffer_b;
4564
4565	ret = 0;
4566
4567out_dec:
4568	atomic_dec(&cpu_buffer_a->record_disabled);
4569	atomic_dec(&cpu_buffer_b->record_disabled);
4570out:
4571	return ret;
4572}
4573EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4574#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4575
4576/**
4577 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4578 * @buffer: the buffer to allocate for.
4579 * @cpu: the cpu buffer to allocate.
4580 *
4581 * This function is used in conjunction with ring_buffer_read_page.
4582 * When reading a full page from the ring buffer, these functions
4583 * can be used to speed up the process. The calling function should
4584 * allocate a few pages first with this function. Then when it
4585 * needs to get pages from the ring buffer, it passes the result
4586 * of this function into ring_buffer_read_page, which will swap
4587 * the page that was allocated, with the read page of the buffer.
4588 *
4589 * Returns:
4590 *  The page allocated, or ERR_PTR
4591 */
4592void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4593{
4594	struct ring_buffer_per_cpu *cpu_buffer;
4595	struct buffer_data_page *bpage = NULL;
4596	unsigned long flags;
4597	struct page *page;
4598
4599	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4600		return ERR_PTR(-ENODEV);
4601
4602	cpu_buffer = buffer->buffers[cpu];
4603	local_irq_save(flags);
4604	arch_spin_lock(&cpu_buffer->lock);
4605
4606	if (cpu_buffer->free_page) {
4607		bpage = cpu_buffer->free_page;
4608		cpu_buffer->free_page = NULL;
4609	}
4610
4611	arch_spin_unlock(&cpu_buffer->lock);
4612	local_irq_restore(flags);
4613
4614	if (bpage)
4615		goto out;
4616
4617	page = alloc_pages_node(cpu_to_node(cpu),
4618				GFP_KERNEL | __GFP_NORETRY, 0);
4619	if (!page)
4620		return ERR_PTR(-ENOMEM);
4621
4622	bpage = page_address(page);
4623
4624 out:
4625	rb_init_page(bpage);
4626
4627	return bpage;
4628}
4629EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4630
4631/**
4632 * ring_buffer_free_read_page - free an allocated read page
4633 * @buffer: the buffer the page was allocate for
4634 * @cpu: the cpu buffer the page came from
4635 * @data: the page to free
4636 *
4637 * Free a page allocated from ring_buffer_alloc_read_page.
4638 */
4639void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data)
4640{
4641	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4642	struct buffer_data_page *bpage = data;
4643	struct page *page = virt_to_page(bpage);
4644	unsigned long flags;
4645
4646	/* If the page is still in use someplace else, we can't reuse it */
4647	if (page_ref_count(page) > 1)
4648		goto out;
4649
4650	local_irq_save(flags);
4651	arch_spin_lock(&cpu_buffer->lock);
4652
4653	if (!cpu_buffer->free_page) {
4654		cpu_buffer->free_page = bpage;
4655		bpage = NULL;
4656	}
4657
4658	arch_spin_unlock(&cpu_buffer->lock);
4659	local_irq_restore(flags);
4660
4661 out:
4662	free_page((unsigned long)bpage);
4663}
4664EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4665
4666/**
4667 * ring_buffer_read_page - extract a page from the ring buffer
4668 * @buffer: buffer to extract from
4669 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4670 * @len: amount to extract
4671 * @cpu: the cpu of the buffer to extract
4672 * @full: should the extraction only happen when the page is full.
4673 *
4674 * This function will pull out a page from the ring buffer and consume it.
4675 * @data_page must be the address of the variable that was returned
4676 * from ring_buffer_alloc_read_page. This is because the page might be used
4677 * to swap with a page in the ring buffer.
4678 *
4679 * for example:
4680 *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
4681 *	if (IS_ERR(rpage))
4682 *		return PTR_ERR(rpage);
4683 *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4684 *	if (ret >= 0)
4685 *		process_page(rpage, ret);
4686 *
4687 * When @full is set, the function will not return true unless
4688 * the writer is off the reader page.
4689 *
4690 * Note: it is up to the calling functions to handle sleeps and wakeups.
4691 *  The ring buffer can be used anywhere in the kernel and can not
4692 *  blindly call wake_up. The layer that uses the ring buffer must be
4693 *  responsible for that.
4694 *
4695 * Returns:
4696 *  >=0 if data has been transferred, returns the offset of consumed data.
4697 *  <0 if no data has been transferred.
4698 */
4699int ring_buffer_read_page(struct ring_buffer *buffer,
4700			  void **data_page, size_t len, int cpu, int full)
4701{
4702	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4703	struct ring_buffer_event *event;
4704	struct buffer_data_page *bpage;
4705	struct buffer_page *reader;
4706	unsigned long missed_events;
4707	unsigned long flags;
4708	unsigned int commit;
4709	unsigned int read;
4710	u64 save_timestamp;
4711	int ret = -1;
4712
4713	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4714		goto out;
4715
4716	/*
4717	 * If len is not big enough to hold the page header, then
4718	 * we can not copy anything.
4719	 */
4720	if (len <= BUF_PAGE_HDR_SIZE)
4721		goto out;
4722
4723	len -= BUF_PAGE_HDR_SIZE;
4724
4725	if (!data_page)
4726		goto out;
4727
4728	bpage = *data_page;
4729	if (!bpage)
4730		goto out;
4731
4732	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4733
4734	reader = rb_get_reader_page(cpu_buffer);
4735	if (!reader)
4736		goto out_unlock;
4737
4738	event = rb_reader_event(cpu_buffer);
4739
4740	read = reader->read;
4741	commit = rb_page_commit(reader);
4742
4743	/* Check if any events were dropped */
4744	missed_events = cpu_buffer->lost_events;
4745
4746	/*
4747	 * If this page has been partially read or
4748	 * if len is not big enough to read the rest of the page or
4749	 * a writer is still on the page, then
4750	 * we must copy the data from the page to the buffer.
4751	 * Otherwise, we can simply swap the page with the one passed in.
4752	 */
4753	if (read || (len < (commit - read)) ||
4754	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
4755		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4756		unsigned int rpos = read;
4757		unsigned int pos = 0;
4758		unsigned int size;
4759
4760		if (full)
4761			goto out_unlock;
4762
4763		if (len > (commit - read))
4764			len = (commit - read);
4765
4766		/* Always keep the time extend and data together */
4767		size = rb_event_ts_length(event);
4768
4769		if (len < size)
4770			goto out_unlock;
4771
4772		/* save the current timestamp, since the user will need it */
4773		save_timestamp = cpu_buffer->read_stamp;
4774
4775		/* Need to copy one event at a time */
4776		do {
4777			/* We need the size of one event, because
4778			 * rb_advance_reader only advances by one event,
4779			 * whereas rb_event_ts_length may include the size of
4780			 * one or two events.
4781			 * We have already ensured there's enough space if this
4782			 * is a time extend. */
4783			size = rb_event_length(event);
4784			memcpy(bpage->data + pos, rpage->data + rpos, size);
4785
4786			len -= size;
4787
4788			rb_advance_reader(cpu_buffer);
4789			rpos = reader->read;
4790			pos += size;
4791
4792			if (rpos >= commit)
4793				break;
4794
4795			event = rb_reader_event(cpu_buffer);
4796			/* Always keep the time extend and data together */
4797			size = rb_event_ts_length(event);
4798		} while (len >= size);
4799
4800		/* update bpage */
4801		local_set(&bpage->commit, pos);
4802		bpage->time_stamp = save_timestamp;
4803
4804		/* we copied everything to the beginning */
4805		read = 0;
4806	} else {
4807		/* update the entry counter */
4808		cpu_buffer->read += rb_page_entries(reader);
4809		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4810
4811		/* swap the pages */
4812		rb_init_page(bpage);
4813		bpage = reader->page;
4814		reader->page = *data_page;
4815		local_set(&reader->write, 0);
4816		local_set(&reader->entries, 0);
4817		reader->read = 0;
4818		*data_page = bpage;
4819
4820		/*
4821		 * Use the real_end for the data size,
4822		 * This gives us a chance to store the lost events
4823		 * on the page.
4824		 */
4825		if (reader->real_end)
4826			local_set(&bpage->commit, reader->real_end);
4827	}
4828	ret = read;
4829
4830	cpu_buffer->lost_events = 0;
4831
4832	commit = local_read(&bpage->commit);
4833	/*
4834	 * Set a flag in the commit field if we lost events
4835	 */
4836	if (missed_events) {
4837		/* If there is room at the end of the page to save the
4838		 * missed events, then record it there.
4839		 */
4840		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4841			memcpy(&bpage->data[commit], &missed_events,
4842			       sizeof(missed_events));
4843			local_add(RB_MISSED_STORED, &bpage->commit);
4844			commit += sizeof(missed_events);
4845		}
4846		local_add(RB_MISSED_EVENTS, &bpage->commit);
4847	}
4848
4849	/*
4850	 * This page may be off to user land. Zero it out here.
4851	 */
4852	if (commit < BUF_PAGE_SIZE)
4853		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4854
4855 out_unlock:
4856	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4857
4858 out:
4859	return ret;
4860}
4861EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4862
4863/*
4864 * We only allocate new buffers, never free them if the CPU goes down.
4865 * If we were to free the buffer, then the user would lose any trace that was in
4866 * the buffer.
4867 */
4868int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4869{
4870	struct ring_buffer *buffer;
4871	long nr_pages_same;
4872	int cpu_i;
4873	unsigned long nr_pages;
4874
4875	buffer = container_of(node, struct ring_buffer, node);
4876	if (cpumask_test_cpu(cpu, buffer->cpumask))
4877		return 0;
4878
4879	nr_pages = 0;
4880	nr_pages_same = 1;
4881	/* check if all cpu sizes are same */
4882	for_each_buffer_cpu(buffer, cpu_i) {
4883		/* fill in the size from first enabled cpu */
4884		if (nr_pages == 0)
4885			nr_pages = buffer->buffers[cpu_i]->nr_pages;
4886		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4887			nr_pages_same = 0;
4888			break;
4889		}
4890	}
4891	/* allocate minimum pages, user can later expand it */
4892	if (!nr_pages_same)
4893		nr_pages = 2;
4894	buffer->buffers[cpu] =
4895		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4896	if (!buffer->buffers[cpu]) {
4897		WARN(1, "failed to allocate ring buffer on CPU %u\n",
4898		     cpu);
4899		return -ENOMEM;
4900	}
4901	smp_wmb();
4902	cpumask_set_cpu(cpu, buffer->cpumask);
4903	return 0;
4904}
4905
4906#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4907/*
4908 * This is a basic integrity check of the ring buffer.
4909 * Late in the boot cycle this test will run when configured in.
4910 * It will kick off a thread per CPU that will go into a loop
4911 * writing to the per cpu ring buffer various sizes of data.
4912 * Some of the data will be large items, some small.
4913 *
4914 * Another thread is created that goes into a spin, sending out
4915 * IPIs to the other CPUs to also write into the ring buffer.
4916 * this is to test the nesting ability of the buffer.
4917 *
4918 * Basic stats are recorded and reported. If something in the
4919 * ring buffer should happen that's not expected, a big warning
4920 * is displayed and all ring buffers are disabled.
4921 */
4922static struct task_struct *rb_threads[NR_CPUS] __initdata;
4923
4924struct rb_test_data {
4925	struct ring_buffer	*buffer;
4926	unsigned long		events;
4927	unsigned long		bytes_written;
4928	unsigned long		bytes_alloc;
4929	unsigned long		bytes_dropped;
4930	unsigned long		events_nested;
4931	unsigned long		bytes_written_nested;
4932	unsigned long		bytes_alloc_nested;
4933	unsigned long		bytes_dropped_nested;
4934	int			min_size_nested;
4935	int			max_size_nested;
4936	int			max_size;
4937	int			min_size;
4938	int			cpu;
4939	int			cnt;
4940};
4941
4942static struct rb_test_data rb_data[NR_CPUS] __initdata;
4943
4944/* 1 meg per cpu */
4945#define RB_TEST_BUFFER_SIZE	1048576
4946
4947static char rb_string[] __initdata =
4948	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4949	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4950	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4951
4952static bool rb_test_started __initdata;
4953
4954struct rb_item {
4955	int size;
4956	char str[];
4957};
4958
4959static __init int rb_write_something(struct rb_test_data *data, bool nested)
4960{
4961	struct ring_buffer_event *event;
4962	struct rb_item *item;
4963	bool started;
4964	int event_len;
4965	int size;
4966	int len;
4967	int cnt;
4968
4969	/* Have nested writes different that what is written */
4970	cnt = data->cnt + (nested ? 27 : 0);
4971
4972	/* Multiply cnt by ~e, to make some unique increment */
4973	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
4974
4975	len = size + sizeof(struct rb_item);
4976
4977	started = rb_test_started;
4978	/* read rb_test_started before checking buffer enabled */
4979	smp_rmb();
4980
4981	event = ring_buffer_lock_reserve(data->buffer, len);
4982	if (!event) {
4983		/* Ignore dropped events before test starts. */
4984		if (started) {
4985			if (nested)
4986				data->bytes_dropped += len;
4987			else
4988				data->bytes_dropped_nested += len;
4989		}
4990		return len;
4991	}
4992
4993	event_len = ring_buffer_event_length(event);
4994
4995	if (RB_WARN_ON(data->buffer, event_len < len))
4996		goto out;
4997
4998	item = ring_buffer_event_data(event);
4999	item->size = size;
5000	memcpy(item->str, rb_string, size);
5001
5002	if (nested) {
5003		data->bytes_alloc_nested += event_len;
5004		data->bytes_written_nested += len;
5005		data->events_nested++;
5006		if (!data->min_size_nested || len < data->min_size_nested)
5007			data->min_size_nested = len;
5008		if (len > data->max_size_nested)
5009			data->max_size_nested = len;
5010	} else {
5011		data->bytes_alloc += event_len;
5012		data->bytes_written += len;
5013		data->events++;
5014		if (!data->min_size || len < data->min_size)
5015			data->max_size = len;
5016		if (len > data->max_size)
5017			data->max_size = len;
5018	}
5019
5020 out:
5021	ring_buffer_unlock_commit(data->buffer, event);
5022
5023	return 0;
5024}
5025
5026static __init int rb_test(void *arg)
5027{
5028	struct rb_test_data *data = arg;
5029
5030	while (!kthread_should_stop()) {
5031		rb_write_something(data, false);
5032		data->cnt++;
5033
5034		set_current_state(TASK_INTERRUPTIBLE);
5035		/* Now sleep between a min of 100-300us and a max of 1ms */
5036		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
5037	}
5038
5039	return 0;
5040}
5041
5042static __init void rb_ipi(void *ignore)
5043{
5044	struct rb_test_data *data;
5045	int cpu = smp_processor_id();
5046
5047	data = &rb_data[cpu];
5048	rb_write_something(data, true);
5049}
5050
5051static __init int rb_hammer_test(void *arg)
5052{
5053	while (!kthread_should_stop()) {
5054
5055		/* Send an IPI to all cpus to write data! */
5056		smp_call_function(rb_ipi, NULL, 1);
5057		/* No sleep, but for non preempt, let others run */
5058		schedule();
5059	}
5060
5061	return 0;
5062}
5063
5064static __init int test_ringbuffer(void)
5065{
5066	struct task_struct *rb_hammer;
5067	struct ring_buffer *buffer;
5068	int cpu;
5069	int ret = 0;
5070
5071	pr_info("Running ring buffer tests...\n");
5072
5073	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5074	if (WARN_ON(!buffer))
5075		return 0;
5076
5077	/* Disable buffer so that threads can't write to it yet */
5078	ring_buffer_record_off(buffer);
5079
5080	for_each_online_cpu(cpu) {
5081		rb_data[cpu].buffer = buffer;
5082		rb_data[cpu].cpu = cpu;
5083		rb_data[cpu].cnt = cpu;
5084		rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5085						 "rbtester/%d", cpu);
5086		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5087			pr_cont("FAILED\n");
5088			ret = PTR_ERR(rb_threads[cpu]);
5089			goto out_free;
5090		}
5091
5092		kthread_bind(rb_threads[cpu], cpu);
5093 		wake_up_process(rb_threads[cpu]);
5094	}
5095
5096	/* Now create the rb hammer! */
5097	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5098	if (WARN_ON(IS_ERR(rb_hammer))) {
5099		pr_cont("FAILED\n");
5100		ret = PTR_ERR(rb_hammer);
5101		goto out_free;
5102	}
5103
5104	ring_buffer_record_on(buffer);
5105	/*
5106	 * Show buffer is enabled before setting rb_test_started.
5107	 * Yes there's a small race window where events could be
5108	 * dropped and the thread wont catch it. But when a ring
5109	 * buffer gets enabled, there will always be some kind of
5110	 * delay before other CPUs see it. Thus, we don't care about
5111	 * those dropped events. We care about events dropped after
5112	 * the threads see that the buffer is active.
5113	 */
5114	smp_wmb();
5115	rb_test_started = true;
5116
5117	set_current_state(TASK_INTERRUPTIBLE);
5118	/* Just run for 10 seconds */;
5119	schedule_timeout(10 * HZ);
5120
5121	kthread_stop(rb_hammer);
5122
5123 out_free:
5124	for_each_online_cpu(cpu) {
5125		if (!rb_threads[cpu])
5126			break;
5127		kthread_stop(rb_threads[cpu]);
5128	}
5129	if (ret) {
5130		ring_buffer_free(buffer);
5131		return ret;
5132	}
5133
5134	/* Report! */
5135	pr_info("finished\n");
5136	for_each_online_cpu(cpu) {
5137		struct ring_buffer_event *event;
5138		struct rb_test_data *data = &rb_data[cpu];
5139		struct rb_item *item;
5140		unsigned long total_events;
5141		unsigned long total_dropped;
5142		unsigned long total_written;
5143		unsigned long total_alloc;
5144		unsigned long total_read = 0;
5145		unsigned long total_size = 0;
5146		unsigned long total_len = 0;
5147		unsigned long total_lost = 0;
5148		unsigned long lost;
5149		int big_event_size;
5150		int small_event_size;
5151
5152		ret = -1;
5153
5154		total_events = data->events + data->events_nested;
5155		total_written = data->bytes_written + data->bytes_written_nested;
5156		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5157		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5158
5159		big_event_size = data->max_size + data->max_size_nested;
5160		small_event_size = data->min_size + data->min_size_nested;
5161
5162		pr_info("CPU %d:\n", cpu);
5163		pr_info("              events:    %ld\n", total_events);
5164		pr_info("       dropped bytes:    %ld\n", total_dropped);
5165		pr_info("       alloced bytes:    %ld\n", total_alloc);
5166		pr_info("       written bytes:    %ld\n", total_written);
5167		pr_info("       biggest event:    %d\n", big_event_size);
5168		pr_info("      smallest event:    %d\n", small_event_size);
5169
5170		if (RB_WARN_ON(buffer, total_dropped))
5171			break;
5172
5173		ret = 0;
5174
5175		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5176			total_lost += lost;
5177			item = ring_buffer_event_data(event);
5178			total_len += ring_buffer_event_length(event);
5179			total_size += item->size + sizeof(struct rb_item);
5180			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5181				pr_info("FAILED!\n");
5182				pr_info("buffer had: %.*s\n", item->size, item->str);
5183				pr_info("expected:   %.*s\n", item->size, rb_string);
5184				RB_WARN_ON(buffer, 1);
5185				ret = -1;
5186				break;
5187			}
5188			total_read++;
5189		}
5190		if (ret)
5191			break;
5192
5193		ret = -1;
5194
5195		pr_info("         read events:   %ld\n", total_read);
5196		pr_info("         lost events:   %ld\n", total_lost);
5197		pr_info("        total events:   %ld\n", total_lost + total_read);
5198		pr_info("  recorded len bytes:   %ld\n", total_len);
5199		pr_info(" recorded size bytes:   %ld\n", total_size);
5200		if (total_lost)
5201			pr_info(" With dropped events, record len and size may not match\n"
5202				" alloced and written from above\n");
5203		if (!total_lost) {
5204			if (RB_WARN_ON(buffer, total_len != total_alloc ||
5205				       total_size != total_written))
5206				break;
5207		}
5208		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5209			break;
5210
5211		ret = 0;
 
 
 
 
 
 
 
 
 
5212	}
5213	if (!ret)
5214		pr_info("Ring buffer PASSED!\n");
5215
5216	ring_buffer_free(buffer);
5217	return 0;
5218}
5219
5220late_initcall(test_ringbuffer);
5221#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
v3.5.6
 
   1/*
   2 * Generic ring buffer
   3 *
   4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
   5 */
 
   6#include <linux/ring_buffer.h>
   7#include <linux/trace_clock.h>
 
 
   8#include <linux/spinlock.h>
   9#include <linux/debugfs.h>
  10#include <linux/uaccess.h>
  11#include <linux/hardirq.h>
  12#include <linux/kmemcheck.h>
  13#include <linux/module.h>
  14#include <linux/percpu.h>
  15#include <linux/mutex.h>
 
  16#include <linux/slab.h>
  17#include <linux/init.h>
  18#include <linux/hash.h>
  19#include <linux/list.h>
  20#include <linux/cpu.h>
  21#include <linux/fs.h>
  22
  23#include <asm/local.h>
  24#include "trace.h"
  25
  26static void update_pages_handler(struct work_struct *work);
  27
  28/*
  29 * The ring buffer header is special. We must manually up keep it.
  30 */
  31int ring_buffer_print_entry_header(struct trace_seq *s)
  32{
  33	int ret;
  34
  35	ret = trace_seq_printf(s, "# compressed entry header\n");
  36	ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
  37	ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
  38	ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
  39	ret = trace_seq_printf(s, "\n");
  40	ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
  41			       RINGBUF_TYPE_PADDING);
  42	ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
  43			       RINGBUF_TYPE_TIME_EXTEND);
  44	ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
  45			       RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
  46
  47	return ret;
  48}
  49
  50/*
  51 * The ring buffer is made up of a list of pages. A separate list of pages is
  52 * allocated for each CPU. A writer may only write to a buffer that is
  53 * associated with the CPU it is currently executing on.  A reader may read
  54 * from any per cpu buffer.
  55 *
  56 * The reader is special. For each per cpu buffer, the reader has its own
  57 * reader page. When a reader has read the entire reader page, this reader
  58 * page is swapped with another page in the ring buffer.
  59 *
  60 * Now, as long as the writer is off the reader page, the reader can do what
  61 * ever it wants with that page. The writer will never write to that page
  62 * again (as long as it is out of the ring buffer).
  63 *
  64 * Here's some silly ASCII art.
  65 *
  66 *   +------+
  67 *   |reader|          RING BUFFER
  68 *   |page  |
  69 *   +------+        +---+   +---+   +---+
  70 *                   |   |-->|   |-->|   |
  71 *                   +---+   +---+   +---+
  72 *                     ^               |
  73 *                     |               |
  74 *                     +---------------+
  75 *
  76 *
  77 *   +------+
  78 *   |reader|          RING BUFFER
  79 *   |page  |------------------v
  80 *   +------+        +---+   +---+   +---+
  81 *                   |   |-->|   |-->|   |
  82 *                   +---+   +---+   +---+
  83 *                     ^               |
  84 *                     |               |
  85 *                     +---------------+
  86 *
  87 *
  88 *   +------+
  89 *   |reader|          RING BUFFER
  90 *   |page  |------------------v
  91 *   +------+        +---+   +---+   +---+
  92 *      ^            |   |-->|   |-->|   |
  93 *      |            +---+   +---+   +---+
  94 *      |                              |
  95 *      |                              |
  96 *      +------------------------------+
  97 *
  98 *
  99 *   +------+
 100 *   |buffer|          RING BUFFER
 101 *   |page  |------------------v
 102 *   +------+        +---+   +---+   +---+
 103 *      ^            |   |   |   |-->|   |
 104 *      |   New      +---+   +---+   +---+
 105 *      |  Reader------^               |
 106 *      |   page                       |
 107 *      +------------------------------+
 108 *
 109 *
 110 * After we make this swap, the reader can hand this page off to the splice
 111 * code and be done with it. It can even allocate a new page if it needs to
 112 * and swap that into the ring buffer.
 113 *
 114 * We will be using cmpxchg soon to make all this lockless.
 115 *
 116 */
 117
 118/*
 119 * A fast way to enable or disable all ring buffers is to
 120 * call tracing_on or tracing_off. Turning off the ring buffers
 121 * prevents all ring buffers from being recorded to.
 122 * Turning this switch on, makes it OK to write to the
 123 * ring buffer, if the ring buffer is enabled itself.
 124 *
 125 * There's three layers that must be on in order to write
 126 * to the ring buffer.
 127 *
 128 * 1) This global flag must be set.
 129 * 2) The ring buffer must be enabled for recording.
 130 * 3) The per cpu buffer must be enabled for recording.
 131 *
 132 * In case of an anomaly, this global flag has a bit set that
 133 * will permantly disable all ring buffers.
 134 */
 135
 136/*
 137 * Global flag to disable all recording to ring buffers
 138 *  This has two bits: ON, DISABLED
 139 *
 140 *  ON   DISABLED
 141 * ---- ----------
 142 *   0      0        : ring buffers are off
 143 *   1      0        : ring buffers are on
 144 *   X      1        : ring buffers are permanently disabled
 145 */
 146
 147enum {
 148	RB_BUFFERS_ON_BIT	= 0,
 149	RB_BUFFERS_DISABLED_BIT	= 1,
 150};
 151
 152enum {
 153	RB_BUFFERS_ON		= 1 << RB_BUFFERS_ON_BIT,
 154	RB_BUFFERS_DISABLED	= 1 << RB_BUFFERS_DISABLED_BIT,
 155};
 156
 157static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
 158
 159/* Used for individual buffers (after the counter) */
 160#define RB_BUFFER_OFF		(1 << 20)
 161
 162#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
 163
 164/**
 165 * tracing_off_permanent - permanently disable ring buffers
 166 *
 167 * This function, once called, will disable all ring buffers
 168 * permanently.
 169 */
 170void tracing_off_permanent(void)
 171{
 172	set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
 173}
 174
 175#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
 176#define RB_ALIGNMENT		4U
 177#define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 178#define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
 179
 180#if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
 181# define RB_FORCE_8BYTE_ALIGNMENT	0
 182# define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
 183#else
 184# define RB_FORCE_8BYTE_ALIGNMENT	1
 185# define RB_ARCH_ALIGNMENT		8U
 186#endif
 187
 188/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
 189#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
 190
 191enum {
 192	RB_LEN_TIME_EXTEND = 8,
 193	RB_LEN_TIME_STAMP = 16,
 194};
 195
 196#define skip_time_extend(event) \
 197	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
 198
 
 
 
 199static inline int rb_null_event(struct ring_buffer_event *event)
 200{
 201	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
 202}
 203
 204static void rb_event_set_padding(struct ring_buffer_event *event)
 205{
 206	/* padding has a NULL time_delta */
 207	event->type_len = RINGBUF_TYPE_PADDING;
 208	event->time_delta = 0;
 209}
 210
 211static unsigned
 212rb_event_data_length(struct ring_buffer_event *event)
 213{
 214	unsigned length;
 215
 216	if (event->type_len)
 217		length = event->type_len * RB_ALIGNMENT;
 218	else
 219		length = event->array[0];
 220	return length + RB_EVNT_HDR_SIZE;
 221}
 222
 223/*
 224 * Return the length of the given event. Will return
 225 * the length of the time extend if the event is a
 226 * time extend.
 227 */
 228static inline unsigned
 229rb_event_length(struct ring_buffer_event *event)
 230{
 231	switch (event->type_len) {
 232	case RINGBUF_TYPE_PADDING:
 233		if (rb_null_event(event))
 234			/* undefined */
 235			return -1;
 236		return  event->array[0] + RB_EVNT_HDR_SIZE;
 237
 238	case RINGBUF_TYPE_TIME_EXTEND:
 239		return RB_LEN_TIME_EXTEND;
 240
 241	case RINGBUF_TYPE_TIME_STAMP:
 242		return RB_LEN_TIME_STAMP;
 243
 244	case RINGBUF_TYPE_DATA:
 245		return rb_event_data_length(event);
 246	default:
 247		BUG();
 248	}
 249	/* not hit */
 250	return 0;
 251}
 252
 253/*
 254 * Return total length of time extend and data,
 255 *   or just the event length for all other events.
 256 */
 257static inline unsigned
 258rb_event_ts_length(struct ring_buffer_event *event)
 259{
 260	unsigned len = 0;
 261
 262	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
 263		/* time extends include the data event after it */
 264		len = RB_LEN_TIME_EXTEND;
 265		event = skip_time_extend(event);
 266	}
 267	return len + rb_event_length(event);
 268}
 269
 270/**
 271 * ring_buffer_event_length - return the length of the event
 272 * @event: the event to get the length of
 273 *
 274 * Returns the size of the data load of a data event.
 275 * If the event is something other than a data event, it
 276 * returns the size of the event itself. With the exception
 277 * of a TIME EXTEND, where it still returns the size of the
 278 * data load of the data event after it.
 279 */
 280unsigned ring_buffer_event_length(struct ring_buffer_event *event)
 281{
 282	unsigned length;
 283
 284	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
 285		event = skip_time_extend(event);
 286
 287	length = rb_event_length(event);
 288	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 289		return length;
 290	length -= RB_EVNT_HDR_SIZE;
 291	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
 292                length -= sizeof(event->array[0]);
 293	return length;
 294}
 295EXPORT_SYMBOL_GPL(ring_buffer_event_length);
 296
 297/* inline for ring buffer fast paths */
 298static void *
 299rb_event_data(struct ring_buffer_event *event)
 300{
 301	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
 302		event = skip_time_extend(event);
 303	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
 304	/* If length is in len field, then array[0] has the data */
 305	if (event->type_len)
 306		return (void *)&event->array[0];
 307	/* Otherwise length is in array[0] and array[1] has the data */
 308	return (void *)&event->array[1];
 309}
 310
 311/**
 312 * ring_buffer_event_data - return the data of the event
 313 * @event: the event to get the data from
 314 */
 315void *ring_buffer_event_data(struct ring_buffer_event *event)
 316{
 317	return rb_event_data(event);
 318}
 319EXPORT_SYMBOL_GPL(ring_buffer_event_data);
 320
 321#define for_each_buffer_cpu(buffer, cpu)		\
 322	for_each_cpu(cpu, buffer->cpumask)
 323
 324#define TS_SHIFT	27
 325#define TS_MASK		((1ULL << TS_SHIFT) - 1)
 326#define TS_DELTA_TEST	(~TS_MASK)
 327
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 328/* Flag when events were overwritten */
 329#define RB_MISSED_EVENTS	(1 << 31)
 330/* Missed count stored at end */
 331#define RB_MISSED_STORED	(1 << 30)
 332
 
 
 333struct buffer_data_page {
 334	u64		 time_stamp;	/* page time stamp */
 335	local_t		 commit;	/* write committed index */
 336	unsigned char	 data[];	/* data of buffer page */
 337};
 338
 339/*
 340 * Note, the buffer_page list must be first. The buffer pages
 341 * are allocated in cache lines, which means that each buffer
 342 * page will be at the beginning of a cache line, and thus
 343 * the least significant bits will be zero. We use this to
 344 * add flags in the list struct pointers, to make the ring buffer
 345 * lockless.
 346 */
 347struct buffer_page {
 348	struct list_head list;		/* list of buffer pages */
 349	local_t		 write;		/* index for next write */
 350	unsigned	 read;		/* index for next read */
 351	local_t		 entries;	/* entries on this page */
 352	unsigned long	 real_end;	/* real end of data */
 353	struct buffer_data_page *page;	/* Actual data page */
 354};
 355
 356/*
 357 * The buffer page counters, write and entries, must be reset
 358 * atomically when crossing page boundaries. To synchronize this
 359 * update, two counters are inserted into the number. One is
 360 * the actual counter for the write position or count on the page.
 361 *
 362 * The other is a counter of updaters. Before an update happens
 363 * the update partition of the counter is incremented. This will
 364 * allow the updater to update the counter atomically.
 365 *
 366 * The counter is 20 bits, and the state data is 12.
 367 */
 368#define RB_WRITE_MASK		0xfffff
 369#define RB_WRITE_INTCNT		(1 << 20)
 370
 371static void rb_init_page(struct buffer_data_page *bpage)
 372{
 373	local_set(&bpage->commit, 0);
 374}
 375
 376/**
 377 * ring_buffer_page_len - the size of data on the page.
 378 * @page: The page to read
 379 *
 380 * Returns the amount of data on the page, including buffer page header.
 381 */
 382size_t ring_buffer_page_len(void *page)
 383{
 384	return local_read(&((struct buffer_data_page *)page)->commit)
 385		+ BUF_PAGE_HDR_SIZE;
 386}
 387
 388/*
 389 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
 390 * this issue out.
 391 */
 392static void free_buffer_page(struct buffer_page *bpage)
 393{
 394	free_page((unsigned long)bpage->page);
 395	kfree(bpage);
 396}
 397
 398/*
 399 * We need to fit the time_stamp delta into 27 bits.
 400 */
 401static inline int test_time_stamp(u64 delta)
 402{
 403	if (delta & TS_DELTA_TEST)
 404		return 1;
 405	return 0;
 406}
 407
 408#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
 409
 410/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
 411#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
 412
 413int ring_buffer_print_page_header(struct trace_seq *s)
 414{
 415	struct buffer_data_page field;
 416	int ret;
 417
 418	ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
 419			       "offset:0;\tsize:%u;\tsigned:%u;\n",
 420			       (unsigned int)sizeof(field.time_stamp),
 421			       (unsigned int)is_signed_type(u64));
 422
 423	ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
 424			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
 425			       (unsigned int)offsetof(typeof(field), commit),
 426			       (unsigned int)sizeof(field.commit),
 427			       (unsigned int)is_signed_type(long));
 428
 429	ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
 430			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
 431			       (unsigned int)offsetof(typeof(field), commit),
 432			       1,
 433			       (unsigned int)is_signed_type(long));
 434
 435	ret = trace_seq_printf(s, "\tfield: char data;\t"
 436			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
 437			       (unsigned int)offsetof(typeof(field), data),
 438			       (unsigned int)BUF_PAGE_SIZE,
 439			       (unsigned int)is_signed_type(char));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 440
 441	return ret;
 442}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 443
 444/*
 445 * head_page == tail_page && head == tail then buffer is empty.
 446 */
 447struct ring_buffer_per_cpu {
 448	int				cpu;
 449	atomic_t			record_disabled;
 450	struct ring_buffer		*buffer;
 451	raw_spinlock_t			reader_lock;	/* serialize readers */
 452	arch_spinlock_t			lock;
 453	struct lock_class_key		lock_key;
 454	unsigned int			nr_pages;
 
 
 455	struct list_head		*pages;
 456	struct buffer_page		*head_page;	/* read from head */
 457	struct buffer_page		*tail_page;	/* write to tail */
 458	struct buffer_page		*commit_page;	/* committed pages */
 459	struct buffer_page		*reader_page;
 460	unsigned long			lost_events;
 461	unsigned long			last_overrun;
 
 462	local_t				entries_bytes;
 
 
 463	local_t				commit_overrun;
 464	local_t				overrun;
 465	local_t				entries;
 466	local_t				committing;
 467	local_t				commits;
 
 
 
 
 468	unsigned long			read;
 469	unsigned long			read_bytes;
 470	u64				write_stamp;
 471	u64				read_stamp;
 472	/* ring buffer pages to update, > 0 to add, < 0 to remove */
 473	int				nr_pages_to_update;
 474	struct list_head		new_pages; /* new pages to add */
 475	struct work_struct		update_pages_work;
 476	struct completion		update_done;
 
 
 477};
 478
 479struct ring_buffer {
 480	unsigned			flags;
 481	int				cpus;
 482	atomic_t			record_disabled;
 483	atomic_t			resize_disabled;
 484	cpumask_var_t			cpumask;
 485
 486	struct lock_class_key		*reader_lock_key;
 487
 488	struct mutex			mutex;
 489
 490	struct ring_buffer_per_cpu	**buffers;
 491
 492#ifdef CONFIG_HOTPLUG_CPU
 493	struct notifier_block		cpu_notify;
 494#endif
 495	u64				(*clock)(void);
 
 
 
 496};
 497
 498struct ring_buffer_iter {
 499	struct ring_buffer_per_cpu	*cpu_buffer;
 500	unsigned long			head;
 501	struct buffer_page		*head_page;
 502	struct buffer_page		*cache_reader_page;
 503	unsigned long			cache_read;
 504	u64				read_stamp;
 505};
 506
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 507/* buffer may be either ring_buffer or ring_buffer_per_cpu */
 508#define RB_WARN_ON(b, cond)						\
 509	({								\
 510		int _____ret = unlikely(cond);				\
 511		if (_____ret) {						\
 512			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
 513				struct ring_buffer_per_cpu *__b =	\
 514					(void *)b;			\
 515				atomic_inc(&__b->buffer->record_disabled); \
 516			} else						\
 517				atomic_inc(&b->record_disabled);	\
 518			WARN_ON(1);					\
 519		}							\
 520		_____ret;						\
 521	})
 522
 523/* Up this if you want to test the TIME_EXTENTS and normalization */
 524#define DEBUG_SHIFT 0
 525
 526static inline u64 rb_time_stamp(struct ring_buffer *buffer)
 527{
 528	/* shift to debug/test normalization and TIME_EXTENTS */
 529	return buffer->clock() << DEBUG_SHIFT;
 530}
 531
 532u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
 533{
 534	u64 time;
 535
 536	preempt_disable_notrace();
 537	time = rb_time_stamp(buffer);
 538	preempt_enable_no_resched_notrace();
 539
 540	return time;
 541}
 542EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
 543
 544void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
 545				      int cpu, u64 *ts)
 546{
 547	/* Just stupid testing the normalize function and deltas */
 548	*ts >>= DEBUG_SHIFT;
 549}
 550EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
 551
 552/*
 553 * Making the ring buffer lockless makes things tricky.
 554 * Although writes only happen on the CPU that they are on,
 555 * and they only need to worry about interrupts. Reads can
 556 * happen on any CPU.
 557 *
 558 * The reader page is always off the ring buffer, but when the
 559 * reader finishes with a page, it needs to swap its page with
 560 * a new one from the buffer. The reader needs to take from
 561 * the head (writes go to the tail). But if a writer is in overwrite
 562 * mode and wraps, it must push the head page forward.
 563 *
 564 * Here lies the problem.
 565 *
 566 * The reader must be careful to replace only the head page, and
 567 * not another one. As described at the top of the file in the
 568 * ASCII art, the reader sets its old page to point to the next
 569 * page after head. It then sets the page after head to point to
 570 * the old reader page. But if the writer moves the head page
 571 * during this operation, the reader could end up with the tail.
 572 *
 573 * We use cmpxchg to help prevent this race. We also do something
 574 * special with the page before head. We set the LSB to 1.
 575 *
 576 * When the writer must push the page forward, it will clear the
 577 * bit that points to the head page, move the head, and then set
 578 * the bit that points to the new head page.
 579 *
 580 * We also don't want an interrupt coming in and moving the head
 581 * page on another writer. Thus we use the second LSB to catch
 582 * that too. Thus:
 583 *
 584 * head->list->prev->next        bit 1          bit 0
 585 *                              -------        -------
 586 * Normal page                     0              0
 587 * Points to head page             0              1
 588 * New head page                   1              0
 589 *
 590 * Note we can not trust the prev pointer of the head page, because:
 591 *
 592 * +----+       +-----+        +-----+
 593 * |    |------>|  T  |---X--->|  N  |
 594 * |    |<------|     |        |     |
 595 * +----+       +-----+        +-----+
 596 *   ^                           ^ |
 597 *   |          +-----+          | |
 598 *   +----------|  R  |----------+ |
 599 *              |     |<-----------+
 600 *              +-----+
 601 *
 602 * Key:  ---X-->  HEAD flag set in pointer
 603 *         T      Tail page
 604 *         R      Reader page
 605 *         N      Next page
 606 *
 607 * (see __rb_reserve_next() to see where this happens)
 608 *
 609 *  What the above shows is that the reader just swapped out
 610 *  the reader page with a page in the buffer, but before it
 611 *  could make the new header point back to the new page added
 612 *  it was preempted by a writer. The writer moved forward onto
 613 *  the new page added by the reader and is about to move forward
 614 *  again.
 615 *
 616 *  You can see, it is legitimate for the previous pointer of
 617 *  the head (or any page) not to point back to itself. But only
 618 *  temporarially.
 619 */
 620
 621#define RB_PAGE_NORMAL		0UL
 622#define RB_PAGE_HEAD		1UL
 623#define RB_PAGE_UPDATE		2UL
 624
 625
 626#define RB_FLAG_MASK		3UL
 627
 628/* PAGE_MOVED is not part of the mask */
 629#define RB_PAGE_MOVED		4UL
 630
 631/*
 632 * rb_list_head - remove any bit
 633 */
 634static struct list_head *rb_list_head(struct list_head *list)
 635{
 636	unsigned long val = (unsigned long)list;
 637
 638	return (struct list_head *)(val & ~RB_FLAG_MASK);
 639}
 640
 641/*
 642 * rb_is_head_page - test if the given page is the head page
 643 *
 644 * Because the reader may move the head_page pointer, we can
 645 * not trust what the head page is (it may be pointing to
 646 * the reader page). But if the next page is a header page,
 647 * its flags will be non zero.
 648 */
 649static inline int
 650rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
 651		struct buffer_page *page, struct list_head *list)
 652{
 653	unsigned long val;
 654
 655	val = (unsigned long)list->next;
 656
 657	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
 658		return RB_PAGE_MOVED;
 659
 660	return val & RB_FLAG_MASK;
 661}
 662
 663/*
 664 * rb_is_reader_page
 665 *
 666 * The unique thing about the reader page, is that, if the
 667 * writer is ever on it, the previous pointer never points
 668 * back to the reader page.
 669 */
 670static int rb_is_reader_page(struct buffer_page *page)
 671{
 672	struct list_head *list = page->list.prev;
 673
 674	return rb_list_head(list->next) != &page->list;
 675}
 676
 677/*
 678 * rb_set_list_to_head - set a list_head to be pointing to head.
 679 */
 680static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
 681				struct list_head *list)
 682{
 683	unsigned long *ptr;
 684
 685	ptr = (unsigned long *)&list->next;
 686	*ptr |= RB_PAGE_HEAD;
 687	*ptr &= ~RB_PAGE_UPDATE;
 688}
 689
 690/*
 691 * rb_head_page_activate - sets up head page
 692 */
 693static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
 694{
 695	struct buffer_page *head;
 696
 697	head = cpu_buffer->head_page;
 698	if (!head)
 699		return;
 700
 701	/*
 702	 * Set the previous list pointer to have the HEAD flag.
 703	 */
 704	rb_set_list_to_head(cpu_buffer, head->list.prev);
 705}
 706
 707static void rb_list_head_clear(struct list_head *list)
 708{
 709	unsigned long *ptr = (unsigned long *)&list->next;
 710
 711	*ptr &= ~RB_FLAG_MASK;
 712}
 713
 714/*
 715 * rb_head_page_dactivate - clears head page ptr (for free list)
 716 */
 717static void
 718rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
 719{
 720	struct list_head *hd;
 721
 722	/* Go through the whole list and clear any pointers found. */
 723	rb_list_head_clear(cpu_buffer->pages);
 724
 725	list_for_each(hd, cpu_buffer->pages)
 726		rb_list_head_clear(hd);
 727}
 728
 729static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
 730			    struct buffer_page *head,
 731			    struct buffer_page *prev,
 732			    int old_flag, int new_flag)
 733{
 734	struct list_head *list;
 735	unsigned long val = (unsigned long)&head->list;
 736	unsigned long ret;
 737
 738	list = &prev->list;
 739
 740	val &= ~RB_FLAG_MASK;
 741
 742	ret = cmpxchg((unsigned long *)&list->next,
 743		      val | old_flag, val | new_flag);
 744
 745	/* check if the reader took the page */
 746	if ((ret & ~RB_FLAG_MASK) != val)
 747		return RB_PAGE_MOVED;
 748
 749	return ret & RB_FLAG_MASK;
 750}
 751
 752static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
 753				   struct buffer_page *head,
 754				   struct buffer_page *prev,
 755				   int old_flag)
 756{
 757	return rb_head_page_set(cpu_buffer, head, prev,
 758				old_flag, RB_PAGE_UPDATE);
 759}
 760
 761static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
 762				 struct buffer_page *head,
 763				 struct buffer_page *prev,
 764				 int old_flag)
 765{
 766	return rb_head_page_set(cpu_buffer, head, prev,
 767				old_flag, RB_PAGE_HEAD);
 768}
 769
 770static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
 771				   struct buffer_page *head,
 772				   struct buffer_page *prev,
 773				   int old_flag)
 774{
 775	return rb_head_page_set(cpu_buffer, head, prev,
 776				old_flag, RB_PAGE_NORMAL);
 777}
 778
 779static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
 780			       struct buffer_page **bpage)
 781{
 782	struct list_head *p = rb_list_head((*bpage)->list.next);
 783
 784	*bpage = list_entry(p, struct buffer_page, list);
 785}
 786
 787static struct buffer_page *
 788rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
 789{
 790	struct buffer_page *head;
 791	struct buffer_page *page;
 792	struct list_head *list;
 793	int i;
 794
 795	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
 796		return NULL;
 797
 798	/* sanity check */
 799	list = cpu_buffer->pages;
 800	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
 801		return NULL;
 802
 803	page = head = cpu_buffer->head_page;
 804	/*
 805	 * It is possible that the writer moves the header behind
 806	 * where we started, and we miss in one loop.
 807	 * A second loop should grab the header, but we'll do
 808	 * three loops just because I'm paranoid.
 809	 */
 810	for (i = 0; i < 3; i++) {
 811		do {
 812			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
 813				cpu_buffer->head_page = page;
 814				return page;
 815			}
 816			rb_inc_page(cpu_buffer, &page);
 817		} while (page != head);
 818	}
 819
 820	RB_WARN_ON(cpu_buffer, 1);
 821
 822	return NULL;
 823}
 824
 825static int rb_head_page_replace(struct buffer_page *old,
 826				struct buffer_page *new)
 827{
 828	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
 829	unsigned long val;
 830	unsigned long ret;
 831
 832	val = *ptr & ~RB_FLAG_MASK;
 833	val |= RB_PAGE_HEAD;
 834
 835	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
 836
 837	return ret == val;
 838}
 839
 840/*
 841 * rb_tail_page_update - move the tail page forward
 842 *
 843 * Returns 1 if moved tail page, 0 if someone else did.
 844 */
 845static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
 846			       struct buffer_page *tail_page,
 847			       struct buffer_page *next_page)
 848{
 849	struct buffer_page *old_tail;
 850	unsigned long old_entries;
 851	unsigned long old_write;
 852	int ret = 0;
 853
 854	/*
 855	 * The tail page now needs to be moved forward.
 856	 *
 857	 * We need to reset the tail page, but without messing
 858	 * with possible erasing of data brought in by interrupts
 859	 * that have moved the tail page and are currently on it.
 860	 *
 861	 * We add a counter to the write field to denote this.
 862	 */
 863	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
 864	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
 865
 
 866	/*
 867	 * Just make sure we have seen our old_write and synchronize
 868	 * with any interrupts that come in.
 869	 */
 870	barrier();
 871
 872	/*
 873	 * If the tail page is still the same as what we think
 874	 * it is, then it is up to us to update the tail
 875	 * pointer.
 876	 */
 877	if (tail_page == cpu_buffer->tail_page) {
 878		/* Zero the write counter */
 879		unsigned long val = old_write & ~RB_WRITE_MASK;
 880		unsigned long eval = old_entries & ~RB_WRITE_MASK;
 881
 882		/*
 883		 * This will only succeed if an interrupt did
 884		 * not come in and change it. In which case, we
 885		 * do not want to modify it.
 886		 *
 887		 * We add (void) to let the compiler know that we do not care
 888		 * about the return value of these functions. We use the
 889		 * cmpxchg to only update if an interrupt did not already
 890		 * do it for us. If the cmpxchg fails, we don't care.
 891		 */
 892		(void)local_cmpxchg(&next_page->write, old_write, val);
 893		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
 894
 895		/*
 896		 * No need to worry about races with clearing out the commit.
 897		 * it only can increment when a commit takes place. But that
 898		 * only happens in the outer most nested commit.
 899		 */
 900		local_set(&next_page->page->commit, 0);
 901
 902		old_tail = cmpxchg(&cpu_buffer->tail_page,
 903				   tail_page, next_page);
 904
 905		if (old_tail == tail_page)
 906			ret = 1;
 907	}
 908
 909	return ret;
 910}
 911
 912static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
 913			  struct buffer_page *bpage)
 914{
 915	unsigned long val = (unsigned long)bpage;
 916
 917	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
 918		return 1;
 919
 920	return 0;
 921}
 922
 923/**
 924 * rb_check_list - make sure a pointer to a list has the last bits zero
 925 */
 926static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
 927			 struct list_head *list)
 928{
 929	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
 930		return 1;
 931	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
 932		return 1;
 933	return 0;
 934}
 935
 936/**
 937 * check_pages - integrity check of buffer pages
 938 * @cpu_buffer: CPU buffer with pages to test
 939 *
 940 * As a safety measure we check to make sure the data pages have not
 941 * been corrupted.
 942 */
 943static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
 944{
 945	struct list_head *head = cpu_buffer->pages;
 946	struct buffer_page *bpage, *tmp;
 947
 948	/* Reset the head page if it exists */
 949	if (cpu_buffer->head_page)
 950		rb_set_head_page(cpu_buffer);
 951
 952	rb_head_page_deactivate(cpu_buffer);
 953
 954	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
 955		return -1;
 956	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
 957		return -1;
 958
 959	if (rb_check_list(cpu_buffer, head))
 960		return -1;
 961
 962	list_for_each_entry_safe(bpage, tmp, head, list) {
 963		if (RB_WARN_ON(cpu_buffer,
 964			       bpage->list.next->prev != &bpage->list))
 965			return -1;
 966		if (RB_WARN_ON(cpu_buffer,
 967			       bpage->list.prev->next != &bpage->list))
 968			return -1;
 969		if (rb_check_list(cpu_buffer, &bpage->list))
 970			return -1;
 971	}
 972
 973	rb_head_page_activate(cpu_buffer);
 974
 975	return 0;
 976}
 977
 978static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
 979{
 980	int i;
 981	struct buffer_page *bpage, *tmp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 982
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 983	for (i = 0; i < nr_pages; i++) {
 984		struct page *page;
 985		/*
 986		 * __GFP_NORETRY flag makes sure that the allocation fails
 987		 * gracefully without invoking oom-killer and the system is
 988		 * not destabilized.
 989		 */
 990		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
 991				    GFP_KERNEL | __GFP_NORETRY,
 992				    cpu_to_node(cpu));
 993		if (!bpage)
 994			goto free_pages;
 995
 996		list_add(&bpage->list, pages);
 997
 998		page = alloc_pages_node(cpu_to_node(cpu),
 999					GFP_KERNEL | __GFP_NORETRY, 0);
1000		if (!page)
1001			goto free_pages;
1002		bpage->page = page_address(page);
1003		rb_init_page(bpage->page);
 
 
 
1004	}
 
 
1005
1006	return 0;
1007
1008free_pages:
1009	list_for_each_entry_safe(bpage, tmp, pages, list) {
1010		list_del_init(&bpage->list);
1011		free_buffer_page(bpage);
1012	}
 
 
1013
1014	return -ENOMEM;
1015}
1016
1017static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1018			     unsigned nr_pages)
1019{
1020	LIST_HEAD(pages);
1021
1022	WARN_ON(!nr_pages);
1023
1024	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1025		return -ENOMEM;
1026
1027	/*
1028	 * The ring buffer page list is a circular list that does not
1029	 * start and end with a list head. All page list items point to
1030	 * other pages.
1031	 */
1032	cpu_buffer->pages = pages.next;
1033	list_del(&pages);
1034
1035	cpu_buffer->nr_pages = nr_pages;
1036
1037	rb_check_pages(cpu_buffer);
1038
1039	return 0;
1040}
1041
1042static struct ring_buffer_per_cpu *
1043rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1044{
1045	struct ring_buffer_per_cpu *cpu_buffer;
1046	struct buffer_page *bpage;
1047	struct page *page;
1048	int ret;
1049
1050	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1051				  GFP_KERNEL, cpu_to_node(cpu));
1052	if (!cpu_buffer)
1053		return NULL;
1054
1055	cpu_buffer->cpu = cpu;
1056	cpu_buffer->buffer = buffer;
1057	raw_spin_lock_init(&cpu_buffer->reader_lock);
1058	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1059	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1060	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1061	init_completion(&cpu_buffer->update_done);
 
 
 
1062
1063	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1064			    GFP_KERNEL, cpu_to_node(cpu));
1065	if (!bpage)
1066		goto fail_free_buffer;
1067
1068	rb_check_bpage(cpu_buffer, bpage);
1069
1070	cpu_buffer->reader_page = bpage;
1071	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1072	if (!page)
1073		goto fail_free_reader;
1074	bpage->page = page_address(page);
1075	rb_init_page(bpage->page);
1076
1077	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1078	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1079
1080	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1081	if (ret < 0)
1082		goto fail_free_reader;
1083
1084	cpu_buffer->head_page
1085		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1086	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1087
1088	rb_head_page_activate(cpu_buffer);
1089
1090	return cpu_buffer;
1091
1092 fail_free_reader:
1093	free_buffer_page(cpu_buffer->reader_page);
1094
1095 fail_free_buffer:
1096	kfree(cpu_buffer);
1097	return NULL;
1098}
1099
1100static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1101{
1102	struct list_head *head = cpu_buffer->pages;
1103	struct buffer_page *bpage, *tmp;
1104
1105	free_buffer_page(cpu_buffer->reader_page);
1106
1107	rb_head_page_deactivate(cpu_buffer);
1108
1109	if (head) {
1110		list_for_each_entry_safe(bpage, tmp, head, list) {
1111			list_del_init(&bpage->list);
1112			free_buffer_page(bpage);
1113		}
1114		bpage = list_entry(head, struct buffer_page, list);
1115		free_buffer_page(bpage);
1116	}
1117
1118	kfree(cpu_buffer);
1119}
1120
1121#ifdef CONFIG_HOTPLUG_CPU
1122static int rb_cpu_notify(struct notifier_block *self,
1123			 unsigned long action, void *hcpu);
1124#endif
1125
1126/**
1127 * ring_buffer_alloc - allocate a new ring_buffer
1128 * @size: the size in bytes per cpu that is needed.
1129 * @flags: attributes to set for the ring buffer.
1130 *
1131 * Currently the only flag that is available is the RB_FL_OVERWRITE
1132 * flag. This flag means that the buffer will overwrite old data
1133 * when the buffer wraps. If this flag is not set, the buffer will
1134 * drop data when the tail hits the head.
1135 */
1136struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1137					struct lock_class_key *key)
1138{
1139	struct ring_buffer *buffer;
 
1140	int bsize;
1141	int cpu, nr_pages;
 
1142
1143	/* keep it in its own cache line */
1144	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1145			 GFP_KERNEL);
1146	if (!buffer)
1147		return NULL;
1148
1149	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1150		goto fail_free_buffer;
1151
1152	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1153	buffer->flags = flags;
1154	buffer->clock = trace_clock_local;
1155	buffer->reader_lock_key = key;
1156
 
 
 
1157	/* need at least two pages */
1158	if (nr_pages < 2)
1159		nr_pages = 2;
1160
1161	/*
1162	 * In case of non-hotplug cpu, if the ring-buffer is allocated
1163	 * in early initcall, it will not be notified of secondary cpus.
1164	 * In that off case, we need to allocate for all possible cpus.
1165	 */
1166#ifdef CONFIG_HOTPLUG_CPU
1167	get_online_cpus();
1168	cpumask_copy(buffer->cpumask, cpu_online_mask);
1169#else
1170	cpumask_copy(buffer->cpumask, cpu_possible_mask);
1171#endif
1172	buffer->cpus = nr_cpu_ids;
1173
1174	bsize = sizeof(void *) * nr_cpu_ids;
1175	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1176				  GFP_KERNEL);
1177	if (!buffer->buffers)
1178		goto fail_free_cpumask;
1179
1180	for_each_buffer_cpu(buffer, cpu) {
1181		buffer->buffers[cpu] =
1182			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1183		if (!buffer->buffers[cpu])
1184			goto fail_free_buffers;
1185	}
1186
1187#ifdef CONFIG_HOTPLUG_CPU
1188	buffer->cpu_notify.notifier_call = rb_cpu_notify;
1189	buffer->cpu_notify.priority = 0;
1190	register_cpu_notifier(&buffer->cpu_notify);
1191#endif
1192
1193	put_online_cpus();
1194	mutex_init(&buffer->mutex);
1195
1196	return buffer;
1197
1198 fail_free_buffers:
1199	for_each_buffer_cpu(buffer, cpu) {
1200		if (buffer->buffers[cpu])
1201			rb_free_cpu_buffer(buffer->buffers[cpu]);
1202	}
1203	kfree(buffer->buffers);
1204
1205 fail_free_cpumask:
1206	free_cpumask_var(buffer->cpumask);
1207	put_online_cpus();
1208
1209 fail_free_buffer:
1210	kfree(buffer);
1211	return NULL;
1212}
1213EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1214
1215/**
1216 * ring_buffer_free - free a ring buffer.
1217 * @buffer: the buffer to free.
1218 */
1219void
1220ring_buffer_free(struct ring_buffer *buffer)
1221{
1222	int cpu;
1223
1224	get_online_cpus();
1225
1226#ifdef CONFIG_HOTPLUG_CPU
1227	unregister_cpu_notifier(&buffer->cpu_notify);
1228#endif
1229
1230	for_each_buffer_cpu(buffer, cpu)
1231		rb_free_cpu_buffer(buffer->buffers[cpu]);
1232
1233	put_online_cpus();
1234
1235	kfree(buffer->buffers);
1236	free_cpumask_var(buffer->cpumask);
1237
1238	kfree(buffer);
1239}
1240EXPORT_SYMBOL_GPL(ring_buffer_free);
1241
1242void ring_buffer_set_clock(struct ring_buffer *buffer,
1243			   u64 (*clock)(void))
1244{
1245	buffer->clock = clock;
1246}
1247
 
 
 
 
 
 
 
 
 
 
1248static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1249
1250static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1251{
1252	return local_read(&bpage->entries) & RB_WRITE_MASK;
1253}
1254
1255static inline unsigned long rb_page_write(struct buffer_page *bpage)
1256{
1257	return local_read(&bpage->write) & RB_WRITE_MASK;
1258}
1259
1260static int
1261rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1262{
1263	struct list_head *tail_page, *to_remove, *next_page;
1264	struct buffer_page *to_remove_page, *tmp_iter_page;
1265	struct buffer_page *last_page, *first_page;
1266	unsigned int nr_removed;
1267	unsigned long head_bit;
1268	int page_entries;
1269
1270	head_bit = 0;
1271
1272	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1273	atomic_inc(&cpu_buffer->record_disabled);
1274	/*
1275	 * We don't race with the readers since we have acquired the reader
1276	 * lock. We also don't race with writers after disabling recording.
1277	 * This makes it easy to figure out the first and the last page to be
1278	 * removed from the list. We unlink all the pages in between including
1279	 * the first and last pages. This is done in a busy loop so that we
1280	 * lose the least number of traces.
1281	 * The pages are freed after we restart recording and unlock readers.
1282	 */
1283	tail_page = &cpu_buffer->tail_page->list;
1284
1285	/*
1286	 * tail page might be on reader page, we remove the next page
1287	 * from the ring buffer
1288	 */
1289	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1290		tail_page = rb_list_head(tail_page->next);
1291	to_remove = tail_page;
1292
1293	/* start of pages to remove */
1294	first_page = list_entry(rb_list_head(to_remove->next),
1295				struct buffer_page, list);
1296
1297	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1298		to_remove = rb_list_head(to_remove)->next;
1299		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1300	}
1301
1302	next_page = rb_list_head(to_remove)->next;
1303
1304	/*
1305	 * Now we remove all pages between tail_page and next_page.
1306	 * Make sure that we have head_bit value preserved for the
1307	 * next page
1308	 */
1309	tail_page->next = (struct list_head *)((unsigned long)next_page |
1310						head_bit);
1311	next_page = rb_list_head(next_page);
1312	next_page->prev = tail_page;
1313
1314	/* make sure pages points to a valid page in the ring buffer */
1315	cpu_buffer->pages = next_page;
1316
1317	/* update head page */
1318	if (head_bit)
1319		cpu_buffer->head_page = list_entry(next_page,
1320						struct buffer_page, list);
1321
1322	/*
1323	 * change read pointer to make sure any read iterators reset
1324	 * themselves
1325	 */
1326	cpu_buffer->read = 0;
1327
1328	/* pages are removed, resume tracing and then free the pages */
1329	atomic_dec(&cpu_buffer->record_disabled);
1330	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1331
1332	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1333
1334	/* last buffer page to remove */
1335	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1336				list);
1337	tmp_iter_page = first_page;
1338
1339	do {
 
 
1340		to_remove_page = tmp_iter_page;
1341		rb_inc_page(cpu_buffer, &tmp_iter_page);
1342
1343		/* update the counters */
1344		page_entries = rb_page_entries(to_remove_page);
1345		if (page_entries) {
1346			/*
1347			 * If something was added to this page, it was full
1348			 * since it is not the tail page. So we deduct the
1349			 * bytes consumed in ring buffer from here.
1350			 * Increment overrun to account for the lost events.
1351			 */
1352			local_add(page_entries, &cpu_buffer->overrun);
1353			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1354		}
1355
1356		/*
1357		 * We have already removed references to this list item, just
1358		 * free up the buffer_page and its page
1359		 */
1360		free_buffer_page(to_remove_page);
1361		nr_removed--;
1362
1363	} while (to_remove_page != last_page);
1364
1365	RB_WARN_ON(cpu_buffer, nr_removed);
1366
1367	return nr_removed == 0;
1368}
1369
1370static int
1371rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1372{
1373	struct list_head *pages = &cpu_buffer->new_pages;
1374	int retries, success;
1375
1376	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1377	/*
1378	 * We are holding the reader lock, so the reader page won't be swapped
1379	 * in the ring buffer. Now we are racing with the writer trying to
1380	 * move head page and the tail page.
1381	 * We are going to adapt the reader page update process where:
1382	 * 1. We first splice the start and end of list of new pages between
1383	 *    the head page and its previous page.
1384	 * 2. We cmpxchg the prev_page->next to point from head page to the
1385	 *    start of new pages list.
1386	 * 3. Finally, we update the head->prev to the end of new list.
1387	 *
1388	 * We will try this process 10 times, to make sure that we don't keep
1389	 * spinning.
1390	 */
1391	retries = 10;
1392	success = 0;
1393	while (retries--) {
1394		struct list_head *head_page, *prev_page, *r;
1395		struct list_head *last_page, *first_page;
1396		struct list_head *head_page_with_bit;
1397
1398		head_page = &rb_set_head_page(cpu_buffer)->list;
 
 
1399		prev_page = head_page->prev;
1400
1401		first_page = pages->next;
1402		last_page  = pages->prev;
1403
1404		head_page_with_bit = (struct list_head *)
1405				     ((unsigned long)head_page | RB_PAGE_HEAD);
1406
1407		last_page->next = head_page_with_bit;
1408		first_page->prev = prev_page;
1409
1410		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1411
1412		if (r == head_page_with_bit) {
1413			/*
1414			 * yay, we replaced the page pointer to our new list,
1415			 * now, we just have to update to head page's prev
1416			 * pointer to point to end of list
1417			 */
1418			head_page->prev = last_page;
1419			success = 1;
1420			break;
1421		}
1422	}
1423
1424	if (success)
1425		INIT_LIST_HEAD(pages);
1426	/*
1427	 * If we weren't successful in adding in new pages, warn and stop
1428	 * tracing
1429	 */
1430	RB_WARN_ON(cpu_buffer, !success);
1431	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1432
1433	/* free pages if they weren't inserted */
1434	if (!success) {
1435		struct buffer_page *bpage, *tmp;
1436		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1437					 list) {
1438			list_del_init(&bpage->list);
1439			free_buffer_page(bpage);
1440		}
1441	}
1442	return success;
1443}
1444
1445static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1446{
1447	int success;
1448
1449	if (cpu_buffer->nr_pages_to_update > 0)
1450		success = rb_insert_pages(cpu_buffer);
1451	else
1452		success = rb_remove_pages(cpu_buffer,
1453					-cpu_buffer->nr_pages_to_update);
1454
1455	if (success)
1456		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1457}
1458
1459static void update_pages_handler(struct work_struct *work)
1460{
1461	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1462			struct ring_buffer_per_cpu, update_pages_work);
1463	rb_update_pages(cpu_buffer);
1464	complete(&cpu_buffer->update_done);
1465}
1466
1467/**
1468 * ring_buffer_resize - resize the ring buffer
1469 * @buffer: the buffer to resize.
1470 * @size: the new size.
 
1471 *
1472 * Minimum size is 2 * BUF_PAGE_SIZE.
1473 *
1474 * Returns 0 on success and < 0 on failure.
1475 */
1476int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1477			int cpu_id)
1478{
1479	struct ring_buffer_per_cpu *cpu_buffer;
1480	unsigned nr_pages;
1481	int cpu, err = 0;
1482
1483	/*
1484	 * Always succeed at resizing a non-existent buffer:
1485	 */
1486	if (!buffer)
1487		return size;
1488
1489	/* Make sure the requested buffer exists */
1490	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1491	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1492		return size;
1493
1494	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1495	size *= BUF_PAGE_SIZE;
1496
1497	/* we need a minimum of two pages */
1498	if (size < BUF_PAGE_SIZE * 2)
1499		size = BUF_PAGE_SIZE * 2;
1500
1501	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1502
1503	/*
1504	 * Don't succeed if resizing is disabled, as a reader might be
1505	 * manipulating the ring buffer and is expecting a sane state while
1506	 * this is true.
1507	 */
1508	if (atomic_read(&buffer->resize_disabled))
1509		return -EBUSY;
1510
1511	/* prevent another thread from changing buffer sizes */
1512	mutex_lock(&buffer->mutex);
1513
1514	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1515		/* calculate the pages to update */
1516		for_each_buffer_cpu(buffer, cpu) {
1517			cpu_buffer = buffer->buffers[cpu];
1518
1519			cpu_buffer->nr_pages_to_update = nr_pages -
1520							cpu_buffer->nr_pages;
1521			/*
1522			 * nothing more to do for removing pages or no update
1523			 */
1524			if (cpu_buffer->nr_pages_to_update <= 0)
1525				continue;
1526			/*
1527			 * to add pages, make sure all new pages can be
1528			 * allocated without receiving ENOMEM
1529			 */
1530			INIT_LIST_HEAD(&cpu_buffer->new_pages);
1531			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1532						&cpu_buffer->new_pages, cpu)) {
1533				/* not enough memory for new pages */
1534				err = -ENOMEM;
1535				goto out_err;
1536			}
1537		}
1538
1539		get_online_cpus();
1540		/*
1541		 * Fire off all the required work handlers
1542		 * We can't schedule on offline CPUs, but it's not necessary
1543		 * since we can change their buffer sizes without any race.
1544		 */
1545		for_each_buffer_cpu(buffer, cpu) {
1546			cpu_buffer = buffer->buffers[cpu];
1547			if (!cpu_buffer->nr_pages_to_update)
1548				continue;
1549
1550			if (cpu_online(cpu))
 
 
 
 
1551				schedule_work_on(cpu,
1552						&cpu_buffer->update_pages_work);
1553			else
1554				rb_update_pages(cpu_buffer);
1555		}
1556
1557		/* wait for all the updates to complete */
1558		for_each_buffer_cpu(buffer, cpu) {
1559			cpu_buffer = buffer->buffers[cpu];
1560			if (!cpu_buffer->nr_pages_to_update)
1561				continue;
1562
1563			if (cpu_online(cpu))
1564				wait_for_completion(&cpu_buffer->update_done);
1565			cpu_buffer->nr_pages_to_update = 0;
1566		}
1567
1568		put_online_cpus();
1569	} else {
 
 
 
 
1570		cpu_buffer = buffer->buffers[cpu_id];
1571
1572		if (nr_pages == cpu_buffer->nr_pages)
1573			goto out;
1574
1575		cpu_buffer->nr_pages_to_update = nr_pages -
1576						cpu_buffer->nr_pages;
1577
1578		INIT_LIST_HEAD(&cpu_buffer->new_pages);
1579		if (cpu_buffer->nr_pages_to_update > 0 &&
1580			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1581					    &cpu_buffer->new_pages, cpu_id)) {
1582			err = -ENOMEM;
1583			goto out_err;
1584		}
1585
1586		get_online_cpus();
1587
1588		if (cpu_online(cpu_id)) {
 
 
 
1589			schedule_work_on(cpu_id,
1590					 &cpu_buffer->update_pages_work);
1591			wait_for_completion(&cpu_buffer->update_done);
1592		} else
1593			rb_update_pages(cpu_buffer);
1594
1595		cpu_buffer->nr_pages_to_update = 0;
1596		put_online_cpus();
1597	}
1598
1599 out:
1600	/*
1601	 * The ring buffer resize can happen with the ring buffer
1602	 * enabled, so that the update disturbs the tracing as little
1603	 * as possible. But if the buffer is disabled, we do not need
1604	 * to worry about that, and we can take the time to verify
1605	 * that the buffer is not corrupt.
1606	 */
1607	if (atomic_read(&buffer->record_disabled)) {
1608		atomic_inc(&buffer->record_disabled);
1609		/*
1610		 * Even though the buffer was disabled, we must make sure
1611		 * that it is truly disabled before calling rb_check_pages.
1612		 * There could have been a race between checking
1613		 * record_disable and incrementing it.
1614		 */
1615		synchronize_sched();
1616		for_each_buffer_cpu(buffer, cpu) {
1617			cpu_buffer = buffer->buffers[cpu];
1618			rb_check_pages(cpu_buffer);
1619		}
1620		atomic_dec(&buffer->record_disabled);
1621	}
1622
1623	mutex_unlock(&buffer->mutex);
1624	return size;
1625
1626 out_err:
1627	for_each_buffer_cpu(buffer, cpu) {
1628		struct buffer_page *bpage, *tmp;
1629
1630		cpu_buffer = buffer->buffers[cpu];
1631		cpu_buffer->nr_pages_to_update = 0;
1632
1633		if (list_empty(&cpu_buffer->new_pages))
1634			continue;
1635
1636		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1637					list) {
1638			list_del_init(&bpage->list);
1639			free_buffer_page(bpage);
1640		}
1641	}
1642	mutex_unlock(&buffer->mutex);
1643	return err;
1644}
1645EXPORT_SYMBOL_GPL(ring_buffer_resize);
1646
1647void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1648{
1649	mutex_lock(&buffer->mutex);
1650	if (val)
1651		buffer->flags |= RB_FL_OVERWRITE;
1652	else
1653		buffer->flags &= ~RB_FL_OVERWRITE;
1654	mutex_unlock(&buffer->mutex);
1655}
1656EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1657
1658static inline void *
1659__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1660{
1661	return bpage->data + index;
1662}
1663
1664static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1665{
1666	return bpage->page->data + index;
1667}
1668
1669static inline struct ring_buffer_event *
1670rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1671{
1672	return __rb_page_index(cpu_buffer->reader_page,
1673			       cpu_buffer->reader_page->read);
1674}
1675
1676static inline struct ring_buffer_event *
1677rb_iter_head_event(struct ring_buffer_iter *iter)
1678{
1679	return __rb_page_index(iter->head_page, iter->head);
1680}
1681
1682static inline unsigned rb_page_commit(struct buffer_page *bpage)
1683{
1684	return local_read(&bpage->page->commit);
1685}
1686
1687/* Size is determined by what has been committed */
1688static inline unsigned rb_page_size(struct buffer_page *bpage)
1689{
1690	return rb_page_commit(bpage);
1691}
1692
1693static inline unsigned
1694rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1695{
1696	return rb_page_commit(cpu_buffer->commit_page);
1697}
1698
1699static inline unsigned
1700rb_event_index(struct ring_buffer_event *event)
1701{
1702	unsigned long addr = (unsigned long)event;
1703
1704	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1705}
1706
1707static inline int
1708rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1709		   struct ring_buffer_event *event)
1710{
1711	unsigned long addr = (unsigned long)event;
1712	unsigned long index;
1713
1714	index = rb_event_index(event);
1715	addr &= PAGE_MASK;
1716
1717	return cpu_buffer->commit_page->page == (void *)addr &&
1718		rb_commit_index(cpu_buffer) == index;
1719}
1720
1721static void
1722rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1723{
1724	unsigned long max_count;
1725
1726	/*
1727	 * We only race with interrupts and NMIs on this CPU.
1728	 * If we own the commit event, then we can commit
1729	 * all others that interrupted us, since the interruptions
1730	 * are in stack format (they finish before they come
1731	 * back to us). This allows us to do a simple loop to
1732	 * assign the commit to the tail.
1733	 */
1734 again:
1735	max_count = cpu_buffer->nr_pages * 100;
1736
1737	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1738		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1739			return;
1740		if (RB_WARN_ON(cpu_buffer,
1741			       rb_is_reader_page(cpu_buffer->tail_page)))
1742			return;
1743		local_set(&cpu_buffer->commit_page->page->commit,
1744			  rb_page_write(cpu_buffer->commit_page));
1745		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1746		cpu_buffer->write_stamp =
1747			cpu_buffer->commit_page->page->time_stamp;
1748		/* add barrier to keep gcc from optimizing too much */
1749		barrier();
1750	}
1751	while (rb_commit_index(cpu_buffer) !=
1752	       rb_page_write(cpu_buffer->commit_page)) {
1753
1754		local_set(&cpu_buffer->commit_page->page->commit,
1755			  rb_page_write(cpu_buffer->commit_page));
1756		RB_WARN_ON(cpu_buffer,
1757			   local_read(&cpu_buffer->commit_page->page->commit) &
1758			   ~RB_WRITE_MASK);
1759		barrier();
1760	}
1761
1762	/* again, keep gcc from optimizing */
1763	barrier();
1764
1765	/*
1766	 * If an interrupt came in just after the first while loop
1767	 * and pushed the tail page forward, we will be left with
1768	 * a dangling commit that will never go forward.
1769	 */
1770	if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1771		goto again;
1772}
1773
1774static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1775{
1776	cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1777	cpu_buffer->reader_page->read = 0;
1778}
1779
1780static void rb_inc_iter(struct ring_buffer_iter *iter)
1781{
1782	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1783
1784	/*
1785	 * The iterator could be on the reader page (it starts there).
1786	 * But the head could have moved, since the reader was
1787	 * found. Check for this case and assign the iterator
1788	 * to the head page instead of next.
1789	 */
1790	if (iter->head_page == cpu_buffer->reader_page)
1791		iter->head_page = rb_set_head_page(cpu_buffer);
1792	else
1793		rb_inc_page(cpu_buffer, &iter->head_page);
1794
1795	iter->read_stamp = iter->head_page->page->time_stamp;
1796	iter->head = 0;
1797}
1798
1799/* Slow path, do not inline */
1800static noinline struct ring_buffer_event *
1801rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1802{
1803	event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1804
1805	/* Not the first event on the page? */
1806	if (rb_event_index(event)) {
1807		event->time_delta = delta & TS_MASK;
1808		event->array[0] = delta >> TS_SHIFT;
1809	} else {
1810		/* nope, just zero it */
1811		event->time_delta = 0;
1812		event->array[0] = 0;
1813	}
1814
1815	return skip_time_extend(event);
1816}
1817
1818/**
1819 * ring_buffer_update_event - update event type and data
1820 * @event: the even to update
1821 * @type: the type of event
1822 * @length: the size of the event field in the ring buffer
1823 *
1824 * Update the type and data fields of the event. The length
1825 * is the actual size that is written to the ring buffer,
1826 * and with this, we can determine what to place into the
1827 * data field.
1828 */
1829static void
1830rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1831		struct ring_buffer_event *event, unsigned length,
1832		int add_timestamp, u64 delta)
1833{
1834	/* Only a commit updates the timestamp */
1835	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1836		delta = 0;
1837
1838	/*
1839	 * If we need to add a timestamp, then we
1840	 * add it to the start of the resevered space.
1841	 */
1842	if (unlikely(add_timestamp)) {
1843		event = rb_add_time_stamp(event, delta);
1844		length -= RB_LEN_TIME_EXTEND;
1845		delta = 0;
1846	}
1847
1848	event->time_delta = delta;
1849	length -= RB_EVNT_HDR_SIZE;
1850	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
1851		event->type_len = 0;
1852		event->array[0] = length;
1853	} else
1854		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1855}
1856
1857/*
1858 * rb_handle_head_page - writer hit the head page
1859 *
1860 * Returns: +1 to retry page
1861 *           0 to continue
1862 *          -1 on error
1863 */
1864static int
1865rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1866		    struct buffer_page *tail_page,
1867		    struct buffer_page *next_page)
1868{
1869	struct buffer_page *new_head;
1870	int entries;
1871	int type;
1872	int ret;
1873
1874	entries = rb_page_entries(next_page);
1875
1876	/*
1877	 * The hard part is here. We need to move the head
1878	 * forward, and protect against both readers on
1879	 * other CPUs and writers coming in via interrupts.
1880	 */
1881	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1882				       RB_PAGE_HEAD);
1883
1884	/*
1885	 * type can be one of four:
1886	 *  NORMAL - an interrupt already moved it for us
1887	 *  HEAD   - we are the first to get here.
1888	 *  UPDATE - we are the interrupt interrupting
1889	 *           a current move.
1890	 *  MOVED  - a reader on another CPU moved the next
1891	 *           pointer to its reader page. Give up
1892	 *           and try again.
1893	 */
1894
1895	switch (type) {
1896	case RB_PAGE_HEAD:
1897		/*
1898		 * We changed the head to UPDATE, thus
1899		 * it is our responsibility to update
1900		 * the counters.
1901		 */
1902		local_add(entries, &cpu_buffer->overrun);
1903		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1904
1905		/*
1906		 * The entries will be zeroed out when we move the
1907		 * tail page.
1908		 */
1909
1910		/* still more to do */
1911		break;
1912
1913	case RB_PAGE_UPDATE:
1914		/*
1915		 * This is an interrupt that interrupt the
1916		 * previous update. Still more to do.
1917		 */
1918		break;
1919	case RB_PAGE_NORMAL:
1920		/*
1921		 * An interrupt came in before the update
1922		 * and processed this for us.
1923		 * Nothing left to do.
1924		 */
1925		return 1;
1926	case RB_PAGE_MOVED:
1927		/*
1928		 * The reader is on another CPU and just did
1929		 * a swap with our next_page.
1930		 * Try again.
1931		 */
1932		return 1;
1933	default:
1934		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1935		return -1;
1936	}
1937
1938	/*
1939	 * Now that we are here, the old head pointer is
1940	 * set to UPDATE. This will keep the reader from
1941	 * swapping the head page with the reader page.
1942	 * The reader (on another CPU) will spin till
1943	 * we are finished.
1944	 *
1945	 * We just need to protect against interrupts
1946	 * doing the job. We will set the next pointer
1947	 * to HEAD. After that, we set the old pointer
1948	 * to NORMAL, but only if it was HEAD before.
1949	 * otherwise we are an interrupt, and only
1950	 * want the outer most commit to reset it.
1951	 */
1952	new_head = next_page;
1953	rb_inc_page(cpu_buffer, &new_head);
1954
1955	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1956				    RB_PAGE_NORMAL);
1957
1958	/*
1959	 * Valid returns are:
1960	 *  HEAD   - an interrupt came in and already set it.
1961	 *  NORMAL - One of two things:
1962	 *            1) We really set it.
1963	 *            2) A bunch of interrupts came in and moved
1964	 *               the page forward again.
1965	 */
1966	switch (ret) {
1967	case RB_PAGE_HEAD:
1968	case RB_PAGE_NORMAL:
1969		/* OK */
1970		break;
1971	default:
1972		RB_WARN_ON(cpu_buffer, 1);
1973		return -1;
1974	}
1975
1976	/*
1977	 * It is possible that an interrupt came in,
1978	 * set the head up, then more interrupts came in
1979	 * and moved it again. When we get back here,
1980	 * the page would have been set to NORMAL but we
1981	 * just set it back to HEAD.
1982	 *
1983	 * How do you detect this? Well, if that happened
1984	 * the tail page would have moved.
1985	 */
1986	if (ret == RB_PAGE_NORMAL) {
 
 
 
1987		/*
1988		 * If the tail had moved passed next, then we need
1989		 * to reset the pointer.
1990		 */
1991		if (cpu_buffer->tail_page != tail_page &&
1992		    cpu_buffer->tail_page != next_page)
1993			rb_head_page_set_normal(cpu_buffer, new_head,
1994						next_page,
1995						RB_PAGE_HEAD);
1996	}
1997
1998	/*
1999	 * If this was the outer most commit (the one that
2000	 * changed the original pointer from HEAD to UPDATE),
2001	 * then it is up to us to reset it to NORMAL.
2002	 */
2003	if (type == RB_PAGE_HEAD) {
2004		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2005					      tail_page,
2006					      RB_PAGE_UPDATE);
2007		if (RB_WARN_ON(cpu_buffer,
2008			       ret != RB_PAGE_UPDATE))
2009			return -1;
2010	}
2011
2012	return 0;
2013}
2014
2015static unsigned rb_calculate_event_length(unsigned length)
2016{
2017	struct ring_buffer_event event; /* Used only for sizeof array */
2018
2019	/* zero length can cause confusions */
2020	if (!length)
2021		length = 1;
2022
2023	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2024		length += sizeof(event.array[0]);
2025
2026	length += RB_EVNT_HDR_SIZE;
2027	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2028
2029	return length;
2030}
2031
2032static inline void
2033rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2034	      struct buffer_page *tail_page,
2035	      unsigned long tail, unsigned long length)
2036{
 
2037	struct ring_buffer_event *event;
 
2038
2039	/*
2040	 * Only the event that crossed the page boundary
2041	 * must fill the old tail_page with padding.
2042	 */
2043	if (tail >= BUF_PAGE_SIZE) {
2044		/*
2045		 * If the page was filled, then we still need
2046		 * to update the real_end. Reset it to zero
2047		 * and the reader will ignore it.
2048		 */
2049		if (tail == BUF_PAGE_SIZE)
2050			tail_page->real_end = 0;
2051
2052		local_sub(length, &tail_page->write);
2053		return;
2054	}
2055
2056	event = __rb_page_index(tail_page, tail);
2057	kmemcheck_annotate_bitfield(event, bitfield);
2058
2059	/* account for padding bytes */
2060	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2061
2062	/*
2063	 * Save the original length to the meta data.
2064	 * This will be used by the reader to add lost event
2065	 * counter.
2066	 */
2067	tail_page->real_end = tail;
2068
2069	/*
2070	 * If this event is bigger than the minimum size, then
2071	 * we need to be careful that we don't subtract the
2072	 * write counter enough to allow another writer to slip
2073	 * in on this page.
2074	 * We put in a discarded commit instead, to make sure
2075	 * that this space is not used again.
2076	 *
2077	 * If we are less than the minimum size, we don't need to
2078	 * worry about it.
2079	 */
2080	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2081		/* No room for any events */
2082
2083		/* Mark the rest of the page with padding */
2084		rb_event_set_padding(event);
2085
2086		/* Set the write back to the previous setting */
2087		local_sub(length, &tail_page->write);
2088		return;
2089	}
2090
2091	/* Put in a discarded event */
2092	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2093	event->type_len = RINGBUF_TYPE_PADDING;
2094	/* time delta must be non zero */
2095	event->time_delta = 1;
2096
2097	/* Set write to end of buffer */
2098	length = (tail + length) - BUF_PAGE_SIZE;
2099	local_sub(length, &tail_page->write);
2100}
2101
 
 
2102/*
2103 * This is the slow path, force gcc not to inline it.
2104 */
2105static noinline struct ring_buffer_event *
2106rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2107	     unsigned long length, unsigned long tail,
2108	     struct buffer_page *tail_page, u64 ts)
2109{
 
2110	struct buffer_page *commit_page = cpu_buffer->commit_page;
2111	struct ring_buffer *buffer = cpu_buffer->buffer;
2112	struct buffer_page *next_page;
2113	int ret;
2114
2115	next_page = tail_page;
2116
2117	rb_inc_page(cpu_buffer, &next_page);
2118
2119	/*
2120	 * If for some reason, we had an interrupt storm that made
2121	 * it all the way around the buffer, bail, and warn
2122	 * about it.
2123	 */
2124	if (unlikely(next_page == commit_page)) {
2125		local_inc(&cpu_buffer->commit_overrun);
2126		goto out_reset;
2127	}
2128
2129	/*
2130	 * This is where the fun begins!
2131	 *
2132	 * We are fighting against races between a reader that
2133	 * could be on another CPU trying to swap its reader
2134	 * page with the buffer head.
2135	 *
2136	 * We are also fighting against interrupts coming in and
2137	 * moving the head or tail on us as well.
2138	 *
2139	 * If the next page is the head page then we have filled
2140	 * the buffer, unless the commit page is still on the
2141	 * reader page.
2142	 */
2143	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2144
2145		/*
2146		 * If the commit is not on the reader page, then
2147		 * move the header page.
2148		 */
2149		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2150			/*
2151			 * If we are not in overwrite mode,
2152			 * this is easy, just stop here.
2153			 */
2154			if (!(buffer->flags & RB_FL_OVERWRITE))
 
2155				goto out_reset;
 
2156
2157			ret = rb_handle_head_page(cpu_buffer,
2158						  tail_page,
2159						  next_page);
2160			if (ret < 0)
2161				goto out_reset;
2162			if (ret)
2163				goto out_again;
2164		} else {
2165			/*
2166			 * We need to be careful here too. The
2167			 * commit page could still be on the reader
2168			 * page. We could have a small buffer, and
2169			 * have filled up the buffer with events
2170			 * from interrupts and such, and wrapped.
2171			 *
2172			 * Note, if the tail page is also the on the
2173			 * reader_page, we let it move out.
2174			 */
2175			if (unlikely((cpu_buffer->commit_page !=
2176				      cpu_buffer->tail_page) &&
2177				     (cpu_buffer->commit_page ==
2178				      cpu_buffer->reader_page))) {
2179				local_inc(&cpu_buffer->commit_overrun);
2180				goto out_reset;
2181			}
2182		}
2183	}
2184
2185	ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2186	if (ret) {
2187		/*
2188		 * Nested commits always have zero deltas, so
2189		 * just reread the time stamp
2190		 */
2191		ts = rb_time_stamp(buffer);
2192		next_page->page->time_stamp = ts;
2193	}
2194
2195 out_again:
2196
2197	rb_reset_tail(cpu_buffer, tail_page, tail, length);
 
 
 
 
 
2198
2199	/* fail and let the caller try again */
2200	return ERR_PTR(-EAGAIN);
2201
2202 out_reset:
2203	/* reset write */
2204	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2205
2206	return NULL;
2207}
2208
2209static struct ring_buffer_event *
2210__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2211		  unsigned long length, u64 ts,
2212		  u64 delta, int add_timestamp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2213{
2214	struct buffer_page *tail_page;
2215	struct ring_buffer_event *event;
2216	unsigned long tail, write;
 
 
 
2217
2218	/*
2219	 * If the time delta since the last event is too big to
2220	 * hold in the time field of the event, then we append a
2221	 * TIME EXTEND event ahead of the data event.
2222	 */
2223	if (unlikely(add_timestamp))
2224		length += RB_LEN_TIME_EXTEND;
2225
2226	tail_page = cpu_buffer->tail_page;
2227	write = local_add_return(length, &tail_page->write);
 
 
2228
2229	/* set write to only the index of the write */
2230	write &= RB_WRITE_MASK;
2231	tail = write - length;
 
 
 
 
 
2232
2233	/* See if we shot pass the end of this buffer page */
2234	if (unlikely(write > BUF_PAGE_SIZE))
2235		return rb_move_tail(cpu_buffer, length, tail,
2236				    tail_page, ts);
2237
2238	/* We reserved something on the buffer */
 
 
2239
2240	event = __rb_page_index(tail_page, tail);
2241	kmemcheck_annotate_bitfield(event, bitfield);
2242	rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2243
2244	local_inc(&tail_page->entries);
 
2245
2246	/*
2247	 * If this is the first commit on the page, then update
2248	 * its timestamp.
 
 
 
 
 
 
 
 
2249	 */
2250	if (!tail)
2251		tail_page->page->time_stamp = ts;
2252
2253	/* account for these added bytes */
2254	local_add(length, &cpu_buffer->entries_bytes);
2255
2256	return event;
 
 
 
2257}
 
2258
2259static inline int
2260rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2261		  struct ring_buffer_event *event)
2262{
2263	unsigned long new_index, old_index;
2264	struct buffer_page *bpage;
2265	unsigned long index;
2266	unsigned long addr;
2267
2268	new_index = rb_event_index(event);
2269	old_index = new_index + rb_event_ts_length(event);
2270	addr = (unsigned long)event;
2271	addr &= PAGE_MASK;
2272
2273	bpage = cpu_buffer->tail_page;
2274
2275	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2276		unsigned long write_mask =
2277			local_read(&bpage->write) & ~RB_WRITE_MASK;
2278		unsigned long event_length = rb_event_length(event);
2279		/*
2280		 * This is on the tail page. It is possible that
2281		 * a write could come in and move the tail page
2282		 * and write to the next page. That is fine
2283		 * because we just shorten what is on this page.
2284		 */
2285		old_index += write_mask;
2286		new_index += write_mask;
2287		index = local_cmpxchg(&bpage->write, old_index, new_index);
2288		if (index == old_index) {
2289			/* update counters */
2290			local_sub(event_length, &cpu_buffer->entries_bytes);
2291			return 1;
2292		}
2293	}
2294
2295	/* could not discard */
2296	return 0;
2297}
2298
2299static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2300{
2301	local_inc(&cpu_buffer->committing);
2302	local_inc(&cpu_buffer->commits);
2303}
2304
2305static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2306{
2307	unsigned long commits;
2308
2309	if (RB_WARN_ON(cpu_buffer,
2310		       !local_read(&cpu_buffer->committing)))
2311		return;
2312
2313 again:
2314	commits = local_read(&cpu_buffer->commits);
2315	/* synchronize with interrupts */
2316	barrier();
2317	if (local_read(&cpu_buffer->committing) == 1)
2318		rb_set_commit_to_write(cpu_buffer);
2319
2320	local_dec(&cpu_buffer->committing);
2321
2322	/* synchronize with interrupts */
2323	barrier();
2324
2325	/*
2326	 * Need to account for interrupts coming in between the
2327	 * updating of the commit page and the clearing of the
2328	 * committing counter.
2329	 */
2330	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2331	    !local_read(&cpu_buffer->committing)) {
2332		local_inc(&cpu_buffer->committing);
2333		goto again;
2334	}
2335}
2336
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2337static struct ring_buffer_event *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2338rb_reserve_next_event(struct ring_buffer *buffer,
2339		      struct ring_buffer_per_cpu *cpu_buffer,
2340		      unsigned long length)
2341{
2342	struct ring_buffer_event *event;
2343	u64 ts, delta;
2344	int nr_loops = 0;
2345	int add_timestamp;
2346	u64 diff;
2347
2348	rb_start_commit(cpu_buffer);
2349
2350#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2351	/*
2352	 * Due to the ability to swap a cpu buffer from a buffer
2353	 * it is possible it was swapped before we committed.
2354	 * (committing stops a swap). We check for it here and
2355	 * if it happened, we have to fail the write.
2356	 */
2357	barrier();
2358	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2359		local_dec(&cpu_buffer->committing);
2360		local_dec(&cpu_buffer->commits);
2361		return NULL;
2362	}
2363#endif
2364
2365	length = rb_calculate_event_length(length);
2366 again:
2367	add_timestamp = 0;
2368	delta = 0;
2369
2370	/*
2371	 * We allow for interrupts to reenter here and do a trace.
2372	 * If one does, it will cause this original code to loop
2373	 * back here. Even with heavy interrupts happening, this
2374	 * should only happen a few times in a row. If this happens
2375	 * 1000 times in a row, there must be either an interrupt
2376	 * storm or we have something buggy.
2377	 * Bail!
2378	 */
2379	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2380		goto out_fail;
2381
2382	ts = rb_time_stamp(cpu_buffer->buffer);
2383	diff = ts - cpu_buffer->write_stamp;
2384
2385	/* make sure this diff is calculated here */
2386	barrier();
2387
2388	/* Did the write stamp get updated already? */
2389	if (likely(ts >= cpu_buffer->write_stamp)) {
2390		delta = diff;
2391		if (unlikely(test_time_stamp(delta))) {
2392			int local_clock_stable = 1;
2393#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2394			local_clock_stable = sched_clock_stable;
2395#endif
2396			WARN_ONCE(delta > (1ULL << 59),
2397				  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2398				  (unsigned long long)delta,
2399				  (unsigned long long)ts,
2400				  (unsigned long long)cpu_buffer->write_stamp,
2401				  local_clock_stable ? "" :
2402				  "If you just came from a suspend/resume,\n"
2403				  "please switch to the trace global clock:\n"
2404				  "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2405			add_timestamp = 1;
2406		}
2407	}
2408
2409	event = __rb_reserve_next(cpu_buffer, length, ts,
2410				  delta, add_timestamp);
2411	if (unlikely(PTR_ERR(event) == -EAGAIN))
 
 
2412		goto again;
 
2413
2414	if (!event)
2415		goto out_fail;
2416
2417	return event;
2418
2419 out_fail:
2420	rb_end_commit(cpu_buffer);
2421	return NULL;
2422}
2423
2424#ifdef CONFIG_TRACING
2425
2426#define TRACE_RECURSIVE_DEPTH 16
2427
2428/* Keep this code out of the fast path cache */
2429static noinline void trace_recursive_fail(void)
2430{
2431	/* Disable all tracing before we do anything else */
2432	tracing_off_permanent();
2433
2434	printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2435		    "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2436		    trace_recursion_buffer(),
2437		    hardirq_count() >> HARDIRQ_SHIFT,
2438		    softirq_count() >> SOFTIRQ_SHIFT,
2439		    in_nmi());
2440
2441	WARN_ON_ONCE(1);
2442}
2443
2444static inline int trace_recursive_lock(void)
2445{
2446	trace_recursion_inc();
2447
2448	if (likely(trace_recursion_buffer() < TRACE_RECURSIVE_DEPTH))
2449		return 0;
2450
2451	trace_recursive_fail();
2452
2453	return -1;
2454}
2455
2456static inline void trace_recursive_unlock(void)
2457{
2458	WARN_ON_ONCE(!trace_recursion_buffer());
2459
2460	trace_recursion_dec();
2461}
2462
2463#else
2464
2465#define trace_recursive_lock()		(0)
2466#define trace_recursive_unlock()	do { } while (0)
2467
2468#endif
2469
2470/**
2471 * ring_buffer_lock_reserve - reserve a part of the buffer
2472 * @buffer: the ring buffer to reserve from
2473 * @length: the length of the data to reserve (excluding event header)
2474 *
2475 * Returns a reseverd event on the ring buffer to copy directly to.
2476 * The user of this interface will need to get the body to write into
2477 * and can use the ring_buffer_event_data() interface.
2478 *
2479 * The length is the length of the data needed, not the event length
2480 * which also includes the event header.
2481 *
2482 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2483 * If NULL is returned, then nothing has been allocated or locked.
2484 */
2485struct ring_buffer_event *
2486ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2487{
2488	struct ring_buffer_per_cpu *cpu_buffer;
2489	struct ring_buffer_event *event;
2490	int cpu;
2491
2492	if (ring_buffer_flags != RB_BUFFERS_ON)
2493		return NULL;
2494
2495	/* If we are tracing schedule, we don't want to recurse */
2496	preempt_disable_notrace();
2497
2498	if (atomic_read(&buffer->record_disabled))
2499		goto out_nocheck;
2500
2501	if (trace_recursive_lock())
2502		goto out_nocheck;
2503
2504	cpu = raw_smp_processor_id();
2505
2506	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2507		goto out;
2508
2509	cpu_buffer = buffer->buffers[cpu];
2510
2511	if (atomic_read(&cpu_buffer->record_disabled))
 
 
 
2512		goto out;
2513
2514	if (length > BUF_MAX_DATA_SIZE)
2515		goto out;
2516
2517	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2518	if (!event)
2519		goto out;
2520
2521	return event;
2522
 
 
2523 out:
2524	trace_recursive_unlock();
2525
2526 out_nocheck:
2527	preempt_enable_notrace();
2528	return NULL;
2529}
2530EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2531
2532static void
2533rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2534		      struct ring_buffer_event *event)
2535{
2536	u64 delta;
2537
2538	/*
2539	 * The event first in the commit queue updates the
2540	 * time stamp.
2541	 */
2542	if (rb_event_is_commit(cpu_buffer, event)) {
2543		/*
2544		 * A commit event that is first on a page
2545		 * updates the write timestamp with the page stamp
2546		 */
2547		if (!rb_event_index(event))
2548			cpu_buffer->write_stamp =
2549				cpu_buffer->commit_page->page->time_stamp;
2550		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2551			delta = event->array[0];
2552			delta <<= TS_SHIFT;
2553			delta += event->time_delta;
2554			cpu_buffer->write_stamp += delta;
2555		} else
2556			cpu_buffer->write_stamp += event->time_delta;
2557	}
2558}
2559
2560static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2561		      struct ring_buffer_event *event)
2562{
2563	local_inc(&cpu_buffer->entries);
2564	rb_update_write_stamp(cpu_buffer, event);
2565	rb_end_commit(cpu_buffer);
2566}
2567
2568/**
2569 * ring_buffer_unlock_commit - commit a reserved
2570 * @buffer: The buffer to commit to
2571 * @event: The event pointer to commit.
2572 *
2573 * This commits the data to the ring buffer, and releases any locks held.
2574 *
2575 * Must be paired with ring_buffer_lock_reserve.
2576 */
2577int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2578			      struct ring_buffer_event *event)
2579{
2580	struct ring_buffer_per_cpu *cpu_buffer;
2581	int cpu = raw_smp_processor_id();
2582
2583	cpu_buffer = buffer->buffers[cpu];
2584
2585	rb_commit(cpu_buffer, event);
2586
2587	trace_recursive_unlock();
2588
2589	preempt_enable_notrace();
2590
2591	return 0;
2592}
2593EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2594
2595static inline void rb_event_discard(struct ring_buffer_event *event)
2596{
2597	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2598		event = skip_time_extend(event);
2599
2600	/* array[0] holds the actual length for the discarded event */
2601	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2602	event->type_len = RINGBUF_TYPE_PADDING;
2603	/* time delta must be non zero */
2604	if (!event->time_delta)
2605		event->time_delta = 1;
2606}
2607
2608/*
2609 * Decrement the entries to the page that an event is on.
2610 * The event does not even need to exist, only the pointer
2611 * to the page it is on. This may only be called before the commit
2612 * takes place.
2613 */
2614static inline void
2615rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2616		   struct ring_buffer_event *event)
2617{
2618	unsigned long addr = (unsigned long)event;
2619	struct buffer_page *bpage = cpu_buffer->commit_page;
2620	struct buffer_page *start;
2621
2622	addr &= PAGE_MASK;
2623
2624	/* Do the likely case first */
2625	if (likely(bpage->page == (void *)addr)) {
2626		local_dec(&bpage->entries);
2627		return;
2628	}
2629
2630	/*
2631	 * Because the commit page may be on the reader page we
2632	 * start with the next page and check the end loop there.
2633	 */
2634	rb_inc_page(cpu_buffer, &bpage);
2635	start = bpage;
2636	do {
2637		if (bpage->page == (void *)addr) {
2638			local_dec(&bpage->entries);
2639			return;
2640		}
2641		rb_inc_page(cpu_buffer, &bpage);
2642	} while (bpage != start);
2643
2644	/* commit not part of this buffer?? */
2645	RB_WARN_ON(cpu_buffer, 1);
2646}
2647
2648/**
2649 * ring_buffer_commit_discard - discard an event that has not been committed
2650 * @buffer: the ring buffer
2651 * @event: non committed event to discard
2652 *
2653 * Sometimes an event that is in the ring buffer needs to be ignored.
2654 * This function lets the user discard an event in the ring buffer
2655 * and then that event will not be read later.
2656 *
2657 * This function only works if it is called before the the item has been
2658 * committed. It will try to free the event from the ring buffer
2659 * if another event has not been added behind it.
2660 *
2661 * If another event has been added behind it, it will set the event
2662 * up as discarded, and perform the commit.
2663 *
2664 * If this function is called, do not call ring_buffer_unlock_commit on
2665 * the event.
2666 */
2667void ring_buffer_discard_commit(struct ring_buffer *buffer,
2668				struct ring_buffer_event *event)
2669{
2670	struct ring_buffer_per_cpu *cpu_buffer;
2671	int cpu;
2672
2673	/* The event is discarded regardless */
2674	rb_event_discard(event);
2675
2676	cpu = smp_processor_id();
2677	cpu_buffer = buffer->buffers[cpu];
2678
2679	/*
2680	 * This must only be called if the event has not been
2681	 * committed yet. Thus we can assume that preemption
2682	 * is still disabled.
2683	 */
2684	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2685
2686	rb_decrement_entry(cpu_buffer, event);
2687	if (rb_try_to_discard(cpu_buffer, event))
2688		goto out;
2689
2690	/*
2691	 * The commit is still visible by the reader, so we
2692	 * must still update the timestamp.
2693	 */
2694	rb_update_write_stamp(cpu_buffer, event);
2695 out:
2696	rb_end_commit(cpu_buffer);
2697
2698	trace_recursive_unlock();
2699
2700	preempt_enable_notrace();
2701
2702}
2703EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2704
2705/**
2706 * ring_buffer_write - write data to the buffer without reserving
2707 * @buffer: The ring buffer to write to.
2708 * @length: The length of the data being written (excluding the event header)
2709 * @data: The data to write to the buffer.
2710 *
2711 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2712 * one function. If you already have the data to write to the buffer, it
2713 * may be easier to simply call this function.
2714 *
2715 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2716 * and not the length of the event which would hold the header.
2717 */
2718int ring_buffer_write(struct ring_buffer *buffer,
2719			unsigned long length,
2720			void *data)
2721{
2722	struct ring_buffer_per_cpu *cpu_buffer;
2723	struct ring_buffer_event *event;
2724	void *body;
2725	int ret = -EBUSY;
2726	int cpu;
2727
2728	if (ring_buffer_flags != RB_BUFFERS_ON)
2729		return -EBUSY;
2730
2731	preempt_disable_notrace();
2732
2733	if (atomic_read(&buffer->record_disabled))
2734		goto out;
2735
2736	cpu = raw_smp_processor_id();
2737
2738	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2739		goto out;
2740
2741	cpu_buffer = buffer->buffers[cpu];
2742
2743	if (atomic_read(&cpu_buffer->record_disabled))
2744		goto out;
2745
2746	if (length > BUF_MAX_DATA_SIZE)
2747		goto out;
2748
 
 
 
2749	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2750	if (!event)
2751		goto out;
2752
2753	body = rb_event_data(event);
2754
2755	memcpy(body, data, length);
2756
2757	rb_commit(cpu_buffer, event);
2758
 
 
2759	ret = 0;
 
 
 
 
2760 out:
2761	preempt_enable_notrace();
2762
2763	return ret;
2764}
2765EXPORT_SYMBOL_GPL(ring_buffer_write);
2766
2767static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2768{
2769	struct buffer_page *reader = cpu_buffer->reader_page;
2770	struct buffer_page *head = rb_set_head_page(cpu_buffer);
2771	struct buffer_page *commit = cpu_buffer->commit_page;
2772
2773	/* In case of error, head will be NULL */
2774	if (unlikely(!head))
2775		return 1;
2776
2777	return reader->read == rb_page_commit(reader) &&
2778		(commit == reader ||
2779		 (commit == head &&
2780		  head->read == rb_page_commit(commit)));
2781}
2782
2783/**
2784 * ring_buffer_record_disable - stop all writes into the buffer
2785 * @buffer: The ring buffer to stop writes to.
2786 *
2787 * This prevents all writes to the buffer. Any attempt to write
2788 * to the buffer after this will fail and return NULL.
2789 *
2790 * The caller should call synchronize_sched() after this.
2791 */
2792void ring_buffer_record_disable(struct ring_buffer *buffer)
2793{
2794	atomic_inc(&buffer->record_disabled);
2795}
2796EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2797
2798/**
2799 * ring_buffer_record_enable - enable writes to the buffer
2800 * @buffer: The ring buffer to enable writes
2801 *
2802 * Note, multiple disables will need the same number of enables
2803 * to truly enable the writing (much like preempt_disable).
2804 */
2805void ring_buffer_record_enable(struct ring_buffer *buffer)
2806{
2807	atomic_dec(&buffer->record_disabled);
2808}
2809EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2810
2811/**
2812 * ring_buffer_record_off - stop all writes into the buffer
2813 * @buffer: The ring buffer to stop writes to.
2814 *
2815 * This prevents all writes to the buffer. Any attempt to write
2816 * to the buffer after this will fail and return NULL.
2817 *
2818 * This is different than ring_buffer_record_disable() as
2819 * it works like an on/off switch, where as the disable() verison
2820 * must be paired with a enable().
2821 */
2822void ring_buffer_record_off(struct ring_buffer *buffer)
2823{
2824	unsigned int rd;
2825	unsigned int new_rd;
2826
2827	do {
2828		rd = atomic_read(&buffer->record_disabled);
2829		new_rd = rd | RB_BUFFER_OFF;
2830	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2831}
2832EXPORT_SYMBOL_GPL(ring_buffer_record_off);
2833
2834/**
2835 * ring_buffer_record_on - restart writes into the buffer
2836 * @buffer: The ring buffer to start writes to.
2837 *
2838 * This enables all writes to the buffer that was disabled by
2839 * ring_buffer_record_off().
2840 *
2841 * This is different than ring_buffer_record_enable() as
2842 * it works like an on/off switch, where as the enable() verison
2843 * must be paired with a disable().
2844 */
2845void ring_buffer_record_on(struct ring_buffer *buffer)
2846{
2847	unsigned int rd;
2848	unsigned int new_rd;
2849
2850	do {
2851		rd = atomic_read(&buffer->record_disabled);
2852		new_rd = rd & ~RB_BUFFER_OFF;
2853	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2854}
2855EXPORT_SYMBOL_GPL(ring_buffer_record_on);
2856
2857/**
2858 * ring_buffer_record_is_on - return true if the ring buffer can write
2859 * @buffer: The ring buffer to see if write is enabled
2860 *
2861 * Returns true if the ring buffer is in a state that it accepts writes.
2862 */
2863int ring_buffer_record_is_on(struct ring_buffer *buffer)
2864{
2865	return !atomic_read(&buffer->record_disabled);
2866}
2867
2868/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2869 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2870 * @buffer: The ring buffer to stop writes to.
2871 * @cpu: The CPU buffer to stop
2872 *
2873 * This prevents all writes to the buffer. Any attempt to write
2874 * to the buffer after this will fail and return NULL.
2875 *
2876 * The caller should call synchronize_sched() after this.
2877 */
2878void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2879{
2880	struct ring_buffer_per_cpu *cpu_buffer;
2881
2882	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2883		return;
2884
2885	cpu_buffer = buffer->buffers[cpu];
2886	atomic_inc(&cpu_buffer->record_disabled);
2887}
2888EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2889
2890/**
2891 * ring_buffer_record_enable_cpu - enable writes to the buffer
2892 * @buffer: The ring buffer to enable writes
2893 * @cpu: The CPU to enable.
2894 *
2895 * Note, multiple disables will need the same number of enables
2896 * to truly enable the writing (much like preempt_disable).
2897 */
2898void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2899{
2900	struct ring_buffer_per_cpu *cpu_buffer;
2901
2902	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2903		return;
2904
2905	cpu_buffer = buffer->buffers[cpu];
2906	atomic_dec(&cpu_buffer->record_disabled);
2907}
2908EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2909
2910/*
2911 * The total entries in the ring buffer is the running counter
2912 * of entries entered into the ring buffer, minus the sum of
2913 * the entries read from the ring buffer and the number of
2914 * entries that were overwritten.
2915 */
2916static inline unsigned long
2917rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
2918{
2919	return local_read(&cpu_buffer->entries) -
2920		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
2921}
2922
2923/**
2924 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
2925 * @buffer: The ring buffer
2926 * @cpu: The per CPU buffer to read from.
2927 */
2928unsigned long ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
2929{
2930	unsigned long flags;
2931	struct ring_buffer_per_cpu *cpu_buffer;
2932	struct buffer_page *bpage;
2933	unsigned long ret;
2934
2935	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2936		return 0;
2937
2938	cpu_buffer = buffer->buffers[cpu];
2939	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2940	/*
2941	 * if the tail is on reader_page, oldest time stamp is on the reader
2942	 * page
2943	 */
2944	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2945		bpage = cpu_buffer->reader_page;
2946	else
2947		bpage = rb_set_head_page(cpu_buffer);
2948	ret = bpage->page->time_stamp;
 
2949	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2950
2951	return ret;
2952}
2953EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
2954
2955/**
2956 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
2957 * @buffer: The ring buffer
2958 * @cpu: The per CPU buffer to read from.
2959 */
2960unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
2961{
2962	struct ring_buffer_per_cpu *cpu_buffer;
2963	unsigned long ret;
2964
2965	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2966		return 0;
2967
2968	cpu_buffer = buffer->buffers[cpu];
2969	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
2970
2971	return ret;
2972}
2973EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
2974
2975/**
2976 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2977 * @buffer: The ring buffer
2978 * @cpu: The per CPU buffer to get the entries from.
2979 */
2980unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2981{
2982	struct ring_buffer_per_cpu *cpu_buffer;
2983
2984	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2985		return 0;
2986
2987	cpu_buffer = buffer->buffers[cpu];
2988
2989	return rb_num_of_entries(cpu_buffer);
2990}
2991EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2992
2993/**
2994 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
 
2995 * @buffer: The ring buffer
2996 * @cpu: The per CPU buffer to get the number of overruns from
2997 */
2998unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2999{
3000	struct ring_buffer_per_cpu *cpu_buffer;
3001	unsigned long ret;
3002
3003	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3004		return 0;
3005
3006	cpu_buffer = buffer->buffers[cpu];
3007	ret = local_read(&cpu_buffer->overrun);
3008
3009	return ret;
3010}
3011EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3012
3013/**
3014 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
 
 
3015 * @buffer: The ring buffer
3016 * @cpu: The per CPU buffer to get the number of overruns from
3017 */
3018unsigned long
3019ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3020{
3021	struct ring_buffer_per_cpu *cpu_buffer;
3022	unsigned long ret;
3023
3024	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3025		return 0;
3026
3027	cpu_buffer = buffer->buffers[cpu];
3028	ret = local_read(&cpu_buffer->commit_overrun);
3029
3030	return ret;
3031}
3032EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3033
3034/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3035 * ring_buffer_entries - get the number of entries in a buffer
3036 * @buffer: The ring buffer
3037 *
3038 * Returns the total number of entries in the ring buffer
3039 * (all CPU entries)
3040 */
3041unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3042{
3043	struct ring_buffer_per_cpu *cpu_buffer;
3044	unsigned long entries = 0;
3045	int cpu;
3046
3047	/* if you care about this being correct, lock the buffer */
3048	for_each_buffer_cpu(buffer, cpu) {
3049		cpu_buffer = buffer->buffers[cpu];
3050		entries += rb_num_of_entries(cpu_buffer);
3051	}
3052
3053	return entries;
3054}
3055EXPORT_SYMBOL_GPL(ring_buffer_entries);
3056
3057/**
3058 * ring_buffer_overruns - get the number of overruns in buffer
3059 * @buffer: The ring buffer
3060 *
3061 * Returns the total number of overruns in the ring buffer
3062 * (all CPU entries)
3063 */
3064unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3065{
3066	struct ring_buffer_per_cpu *cpu_buffer;
3067	unsigned long overruns = 0;
3068	int cpu;
3069
3070	/* if you care about this being correct, lock the buffer */
3071	for_each_buffer_cpu(buffer, cpu) {
3072		cpu_buffer = buffer->buffers[cpu];
3073		overruns += local_read(&cpu_buffer->overrun);
3074	}
3075
3076	return overruns;
3077}
3078EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3079
3080static void rb_iter_reset(struct ring_buffer_iter *iter)
3081{
3082	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3083
3084	/* Iterator usage is expected to have record disabled */
3085	if (list_empty(&cpu_buffer->reader_page->list)) {
3086		iter->head_page = rb_set_head_page(cpu_buffer);
3087		if (unlikely(!iter->head_page))
3088			return;
3089		iter->head = iter->head_page->read;
3090	} else {
3091		iter->head_page = cpu_buffer->reader_page;
3092		iter->head = cpu_buffer->reader_page->read;
3093	}
3094	if (iter->head)
3095		iter->read_stamp = cpu_buffer->read_stamp;
3096	else
3097		iter->read_stamp = iter->head_page->page->time_stamp;
3098	iter->cache_reader_page = cpu_buffer->reader_page;
3099	iter->cache_read = cpu_buffer->read;
3100}
3101
3102/**
3103 * ring_buffer_iter_reset - reset an iterator
3104 * @iter: The iterator to reset
3105 *
3106 * Resets the iterator, so that it will start from the beginning
3107 * again.
3108 */
3109void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3110{
3111	struct ring_buffer_per_cpu *cpu_buffer;
3112	unsigned long flags;
3113
3114	if (!iter)
3115		return;
3116
3117	cpu_buffer = iter->cpu_buffer;
3118
3119	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3120	rb_iter_reset(iter);
3121	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3122}
3123EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3124
3125/**
3126 * ring_buffer_iter_empty - check if an iterator has no more to read
3127 * @iter: The iterator to check
3128 */
3129int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3130{
3131	struct ring_buffer_per_cpu *cpu_buffer;
 
 
 
 
3132
3133	cpu_buffer = iter->cpu_buffer;
3134
3135	return iter->head_page == cpu_buffer->commit_page &&
3136		iter->head == rb_commit_index(cpu_buffer);
 
 
 
 
 
 
 
 
3137}
3138EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3139
3140static void
3141rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3142		     struct ring_buffer_event *event)
3143{
3144	u64 delta;
3145
3146	switch (event->type_len) {
3147	case RINGBUF_TYPE_PADDING:
3148		return;
3149
3150	case RINGBUF_TYPE_TIME_EXTEND:
3151		delta = event->array[0];
3152		delta <<= TS_SHIFT;
3153		delta += event->time_delta;
3154		cpu_buffer->read_stamp += delta;
3155		return;
3156
3157	case RINGBUF_TYPE_TIME_STAMP:
3158		/* FIXME: not implemented */
 
3159		return;
3160
3161	case RINGBUF_TYPE_DATA:
3162		cpu_buffer->read_stamp += event->time_delta;
3163		return;
3164
3165	default:
3166		BUG();
3167	}
3168	return;
3169}
3170
3171static void
3172rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3173			  struct ring_buffer_event *event)
3174{
3175	u64 delta;
3176
3177	switch (event->type_len) {
3178	case RINGBUF_TYPE_PADDING:
3179		return;
3180
3181	case RINGBUF_TYPE_TIME_EXTEND:
3182		delta = event->array[0];
3183		delta <<= TS_SHIFT;
3184		delta += event->time_delta;
3185		iter->read_stamp += delta;
3186		return;
3187
3188	case RINGBUF_TYPE_TIME_STAMP:
3189		/* FIXME: not implemented */
 
3190		return;
3191
3192	case RINGBUF_TYPE_DATA:
3193		iter->read_stamp += event->time_delta;
3194		return;
3195
3196	default:
3197		BUG();
3198	}
3199	return;
3200}
3201
3202static struct buffer_page *
3203rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3204{
3205	struct buffer_page *reader = NULL;
3206	unsigned long overwrite;
3207	unsigned long flags;
3208	int nr_loops = 0;
3209	int ret;
3210
3211	local_irq_save(flags);
3212	arch_spin_lock(&cpu_buffer->lock);
3213
3214 again:
3215	/*
3216	 * This should normally only loop twice. But because the
3217	 * start of the reader inserts an empty page, it causes
3218	 * a case where we will loop three times. There should be no
3219	 * reason to loop four times (that I know of).
3220	 */
3221	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3222		reader = NULL;
3223		goto out;
3224	}
3225
3226	reader = cpu_buffer->reader_page;
3227
3228	/* If there's more to read, return this page */
3229	if (cpu_buffer->reader_page->read < rb_page_size(reader))
3230		goto out;
3231
3232	/* Never should we have an index greater than the size */
3233	if (RB_WARN_ON(cpu_buffer,
3234		       cpu_buffer->reader_page->read > rb_page_size(reader)))
3235		goto out;
3236
3237	/* check if we caught up to the tail */
3238	reader = NULL;
3239	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3240		goto out;
3241
 
 
 
 
3242	/*
3243	 * Reset the reader page to size zero.
3244	 */
3245	local_set(&cpu_buffer->reader_page->write, 0);
3246	local_set(&cpu_buffer->reader_page->entries, 0);
3247	local_set(&cpu_buffer->reader_page->page->commit, 0);
3248	cpu_buffer->reader_page->real_end = 0;
3249
3250 spin:
3251	/*
3252	 * Splice the empty reader page into the list around the head.
3253	 */
3254	reader = rb_set_head_page(cpu_buffer);
 
 
3255	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3256	cpu_buffer->reader_page->list.prev = reader->list.prev;
3257
3258	/*
3259	 * cpu_buffer->pages just needs to point to the buffer, it
3260	 *  has no specific buffer page to point to. Lets move it out
3261	 *  of our way so we don't accidentally swap it.
3262	 */
3263	cpu_buffer->pages = reader->list.prev;
3264
3265	/* The reader page will be pointing to the new head */
3266	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3267
3268	/*
3269	 * We want to make sure we read the overruns after we set up our
3270	 * pointers to the next object. The writer side does a
3271	 * cmpxchg to cross pages which acts as the mb on the writer
3272	 * side. Note, the reader will constantly fail the swap
3273	 * while the writer is updating the pointers, so this
3274	 * guarantees that the overwrite recorded here is the one we
3275	 * want to compare with the last_overrun.
3276	 */
3277	smp_mb();
3278	overwrite = local_read(&(cpu_buffer->overrun));
3279
3280	/*
3281	 * Here's the tricky part.
3282	 *
3283	 * We need to move the pointer past the header page.
3284	 * But we can only do that if a writer is not currently
3285	 * moving it. The page before the header page has the
3286	 * flag bit '1' set if it is pointing to the page we want.
3287	 * but if the writer is in the process of moving it
3288	 * than it will be '2' or already moved '0'.
3289	 */
3290
3291	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3292
3293	/*
3294	 * If we did not convert it, then we must try again.
3295	 */
3296	if (!ret)
3297		goto spin;
3298
3299	/*
3300	 * Yeah! We succeeded in replacing the page.
3301	 *
3302	 * Now make the new head point back to the reader page.
3303	 */
3304	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3305	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3306
 
 
3307	/* Finally update the reader page to the new head */
3308	cpu_buffer->reader_page = reader;
3309	rb_reset_reader_page(cpu_buffer);
3310
3311	if (overwrite != cpu_buffer->last_overrun) {
3312		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3313		cpu_buffer->last_overrun = overwrite;
3314	}
3315
3316	goto again;
3317
3318 out:
 
 
 
 
3319	arch_spin_unlock(&cpu_buffer->lock);
3320	local_irq_restore(flags);
3321
3322	return reader;
3323}
3324
3325static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3326{
3327	struct ring_buffer_event *event;
3328	struct buffer_page *reader;
3329	unsigned length;
3330
3331	reader = rb_get_reader_page(cpu_buffer);
3332
3333	/* This function should not be called when buffer is empty */
3334	if (RB_WARN_ON(cpu_buffer, !reader))
3335		return;
3336
3337	event = rb_reader_event(cpu_buffer);
3338
3339	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3340		cpu_buffer->read++;
3341
3342	rb_update_read_stamp(cpu_buffer, event);
3343
3344	length = rb_event_length(event);
3345	cpu_buffer->reader_page->read += length;
3346}
3347
3348static void rb_advance_iter(struct ring_buffer_iter *iter)
3349{
3350	struct ring_buffer_per_cpu *cpu_buffer;
3351	struct ring_buffer_event *event;
3352	unsigned length;
3353
3354	cpu_buffer = iter->cpu_buffer;
3355
3356	/*
3357	 * Check if we are at the end of the buffer.
3358	 */
3359	if (iter->head >= rb_page_size(iter->head_page)) {
3360		/* discarded commits can make the page empty */
3361		if (iter->head_page == cpu_buffer->commit_page)
3362			return;
3363		rb_inc_iter(iter);
3364		return;
3365	}
3366
3367	event = rb_iter_head_event(iter);
3368
3369	length = rb_event_length(event);
3370
3371	/*
3372	 * This should not be called to advance the header if we are
3373	 * at the tail of the buffer.
3374	 */
3375	if (RB_WARN_ON(cpu_buffer,
3376		       (iter->head_page == cpu_buffer->commit_page) &&
3377		       (iter->head + length > rb_commit_index(cpu_buffer))))
3378		return;
3379
3380	rb_update_iter_read_stamp(iter, event);
3381
3382	iter->head += length;
3383
3384	/* check for end of page padding */
3385	if ((iter->head >= rb_page_size(iter->head_page)) &&
3386	    (iter->head_page != cpu_buffer->commit_page))
3387		rb_advance_iter(iter);
3388}
3389
3390static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3391{
3392	return cpu_buffer->lost_events;
3393}
3394
3395static struct ring_buffer_event *
3396rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3397	       unsigned long *lost_events)
3398{
3399	struct ring_buffer_event *event;
3400	struct buffer_page *reader;
3401	int nr_loops = 0;
3402
 
 
3403 again:
3404	/*
3405	 * We repeat when a time extend is encountered.
3406	 * Since the time extend is always attached to a data event,
3407	 * we should never loop more than once.
3408	 * (We never hit the following condition more than twice).
3409	 */
3410	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3411		return NULL;
3412
3413	reader = rb_get_reader_page(cpu_buffer);
3414	if (!reader)
3415		return NULL;
3416
3417	event = rb_reader_event(cpu_buffer);
3418
3419	switch (event->type_len) {
3420	case RINGBUF_TYPE_PADDING:
3421		if (rb_null_event(event))
3422			RB_WARN_ON(cpu_buffer, 1);
3423		/*
3424		 * Because the writer could be discarding every
3425		 * event it creates (which would probably be bad)
3426		 * if we were to go back to "again" then we may never
3427		 * catch up, and will trigger the warn on, or lock
3428		 * the box. Return the padding, and we will release
3429		 * the current locks, and try again.
3430		 */
3431		return event;
3432
3433	case RINGBUF_TYPE_TIME_EXTEND:
3434		/* Internal data, OK to advance */
3435		rb_advance_reader(cpu_buffer);
3436		goto again;
3437
3438	case RINGBUF_TYPE_TIME_STAMP:
3439		/* FIXME: not implemented */
 
 
 
 
 
3440		rb_advance_reader(cpu_buffer);
3441		goto again;
3442
3443	case RINGBUF_TYPE_DATA:
3444		if (ts) {
3445			*ts = cpu_buffer->read_stamp + event->time_delta;
3446			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3447							 cpu_buffer->cpu, ts);
3448		}
3449		if (lost_events)
3450			*lost_events = rb_lost_events(cpu_buffer);
3451		return event;
3452
3453	default:
3454		BUG();
3455	}
3456
3457	return NULL;
3458}
3459EXPORT_SYMBOL_GPL(ring_buffer_peek);
3460
3461static struct ring_buffer_event *
3462rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3463{
3464	struct ring_buffer *buffer;
3465	struct ring_buffer_per_cpu *cpu_buffer;
3466	struct ring_buffer_event *event;
3467	int nr_loops = 0;
3468
 
 
 
3469	cpu_buffer = iter->cpu_buffer;
3470	buffer = cpu_buffer->buffer;
3471
3472	/*
3473	 * Check if someone performed a consuming read to
3474	 * the buffer. A consuming read invalidates the iterator
3475	 * and we need to reset the iterator in this case.
3476	 */
3477	if (unlikely(iter->cache_read != cpu_buffer->read ||
3478		     iter->cache_reader_page != cpu_buffer->reader_page))
3479		rb_iter_reset(iter);
3480
3481 again:
3482	if (ring_buffer_iter_empty(iter))
3483		return NULL;
3484
3485	/*
3486	 * We repeat when a time extend is encountered.
3487	 * Since the time extend is always attached to a data event,
3488	 * we should never loop more than once.
3489	 * (We never hit the following condition more than twice).
 
 
3490	 */
3491	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3492		return NULL;
3493
3494	if (rb_per_cpu_empty(cpu_buffer))
3495		return NULL;
3496
3497	if (iter->head >= local_read(&iter->head_page->page->commit)) {
3498		rb_inc_iter(iter);
3499		goto again;
3500	}
3501
3502	event = rb_iter_head_event(iter);
3503
3504	switch (event->type_len) {
3505	case RINGBUF_TYPE_PADDING:
3506		if (rb_null_event(event)) {
3507			rb_inc_iter(iter);
3508			goto again;
3509		}
3510		rb_advance_iter(iter);
3511		return event;
3512
3513	case RINGBUF_TYPE_TIME_EXTEND:
3514		/* Internal data, OK to advance */
3515		rb_advance_iter(iter);
3516		goto again;
3517
3518	case RINGBUF_TYPE_TIME_STAMP:
3519		/* FIXME: not implemented */
 
 
 
 
 
3520		rb_advance_iter(iter);
3521		goto again;
3522
3523	case RINGBUF_TYPE_DATA:
3524		if (ts) {
3525			*ts = iter->read_stamp + event->time_delta;
3526			ring_buffer_normalize_time_stamp(buffer,
3527							 cpu_buffer->cpu, ts);
3528		}
3529		return event;
3530
3531	default:
3532		BUG();
3533	}
3534
3535	return NULL;
3536}
3537EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3538
3539static inline int rb_ok_to_lock(void)
3540{
 
 
 
 
 
3541	/*
3542	 * If an NMI die dumps out the content of the ring buffer
3543	 * do not grab locks. We also permanently disable the ring
3544	 * buffer too. A one time deal is all you get from reading
3545	 * the ring buffer from an NMI.
 
 
 
3546	 */
3547	if (likely(!in_nmi()))
3548		return 1;
 
 
 
 
 
3549
3550	tracing_off_permanent();
3551	return 0;
 
 
 
 
3552}
3553
3554/**
3555 * ring_buffer_peek - peek at the next event to be read
3556 * @buffer: The ring buffer to read
3557 * @cpu: The cpu to peak at
3558 * @ts: The timestamp counter of this event.
3559 * @lost_events: a variable to store if events were lost (may be NULL)
3560 *
3561 * This will return the event that will be read next, but does
3562 * not consume the data.
3563 */
3564struct ring_buffer_event *
3565ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3566		 unsigned long *lost_events)
3567{
3568	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3569	struct ring_buffer_event *event;
3570	unsigned long flags;
3571	int dolock;
3572
3573	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3574		return NULL;
3575
3576	dolock = rb_ok_to_lock();
3577 again:
3578	local_irq_save(flags);
3579	if (dolock)
3580		raw_spin_lock(&cpu_buffer->reader_lock);
3581	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3582	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3583		rb_advance_reader(cpu_buffer);
3584	if (dolock)
3585		raw_spin_unlock(&cpu_buffer->reader_lock);
3586	local_irq_restore(flags);
3587
3588	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3589		goto again;
3590
3591	return event;
3592}
3593
3594/**
3595 * ring_buffer_iter_peek - peek at the next event to be read
3596 * @iter: The ring buffer iterator
3597 * @ts: The timestamp counter of this event.
3598 *
3599 * This will return the event that will be read next, but does
3600 * not increment the iterator.
3601 */
3602struct ring_buffer_event *
3603ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3604{
3605	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3606	struct ring_buffer_event *event;
3607	unsigned long flags;
3608
3609 again:
3610	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3611	event = rb_iter_peek(iter, ts);
3612	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3613
3614	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3615		goto again;
3616
3617	return event;
3618}
3619
3620/**
3621 * ring_buffer_consume - return an event and consume it
3622 * @buffer: The ring buffer to get the next event from
3623 * @cpu: the cpu to read the buffer from
3624 * @ts: a variable to store the timestamp (may be NULL)
3625 * @lost_events: a variable to store if events were lost (may be NULL)
3626 *
3627 * Returns the next event in the ring buffer, and that event is consumed.
3628 * Meaning, that sequential reads will keep returning a different event,
3629 * and eventually empty the ring buffer if the producer is slower.
3630 */
3631struct ring_buffer_event *
3632ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3633		    unsigned long *lost_events)
3634{
3635	struct ring_buffer_per_cpu *cpu_buffer;
3636	struct ring_buffer_event *event = NULL;
3637	unsigned long flags;
3638	int dolock;
3639
3640	dolock = rb_ok_to_lock();
3641
3642 again:
3643	/* might be called in atomic */
3644	preempt_disable();
3645
3646	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3647		goto out;
3648
3649	cpu_buffer = buffer->buffers[cpu];
3650	local_irq_save(flags);
3651	if (dolock)
3652		raw_spin_lock(&cpu_buffer->reader_lock);
3653
3654	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3655	if (event) {
3656		cpu_buffer->lost_events = 0;
3657		rb_advance_reader(cpu_buffer);
3658	}
3659
3660	if (dolock)
3661		raw_spin_unlock(&cpu_buffer->reader_lock);
3662	local_irq_restore(flags);
3663
3664 out:
3665	preempt_enable();
3666
3667	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3668		goto again;
3669
3670	return event;
3671}
3672EXPORT_SYMBOL_GPL(ring_buffer_consume);
3673
3674/**
3675 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3676 * @buffer: The ring buffer to read from
3677 * @cpu: The cpu buffer to iterate over
 
3678 *
3679 * This performs the initial preparations necessary to iterate
3680 * through the buffer.  Memory is allocated, buffer recording
3681 * is disabled, and the iterator pointer is returned to the caller.
3682 *
3683 * Disabling buffer recordng prevents the reading from being
3684 * corrupted. This is not a consuming read, so a producer is not
3685 * expected.
3686 *
3687 * After a sequence of ring_buffer_read_prepare calls, the user is
3688 * expected to make at least one call to ring_buffer_prepare_sync.
3689 * Afterwards, ring_buffer_read_start is invoked to get things going
3690 * for real.
3691 *
3692 * This overall must be paired with ring_buffer_finish.
3693 */
3694struct ring_buffer_iter *
3695ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3696{
3697	struct ring_buffer_per_cpu *cpu_buffer;
3698	struct ring_buffer_iter *iter;
3699
3700	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3701		return NULL;
3702
3703	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3704	if (!iter)
3705		return NULL;
3706
3707	cpu_buffer = buffer->buffers[cpu];
3708
3709	iter->cpu_buffer = cpu_buffer;
3710
3711	atomic_inc(&buffer->resize_disabled);
3712	atomic_inc(&cpu_buffer->record_disabled);
3713
3714	return iter;
3715}
3716EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3717
3718/**
3719 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3720 *
3721 * All previously invoked ring_buffer_read_prepare calls to prepare
3722 * iterators will be synchronized.  Afterwards, read_buffer_read_start
3723 * calls on those iterators are allowed.
3724 */
3725void
3726ring_buffer_read_prepare_sync(void)
3727{
3728	synchronize_sched();
3729}
3730EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3731
3732/**
3733 * ring_buffer_read_start - start a non consuming read of the buffer
3734 * @iter: The iterator returned by ring_buffer_read_prepare
3735 *
3736 * This finalizes the startup of an iteration through the buffer.
3737 * The iterator comes from a call to ring_buffer_read_prepare and
3738 * an intervening ring_buffer_read_prepare_sync must have been
3739 * performed.
3740 *
3741 * Must be paired with ring_buffer_finish.
3742 */
3743void
3744ring_buffer_read_start(struct ring_buffer_iter *iter)
3745{
3746	struct ring_buffer_per_cpu *cpu_buffer;
3747	unsigned long flags;
3748
3749	if (!iter)
3750		return;
3751
3752	cpu_buffer = iter->cpu_buffer;
3753
3754	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3755	arch_spin_lock(&cpu_buffer->lock);
3756	rb_iter_reset(iter);
3757	arch_spin_unlock(&cpu_buffer->lock);
3758	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3759}
3760EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3761
3762/**
3763 * ring_buffer_finish - finish reading the iterator of the buffer
3764 * @iter: The iterator retrieved by ring_buffer_start
3765 *
3766 * This re-enables the recording to the buffer, and frees the
3767 * iterator.
3768 */
3769void
3770ring_buffer_read_finish(struct ring_buffer_iter *iter)
3771{
3772	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
 
3773
3774	/*
3775	 * Ring buffer is disabled from recording, here's a good place
3776	 * to check the integrity of the ring buffer. 
 
 
3777	 */
 
3778	rb_check_pages(cpu_buffer);
 
3779
3780	atomic_dec(&cpu_buffer->record_disabled);
3781	atomic_dec(&cpu_buffer->buffer->resize_disabled);
3782	kfree(iter);
3783}
3784EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3785
3786/**
3787 * ring_buffer_read - read the next item in the ring buffer by the iterator
3788 * @iter: The ring buffer iterator
3789 * @ts: The time stamp of the event read.
3790 *
3791 * This reads the next event in the ring buffer and increments the iterator.
3792 */
3793struct ring_buffer_event *
3794ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3795{
3796	struct ring_buffer_event *event;
3797	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3798	unsigned long flags;
3799
3800	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3801 again:
3802	event = rb_iter_peek(iter, ts);
3803	if (!event)
3804		goto out;
3805
3806	if (event->type_len == RINGBUF_TYPE_PADDING)
3807		goto again;
3808
3809	rb_advance_iter(iter);
3810 out:
3811	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3812
3813	return event;
3814}
3815EXPORT_SYMBOL_GPL(ring_buffer_read);
3816
3817/**
3818 * ring_buffer_size - return the size of the ring buffer (in bytes)
3819 * @buffer: The ring buffer.
3820 */
3821unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
3822{
3823	/*
3824	 * Earlier, this method returned
3825	 *	BUF_PAGE_SIZE * buffer->nr_pages
3826	 * Since the nr_pages field is now removed, we have converted this to
3827	 * return the per cpu buffer value.
3828	 */
3829	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3830		return 0;
3831
3832	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
3833}
3834EXPORT_SYMBOL_GPL(ring_buffer_size);
3835
3836static void
3837rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3838{
3839	rb_head_page_deactivate(cpu_buffer);
3840
3841	cpu_buffer->head_page
3842		= list_entry(cpu_buffer->pages, struct buffer_page, list);
3843	local_set(&cpu_buffer->head_page->write, 0);
3844	local_set(&cpu_buffer->head_page->entries, 0);
3845	local_set(&cpu_buffer->head_page->page->commit, 0);
3846
3847	cpu_buffer->head_page->read = 0;
3848
3849	cpu_buffer->tail_page = cpu_buffer->head_page;
3850	cpu_buffer->commit_page = cpu_buffer->head_page;
3851
3852	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3853	INIT_LIST_HEAD(&cpu_buffer->new_pages);
3854	local_set(&cpu_buffer->reader_page->write, 0);
3855	local_set(&cpu_buffer->reader_page->entries, 0);
3856	local_set(&cpu_buffer->reader_page->page->commit, 0);
3857	cpu_buffer->reader_page->read = 0;
3858
3859	local_set(&cpu_buffer->commit_overrun, 0);
3860	local_set(&cpu_buffer->entries_bytes, 0);
3861	local_set(&cpu_buffer->overrun, 0);
 
 
3862	local_set(&cpu_buffer->entries, 0);
3863	local_set(&cpu_buffer->committing, 0);
3864	local_set(&cpu_buffer->commits, 0);
 
 
 
 
3865	cpu_buffer->read = 0;
3866	cpu_buffer->read_bytes = 0;
3867
3868	cpu_buffer->write_stamp = 0;
3869	cpu_buffer->read_stamp = 0;
3870
3871	cpu_buffer->lost_events = 0;
3872	cpu_buffer->last_overrun = 0;
3873
3874	rb_head_page_activate(cpu_buffer);
3875}
3876
3877/**
3878 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3879 * @buffer: The ring buffer to reset a per cpu buffer of
3880 * @cpu: The CPU buffer to be reset
3881 */
3882void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3883{
3884	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3885	unsigned long flags;
3886
3887	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3888		return;
3889
3890	atomic_inc(&buffer->resize_disabled);
3891	atomic_inc(&cpu_buffer->record_disabled);
3892
3893	/* Make sure all commits have finished */
3894	synchronize_sched();
3895
3896	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3897
3898	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3899		goto out;
3900
3901	arch_spin_lock(&cpu_buffer->lock);
3902
3903	rb_reset_cpu(cpu_buffer);
3904
3905	arch_spin_unlock(&cpu_buffer->lock);
3906
3907 out:
3908	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3909
3910	atomic_dec(&cpu_buffer->record_disabled);
3911	atomic_dec(&buffer->resize_disabled);
3912}
3913EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3914
3915/**
3916 * ring_buffer_reset - reset a ring buffer
3917 * @buffer: The ring buffer to reset all cpu buffers
3918 */
3919void ring_buffer_reset(struct ring_buffer *buffer)
3920{
3921	int cpu;
3922
3923	for_each_buffer_cpu(buffer, cpu)
3924		ring_buffer_reset_cpu(buffer, cpu);
3925}
3926EXPORT_SYMBOL_GPL(ring_buffer_reset);
3927
3928/**
3929 * rind_buffer_empty - is the ring buffer empty?
3930 * @buffer: The ring buffer to test
3931 */
3932int ring_buffer_empty(struct ring_buffer *buffer)
3933{
3934	struct ring_buffer_per_cpu *cpu_buffer;
3935	unsigned long flags;
3936	int dolock;
3937	int cpu;
3938	int ret;
3939
3940	dolock = rb_ok_to_lock();
3941
3942	/* yes this is racy, but if you don't like the race, lock the buffer */
3943	for_each_buffer_cpu(buffer, cpu) {
3944		cpu_buffer = buffer->buffers[cpu];
3945		local_irq_save(flags);
3946		if (dolock)
3947			raw_spin_lock(&cpu_buffer->reader_lock);
3948		ret = rb_per_cpu_empty(cpu_buffer);
3949		if (dolock)
3950			raw_spin_unlock(&cpu_buffer->reader_lock);
3951		local_irq_restore(flags);
3952
3953		if (!ret)
3954			return 0;
3955	}
3956
3957	return 1;
3958}
3959EXPORT_SYMBOL_GPL(ring_buffer_empty);
3960
3961/**
3962 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3963 * @buffer: The ring buffer
3964 * @cpu: The CPU buffer to test
3965 */
3966int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3967{
3968	struct ring_buffer_per_cpu *cpu_buffer;
3969	unsigned long flags;
3970	int dolock;
3971	int ret;
3972
3973	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3974		return 1;
3975
3976	dolock = rb_ok_to_lock();
3977
3978	cpu_buffer = buffer->buffers[cpu];
3979	local_irq_save(flags);
3980	if (dolock)
3981		raw_spin_lock(&cpu_buffer->reader_lock);
3982	ret = rb_per_cpu_empty(cpu_buffer);
3983	if (dolock)
3984		raw_spin_unlock(&cpu_buffer->reader_lock);
3985	local_irq_restore(flags);
3986
3987	return ret;
3988}
3989EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3990
3991#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3992/**
3993 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3994 * @buffer_a: One buffer to swap with
3995 * @buffer_b: The other buffer to swap with
3996 *
3997 * This function is useful for tracers that want to take a "snapshot"
3998 * of a CPU buffer and has another back up buffer lying around.
3999 * it is expected that the tracer handles the cpu buffer not being
4000 * used at the moment.
4001 */
4002int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4003			 struct ring_buffer *buffer_b, int cpu)
4004{
4005	struct ring_buffer_per_cpu *cpu_buffer_a;
4006	struct ring_buffer_per_cpu *cpu_buffer_b;
4007	int ret = -EINVAL;
4008
4009	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4010	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
4011		goto out;
4012
4013	cpu_buffer_a = buffer_a->buffers[cpu];
4014	cpu_buffer_b = buffer_b->buffers[cpu];
4015
4016	/* At least make sure the two buffers are somewhat the same */
4017	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4018		goto out;
4019
4020	ret = -EAGAIN;
4021
4022	if (ring_buffer_flags != RB_BUFFERS_ON)
4023		goto out;
4024
4025	if (atomic_read(&buffer_a->record_disabled))
4026		goto out;
4027
4028	if (atomic_read(&buffer_b->record_disabled))
4029		goto out;
4030
4031	if (atomic_read(&cpu_buffer_a->record_disabled))
4032		goto out;
4033
4034	if (atomic_read(&cpu_buffer_b->record_disabled))
4035		goto out;
4036
4037	/*
4038	 * We can't do a synchronize_sched here because this
4039	 * function can be called in atomic context.
4040	 * Normally this will be called from the same CPU as cpu.
4041	 * If not it's up to the caller to protect this.
4042	 */
4043	atomic_inc(&cpu_buffer_a->record_disabled);
4044	atomic_inc(&cpu_buffer_b->record_disabled);
4045
4046	ret = -EBUSY;
4047	if (local_read(&cpu_buffer_a->committing))
4048		goto out_dec;
4049	if (local_read(&cpu_buffer_b->committing))
4050		goto out_dec;
4051
4052	buffer_a->buffers[cpu] = cpu_buffer_b;
4053	buffer_b->buffers[cpu] = cpu_buffer_a;
4054
4055	cpu_buffer_b->buffer = buffer_a;
4056	cpu_buffer_a->buffer = buffer_b;
4057
4058	ret = 0;
4059
4060out_dec:
4061	atomic_dec(&cpu_buffer_a->record_disabled);
4062	atomic_dec(&cpu_buffer_b->record_disabled);
4063out:
4064	return ret;
4065}
4066EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4067#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4068
4069/**
4070 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4071 * @buffer: the buffer to allocate for.
 
4072 *
4073 * This function is used in conjunction with ring_buffer_read_page.
4074 * When reading a full page from the ring buffer, these functions
4075 * can be used to speed up the process. The calling function should
4076 * allocate a few pages first with this function. Then when it
4077 * needs to get pages from the ring buffer, it passes the result
4078 * of this function into ring_buffer_read_page, which will swap
4079 * the page that was allocated, with the read page of the buffer.
4080 *
4081 * Returns:
4082 *  The page allocated, or NULL on error.
4083 */
4084void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4085{
4086	struct buffer_data_page *bpage;
 
 
4087	struct page *page;
4088
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4089	page = alloc_pages_node(cpu_to_node(cpu),
4090				GFP_KERNEL | __GFP_NORETRY, 0);
4091	if (!page)
4092		return NULL;
4093
4094	bpage = page_address(page);
4095
 
4096	rb_init_page(bpage);
4097
4098	return bpage;
4099}
4100EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4101
4102/**
4103 * ring_buffer_free_read_page - free an allocated read page
4104 * @buffer: the buffer the page was allocate for
 
4105 * @data: the page to free
4106 *
4107 * Free a page allocated from ring_buffer_alloc_read_page.
4108 */
4109void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4110{
4111	free_page((unsigned long)data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4112}
4113EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4114
4115/**
4116 * ring_buffer_read_page - extract a page from the ring buffer
4117 * @buffer: buffer to extract from
4118 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4119 * @len: amount to extract
4120 * @cpu: the cpu of the buffer to extract
4121 * @full: should the extraction only happen when the page is full.
4122 *
4123 * This function will pull out a page from the ring buffer and consume it.
4124 * @data_page must be the address of the variable that was returned
4125 * from ring_buffer_alloc_read_page. This is because the page might be used
4126 * to swap with a page in the ring buffer.
4127 *
4128 * for example:
4129 *	rpage = ring_buffer_alloc_read_page(buffer);
4130 *	if (!rpage)
4131 *		return error;
4132 *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4133 *	if (ret >= 0)
4134 *		process_page(rpage, ret);
4135 *
4136 * When @full is set, the function will not return true unless
4137 * the writer is off the reader page.
4138 *
4139 * Note: it is up to the calling functions to handle sleeps and wakeups.
4140 *  The ring buffer can be used anywhere in the kernel and can not
4141 *  blindly call wake_up. The layer that uses the ring buffer must be
4142 *  responsible for that.
4143 *
4144 * Returns:
4145 *  >=0 if data has been transferred, returns the offset of consumed data.
4146 *  <0 if no data has been transferred.
4147 */
4148int ring_buffer_read_page(struct ring_buffer *buffer,
4149			  void **data_page, size_t len, int cpu, int full)
4150{
4151	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4152	struct ring_buffer_event *event;
4153	struct buffer_data_page *bpage;
4154	struct buffer_page *reader;
4155	unsigned long missed_events;
4156	unsigned long flags;
4157	unsigned int commit;
4158	unsigned int read;
4159	u64 save_timestamp;
4160	int ret = -1;
4161
4162	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4163		goto out;
4164
4165	/*
4166	 * If len is not big enough to hold the page header, then
4167	 * we can not copy anything.
4168	 */
4169	if (len <= BUF_PAGE_HDR_SIZE)
4170		goto out;
4171
4172	len -= BUF_PAGE_HDR_SIZE;
4173
4174	if (!data_page)
4175		goto out;
4176
4177	bpage = *data_page;
4178	if (!bpage)
4179		goto out;
4180
4181	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4182
4183	reader = rb_get_reader_page(cpu_buffer);
4184	if (!reader)
4185		goto out_unlock;
4186
4187	event = rb_reader_event(cpu_buffer);
4188
4189	read = reader->read;
4190	commit = rb_page_commit(reader);
4191
4192	/* Check if any events were dropped */
4193	missed_events = cpu_buffer->lost_events;
4194
4195	/*
4196	 * If this page has been partially read or
4197	 * if len is not big enough to read the rest of the page or
4198	 * a writer is still on the page, then
4199	 * we must copy the data from the page to the buffer.
4200	 * Otherwise, we can simply swap the page with the one passed in.
4201	 */
4202	if (read || (len < (commit - read)) ||
4203	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
4204		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4205		unsigned int rpos = read;
4206		unsigned int pos = 0;
4207		unsigned int size;
4208
4209		if (full)
4210			goto out_unlock;
4211
4212		if (len > (commit - read))
4213			len = (commit - read);
4214
4215		/* Always keep the time extend and data together */
4216		size = rb_event_ts_length(event);
4217
4218		if (len < size)
4219			goto out_unlock;
4220
4221		/* save the current timestamp, since the user will need it */
4222		save_timestamp = cpu_buffer->read_stamp;
4223
4224		/* Need to copy one event at a time */
4225		do {
4226			/* We need the size of one event, because
4227			 * rb_advance_reader only advances by one event,
4228			 * whereas rb_event_ts_length may include the size of
4229			 * one or two events.
4230			 * We have already ensured there's enough space if this
4231			 * is a time extend. */
4232			size = rb_event_length(event);
4233			memcpy(bpage->data + pos, rpage->data + rpos, size);
4234
4235			len -= size;
4236
4237			rb_advance_reader(cpu_buffer);
4238			rpos = reader->read;
4239			pos += size;
4240
4241			if (rpos >= commit)
4242				break;
4243
4244			event = rb_reader_event(cpu_buffer);
4245			/* Always keep the time extend and data together */
4246			size = rb_event_ts_length(event);
4247		} while (len >= size);
4248
4249		/* update bpage */
4250		local_set(&bpage->commit, pos);
4251		bpage->time_stamp = save_timestamp;
4252
4253		/* we copied everything to the beginning */
4254		read = 0;
4255	} else {
4256		/* update the entry counter */
4257		cpu_buffer->read += rb_page_entries(reader);
4258		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4259
4260		/* swap the pages */
4261		rb_init_page(bpage);
4262		bpage = reader->page;
4263		reader->page = *data_page;
4264		local_set(&reader->write, 0);
4265		local_set(&reader->entries, 0);
4266		reader->read = 0;
4267		*data_page = bpage;
4268
4269		/*
4270		 * Use the real_end for the data size,
4271		 * This gives us a chance to store the lost events
4272		 * on the page.
4273		 */
4274		if (reader->real_end)
4275			local_set(&bpage->commit, reader->real_end);
4276	}
4277	ret = read;
4278
4279	cpu_buffer->lost_events = 0;
4280
4281	commit = local_read(&bpage->commit);
4282	/*
4283	 * Set a flag in the commit field if we lost events
4284	 */
4285	if (missed_events) {
4286		/* If there is room at the end of the page to save the
4287		 * missed events, then record it there.
4288		 */
4289		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4290			memcpy(&bpage->data[commit], &missed_events,
4291			       sizeof(missed_events));
4292			local_add(RB_MISSED_STORED, &bpage->commit);
4293			commit += sizeof(missed_events);
4294		}
4295		local_add(RB_MISSED_EVENTS, &bpage->commit);
4296	}
4297
4298	/*
4299	 * This page may be off to user land. Zero it out here.
4300	 */
4301	if (commit < BUF_PAGE_SIZE)
4302		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4303
4304 out_unlock:
4305	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4306
4307 out:
4308	return ret;
4309}
4310EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4311
4312#ifdef CONFIG_HOTPLUG_CPU
4313static int rb_cpu_notify(struct notifier_block *self,
4314			 unsigned long action, void *hcpu)
4315{
4316	struct ring_buffer *buffer =
4317		container_of(self, struct ring_buffer, cpu_notify);
4318	long cpu = (long)hcpu;
4319	int cpu_i, nr_pages_same;
4320	unsigned int nr_pages;
4321
4322	switch (action) {
4323	case CPU_UP_PREPARE:
4324	case CPU_UP_PREPARE_FROZEN:
4325		if (cpumask_test_cpu(cpu, buffer->cpumask))
4326			return NOTIFY_OK;
4327
4328		nr_pages = 0;
4329		nr_pages_same = 1;
4330		/* check if all cpu sizes are same */
4331		for_each_buffer_cpu(buffer, cpu_i) {
4332			/* fill in the size from first enabled cpu */
4333			if (nr_pages == 0)
4334				nr_pages = buffer->buffers[cpu_i]->nr_pages;
4335			if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4336				nr_pages_same = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4337				break;
4338			}
 
4339		}
4340		/* allocate minimum pages, user can later expand it */
4341		if (!nr_pages_same)
4342			nr_pages = 2;
4343		buffer->buffers[cpu] =
4344			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4345		if (!buffer->buffers[cpu]) {
4346			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4347			     cpu);
4348			return NOTIFY_OK;
 
 
 
 
 
 
 
 
4349		}
4350		smp_wmb();
4351		cpumask_set_cpu(cpu, buffer->cpumask);
4352		break;
4353	case CPU_DOWN_PREPARE:
4354	case CPU_DOWN_PREPARE_FROZEN:
4355		/*
4356		 * Do nothing.
4357		 *  If we were to free the buffer, then the user would
4358		 *  lose any trace that was in the buffer.
4359		 */
4360		break;
4361	default:
4362		break;
4363	}
4364	return NOTIFY_OK;
 
 
 
 
4365}
4366#endif