Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Key setup facility for FS encryption support.
4 *
5 * Copyright (C) 2015, Google, Inc.
6 *
7 * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar.
8 * Heavily modified since then.
9 */
10
11#include <crypto/aes.h>
12#include <crypto/sha.h>
13#include <crypto/skcipher.h>
14#include <linux/key.h>
15
16#include "fscrypt_private.h"
17
18static struct crypto_shash *essiv_hash_tfm;
19
20static struct fscrypt_mode available_modes[] = {
21 [FSCRYPT_MODE_AES_256_XTS] = {
22 .friendly_name = "AES-256-XTS",
23 .cipher_str = "xts(aes)",
24 .keysize = 64,
25 .ivsize = 16,
26 },
27 [FSCRYPT_MODE_AES_256_CTS] = {
28 .friendly_name = "AES-256-CTS-CBC",
29 .cipher_str = "cts(cbc(aes))",
30 .keysize = 32,
31 .ivsize = 16,
32 },
33 [FSCRYPT_MODE_AES_128_CBC] = {
34 .friendly_name = "AES-128-CBC",
35 .cipher_str = "cbc(aes)",
36 .keysize = 16,
37 .ivsize = 16,
38 .needs_essiv = true,
39 },
40 [FSCRYPT_MODE_AES_128_CTS] = {
41 .friendly_name = "AES-128-CTS-CBC",
42 .cipher_str = "cts(cbc(aes))",
43 .keysize = 16,
44 .ivsize = 16,
45 },
46 [FSCRYPT_MODE_ADIANTUM] = {
47 .friendly_name = "Adiantum",
48 .cipher_str = "adiantum(xchacha12,aes)",
49 .keysize = 32,
50 .ivsize = 32,
51 },
52};
53
54static struct fscrypt_mode *
55select_encryption_mode(const union fscrypt_policy *policy,
56 const struct inode *inode)
57{
58 if (S_ISREG(inode->i_mode))
59 return &available_modes[fscrypt_policy_contents_mode(policy)];
60
61 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
62 return &available_modes[fscrypt_policy_fnames_mode(policy)];
63
64 WARN_ONCE(1, "fscrypt: filesystem tried to load encryption info for inode %lu, which is not encryptable (file type %d)\n",
65 inode->i_ino, (inode->i_mode & S_IFMT));
66 return ERR_PTR(-EINVAL);
67}
68
69/* Create a symmetric cipher object for the given encryption mode and key */
70struct crypto_skcipher *fscrypt_allocate_skcipher(struct fscrypt_mode *mode,
71 const u8 *raw_key,
72 const struct inode *inode)
73{
74 struct crypto_skcipher *tfm;
75 int err;
76
77 tfm = crypto_alloc_skcipher(mode->cipher_str, 0, 0);
78 if (IS_ERR(tfm)) {
79 if (PTR_ERR(tfm) == -ENOENT) {
80 fscrypt_warn(inode,
81 "Missing crypto API support for %s (API name: \"%s\")",
82 mode->friendly_name, mode->cipher_str);
83 return ERR_PTR(-ENOPKG);
84 }
85 fscrypt_err(inode, "Error allocating '%s' transform: %ld",
86 mode->cipher_str, PTR_ERR(tfm));
87 return tfm;
88 }
89 if (unlikely(!mode->logged_impl_name)) {
90 /*
91 * fscrypt performance can vary greatly depending on which
92 * crypto algorithm implementation is used. Help people debug
93 * performance problems by logging the ->cra_driver_name the
94 * first time a mode is used. Note that multiple threads can
95 * race here, but it doesn't really matter.
96 */
97 mode->logged_impl_name = true;
98 pr_info("fscrypt: %s using implementation \"%s\"\n",
99 mode->friendly_name,
100 crypto_skcipher_alg(tfm)->base.cra_driver_name);
101 }
102 crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
103 err = crypto_skcipher_setkey(tfm, raw_key, mode->keysize);
104 if (err)
105 goto err_free_tfm;
106
107 return tfm;
108
109err_free_tfm:
110 crypto_free_skcipher(tfm);
111 return ERR_PTR(err);
112}
113
114static int derive_essiv_salt(const u8 *key, int keysize, u8 *salt)
115{
116 struct crypto_shash *tfm = READ_ONCE(essiv_hash_tfm);
117
118 /* init hash transform on demand */
119 if (unlikely(!tfm)) {
120 struct crypto_shash *prev_tfm;
121
122 tfm = crypto_alloc_shash("sha256", 0, 0);
123 if (IS_ERR(tfm)) {
124 if (PTR_ERR(tfm) == -ENOENT) {
125 fscrypt_warn(NULL,
126 "Missing crypto API support for SHA-256");
127 return -ENOPKG;
128 }
129 fscrypt_err(NULL,
130 "Error allocating SHA-256 transform: %ld",
131 PTR_ERR(tfm));
132 return PTR_ERR(tfm);
133 }
134 prev_tfm = cmpxchg(&essiv_hash_tfm, NULL, tfm);
135 if (prev_tfm) {
136 crypto_free_shash(tfm);
137 tfm = prev_tfm;
138 }
139 }
140
141 {
142 SHASH_DESC_ON_STACK(desc, tfm);
143 desc->tfm = tfm;
144
145 return crypto_shash_digest(desc, key, keysize, salt);
146 }
147}
148
149static int init_essiv_generator(struct fscrypt_info *ci, const u8 *raw_key,
150 int keysize)
151{
152 int err;
153 struct crypto_cipher *essiv_tfm;
154 u8 salt[SHA256_DIGEST_SIZE];
155
156 if (WARN_ON(ci->ci_mode->ivsize != AES_BLOCK_SIZE))
157 return -EINVAL;
158
159 essiv_tfm = crypto_alloc_cipher("aes", 0, 0);
160 if (IS_ERR(essiv_tfm))
161 return PTR_ERR(essiv_tfm);
162
163 ci->ci_essiv_tfm = essiv_tfm;
164
165 err = derive_essiv_salt(raw_key, keysize, salt);
166 if (err)
167 goto out;
168
169 /*
170 * Using SHA256 to derive the salt/key will result in AES-256 being
171 * used for IV generation. File contents encryption will still use the
172 * configured keysize (AES-128) nevertheless.
173 */
174 err = crypto_cipher_setkey(essiv_tfm, salt, sizeof(salt));
175 if (err)
176 goto out;
177
178out:
179 memzero_explicit(salt, sizeof(salt));
180 return err;
181}
182
183/* Given the per-file key, set up the file's crypto transform object(s) */
184int fscrypt_set_derived_key(struct fscrypt_info *ci, const u8 *derived_key)
185{
186 struct fscrypt_mode *mode = ci->ci_mode;
187 struct crypto_skcipher *ctfm;
188 int err;
189
190 ctfm = fscrypt_allocate_skcipher(mode, derived_key, ci->ci_inode);
191 if (IS_ERR(ctfm))
192 return PTR_ERR(ctfm);
193
194 ci->ci_ctfm = ctfm;
195
196 if (mode->needs_essiv) {
197 err = init_essiv_generator(ci, derived_key, mode->keysize);
198 if (err) {
199 fscrypt_warn(ci->ci_inode,
200 "Error initializing ESSIV generator: %d",
201 err);
202 return err;
203 }
204 }
205 return 0;
206}
207
208static int setup_per_mode_key(struct fscrypt_info *ci,
209 struct fscrypt_master_key *mk)
210{
211 struct fscrypt_mode *mode = ci->ci_mode;
212 u8 mode_num = mode - available_modes;
213 struct crypto_skcipher *tfm, *prev_tfm;
214 u8 mode_key[FSCRYPT_MAX_KEY_SIZE];
215 int err;
216
217 if (WARN_ON(mode_num >= ARRAY_SIZE(mk->mk_mode_keys)))
218 return -EINVAL;
219
220 /* pairs with cmpxchg() below */
221 tfm = READ_ONCE(mk->mk_mode_keys[mode_num]);
222 if (likely(tfm != NULL))
223 goto done;
224
225 BUILD_BUG_ON(sizeof(mode_num) != 1);
226 err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
227 HKDF_CONTEXT_PER_MODE_KEY,
228 &mode_num, sizeof(mode_num),
229 mode_key, mode->keysize);
230 if (err)
231 return err;
232 tfm = fscrypt_allocate_skcipher(mode, mode_key, ci->ci_inode);
233 memzero_explicit(mode_key, mode->keysize);
234 if (IS_ERR(tfm))
235 return PTR_ERR(tfm);
236
237 /* pairs with READ_ONCE() above */
238 prev_tfm = cmpxchg(&mk->mk_mode_keys[mode_num], NULL, tfm);
239 if (prev_tfm != NULL) {
240 crypto_free_skcipher(tfm);
241 tfm = prev_tfm;
242 }
243done:
244 ci->ci_ctfm = tfm;
245 return 0;
246}
247
248static int fscrypt_setup_v2_file_key(struct fscrypt_info *ci,
249 struct fscrypt_master_key *mk)
250{
251 u8 derived_key[FSCRYPT_MAX_KEY_SIZE];
252 int err;
253
254 if (ci->ci_policy.v2.flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) {
255 /*
256 * DIRECT_KEY: instead of deriving per-file keys, the per-file
257 * nonce will be included in all the IVs. But unlike v1
258 * policies, for v2 policies in this case we don't encrypt with
259 * the master key directly but rather derive a per-mode key.
260 * This ensures that the master key is consistently used only
261 * for HKDF, avoiding key reuse issues.
262 */
263 if (!fscrypt_mode_supports_direct_key(ci->ci_mode)) {
264 fscrypt_warn(ci->ci_inode,
265 "Direct key flag not allowed with %s",
266 ci->ci_mode->friendly_name);
267 return -EINVAL;
268 }
269 return setup_per_mode_key(ci, mk);
270 }
271
272 err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
273 HKDF_CONTEXT_PER_FILE_KEY,
274 ci->ci_nonce, FS_KEY_DERIVATION_NONCE_SIZE,
275 derived_key, ci->ci_mode->keysize);
276 if (err)
277 return err;
278
279 err = fscrypt_set_derived_key(ci, derived_key);
280 memzero_explicit(derived_key, ci->ci_mode->keysize);
281 return err;
282}
283
284/*
285 * Find the master key, then set up the inode's actual encryption key.
286 *
287 * If the master key is found in the filesystem-level keyring, then the
288 * corresponding 'struct key' is returned in *master_key_ret with
289 * ->mk_secret_sem read-locked. This is needed to ensure that only one task
290 * links the fscrypt_info into ->mk_decrypted_inodes (as multiple tasks may race
291 * to create an fscrypt_info for the same inode), and to synchronize the master
292 * key being removed with a new inode starting to use it.
293 */
294static int setup_file_encryption_key(struct fscrypt_info *ci,
295 struct key **master_key_ret)
296{
297 struct key *key;
298 struct fscrypt_master_key *mk = NULL;
299 struct fscrypt_key_specifier mk_spec;
300 int err;
301
302 switch (ci->ci_policy.version) {
303 case FSCRYPT_POLICY_V1:
304 mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR;
305 memcpy(mk_spec.u.descriptor,
306 ci->ci_policy.v1.master_key_descriptor,
307 FSCRYPT_KEY_DESCRIPTOR_SIZE);
308 break;
309 case FSCRYPT_POLICY_V2:
310 mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
311 memcpy(mk_spec.u.identifier,
312 ci->ci_policy.v2.master_key_identifier,
313 FSCRYPT_KEY_IDENTIFIER_SIZE);
314 break;
315 default:
316 WARN_ON(1);
317 return -EINVAL;
318 }
319
320 key = fscrypt_find_master_key(ci->ci_inode->i_sb, &mk_spec);
321 if (IS_ERR(key)) {
322 if (key != ERR_PTR(-ENOKEY) ||
323 ci->ci_policy.version != FSCRYPT_POLICY_V1)
324 return PTR_ERR(key);
325
326 /*
327 * As a legacy fallback for v1 policies, search for the key in
328 * the current task's subscribed keyrings too. Don't move this
329 * to before the search of ->s_master_keys, since users
330 * shouldn't be able to override filesystem-level keys.
331 */
332 return fscrypt_setup_v1_file_key_via_subscribed_keyrings(ci);
333 }
334
335 mk = key->payload.data[0];
336 down_read(&mk->mk_secret_sem);
337
338 /* Has the secret been removed (via FS_IOC_REMOVE_ENCRYPTION_KEY)? */
339 if (!is_master_key_secret_present(&mk->mk_secret)) {
340 err = -ENOKEY;
341 goto out_release_key;
342 }
343
344 /*
345 * Require that the master key be at least as long as the derived key.
346 * Otherwise, the derived key cannot possibly contain as much entropy as
347 * that required by the encryption mode it will be used for. For v1
348 * policies it's also required for the KDF to work at all.
349 */
350 if (mk->mk_secret.size < ci->ci_mode->keysize) {
351 fscrypt_warn(NULL,
352 "key with %s %*phN is too short (got %u bytes, need %u+ bytes)",
353 master_key_spec_type(&mk_spec),
354 master_key_spec_len(&mk_spec), (u8 *)&mk_spec.u,
355 mk->mk_secret.size, ci->ci_mode->keysize);
356 err = -ENOKEY;
357 goto out_release_key;
358 }
359
360 switch (ci->ci_policy.version) {
361 case FSCRYPT_POLICY_V1:
362 err = fscrypt_setup_v1_file_key(ci, mk->mk_secret.raw);
363 break;
364 case FSCRYPT_POLICY_V2:
365 err = fscrypt_setup_v2_file_key(ci, mk);
366 break;
367 default:
368 WARN_ON(1);
369 err = -EINVAL;
370 break;
371 }
372 if (err)
373 goto out_release_key;
374
375 *master_key_ret = key;
376 return 0;
377
378out_release_key:
379 up_read(&mk->mk_secret_sem);
380 key_put(key);
381 return err;
382}
383
384static void put_crypt_info(struct fscrypt_info *ci)
385{
386 struct key *key;
387
388 if (!ci)
389 return;
390
391 if (ci->ci_direct_key) {
392 fscrypt_put_direct_key(ci->ci_direct_key);
393 } else if ((ci->ci_ctfm != NULL || ci->ci_essiv_tfm != NULL) &&
394 !fscrypt_is_direct_key_policy(&ci->ci_policy)) {
395 crypto_free_skcipher(ci->ci_ctfm);
396 crypto_free_cipher(ci->ci_essiv_tfm);
397 }
398
399 key = ci->ci_master_key;
400 if (key) {
401 struct fscrypt_master_key *mk = key->payload.data[0];
402
403 /*
404 * Remove this inode from the list of inodes that were unlocked
405 * with the master key.
406 *
407 * In addition, if we're removing the last inode from a key that
408 * already had its secret removed, invalidate the key so that it
409 * gets removed from ->s_master_keys.
410 */
411 spin_lock(&mk->mk_decrypted_inodes_lock);
412 list_del(&ci->ci_master_key_link);
413 spin_unlock(&mk->mk_decrypted_inodes_lock);
414 if (refcount_dec_and_test(&mk->mk_refcount))
415 key_invalidate(key);
416 key_put(key);
417 }
418 kmem_cache_free(fscrypt_info_cachep, ci);
419}
420
421int fscrypt_get_encryption_info(struct inode *inode)
422{
423 struct fscrypt_info *crypt_info;
424 union fscrypt_context ctx;
425 struct fscrypt_mode *mode;
426 struct key *master_key = NULL;
427 int res;
428
429 if (fscrypt_has_encryption_key(inode))
430 return 0;
431
432 res = fscrypt_initialize(inode->i_sb->s_cop->flags);
433 if (res)
434 return res;
435
436 res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx));
437 if (res < 0) {
438 if (!fscrypt_dummy_context_enabled(inode) ||
439 IS_ENCRYPTED(inode)) {
440 fscrypt_warn(inode,
441 "Error %d getting encryption context",
442 res);
443 return res;
444 }
445 /* Fake up a context for an unencrypted directory */
446 memset(&ctx, 0, sizeof(ctx));
447 ctx.version = FSCRYPT_CONTEXT_V1;
448 ctx.v1.contents_encryption_mode = FSCRYPT_MODE_AES_256_XTS;
449 ctx.v1.filenames_encryption_mode = FSCRYPT_MODE_AES_256_CTS;
450 memset(ctx.v1.master_key_descriptor, 0x42,
451 FSCRYPT_KEY_DESCRIPTOR_SIZE);
452 res = sizeof(ctx.v1);
453 }
454
455 crypt_info = kmem_cache_zalloc(fscrypt_info_cachep, GFP_NOFS);
456 if (!crypt_info)
457 return -ENOMEM;
458
459 crypt_info->ci_inode = inode;
460
461 res = fscrypt_policy_from_context(&crypt_info->ci_policy, &ctx, res);
462 if (res) {
463 fscrypt_warn(inode,
464 "Unrecognized or corrupt encryption context");
465 goto out;
466 }
467
468 switch (ctx.version) {
469 case FSCRYPT_CONTEXT_V1:
470 memcpy(crypt_info->ci_nonce, ctx.v1.nonce,
471 FS_KEY_DERIVATION_NONCE_SIZE);
472 break;
473 case FSCRYPT_CONTEXT_V2:
474 memcpy(crypt_info->ci_nonce, ctx.v2.nonce,
475 FS_KEY_DERIVATION_NONCE_SIZE);
476 break;
477 default:
478 WARN_ON(1);
479 res = -EINVAL;
480 goto out;
481 }
482
483 if (!fscrypt_supported_policy(&crypt_info->ci_policy, inode)) {
484 res = -EINVAL;
485 goto out;
486 }
487
488 mode = select_encryption_mode(&crypt_info->ci_policy, inode);
489 if (IS_ERR(mode)) {
490 res = PTR_ERR(mode);
491 goto out;
492 }
493 WARN_ON(mode->ivsize > FSCRYPT_MAX_IV_SIZE);
494 crypt_info->ci_mode = mode;
495
496 res = setup_file_encryption_key(crypt_info, &master_key);
497 if (res)
498 goto out;
499
500 if (cmpxchg_release(&inode->i_crypt_info, NULL, crypt_info) == NULL) {
501 if (master_key) {
502 struct fscrypt_master_key *mk =
503 master_key->payload.data[0];
504
505 refcount_inc(&mk->mk_refcount);
506 crypt_info->ci_master_key = key_get(master_key);
507 spin_lock(&mk->mk_decrypted_inodes_lock);
508 list_add(&crypt_info->ci_master_key_link,
509 &mk->mk_decrypted_inodes);
510 spin_unlock(&mk->mk_decrypted_inodes_lock);
511 }
512 crypt_info = NULL;
513 }
514 res = 0;
515out:
516 if (master_key) {
517 struct fscrypt_master_key *mk = master_key->payload.data[0];
518
519 up_read(&mk->mk_secret_sem);
520 key_put(master_key);
521 }
522 if (res == -ENOKEY)
523 res = 0;
524 put_crypt_info(crypt_info);
525 return res;
526}
527EXPORT_SYMBOL(fscrypt_get_encryption_info);
528
529/**
530 * fscrypt_put_encryption_info - free most of an inode's fscrypt data
531 *
532 * Free the inode's fscrypt_info. Filesystems must call this when the inode is
533 * being evicted. An RCU grace period need not have elapsed yet.
534 */
535void fscrypt_put_encryption_info(struct inode *inode)
536{
537 put_crypt_info(inode->i_crypt_info);
538 inode->i_crypt_info = NULL;
539}
540EXPORT_SYMBOL(fscrypt_put_encryption_info);
541
542/**
543 * fscrypt_free_inode - free an inode's fscrypt data requiring RCU delay
544 *
545 * Free the inode's cached decrypted symlink target, if any. Filesystems must
546 * call this after an RCU grace period, just before they free the inode.
547 */
548void fscrypt_free_inode(struct inode *inode)
549{
550 if (IS_ENCRYPTED(inode) && S_ISLNK(inode->i_mode)) {
551 kfree(inode->i_link);
552 inode->i_link = NULL;
553 }
554}
555EXPORT_SYMBOL(fscrypt_free_inode);
556
557/**
558 * fscrypt_drop_inode - check whether the inode's master key has been removed
559 *
560 * Filesystems supporting fscrypt must call this from their ->drop_inode()
561 * method so that encrypted inodes are evicted as soon as they're no longer in
562 * use and their master key has been removed.
563 *
564 * Return: 1 if fscrypt wants the inode to be evicted now, otherwise 0
565 */
566int fscrypt_drop_inode(struct inode *inode)
567{
568 const struct fscrypt_info *ci = READ_ONCE(inode->i_crypt_info);
569 const struct fscrypt_master_key *mk;
570
571 /*
572 * If ci is NULL, then the inode doesn't have an encryption key set up
573 * so it's irrelevant. If ci_master_key is NULL, then the master key
574 * was provided via the legacy mechanism of the process-subscribed
575 * keyrings, so we don't know whether it's been removed or not.
576 */
577 if (!ci || !ci->ci_master_key)
578 return 0;
579 mk = ci->ci_master_key->payload.data[0];
580
581 /*
582 * Note: since we aren't holding ->mk_secret_sem, the result here can
583 * immediately become outdated. But there's no correctness problem with
584 * unnecessarily evicting. Nor is there a correctness problem with not
585 * evicting while iput() is racing with the key being removed, since
586 * then the thread removing the key will either evict the inode itself
587 * or will correctly detect that it wasn't evicted due to the race.
588 */
589 return !is_master_key_secret_present(&mk->mk_secret);
590}
591EXPORT_SYMBOL_GPL(fscrypt_drop_inode);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Key setup facility for FS encryption support.
4 *
5 * Copyright (C) 2015, Google, Inc.
6 *
7 * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar.
8 * Heavily modified since then.
9 */
10
11#include <crypto/skcipher.h>
12#include <linux/key.h>
13
14#include "fscrypt_private.h"
15
16struct fscrypt_mode fscrypt_modes[] = {
17 [FSCRYPT_MODE_AES_256_XTS] = {
18 .friendly_name = "AES-256-XTS",
19 .cipher_str = "xts(aes)",
20 .keysize = 64,
21 .ivsize = 16,
22 .blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_256_XTS,
23 },
24 [FSCRYPT_MODE_AES_256_CTS] = {
25 .friendly_name = "AES-256-CTS-CBC",
26 .cipher_str = "cts(cbc(aes))",
27 .keysize = 32,
28 .ivsize = 16,
29 },
30 [FSCRYPT_MODE_AES_128_CBC] = {
31 .friendly_name = "AES-128-CBC-ESSIV",
32 .cipher_str = "essiv(cbc(aes),sha256)",
33 .keysize = 16,
34 .ivsize = 16,
35 .blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV,
36 },
37 [FSCRYPT_MODE_AES_128_CTS] = {
38 .friendly_name = "AES-128-CTS-CBC",
39 .cipher_str = "cts(cbc(aes))",
40 .keysize = 16,
41 .ivsize = 16,
42 },
43 [FSCRYPT_MODE_ADIANTUM] = {
44 .friendly_name = "Adiantum",
45 .cipher_str = "adiantum(xchacha12,aes)",
46 .keysize = 32,
47 .ivsize = 32,
48 .blk_crypto_mode = BLK_ENCRYPTION_MODE_ADIANTUM,
49 },
50};
51
52static DEFINE_MUTEX(fscrypt_mode_key_setup_mutex);
53
54static struct fscrypt_mode *
55select_encryption_mode(const union fscrypt_policy *policy,
56 const struct inode *inode)
57{
58 if (S_ISREG(inode->i_mode))
59 return &fscrypt_modes[fscrypt_policy_contents_mode(policy)];
60
61 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
62 return &fscrypt_modes[fscrypt_policy_fnames_mode(policy)];
63
64 WARN_ONCE(1, "fscrypt: filesystem tried to load encryption info for inode %lu, which is not encryptable (file type %d)\n",
65 inode->i_ino, (inode->i_mode & S_IFMT));
66 return ERR_PTR(-EINVAL);
67}
68
69/* Create a symmetric cipher object for the given encryption mode and key */
70static struct crypto_skcipher *
71fscrypt_allocate_skcipher(struct fscrypt_mode *mode, const u8 *raw_key,
72 const struct inode *inode)
73{
74 struct crypto_skcipher *tfm;
75 int err;
76
77 tfm = crypto_alloc_skcipher(mode->cipher_str, 0, 0);
78 if (IS_ERR(tfm)) {
79 if (PTR_ERR(tfm) == -ENOENT) {
80 fscrypt_warn(inode,
81 "Missing crypto API support for %s (API name: \"%s\")",
82 mode->friendly_name, mode->cipher_str);
83 return ERR_PTR(-ENOPKG);
84 }
85 fscrypt_err(inode, "Error allocating '%s' transform: %ld",
86 mode->cipher_str, PTR_ERR(tfm));
87 return tfm;
88 }
89 if (!xchg(&mode->logged_impl_name, 1)) {
90 /*
91 * fscrypt performance can vary greatly depending on which
92 * crypto algorithm implementation is used. Help people debug
93 * performance problems by logging the ->cra_driver_name the
94 * first time a mode is used.
95 */
96 pr_info("fscrypt: %s using implementation \"%s\"\n",
97 mode->friendly_name, crypto_skcipher_driver_name(tfm));
98 }
99 if (WARN_ON(crypto_skcipher_ivsize(tfm) != mode->ivsize)) {
100 err = -EINVAL;
101 goto err_free_tfm;
102 }
103 crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
104 err = crypto_skcipher_setkey(tfm, raw_key, mode->keysize);
105 if (err)
106 goto err_free_tfm;
107
108 return tfm;
109
110err_free_tfm:
111 crypto_free_skcipher(tfm);
112 return ERR_PTR(err);
113}
114
115/*
116 * Prepare the crypto transform object or blk-crypto key in @prep_key, given the
117 * raw key, encryption mode, and flag indicating which encryption implementation
118 * (fs-layer or blk-crypto) will be used.
119 */
120int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key,
121 const u8 *raw_key, const struct fscrypt_info *ci)
122{
123 struct crypto_skcipher *tfm;
124
125 if (fscrypt_using_inline_encryption(ci))
126 return fscrypt_prepare_inline_crypt_key(prep_key, raw_key, ci);
127
128 tfm = fscrypt_allocate_skcipher(ci->ci_mode, raw_key, ci->ci_inode);
129 if (IS_ERR(tfm))
130 return PTR_ERR(tfm);
131 /*
132 * Pairs with the smp_load_acquire() in fscrypt_is_key_prepared().
133 * I.e., here we publish ->tfm with a RELEASE barrier so that
134 * concurrent tasks can ACQUIRE it. Note that this concurrency is only
135 * possible for per-mode keys, not for per-file keys.
136 */
137 smp_store_release(&prep_key->tfm, tfm);
138 return 0;
139}
140
141/* Destroy a crypto transform object and/or blk-crypto key. */
142void fscrypt_destroy_prepared_key(struct fscrypt_prepared_key *prep_key)
143{
144 crypto_free_skcipher(prep_key->tfm);
145 fscrypt_destroy_inline_crypt_key(prep_key);
146}
147
148/* Given a per-file encryption key, set up the file's crypto transform object */
149int fscrypt_set_per_file_enc_key(struct fscrypt_info *ci, const u8 *raw_key)
150{
151 ci->ci_owns_key = true;
152 return fscrypt_prepare_key(&ci->ci_enc_key, raw_key, ci);
153}
154
155static int setup_per_mode_enc_key(struct fscrypt_info *ci,
156 struct fscrypt_master_key *mk,
157 struct fscrypt_prepared_key *keys,
158 u8 hkdf_context, bool include_fs_uuid)
159{
160 const struct inode *inode = ci->ci_inode;
161 const struct super_block *sb = inode->i_sb;
162 struct fscrypt_mode *mode = ci->ci_mode;
163 const u8 mode_num = mode - fscrypt_modes;
164 struct fscrypt_prepared_key *prep_key;
165 u8 mode_key[FSCRYPT_MAX_KEY_SIZE];
166 u8 hkdf_info[sizeof(mode_num) + sizeof(sb->s_uuid)];
167 unsigned int hkdf_infolen = 0;
168 int err;
169
170 if (WARN_ON(mode_num > __FSCRYPT_MODE_MAX))
171 return -EINVAL;
172
173 prep_key = &keys[mode_num];
174 if (fscrypt_is_key_prepared(prep_key, ci)) {
175 ci->ci_enc_key = *prep_key;
176 return 0;
177 }
178
179 mutex_lock(&fscrypt_mode_key_setup_mutex);
180
181 if (fscrypt_is_key_prepared(prep_key, ci))
182 goto done_unlock;
183
184 BUILD_BUG_ON(sizeof(mode_num) != 1);
185 BUILD_BUG_ON(sizeof(sb->s_uuid) != 16);
186 BUILD_BUG_ON(sizeof(hkdf_info) != 17);
187 hkdf_info[hkdf_infolen++] = mode_num;
188 if (include_fs_uuid) {
189 memcpy(&hkdf_info[hkdf_infolen], &sb->s_uuid,
190 sizeof(sb->s_uuid));
191 hkdf_infolen += sizeof(sb->s_uuid);
192 }
193 err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
194 hkdf_context, hkdf_info, hkdf_infolen,
195 mode_key, mode->keysize);
196 if (err)
197 goto out_unlock;
198 err = fscrypt_prepare_key(prep_key, mode_key, ci);
199 memzero_explicit(mode_key, mode->keysize);
200 if (err)
201 goto out_unlock;
202done_unlock:
203 ci->ci_enc_key = *prep_key;
204 err = 0;
205out_unlock:
206 mutex_unlock(&fscrypt_mode_key_setup_mutex);
207 return err;
208}
209
210int fscrypt_derive_dirhash_key(struct fscrypt_info *ci,
211 const struct fscrypt_master_key *mk)
212{
213 int err;
214
215 err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, HKDF_CONTEXT_DIRHASH_KEY,
216 ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE,
217 (u8 *)&ci->ci_dirhash_key,
218 sizeof(ci->ci_dirhash_key));
219 if (err)
220 return err;
221 ci->ci_dirhash_key_initialized = true;
222 return 0;
223}
224
225static int fscrypt_setup_iv_ino_lblk_32_key(struct fscrypt_info *ci,
226 struct fscrypt_master_key *mk)
227{
228 int err;
229
230 err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_32_keys,
231 HKDF_CONTEXT_IV_INO_LBLK_32_KEY, true);
232 if (err)
233 return err;
234
235 /* pairs with smp_store_release() below */
236 if (!smp_load_acquire(&mk->mk_ino_hash_key_initialized)) {
237
238 mutex_lock(&fscrypt_mode_key_setup_mutex);
239
240 if (mk->mk_ino_hash_key_initialized)
241 goto unlock;
242
243 err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
244 HKDF_CONTEXT_INODE_HASH_KEY, NULL, 0,
245 (u8 *)&mk->mk_ino_hash_key,
246 sizeof(mk->mk_ino_hash_key));
247 if (err)
248 goto unlock;
249 /* pairs with smp_load_acquire() above */
250 smp_store_release(&mk->mk_ino_hash_key_initialized, true);
251unlock:
252 mutex_unlock(&fscrypt_mode_key_setup_mutex);
253 if (err)
254 return err;
255 }
256
257 ci->ci_hashed_ino = (u32)siphash_1u64(ci->ci_inode->i_ino,
258 &mk->mk_ino_hash_key);
259 return 0;
260}
261
262static int fscrypt_setup_v2_file_key(struct fscrypt_info *ci,
263 struct fscrypt_master_key *mk)
264{
265 int err;
266
267 if (ci->ci_policy.v2.flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) {
268 /*
269 * DIRECT_KEY: instead of deriving per-file encryption keys, the
270 * per-file nonce will be included in all the IVs. But unlike
271 * v1 policies, for v2 policies in this case we don't encrypt
272 * with the master key directly but rather derive a per-mode
273 * encryption key. This ensures that the master key is
274 * consistently used only for HKDF, avoiding key reuse issues.
275 */
276 err = setup_per_mode_enc_key(ci, mk, mk->mk_direct_keys,
277 HKDF_CONTEXT_DIRECT_KEY, false);
278 } else if (ci->ci_policy.v2.flags &
279 FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) {
280 /*
281 * IV_INO_LBLK_64: encryption keys are derived from (master_key,
282 * mode_num, filesystem_uuid), and inode number is included in
283 * the IVs. This format is optimized for use with inline
284 * encryption hardware compliant with the UFS standard.
285 */
286 err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_64_keys,
287 HKDF_CONTEXT_IV_INO_LBLK_64_KEY,
288 true);
289 } else if (ci->ci_policy.v2.flags &
290 FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) {
291 err = fscrypt_setup_iv_ino_lblk_32_key(ci, mk);
292 } else {
293 u8 derived_key[FSCRYPT_MAX_KEY_SIZE];
294
295 err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
296 HKDF_CONTEXT_PER_FILE_ENC_KEY,
297 ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE,
298 derived_key, ci->ci_mode->keysize);
299 if (err)
300 return err;
301
302 err = fscrypt_set_per_file_enc_key(ci, derived_key);
303 memzero_explicit(derived_key, ci->ci_mode->keysize);
304 }
305 if (err)
306 return err;
307
308 /* Derive a secret dirhash key for directories that need it. */
309 if (S_ISDIR(ci->ci_inode->i_mode) && IS_CASEFOLDED(ci->ci_inode)) {
310 err = fscrypt_derive_dirhash_key(ci, mk);
311 if (err)
312 return err;
313 }
314
315 return 0;
316}
317
318/*
319 * Find the master key, then set up the inode's actual encryption key.
320 *
321 * If the master key is found in the filesystem-level keyring, then the
322 * corresponding 'struct key' is returned in *master_key_ret with
323 * ->mk_secret_sem read-locked. This is needed to ensure that only one task
324 * links the fscrypt_info into ->mk_decrypted_inodes (as multiple tasks may race
325 * to create an fscrypt_info for the same inode), and to synchronize the master
326 * key being removed with a new inode starting to use it.
327 */
328static int setup_file_encryption_key(struct fscrypt_info *ci,
329 struct key **master_key_ret)
330{
331 struct key *key;
332 struct fscrypt_master_key *mk = NULL;
333 struct fscrypt_key_specifier mk_spec;
334 int err;
335
336 err = fscrypt_select_encryption_impl(ci);
337 if (err)
338 return err;
339
340 switch (ci->ci_policy.version) {
341 case FSCRYPT_POLICY_V1:
342 mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR;
343 memcpy(mk_spec.u.descriptor,
344 ci->ci_policy.v1.master_key_descriptor,
345 FSCRYPT_KEY_DESCRIPTOR_SIZE);
346 break;
347 case FSCRYPT_POLICY_V2:
348 mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
349 memcpy(mk_spec.u.identifier,
350 ci->ci_policy.v2.master_key_identifier,
351 FSCRYPT_KEY_IDENTIFIER_SIZE);
352 break;
353 default:
354 WARN_ON(1);
355 return -EINVAL;
356 }
357
358 key = fscrypt_find_master_key(ci->ci_inode->i_sb, &mk_spec);
359 if (IS_ERR(key)) {
360 if (key != ERR_PTR(-ENOKEY) ||
361 ci->ci_policy.version != FSCRYPT_POLICY_V1)
362 return PTR_ERR(key);
363
364 /*
365 * As a legacy fallback for v1 policies, search for the key in
366 * the current task's subscribed keyrings too. Don't move this
367 * to before the search of ->s_master_keys, since users
368 * shouldn't be able to override filesystem-level keys.
369 */
370 return fscrypt_setup_v1_file_key_via_subscribed_keyrings(ci);
371 }
372
373 mk = key->payload.data[0];
374 down_read(&mk->mk_secret_sem);
375
376 /* Has the secret been removed (via FS_IOC_REMOVE_ENCRYPTION_KEY)? */
377 if (!is_master_key_secret_present(&mk->mk_secret)) {
378 err = -ENOKEY;
379 goto out_release_key;
380 }
381
382 /*
383 * Require that the master key be at least as long as the derived key.
384 * Otherwise, the derived key cannot possibly contain as much entropy as
385 * that required by the encryption mode it will be used for. For v1
386 * policies it's also required for the KDF to work at all.
387 */
388 if (mk->mk_secret.size < ci->ci_mode->keysize) {
389 fscrypt_warn(NULL,
390 "key with %s %*phN is too short (got %u bytes, need %u+ bytes)",
391 master_key_spec_type(&mk_spec),
392 master_key_spec_len(&mk_spec), (u8 *)&mk_spec.u,
393 mk->mk_secret.size, ci->ci_mode->keysize);
394 err = -ENOKEY;
395 goto out_release_key;
396 }
397
398 switch (ci->ci_policy.version) {
399 case FSCRYPT_POLICY_V1:
400 err = fscrypt_setup_v1_file_key(ci, mk->mk_secret.raw);
401 break;
402 case FSCRYPT_POLICY_V2:
403 err = fscrypt_setup_v2_file_key(ci, mk);
404 break;
405 default:
406 WARN_ON(1);
407 err = -EINVAL;
408 break;
409 }
410 if (err)
411 goto out_release_key;
412
413 *master_key_ret = key;
414 return 0;
415
416out_release_key:
417 up_read(&mk->mk_secret_sem);
418 key_put(key);
419 return err;
420}
421
422static void put_crypt_info(struct fscrypt_info *ci)
423{
424 struct key *key;
425
426 if (!ci)
427 return;
428
429 if (ci->ci_direct_key)
430 fscrypt_put_direct_key(ci->ci_direct_key);
431 else if (ci->ci_owns_key)
432 fscrypt_destroy_prepared_key(&ci->ci_enc_key);
433
434 key = ci->ci_master_key;
435 if (key) {
436 struct fscrypt_master_key *mk = key->payload.data[0];
437
438 /*
439 * Remove this inode from the list of inodes that were unlocked
440 * with the master key.
441 *
442 * In addition, if we're removing the last inode from a key that
443 * already had its secret removed, invalidate the key so that it
444 * gets removed from ->s_master_keys.
445 */
446 spin_lock(&mk->mk_decrypted_inodes_lock);
447 list_del(&ci->ci_master_key_link);
448 spin_unlock(&mk->mk_decrypted_inodes_lock);
449 if (refcount_dec_and_test(&mk->mk_refcount))
450 key_invalidate(key);
451 key_put(key);
452 }
453 memzero_explicit(ci, sizeof(*ci));
454 kmem_cache_free(fscrypt_info_cachep, ci);
455}
456
457int fscrypt_get_encryption_info(struct inode *inode)
458{
459 struct fscrypt_info *crypt_info;
460 union fscrypt_context ctx;
461 struct fscrypt_mode *mode;
462 struct key *master_key = NULL;
463 int res;
464
465 if (fscrypt_has_encryption_key(inode))
466 return 0;
467
468 res = fscrypt_initialize(inode->i_sb->s_cop->flags);
469 if (res)
470 return res;
471
472 res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx));
473 if (res < 0) {
474 const union fscrypt_context *dummy_ctx =
475 fscrypt_get_dummy_context(inode->i_sb);
476
477 if (IS_ENCRYPTED(inode) || !dummy_ctx) {
478 fscrypt_warn(inode,
479 "Error %d getting encryption context",
480 res);
481 return res;
482 }
483 /* Fake up a context for an unencrypted directory */
484 res = fscrypt_context_size(dummy_ctx);
485 memcpy(&ctx, dummy_ctx, res);
486 }
487
488 crypt_info = kmem_cache_zalloc(fscrypt_info_cachep, GFP_NOFS);
489 if (!crypt_info)
490 return -ENOMEM;
491
492 crypt_info->ci_inode = inode;
493
494 res = fscrypt_policy_from_context(&crypt_info->ci_policy, &ctx, res);
495 if (res) {
496 fscrypt_warn(inode,
497 "Unrecognized or corrupt encryption context");
498 goto out;
499 }
500
501 memcpy(crypt_info->ci_nonce, fscrypt_context_nonce(&ctx),
502 FSCRYPT_FILE_NONCE_SIZE);
503
504 if (!fscrypt_supported_policy(&crypt_info->ci_policy, inode)) {
505 res = -EINVAL;
506 goto out;
507 }
508
509 mode = select_encryption_mode(&crypt_info->ci_policy, inode);
510 if (IS_ERR(mode)) {
511 res = PTR_ERR(mode);
512 goto out;
513 }
514 WARN_ON(mode->ivsize > FSCRYPT_MAX_IV_SIZE);
515 crypt_info->ci_mode = mode;
516
517 res = setup_file_encryption_key(crypt_info, &master_key);
518 if (res)
519 goto out;
520
521 /*
522 * Multiple tasks may race to set ->i_crypt_info, so use
523 * cmpxchg_release(). This pairs with the smp_load_acquire() in
524 * fscrypt_get_info(). I.e., here we publish ->i_crypt_info with a
525 * RELEASE barrier so that other tasks can ACQUIRE it.
526 */
527 if (cmpxchg_release(&inode->i_crypt_info, NULL, crypt_info) == NULL) {
528 /*
529 * We won the race and set ->i_crypt_info to our crypt_info.
530 * Now link it into the master key's inode list.
531 */
532 if (master_key) {
533 struct fscrypt_master_key *mk =
534 master_key->payload.data[0];
535
536 refcount_inc(&mk->mk_refcount);
537 crypt_info->ci_master_key = key_get(master_key);
538 spin_lock(&mk->mk_decrypted_inodes_lock);
539 list_add(&crypt_info->ci_master_key_link,
540 &mk->mk_decrypted_inodes);
541 spin_unlock(&mk->mk_decrypted_inodes_lock);
542 }
543 crypt_info = NULL;
544 }
545 res = 0;
546out:
547 if (master_key) {
548 struct fscrypt_master_key *mk = master_key->payload.data[0];
549
550 up_read(&mk->mk_secret_sem);
551 key_put(master_key);
552 }
553 if (res == -ENOKEY)
554 res = 0;
555 put_crypt_info(crypt_info);
556 return res;
557}
558EXPORT_SYMBOL(fscrypt_get_encryption_info);
559
560/**
561 * fscrypt_put_encryption_info() - free most of an inode's fscrypt data
562 * @inode: an inode being evicted
563 *
564 * Free the inode's fscrypt_info. Filesystems must call this when the inode is
565 * being evicted. An RCU grace period need not have elapsed yet.
566 */
567void fscrypt_put_encryption_info(struct inode *inode)
568{
569 put_crypt_info(inode->i_crypt_info);
570 inode->i_crypt_info = NULL;
571}
572EXPORT_SYMBOL(fscrypt_put_encryption_info);
573
574/**
575 * fscrypt_free_inode() - free an inode's fscrypt data requiring RCU delay
576 * @inode: an inode being freed
577 *
578 * Free the inode's cached decrypted symlink target, if any. Filesystems must
579 * call this after an RCU grace period, just before they free the inode.
580 */
581void fscrypt_free_inode(struct inode *inode)
582{
583 if (IS_ENCRYPTED(inode) && S_ISLNK(inode->i_mode)) {
584 kfree(inode->i_link);
585 inode->i_link = NULL;
586 }
587}
588EXPORT_SYMBOL(fscrypt_free_inode);
589
590/**
591 * fscrypt_drop_inode() - check whether the inode's master key has been removed
592 * @inode: an inode being considered for eviction
593 *
594 * Filesystems supporting fscrypt must call this from their ->drop_inode()
595 * method so that encrypted inodes are evicted as soon as they're no longer in
596 * use and their master key has been removed.
597 *
598 * Return: 1 if fscrypt wants the inode to be evicted now, otherwise 0
599 */
600int fscrypt_drop_inode(struct inode *inode)
601{
602 const struct fscrypt_info *ci = fscrypt_get_info(inode);
603 const struct fscrypt_master_key *mk;
604
605 /*
606 * If ci is NULL, then the inode doesn't have an encryption key set up
607 * so it's irrelevant. If ci_master_key is NULL, then the master key
608 * was provided via the legacy mechanism of the process-subscribed
609 * keyrings, so we don't know whether it's been removed or not.
610 */
611 if (!ci || !ci->ci_master_key)
612 return 0;
613 mk = ci->ci_master_key->payload.data[0];
614
615 /*
616 * With proper, non-racy use of FS_IOC_REMOVE_ENCRYPTION_KEY, all inodes
617 * protected by the key were cleaned by sync_filesystem(). But if
618 * userspace is still using the files, inodes can be dirtied between
619 * then and now. We mustn't lose any writes, so skip dirty inodes here.
620 */
621 if (inode->i_state & I_DIRTY_ALL)
622 return 0;
623
624 /*
625 * Note: since we aren't holding ->mk_secret_sem, the result here can
626 * immediately become outdated. But there's no correctness problem with
627 * unnecessarily evicting. Nor is there a correctness problem with not
628 * evicting while iput() is racing with the key being removed, since
629 * then the thread removing the key will either evict the inode itself
630 * or will correctly detect that it wasn't evicted due to the race.
631 */
632 return !is_master_key_secret_present(&mk->mk_secret);
633}
634EXPORT_SYMBOL_GPL(fscrypt_drop_inode);