Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Key setup facility for FS encryption support.
  4 *
  5 * Copyright (C) 2015, Google, Inc.
  6 *
  7 * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar.
  8 * Heavily modified since then.
  9 */
 10
 11#include <crypto/aes.h>
 12#include <crypto/sha.h>
 13#include <crypto/skcipher.h>
 14#include <linux/key.h>
 
 15
 16#include "fscrypt_private.h"
 17
 18static struct crypto_shash *essiv_hash_tfm;
 19
 20static struct fscrypt_mode available_modes[] = {
 21	[FSCRYPT_MODE_AES_256_XTS] = {
 22		.friendly_name = "AES-256-XTS",
 23		.cipher_str = "xts(aes)",
 24		.keysize = 64,
 25		.ivsize = 16,
 
 26	},
 27	[FSCRYPT_MODE_AES_256_CTS] = {
 28		.friendly_name = "AES-256-CTS-CBC",
 29		.cipher_str = "cts(cbc(aes))",
 30		.keysize = 32,
 31		.ivsize = 16,
 32	},
 33	[FSCRYPT_MODE_AES_128_CBC] = {
 34		.friendly_name = "AES-128-CBC",
 35		.cipher_str = "cbc(aes)",
 36		.keysize = 16,
 37		.ivsize = 16,
 38		.needs_essiv = true,
 39	},
 40	[FSCRYPT_MODE_AES_128_CTS] = {
 41		.friendly_name = "AES-128-CTS-CBC",
 42		.cipher_str = "cts(cbc(aes))",
 43		.keysize = 16,
 44		.ivsize = 16,
 45	},
 46	[FSCRYPT_MODE_ADIANTUM] = {
 47		.friendly_name = "Adiantum",
 48		.cipher_str = "adiantum(xchacha12,aes)",
 49		.keysize = 32,
 50		.ivsize = 32,
 
 51	},
 52};
 53
 
 
 54static struct fscrypt_mode *
 55select_encryption_mode(const union fscrypt_policy *policy,
 56		       const struct inode *inode)
 57{
 
 
 58	if (S_ISREG(inode->i_mode))
 59		return &available_modes[fscrypt_policy_contents_mode(policy)];
 60
 61	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
 62		return &available_modes[fscrypt_policy_fnames_mode(policy)];
 63
 64	WARN_ONCE(1, "fscrypt: filesystem tried to load encryption info for inode %lu, which is not encryptable (file type %d)\n",
 65		  inode->i_ino, (inode->i_mode & S_IFMT));
 66	return ERR_PTR(-EINVAL);
 67}
 68
 69/* Create a symmetric cipher object for the given encryption mode and key */
 70struct crypto_skcipher *fscrypt_allocate_skcipher(struct fscrypt_mode *mode,
 71						  const u8 *raw_key,
 72						  const struct inode *inode)
 73{
 74	struct crypto_skcipher *tfm;
 75	int err;
 76
 77	tfm = crypto_alloc_skcipher(mode->cipher_str, 0, 0);
 78	if (IS_ERR(tfm)) {
 79		if (PTR_ERR(tfm) == -ENOENT) {
 80			fscrypt_warn(inode,
 81				     "Missing crypto API support for %s (API name: \"%s\")",
 82				     mode->friendly_name, mode->cipher_str);
 83			return ERR_PTR(-ENOPKG);
 84		}
 85		fscrypt_err(inode, "Error allocating '%s' transform: %ld",
 86			    mode->cipher_str, PTR_ERR(tfm));
 87		return tfm;
 88	}
 89	if (unlikely(!mode->logged_impl_name)) {
 90		/*
 91		 * fscrypt performance can vary greatly depending on which
 92		 * crypto algorithm implementation is used.  Help people debug
 93		 * performance problems by logging the ->cra_driver_name the
 94		 * first time a mode is used.  Note that multiple threads can
 95		 * race here, but it doesn't really matter.
 96		 */
 97		mode->logged_impl_name = true;
 98		pr_info("fscrypt: %s using implementation \"%s\"\n",
 99			mode->friendly_name,
100			crypto_skcipher_alg(tfm)->base.cra_driver_name);
 
 
 
101	}
102	crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
103	err = crypto_skcipher_setkey(tfm, raw_key, mode->keysize);
104	if (err)
105		goto err_free_tfm;
106
107	return tfm;
108
109err_free_tfm:
110	crypto_free_skcipher(tfm);
111	return ERR_PTR(err);
112}
113
114static int derive_essiv_salt(const u8 *key, int keysize, u8 *salt)
 
 
 
 
 
 
115{
116	struct crypto_shash *tfm = READ_ONCE(essiv_hash_tfm);
117
118	/* init hash transform on demand */
119	if (unlikely(!tfm)) {
120		struct crypto_shash *prev_tfm;
121
122		tfm = crypto_alloc_shash("sha256", 0, 0);
123		if (IS_ERR(tfm)) {
124			if (PTR_ERR(tfm) == -ENOENT) {
125				fscrypt_warn(NULL,
126					     "Missing crypto API support for SHA-256");
127				return -ENOPKG;
128			}
129			fscrypt_err(NULL,
130				    "Error allocating SHA-256 transform: %ld",
131				    PTR_ERR(tfm));
132			return PTR_ERR(tfm);
133		}
134		prev_tfm = cmpxchg(&essiv_hash_tfm, NULL, tfm);
135		if (prev_tfm) {
136			crypto_free_shash(tfm);
137			tfm = prev_tfm;
138		}
139	}
140
141	{
142		SHASH_DESC_ON_STACK(desc, tfm);
143		desc->tfm = tfm;
 
 
 
 
 
 
 
 
 
144
145		return crypto_shash_digest(desc, key, keysize, salt);
146	}
 
 
 
 
 
 
 
 
 
 
147}
148
149static int init_essiv_generator(struct fscrypt_info *ci, const u8 *raw_key,
150				int keysize)
 
 
151{
 
 
 
 
 
 
 
 
152	int err;
153	struct crypto_cipher *essiv_tfm;
154	u8 salt[SHA256_DIGEST_SIZE];
155
156	if (WARN_ON(ci->ci_mode->ivsize != AES_BLOCK_SIZE))
157		return -EINVAL;
158
159	essiv_tfm = crypto_alloc_cipher("aes", 0, 0);
160	if (IS_ERR(essiv_tfm))
161		return PTR_ERR(essiv_tfm);
 
 
162
163	ci->ci_essiv_tfm = essiv_tfm;
164
165	err = derive_essiv_salt(raw_key, keysize, salt);
166	if (err)
167		goto out;
168
169	/*
170	 * Using SHA256 to derive the salt/key will result in AES-256 being
171	 * used for IV generation. File contents encryption will still use the
172	 * configured keysize (AES-128) nevertheless.
173	 */
174	err = crypto_cipher_setkey(essiv_tfm, salt, sizeof(salt));
 
 
 
 
 
 
175	if (err)
176		goto out;
177
178out:
179	memzero_explicit(salt, sizeof(salt));
 
 
 
 
 
 
180	return err;
181}
182
183/* Given the per-file key, set up the file's crypto transform object(s) */
184int fscrypt_set_derived_key(struct fscrypt_info *ci, const u8 *derived_key)
 
 
 
 
 
 
 
 
 
185{
186	struct fscrypt_mode *mode = ci->ci_mode;
187	struct crypto_skcipher *ctfm;
188	int err;
189
190	ctfm = fscrypt_allocate_skcipher(mode, derived_key, ci->ci_inode);
191	if (IS_ERR(ctfm))
192		return PTR_ERR(ctfm);
193
194	ci->ci_ctfm = ctfm;
195
196	if (mode->needs_essiv) {
197		err = init_essiv_generator(ci, derived_key, mode->keysize);
198		if (err) {
199			fscrypt_warn(ci->ci_inode,
200				     "Error initializing ESSIV generator: %d",
201				     err);
202			return err;
203		}
204	}
205	return 0;
206}
207
208static int setup_per_mode_key(struct fscrypt_info *ci,
209			      struct fscrypt_master_key *mk)
210{
211	struct fscrypt_mode *mode = ci->ci_mode;
212	u8 mode_num = mode - available_modes;
213	struct crypto_skcipher *tfm, *prev_tfm;
214	u8 mode_key[FSCRYPT_MAX_KEY_SIZE];
215	int err;
216
217	if (WARN_ON(mode_num >= ARRAY_SIZE(mk->mk_mode_keys)))
218		return -EINVAL;
 
 
 
 
 
 
219
220	/* pairs with cmpxchg() below */
221	tfm = READ_ONCE(mk->mk_mode_keys[mode_num]);
222	if (likely(tfm != NULL))
223		goto done;
 
224
225	BUILD_BUG_ON(sizeof(mode_num) != 1);
226	err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
227				  HKDF_CONTEXT_PER_MODE_KEY,
228				  &mode_num, sizeof(mode_num),
229				  mode_key, mode->keysize);
 
 
 
 
 
 
230	if (err)
231		return err;
232	tfm = fscrypt_allocate_skcipher(mode, mode_key, ci->ci_inode);
233	memzero_explicit(mode_key, mode->keysize);
234	if (IS_ERR(tfm))
235		return PTR_ERR(tfm);
236
237	/* pairs with READ_ONCE() above */
238	prev_tfm = cmpxchg(&mk->mk_mode_keys[mode_num], NULL, tfm);
239	if (prev_tfm != NULL) {
240		crypto_free_skcipher(tfm);
241		tfm = prev_tfm;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
242	}
243done:
244	ci->ci_ctfm = tfm;
 
 
 
 
 
245	return 0;
246}
247
248static int fscrypt_setup_v2_file_key(struct fscrypt_info *ci,
249				     struct fscrypt_master_key *mk)
 
250{
251	u8 derived_key[FSCRYPT_MAX_KEY_SIZE];
252	int err;
253
254	if (ci->ci_policy.v2.flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) {
255		/*
256		 * DIRECT_KEY: instead of deriving per-file keys, the per-file
257		 * nonce will be included in all the IVs.  But unlike v1
258		 * policies, for v2 policies in this case we don't encrypt with
259		 * the master key directly but rather derive a per-mode key.
260		 * This ensures that the master key is consistently used only
261		 * for HKDF, avoiding key reuse issues.
262		 */
263		if (!fscrypt_mode_supports_direct_key(ci->ci_mode)) {
264			fscrypt_warn(ci->ci_inode,
265				     "Direct key flag not allowed with %s",
266				     ci->ci_mode->friendly_name);
267			return -EINVAL;
268		}
269		return setup_per_mode_key(ci, mk);
270	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
271
272	err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
273				  HKDF_CONTEXT_PER_FILE_KEY,
274				  ci->ci_nonce, FS_KEY_DERIVATION_NONCE_SIZE,
275				  derived_key, ci->ci_mode->keysize);
276	if (err)
277		return err;
278
279	err = fscrypt_set_derived_key(ci, derived_key);
280	memzero_explicit(derived_key, ci->ci_mode->keysize);
281	return err;
 
 
 
 
 
282}
283
284/*
285 * Find the master key, then set up the inode's actual encryption key.
286 *
287 * If the master key is found in the filesystem-level keyring, then the
288 * corresponding 'struct key' is returned in *master_key_ret with
289 * ->mk_secret_sem read-locked.  This is needed to ensure that only one task
290 * links the fscrypt_info into ->mk_decrypted_inodes (as multiple tasks may race
291 * to create an fscrypt_info for the same inode), and to synchronize the master
292 * key being removed with a new inode starting to use it.
293 */
294static int setup_file_encryption_key(struct fscrypt_info *ci,
 
295				     struct key **master_key_ret)
296{
297	struct key *key;
298	struct fscrypt_master_key *mk = NULL;
299	struct fscrypt_key_specifier mk_spec;
300	int err;
301
 
 
 
 
302	switch (ci->ci_policy.version) {
303	case FSCRYPT_POLICY_V1:
304		mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR;
305		memcpy(mk_spec.u.descriptor,
306		       ci->ci_policy.v1.master_key_descriptor,
307		       FSCRYPT_KEY_DESCRIPTOR_SIZE);
308		break;
309	case FSCRYPT_POLICY_V2:
310		mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
311		memcpy(mk_spec.u.identifier,
312		       ci->ci_policy.v2.master_key_identifier,
313		       FSCRYPT_KEY_IDENTIFIER_SIZE);
314		break;
315	default:
316		WARN_ON(1);
317		return -EINVAL;
318	}
319
320	key = fscrypt_find_master_key(ci->ci_inode->i_sb, &mk_spec);
321	if (IS_ERR(key)) {
322		if (key != ERR_PTR(-ENOKEY) ||
323		    ci->ci_policy.version != FSCRYPT_POLICY_V1)
324			return PTR_ERR(key);
325
326		/*
327		 * As a legacy fallback for v1 policies, search for the key in
328		 * the current task's subscribed keyrings too.  Don't move this
329		 * to before the search of ->s_master_keys, since users
330		 * shouldn't be able to override filesystem-level keys.
331		 */
332		return fscrypt_setup_v1_file_key_via_subscribed_keyrings(ci);
333	}
334
335	mk = key->payload.data[0];
336	down_read(&mk->mk_secret_sem);
337
338	/* Has the secret been removed (via FS_IOC_REMOVE_ENCRYPTION_KEY)? */
339	if (!is_master_key_secret_present(&mk->mk_secret)) {
340		err = -ENOKEY;
341		goto out_release_key;
342	}
343
344	/*
345	 * Require that the master key be at least as long as the derived key.
346	 * Otherwise, the derived key cannot possibly contain as much entropy as
347	 * that required by the encryption mode it will be used for.  For v1
348	 * policies it's also required for the KDF to work at all.
349	 */
350	if (mk->mk_secret.size < ci->ci_mode->keysize) {
351		fscrypt_warn(NULL,
352			     "key with %s %*phN is too short (got %u bytes, need %u+ bytes)",
353			     master_key_spec_type(&mk_spec),
354			     master_key_spec_len(&mk_spec), (u8 *)&mk_spec.u,
355			     mk->mk_secret.size, ci->ci_mode->keysize);
356		err = -ENOKEY;
357		goto out_release_key;
358	}
359
360	switch (ci->ci_policy.version) {
361	case FSCRYPT_POLICY_V1:
362		err = fscrypt_setup_v1_file_key(ci, mk->mk_secret.raw);
363		break;
364	case FSCRYPT_POLICY_V2:
365		err = fscrypt_setup_v2_file_key(ci, mk);
366		break;
367	default:
368		WARN_ON(1);
369		err = -EINVAL;
370		break;
371	}
372	if (err)
373		goto out_release_key;
374
375	*master_key_ret = key;
376	return 0;
377
378out_release_key:
379	up_read(&mk->mk_secret_sem);
380	key_put(key);
381	return err;
382}
383
384static void put_crypt_info(struct fscrypt_info *ci)
385{
386	struct key *key;
387
388	if (!ci)
389		return;
390
391	if (ci->ci_direct_key) {
392		fscrypt_put_direct_key(ci->ci_direct_key);
393	} else if ((ci->ci_ctfm != NULL || ci->ci_essiv_tfm != NULL) &&
394		   !fscrypt_is_direct_key_policy(&ci->ci_policy)) {
395		crypto_free_skcipher(ci->ci_ctfm);
396		crypto_free_cipher(ci->ci_essiv_tfm);
397	}
398
399	key = ci->ci_master_key;
400	if (key) {
401		struct fscrypt_master_key *mk = key->payload.data[0];
402
403		/*
404		 * Remove this inode from the list of inodes that were unlocked
405		 * with the master key.
406		 *
407		 * In addition, if we're removing the last inode from a key that
408		 * already had its secret removed, invalidate the key so that it
409		 * gets removed from ->s_master_keys.
410		 */
411		spin_lock(&mk->mk_decrypted_inodes_lock);
412		list_del(&ci->ci_master_key_link);
413		spin_unlock(&mk->mk_decrypted_inodes_lock);
414		if (refcount_dec_and_test(&mk->mk_refcount))
415			key_invalidate(key);
416		key_put(key);
417	}
 
418	kmem_cache_free(fscrypt_info_cachep, ci);
419}
420
421int fscrypt_get_encryption_info(struct inode *inode)
 
 
 
 
422{
423	struct fscrypt_info *crypt_info;
424	union fscrypt_context ctx;
425	struct fscrypt_mode *mode;
426	struct key *master_key = NULL;
427	int res;
428
429	if (fscrypt_has_encryption_key(inode))
430		return 0;
431
432	res = fscrypt_initialize(inode->i_sb->s_cop->flags);
433	if (res)
434		return res;
435
436	res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx));
437	if (res < 0) {
438		if (!fscrypt_dummy_context_enabled(inode) ||
439		    IS_ENCRYPTED(inode)) {
440			fscrypt_warn(inode,
441				     "Error %d getting encryption context",
442				     res);
443			return res;
444		}
445		/* Fake up a context for an unencrypted directory */
446		memset(&ctx, 0, sizeof(ctx));
447		ctx.version = FSCRYPT_CONTEXT_V1;
448		ctx.v1.contents_encryption_mode = FSCRYPT_MODE_AES_256_XTS;
449		ctx.v1.filenames_encryption_mode = FSCRYPT_MODE_AES_256_CTS;
450		memset(ctx.v1.master_key_descriptor, 0x42,
451		       FSCRYPT_KEY_DESCRIPTOR_SIZE);
452		res = sizeof(ctx.v1);
453	}
454
455	crypt_info = kmem_cache_zalloc(fscrypt_info_cachep, GFP_NOFS);
456	if (!crypt_info)
457		return -ENOMEM;
458
459	crypt_info->ci_inode = inode;
460
461	res = fscrypt_policy_from_context(&crypt_info->ci_policy, &ctx, res);
462	if (res) {
463		fscrypt_warn(inode,
464			     "Unrecognized or corrupt encryption context");
465		goto out;
466	}
467
468	switch (ctx.version) {
469	case FSCRYPT_CONTEXT_V1:
470		memcpy(crypt_info->ci_nonce, ctx.v1.nonce,
471		       FS_KEY_DERIVATION_NONCE_SIZE);
472		break;
473	case FSCRYPT_CONTEXT_V2:
474		memcpy(crypt_info->ci_nonce, ctx.v2.nonce,
475		       FS_KEY_DERIVATION_NONCE_SIZE);
476		break;
477	default:
478		WARN_ON(1);
479		res = -EINVAL;
480		goto out;
481	}
482
483	if (!fscrypt_supported_policy(&crypt_info->ci_policy, inode)) {
484		res = -EINVAL;
485		goto out;
486	}
487
488	mode = select_encryption_mode(&crypt_info->ci_policy, inode);
489	if (IS_ERR(mode)) {
490		res = PTR_ERR(mode);
491		goto out;
492	}
493	WARN_ON(mode->ivsize > FSCRYPT_MAX_IV_SIZE);
494	crypt_info->ci_mode = mode;
495
496	res = setup_file_encryption_key(crypt_info, &master_key);
 
497	if (res)
498		goto out;
499
 
 
 
 
 
 
500	if (cmpxchg_release(&inode->i_crypt_info, NULL, crypt_info) == NULL) {
 
 
 
 
501		if (master_key) {
502			struct fscrypt_master_key *mk =
503				master_key->payload.data[0];
504
505			refcount_inc(&mk->mk_refcount);
506			crypt_info->ci_master_key = key_get(master_key);
507			spin_lock(&mk->mk_decrypted_inodes_lock);
508			list_add(&crypt_info->ci_master_key_link,
509				 &mk->mk_decrypted_inodes);
510			spin_unlock(&mk->mk_decrypted_inodes_lock);
511		}
512		crypt_info = NULL;
513	}
514	res = 0;
515out:
516	if (master_key) {
517		struct fscrypt_master_key *mk = master_key->payload.data[0];
518
519		up_read(&mk->mk_secret_sem);
520		key_put(master_key);
521	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
522	if (res == -ENOKEY)
523		res = 0;
524	put_crypt_info(crypt_info);
525	return res;
526}
527EXPORT_SYMBOL(fscrypt_get_encryption_info);
528
529/**
530 * fscrypt_put_encryption_info - free most of an inode's fscrypt data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
531 *
532 * Free the inode's fscrypt_info.  Filesystems must call this when the inode is
533 * being evicted.  An RCU grace period need not have elapsed yet.
534 */
535void fscrypt_put_encryption_info(struct inode *inode)
536{
537	put_crypt_info(inode->i_crypt_info);
538	inode->i_crypt_info = NULL;
539}
540EXPORT_SYMBOL(fscrypt_put_encryption_info);
541
542/**
543 * fscrypt_free_inode - free an inode's fscrypt data requiring RCU delay
 
544 *
545 * Free the inode's cached decrypted symlink target, if any.  Filesystems must
546 * call this after an RCU grace period, just before they free the inode.
547 */
548void fscrypt_free_inode(struct inode *inode)
549{
550	if (IS_ENCRYPTED(inode) && S_ISLNK(inode->i_mode)) {
551		kfree(inode->i_link);
552		inode->i_link = NULL;
553	}
554}
555EXPORT_SYMBOL(fscrypt_free_inode);
556
557/**
558 * fscrypt_drop_inode - check whether the inode's master key has been removed
 
559 *
560 * Filesystems supporting fscrypt must call this from their ->drop_inode()
561 * method so that encrypted inodes are evicted as soon as they're no longer in
562 * use and their master key has been removed.
563 *
564 * Return: 1 if fscrypt wants the inode to be evicted now, otherwise 0
565 */
566int fscrypt_drop_inode(struct inode *inode)
567{
568	const struct fscrypt_info *ci = READ_ONCE(inode->i_crypt_info);
569	const struct fscrypt_master_key *mk;
570
571	/*
572	 * If ci is NULL, then the inode doesn't have an encryption key set up
573	 * so it's irrelevant.  If ci_master_key is NULL, then the master key
574	 * was provided via the legacy mechanism of the process-subscribed
575	 * keyrings, so we don't know whether it's been removed or not.
576	 */
577	if (!ci || !ci->ci_master_key)
578		return 0;
579	mk = ci->ci_master_key->payload.data[0];
580
581	/*
582	 * Note: since we aren't holding ->mk_secret_sem, the result here can
 
 
 
 
 
 
 
 
 
583	 * immediately become outdated.  But there's no correctness problem with
584	 * unnecessarily evicting.  Nor is there a correctness problem with not
585	 * evicting while iput() is racing with the key being removed, since
586	 * then the thread removing the key will either evict the inode itself
587	 * or will correctly detect that it wasn't evicted due to the race.
588	 */
589	return !is_master_key_secret_present(&mk->mk_secret);
590}
591EXPORT_SYMBOL_GPL(fscrypt_drop_inode);
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Key setup facility for FS encryption support.
  4 *
  5 * Copyright (C) 2015, Google, Inc.
  6 *
  7 * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar.
  8 * Heavily modified since then.
  9 */
 10
 
 
 11#include <crypto/skcipher.h>
 12#include <linux/key.h>
 13#include <linux/random.h>
 14
 15#include "fscrypt_private.h"
 16
 17struct fscrypt_mode fscrypt_modes[] = {
 
 
 18	[FSCRYPT_MODE_AES_256_XTS] = {
 19		.friendly_name = "AES-256-XTS",
 20		.cipher_str = "xts(aes)",
 21		.keysize = 64,
 22		.ivsize = 16,
 23		.blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_256_XTS,
 24	},
 25	[FSCRYPT_MODE_AES_256_CTS] = {
 26		.friendly_name = "AES-256-CTS-CBC",
 27		.cipher_str = "cts(cbc(aes))",
 28		.keysize = 32,
 29		.ivsize = 16,
 30	},
 31	[FSCRYPT_MODE_AES_128_CBC] = {
 32		.friendly_name = "AES-128-CBC-ESSIV",
 33		.cipher_str = "essiv(cbc(aes),sha256)",
 34		.keysize = 16,
 35		.ivsize = 16,
 36		.blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV,
 37	},
 38	[FSCRYPT_MODE_AES_128_CTS] = {
 39		.friendly_name = "AES-128-CTS-CBC",
 40		.cipher_str = "cts(cbc(aes))",
 41		.keysize = 16,
 42		.ivsize = 16,
 43	},
 44	[FSCRYPT_MODE_ADIANTUM] = {
 45		.friendly_name = "Adiantum",
 46		.cipher_str = "adiantum(xchacha12,aes)",
 47		.keysize = 32,
 48		.ivsize = 32,
 49		.blk_crypto_mode = BLK_ENCRYPTION_MODE_ADIANTUM,
 50	},
 51};
 52
 53static DEFINE_MUTEX(fscrypt_mode_key_setup_mutex);
 54
 55static struct fscrypt_mode *
 56select_encryption_mode(const union fscrypt_policy *policy,
 57		       const struct inode *inode)
 58{
 59	BUILD_BUG_ON(ARRAY_SIZE(fscrypt_modes) != FSCRYPT_MODE_MAX + 1);
 60
 61	if (S_ISREG(inode->i_mode))
 62		return &fscrypt_modes[fscrypt_policy_contents_mode(policy)];
 63
 64	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
 65		return &fscrypt_modes[fscrypt_policy_fnames_mode(policy)];
 66
 67	WARN_ONCE(1, "fscrypt: filesystem tried to load encryption info for inode %lu, which is not encryptable (file type %d)\n",
 68		  inode->i_ino, (inode->i_mode & S_IFMT));
 69	return ERR_PTR(-EINVAL);
 70}
 71
 72/* Create a symmetric cipher object for the given encryption mode and key */
 73static struct crypto_skcipher *
 74fscrypt_allocate_skcipher(struct fscrypt_mode *mode, const u8 *raw_key,
 75			  const struct inode *inode)
 76{
 77	struct crypto_skcipher *tfm;
 78	int err;
 79
 80	tfm = crypto_alloc_skcipher(mode->cipher_str, 0, 0);
 81	if (IS_ERR(tfm)) {
 82		if (PTR_ERR(tfm) == -ENOENT) {
 83			fscrypt_warn(inode,
 84				     "Missing crypto API support for %s (API name: \"%s\")",
 85				     mode->friendly_name, mode->cipher_str);
 86			return ERR_PTR(-ENOPKG);
 87		}
 88		fscrypt_err(inode, "Error allocating '%s' transform: %ld",
 89			    mode->cipher_str, PTR_ERR(tfm));
 90		return tfm;
 91	}
 92	if (!xchg(&mode->logged_impl_name, 1)) {
 93		/*
 94		 * fscrypt performance can vary greatly depending on which
 95		 * crypto algorithm implementation is used.  Help people debug
 96		 * performance problems by logging the ->cra_driver_name the
 97		 * first time a mode is used.
 
 98		 */
 
 99		pr_info("fscrypt: %s using implementation \"%s\"\n",
100			mode->friendly_name, crypto_skcipher_driver_name(tfm));
101	}
102	if (WARN_ON(crypto_skcipher_ivsize(tfm) != mode->ivsize)) {
103		err = -EINVAL;
104		goto err_free_tfm;
105	}
106	crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
107	err = crypto_skcipher_setkey(tfm, raw_key, mode->keysize);
108	if (err)
109		goto err_free_tfm;
110
111	return tfm;
112
113err_free_tfm:
114	crypto_free_skcipher(tfm);
115	return ERR_PTR(err);
116}
117
118/*
119 * Prepare the crypto transform object or blk-crypto key in @prep_key, given the
120 * raw key, encryption mode, and flag indicating which encryption implementation
121 * (fs-layer or blk-crypto) will be used.
122 */
123int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key,
124			const u8 *raw_key, const struct fscrypt_info *ci)
125{
126	struct crypto_skcipher *tfm;
127
128	if (fscrypt_using_inline_encryption(ci))
129		return fscrypt_prepare_inline_crypt_key(prep_key, raw_key, ci);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130
131	tfm = fscrypt_allocate_skcipher(ci->ci_mode, raw_key, ci->ci_inode);
132	if (IS_ERR(tfm))
133		return PTR_ERR(tfm);
134	/*
135	 * Pairs with the smp_load_acquire() in fscrypt_is_key_prepared().
136	 * I.e., here we publish ->tfm with a RELEASE barrier so that
137	 * concurrent tasks can ACQUIRE it.  Note that this concurrency is only
138	 * possible for per-mode keys, not for per-file keys.
139	 */
140	smp_store_release(&prep_key->tfm, tfm);
141	return 0;
142}
143
144/* Destroy a crypto transform object and/or blk-crypto key. */
145void fscrypt_destroy_prepared_key(struct fscrypt_prepared_key *prep_key)
146{
147	crypto_free_skcipher(prep_key->tfm);
148	fscrypt_destroy_inline_crypt_key(prep_key);
149}
150
151/* Given a per-file encryption key, set up the file's crypto transform object */
152int fscrypt_set_per_file_enc_key(struct fscrypt_info *ci, const u8 *raw_key)
153{
154	ci->ci_owns_key = true;
155	return fscrypt_prepare_key(&ci->ci_enc_key, raw_key, ci);
156}
157
158static int setup_per_mode_enc_key(struct fscrypt_info *ci,
159				  struct fscrypt_master_key *mk,
160				  struct fscrypt_prepared_key *keys,
161				  u8 hkdf_context, bool include_fs_uuid)
162{
163	const struct inode *inode = ci->ci_inode;
164	const struct super_block *sb = inode->i_sb;
165	struct fscrypt_mode *mode = ci->ci_mode;
166	const u8 mode_num = mode - fscrypt_modes;
167	struct fscrypt_prepared_key *prep_key;
168	u8 mode_key[FSCRYPT_MAX_KEY_SIZE];
169	u8 hkdf_info[sizeof(mode_num) + sizeof(sb->s_uuid)];
170	unsigned int hkdf_infolen = 0;
171	int err;
 
 
172
173	if (WARN_ON(mode_num > FSCRYPT_MODE_MAX))
174		return -EINVAL;
175
176	prep_key = &keys[mode_num];
177	if (fscrypt_is_key_prepared(prep_key, ci)) {
178		ci->ci_enc_key = *prep_key;
179		return 0;
180	}
181
182	mutex_lock(&fscrypt_mode_key_setup_mutex);
183
184	if (fscrypt_is_key_prepared(prep_key, ci))
185		goto done_unlock;
 
186
187	BUILD_BUG_ON(sizeof(mode_num) != 1);
188	BUILD_BUG_ON(sizeof(sb->s_uuid) != 16);
189	BUILD_BUG_ON(sizeof(hkdf_info) != 17);
190	hkdf_info[hkdf_infolen++] = mode_num;
191	if (include_fs_uuid) {
192		memcpy(&hkdf_info[hkdf_infolen], &sb->s_uuid,
193		       sizeof(sb->s_uuid));
194		hkdf_infolen += sizeof(sb->s_uuid);
195	}
196	err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
197				  hkdf_context, hkdf_info, hkdf_infolen,
198				  mode_key, mode->keysize);
199	if (err)
200		goto out_unlock;
201	err = fscrypt_prepare_key(prep_key, mode_key, ci);
202	memzero_explicit(mode_key, mode->keysize);
203	if (err)
204		goto out_unlock;
205done_unlock:
206	ci->ci_enc_key = *prep_key;
207	err = 0;
208out_unlock:
209	mutex_unlock(&fscrypt_mode_key_setup_mutex);
210	return err;
211}
212
213/*
214 * Derive a SipHash key from the given fscrypt master key and the given
215 * application-specific information string.
216 *
217 * Note that the KDF produces a byte array, but the SipHash APIs expect the key
218 * as a pair of 64-bit words.  Therefore, on big endian CPUs we have to do an
219 * endianness swap in order to get the same results as on little endian CPUs.
220 */
221static int fscrypt_derive_siphash_key(const struct fscrypt_master_key *mk,
222				      u8 context, const u8 *info,
223				      unsigned int infolen, siphash_key_t *key)
224{
 
 
225	int err;
226
227	err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, context, info, infolen,
228				  (u8 *)key, sizeof(*key));
229	if (err)
230		return err;
231
232	BUILD_BUG_ON(sizeof(*key) != 16);
233	BUILD_BUG_ON(ARRAY_SIZE(key->key) != 2);
234	le64_to_cpus(&key->key[0]);
235	le64_to_cpus(&key->key[1]);
 
 
 
 
 
 
236	return 0;
237}
238
239int fscrypt_derive_dirhash_key(struct fscrypt_info *ci,
240			       const struct fscrypt_master_key *mk)
241{
 
 
 
 
242	int err;
243
244	err = fscrypt_derive_siphash_key(mk, HKDF_CONTEXT_DIRHASH_KEY,
245					 ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE,
246					 &ci->ci_dirhash_key);
247	if (err)
248		return err;
249	ci->ci_dirhash_key_initialized = true;
250	return 0;
251}
252
253void fscrypt_hash_inode_number(struct fscrypt_info *ci,
254			       const struct fscrypt_master_key *mk)
255{
256	WARN_ON(ci->ci_inode->i_ino == 0);
257	WARN_ON(!mk->mk_ino_hash_key_initialized);
258
259	ci->ci_hashed_ino = (u32)siphash_1u64(ci->ci_inode->i_ino,
260					      &mk->mk_ino_hash_key);
261}
262
263static int fscrypt_setup_iv_ino_lblk_32_key(struct fscrypt_info *ci,
264					    struct fscrypt_master_key *mk)
265{
266	int err;
267
268	err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_32_keys,
269				     HKDF_CONTEXT_IV_INO_LBLK_32_KEY, true);
270	if (err)
271		return err;
 
 
 
 
272
273	/* pairs with smp_store_release() below */
274	if (!smp_load_acquire(&mk->mk_ino_hash_key_initialized)) {
275
276		mutex_lock(&fscrypt_mode_key_setup_mutex);
277
278		if (mk->mk_ino_hash_key_initialized)
279			goto unlock;
280
281		err = fscrypt_derive_siphash_key(mk,
282						 HKDF_CONTEXT_INODE_HASH_KEY,
283						 NULL, 0, &mk->mk_ino_hash_key);
284		if (err)
285			goto unlock;
286		/* pairs with smp_load_acquire() above */
287		smp_store_release(&mk->mk_ino_hash_key_initialized, true);
288unlock:
289		mutex_unlock(&fscrypt_mode_key_setup_mutex);
290		if (err)
291			return err;
292	}
293
294	/*
295	 * New inodes may not have an inode number assigned yet.
296	 * Hashing their inode number is delayed until later.
297	 */
298	if (ci->ci_inode->i_ino)
299		fscrypt_hash_inode_number(ci, mk);
300	return 0;
301}
302
303static int fscrypt_setup_v2_file_key(struct fscrypt_info *ci,
304				     struct fscrypt_master_key *mk,
305				     bool need_dirhash_key)
306{
 
307	int err;
308
309	if (ci->ci_policy.v2.flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) {
310		/*
311		 * DIRECT_KEY: instead of deriving per-file encryption keys, the
312		 * per-file nonce will be included in all the IVs.  But unlike
313		 * v1 policies, for v2 policies in this case we don't encrypt
314		 * with the master key directly but rather derive a per-mode
315		 * encryption key.  This ensures that the master key is
316		 * consistently used only for HKDF, avoiding key reuse issues.
317		 */
318		err = setup_per_mode_enc_key(ci, mk, mk->mk_direct_keys,
319					     HKDF_CONTEXT_DIRECT_KEY, false);
320	} else if (ci->ci_policy.v2.flags &
321		   FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) {
322		/*
323		 * IV_INO_LBLK_64: encryption keys are derived from (master_key,
324		 * mode_num, filesystem_uuid), and inode number is included in
325		 * the IVs.  This format is optimized for use with inline
326		 * encryption hardware compliant with the UFS standard.
327		 */
328		err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_64_keys,
329					     HKDF_CONTEXT_IV_INO_LBLK_64_KEY,
330					     true);
331	} else if (ci->ci_policy.v2.flags &
332		   FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) {
333		err = fscrypt_setup_iv_ino_lblk_32_key(ci, mk);
334	} else {
335		u8 derived_key[FSCRYPT_MAX_KEY_SIZE];
336
337		err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
338					  HKDF_CONTEXT_PER_FILE_ENC_KEY,
339					  ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE,
340					  derived_key, ci->ci_mode->keysize);
341		if (err)
342			return err;
343
344		err = fscrypt_set_per_file_enc_key(ci, derived_key);
345		memzero_explicit(derived_key, ci->ci_mode->keysize);
346	}
 
347	if (err)
348		return err;
349
350	/* Derive a secret dirhash key for directories that need it. */
351	if (need_dirhash_key) {
352		err = fscrypt_derive_dirhash_key(ci, mk);
353		if (err)
354			return err;
355	}
356
357	return 0;
358}
359
360/*
361 * Find the master key, then set up the inode's actual encryption key.
362 *
363 * If the master key is found in the filesystem-level keyring, then the
364 * corresponding 'struct key' is returned in *master_key_ret with its semaphore
365 * read-locked.  This is needed to ensure that only one task links the
366 * fscrypt_info into ->mk_decrypted_inodes (as multiple tasks may race to create
367 * an fscrypt_info for the same inode), and to synchronize the master key being
368 * removed with a new inode starting to use it.
369 */
370static int setup_file_encryption_key(struct fscrypt_info *ci,
371				     bool need_dirhash_key,
372				     struct key **master_key_ret)
373{
374	struct key *key;
375	struct fscrypt_master_key *mk = NULL;
376	struct fscrypt_key_specifier mk_spec;
377	int err;
378
379	err = fscrypt_select_encryption_impl(ci);
380	if (err)
381		return err;
382
383	switch (ci->ci_policy.version) {
384	case FSCRYPT_POLICY_V1:
385		mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR;
386		memcpy(mk_spec.u.descriptor,
387		       ci->ci_policy.v1.master_key_descriptor,
388		       FSCRYPT_KEY_DESCRIPTOR_SIZE);
389		break;
390	case FSCRYPT_POLICY_V2:
391		mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
392		memcpy(mk_spec.u.identifier,
393		       ci->ci_policy.v2.master_key_identifier,
394		       FSCRYPT_KEY_IDENTIFIER_SIZE);
395		break;
396	default:
397		WARN_ON(1);
398		return -EINVAL;
399	}
400
401	key = fscrypt_find_master_key(ci->ci_inode->i_sb, &mk_spec);
402	if (IS_ERR(key)) {
403		if (key != ERR_PTR(-ENOKEY) ||
404		    ci->ci_policy.version != FSCRYPT_POLICY_V1)
405			return PTR_ERR(key);
406
407		/*
408		 * As a legacy fallback for v1 policies, search for the key in
409		 * the current task's subscribed keyrings too.  Don't move this
410		 * to before the search of ->s_master_keys, since users
411		 * shouldn't be able to override filesystem-level keys.
412		 */
413		return fscrypt_setup_v1_file_key_via_subscribed_keyrings(ci);
414	}
415
416	mk = key->payload.data[0];
417	down_read(&key->sem);
418
419	/* Has the secret been removed (via FS_IOC_REMOVE_ENCRYPTION_KEY)? */
420	if (!is_master_key_secret_present(&mk->mk_secret)) {
421		err = -ENOKEY;
422		goto out_release_key;
423	}
424
425	/*
426	 * Require that the master key be at least as long as the derived key.
427	 * Otherwise, the derived key cannot possibly contain as much entropy as
428	 * that required by the encryption mode it will be used for.  For v1
429	 * policies it's also required for the KDF to work at all.
430	 */
431	if (mk->mk_secret.size < ci->ci_mode->keysize) {
432		fscrypt_warn(NULL,
433			     "key with %s %*phN is too short (got %u bytes, need %u+ bytes)",
434			     master_key_spec_type(&mk_spec),
435			     master_key_spec_len(&mk_spec), (u8 *)&mk_spec.u,
436			     mk->mk_secret.size, ci->ci_mode->keysize);
437		err = -ENOKEY;
438		goto out_release_key;
439	}
440
441	switch (ci->ci_policy.version) {
442	case FSCRYPT_POLICY_V1:
443		err = fscrypt_setup_v1_file_key(ci, mk->mk_secret.raw);
444		break;
445	case FSCRYPT_POLICY_V2:
446		err = fscrypt_setup_v2_file_key(ci, mk, need_dirhash_key);
447		break;
448	default:
449		WARN_ON(1);
450		err = -EINVAL;
451		break;
452	}
453	if (err)
454		goto out_release_key;
455
456	*master_key_ret = key;
457	return 0;
458
459out_release_key:
460	up_read(&key->sem);
461	key_put(key);
462	return err;
463}
464
465static void put_crypt_info(struct fscrypt_info *ci)
466{
467	struct key *key;
468
469	if (!ci)
470		return;
471
472	if (ci->ci_direct_key)
473		fscrypt_put_direct_key(ci->ci_direct_key);
474	else if (ci->ci_owns_key)
475		fscrypt_destroy_prepared_key(&ci->ci_enc_key);
 
 
 
476
477	key = ci->ci_master_key;
478	if (key) {
479		struct fscrypt_master_key *mk = key->payload.data[0];
480
481		/*
482		 * Remove this inode from the list of inodes that were unlocked
483		 * with the master key.
484		 *
485		 * In addition, if we're removing the last inode from a key that
486		 * already had its secret removed, invalidate the key so that it
487		 * gets removed from ->s_master_keys.
488		 */
489		spin_lock(&mk->mk_decrypted_inodes_lock);
490		list_del(&ci->ci_master_key_link);
491		spin_unlock(&mk->mk_decrypted_inodes_lock);
492		if (refcount_dec_and_test(&mk->mk_refcount))
493			key_invalidate(key);
494		key_put(key);
495	}
496	memzero_explicit(ci, sizeof(*ci));
497	kmem_cache_free(fscrypt_info_cachep, ci);
498}
499
500static int
501fscrypt_setup_encryption_info(struct inode *inode,
502			      const union fscrypt_policy *policy,
503			      const u8 nonce[FSCRYPT_FILE_NONCE_SIZE],
504			      bool need_dirhash_key)
505{
506	struct fscrypt_info *crypt_info;
 
507	struct fscrypt_mode *mode;
508	struct key *master_key = NULL;
509	int res;
510
 
 
 
511	res = fscrypt_initialize(inode->i_sb->s_cop->flags);
512	if (res)
513		return res;
514
515	crypt_info = kmem_cache_zalloc(fscrypt_info_cachep, GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
516	if (!crypt_info)
517		return -ENOMEM;
518
519	crypt_info->ci_inode = inode;
520	crypt_info->ci_policy = *policy;
521	memcpy(crypt_info->ci_nonce, nonce, FSCRYPT_FILE_NONCE_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
522
523	mode = select_encryption_mode(&crypt_info->ci_policy, inode);
524	if (IS_ERR(mode)) {
525		res = PTR_ERR(mode);
526		goto out;
527	}
528	WARN_ON(mode->ivsize > FSCRYPT_MAX_IV_SIZE);
529	crypt_info->ci_mode = mode;
530
531	res = setup_file_encryption_key(crypt_info, need_dirhash_key,
532					&master_key);
533	if (res)
534		goto out;
535
536	/*
537	 * For existing inodes, multiple tasks may race to set ->i_crypt_info.
538	 * So use cmpxchg_release().  This pairs with the smp_load_acquire() in
539	 * fscrypt_get_info().  I.e., here we publish ->i_crypt_info with a
540	 * RELEASE barrier so that other tasks can ACQUIRE it.
541	 */
542	if (cmpxchg_release(&inode->i_crypt_info, NULL, crypt_info) == NULL) {
543		/*
544		 * We won the race and set ->i_crypt_info to our crypt_info.
545		 * Now link it into the master key's inode list.
546		 */
547		if (master_key) {
548			struct fscrypt_master_key *mk =
549				master_key->payload.data[0];
550
551			refcount_inc(&mk->mk_refcount);
552			crypt_info->ci_master_key = key_get(master_key);
553			spin_lock(&mk->mk_decrypted_inodes_lock);
554			list_add(&crypt_info->ci_master_key_link,
555				 &mk->mk_decrypted_inodes);
556			spin_unlock(&mk->mk_decrypted_inodes_lock);
557		}
558		crypt_info = NULL;
559	}
560	res = 0;
561out:
562	if (master_key) {
563		up_read(&master_key->sem);
 
 
564		key_put(master_key);
565	}
566	put_crypt_info(crypt_info);
567	return res;
568}
569
570/**
571 * fscrypt_get_encryption_info() - set up an inode's encryption key
572 * @inode: the inode to set up the key for.  Must be encrypted.
573 * @allow_unsupported: if %true, treat an unsupported encryption policy (or
574 *		       unrecognized encryption context) the same way as the key
575 *		       being unavailable, instead of returning an error.  Use
576 *		       %false unless the operation being performed is needed in
577 *		       order for files (or directories) to be deleted.
578 *
579 * Set up ->i_crypt_info, if it hasn't already been done.
580 *
581 * Note: unless ->i_crypt_info is already set, this isn't %GFP_NOFS-safe.  So
582 * generally this shouldn't be called from within a filesystem transaction.
583 *
584 * Return: 0 if ->i_crypt_info was set or was already set, *or* if the
585 *	   encryption key is unavailable.  (Use fscrypt_has_encryption_key() to
586 *	   distinguish these cases.)  Also can return another -errno code.
587 */
588int fscrypt_get_encryption_info(struct inode *inode, bool allow_unsupported)
589{
590	int res;
591	union fscrypt_context ctx;
592	union fscrypt_policy policy;
593
594	if (fscrypt_has_encryption_key(inode))
595		return 0;
596
597	res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx));
598	if (res < 0) {
599		if (res == -ERANGE && allow_unsupported)
600			return 0;
601		fscrypt_warn(inode, "Error %d getting encryption context", res);
602		return res;
603	}
604
605	res = fscrypt_policy_from_context(&policy, &ctx, res);
606	if (res) {
607		if (allow_unsupported)
608			return 0;
609		fscrypt_warn(inode,
610			     "Unrecognized or corrupt encryption context");
611		return res;
612	}
613
614	if (!fscrypt_supported_policy(&policy, inode)) {
615		if (allow_unsupported)
616			return 0;
617		return -EINVAL;
618	}
619
620	res = fscrypt_setup_encryption_info(inode, &policy,
621					    fscrypt_context_nonce(&ctx),
622					    IS_CASEFOLDED(inode) &&
623					    S_ISDIR(inode->i_mode));
624
625	if (res == -ENOPKG && allow_unsupported) /* Algorithm unavailable? */
626		res = 0;
627	if (res == -ENOKEY)
628		res = 0;
 
629	return res;
630}
 
631
632/**
633 * fscrypt_prepare_new_inode() - prepare to create a new inode in a directory
634 * @dir: a possibly-encrypted directory
635 * @inode: the new inode.  ->i_mode must be set already.
636 *	   ->i_ino doesn't need to be set yet.
637 * @encrypt_ret: (output) set to %true if the new inode will be encrypted
638 *
639 * If the directory is encrypted, set up its ->i_crypt_info in preparation for
640 * encrypting the name of the new file.  Also, if the new inode will be
641 * encrypted, set up its ->i_crypt_info and set *encrypt_ret=true.
642 *
643 * This isn't %GFP_NOFS-safe, and therefore it should be called before starting
644 * any filesystem transaction to create the inode.  For this reason, ->i_ino
645 * isn't required to be set yet, as the filesystem may not have set it yet.
646 *
647 * This doesn't persist the new inode's encryption context.  That still needs to
648 * be done later by calling fscrypt_set_context().
649 *
650 * Return: 0 on success, -ENOKEY if the encryption key is missing, or another
651 *	   -errno code
652 */
653int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode,
654			      bool *encrypt_ret)
655{
656	const union fscrypt_policy *policy;
657	u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
658
659	policy = fscrypt_policy_to_inherit(dir);
660	if (policy == NULL)
661		return 0;
662	if (IS_ERR(policy))
663		return PTR_ERR(policy);
664
665	if (WARN_ON_ONCE(inode->i_mode == 0))
666		return -EINVAL;
667
668	/*
669	 * Only regular files, directories, and symlinks are encrypted.
670	 * Special files like device nodes and named pipes aren't.
671	 */
672	if (!S_ISREG(inode->i_mode) &&
673	    !S_ISDIR(inode->i_mode) &&
674	    !S_ISLNK(inode->i_mode))
675		return 0;
676
677	*encrypt_ret = true;
678
679	get_random_bytes(nonce, FSCRYPT_FILE_NONCE_SIZE);
680	return fscrypt_setup_encryption_info(inode, policy, nonce,
681					     IS_CASEFOLDED(dir) &&
682					     S_ISDIR(inode->i_mode));
683}
684EXPORT_SYMBOL_GPL(fscrypt_prepare_new_inode);
685
686/**
687 * fscrypt_put_encryption_info() - free most of an inode's fscrypt data
688 * @inode: an inode being evicted
689 *
690 * Free the inode's fscrypt_info.  Filesystems must call this when the inode is
691 * being evicted.  An RCU grace period need not have elapsed yet.
692 */
693void fscrypt_put_encryption_info(struct inode *inode)
694{
695	put_crypt_info(inode->i_crypt_info);
696	inode->i_crypt_info = NULL;
697}
698EXPORT_SYMBOL(fscrypt_put_encryption_info);
699
700/**
701 * fscrypt_free_inode() - free an inode's fscrypt data requiring RCU delay
702 * @inode: an inode being freed
703 *
704 * Free the inode's cached decrypted symlink target, if any.  Filesystems must
705 * call this after an RCU grace period, just before they free the inode.
706 */
707void fscrypt_free_inode(struct inode *inode)
708{
709	if (IS_ENCRYPTED(inode) && S_ISLNK(inode->i_mode)) {
710		kfree(inode->i_link);
711		inode->i_link = NULL;
712	}
713}
714EXPORT_SYMBOL(fscrypt_free_inode);
715
716/**
717 * fscrypt_drop_inode() - check whether the inode's master key has been removed
718 * @inode: an inode being considered for eviction
719 *
720 * Filesystems supporting fscrypt must call this from their ->drop_inode()
721 * method so that encrypted inodes are evicted as soon as they're no longer in
722 * use and their master key has been removed.
723 *
724 * Return: 1 if fscrypt wants the inode to be evicted now, otherwise 0
725 */
726int fscrypt_drop_inode(struct inode *inode)
727{
728	const struct fscrypt_info *ci = fscrypt_get_info(inode);
729	const struct fscrypt_master_key *mk;
730
731	/*
732	 * If ci is NULL, then the inode doesn't have an encryption key set up
733	 * so it's irrelevant.  If ci_master_key is NULL, then the master key
734	 * was provided via the legacy mechanism of the process-subscribed
735	 * keyrings, so we don't know whether it's been removed or not.
736	 */
737	if (!ci || !ci->ci_master_key)
738		return 0;
739	mk = ci->ci_master_key->payload.data[0];
740
741	/*
742	 * With proper, non-racy use of FS_IOC_REMOVE_ENCRYPTION_KEY, all inodes
743	 * protected by the key were cleaned by sync_filesystem().  But if
744	 * userspace is still using the files, inodes can be dirtied between
745	 * then and now.  We mustn't lose any writes, so skip dirty inodes here.
746	 */
747	if (inode->i_state & I_DIRTY_ALL)
748		return 0;
749
750	/*
751	 * Note: since we aren't holding the key semaphore, the result here can
752	 * immediately become outdated.  But there's no correctness problem with
753	 * unnecessarily evicting.  Nor is there a correctness problem with not
754	 * evicting while iput() is racing with the key being removed, since
755	 * then the thread removing the key will either evict the inode itself
756	 * or will correctly detect that it wasn't evicted due to the race.
757	 */
758	return !is_master_key_secret_present(&mk->mk_secret);
759}
760EXPORT_SYMBOL_GPL(fscrypt_drop_inode);