Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2007 Red Hat.  All rights reserved.
  4 */
  5
  6#include <linux/init.h>
  7#include <linux/fs.h>
  8#include <linux/slab.h>
  9#include <linux/rwsem.h>
 10#include <linux/xattr.h>
 11#include <linux/security.h>
 12#include <linux/posix_acl_xattr.h>
 13#include <linux/iversion.h>
 14#include <linux/sched/mm.h>
 15#include "ctree.h"
 16#include "btrfs_inode.h"
 17#include "transaction.h"
 18#include "xattr.h"
 19#include "disk-io.h"
 20#include "props.h"
 21#include "locking.h"
 22
 23int btrfs_getxattr(struct inode *inode, const char *name,
 24				void *buffer, size_t size)
 25{
 26	struct btrfs_dir_item *di;
 27	struct btrfs_root *root = BTRFS_I(inode)->root;
 28	struct btrfs_path *path;
 29	struct extent_buffer *leaf;
 30	int ret = 0;
 31	unsigned long data_ptr;
 32
 33	path = btrfs_alloc_path();
 34	if (!path)
 35		return -ENOMEM;
 36
 37	/* lookup the xattr by name */
 38	di = btrfs_lookup_xattr(NULL, root, path, btrfs_ino(BTRFS_I(inode)),
 39			name, strlen(name), 0);
 40	if (!di) {
 41		ret = -ENODATA;
 42		goto out;
 43	} else if (IS_ERR(di)) {
 44		ret = PTR_ERR(di);
 45		goto out;
 46	}
 47
 48	leaf = path->nodes[0];
 49	/* if size is 0, that means we want the size of the attr */
 50	if (!size) {
 51		ret = btrfs_dir_data_len(leaf, di);
 52		goto out;
 53	}
 54
 55	/* now get the data out of our dir_item */
 56	if (btrfs_dir_data_len(leaf, di) > size) {
 57		ret = -ERANGE;
 58		goto out;
 59	}
 60
 61	/*
 62	 * The way things are packed into the leaf is like this
 63	 * |struct btrfs_dir_item|name|data|
 64	 * where name is the xattr name, so security.foo, and data is the
 65	 * content of the xattr.  data_ptr points to the location in memory
 66	 * where the data starts in the in memory leaf
 67	 */
 68	data_ptr = (unsigned long)((char *)(di + 1) +
 69				   btrfs_dir_name_len(leaf, di));
 70	read_extent_buffer(leaf, buffer, data_ptr,
 71			   btrfs_dir_data_len(leaf, di));
 72	ret = btrfs_dir_data_len(leaf, di);
 73
 74out:
 75	btrfs_free_path(path);
 76	return ret;
 77}
 78
 79int btrfs_setxattr(struct btrfs_trans_handle *trans, struct inode *inode,
 80		   const char *name, const void *value, size_t size, int flags)
 81{
 82	struct btrfs_dir_item *di = NULL;
 83	struct btrfs_root *root = BTRFS_I(inode)->root;
 84	struct btrfs_fs_info *fs_info = root->fs_info;
 85	struct btrfs_path *path;
 86	size_t name_len = strlen(name);
 87	int ret = 0;
 88
 89	ASSERT(trans);
 90
 91	if (name_len + size > BTRFS_MAX_XATTR_SIZE(root->fs_info))
 92		return -ENOSPC;
 93
 94	path = btrfs_alloc_path();
 95	if (!path)
 96		return -ENOMEM;
 97	path->skip_release_on_error = 1;
 98
 99	if (!value) {
100		di = btrfs_lookup_xattr(trans, root, path,
101				btrfs_ino(BTRFS_I(inode)), name, name_len, -1);
102		if (!di && (flags & XATTR_REPLACE))
103			ret = -ENODATA;
104		else if (IS_ERR(di))
105			ret = PTR_ERR(di);
106		else if (di)
107			ret = btrfs_delete_one_dir_name(trans, root, path, di);
108		goto out;
109	}
110
111	/*
112	 * For a replace we can't just do the insert blindly.
113	 * Do a lookup first (read-only btrfs_search_slot), and return if xattr
114	 * doesn't exist. If it exists, fall down below to the insert/replace
115	 * path - we can't race with a concurrent xattr delete, because the VFS
116	 * locks the inode's i_mutex before calling setxattr or removexattr.
117	 */
118	if (flags & XATTR_REPLACE) {
119		ASSERT(inode_is_locked(inode));
120		di = btrfs_lookup_xattr(NULL, root, path,
121				btrfs_ino(BTRFS_I(inode)), name, name_len, 0);
122		if (!di)
123			ret = -ENODATA;
124		else if (IS_ERR(di))
125			ret = PTR_ERR(di);
126		if (ret)
127			goto out;
128		btrfs_release_path(path);
129		di = NULL;
130	}
131
132	ret = btrfs_insert_xattr_item(trans, root, path, btrfs_ino(BTRFS_I(inode)),
133				      name, name_len, value, size);
134	if (ret == -EOVERFLOW) {
135		/*
136		 * We have an existing item in a leaf, split_leaf couldn't
137		 * expand it. That item might have or not a dir_item that
138		 * matches our target xattr, so lets check.
139		 */
140		ret = 0;
141		btrfs_assert_tree_locked(path->nodes[0]);
142		di = btrfs_match_dir_item_name(fs_info, path, name, name_len);
143		if (!di && !(flags & XATTR_REPLACE)) {
144			ret = -ENOSPC;
145			goto out;
146		}
147	} else if (ret == -EEXIST) {
148		ret = 0;
149		di = btrfs_match_dir_item_name(fs_info, path, name, name_len);
150		ASSERT(di); /* logic error */
151	} else if (ret) {
152		goto out;
153	}
154
155	if (di && (flags & XATTR_CREATE)) {
156		ret = -EEXIST;
157		goto out;
158	}
159
160	if (di) {
161		/*
162		 * We're doing a replace, and it must be atomic, that is, at
163		 * any point in time we have either the old or the new xattr
164		 * value in the tree. We don't want readers (getxattr and
165		 * listxattrs) to miss a value, this is specially important
166		 * for ACLs.
167		 */
168		const int slot = path->slots[0];
169		struct extent_buffer *leaf = path->nodes[0];
170		const u16 old_data_len = btrfs_dir_data_len(leaf, di);
171		const u32 item_size = btrfs_item_size_nr(leaf, slot);
172		const u32 data_size = sizeof(*di) + name_len + size;
173		struct btrfs_item *item;
174		unsigned long data_ptr;
175		char *ptr;
176
177		if (size > old_data_len) {
178			if (btrfs_leaf_free_space(leaf) <
179			    (size - old_data_len)) {
180				ret = -ENOSPC;
181				goto out;
182			}
183		}
184
185		if (old_data_len + name_len + sizeof(*di) == item_size) {
186			/* No other xattrs packed in the same leaf item. */
187			if (size > old_data_len)
188				btrfs_extend_item(path, size - old_data_len);
189			else if (size < old_data_len)
190				btrfs_truncate_item(path, data_size, 1);
191		} else {
192			/* There are other xattrs packed in the same item. */
193			ret = btrfs_delete_one_dir_name(trans, root, path, di);
194			if (ret)
195				goto out;
196			btrfs_extend_item(path, data_size);
197		}
198
199		item = btrfs_item_nr(slot);
200		ptr = btrfs_item_ptr(leaf, slot, char);
201		ptr += btrfs_item_size(leaf, item) - data_size;
202		di = (struct btrfs_dir_item *)ptr;
203		btrfs_set_dir_data_len(leaf, di, size);
204		data_ptr = ((unsigned long)(di + 1)) + name_len;
205		write_extent_buffer(leaf, value, data_ptr, size);
206		btrfs_mark_buffer_dirty(leaf);
207	} else {
208		/*
209		 * Insert, and we had space for the xattr, so path->slots[0] is
210		 * where our xattr dir_item is and btrfs_insert_xattr_item()
211		 * filled it.
212		 */
213	}
214out:
215	btrfs_free_path(path);
216	if (!ret)
217		set_bit(BTRFS_INODE_COPY_EVERYTHING,
218			&BTRFS_I(inode)->runtime_flags);
219	return ret;
220}
221
222/*
223 * @value: "" makes the attribute to empty, NULL removes it
224 */
225int btrfs_setxattr_trans(struct inode *inode, const char *name,
226			 const void *value, size_t size, int flags)
227{
228	struct btrfs_root *root = BTRFS_I(inode)->root;
229	struct btrfs_trans_handle *trans;
230	int ret;
231
232	trans = btrfs_start_transaction(root, 2);
233	if (IS_ERR(trans))
234		return PTR_ERR(trans);
235
236	ret = btrfs_setxattr(trans, inode, name, value, size, flags);
237	if (ret)
238		goto out;
239
240	inode_inc_iversion(inode);
241	inode->i_ctime = current_time(inode);
242	ret = btrfs_update_inode(trans, root, inode);
243	BUG_ON(ret);
244out:
245	btrfs_end_transaction(trans);
246	return ret;
247}
248
249ssize_t btrfs_listxattr(struct dentry *dentry, char *buffer, size_t size)
250{
251	struct btrfs_key key;
252	struct inode *inode = d_inode(dentry);
253	struct btrfs_root *root = BTRFS_I(inode)->root;
254	struct btrfs_path *path;
255	int ret = 0;
256	size_t total_size = 0, size_left = size;
257
258	/*
259	 * ok we want all objects associated with this id.
260	 * NOTE: we set key.offset = 0; because we want to start with the
261	 * first xattr that we find and walk forward
262	 */
263	key.objectid = btrfs_ino(BTRFS_I(inode));
264	key.type = BTRFS_XATTR_ITEM_KEY;
265	key.offset = 0;
266
267	path = btrfs_alloc_path();
268	if (!path)
269		return -ENOMEM;
270	path->reada = READA_FORWARD;
271
272	/* search for our xattrs */
273	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
274	if (ret < 0)
275		goto err;
276
277	while (1) {
278		struct extent_buffer *leaf;
279		int slot;
280		struct btrfs_dir_item *di;
281		struct btrfs_key found_key;
282		u32 item_size;
283		u32 cur;
284
285		leaf = path->nodes[0];
286		slot = path->slots[0];
287
288		/* this is where we start walking through the path */
289		if (slot >= btrfs_header_nritems(leaf)) {
290			/*
291			 * if we've reached the last slot in this leaf we need
292			 * to go to the next leaf and reset everything
293			 */
294			ret = btrfs_next_leaf(root, path);
295			if (ret < 0)
296				goto err;
297			else if (ret > 0)
298				break;
299			continue;
300		}
301
302		btrfs_item_key_to_cpu(leaf, &found_key, slot);
303
304		/* check to make sure this item is what we want */
305		if (found_key.objectid != key.objectid)
306			break;
307		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
308			break;
309		if (found_key.type < BTRFS_XATTR_ITEM_KEY)
310			goto next_item;
311
312		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
313		item_size = btrfs_item_size_nr(leaf, slot);
314		cur = 0;
315		while (cur < item_size) {
316			u16 name_len = btrfs_dir_name_len(leaf, di);
317			u16 data_len = btrfs_dir_data_len(leaf, di);
318			u32 this_len = sizeof(*di) + name_len + data_len;
319			unsigned long name_ptr = (unsigned long)(di + 1);
320
321			total_size += name_len + 1;
322			/*
323			 * We are just looking for how big our buffer needs to
324			 * be.
325			 */
326			if (!size)
327				goto next;
328
329			if (!buffer || (name_len + 1) > size_left) {
330				ret = -ERANGE;
331				goto err;
332			}
333
334			read_extent_buffer(leaf, buffer, name_ptr, name_len);
335			buffer[name_len] = '\0';
336
337			size_left -= name_len + 1;
338			buffer += name_len + 1;
339next:
340			cur += this_len;
341			di = (struct btrfs_dir_item *)((char *)di + this_len);
342		}
343next_item:
344		path->slots[0]++;
345	}
346	ret = total_size;
347
348err:
349	btrfs_free_path(path);
350
351	return ret;
352}
353
354static int btrfs_xattr_handler_get(const struct xattr_handler *handler,
355				   struct dentry *unused, struct inode *inode,
356				   const char *name, void *buffer, size_t size)
357{
358	name = xattr_full_name(handler, name);
359	return btrfs_getxattr(inode, name, buffer, size);
360}
361
362static int btrfs_xattr_handler_set(const struct xattr_handler *handler,
363				   struct dentry *unused, struct inode *inode,
364				   const char *name, const void *buffer,
365				   size_t size, int flags)
366{
367	name = xattr_full_name(handler, name);
368	return btrfs_setxattr_trans(inode, name, buffer, size, flags);
369}
370
371static int btrfs_xattr_handler_set_prop(const struct xattr_handler *handler,
372					struct dentry *unused, struct inode *inode,
373					const char *name, const void *value,
374					size_t size, int flags)
375{
376	int ret;
377	struct btrfs_trans_handle *trans;
378	struct btrfs_root *root = BTRFS_I(inode)->root;
379
380	name = xattr_full_name(handler, name);
381	ret = btrfs_validate_prop(name, value, size);
382	if (ret)
383		return ret;
384
385	trans = btrfs_start_transaction(root, 2);
386	if (IS_ERR(trans))
387		return PTR_ERR(trans);
388
389	ret = btrfs_set_prop(trans, inode, name, value, size, flags);
390	if (!ret) {
391		inode_inc_iversion(inode);
392		inode->i_ctime = current_time(inode);
393		ret = btrfs_update_inode(trans, root, inode);
394		BUG_ON(ret);
395	}
396
397	btrfs_end_transaction(trans);
398
399	return ret;
400}
401
402static const struct xattr_handler btrfs_security_xattr_handler = {
403	.prefix = XATTR_SECURITY_PREFIX,
404	.get = btrfs_xattr_handler_get,
405	.set = btrfs_xattr_handler_set,
406};
407
408static const struct xattr_handler btrfs_trusted_xattr_handler = {
409	.prefix = XATTR_TRUSTED_PREFIX,
410	.get = btrfs_xattr_handler_get,
411	.set = btrfs_xattr_handler_set,
412};
413
414static const struct xattr_handler btrfs_user_xattr_handler = {
415	.prefix = XATTR_USER_PREFIX,
416	.get = btrfs_xattr_handler_get,
417	.set = btrfs_xattr_handler_set,
418};
419
420static const struct xattr_handler btrfs_btrfs_xattr_handler = {
421	.prefix = XATTR_BTRFS_PREFIX,
422	.get = btrfs_xattr_handler_get,
423	.set = btrfs_xattr_handler_set_prop,
424};
425
426const struct xattr_handler *btrfs_xattr_handlers[] = {
427	&btrfs_security_xattr_handler,
428#ifdef CONFIG_BTRFS_FS_POSIX_ACL
429	&posix_acl_access_xattr_handler,
430	&posix_acl_default_xattr_handler,
431#endif
432	&btrfs_trusted_xattr_handler,
433	&btrfs_user_xattr_handler,
434	&btrfs_btrfs_xattr_handler,
435	NULL,
436};
437
438static int btrfs_initxattrs(struct inode *inode,
439			    const struct xattr *xattr_array, void *fs_private)
440{
441	struct btrfs_trans_handle *trans = fs_private;
442	const struct xattr *xattr;
443	unsigned int nofs_flag;
444	char *name;
445	int err = 0;
446
447	/*
448	 * We're holding a transaction handle, so use a NOFS memory allocation
449	 * context to avoid deadlock if reclaim happens.
450	 */
451	nofs_flag = memalloc_nofs_save();
452	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
453		name = kmalloc(XATTR_SECURITY_PREFIX_LEN +
454			       strlen(xattr->name) + 1, GFP_KERNEL);
455		if (!name) {
456			err = -ENOMEM;
457			break;
458		}
459		strcpy(name, XATTR_SECURITY_PREFIX);
460		strcpy(name + XATTR_SECURITY_PREFIX_LEN, xattr->name);
461		err = btrfs_setxattr(trans, inode, name, xattr->value,
462				     xattr->value_len, 0);
463		kfree(name);
464		if (err < 0)
465			break;
466	}
467	memalloc_nofs_restore(nofs_flag);
468	return err;
469}
470
471int btrfs_xattr_security_init(struct btrfs_trans_handle *trans,
472			      struct inode *inode, struct inode *dir,
473			      const struct qstr *qstr)
474{
475	return security_inode_init_security(inode, dir, qstr,
476					    &btrfs_initxattrs, trans);
477}
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2007 Red Hat.  All rights reserved.
  4 */
  5
  6#include <linux/init.h>
  7#include <linux/fs.h>
  8#include <linux/slab.h>
  9#include <linux/rwsem.h>
 10#include <linux/xattr.h>
 11#include <linux/security.h>
 12#include <linux/posix_acl_xattr.h>
 13#include <linux/iversion.h>
 14#include <linux/sched/mm.h>
 15#include "ctree.h"
 16#include "btrfs_inode.h"
 17#include "transaction.h"
 18#include "xattr.h"
 19#include "disk-io.h"
 20#include "props.h"
 21#include "locking.h"
 22
 23int btrfs_getxattr(struct inode *inode, const char *name,
 24				void *buffer, size_t size)
 25{
 26	struct btrfs_dir_item *di;
 27	struct btrfs_root *root = BTRFS_I(inode)->root;
 28	struct btrfs_path *path;
 29	struct extent_buffer *leaf;
 30	int ret = 0;
 31	unsigned long data_ptr;
 32
 33	path = btrfs_alloc_path();
 34	if (!path)
 35		return -ENOMEM;
 36
 37	/* lookup the xattr by name */
 38	di = btrfs_lookup_xattr(NULL, root, path, btrfs_ino(BTRFS_I(inode)),
 39			name, strlen(name), 0);
 40	if (!di) {
 41		ret = -ENODATA;
 42		goto out;
 43	} else if (IS_ERR(di)) {
 44		ret = PTR_ERR(di);
 45		goto out;
 46	}
 47
 48	leaf = path->nodes[0];
 49	/* if size is 0, that means we want the size of the attr */
 50	if (!size) {
 51		ret = btrfs_dir_data_len(leaf, di);
 52		goto out;
 53	}
 54
 55	/* now get the data out of our dir_item */
 56	if (btrfs_dir_data_len(leaf, di) > size) {
 57		ret = -ERANGE;
 58		goto out;
 59	}
 60
 61	/*
 62	 * The way things are packed into the leaf is like this
 63	 * |struct btrfs_dir_item|name|data|
 64	 * where name is the xattr name, so security.foo, and data is the
 65	 * content of the xattr.  data_ptr points to the location in memory
 66	 * where the data starts in the in memory leaf
 67	 */
 68	data_ptr = (unsigned long)((char *)(di + 1) +
 69				   btrfs_dir_name_len(leaf, di));
 70	read_extent_buffer(leaf, buffer, data_ptr,
 71			   btrfs_dir_data_len(leaf, di));
 72	ret = btrfs_dir_data_len(leaf, di);
 73
 74out:
 75	btrfs_free_path(path);
 76	return ret;
 77}
 78
 79int btrfs_setxattr(struct btrfs_trans_handle *trans, struct inode *inode,
 80		   const char *name, const void *value, size_t size, int flags)
 81{
 82	struct btrfs_dir_item *di = NULL;
 83	struct btrfs_root *root = BTRFS_I(inode)->root;
 84	struct btrfs_fs_info *fs_info = root->fs_info;
 85	struct btrfs_path *path;
 86	size_t name_len = strlen(name);
 87	int ret = 0;
 88
 89	ASSERT(trans);
 90
 91	if (name_len + size > BTRFS_MAX_XATTR_SIZE(root->fs_info))
 92		return -ENOSPC;
 93
 94	path = btrfs_alloc_path();
 95	if (!path)
 96		return -ENOMEM;
 97	path->skip_release_on_error = 1;
 98
 99	if (!value) {
100		di = btrfs_lookup_xattr(trans, root, path,
101				btrfs_ino(BTRFS_I(inode)), name, name_len, -1);
102		if (!di && (flags & XATTR_REPLACE))
103			ret = -ENODATA;
104		else if (IS_ERR(di))
105			ret = PTR_ERR(di);
106		else if (di)
107			ret = btrfs_delete_one_dir_name(trans, root, path, di);
108		goto out;
109	}
110
111	/*
112	 * For a replace we can't just do the insert blindly.
113	 * Do a lookup first (read-only btrfs_search_slot), and return if xattr
114	 * doesn't exist. If it exists, fall down below to the insert/replace
115	 * path - we can't race with a concurrent xattr delete, because the VFS
116	 * locks the inode's i_mutex before calling setxattr or removexattr.
117	 */
118	if (flags & XATTR_REPLACE) {
119		ASSERT(inode_is_locked(inode));
120		di = btrfs_lookup_xattr(NULL, root, path,
121				btrfs_ino(BTRFS_I(inode)), name, name_len, 0);
122		if (!di)
123			ret = -ENODATA;
124		else if (IS_ERR(di))
125			ret = PTR_ERR(di);
126		if (ret)
127			goto out;
128		btrfs_release_path(path);
129		di = NULL;
130	}
131
132	ret = btrfs_insert_xattr_item(trans, root, path, btrfs_ino(BTRFS_I(inode)),
133				      name, name_len, value, size);
134	if (ret == -EOVERFLOW) {
135		/*
136		 * We have an existing item in a leaf, split_leaf couldn't
137		 * expand it. That item might have or not a dir_item that
138		 * matches our target xattr, so lets check.
139		 */
140		ret = 0;
141		btrfs_assert_tree_locked(path->nodes[0]);
142		di = btrfs_match_dir_item_name(fs_info, path, name, name_len);
143		if (!di && !(flags & XATTR_REPLACE)) {
144			ret = -ENOSPC;
145			goto out;
146		}
147	} else if (ret == -EEXIST) {
148		ret = 0;
149		di = btrfs_match_dir_item_name(fs_info, path, name, name_len);
150		ASSERT(di); /* logic error */
151	} else if (ret) {
152		goto out;
153	}
154
155	if (di && (flags & XATTR_CREATE)) {
156		ret = -EEXIST;
157		goto out;
158	}
159
160	if (di) {
161		/*
162		 * We're doing a replace, and it must be atomic, that is, at
163		 * any point in time we have either the old or the new xattr
164		 * value in the tree. We don't want readers (getxattr and
165		 * listxattrs) to miss a value, this is specially important
166		 * for ACLs.
167		 */
168		const int slot = path->slots[0];
169		struct extent_buffer *leaf = path->nodes[0];
170		const u16 old_data_len = btrfs_dir_data_len(leaf, di);
171		const u32 item_size = btrfs_item_size_nr(leaf, slot);
172		const u32 data_size = sizeof(*di) + name_len + size;
173		struct btrfs_item *item;
174		unsigned long data_ptr;
175		char *ptr;
176
177		if (size > old_data_len) {
178			if (btrfs_leaf_free_space(leaf) <
179			    (size - old_data_len)) {
180				ret = -ENOSPC;
181				goto out;
182			}
183		}
184
185		if (old_data_len + name_len + sizeof(*di) == item_size) {
186			/* No other xattrs packed in the same leaf item. */
187			if (size > old_data_len)
188				btrfs_extend_item(path, size - old_data_len);
189			else if (size < old_data_len)
190				btrfs_truncate_item(path, data_size, 1);
191		} else {
192			/* There are other xattrs packed in the same item. */
193			ret = btrfs_delete_one_dir_name(trans, root, path, di);
194			if (ret)
195				goto out;
196			btrfs_extend_item(path, data_size);
197		}
198
199		item = btrfs_item_nr(slot);
200		ptr = btrfs_item_ptr(leaf, slot, char);
201		ptr += btrfs_item_size(leaf, item) - data_size;
202		di = (struct btrfs_dir_item *)ptr;
203		btrfs_set_dir_data_len(leaf, di, size);
204		data_ptr = ((unsigned long)(di + 1)) + name_len;
205		write_extent_buffer(leaf, value, data_ptr, size);
206		btrfs_mark_buffer_dirty(leaf);
207	} else {
208		/*
209		 * Insert, and we had space for the xattr, so path->slots[0] is
210		 * where our xattr dir_item is and btrfs_insert_xattr_item()
211		 * filled it.
212		 */
213	}
214out:
215	btrfs_free_path(path);
216	if (!ret)
217		set_bit(BTRFS_INODE_COPY_EVERYTHING,
218			&BTRFS_I(inode)->runtime_flags);
219	return ret;
220}
221
222/*
223 * @value: "" makes the attribute to empty, NULL removes it
224 */
225int btrfs_setxattr_trans(struct inode *inode, const char *name,
226			 const void *value, size_t size, int flags)
227{
228	struct btrfs_root *root = BTRFS_I(inode)->root;
229	struct btrfs_trans_handle *trans;
230	int ret;
231
232	trans = btrfs_start_transaction(root, 2);
233	if (IS_ERR(trans))
234		return PTR_ERR(trans);
235
236	ret = btrfs_setxattr(trans, inode, name, value, size, flags);
237	if (ret)
238		goto out;
239
240	inode_inc_iversion(inode);
241	inode->i_ctime = current_time(inode);
242	ret = btrfs_update_inode(trans, root, inode);
243	BUG_ON(ret);
244out:
245	btrfs_end_transaction(trans);
246	return ret;
247}
248
249ssize_t btrfs_listxattr(struct dentry *dentry, char *buffer, size_t size)
250{
251	struct btrfs_key key;
252	struct inode *inode = d_inode(dentry);
253	struct btrfs_root *root = BTRFS_I(inode)->root;
254	struct btrfs_path *path;
255	int ret = 0;
256	size_t total_size = 0, size_left = size;
257
258	/*
259	 * ok we want all objects associated with this id.
260	 * NOTE: we set key.offset = 0; because we want to start with the
261	 * first xattr that we find and walk forward
262	 */
263	key.objectid = btrfs_ino(BTRFS_I(inode));
264	key.type = BTRFS_XATTR_ITEM_KEY;
265	key.offset = 0;
266
267	path = btrfs_alloc_path();
268	if (!path)
269		return -ENOMEM;
270	path->reada = READA_FORWARD;
271
272	/* search for our xattrs */
273	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
274	if (ret < 0)
275		goto err;
276
277	while (1) {
278		struct extent_buffer *leaf;
279		int slot;
280		struct btrfs_dir_item *di;
281		struct btrfs_key found_key;
282		u32 item_size;
283		u32 cur;
284
285		leaf = path->nodes[0];
286		slot = path->slots[0];
287
288		/* this is where we start walking through the path */
289		if (slot >= btrfs_header_nritems(leaf)) {
290			/*
291			 * if we've reached the last slot in this leaf we need
292			 * to go to the next leaf and reset everything
293			 */
294			ret = btrfs_next_leaf(root, path);
295			if (ret < 0)
296				goto err;
297			else if (ret > 0)
298				break;
299			continue;
300		}
301
302		btrfs_item_key_to_cpu(leaf, &found_key, slot);
303
304		/* check to make sure this item is what we want */
305		if (found_key.objectid != key.objectid)
306			break;
307		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
308			break;
309		if (found_key.type < BTRFS_XATTR_ITEM_KEY)
310			goto next_item;
311
312		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
313		item_size = btrfs_item_size_nr(leaf, slot);
314		cur = 0;
315		while (cur < item_size) {
316			u16 name_len = btrfs_dir_name_len(leaf, di);
317			u16 data_len = btrfs_dir_data_len(leaf, di);
318			u32 this_len = sizeof(*di) + name_len + data_len;
319			unsigned long name_ptr = (unsigned long)(di + 1);
320
321			total_size += name_len + 1;
322			/*
323			 * We are just looking for how big our buffer needs to
324			 * be.
325			 */
326			if (!size)
327				goto next;
328
329			if (!buffer || (name_len + 1) > size_left) {
330				ret = -ERANGE;
331				goto err;
332			}
333
334			read_extent_buffer(leaf, buffer, name_ptr, name_len);
335			buffer[name_len] = '\0';
336
337			size_left -= name_len + 1;
338			buffer += name_len + 1;
339next:
340			cur += this_len;
341			di = (struct btrfs_dir_item *)((char *)di + this_len);
342		}
343next_item:
344		path->slots[0]++;
345	}
346	ret = total_size;
347
348err:
349	btrfs_free_path(path);
350
351	return ret;
352}
353
354static int btrfs_xattr_handler_get(const struct xattr_handler *handler,
355				   struct dentry *unused, struct inode *inode,
356				   const char *name, void *buffer, size_t size)
357{
358	name = xattr_full_name(handler, name);
359	return btrfs_getxattr(inode, name, buffer, size);
360}
361
362static int btrfs_xattr_handler_set(const struct xattr_handler *handler,
363				   struct dentry *unused, struct inode *inode,
364				   const char *name, const void *buffer,
365				   size_t size, int flags)
366{
367	name = xattr_full_name(handler, name);
368	return btrfs_setxattr_trans(inode, name, buffer, size, flags);
369}
370
371static int btrfs_xattr_handler_set_prop(const struct xattr_handler *handler,
372					struct dentry *unused, struct inode *inode,
373					const char *name, const void *value,
374					size_t size, int flags)
375{
376	int ret;
377	struct btrfs_trans_handle *trans;
378	struct btrfs_root *root = BTRFS_I(inode)->root;
379
380	name = xattr_full_name(handler, name);
381	ret = btrfs_validate_prop(name, value, size);
382	if (ret)
383		return ret;
384
385	trans = btrfs_start_transaction(root, 2);
386	if (IS_ERR(trans))
387		return PTR_ERR(trans);
388
389	ret = btrfs_set_prop(trans, inode, name, value, size, flags);
390	if (!ret) {
391		inode_inc_iversion(inode);
392		inode->i_ctime = current_time(inode);
393		ret = btrfs_update_inode(trans, root, inode);
394		BUG_ON(ret);
395	}
396
397	btrfs_end_transaction(trans);
398
399	return ret;
400}
401
402static const struct xattr_handler btrfs_security_xattr_handler = {
403	.prefix = XATTR_SECURITY_PREFIX,
404	.get = btrfs_xattr_handler_get,
405	.set = btrfs_xattr_handler_set,
406};
407
408static const struct xattr_handler btrfs_trusted_xattr_handler = {
409	.prefix = XATTR_TRUSTED_PREFIX,
410	.get = btrfs_xattr_handler_get,
411	.set = btrfs_xattr_handler_set,
412};
413
414static const struct xattr_handler btrfs_user_xattr_handler = {
415	.prefix = XATTR_USER_PREFIX,
416	.get = btrfs_xattr_handler_get,
417	.set = btrfs_xattr_handler_set,
418};
419
420static const struct xattr_handler btrfs_btrfs_xattr_handler = {
421	.prefix = XATTR_BTRFS_PREFIX,
422	.get = btrfs_xattr_handler_get,
423	.set = btrfs_xattr_handler_set_prop,
424};
425
426const struct xattr_handler *btrfs_xattr_handlers[] = {
427	&btrfs_security_xattr_handler,
428#ifdef CONFIG_BTRFS_FS_POSIX_ACL
429	&posix_acl_access_xattr_handler,
430	&posix_acl_default_xattr_handler,
431#endif
432	&btrfs_trusted_xattr_handler,
433	&btrfs_user_xattr_handler,
434	&btrfs_btrfs_xattr_handler,
435	NULL,
436};
437
438static int btrfs_initxattrs(struct inode *inode,
439			    const struct xattr *xattr_array, void *fs_private)
440{
441	struct btrfs_trans_handle *trans = fs_private;
442	const struct xattr *xattr;
443	unsigned int nofs_flag;
444	char *name;
445	int err = 0;
446
447	/*
448	 * We're holding a transaction handle, so use a NOFS memory allocation
449	 * context to avoid deadlock if reclaim happens.
450	 */
451	nofs_flag = memalloc_nofs_save();
452	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
453		name = kmalloc(XATTR_SECURITY_PREFIX_LEN +
454			       strlen(xattr->name) + 1, GFP_KERNEL);
455		if (!name) {
456			err = -ENOMEM;
457			break;
458		}
459		strcpy(name, XATTR_SECURITY_PREFIX);
460		strcpy(name + XATTR_SECURITY_PREFIX_LEN, xattr->name);
461		err = btrfs_setxattr(trans, inode, name, xattr->value,
462				     xattr->value_len, 0);
463		kfree(name);
464		if (err < 0)
465			break;
466	}
467	memalloc_nofs_restore(nofs_flag);
468	return err;
469}
470
471int btrfs_xattr_security_init(struct btrfs_trans_handle *trans,
472			      struct inode *inode, struct inode *dir,
473			      const struct qstr *qstr)
474{
475	return security_inode_init_security(inode, dir, qstr,
476					    &btrfs_initxattrs, trans);
477}