Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2007 Red Hat.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  4 */
  5
  6#include <linux/init.h>
  7#include <linux/fs.h>
  8#include <linux/slab.h>
  9#include <linux/rwsem.h>
 10#include <linux/xattr.h>
 11#include <linux/security.h>
 12#include <linux/posix_acl_xattr.h>
 13#include <linux/iversion.h>
 14#include <linux/sched/mm.h>
 15#include "ctree.h"
 16#include "btrfs_inode.h"
 17#include "transaction.h"
 18#include "xattr.h"
 19#include "disk-io.h"
 20#include "props.h"
 21#include "locking.h"
 22
 23int btrfs_getxattr(struct inode *inode, const char *name,
 
 24				void *buffer, size_t size)
 25{
 26	struct btrfs_dir_item *di;
 27	struct btrfs_root *root = BTRFS_I(inode)->root;
 28	struct btrfs_path *path;
 29	struct extent_buffer *leaf;
 30	int ret = 0;
 31	unsigned long data_ptr;
 32
 33	path = btrfs_alloc_path();
 34	if (!path)
 35		return -ENOMEM;
 36
 37	/* lookup the xattr by name */
 38	di = btrfs_lookup_xattr(NULL, root, path, btrfs_ino(BTRFS_I(inode)),
 39			name, strlen(name), 0);
 40	if (!di) {
 41		ret = -ENODATA;
 42		goto out;
 43	} else if (IS_ERR(di)) {
 44		ret = PTR_ERR(di);
 45		goto out;
 46	}
 47
 48	leaf = path->nodes[0];
 49	/* if size is 0, that means we want the size of the attr */
 50	if (!size) {
 51		ret = btrfs_dir_data_len(leaf, di);
 52		goto out;
 53	}
 54
 55	/* now get the data out of our dir_item */
 56	if (btrfs_dir_data_len(leaf, di) > size) {
 57		ret = -ERANGE;
 58		goto out;
 59	}
 60
 61	/*
 62	 * The way things are packed into the leaf is like this
 63	 * |struct btrfs_dir_item|name|data|
 64	 * where name is the xattr name, so security.foo, and data is the
 65	 * content of the xattr.  data_ptr points to the location in memory
 66	 * where the data starts in the in memory leaf
 67	 */
 68	data_ptr = (unsigned long)((char *)(di + 1) +
 69				   btrfs_dir_name_len(leaf, di));
 70	read_extent_buffer(leaf, buffer, data_ptr,
 71			   btrfs_dir_data_len(leaf, di));
 72	ret = btrfs_dir_data_len(leaf, di);
 73
 74out:
 75	btrfs_free_path(path);
 76	return ret;
 77}
 78
 79int btrfs_setxattr(struct btrfs_trans_handle *trans, struct inode *inode,
 80		   const char *name, const void *value, size_t size, int flags)
 
 81{
 82	struct btrfs_dir_item *di = NULL;
 83	struct btrfs_root *root = BTRFS_I(inode)->root;
 84	struct btrfs_fs_info *fs_info = root->fs_info;
 85	struct btrfs_path *path;
 86	size_t name_len = strlen(name);
 87	int ret = 0;
 88
 89	ASSERT(trans);
 90
 91	if (name_len + size > BTRFS_MAX_XATTR_SIZE(root->fs_info))
 92		return -ENOSPC;
 93
 94	path = btrfs_alloc_path();
 95	if (!path)
 96		return -ENOMEM;
 97	path->skip_release_on_error = 1;
 98
 99	if (!value) {
100		di = btrfs_lookup_xattr(trans, root, path,
101				btrfs_ino(BTRFS_I(inode)), name, name_len, -1);
102		if (!di && (flags & XATTR_REPLACE))
103			ret = -ENODATA;
104		else if (IS_ERR(di))
105			ret = PTR_ERR(di);
106		else if (di)
107			ret = btrfs_delete_one_dir_name(trans, root, path, di);
108		goto out;
109	}
110
111	/*
112	 * For a replace we can't just do the insert blindly.
113	 * Do a lookup first (read-only btrfs_search_slot), and return if xattr
114	 * doesn't exist. If it exists, fall down below to the insert/replace
115	 * path - we can't race with a concurrent xattr delete, because the VFS
116	 * locks the inode's i_mutex before calling setxattr or removexattr.
117	 */
118	if (flags & XATTR_REPLACE) {
119		ASSERT(inode_is_locked(inode));
120		di = btrfs_lookup_xattr(NULL, root, path,
121				btrfs_ino(BTRFS_I(inode)), name, name_len, 0);
122		if (!di)
123			ret = -ENODATA;
124		else if (IS_ERR(di))
125			ret = PTR_ERR(di);
126		if (ret)
127			goto out;
128		btrfs_release_path(path);
129		di = NULL;
130	}
131
132	ret = btrfs_insert_xattr_item(trans, root, path, btrfs_ino(BTRFS_I(inode)),
133				      name, name_len, value, size);
134	if (ret == -EOVERFLOW) {
135		/*
136		 * We have an existing item in a leaf, split_leaf couldn't
137		 * expand it. That item might have or not a dir_item that
138		 * matches our target xattr, so lets check.
139		 */
140		ret = 0;
141		btrfs_assert_tree_locked(path->nodes[0]);
142		di = btrfs_match_dir_item_name(fs_info, path, name, name_len);
143		if (!di && !(flags & XATTR_REPLACE)) {
144			ret = -ENOSPC;
145			goto out;
146		}
147	} else if (ret == -EEXIST) {
148		ret = 0;
149		di = btrfs_match_dir_item_name(fs_info, path, name, name_len);
150		ASSERT(di); /* logic error */
151	} else if (ret) {
152		goto out;
153	}
154
155	if (di && (flags & XATTR_CREATE)) {
156		ret = -EEXIST;
157		goto out;
158	}
159
160	if (di) {
161		/*
162		 * We're doing a replace, and it must be atomic, that is, at
163		 * any point in time we have either the old or the new xattr
164		 * value in the tree. We don't want readers (getxattr and
165		 * listxattrs) to miss a value, this is specially important
166		 * for ACLs.
167		 */
168		const int slot = path->slots[0];
169		struct extent_buffer *leaf = path->nodes[0];
170		const u16 old_data_len = btrfs_dir_data_len(leaf, di);
171		const u32 item_size = btrfs_item_size_nr(leaf, slot);
172		const u32 data_size = sizeof(*di) + name_len + size;
173		struct btrfs_item *item;
174		unsigned long data_ptr;
175		char *ptr;
176
177		if (size > old_data_len) {
178			if (btrfs_leaf_free_space(leaf) <
179			    (size - old_data_len)) {
180				ret = -ENOSPC;
181				goto out;
182			}
183		}
184
185		if (old_data_len + name_len + sizeof(*di) == item_size) {
186			/* No other xattrs packed in the same leaf item. */
187			if (size > old_data_len)
188				btrfs_extend_item(path, size - old_data_len);
 
189			else if (size < old_data_len)
190				btrfs_truncate_item(path, data_size, 1);
191		} else {
192			/* There are other xattrs packed in the same item. */
193			ret = btrfs_delete_one_dir_name(trans, root, path, di);
194			if (ret)
195				goto out;
196			btrfs_extend_item(path, data_size);
197		}
198
199		item = btrfs_item_nr(slot);
200		ptr = btrfs_item_ptr(leaf, slot, char);
201		ptr += btrfs_item_size(leaf, item) - data_size;
202		di = (struct btrfs_dir_item *)ptr;
203		btrfs_set_dir_data_len(leaf, di, size);
204		data_ptr = ((unsigned long)(di + 1)) + name_len;
205		write_extent_buffer(leaf, value, data_ptr, size);
206		btrfs_mark_buffer_dirty(leaf);
207	} else {
208		/*
209		 * Insert, and we had space for the xattr, so path->slots[0] is
210		 * where our xattr dir_item is and btrfs_insert_xattr_item()
211		 * filled it.
212		 */
213	}
214out:
215	btrfs_free_path(path);
216	if (!ret)
217		set_bit(BTRFS_INODE_COPY_EVERYTHING,
218			&BTRFS_I(inode)->runtime_flags);
219	return ret;
220}
221
222/*
223 * @value: "" makes the attribute to empty, NULL removes it
224 */
225int btrfs_setxattr_trans(struct inode *inode, const char *name,
226			 const void *value, size_t size, int flags)
 
227{
228	struct btrfs_root *root = BTRFS_I(inode)->root;
229	struct btrfs_trans_handle *trans;
230	int ret;
231
 
 
 
232	trans = btrfs_start_transaction(root, 2);
233	if (IS_ERR(trans))
234		return PTR_ERR(trans);
235
236	ret = btrfs_setxattr(trans, inode, name, value, size, flags);
237	if (ret)
238		goto out;
239
240	inode_inc_iversion(inode);
241	inode->i_ctime = current_time(inode);
 
242	ret = btrfs_update_inode(trans, root, inode);
243	BUG_ON(ret);
244out:
245	btrfs_end_transaction(trans);
246	return ret;
247}
248
249ssize_t btrfs_listxattr(struct dentry *dentry, char *buffer, size_t size)
250{
251	struct btrfs_key key;
252	struct inode *inode = d_inode(dentry);
253	struct btrfs_root *root = BTRFS_I(inode)->root;
254	struct btrfs_path *path;
255	int ret = 0;
256	size_t total_size = 0, size_left = size;
257
258	/*
259	 * ok we want all objects associated with this id.
260	 * NOTE: we set key.offset = 0; because we want to start with the
261	 * first xattr that we find and walk forward
262	 */
263	key.objectid = btrfs_ino(BTRFS_I(inode));
264	key.type = BTRFS_XATTR_ITEM_KEY;
265	key.offset = 0;
266
267	path = btrfs_alloc_path();
268	if (!path)
269		return -ENOMEM;
270	path->reada = READA_FORWARD;
271
272	/* search for our xattrs */
273	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
274	if (ret < 0)
275		goto err;
276
277	while (1) {
278		struct extent_buffer *leaf;
279		int slot;
280		struct btrfs_dir_item *di;
281		struct btrfs_key found_key;
282		u32 item_size;
283		u32 cur;
284
285		leaf = path->nodes[0];
286		slot = path->slots[0];
287
288		/* this is where we start walking through the path */
289		if (slot >= btrfs_header_nritems(leaf)) {
290			/*
291			 * if we've reached the last slot in this leaf we need
292			 * to go to the next leaf and reset everything
293			 */
294			ret = btrfs_next_leaf(root, path);
295			if (ret < 0)
296				goto err;
297			else if (ret > 0)
298				break;
299			continue;
300		}
301
302		btrfs_item_key_to_cpu(leaf, &found_key, slot);
303
304		/* check to make sure this item is what we want */
305		if (found_key.objectid != key.objectid)
306			break;
307		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
308			break;
309		if (found_key.type < BTRFS_XATTR_ITEM_KEY)
310			goto next_item;
311
312		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
313		item_size = btrfs_item_size_nr(leaf, slot);
314		cur = 0;
315		while (cur < item_size) {
316			u16 name_len = btrfs_dir_name_len(leaf, di);
317			u16 data_len = btrfs_dir_data_len(leaf, di);
318			u32 this_len = sizeof(*di) + name_len + data_len;
319			unsigned long name_ptr = (unsigned long)(di + 1);
320
 
 
 
 
 
321			total_size += name_len + 1;
322			/*
323			 * We are just looking for how big our buffer needs to
324			 * be.
325			 */
326			if (!size)
327				goto next;
328
329			if (!buffer || (name_len + 1) > size_left) {
330				ret = -ERANGE;
331				goto err;
332			}
333
334			read_extent_buffer(leaf, buffer, name_ptr, name_len);
335			buffer[name_len] = '\0';
336
337			size_left -= name_len + 1;
338			buffer += name_len + 1;
339next:
340			cur += this_len;
341			di = (struct btrfs_dir_item *)((char *)di + this_len);
342		}
343next_item:
344		path->slots[0]++;
345	}
346	ret = total_size;
347
348err:
349	btrfs_free_path(path);
350
351	return ret;
352}
353
354static int btrfs_xattr_handler_get(const struct xattr_handler *handler,
355				   struct dentry *unused, struct inode *inode,
356				   const char *name, void *buffer, size_t size)
357{
 
 
358	name = xattr_full_name(handler, name);
359	return btrfs_getxattr(inode, name, buffer, size);
360}
361
362static int btrfs_xattr_handler_set(const struct xattr_handler *handler,
363				   struct dentry *unused, struct inode *inode,
364				   const char *name, const void *buffer,
365				   size_t size, int flags)
366{
 
 
367	name = xattr_full_name(handler, name);
368	return btrfs_setxattr_trans(inode, name, buffer, size, flags);
369}
370
371static int btrfs_xattr_handler_set_prop(const struct xattr_handler *handler,
372					struct dentry *unused, struct inode *inode,
373					const char *name, const void *value,
374					size_t size, int flags)
375{
376	int ret;
377	struct btrfs_trans_handle *trans;
378	struct btrfs_root *root = BTRFS_I(inode)->root;
379
380	name = xattr_full_name(handler, name);
381	ret = btrfs_validate_prop(name, value, size);
382	if (ret)
383		return ret;
384
385	trans = btrfs_start_transaction(root, 2);
386	if (IS_ERR(trans))
387		return PTR_ERR(trans);
388
389	ret = btrfs_set_prop(trans, inode, name, value, size, flags);
390	if (!ret) {
391		inode_inc_iversion(inode);
392		inode->i_ctime = current_time(inode);
393		ret = btrfs_update_inode(trans, root, inode);
394		BUG_ON(ret);
395	}
396
397	btrfs_end_transaction(trans);
398
399	return ret;
400}
401
402static const struct xattr_handler btrfs_security_xattr_handler = {
403	.prefix = XATTR_SECURITY_PREFIX,
404	.get = btrfs_xattr_handler_get,
405	.set = btrfs_xattr_handler_set,
406};
407
408static const struct xattr_handler btrfs_trusted_xattr_handler = {
409	.prefix = XATTR_TRUSTED_PREFIX,
410	.get = btrfs_xattr_handler_get,
411	.set = btrfs_xattr_handler_set,
412};
413
414static const struct xattr_handler btrfs_user_xattr_handler = {
415	.prefix = XATTR_USER_PREFIX,
416	.get = btrfs_xattr_handler_get,
417	.set = btrfs_xattr_handler_set,
418};
419
420static const struct xattr_handler btrfs_btrfs_xattr_handler = {
421	.prefix = XATTR_BTRFS_PREFIX,
422	.get = btrfs_xattr_handler_get,
423	.set = btrfs_xattr_handler_set_prop,
424};
425
426const struct xattr_handler *btrfs_xattr_handlers[] = {
427	&btrfs_security_xattr_handler,
428#ifdef CONFIG_BTRFS_FS_POSIX_ACL
429	&posix_acl_access_xattr_handler,
430	&posix_acl_default_xattr_handler,
431#endif
432	&btrfs_trusted_xattr_handler,
433	&btrfs_user_xattr_handler,
434	&btrfs_btrfs_xattr_handler,
435	NULL,
436};
437
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
438static int btrfs_initxattrs(struct inode *inode,
439			    const struct xattr *xattr_array, void *fs_private)
440{
441	struct btrfs_trans_handle *trans = fs_private;
442	const struct xattr *xattr;
443	unsigned int nofs_flag;
444	char *name;
445	int err = 0;
446
447	/*
448	 * We're holding a transaction handle, so use a NOFS memory allocation
449	 * context to avoid deadlock if reclaim happens.
450	 */
451	nofs_flag = memalloc_nofs_save();
452	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
453		name = kmalloc(XATTR_SECURITY_PREFIX_LEN +
454			       strlen(xattr->name) + 1, GFP_KERNEL);
455		if (!name) {
456			err = -ENOMEM;
457			break;
458		}
459		strcpy(name, XATTR_SECURITY_PREFIX);
460		strcpy(name + XATTR_SECURITY_PREFIX_LEN, xattr->name);
461		err = btrfs_setxattr(trans, inode, name, xattr->value,
462				     xattr->value_len, 0);
463		kfree(name);
464		if (err < 0)
465			break;
466	}
467	memalloc_nofs_restore(nofs_flag);
468	return err;
469}
470
471int btrfs_xattr_security_init(struct btrfs_trans_handle *trans,
472			      struct inode *inode, struct inode *dir,
473			      const struct qstr *qstr)
474{
475	return security_inode_init_security(inode, dir, qstr,
476					    &btrfs_initxattrs, trans);
477}
v4.6
 
  1/*
  2 * Copyright (C) 2007 Red Hat.  All rights reserved.
  3 *
  4 * This program is free software; you can redistribute it and/or
  5 * modify it under the terms of the GNU General Public
  6 * License v2 as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope that it will be useful,
  9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 11 * General Public License for more details.
 12 *
 13 * You should have received a copy of the GNU General Public
 14 * License along with this program; if not, write to the
 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 16 * Boston, MA 021110-1307, USA.
 17 */
 18
 19#include <linux/init.h>
 20#include <linux/fs.h>
 21#include <linux/slab.h>
 22#include <linux/rwsem.h>
 23#include <linux/xattr.h>
 24#include <linux/security.h>
 25#include <linux/posix_acl_xattr.h>
 
 
 26#include "ctree.h"
 27#include "btrfs_inode.h"
 28#include "transaction.h"
 29#include "xattr.h"
 30#include "disk-io.h"
 31#include "props.h"
 32#include "locking.h"
 33
 34
 35ssize_t __btrfs_getxattr(struct inode *inode, const char *name,
 36				void *buffer, size_t size)
 37{
 38	struct btrfs_dir_item *di;
 39	struct btrfs_root *root = BTRFS_I(inode)->root;
 40	struct btrfs_path *path;
 41	struct extent_buffer *leaf;
 42	int ret = 0;
 43	unsigned long data_ptr;
 44
 45	path = btrfs_alloc_path();
 46	if (!path)
 47		return -ENOMEM;
 48
 49	/* lookup the xattr by name */
 50	di = btrfs_lookup_xattr(NULL, root, path, btrfs_ino(inode), name,
 51				strlen(name), 0);
 52	if (!di) {
 53		ret = -ENODATA;
 54		goto out;
 55	} else if (IS_ERR(di)) {
 56		ret = PTR_ERR(di);
 57		goto out;
 58	}
 59
 60	leaf = path->nodes[0];
 61	/* if size is 0, that means we want the size of the attr */
 62	if (!size) {
 63		ret = btrfs_dir_data_len(leaf, di);
 64		goto out;
 65	}
 66
 67	/* now get the data out of our dir_item */
 68	if (btrfs_dir_data_len(leaf, di) > size) {
 69		ret = -ERANGE;
 70		goto out;
 71	}
 72
 73	/*
 74	 * The way things are packed into the leaf is like this
 75	 * |struct btrfs_dir_item|name|data|
 76	 * where name is the xattr name, so security.foo, and data is the
 77	 * content of the xattr.  data_ptr points to the location in memory
 78	 * where the data starts in the in memory leaf
 79	 */
 80	data_ptr = (unsigned long)((char *)(di + 1) +
 81				   btrfs_dir_name_len(leaf, di));
 82	read_extent_buffer(leaf, buffer, data_ptr,
 83			   btrfs_dir_data_len(leaf, di));
 84	ret = btrfs_dir_data_len(leaf, di);
 85
 86out:
 87	btrfs_free_path(path);
 88	return ret;
 89}
 90
 91static int do_setxattr(struct btrfs_trans_handle *trans,
 92		       struct inode *inode, const char *name,
 93		       const void *value, size_t size, int flags)
 94{
 95	struct btrfs_dir_item *di = NULL;
 96	struct btrfs_root *root = BTRFS_I(inode)->root;
 
 97	struct btrfs_path *path;
 98	size_t name_len = strlen(name);
 99	int ret = 0;
100
101	if (name_len + size > BTRFS_MAX_XATTR_SIZE(root))
 
 
102		return -ENOSPC;
103
104	path = btrfs_alloc_path();
105	if (!path)
106		return -ENOMEM;
107	path->skip_release_on_error = 1;
108
109	if (!value) {
110		di = btrfs_lookup_xattr(trans, root, path, btrfs_ino(inode),
111					name, name_len, -1);
112		if (!di && (flags & XATTR_REPLACE))
113			ret = -ENODATA;
114		else if (IS_ERR(di))
115			ret = PTR_ERR(di);
116		else if (di)
117			ret = btrfs_delete_one_dir_name(trans, root, path, di);
118		goto out;
119	}
120
121	/*
122	 * For a replace we can't just do the insert blindly.
123	 * Do a lookup first (read-only btrfs_search_slot), and return if xattr
124	 * doesn't exist. If it exists, fall down below to the insert/replace
125	 * path - we can't race with a concurrent xattr delete, because the VFS
126	 * locks the inode's i_mutex before calling setxattr or removexattr.
127	 */
128	if (flags & XATTR_REPLACE) {
129		ASSERT(inode_is_locked(inode));
130		di = btrfs_lookup_xattr(NULL, root, path, btrfs_ino(inode),
131					name, name_len, 0);
132		if (!di)
133			ret = -ENODATA;
134		else if (IS_ERR(di))
135			ret = PTR_ERR(di);
136		if (ret)
137			goto out;
138		btrfs_release_path(path);
139		di = NULL;
140	}
141
142	ret = btrfs_insert_xattr_item(trans, root, path, btrfs_ino(inode),
143				      name, name_len, value, size);
144	if (ret == -EOVERFLOW) {
145		/*
146		 * We have an existing item in a leaf, split_leaf couldn't
147		 * expand it. That item might have or not a dir_item that
148		 * matches our target xattr, so lets check.
149		 */
150		ret = 0;
151		btrfs_assert_tree_locked(path->nodes[0]);
152		di = btrfs_match_dir_item_name(root, path, name, name_len);
153		if (!di && !(flags & XATTR_REPLACE)) {
154			ret = -ENOSPC;
155			goto out;
156		}
157	} else if (ret == -EEXIST) {
158		ret = 0;
159		di = btrfs_match_dir_item_name(root, path, name, name_len);
160		ASSERT(di); /* logic error */
161	} else if (ret) {
162		goto out;
163	}
164
165	if (di && (flags & XATTR_CREATE)) {
166		ret = -EEXIST;
167		goto out;
168	}
169
170	if (di) {
171		/*
172		 * We're doing a replace, and it must be atomic, that is, at
173		 * any point in time we have either the old or the new xattr
174		 * value in the tree. We don't want readers (getxattr and
175		 * listxattrs) to miss a value, this is specially important
176		 * for ACLs.
177		 */
178		const int slot = path->slots[0];
179		struct extent_buffer *leaf = path->nodes[0];
180		const u16 old_data_len = btrfs_dir_data_len(leaf, di);
181		const u32 item_size = btrfs_item_size_nr(leaf, slot);
182		const u32 data_size = sizeof(*di) + name_len + size;
183		struct btrfs_item *item;
184		unsigned long data_ptr;
185		char *ptr;
186
187		if (size > old_data_len) {
188			if (btrfs_leaf_free_space(root, leaf) <
189			    (size - old_data_len)) {
190				ret = -ENOSPC;
191				goto out;
192			}
193		}
194
195		if (old_data_len + name_len + sizeof(*di) == item_size) {
196			/* No other xattrs packed in the same leaf item. */
197			if (size > old_data_len)
198				btrfs_extend_item(root, path,
199						  size - old_data_len);
200			else if (size < old_data_len)
201				btrfs_truncate_item(root, path, data_size, 1);
202		} else {
203			/* There are other xattrs packed in the same item. */
204			ret = btrfs_delete_one_dir_name(trans, root, path, di);
205			if (ret)
206				goto out;
207			btrfs_extend_item(root, path, data_size);
208		}
209
210		item = btrfs_item_nr(slot);
211		ptr = btrfs_item_ptr(leaf, slot, char);
212		ptr += btrfs_item_size(leaf, item) - data_size;
213		di = (struct btrfs_dir_item *)ptr;
214		btrfs_set_dir_data_len(leaf, di, size);
215		data_ptr = ((unsigned long)(di + 1)) + name_len;
216		write_extent_buffer(leaf, value, data_ptr, size);
217		btrfs_mark_buffer_dirty(leaf);
218	} else {
219		/*
220		 * Insert, and we had space for the xattr, so path->slots[0] is
221		 * where our xattr dir_item is and btrfs_insert_xattr_item()
222		 * filled it.
223		 */
224	}
225out:
226	btrfs_free_path(path);
 
 
 
227	return ret;
228}
229
230/*
231 * @value: "" makes the attribute to empty, NULL removes it
232 */
233int __btrfs_setxattr(struct btrfs_trans_handle *trans,
234		     struct inode *inode, const char *name,
235		     const void *value, size_t size, int flags)
236{
237	struct btrfs_root *root = BTRFS_I(inode)->root;
 
238	int ret;
239
240	if (trans)
241		return do_setxattr(trans, inode, name, value, size, flags);
242
243	trans = btrfs_start_transaction(root, 2);
244	if (IS_ERR(trans))
245		return PTR_ERR(trans);
246
247	ret = do_setxattr(trans, inode, name, value, size, flags);
248	if (ret)
249		goto out;
250
251	inode_inc_iversion(inode);
252	inode->i_ctime = current_fs_time(inode->i_sb);
253	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
254	ret = btrfs_update_inode(trans, root, inode);
255	BUG_ON(ret);
256out:
257	btrfs_end_transaction(trans, root);
258	return ret;
259}
260
261ssize_t btrfs_listxattr(struct dentry *dentry, char *buffer, size_t size)
262{
263	struct btrfs_key key;
264	struct inode *inode = d_inode(dentry);
265	struct btrfs_root *root = BTRFS_I(inode)->root;
266	struct btrfs_path *path;
267	int ret = 0;
268	size_t total_size = 0, size_left = size;
269
270	/*
271	 * ok we want all objects associated with this id.
272	 * NOTE: we set key.offset = 0; because we want to start with the
273	 * first xattr that we find and walk forward
274	 */
275	key.objectid = btrfs_ino(inode);
276	key.type = BTRFS_XATTR_ITEM_KEY;
277	key.offset = 0;
278
279	path = btrfs_alloc_path();
280	if (!path)
281		return -ENOMEM;
282	path->reada = READA_FORWARD;
283
284	/* search for our xattrs */
285	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
286	if (ret < 0)
287		goto err;
288
289	while (1) {
290		struct extent_buffer *leaf;
291		int slot;
292		struct btrfs_dir_item *di;
293		struct btrfs_key found_key;
294		u32 item_size;
295		u32 cur;
296
297		leaf = path->nodes[0];
298		slot = path->slots[0];
299
300		/* this is where we start walking through the path */
301		if (slot >= btrfs_header_nritems(leaf)) {
302			/*
303			 * if we've reached the last slot in this leaf we need
304			 * to go to the next leaf and reset everything
305			 */
306			ret = btrfs_next_leaf(root, path);
307			if (ret < 0)
308				goto err;
309			else if (ret > 0)
310				break;
311			continue;
312		}
313
314		btrfs_item_key_to_cpu(leaf, &found_key, slot);
315
316		/* check to make sure this item is what we want */
317		if (found_key.objectid != key.objectid)
318			break;
319		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
320			break;
321		if (found_key.type < BTRFS_XATTR_ITEM_KEY)
322			goto next_item;
323
324		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
325		item_size = btrfs_item_size_nr(leaf, slot);
326		cur = 0;
327		while (cur < item_size) {
328			u16 name_len = btrfs_dir_name_len(leaf, di);
329			u16 data_len = btrfs_dir_data_len(leaf, di);
330			u32 this_len = sizeof(*di) + name_len + data_len;
331			unsigned long name_ptr = (unsigned long)(di + 1);
332
333			if (verify_dir_item(root, leaf, di)) {
334				ret = -EIO;
335				goto err;
336			}
337
338			total_size += name_len + 1;
339			/*
340			 * We are just looking for how big our buffer needs to
341			 * be.
342			 */
343			if (!size)
344				goto next;
345
346			if (!buffer || (name_len + 1) > size_left) {
347				ret = -ERANGE;
348				goto err;
349			}
350
351			read_extent_buffer(leaf, buffer, name_ptr, name_len);
352			buffer[name_len] = '\0';
353
354			size_left -= name_len + 1;
355			buffer += name_len + 1;
356next:
357			cur += this_len;
358			di = (struct btrfs_dir_item *)((char *)di + this_len);
359		}
360next_item:
361		path->slots[0]++;
362	}
363	ret = total_size;
364
365err:
366	btrfs_free_path(path);
367
368	return ret;
369}
370
371static int btrfs_xattr_handler_get(const struct xattr_handler *handler,
372				   struct dentry *dentry, const char *name,
373				   void *buffer, size_t size)
374{
375	struct inode *inode = d_inode(dentry);
376
377	name = xattr_full_name(handler, name);
378	return __btrfs_getxattr(inode, name, buffer, size);
379}
380
381static int btrfs_xattr_handler_set(const struct xattr_handler *handler,
382				   struct dentry *dentry, const char *name,
383				   const void *buffer, size_t size,
384				   int flags)
385{
386	struct inode *inode = d_inode(dentry);
387
388	name = xattr_full_name(handler, name);
389	return __btrfs_setxattr(NULL, inode, name, buffer, size, flags);
390}
391
392static int btrfs_xattr_handler_set_prop(const struct xattr_handler *handler,
393					struct dentry *dentry,
394					const char *name, const void *value,
395					size_t size, int flags)
396{
 
 
 
 
397	name = xattr_full_name(handler, name);
398	return btrfs_set_prop(d_inode(dentry), name, value, size, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
399}
400
401static const struct xattr_handler btrfs_security_xattr_handler = {
402	.prefix = XATTR_SECURITY_PREFIX,
403	.get = btrfs_xattr_handler_get,
404	.set = btrfs_xattr_handler_set,
405};
406
407static const struct xattr_handler btrfs_trusted_xattr_handler = {
408	.prefix = XATTR_TRUSTED_PREFIX,
409	.get = btrfs_xattr_handler_get,
410	.set = btrfs_xattr_handler_set,
411};
412
413static const struct xattr_handler btrfs_user_xattr_handler = {
414	.prefix = XATTR_USER_PREFIX,
415	.get = btrfs_xattr_handler_get,
416	.set = btrfs_xattr_handler_set,
417};
418
419static const struct xattr_handler btrfs_btrfs_xattr_handler = {
420	.prefix = XATTR_BTRFS_PREFIX,
421	.get = btrfs_xattr_handler_get,
422	.set = btrfs_xattr_handler_set_prop,
423};
424
425const struct xattr_handler *btrfs_xattr_handlers[] = {
426	&btrfs_security_xattr_handler,
427#ifdef CONFIG_BTRFS_FS_POSIX_ACL
428	&posix_acl_access_xattr_handler,
429	&posix_acl_default_xattr_handler,
430#endif
431	&btrfs_trusted_xattr_handler,
432	&btrfs_user_xattr_handler,
433	&btrfs_btrfs_xattr_handler,
434	NULL,
435};
436
437int btrfs_setxattr(struct dentry *dentry, const char *name, const void *value,
438		   size_t size, int flags)
439{
440	struct btrfs_root *root = BTRFS_I(d_inode(dentry))->root;
441
442	if (btrfs_root_readonly(root))
443		return -EROFS;
444	return generic_setxattr(dentry, name, value, size, flags);
445}
446
447int btrfs_removexattr(struct dentry *dentry, const char *name)
448{
449	struct btrfs_root *root = BTRFS_I(d_inode(dentry))->root;
450
451	if (btrfs_root_readonly(root))
452		return -EROFS;
453	return generic_removexattr(dentry, name);
454}
455
456static int btrfs_initxattrs(struct inode *inode,
457			    const struct xattr *xattr_array, void *fs_info)
458{
 
459	const struct xattr *xattr;
460	struct btrfs_trans_handle *trans = fs_info;
461	char *name;
462	int err = 0;
463
 
 
 
 
 
464	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
465		name = kmalloc(XATTR_SECURITY_PREFIX_LEN +
466			       strlen(xattr->name) + 1, GFP_KERNEL);
467		if (!name) {
468			err = -ENOMEM;
469			break;
470		}
471		strcpy(name, XATTR_SECURITY_PREFIX);
472		strcpy(name + XATTR_SECURITY_PREFIX_LEN, xattr->name);
473		err = __btrfs_setxattr(trans, inode, name,
474				       xattr->value, xattr->value_len, 0);
475		kfree(name);
476		if (err < 0)
477			break;
478	}
 
479	return err;
480}
481
482int btrfs_xattr_security_init(struct btrfs_trans_handle *trans,
483			      struct inode *inode, struct inode *dir,
484			      const struct qstr *qstr)
485{
486	return security_inode_init_security(inode, dir, qstr,
487					    &btrfs_initxattrs, trans);
488}