Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2009 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/pagemap.h>
   8#include <linux/writeback.h>
   9#include <linux/blkdev.h>
  10#include <linux/rbtree.h>
  11#include <linux/slab.h>
 
  12#include "ctree.h"
  13#include "disk-io.h"
  14#include "transaction.h"
  15#include "volumes.h"
  16#include "locking.h"
  17#include "btrfs_inode.h"
  18#include "async-thread.h"
  19#include "free-space-cache.h"
  20#include "inode-map.h"
  21#include "qgroup.h"
  22#include "print-tree.h"
  23#include "delalloc-space.h"
  24#include "block-group.h"
 
 
  25
  26/*
  27 * backref_node, mapping_node and tree_block start with this
  28 */
  29struct tree_entry {
  30	struct rb_node rb_node;
  31	u64 bytenr;
  32};
  33
  34/*
  35 * present a tree block in the backref cache
  36 */
  37struct backref_node {
  38	struct rb_node rb_node;
  39	u64 bytenr;
  40
  41	u64 new_bytenr;
  42	/* objectid of tree block owner, can be not uptodate */
  43	u64 owner;
  44	/* link to pending, changed or detached list */
  45	struct list_head list;
  46	/* list of upper level blocks reference this block */
  47	struct list_head upper;
  48	/* list of child blocks in the cache */
  49	struct list_head lower;
  50	/* NULL if this node is not tree root */
  51	struct btrfs_root *root;
  52	/* extent buffer got by COW the block */
  53	struct extent_buffer *eb;
  54	/* level of tree block */
  55	unsigned int level:8;
  56	/* is the block in non-reference counted tree */
  57	unsigned int cowonly:1;
  58	/* 1 if no child node in the cache */
  59	unsigned int lowest:1;
  60	/* is the extent buffer locked */
  61	unsigned int locked:1;
  62	/* has the block been processed */
  63	unsigned int processed:1;
  64	/* have backrefs of this block been checked */
  65	unsigned int checked:1;
  66	/*
  67	 * 1 if corresponding block has been cowed but some upper
  68	 * level block pointers may not point to the new location
  69	 */
  70	unsigned int pending:1;
  71	/*
  72	 * 1 if the backref node isn't connected to any other
  73	 * backref node.
  74	 */
  75	unsigned int detached:1;
  76};
  77
  78/*
  79 * present a block pointer in the backref cache
  80 */
  81struct backref_edge {
  82	struct list_head list[2];
  83	struct backref_node *node[2];
  84};
  85
  86#define LOWER	0
  87#define UPPER	1
  88#define RELOCATION_RESERVED_NODES	256
  89
  90struct backref_cache {
  91	/* red black tree of all backref nodes in the cache */
  92	struct rb_root rb_root;
  93	/* for passing backref nodes to btrfs_reloc_cow_block */
  94	struct backref_node *path[BTRFS_MAX_LEVEL];
  95	/*
  96	 * list of blocks that have been cowed but some block
  97	 * pointers in upper level blocks may not reflect the
  98	 * new location
  99	 */
 100	struct list_head pending[BTRFS_MAX_LEVEL];
 101	/* list of backref nodes with no child node */
 102	struct list_head leaves;
 103	/* list of blocks that have been cowed in current transaction */
 104	struct list_head changed;
 105	/* list of detached backref node. */
 106	struct list_head detached;
 107
 108	u64 last_trans;
 109
 110	int nr_nodes;
 111	int nr_edges;
 112};
 113
 114/*
 115 * map address of tree root to tree
 116 */
 117struct mapping_node {
 118	struct rb_node rb_node;
 119	u64 bytenr;
 
 
 120	void *data;
 121};
 122
 123struct mapping_tree {
 124	struct rb_root rb_root;
 125	spinlock_t lock;
 126};
 127
 128/*
 129 * present a tree block to process
 130 */
 131struct tree_block {
 132	struct rb_node rb_node;
 133	u64 bytenr;
 
 
 134	struct btrfs_key key;
 135	unsigned int level:8;
 136	unsigned int key_ready:1;
 137};
 138
 139#define MAX_EXTENTS 128
 140
 141struct file_extent_cluster {
 142	u64 start;
 143	u64 end;
 144	u64 boundary[MAX_EXTENTS];
 145	unsigned int nr;
 146};
 147
 148struct reloc_control {
 149	/* block group to relocate */
 150	struct btrfs_block_group_cache *block_group;
 151	/* extent tree */
 152	struct btrfs_root *extent_root;
 153	/* inode for moving data */
 154	struct inode *data_inode;
 155
 156	struct btrfs_block_rsv *block_rsv;
 157
 158	struct backref_cache backref_cache;
 159
 160	struct file_extent_cluster cluster;
 161	/* tree blocks have been processed */
 162	struct extent_io_tree processed_blocks;
 163	/* map start of tree root to corresponding reloc tree */
 164	struct mapping_tree reloc_root_tree;
 165	/* list of reloc trees */
 166	struct list_head reloc_roots;
 167	/* list of subvolume trees that get relocated */
 168	struct list_head dirty_subvol_roots;
 169	/* size of metadata reservation for merging reloc trees */
 170	u64 merging_rsv_size;
 171	/* size of relocated tree nodes */
 172	u64 nodes_relocated;
 173	/* reserved size for block group relocation*/
 174	u64 reserved_bytes;
 175
 176	u64 search_start;
 177	u64 extents_found;
 178
 179	unsigned int stage:8;
 180	unsigned int create_reloc_tree:1;
 181	unsigned int merge_reloc_tree:1;
 182	unsigned int found_file_extent:1;
 183};
 184
 185/* stages of data relocation */
 186#define MOVE_DATA_EXTENTS	0
 187#define UPDATE_DATA_PTRS	1
 188
 189static void remove_backref_node(struct backref_cache *cache,
 190				struct backref_node *node);
 191static void __mark_block_processed(struct reloc_control *rc,
 192				   struct backref_node *node);
 193
 194static void mapping_tree_init(struct mapping_tree *tree)
 195{
 196	tree->rb_root = RB_ROOT;
 197	spin_lock_init(&tree->lock);
 198}
 199
 200static void backref_cache_init(struct backref_cache *cache)
 201{
 202	int i;
 203	cache->rb_root = RB_ROOT;
 204	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
 205		INIT_LIST_HEAD(&cache->pending[i]);
 206	INIT_LIST_HEAD(&cache->changed);
 207	INIT_LIST_HEAD(&cache->detached);
 208	INIT_LIST_HEAD(&cache->leaves);
 209}
 210
 211static void backref_cache_cleanup(struct backref_cache *cache)
 212{
 213	struct backref_node *node;
 214	int i;
 215
 216	while (!list_empty(&cache->detached)) {
 217		node = list_entry(cache->detached.next,
 218				  struct backref_node, list);
 219		remove_backref_node(cache, node);
 220	}
 221
 222	while (!list_empty(&cache->leaves)) {
 223		node = list_entry(cache->leaves.next,
 224				  struct backref_node, lower);
 225		remove_backref_node(cache, node);
 226	}
 227
 228	cache->last_trans = 0;
 229
 230	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
 231		ASSERT(list_empty(&cache->pending[i]));
 232	ASSERT(list_empty(&cache->changed));
 233	ASSERT(list_empty(&cache->detached));
 234	ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
 235	ASSERT(!cache->nr_nodes);
 236	ASSERT(!cache->nr_edges);
 237}
 238
 239static struct backref_node *alloc_backref_node(struct backref_cache *cache)
 240{
 241	struct backref_node *node;
 242
 243	node = kzalloc(sizeof(*node), GFP_NOFS);
 244	if (node) {
 245		INIT_LIST_HEAD(&node->list);
 246		INIT_LIST_HEAD(&node->upper);
 247		INIT_LIST_HEAD(&node->lower);
 248		RB_CLEAR_NODE(&node->rb_node);
 249		cache->nr_nodes++;
 250	}
 251	return node;
 252}
 253
 254static void free_backref_node(struct backref_cache *cache,
 255			      struct backref_node *node)
 256{
 257	if (node) {
 258		cache->nr_nodes--;
 259		kfree(node);
 260	}
 261}
 262
 263static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
 264{
 265	struct backref_edge *edge;
 266
 267	edge = kzalloc(sizeof(*edge), GFP_NOFS);
 268	if (edge)
 269		cache->nr_edges++;
 270	return edge;
 271}
 272
 273static void free_backref_edge(struct backref_cache *cache,
 274			      struct backref_edge *edge)
 275{
 276	if (edge) {
 277		cache->nr_edges--;
 278		kfree(edge);
 279	}
 280}
 281
 282static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
 283				   struct rb_node *node)
 284{
 285	struct rb_node **p = &root->rb_node;
 286	struct rb_node *parent = NULL;
 287	struct tree_entry *entry;
 288
 289	while (*p) {
 290		parent = *p;
 291		entry = rb_entry(parent, struct tree_entry, rb_node);
 292
 293		if (bytenr < entry->bytenr)
 294			p = &(*p)->rb_left;
 295		else if (bytenr > entry->bytenr)
 296			p = &(*p)->rb_right;
 297		else
 298			return parent;
 299	}
 300
 301	rb_link_node(node, parent, p);
 302	rb_insert_color(node, root);
 303	return NULL;
 304}
 305
 306static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
 307{
 308	struct rb_node *n = root->rb_node;
 309	struct tree_entry *entry;
 310
 311	while (n) {
 312		entry = rb_entry(n, struct tree_entry, rb_node);
 313
 314		if (bytenr < entry->bytenr)
 315			n = n->rb_left;
 316		else if (bytenr > entry->bytenr)
 317			n = n->rb_right;
 318		else
 319			return n;
 320	}
 321	return NULL;
 322}
 323
 324static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
 325{
 326
 327	struct btrfs_fs_info *fs_info = NULL;
 328	struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
 329					      rb_node);
 330	if (bnode->root)
 331		fs_info = bnode->root->fs_info;
 332	btrfs_panic(fs_info, errno,
 333		    "Inconsistency in backref cache found at offset %llu",
 334		    bytenr);
 335}
 336
 337/*
 338 * walk up backref nodes until reach node presents tree root
 339 */
 340static struct backref_node *walk_up_backref(struct backref_node *node,
 341					    struct backref_edge *edges[],
 342					    int *index)
 343{
 344	struct backref_edge *edge;
 345	int idx = *index;
 346
 347	while (!list_empty(&node->upper)) {
 348		edge = list_entry(node->upper.next,
 349				  struct backref_edge, list[LOWER]);
 350		edges[idx++] = edge;
 351		node = edge->node[UPPER];
 352	}
 353	BUG_ON(node->detached);
 354	*index = idx;
 355	return node;
 356}
 357
 358/*
 359 * walk down backref nodes to find start of next reference path
 360 */
 361static struct backref_node *walk_down_backref(struct backref_edge *edges[],
 362					      int *index)
 363{
 364	struct backref_edge *edge;
 365	struct backref_node *lower;
 366	int idx = *index;
 367
 368	while (idx > 0) {
 369		edge = edges[idx - 1];
 370		lower = edge->node[LOWER];
 371		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
 372			idx--;
 373			continue;
 374		}
 375		edge = list_entry(edge->list[LOWER].next,
 376				  struct backref_edge, list[LOWER]);
 377		edges[idx - 1] = edge;
 378		*index = idx;
 379		return edge->node[UPPER];
 380	}
 381	*index = 0;
 382	return NULL;
 383}
 384
 385static void unlock_node_buffer(struct backref_node *node)
 386{
 387	if (node->locked) {
 388		btrfs_tree_unlock(node->eb);
 389		node->locked = 0;
 390	}
 391}
 392
 393static void drop_node_buffer(struct backref_node *node)
 394{
 395	if (node->eb) {
 396		unlock_node_buffer(node);
 397		free_extent_buffer(node->eb);
 398		node->eb = NULL;
 399	}
 400}
 401
 402static void drop_backref_node(struct backref_cache *tree,
 403			      struct backref_node *node)
 404{
 405	BUG_ON(!list_empty(&node->upper));
 406
 407	drop_node_buffer(node);
 408	list_del(&node->list);
 409	list_del(&node->lower);
 410	if (!RB_EMPTY_NODE(&node->rb_node))
 411		rb_erase(&node->rb_node, &tree->rb_root);
 412	free_backref_node(tree, node);
 413}
 414
 415/*
 416 * remove a backref node from the backref cache
 417 */
 418static void remove_backref_node(struct backref_cache *cache,
 419				struct backref_node *node)
 420{
 421	struct backref_node *upper;
 422	struct backref_edge *edge;
 423
 424	if (!node)
 425		return;
 426
 427	BUG_ON(!node->lowest && !node->detached);
 428	while (!list_empty(&node->upper)) {
 429		edge = list_entry(node->upper.next, struct backref_edge,
 430				  list[LOWER]);
 431		upper = edge->node[UPPER];
 432		list_del(&edge->list[LOWER]);
 433		list_del(&edge->list[UPPER]);
 434		free_backref_edge(cache, edge);
 435
 436		if (RB_EMPTY_NODE(&upper->rb_node)) {
 437			BUG_ON(!list_empty(&node->upper));
 438			drop_backref_node(cache, node);
 439			node = upper;
 440			node->lowest = 1;
 441			continue;
 442		}
 443		/*
 444		 * add the node to leaf node list if no other
 445		 * child block cached.
 446		 */
 447		if (list_empty(&upper->lower)) {
 448			list_add_tail(&upper->lower, &cache->leaves);
 449			upper->lowest = 1;
 450		}
 451	}
 452
 453	drop_backref_node(cache, node);
 454}
 455
 456static void update_backref_node(struct backref_cache *cache,
 457				struct backref_node *node, u64 bytenr)
 458{
 459	struct rb_node *rb_node;
 460	rb_erase(&node->rb_node, &cache->rb_root);
 461	node->bytenr = bytenr;
 462	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
 463	if (rb_node)
 464		backref_tree_panic(rb_node, -EEXIST, bytenr);
 465}
 466
 467/*
 468 * update backref cache after a transaction commit
 469 */
 470static int update_backref_cache(struct btrfs_trans_handle *trans,
 471				struct backref_cache *cache)
 472{
 473	struct backref_node *node;
 474	int level = 0;
 475
 476	if (cache->last_trans == 0) {
 477		cache->last_trans = trans->transid;
 478		return 0;
 479	}
 480
 481	if (cache->last_trans == trans->transid)
 482		return 0;
 483
 484	/*
 485	 * detached nodes are used to avoid unnecessary backref
 486	 * lookup. transaction commit changes the extent tree.
 487	 * so the detached nodes are no longer useful.
 488	 */
 489	while (!list_empty(&cache->detached)) {
 490		node = list_entry(cache->detached.next,
 491				  struct backref_node, list);
 492		remove_backref_node(cache, node);
 493	}
 494
 495	while (!list_empty(&cache->changed)) {
 496		node = list_entry(cache->changed.next,
 497				  struct backref_node, list);
 498		list_del_init(&node->list);
 499		BUG_ON(node->pending);
 500		update_backref_node(cache, node, node->new_bytenr);
 501	}
 502
 503	/*
 504	 * some nodes can be left in the pending list if there were
 505	 * errors during processing the pending nodes.
 506	 */
 507	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
 508		list_for_each_entry(node, &cache->pending[level], list) {
 509			BUG_ON(!node->pending);
 510			if (node->bytenr == node->new_bytenr)
 511				continue;
 512			update_backref_node(cache, node, node->new_bytenr);
 513		}
 514	}
 515
 516	cache->last_trans = 0;
 517	return 1;
 518}
 519
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 520
 521static int should_ignore_root(struct btrfs_root *root)
 522{
 523	struct btrfs_root *reloc_root;
 524
 525	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
 526		return 0;
 527
 
 
 
 
 528	reloc_root = root->reloc_root;
 529	if (!reloc_root)
 530		return 0;
 531
 532	if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
 533	    root->fs_info->running_transaction->transid - 1)
 534		return 0;
 535	/*
 536	 * if there is reloc tree and it was created in previous
 537	 * transaction backref lookup can find the reloc tree,
 538	 * so backref node for the fs tree root is useless for
 539	 * relocation.
 540	 */
 541	return 1;
 542}
 
 543/*
 544 * find reloc tree by address of tree root
 545 */
 546static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
 547					  u64 bytenr)
 548{
 
 549	struct rb_node *rb_node;
 550	struct mapping_node *node;
 551	struct btrfs_root *root = NULL;
 552
 
 553	spin_lock(&rc->reloc_root_tree.lock);
 554	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
 555	if (rb_node) {
 556		node = rb_entry(rb_node, struct mapping_node, rb_node);
 557		root = (struct btrfs_root *)node->data;
 558	}
 559	spin_unlock(&rc->reloc_root_tree.lock);
 560	return root;
 561}
 562
 563static int is_cowonly_root(u64 root_objectid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 564{
 565	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
 566	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
 567	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
 568	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
 569	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
 570	    root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
 571	    root_objectid == BTRFS_UUID_TREE_OBJECTID ||
 572	    root_objectid == BTRFS_QUOTA_TREE_OBJECTID ||
 573	    root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
 574		return 1;
 575	return 0;
 576}
 577
 578static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
 579					u64 root_objectid)
 580{
 581	struct btrfs_key key;
 582
 583	key.objectid = root_objectid;
 584	key.type = BTRFS_ROOT_ITEM_KEY;
 585	if (is_cowonly_root(root_objectid))
 586		key.offset = 0;
 587	else
 588		key.offset = (u64)-1;
 589
 590	return btrfs_get_fs_root(fs_info, &key, false);
 591}
 592
 593static noinline_for_stack
 594int find_inline_backref(struct extent_buffer *leaf, int slot,
 595			unsigned long *ptr, unsigned long *end)
 596{
 597	struct btrfs_key key;
 598	struct btrfs_extent_item *ei;
 599	struct btrfs_tree_block_info *bi;
 600	u32 item_size;
 601
 602	btrfs_item_key_to_cpu(leaf, &key, slot);
 
 
 
 
 603
 604	item_size = btrfs_item_size_nr(leaf, slot);
 605	if (item_size < sizeof(*ei)) {
 606		btrfs_print_v0_err(leaf->fs_info);
 607		btrfs_handle_fs_error(leaf->fs_info, -EINVAL, NULL);
 608		return 1;
 609	}
 610	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
 611	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
 612		  BTRFS_EXTENT_FLAG_TREE_BLOCK));
 613
 614	if (key.type == BTRFS_EXTENT_ITEM_KEY &&
 615	    item_size <= sizeof(*ei) + sizeof(*bi)) {
 616		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
 617		return 1;
 618	}
 619	if (key.type == BTRFS_METADATA_ITEM_KEY &&
 620	    item_size <= sizeof(*ei)) {
 621		WARN_ON(item_size < sizeof(*ei));
 622		return 1;
 623	}
 624
 625	if (key.type == BTRFS_EXTENT_ITEM_KEY) {
 626		bi = (struct btrfs_tree_block_info *)(ei + 1);
 627		*ptr = (unsigned long)(bi + 1);
 628	} else {
 629		*ptr = (unsigned long)(ei + 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 630	}
 631	*end = (unsigned long)ei + item_size;
 632	return 0;
 633}
 634
 635/*
 636 * build backref tree for a given tree block. root of the backref tree
 637 * corresponds the tree block, leaves of the backref tree correspond
 638 * roots of b-trees that reference the tree block.
 639 *
 640 * the basic idea of this function is check backrefs of a given block
 641 * to find upper level blocks that reference the block, and then check
 642 * backrefs of these upper level blocks recursively. the recursion stop
 643 * when tree root is reached or backrefs for the block is cached.
 644 *
 645 * NOTE: if we find backrefs for a block are cached, we know backrefs
 646 * for all upper level blocks that directly/indirectly reference the
 647 * block are also cached.
 648 */
 649static noinline_for_stack
 650struct backref_node *build_backref_tree(struct reloc_control *rc,
 651					struct btrfs_key *node_key,
 652					int level, u64 bytenr)
 653{
 654	struct backref_cache *cache = &rc->backref_cache;
 655	struct btrfs_path *path1; /* For searching extent root */
 656	struct btrfs_path *path2; /* For searching parent of TREE_BLOCK_REF */
 657	struct extent_buffer *eb;
 658	struct btrfs_root *root;
 659	struct backref_node *cur;
 660	struct backref_node *upper;
 661	struct backref_node *lower;
 662	struct backref_node *node = NULL;
 663	struct backref_node *exist = NULL;
 664	struct backref_edge *edge;
 665	struct rb_node *rb_node;
 666	struct btrfs_key key;
 667	unsigned long end;
 668	unsigned long ptr;
 669	LIST_HEAD(list); /* Pending edge list, upper node needs to be checked */
 670	LIST_HEAD(useless);
 671	int cowonly;
 672	int ret;
 673	int err = 0;
 674	bool need_check = true;
 675
 676	path1 = btrfs_alloc_path();
 677	path2 = btrfs_alloc_path();
 678	if (!path1 || !path2) {
 
 
 679		err = -ENOMEM;
 680		goto out;
 681	}
 682	path1->reada = READA_FORWARD;
 683	path2->reada = READA_FORWARD;
 684
 685	node = alloc_backref_node(cache);
 686	if (!node) {
 687		err = -ENOMEM;
 688		goto out;
 689	}
 690
 691	node->bytenr = bytenr;
 692	node->level = level;
 693	node->lowest = 1;
 694	cur = node;
 695again:
 696	end = 0;
 697	ptr = 0;
 698	key.objectid = cur->bytenr;
 699	key.type = BTRFS_METADATA_ITEM_KEY;
 700	key.offset = (u64)-1;
 701
 702	path1->search_commit_root = 1;
 703	path1->skip_locking = 1;
 704	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
 705				0, 0);
 706	if (ret < 0) {
 707		err = ret;
 708		goto out;
 709	}
 710	ASSERT(ret);
 711	ASSERT(path1->slots[0]);
 712
 713	path1->slots[0]--;
 714
 715	WARN_ON(cur->checked);
 716	if (!list_empty(&cur->upper)) {
 717		/*
 718		 * the backref was added previously when processing
 719		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
 720		 */
 721		ASSERT(list_is_singular(&cur->upper));
 722		edge = list_entry(cur->upper.next, struct backref_edge,
 723				  list[LOWER]);
 724		ASSERT(list_empty(&edge->list[UPPER]));
 725		exist = edge->node[UPPER];
 726		/*
 727		 * add the upper level block to pending list if we need
 728		 * check its backrefs
 729		 */
 730		if (!exist->checked)
 731			list_add_tail(&edge->list[UPPER], &list);
 732	} else {
 733		exist = NULL;
 734	}
 735
 736	while (1) {
 737		cond_resched();
 738		eb = path1->nodes[0];
 739
 740		if (ptr >= end) {
 741			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
 742				ret = btrfs_next_leaf(rc->extent_root, path1);
 743				if (ret < 0) {
 744					err = ret;
 745					goto out;
 746				}
 747				if (ret > 0)
 748					break;
 749				eb = path1->nodes[0];
 750			}
 751
 752			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
 753			if (key.objectid != cur->bytenr) {
 754				WARN_ON(exist);
 755				break;
 756			}
 757
 758			if (key.type == BTRFS_EXTENT_ITEM_KEY ||
 759			    key.type == BTRFS_METADATA_ITEM_KEY) {
 760				ret = find_inline_backref(eb, path1->slots[0],
 761							  &ptr, &end);
 762				if (ret)
 763					goto next;
 764			}
 765		}
 766
 767		if (ptr < end) {
 768			/* update key for inline back ref */
 769			struct btrfs_extent_inline_ref *iref;
 770			int type;
 771			iref = (struct btrfs_extent_inline_ref *)ptr;
 772			type = btrfs_get_extent_inline_ref_type(eb, iref,
 773							BTRFS_REF_TYPE_BLOCK);
 774			if (type == BTRFS_REF_TYPE_INVALID) {
 775				err = -EUCLEAN;
 776				goto out;
 777			}
 778			key.type = type;
 779			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
 780
 781			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
 782				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
 783		}
 784
 785		/*
 786		 * Parent node found and matches current inline ref, no need to
 787		 * rebuild this node for this inline ref.
 788		 */
 789		if (exist &&
 790		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
 791		      exist->owner == key.offset) ||
 792		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
 793		      exist->bytenr == key.offset))) {
 794			exist = NULL;
 795			goto next;
 796		}
 797
 798		/* SHARED_BLOCK_REF means key.offset is the parent bytenr */
 799		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
 800			if (key.objectid == key.offset) {
 801				/*
 802				 * Only root blocks of reloc trees use backref
 803				 * pointing to itself.
 804				 */
 805				root = find_reloc_root(rc, cur->bytenr);
 806				ASSERT(root);
 807				cur->root = root;
 808				break;
 809			}
 810
 811			edge = alloc_backref_edge(cache);
 812			if (!edge) {
 813				err = -ENOMEM;
 814				goto out;
 815			}
 816			rb_node = tree_search(&cache->rb_root, key.offset);
 817			if (!rb_node) {
 818				upper = alloc_backref_node(cache);
 819				if (!upper) {
 820					free_backref_edge(cache, edge);
 821					err = -ENOMEM;
 822					goto out;
 823				}
 824				upper->bytenr = key.offset;
 825				upper->level = cur->level + 1;
 826				/*
 827				 *  backrefs for the upper level block isn't
 828				 *  cached, add the block to pending list
 829				 */
 830				list_add_tail(&edge->list[UPPER], &list);
 831			} else {
 832				upper = rb_entry(rb_node, struct backref_node,
 833						 rb_node);
 834				ASSERT(upper->checked);
 835				INIT_LIST_HEAD(&edge->list[UPPER]);
 836			}
 837			list_add_tail(&edge->list[LOWER], &cur->upper);
 838			edge->node[LOWER] = cur;
 839			edge->node[UPPER] = upper;
 840
 841			goto next;
 842		} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
 843			err = -EINVAL;
 844			btrfs_print_v0_err(rc->extent_root->fs_info);
 845			btrfs_handle_fs_error(rc->extent_root->fs_info, err,
 846					      NULL);
 847			goto out;
 848		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
 849			goto next;
 850		}
 851
 852		/*
 853		 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
 854		 * means the root objectid. We need to search the tree to get
 855		 * its parent bytenr.
 856		 */
 857		root = read_fs_root(rc->extent_root->fs_info, key.offset);
 858		if (IS_ERR(root)) {
 859			err = PTR_ERR(root);
 860			goto out;
 861		}
 862
 863		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
 864			cur->cowonly = 1;
 865
 866		if (btrfs_root_level(&root->root_item) == cur->level) {
 867			/* tree root */
 868			ASSERT(btrfs_root_bytenr(&root->root_item) ==
 869			       cur->bytenr);
 870			if (should_ignore_root(root))
 871				list_add(&cur->list, &useless);
 872			else
 873				cur->root = root;
 874			break;
 875		}
 876
 877		level = cur->level + 1;
 878
 879		/* Search the tree to find parent blocks referring the block. */
 880		path2->search_commit_root = 1;
 881		path2->skip_locking = 1;
 882		path2->lowest_level = level;
 883		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
 884		path2->lowest_level = 0;
 885		if (ret < 0) {
 886			err = ret;
 887			goto out;
 888		}
 889		if (ret > 0 && path2->slots[level] > 0)
 890			path2->slots[level]--;
 891
 892		eb = path2->nodes[level];
 893		if (btrfs_node_blockptr(eb, path2->slots[level]) !=
 894		    cur->bytenr) {
 895			btrfs_err(root->fs_info,
 896	"couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
 897				  cur->bytenr, level - 1,
 898				  root->root_key.objectid,
 899				  node_key->objectid, node_key->type,
 900				  node_key->offset);
 901			err = -ENOENT;
 902			goto out;
 903		}
 904		lower = cur;
 905		need_check = true;
 906
 907		/* Add all nodes and edges in the path */
 908		for (; level < BTRFS_MAX_LEVEL; level++) {
 909			if (!path2->nodes[level]) {
 910				ASSERT(btrfs_root_bytenr(&root->root_item) ==
 911				       lower->bytenr);
 912				if (should_ignore_root(root))
 913					list_add(&lower->list, &useless);
 914				else
 915					lower->root = root;
 916				break;
 917			}
 918
 919			edge = alloc_backref_edge(cache);
 920			if (!edge) {
 921				err = -ENOMEM;
 922				goto out;
 923			}
 924
 925			eb = path2->nodes[level];
 926			rb_node = tree_search(&cache->rb_root, eb->start);
 927			if (!rb_node) {
 928				upper = alloc_backref_node(cache);
 929				if (!upper) {
 930					free_backref_edge(cache, edge);
 931					err = -ENOMEM;
 932					goto out;
 933				}
 934				upper->bytenr = eb->start;
 935				upper->owner = btrfs_header_owner(eb);
 936				upper->level = lower->level + 1;
 937				if (!test_bit(BTRFS_ROOT_REF_COWS,
 938					      &root->state))
 939					upper->cowonly = 1;
 940
 941				/*
 942				 * if we know the block isn't shared
 943				 * we can void checking its backrefs.
 944				 */
 945				if (btrfs_block_can_be_shared(root, eb))
 946					upper->checked = 0;
 947				else
 948					upper->checked = 1;
 949
 950				/*
 951				 * add the block to pending list if we
 952				 * need check its backrefs, we only do this once
 953				 * while walking up a tree as we will catch
 954				 * anything else later on.
 955				 */
 956				if (!upper->checked && need_check) {
 957					need_check = false;
 958					list_add_tail(&edge->list[UPPER],
 959						      &list);
 960				} else {
 961					if (upper->checked)
 962						need_check = true;
 963					INIT_LIST_HEAD(&edge->list[UPPER]);
 964				}
 965			} else {
 966				upper = rb_entry(rb_node, struct backref_node,
 967						 rb_node);
 968				ASSERT(upper->checked);
 969				INIT_LIST_HEAD(&edge->list[UPPER]);
 970				if (!upper->owner)
 971					upper->owner = btrfs_header_owner(eb);
 972			}
 973			list_add_tail(&edge->list[LOWER], &lower->upper);
 974			edge->node[LOWER] = lower;
 975			edge->node[UPPER] = upper;
 976
 977			if (rb_node)
 978				break;
 979			lower = upper;
 980			upper = NULL;
 981		}
 982		btrfs_release_path(path2);
 983next:
 984		if (ptr < end) {
 985			ptr += btrfs_extent_inline_ref_size(key.type);
 986			if (ptr >= end) {
 987				WARN_ON(ptr > end);
 988				ptr = 0;
 989				end = 0;
 990			}
 991		}
 992		if (ptr >= end)
 993			path1->slots[0]++;
 994	}
 995	btrfs_release_path(path1);
 996
 997	cur->checked = 1;
 998	WARN_ON(exist);
 999
1000	/* the pending list isn't empty, take the first block to process */
1001	if (!list_empty(&list)) {
1002		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1003		list_del_init(&edge->list[UPPER]);
1004		cur = edge->node[UPPER];
1005		goto again;
1006	}
1007
1008	/*
1009	 * everything goes well, connect backref nodes and insert backref nodes
1010	 * into the cache.
1011	 */
1012	ASSERT(node->checked);
1013	cowonly = node->cowonly;
1014	if (!cowonly) {
1015		rb_node = tree_insert(&cache->rb_root, node->bytenr,
1016				      &node->rb_node);
1017		if (rb_node)
1018			backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1019		list_add_tail(&node->lower, &cache->leaves);
1020	}
1021
1022	list_for_each_entry(edge, &node->upper, list[LOWER])
1023		list_add_tail(&edge->list[UPPER], &list);
1024
1025	while (!list_empty(&list)) {
1026		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1027		list_del_init(&edge->list[UPPER]);
1028		upper = edge->node[UPPER];
1029		if (upper->detached) {
1030			list_del(&edge->list[LOWER]);
1031			lower = edge->node[LOWER];
1032			free_backref_edge(cache, edge);
1033			if (list_empty(&lower->upper))
1034				list_add(&lower->list, &useless);
1035			continue;
1036		}
1037
1038		if (!RB_EMPTY_NODE(&upper->rb_node)) {
1039			if (upper->lowest) {
1040				list_del_init(&upper->lower);
1041				upper->lowest = 0;
1042			}
1043
1044			list_add_tail(&edge->list[UPPER], &upper->lower);
1045			continue;
1046		}
1047
1048		if (!upper->checked) {
1049			/*
1050			 * Still want to blow up for developers since this is a
1051			 * logic bug.
1052			 */
1053			ASSERT(0);
1054			err = -EINVAL;
1055			goto out;
1056		}
1057		if (cowonly != upper->cowonly) {
1058			ASSERT(0);
1059			err = -EINVAL;
1060			goto out;
1061		}
1062
1063		if (!cowonly) {
1064			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1065					      &upper->rb_node);
1066			if (rb_node)
1067				backref_tree_panic(rb_node, -EEXIST,
1068						   upper->bytenr);
1069		}
 
1070
1071		list_add_tail(&edge->list[UPPER], &upper->lower);
1072
1073		list_for_each_entry(edge, &upper->upper, list[LOWER])
1074			list_add_tail(&edge->list[UPPER], &list);
 
1075	}
1076	/*
1077	 * process useless backref nodes. backref nodes for tree leaves
1078	 * are deleted from the cache. backref nodes for upper level
1079	 * tree blocks are left in the cache to avoid unnecessary backref
1080	 * lookup.
1081	 */
1082	while (!list_empty(&useless)) {
1083		upper = list_entry(useless.next, struct backref_node, list);
1084		list_del_init(&upper->list);
1085		ASSERT(list_empty(&upper->upper));
1086		if (upper == node)
1087			node = NULL;
1088		if (upper->lowest) {
1089			list_del_init(&upper->lower);
1090			upper->lowest = 0;
1091		}
1092		while (!list_empty(&upper->lower)) {
1093			edge = list_entry(upper->lower.next,
1094					  struct backref_edge, list[UPPER]);
1095			list_del(&edge->list[UPPER]);
1096			list_del(&edge->list[LOWER]);
1097			lower = edge->node[LOWER];
1098			free_backref_edge(cache, edge);
1099
1100			if (list_empty(&lower->upper))
1101				list_add(&lower->list, &useless);
1102		}
1103		__mark_block_processed(rc, upper);
1104		if (upper->level > 0) {
1105			list_add(&upper->list, &cache->detached);
1106			upper->detached = 1;
1107		} else {
1108			rb_erase(&upper->rb_node, &cache->rb_root);
1109			free_backref_node(cache, upper);
1110		}
1111	}
1112out:
1113	btrfs_free_path(path1);
1114	btrfs_free_path(path2);
1115	if (err) {
1116		while (!list_empty(&useless)) {
1117			lower = list_entry(useless.next,
1118					   struct backref_node, list);
1119			list_del_init(&lower->list);
1120		}
1121		while (!list_empty(&list)) {
1122			edge = list_first_entry(&list, struct backref_edge,
1123						list[UPPER]);
1124			list_del(&edge->list[UPPER]);
1125			list_del(&edge->list[LOWER]);
1126			lower = edge->node[LOWER];
1127			upper = edge->node[UPPER];
1128			free_backref_edge(cache, edge);
1129
1130			/*
1131			 * Lower is no longer linked to any upper backref nodes
1132			 * and isn't in the cache, we can free it ourselves.
1133			 */
1134			if (list_empty(&lower->upper) &&
1135			    RB_EMPTY_NODE(&lower->rb_node))
1136				list_add(&lower->list, &useless);
1137
1138			if (!RB_EMPTY_NODE(&upper->rb_node))
1139				continue;
1140
1141			/* Add this guy's upper edges to the list to process */
1142			list_for_each_entry(edge, &upper->upper, list[LOWER])
1143				list_add_tail(&edge->list[UPPER], &list);
1144			if (list_empty(&upper->upper))
1145				list_add(&upper->list, &useless);
1146		}
1147
1148		while (!list_empty(&useless)) {
1149			lower = list_entry(useless.next,
1150					   struct backref_node, list);
1151			list_del_init(&lower->list);
1152			if (lower == node)
1153				node = NULL;
1154			free_backref_node(cache, lower);
1155		}
1156
1157		free_backref_node(cache, node);
1158		return ERR_PTR(err);
1159	}
1160	ASSERT(!node || !node->detached);
 
 
1161	return node;
1162}
1163
1164/*
1165 * helper to add backref node for the newly created snapshot.
1166 * the backref node is created by cloning backref node that
1167 * corresponds to root of source tree
1168 */
1169static int clone_backref_node(struct btrfs_trans_handle *trans,
1170			      struct reloc_control *rc,
1171			      struct btrfs_root *src,
1172			      struct btrfs_root *dest)
1173{
1174	struct btrfs_root *reloc_root = src->reloc_root;
1175	struct backref_cache *cache = &rc->backref_cache;
1176	struct backref_node *node = NULL;
1177	struct backref_node *new_node;
1178	struct backref_edge *edge;
1179	struct backref_edge *new_edge;
1180	struct rb_node *rb_node;
1181
1182	if (cache->last_trans > 0)
1183		update_backref_cache(trans, cache);
1184
1185	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1186	if (rb_node) {
1187		node = rb_entry(rb_node, struct backref_node, rb_node);
1188		if (node->detached)
1189			node = NULL;
1190		else
1191			BUG_ON(node->new_bytenr != reloc_root->node->start);
1192	}
1193
1194	if (!node) {
1195		rb_node = tree_search(&cache->rb_root,
1196				      reloc_root->commit_root->start);
1197		if (rb_node) {
1198			node = rb_entry(rb_node, struct backref_node,
1199					rb_node);
1200			BUG_ON(node->detached);
1201		}
1202	}
1203
1204	if (!node)
1205		return 0;
1206
1207	new_node = alloc_backref_node(cache);
 
1208	if (!new_node)
1209		return -ENOMEM;
1210
1211	new_node->bytenr = dest->node->start;
1212	new_node->level = node->level;
1213	new_node->lowest = node->lowest;
1214	new_node->checked = 1;
1215	new_node->root = dest;
 
1216
1217	if (!node->lowest) {
1218		list_for_each_entry(edge, &node->lower, list[UPPER]) {
1219			new_edge = alloc_backref_edge(cache);
1220			if (!new_edge)
1221				goto fail;
1222
1223			new_edge->node[UPPER] = new_node;
1224			new_edge->node[LOWER] = edge->node[LOWER];
1225			list_add_tail(&new_edge->list[UPPER],
1226				      &new_node->lower);
1227		}
1228	} else {
1229		list_add_tail(&new_node->lower, &cache->leaves);
1230	}
1231
1232	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1233			      &new_node->rb_node);
1234	if (rb_node)
1235		backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1236
1237	if (!new_node->lowest) {
1238		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1239			list_add_tail(&new_edge->list[LOWER],
1240				      &new_edge->node[LOWER]->upper);
1241		}
1242	}
1243	return 0;
1244fail:
1245	while (!list_empty(&new_node->lower)) {
1246		new_edge = list_entry(new_node->lower.next,
1247				      struct backref_edge, list[UPPER]);
1248		list_del(&new_edge->list[UPPER]);
1249		free_backref_edge(cache, new_edge);
1250	}
1251	free_backref_node(cache, new_node);
1252	return -ENOMEM;
1253}
1254
1255/*
1256 * helper to add 'address of tree root -> reloc tree' mapping
1257 */
1258static int __must_check __add_reloc_root(struct btrfs_root *root)
1259{
1260	struct btrfs_fs_info *fs_info = root->fs_info;
1261	struct rb_node *rb_node;
1262	struct mapping_node *node;
1263	struct reloc_control *rc = fs_info->reloc_ctl;
1264
1265	node = kmalloc(sizeof(*node), GFP_NOFS);
1266	if (!node)
1267		return -ENOMEM;
1268
1269	node->bytenr = root->node->start;
1270	node->data = root;
1271
1272	spin_lock(&rc->reloc_root_tree.lock);
1273	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1274			      node->bytenr, &node->rb_node);
1275	spin_unlock(&rc->reloc_root_tree.lock);
1276	if (rb_node) {
1277		btrfs_panic(fs_info, -EEXIST,
1278			    "Duplicate root found for start=%llu while inserting into relocation tree",
1279			    node->bytenr);
1280	}
1281
1282	list_add_tail(&root->root_list, &rc->reloc_roots);
1283	return 0;
1284}
1285
1286/*
1287 * helper to delete the 'address of tree root -> reloc tree'
1288 * mapping
1289 */
1290static void __del_reloc_root(struct btrfs_root *root)
1291{
1292	struct btrfs_fs_info *fs_info = root->fs_info;
1293	struct rb_node *rb_node;
1294	struct mapping_node *node = NULL;
1295	struct reloc_control *rc = fs_info->reloc_ctl;
 
1296
1297	if (rc && root->node) {
1298		spin_lock(&rc->reloc_root_tree.lock);
1299		rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1300				      root->node->start);
1301		if (rb_node) {
1302			node = rb_entry(rb_node, struct mapping_node, rb_node);
1303			rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
 
1304		}
1305		spin_unlock(&rc->reloc_root_tree.lock);
1306		if (!node)
1307			return;
1308		BUG_ON((struct btrfs_root *)node->data != root);
1309	}
1310
 
 
 
 
 
 
 
 
1311	spin_lock(&fs_info->trans_lock);
1312	list_del_init(&root->root_list);
 
 
 
1313	spin_unlock(&fs_info->trans_lock);
 
 
1314	kfree(node);
1315}
1316
1317/*
1318 * helper to update the 'address of tree root -> reloc tree'
1319 * mapping
1320 */
1321static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
1322{
1323	struct btrfs_fs_info *fs_info = root->fs_info;
1324	struct rb_node *rb_node;
1325	struct mapping_node *node = NULL;
1326	struct reloc_control *rc = fs_info->reloc_ctl;
1327
1328	spin_lock(&rc->reloc_root_tree.lock);
1329	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1330			      root->node->start);
1331	if (rb_node) {
1332		node = rb_entry(rb_node, struct mapping_node, rb_node);
1333		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1334	}
1335	spin_unlock(&rc->reloc_root_tree.lock);
1336
1337	if (!node)
1338		return 0;
1339	BUG_ON((struct btrfs_root *)node->data != root);
1340
1341	spin_lock(&rc->reloc_root_tree.lock);
1342	node->bytenr = new_bytenr;
1343	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1344			      node->bytenr, &node->rb_node);
1345	spin_unlock(&rc->reloc_root_tree.lock);
1346	if (rb_node)
1347		backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1348	return 0;
1349}
1350
1351static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1352					struct btrfs_root *root, u64 objectid)
1353{
1354	struct btrfs_fs_info *fs_info = root->fs_info;
1355	struct btrfs_root *reloc_root;
1356	struct extent_buffer *eb;
1357	struct btrfs_root_item *root_item;
1358	struct btrfs_key root_key;
1359	int ret;
1360
1361	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1362	BUG_ON(!root_item);
1363
1364	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1365	root_key.type = BTRFS_ROOT_ITEM_KEY;
1366	root_key.offset = objectid;
1367
1368	if (root->root_key.objectid == objectid) {
1369		u64 commit_root_gen;
1370
1371		/* called by btrfs_init_reloc_root */
1372		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1373				      BTRFS_TREE_RELOC_OBJECTID);
1374		BUG_ON(ret);
1375		/*
1376		 * Set the last_snapshot field to the generation of the commit
1377		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
1378		 * correctly (returns true) when the relocation root is created
1379		 * either inside the critical section of a transaction commit
1380		 * (through transaction.c:qgroup_account_snapshot()) and when
1381		 * it's created before the transaction commit is started.
1382		 */
1383		commit_root_gen = btrfs_header_generation(root->commit_root);
1384		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
1385	} else {
1386		/*
1387		 * called by btrfs_reloc_post_snapshot_hook.
1388		 * the source tree is a reloc tree, all tree blocks
1389		 * modified after it was created have RELOC flag
1390		 * set in their headers. so it's OK to not update
1391		 * the 'last_snapshot'.
1392		 */
1393		ret = btrfs_copy_root(trans, root, root->node, &eb,
1394				      BTRFS_TREE_RELOC_OBJECTID);
1395		BUG_ON(ret);
1396	}
1397
1398	memcpy(root_item, &root->root_item, sizeof(*root_item));
1399	btrfs_set_root_bytenr(root_item, eb->start);
1400	btrfs_set_root_level(root_item, btrfs_header_level(eb));
1401	btrfs_set_root_generation(root_item, trans->transid);
1402
1403	if (root->root_key.objectid == objectid) {
1404		btrfs_set_root_refs(root_item, 0);
1405		memset(&root_item->drop_progress, 0,
1406		       sizeof(struct btrfs_disk_key));
1407		root_item->drop_level = 0;
1408	}
1409
1410	btrfs_tree_unlock(eb);
1411	free_extent_buffer(eb);
1412
1413	ret = btrfs_insert_root(trans, fs_info->tree_root,
1414				&root_key, root_item);
1415	BUG_ON(ret);
1416	kfree(root_item);
1417
1418	reloc_root = btrfs_read_fs_root(fs_info->tree_root, &root_key);
1419	BUG_ON(IS_ERR(reloc_root));
 
1420	reloc_root->last_trans = trans->transid;
1421	return reloc_root;
1422}
1423
1424/*
1425 * create reloc tree for a given fs tree. reloc tree is just a
1426 * snapshot of the fs tree with special root objectid.
 
 
 
1427 */
1428int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1429			  struct btrfs_root *root)
1430{
1431	struct btrfs_fs_info *fs_info = root->fs_info;
1432	struct btrfs_root *reloc_root;
1433	struct reloc_control *rc = fs_info->reloc_ctl;
1434	struct btrfs_block_rsv *rsv;
1435	int clear_rsv = 0;
1436	int ret;
1437
 
 
 
1438	/*
1439	 * The subvolume has reloc tree but the swap is finished, no need to
1440	 * create/update the dead reloc tree
1441	 */
1442	if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
1443		return 0;
1444
 
 
 
 
 
 
 
 
1445	if (root->reloc_root) {
1446		reloc_root = root->reloc_root;
1447		reloc_root->last_trans = trans->transid;
1448		return 0;
1449	}
1450
1451	if (!rc || !rc->create_reloc_tree ||
 
 
 
 
1452	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1453		return 0;
1454
1455	if (!trans->reloc_reserved) {
1456		rsv = trans->block_rsv;
1457		trans->block_rsv = rc->block_rsv;
1458		clear_rsv = 1;
1459	}
1460	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1461	if (clear_rsv)
1462		trans->block_rsv = rsv;
1463
1464	ret = __add_reloc_root(reloc_root);
1465	BUG_ON(ret < 0);
1466	root->reloc_root = reloc_root;
1467	return 0;
1468}
1469
1470/*
1471 * update root item of reloc tree
1472 */
1473int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1474			    struct btrfs_root *root)
1475{
1476	struct btrfs_fs_info *fs_info = root->fs_info;
1477	struct btrfs_root *reloc_root;
1478	struct btrfs_root_item *root_item;
1479	int ret;
1480
1481	if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state) ||
1482	    !root->reloc_root)
1483		goto out;
1484
1485	reloc_root = root->reloc_root;
1486	root_item = &reloc_root->root_item;
1487
 
 
 
 
 
 
 
1488	/* root->reloc_root will stay until current relocation finished */
1489	if (fs_info->reloc_ctl->merge_reloc_tree &&
1490	    btrfs_root_refs(root_item) == 0) {
1491		set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
 
 
 
 
 
1492		__del_reloc_root(reloc_root);
1493	}
1494
1495	if (reloc_root->commit_root != reloc_root->node) {
 
1496		btrfs_set_root_node(root_item, reloc_root->node);
1497		free_extent_buffer(reloc_root->commit_root);
1498		reloc_root->commit_root = btrfs_root_node(reloc_root);
1499	}
1500
1501	ret = btrfs_update_root(trans, fs_info->tree_root,
1502				&reloc_root->root_key, root_item);
1503	BUG_ON(ret);
1504
1505out:
1506	return 0;
1507}
1508
1509/*
1510 * helper to find first cached inode with inode number >= objectid
1511 * in a subvolume
1512 */
1513static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1514{
1515	struct rb_node *node;
1516	struct rb_node *prev;
1517	struct btrfs_inode *entry;
1518	struct inode *inode;
1519
1520	spin_lock(&root->inode_lock);
1521again:
1522	node = root->inode_tree.rb_node;
1523	prev = NULL;
1524	while (node) {
1525		prev = node;
1526		entry = rb_entry(node, struct btrfs_inode, rb_node);
1527
1528		if (objectid < btrfs_ino(entry))
1529			node = node->rb_left;
1530		else if (objectid > btrfs_ino(entry))
1531			node = node->rb_right;
1532		else
1533			break;
1534	}
1535	if (!node) {
1536		while (prev) {
1537			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1538			if (objectid <= btrfs_ino(entry)) {
1539				node = prev;
1540				break;
1541			}
1542			prev = rb_next(prev);
1543		}
1544	}
1545	while (node) {
1546		entry = rb_entry(node, struct btrfs_inode, rb_node);
1547		inode = igrab(&entry->vfs_inode);
1548		if (inode) {
1549			spin_unlock(&root->inode_lock);
1550			return inode;
1551		}
1552
1553		objectid = btrfs_ino(entry) + 1;
1554		if (cond_resched_lock(&root->inode_lock))
1555			goto again;
1556
1557		node = rb_next(node);
1558	}
1559	spin_unlock(&root->inode_lock);
1560	return NULL;
1561}
1562
1563static int in_block_group(u64 bytenr,
1564			  struct btrfs_block_group_cache *block_group)
1565{
1566	if (bytenr >= block_group->key.objectid &&
1567	    bytenr < block_group->key.objectid + block_group->key.offset)
1568		return 1;
1569	return 0;
1570}
1571
1572/*
1573 * get new location of data
1574 */
1575static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1576			    u64 bytenr, u64 num_bytes)
1577{
1578	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1579	struct btrfs_path *path;
1580	struct btrfs_file_extent_item *fi;
1581	struct extent_buffer *leaf;
1582	int ret;
1583
1584	path = btrfs_alloc_path();
1585	if (!path)
1586		return -ENOMEM;
1587
1588	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1589	ret = btrfs_lookup_file_extent(NULL, root, path,
1590			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1591	if (ret < 0)
1592		goto out;
1593	if (ret > 0) {
1594		ret = -ENOENT;
1595		goto out;
1596	}
1597
1598	leaf = path->nodes[0];
1599	fi = btrfs_item_ptr(leaf, path->slots[0],
1600			    struct btrfs_file_extent_item);
1601
1602	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1603	       btrfs_file_extent_compression(leaf, fi) ||
1604	       btrfs_file_extent_encryption(leaf, fi) ||
1605	       btrfs_file_extent_other_encoding(leaf, fi));
1606
1607	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1608		ret = -EINVAL;
1609		goto out;
1610	}
1611
1612	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1613	ret = 0;
1614out:
1615	btrfs_free_path(path);
1616	return ret;
1617}
1618
1619/*
1620 * update file extent items in the tree leaf to point to
1621 * the new locations.
1622 */
1623static noinline_for_stack
1624int replace_file_extents(struct btrfs_trans_handle *trans,
1625			 struct reloc_control *rc,
1626			 struct btrfs_root *root,
1627			 struct extent_buffer *leaf)
1628{
1629	struct btrfs_fs_info *fs_info = root->fs_info;
1630	struct btrfs_key key;
1631	struct btrfs_file_extent_item *fi;
1632	struct inode *inode = NULL;
1633	u64 parent;
1634	u64 bytenr;
1635	u64 new_bytenr = 0;
1636	u64 num_bytes;
1637	u64 end;
1638	u32 nritems;
1639	u32 i;
1640	int ret = 0;
1641	int first = 1;
1642	int dirty = 0;
1643
1644	if (rc->stage != UPDATE_DATA_PTRS)
1645		return 0;
1646
1647	/* reloc trees always use full backref */
1648	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1649		parent = leaf->start;
1650	else
1651		parent = 0;
1652
1653	nritems = btrfs_header_nritems(leaf);
1654	for (i = 0; i < nritems; i++) {
1655		struct btrfs_ref ref = { 0 };
1656
1657		cond_resched();
1658		btrfs_item_key_to_cpu(leaf, &key, i);
1659		if (key.type != BTRFS_EXTENT_DATA_KEY)
1660			continue;
1661		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1662		if (btrfs_file_extent_type(leaf, fi) ==
1663		    BTRFS_FILE_EXTENT_INLINE)
1664			continue;
1665		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1666		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1667		if (bytenr == 0)
1668			continue;
1669		if (!in_block_group(bytenr, rc->block_group))
 
1670			continue;
1671
1672		/*
1673		 * if we are modifying block in fs tree, wait for readpage
1674		 * to complete and drop the extent cache
1675		 */
1676		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1677			if (first) {
1678				inode = find_next_inode(root, key.objectid);
1679				first = 0;
1680			} else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1681				btrfs_add_delayed_iput(inode);
1682				inode = find_next_inode(root, key.objectid);
1683			}
1684			if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1685				end = key.offset +
1686				      btrfs_file_extent_num_bytes(leaf, fi);
1687				WARN_ON(!IS_ALIGNED(key.offset,
1688						    fs_info->sectorsize));
1689				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1690				end--;
1691				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1692						      key.offset, end);
1693				if (!ret)
1694					continue;
1695
1696				btrfs_drop_extent_cache(BTRFS_I(inode),
1697						key.offset,	end, 1);
1698				unlock_extent(&BTRFS_I(inode)->io_tree,
1699					      key.offset, end);
1700			}
1701		}
1702
1703		ret = get_new_location(rc->data_inode, &new_bytenr,
1704				       bytenr, num_bytes);
1705		if (ret) {
1706			/*
1707			 * Don't have to abort since we've not changed anything
1708			 * in the file extent yet.
1709			 */
1710			break;
1711		}
1712
1713		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1714		dirty = 1;
1715
1716		key.offset -= btrfs_file_extent_offset(leaf, fi);
1717		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1718				       num_bytes, parent);
1719		ref.real_root = root->root_key.objectid;
1720		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1721				    key.objectid, key.offset);
1722		ret = btrfs_inc_extent_ref(trans, &ref);
1723		if (ret) {
1724			btrfs_abort_transaction(trans, ret);
1725			break;
1726		}
1727
1728		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1729				       num_bytes, parent);
1730		ref.real_root = root->root_key.objectid;
1731		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1732				    key.objectid, key.offset);
1733		ret = btrfs_free_extent(trans, &ref);
1734		if (ret) {
1735			btrfs_abort_transaction(trans, ret);
1736			break;
1737		}
1738	}
1739	if (dirty)
1740		btrfs_mark_buffer_dirty(leaf);
1741	if (inode)
1742		btrfs_add_delayed_iput(inode);
1743	return ret;
1744}
1745
1746static noinline_for_stack
1747int memcmp_node_keys(struct extent_buffer *eb, int slot,
1748		     struct btrfs_path *path, int level)
1749{
1750	struct btrfs_disk_key key1;
1751	struct btrfs_disk_key key2;
1752	btrfs_node_key(eb, &key1, slot);
1753	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1754	return memcmp(&key1, &key2, sizeof(key1));
1755}
1756
1757/*
1758 * try to replace tree blocks in fs tree with the new blocks
1759 * in reloc tree. tree blocks haven't been modified since the
1760 * reloc tree was create can be replaced.
1761 *
1762 * if a block was replaced, level of the block + 1 is returned.
1763 * if no block got replaced, 0 is returned. if there are other
1764 * errors, a negative error number is returned.
1765 */
1766static noinline_for_stack
1767int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1768		 struct btrfs_root *dest, struct btrfs_root *src,
1769		 struct btrfs_path *path, struct btrfs_key *next_key,
1770		 int lowest_level, int max_level)
1771{
1772	struct btrfs_fs_info *fs_info = dest->fs_info;
1773	struct extent_buffer *eb;
1774	struct extent_buffer *parent;
1775	struct btrfs_ref ref = { 0 };
1776	struct btrfs_key key;
1777	u64 old_bytenr;
1778	u64 new_bytenr;
1779	u64 old_ptr_gen;
1780	u64 new_ptr_gen;
1781	u64 last_snapshot;
1782	u32 blocksize;
1783	int cow = 0;
1784	int level;
1785	int ret;
1786	int slot;
1787
1788	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1789	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1790
1791	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1792again:
1793	slot = path->slots[lowest_level];
1794	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1795
1796	eb = btrfs_lock_root_node(dest);
1797	btrfs_set_lock_blocking_write(eb);
1798	level = btrfs_header_level(eb);
1799
1800	if (level < lowest_level) {
1801		btrfs_tree_unlock(eb);
1802		free_extent_buffer(eb);
1803		return 0;
1804	}
1805
1806	if (cow) {
1807		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1808		BUG_ON(ret);
1809	}
1810	btrfs_set_lock_blocking_write(eb);
1811
1812	if (next_key) {
1813		next_key->objectid = (u64)-1;
1814		next_key->type = (u8)-1;
1815		next_key->offset = (u64)-1;
1816	}
1817
1818	parent = eb;
1819	while (1) {
1820		struct btrfs_key first_key;
1821
1822		level = btrfs_header_level(parent);
1823		BUG_ON(level < lowest_level);
1824
1825		ret = btrfs_bin_search(parent, &key, level, &slot);
1826		if (ret < 0)
1827			break;
1828		if (ret && slot > 0)
1829			slot--;
1830
1831		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1832			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1833
1834		old_bytenr = btrfs_node_blockptr(parent, slot);
1835		blocksize = fs_info->nodesize;
1836		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1837		btrfs_node_key_to_cpu(parent, &first_key, slot);
1838
1839		if (level <= max_level) {
1840			eb = path->nodes[level];
1841			new_bytenr = btrfs_node_blockptr(eb,
1842							path->slots[level]);
1843			new_ptr_gen = btrfs_node_ptr_generation(eb,
1844							path->slots[level]);
1845		} else {
1846			new_bytenr = 0;
1847			new_ptr_gen = 0;
1848		}
1849
1850		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1851			ret = level;
1852			break;
1853		}
1854
1855		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1856		    memcmp_node_keys(parent, slot, path, level)) {
1857			if (level <= lowest_level) {
1858				ret = 0;
1859				break;
1860			}
1861
1862			eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen,
1863					     level - 1, &first_key);
1864			if (IS_ERR(eb)) {
1865				ret = PTR_ERR(eb);
1866				break;
1867			} else if (!extent_buffer_uptodate(eb)) {
1868				ret = -EIO;
1869				free_extent_buffer(eb);
1870				break;
1871			}
1872			btrfs_tree_lock(eb);
1873			if (cow) {
1874				ret = btrfs_cow_block(trans, dest, eb, parent,
1875						      slot, &eb);
1876				BUG_ON(ret);
1877			}
1878			btrfs_set_lock_blocking_write(eb);
1879
1880			btrfs_tree_unlock(parent);
1881			free_extent_buffer(parent);
1882
1883			parent = eb;
1884			continue;
1885		}
1886
1887		if (!cow) {
1888			btrfs_tree_unlock(parent);
1889			free_extent_buffer(parent);
1890			cow = 1;
1891			goto again;
1892		}
1893
1894		btrfs_node_key_to_cpu(path->nodes[level], &key,
1895				      path->slots[level]);
1896		btrfs_release_path(path);
1897
1898		path->lowest_level = level;
1899		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1900		path->lowest_level = 0;
1901		BUG_ON(ret);
1902
1903		/*
1904		 * Info qgroup to trace both subtrees.
1905		 *
1906		 * We must trace both trees.
1907		 * 1) Tree reloc subtree
1908		 *    If not traced, we will leak data numbers
1909		 * 2) Fs subtree
1910		 *    If not traced, we will double count old data
1911		 *
1912		 * We don't scan the subtree right now, but only record
1913		 * the swapped tree blocks.
1914		 * The real subtree rescan is delayed until we have new
1915		 * CoW on the subtree root node before transaction commit.
1916		 */
1917		ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1918				rc->block_group, parent, slot,
1919				path->nodes[level], path->slots[level],
1920				last_snapshot);
1921		if (ret < 0)
1922			break;
1923		/*
1924		 * swap blocks in fs tree and reloc tree.
1925		 */
1926		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1927		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1928		btrfs_mark_buffer_dirty(parent);
1929
1930		btrfs_set_node_blockptr(path->nodes[level],
1931					path->slots[level], old_bytenr);
1932		btrfs_set_node_ptr_generation(path->nodes[level],
1933					      path->slots[level], old_ptr_gen);
1934		btrfs_mark_buffer_dirty(path->nodes[level]);
1935
1936		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1937				       blocksize, path->nodes[level]->start);
1938		ref.skip_qgroup = true;
1939		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1940		ret = btrfs_inc_extent_ref(trans, &ref);
1941		BUG_ON(ret);
1942		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1943				       blocksize, 0);
1944		ref.skip_qgroup = true;
1945		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1946		ret = btrfs_inc_extent_ref(trans, &ref);
1947		BUG_ON(ret);
1948
1949		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1950				       blocksize, path->nodes[level]->start);
1951		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1952		ref.skip_qgroup = true;
1953		ret = btrfs_free_extent(trans, &ref);
1954		BUG_ON(ret);
1955
1956		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1957				       blocksize, 0);
1958		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1959		ref.skip_qgroup = true;
1960		ret = btrfs_free_extent(trans, &ref);
1961		BUG_ON(ret);
1962
1963		btrfs_unlock_up_safe(path, 0);
1964
1965		ret = level;
1966		break;
1967	}
1968	btrfs_tree_unlock(parent);
1969	free_extent_buffer(parent);
1970	return ret;
1971}
1972
1973/*
1974 * helper to find next relocated block in reloc tree
1975 */
1976static noinline_for_stack
1977int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1978		       int *level)
1979{
1980	struct extent_buffer *eb;
1981	int i;
1982	u64 last_snapshot;
1983	u32 nritems;
1984
1985	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1986
1987	for (i = 0; i < *level; i++) {
1988		free_extent_buffer(path->nodes[i]);
1989		path->nodes[i] = NULL;
1990	}
1991
1992	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1993		eb = path->nodes[i];
1994		nritems = btrfs_header_nritems(eb);
1995		while (path->slots[i] + 1 < nritems) {
1996			path->slots[i]++;
1997			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1998			    last_snapshot)
1999				continue;
2000
2001			*level = i;
2002			return 0;
2003		}
2004		free_extent_buffer(path->nodes[i]);
2005		path->nodes[i] = NULL;
2006	}
2007	return 1;
2008}
2009
2010/*
2011 * walk down reloc tree to find relocated block of lowest level
2012 */
2013static noinline_for_stack
2014int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
2015			 int *level)
2016{
2017	struct btrfs_fs_info *fs_info = root->fs_info;
2018	struct extent_buffer *eb = NULL;
2019	int i;
2020	u64 bytenr;
2021	u64 ptr_gen = 0;
2022	u64 last_snapshot;
2023	u32 nritems;
2024
2025	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2026
2027	for (i = *level; i > 0; i--) {
2028		struct btrfs_key first_key;
2029
2030		eb = path->nodes[i];
2031		nritems = btrfs_header_nritems(eb);
2032		while (path->slots[i] < nritems) {
2033			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
2034			if (ptr_gen > last_snapshot)
2035				break;
2036			path->slots[i]++;
2037		}
2038		if (path->slots[i] >= nritems) {
2039			if (i == *level)
2040				break;
2041			*level = i + 1;
2042			return 0;
2043		}
2044		if (i == 1) {
2045			*level = i;
2046			return 0;
2047		}
2048
2049		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
2050		btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]);
2051		eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1,
2052				     &first_key);
2053		if (IS_ERR(eb)) {
2054			return PTR_ERR(eb);
2055		} else if (!extent_buffer_uptodate(eb)) {
2056			free_extent_buffer(eb);
2057			return -EIO;
2058		}
2059		BUG_ON(btrfs_header_level(eb) != i - 1);
2060		path->nodes[i - 1] = eb;
2061		path->slots[i - 1] = 0;
2062	}
2063	return 1;
2064}
2065
2066/*
2067 * invalidate extent cache for file extents whose key in range of
2068 * [min_key, max_key)
2069 */
2070static int invalidate_extent_cache(struct btrfs_root *root,
2071				   struct btrfs_key *min_key,
2072				   struct btrfs_key *max_key)
2073{
2074	struct btrfs_fs_info *fs_info = root->fs_info;
2075	struct inode *inode = NULL;
2076	u64 objectid;
2077	u64 start, end;
2078	u64 ino;
2079
2080	objectid = min_key->objectid;
2081	while (1) {
2082		cond_resched();
2083		iput(inode);
2084
2085		if (objectid > max_key->objectid)
2086			break;
2087
2088		inode = find_next_inode(root, objectid);
2089		if (!inode)
2090			break;
2091		ino = btrfs_ino(BTRFS_I(inode));
2092
2093		if (ino > max_key->objectid) {
2094			iput(inode);
2095			break;
2096		}
2097
2098		objectid = ino + 1;
2099		if (!S_ISREG(inode->i_mode))
2100			continue;
2101
2102		if (unlikely(min_key->objectid == ino)) {
2103			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
2104				continue;
2105			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
2106				start = 0;
2107			else {
2108				start = min_key->offset;
2109				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
2110			}
2111		} else {
2112			start = 0;
2113		}
2114
2115		if (unlikely(max_key->objectid == ino)) {
2116			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
2117				continue;
2118			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
2119				end = (u64)-1;
2120			} else {
2121				if (max_key->offset == 0)
2122					continue;
2123				end = max_key->offset;
2124				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
2125				end--;
2126			}
2127		} else {
2128			end = (u64)-1;
2129		}
2130
2131		/* the lock_extent waits for readpage to complete */
2132		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2133		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
2134		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2135	}
2136	return 0;
2137}
2138
2139static int find_next_key(struct btrfs_path *path, int level,
2140			 struct btrfs_key *key)
2141
2142{
2143	while (level < BTRFS_MAX_LEVEL) {
2144		if (!path->nodes[level])
2145			break;
2146		if (path->slots[level] + 1 <
2147		    btrfs_header_nritems(path->nodes[level])) {
2148			btrfs_node_key_to_cpu(path->nodes[level], key,
2149					      path->slots[level] + 1);
2150			return 0;
2151		}
2152		level++;
2153	}
2154	return 1;
2155}
2156
2157/*
2158 * Insert current subvolume into reloc_control::dirty_subvol_roots
2159 */
2160static void insert_dirty_subvol(struct btrfs_trans_handle *trans,
2161				struct reloc_control *rc,
2162				struct btrfs_root *root)
2163{
2164	struct btrfs_root *reloc_root = root->reloc_root;
2165	struct btrfs_root_item *reloc_root_item;
2166
2167	/* @root must be a subvolume tree root with a valid reloc tree */
2168	ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
2169	ASSERT(reloc_root);
2170
2171	reloc_root_item = &reloc_root->root_item;
2172	memset(&reloc_root_item->drop_progress, 0,
2173		sizeof(reloc_root_item->drop_progress));
2174	reloc_root_item->drop_level = 0;
2175	btrfs_set_root_refs(reloc_root_item, 0);
2176	btrfs_update_reloc_root(trans, root);
2177
2178	if (list_empty(&root->reloc_dirty_list)) {
2179		btrfs_grab_fs_root(root);
2180		list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
2181	}
2182}
2183
2184static int clean_dirty_subvols(struct reloc_control *rc)
2185{
2186	struct btrfs_root *root;
2187	struct btrfs_root *next;
2188	int ret = 0;
2189	int ret2;
2190
2191	list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
2192				 reloc_dirty_list) {
2193		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
2194			/* Merged subvolume, cleanup its reloc root */
2195			struct btrfs_root *reloc_root = root->reloc_root;
2196
2197			list_del_init(&root->reloc_dirty_list);
2198			root->reloc_root = NULL;
 
 
 
 
 
 
2199			if (reloc_root) {
2200
2201				ret2 = btrfs_drop_snapshot(reloc_root, NULL, 0, 1);
2202				if (ret2 < 0 && !ret)
2203					ret = ret2;
 
 
 
 
 
 
 
2204			}
2205			clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
2206			btrfs_put_fs_root(root);
2207		} else {
2208			/* Orphan reloc tree, just clean it up */
2209			ret2 = btrfs_drop_snapshot(root, NULL, 0, 1);
2210			if (ret2 < 0 && !ret)
2211				ret = ret2;
 
 
 
2212		}
2213	}
2214	return ret;
2215}
2216
2217/*
2218 * merge the relocated tree blocks in reloc tree with corresponding
2219 * fs tree.
2220 */
2221static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2222					       struct btrfs_root *root)
2223{
2224	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2225	struct btrfs_key key;
2226	struct btrfs_key next_key;
2227	struct btrfs_trans_handle *trans = NULL;
2228	struct btrfs_root *reloc_root;
2229	struct btrfs_root_item *root_item;
2230	struct btrfs_path *path;
2231	struct extent_buffer *leaf;
2232	int level;
2233	int max_level;
2234	int replaced = 0;
2235	int ret;
2236	int err = 0;
2237	u32 min_reserved;
2238
2239	path = btrfs_alloc_path();
2240	if (!path)
2241		return -ENOMEM;
2242	path->reada = READA_FORWARD;
2243
2244	reloc_root = root->reloc_root;
2245	root_item = &reloc_root->root_item;
2246
2247	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2248		level = btrfs_root_level(root_item);
2249		extent_buffer_get(reloc_root->node);
2250		path->nodes[level] = reloc_root->node;
2251		path->slots[level] = 0;
2252	} else {
2253		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2254
2255		level = root_item->drop_level;
2256		BUG_ON(level == 0);
2257		path->lowest_level = level;
2258		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2259		path->lowest_level = 0;
2260		if (ret < 0) {
2261			btrfs_free_path(path);
2262			return ret;
2263		}
2264
2265		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2266				      path->slots[level]);
2267		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2268
2269		btrfs_unlock_up_safe(path, 0);
2270	}
2271
2272	min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
 
 
 
 
 
 
 
 
2273	memset(&next_key, 0, sizeof(next_key));
2274
2275	while (1) {
2276		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2277					     BTRFS_RESERVE_FLUSH_ALL);
2278		if (ret) {
2279			err = ret;
2280			goto out;
2281		}
2282		trans = btrfs_start_transaction(root, 0);
2283		if (IS_ERR(trans)) {
2284			err = PTR_ERR(trans);
2285			trans = NULL;
2286			goto out;
2287		}
 
 
 
 
 
 
 
 
 
 
 
 
2288		trans->block_rsv = rc->block_rsv;
2289
2290		replaced = 0;
2291		max_level = level;
2292
2293		ret = walk_down_reloc_tree(reloc_root, path, &level);
2294		if (ret < 0) {
2295			err = ret;
2296			goto out;
2297		}
2298		if (ret > 0)
2299			break;
2300
2301		if (!find_next_key(path, level, &key) &&
2302		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2303			ret = 0;
2304		} else {
2305			ret = replace_path(trans, rc, root, reloc_root, path,
2306					   &next_key, level, max_level);
2307		}
2308		if (ret < 0) {
2309			err = ret;
2310			goto out;
2311		}
2312
2313		if (ret > 0) {
2314			level = ret;
2315			btrfs_node_key_to_cpu(path->nodes[level], &key,
2316					      path->slots[level]);
2317			replaced = 1;
2318		}
2319
2320		ret = walk_up_reloc_tree(reloc_root, path, &level);
2321		if (ret > 0)
2322			break;
2323
2324		BUG_ON(level == 0);
2325		/*
2326		 * save the merging progress in the drop_progress.
2327		 * this is OK since root refs == 1 in this case.
2328		 */
2329		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2330			       path->slots[level]);
2331		root_item->drop_level = level;
2332
2333		btrfs_end_transaction_throttle(trans);
2334		trans = NULL;
2335
2336		btrfs_btree_balance_dirty(fs_info);
2337
2338		if (replaced && rc->stage == UPDATE_DATA_PTRS)
2339			invalidate_extent_cache(root, &key, &next_key);
2340	}
2341
2342	/*
2343	 * handle the case only one block in the fs tree need to be
2344	 * relocated and the block is tree root.
2345	 */
2346	leaf = btrfs_lock_root_node(root);
2347	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2348	btrfs_tree_unlock(leaf);
2349	free_extent_buffer(leaf);
2350	if (ret < 0)
2351		err = ret;
2352out:
2353	btrfs_free_path(path);
2354
2355	if (err == 0)
2356		insert_dirty_subvol(trans, rc, root);
2357
2358	if (trans)
2359		btrfs_end_transaction_throttle(trans);
2360
2361	btrfs_btree_balance_dirty(fs_info);
2362
2363	if (replaced && rc->stage == UPDATE_DATA_PTRS)
2364		invalidate_extent_cache(root, &key, &next_key);
2365
2366	return err;
2367}
2368
2369static noinline_for_stack
2370int prepare_to_merge(struct reloc_control *rc, int err)
2371{
2372	struct btrfs_root *root = rc->extent_root;
2373	struct btrfs_fs_info *fs_info = root->fs_info;
2374	struct btrfs_root *reloc_root;
2375	struct btrfs_trans_handle *trans;
2376	LIST_HEAD(reloc_roots);
2377	u64 num_bytes = 0;
2378	int ret;
2379
2380	mutex_lock(&fs_info->reloc_mutex);
2381	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2382	rc->merging_rsv_size += rc->nodes_relocated * 2;
2383	mutex_unlock(&fs_info->reloc_mutex);
2384
2385again:
2386	if (!err) {
2387		num_bytes = rc->merging_rsv_size;
2388		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2389					  BTRFS_RESERVE_FLUSH_ALL);
2390		if (ret)
2391			err = ret;
2392	}
2393
2394	trans = btrfs_join_transaction(rc->extent_root);
2395	if (IS_ERR(trans)) {
2396		if (!err)
2397			btrfs_block_rsv_release(fs_info, rc->block_rsv,
2398						num_bytes);
2399		return PTR_ERR(trans);
2400	}
2401
2402	if (!err) {
2403		if (num_bytes != rc->merging_rsv_size) {
2404			btrfs_end_transaction(trans);
2405			btrfs_block_rsv_release(fs_info, rc->block_rsv,
2406						num_bytes);
2407			goto again;
2408		}
2409	}
2410
2411	rc->merge_reloc_tree = 1;
2412
2413	while (!list_empty(&rc->reloc_roots)) {
2414		reloc_root = list_entry(rc->reloc_roots.next,
2415					struct btrfs_root, root_list);
2416		list_del_init(&reloc_root->root_list);
2417
2418		root = read_fs_root(fs_info, reloc_root->root_key.offset);
 
2419		BUG_ON(IS_ERR(root));
2420		BUG_ON(root->reloc_root != reloc_root);
2421
2422		/*
2423		 * set reference count to 1, so btrfs_recover_relocation
2424		 * knows it should resumes merging
2425		 */
2426		if (!err)
2427			btrfs_set_root_refs(&reloc_root->root_item, 1);
2428		btrfs_update_reloc_root(trans, root);
2429
2430		list_add(&reloc_root->root_list, &reloc_roots);
 
2431	}
2432
2433	list_splice(&reloc_roots, &rc->reloc_roots);
2434
2435	if (!err)
2436		btrfs_commit_transaction(trans);
2437	else
2438		btrfs_end_transaction(trans);
2439	return err;
2440}
2441
2442static noinline_for_stack
2443void free_reloc_roots(struct list_head *list)
2444{
2445	struct btrfs_root *reloc_root;
2446
2447	while (!list_empty(list)) {
2448		reloc_root = list_entry(list->next, struct btrfs_root,
2449					root_list);
2450		__del_reloc_root(reloc_root);
2451		free_extent_buffer(reloc_root->node);
2452		free_extent_buffer(reloc_root->commit_root);
2453		reloc_root->node = NULL;
2454		reloc_root->commit_root = NULL;
2455	}
2456}
2457
2458static noinline_for_stack
2459void merge_reloc_roots(struct reloc_control *rc)
2460{
2461	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2462	struct btrfs_root *root;
2463	struct btrfs_root *reloc_root;
2464	LIST_HEAD(reloc_roots);
2465	int found = 0;
2466	int ret = 0;
2467again:
2468	root = rc->extent_root;
2469
2470	/*
2471	 * this serializes us with btrfs_record_root_in_transaction,
2472	 * we have to make sure nobody is in the middle of
2473	 * adding their roots to the list while we are
2474	 * doing this splice
2475	 */
2476	mutex_lock(&fs_info->reloc_mutex);
2477	list_splice_init(&rc->reloc_roots, &reloc_roots);
2478	mutex_unlock(&fs_info->reloc_mutex);
2479
2480	while (!list_empty(&reloc_roots)) {
2481		found = 1;
2482		reloc_root = list_entry(reloc_roots.next,
2483					struct btrfs_root, root_list);
2484
 
 
2485		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2486			root = read_fs_root(fs_info,
2487					    reloc_root->root_key.offset);
2488			BUG_ON(IS_ERR(root));
2489			BUG_ON(root->reloc_root != reloc_root);
2490
2491			ret = merge_reloc_root(rc, root);
 
2492			if (ret) {
2493				if (list_empty(&reloc_root->root_list))
2494					list_add_tail(&reloc_root->root_list,
2495						      &reloc_roots);
2496				goto out;
2497			}
2498		} else {
 
 
 
 
 
 
 
 
 
 
2499			list_del_init(&reloc_root->root_list);
2500			/* Don't forget to queue this reloc root for cleanup */
2501			list_add_tail(&reloc_root->reloc_dirty_list,
2502				      &rc->dirty_subvol_roots);
2503		}
2504	}
2505
2506	if (found) {
2507		found = 0;
2508		goto again;
2509	}
2510out:
2511	if (ret) {
2512		btrfs_handle_fs_error(fs_info, ret, NULL);
2513		if (!list_empty(&reloc_roots))
2514			free_reloc_roots(&reloc_roots);
2515
2516		/* new reloc root may be added */
2517		mutex_lock(&fs_info->reloc_mutex);
2518		list_splice_init(&rc->reloc_roots, &reloc_roots);
2519		mutex_unlock(&fs_info->reloc_mutex);
2520		if (!list_empty(&reloc_roots))
2521			free_reloc_roots(&reloc_roots);
2522	}
2523
2524	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2525}
2526
2527static void free_block_list(struct rb_root *blocks)
2528{
2529	struct tree_block *block;
2530	struct rb_node *rb_node;
2531	while ((rb_node = rb_first(blocks))) {
2532		block = rb_entry(rb_node, struct tree_block, rb_node);
2533		rb_erase(rb_node, blocks);
2534		kfree(block);
2535	}
2536}
2537
2538static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2539				      struct btrfs_root *reloc_root)
2540{
2541	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2542	struct btrfs_root *root;
 
2543
2544	if (reloc_root->last_trans == trans->transid)
2545		return 0;
2546
2547	root = read_fs_root(fs_info, reloc_root->root_key.offset);
2548	BUG_ON(IS_ERR(root));
2549	BUG_ON(root->reloc_root != reloc_root);
 
 
2550
2551	return btrfs_record_root_in_trans(trans, root);
2552}
2553
2554static noinline_for_stack
2555struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2556				     struct reloc_control *rc,
2557				     struct backref_node *node,
2558				     struct backref_edge *edges[])
2559{
2560	struct backref_node *next;
2561	struct btrfs_root *root;
2562	int index = 0;
2563
2564	next = node;
2565	while (1) {
2566		cond_resched();
2567		next = walk_up_backref(next, edges, &index);
2568		root = next->root;
2569		BUG_ON(!root);
2570		BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
2571
2572		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2573			record_reloc_root_in_trans(trans, root);
2574			break;
2575		}
2576
2577		btrfs_record_root_in_trans(trans, root);
2578		root = root->reloc_root;
2579
2580		if (next->new_bytenr != root->node->start) {
2581			BUG_ON(next->new_bytenr);
2582			BUG_ON(!list_empty(&next->list));
2583			next->new_bytenr = root->node->start;
2584			next->root = root;
 
 
2585			list_add_tail(&next->list,
2586				      &rc->backref_cache.changed);
2587			__mark_block_processed(rc, next);
2588			break;
2589		}
2590
2591		WARN_ON(1);
2592		root = NULL;
2593		next = walk_down_backref(edges, &index);
2594		if (!next || next->level <= node->level)
2595			break;
2596	}
2597	if (!root)
2598		return NULL;
2599
2600	next = node;
2601	/* setup backref node path for btrfs_reloc_cow_block */
2602	while (1) {
2603		rc->backref_cache.path[next->level] = next;
2604		if (--index < 0)
2605			break;
2606		next = edges[index]->node[UPPER];
2607	}
2608	return root;
2609}
2610
2611/*
2612 * select a tree root for relocation. return NULL if the block
2613 * is reference counted. we should use do_relocation() in this
2614 * case. return a tree root pointer if the block isn't reference
2615 * counted. return -ENOENT if the block is root of reloc tree.
 
 
 
2616 */
2617static noinline_for_stack
2618struct btrfs_root *select_one_root(struct backref_node *node)
2619{
2620	struct backref_node *next;
2621	struct btrfs_root *root;
2622	struct btrfs_root *fs_root = NULL;
2623	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2624	int index = 0;
2625
2626	next = node;
2627	while (1) {
2628		cond_resched();
2629		next = walk_up_backref(next, edges, &index);
2630		root = next->root;
2631		BUG_ON(!root);
2632
2633		/* no other choice for non-references counted tree */
2634		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
2635			return root;
2636
2637		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2638			fs_root = root;
2639
2640		if (next != node)
2641			return NULL;
2642
2643		next = walk_down_backref(edges, &index);
2644		if (!next || next->level <= node->level)
2645			break;
2646	}
2647
2648	if (!fs_root)
2649		return ERR_PTR(-ENOENT);
2650	return fs_root;
2651}
2652
2653static noinline_for_stack
2654u64 calcu_metadata_size(struct reloc_control *rc,
2655			struct backref_node *node, int reserve)
2656{
2657	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2658	struct backref_node *next = node;
2659	struct backref_edge *edge;
2660	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2661	u64 num_bytes = 0;
2662	int index = 0;
2663
2664	BUG_ON(reserve && node->processed);
2665
2666	while (next) {
2667		cond_resched();
2668		while (1) {
2669			if (next->processed && (reserve || next != node))
2670				break;
2671
2672			num_bytes += fs_info->nodesize;
2673
2674			if (list_empty(&next->upper))
2675				break;
2676
2677			edge = list_entry(next->upper.next,
2678					  struct backref_edge, list[LOWER]);
2679			edges[index++] = edge;
2680			next = edge->node[UPPER];
2681		}
2682		next = walk_down_backref(edges, &index);
2683	}
2684	return num_bytes;
2685}
2686
2687static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2688				  struct reloc_control *rc,
2689				  struct backref_node *node)
2690{
2691	struct btrfs_root *root = rc->extent_root;
2692	struct btrfs_fs_info *fs_info = root->fs_info;
2693	u64 num_bytes;
2694	int ret;
2695	u64 tmp;
2696
2697	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2698
2699	trans->block_rsv = rc->block_rsv;
2700	rc->reserved_bytes += num_bytes;
2701
2702	/*
2703	 * We are under a transaction here so we can only do limited flushing.
2704	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2705	 * transaction and try to refill when we can flush all the things.
2706	 */
2707	ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2708				BTRFS_RESERVE_FLUSH_LIMIT);
2709	if (ret) {
2710		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2711		while (tmp <= rc->reserved_bytes)
2712			tmp <<= 1;
2713		/*
2714		 * only one thread can access block_rsv at this point,
2715		 * so we don't need hold lock to protect block_rsv.
2716		 * we expand more reservation size here to allow enough
2717		 * space for relocation and we will return earlier in
2718		 * enospc case.
2719		 */
2720		rc->block_rsv->size = tmp + fs_info->nodesize *
2721				      RELOCATION_RESERVED_NODES;
2722		return -EAGAIN;
2723	}
2724
2725	return 0;
2726}
2727
2728/*
2729 * relocate a block tree, and then update pointers in upper level
2730 * blocks that reference the block to point to the new location.
2731 *
2732 * if called by link_to_upper, the block has already been relocated.
2733 * in that case this function just updates pointers.
2734 */
2735static int do_relocation(struct btrfs_trans_handle *trans,
2736			 struct reloc_control *rc,
2737			 struct backref_node *node,
2738			 struct btrfs_key *key,
2739			 struct btrfs_path *path, int lowest)
2740{
2741	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2742	struct backref_node *upper;
2743	struct backref_edge *edge;
2744	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2745	struct btrfs_root *root;
2746	struct extent_buffer *eb;
2747	u32 blocksize;
2748	u64 bytenr;
2749	u64 generation;
2750	int slot;
2751	int ret;
2752	int err = 0;
2753
2754	BUG_ON(lowest && node->eb);
2755
2756	path->lowest_level = node->level + 1;
2757	rc->backref_cache.path[node->level] = node;
2758	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2759		struct btrfs_key first_key;
2760		struct btrfs_ref ref = { 0 };
2761
2762		cond_resched();
2763
2764		upper = edge->node[UPPER];
2765		root = select_reloc_root(trans, rc, upper, edges);
2766		BUG_ON(!root);
2767
2768		if (upper->eb && !upper->locked) {
2769			if (!lowest) {
2770				ret = btrfs_bin_search(upper->eb, key,
2771						       upper->level, &slot);
2772				if (ret < 0) {
2773					err = ret;
2774					goto next;
2775				}
2776				BUG_ON(ret);
2777				bytenr = btrfs_node_blockptr(upper->eb, slot);
2778				if (node->eb->start == bytenr)
2779					goto next;
2780			}
2781			drop_node_buffer(upper);
2782		}
2783
2784		if (!upper->eb) {
2785			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2786			if (ret) {
2787				if (ret < 0)
2788					err = ret;
2789				else
2790					err = -ENOENT;
2791
2792				btrfs_release_path(path);
2793				break;
2794			}
2795
2796			if (!upper->eb) {
2797				upper->eb = path->nodes[upper->level];
2798				path->nodes[upper->level] = NULL;
2799			} else {
2800				BUG_ON(upper->eb != path->nodes[upper->level]);
2801			}
2802
2803			upper->locked = 1;
2804			path->locks[upper->level] = 0;
2805
2806			slot = path->slots[upper->level];
2807			btrfs_release_path(path);
2808		} else {
2809			ret = btrfs_bin_search(upper->eb, key, upper->level,
2810					       &slot);
2811			if (ret < 0) {
2812				err = ret;
2813				goto next;
2814			}
2815			BUG_ON(ret);
2816		}
2817
2818		bytenr = btrfs_node_blockptr(upper->eb, slot);
2819		if (lowest) {
2820			if (bytenr != node->bytenr) {
2821				btrfs_err(root->fs_info,
2822		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2823					  bytenr, node->bytenr, slot,
2824					  upper->eb->start);
2825				err = -EIO;
2826				goto next;
2827			}
2828		} else {
2829			if (node->eb->start == bytenr)
2830				goto next;
2831		}
2832
2833		blocksize = root->fs_info->nodesize;
2834		generation = btrfs_node_ptr_generation(upper->eb, slot);
2835		btrfs_node_key_to_cpu(upper->eb, &first_key, slot);
2836		eb = read_tree_block(fs_info, bytenr, generation,
2837				     upper->level - 1, &first_key);
2838		if (IS_ERR(eb)) {
2839			err = PTR_ERR(eb);
2840			goto next;
2841		} else if (!extent_buffer_uptodate(eb)) {
2842			free_extent_buffer(eb);
2843			err = -EIO;
2844			goto next;
2845		}
2846		btrfs_tree_lock(eb);
2847		btrfs_set_lock_blocking_write(eb);
2848
2849		if (!node->eb) {
2850			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2851					      slot, &eb);
2852			btrfs_tree_unlock(eb);
2853			free_extent_buffer(eb);
2854			if (ret < 0) {
2855				err = ret;
2856				goto next;
2857			}
2858			BUG_ON(node->eb != eb);
2859		} else {
2860			btrfs_set_node_blockptr(upper->eb, slot,
2861						node->eb->start);
2862			btrfs_set_node_ptr_generation(upper->eb, slot,
2863						      trans->transid);
2864			btrfs_mark_buffer_dirty(upper->eb);
2865
2866			btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2867					       node->eb->start, blocksize,
2868					       upper->eb->start);
2869			ref.real_root = root->root_key.objectid;
2870			btrfs_init_tree_ref(&ref, node->level,
2871					    btrfs_header_owner(upper->eb));
2872			ret = btrfs_inc_extent_ref(trans, &ref);
2873			BUG_ON(ret);
2874
2875			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2876			BUG_ON(ret);
2877		}
2878next:
2879		if (!upper->pending)
2880			drop_node_buffer(upper);
2881		else
2882			unlock_node_buffer(upper);
2883		if (err)
2884			break;
2885	}
2886
2887	if (!err && node->pending) {
2888		drop_node_buffer(node);
2889		list_move_tail(&node->list, &rc->backref_cache.changed);
2890		node->pending = 0;
2891	}
2892
2893	path->lowest_level = 0;
2894	BUG_ON(err == -ENOSPC);
2895	return err;
2896}
2897
2898static int link_to_upper(struct btrfs_trans_handle *trans,
2899			 struct reloc_control *rc,
2900			 struct backref_node *node,
2901			 struct btrfs_path *path)
2902{
2903	struct btrfs_key key;
2904
2905	btrfs_node_key_to_cpu(node->eb, &key, 0);
2906	return do_relocation(trans, rc, node, &key, path, 0);
2907}
2908
2909static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2910				struct reloc_control *rc,
2911				struct btrfs_path *path, int err)
2912{
2913	LIST_HEAD(list);
2914	struct backref_cache *cache = &rc->backref_cache;
2915	struct backref_node *node;
2916	int level;
2917	int ret;
2918
2919	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2920		while (!list_empty(&cache->pending[level])) {
2921			node = list_entry(cache->pending[level].next,
2922					  struct backref_node, list);
2923			list_move_tail(&node->list, &list);
2924			BUG_ON(!node->pending);
2925
2926			if (!err) {
2927				ret = link_to_upper(trans, rc, node, path);
2928				if (ret < 0)
2929					err = ret;
2930			}
2931		}
2932		list_splice_init(&list, &cache->pending[level]);
2933	}
2934	return err;
2935}
2936
2937static void mark_block_processed(struct reloc_control *rc,
2938				 u64 bytenr, u32 blocksize)
2939{
2940	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2941			EXTENT_DIRTY);
2942}
2943
2944static void __mark_block_processed(struct reloc_control *rc,
2945				   struct backref_node *node)
2946{
2947	u32 blocksize;
2948	if (node->level == 0 ||
2949	    in_block_group(node->bytenr, rc->block_group)) {
2950		blocksize = rc->extent_root->fs_info->nodesize;
2951		mark_block_processed(rc, node->bytenr, blocksize);
2952	}
2953	node->processed = 1;
2954}
2955
2956/*
2957 * mark a block and all blocks directly/indirectly reference the block
2958 * as processed.
2959 */
2960static void update_processed_blocks(struct reloc_control *rc,
2961				    struct backref_node *node)
2962{
2963	struct backref_node *next = node;
2964	struct backref_edge *edge;
2965	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2966	int index = 0;
2967
2968	while (next) {
2969		cond_resched();
2970		while (1) {
2971			if (next->processed)
2972				break;
2973
2974			__mark_block_processed(rc, next);
2975
2976			if (list_empty(&next->upper))
2977				break;
2978
2979			edge = list_entry(next->upper.next,
2980					  struct backref_edge, list[LOWER]);
2981			edges[index++] = edge;
2982			next = edge->node[UPPER];
2983		}
2984		next = walk_down_backref(edges, &index);
2985	}
2986}
2987
2988static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2989{
2990	u32 blocksize = rc->extent_root->fs_info->nodesize;
2991
2992	if (test_range_bit(&rc->processed_blocks, bytenr,
2993			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2994		return 1;
2995	return 0;
2996}
2997
2998static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2999			      struct tree_block *block)
3000{
3001	struct extent_buffer *eb;
3002
3003	BUG_ON(block->key_ready);
3004	eb = read_tree_block(fs_info, block->bytenr, block->key.offset,
3005			     block->level, NULL);
3006	if (IS_ERR(eb)) {
3007		return PTR_ERR(eb);
3008	} else if (!extent_buffer_uptodate(eb)) {
3009		free_extent_buffer(eb);
3010		return -EIO;
3011	}
3012	if (block->level == 0)
3013		btrfs_item_key_to_cpu(eb, &block->key, 0);
3014	else
3015		btrfs_node_key_to_cpu(eb, &block->key, 0);
3016	free_extent_buffer(eb);
3017	block->key_ready = 1;
3018	return 0;
3019}
3020
3021/*
3022 * helper function to relocate a tree block
3023 */
3024static int relocate_tree_block(struct btrfs_trans_handle *trans,
3025				struct reloc_control *rc,
3026				struct backref_node *node,
3027				struct btrfs_key *key,
3028				struct btrfs_path *path)
3029{
3030	struct btrfs_root *root;
3031	int ret = 0;
3032
3033	if (!node)
3034		return 0;
3035
 
 
 
 
 
 
 
 
3036	BUG_ON(node->processed);
3037	root = select_one_root(node);
3038	if (root == ERR_PTR(-ENOENT)) {
3039		update_processed_blocks(rc, node);
3040		goto out;
3041	}
3042
3043	if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
3044		ret = reserve_metadata_space(trans, rc, node);
3045		if (ret)
3046			goto out;
3047	}
3048
3049	if (root) {
3050		if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
3051			BUG_ON(node->new_bytenr);
3052			BUG_ON(!list_empty(&node->list));
3053			btrfs_record_root_in_trans(trans, root);
3054			root = root->reloc_root;
3055			node->new_bytenr = root->node->start;
3056			node->root = root;
 
 
3057			list_add_tail(&node->list, &rc->backref_cache.changed);
3058		} else {
3059			path->lowest_level = node->level;
3060			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
3061			btrfs_release_path(path);
3062			if (ret > 0)
3063				ret = 0;
3064		}
3065		if (!ret)
3066			update_processed_blocks(rc, node);
3067	} else {
3068		ret = do_relocation(trans, rc, node, key, path, 1);
3069	}
3070out:
3071	if (ret || node->level == 0 || node->cowonly)
3072		remove_backref_node(&rc->backref_cache, node);
3073	return ret;
3074}
3075
3076/*
3077 * relocate a list of blocks
3078 */
3079static noinline_for_stack
3080int relocate_tree_blocks(struct btrfs_trans_handle *trans,
3081			 struct reloc_control *rc, struct rb_root *blocks)
3082{
3083	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3084	struct backref_node *node;
3085	struct btrfs_path *path;
3086	struct tree_block *block;
3087	struct tree_block *next;
3088	int ret;
3089	int err = 0;
3090
3091	path = btrfs_alloc_path();
3092	if (!path) {
3093		err = -ENOMEM;
3094		goto out_free_blocks;
3095	}
3096
3097	/* Kick in readahead for tree blocks with missing keys */
3098	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
3099		if (!block->key_ready)
3100			readahead_tree_block(fs_info, block->bytenr);
3101	}
3102
3103	/* Get first keys */
3104	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
3105		if (!block->key_ready) {
3106			err = get_tree_block_key(fs_info, block);
3107			if (err)
3108				goto out_free_path;
3109		}
3110	}
3111
3112	/* Do tree relocation */
3113	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
3114		node = build_backref_tree(rc, &block->key,
3115					  block->level, block->bytenr);
3116		if (IS_ERR(node)) {
3117			err = PTR_ERR(node);
3118			goto out;
3119		}
3120
3121		ret = relocate_tree_block(trans, rc, node, &block->key,
3122					  path);
3123		if (ret < 0) {
3124			if (ret != -EAGAIN || &block->rb_node == rb_first(blocks))
3125				err = ret;
3126			goto out;
3127		}
3128	}
3129out:
3130	err = finish_pending_nodes(trans, rc, path, err);
3131
3132out_free_path:
3133	btrfs_free_path(path);
3134out_free_blocks:
3135	free_block_list(blocks);
3136	return err;
3137}
3138
3139static noinline_for_stack
3140int prealloc_file_extent_cluster(struct inode *inode,
3141				 struct file_extent_cluster *cluster)
3142{
3143	u64 alloc_hint = 0;
3144	u64 start;
3145	u64 end;
3146	u64 offset = BTRFS_I(inode)->index_cnt;
3147	u64 num_bytes;
3148	int nr = 0;
3149	int ret = 0;
3150	u64 prealloc_start = cluster->start - offset;
3151	u64 prealloc_end = cluster->end - offset;
3152	u64 cur_offset;
3153	struct extent_changeset *data_reserved = NULL;
3154
3155	BUG_ON(cluster->start != cluster->boundary[0]);
3156	inode_lock(inode);
3157
3158	ret = btrfs_check_data_free_space(inode, &data_reserved, prealloc_start,
3159					  prealloc_end + 1 - prealloc_start);
3160	if (ret)
3161		goto out;
3162
3163	cur_offset = prealloc_start;
3164	while (nr < cluster->nr) {
3165		start = cluster->boundary[nr] - offset;
3166		if (nr + 1 < cluster->nr)
3167			end = cluster->boundary[nr + 1] - 1 - offset;
3168		else
3169			end = cluster->end - offset;
3170
3171		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3172		num_bytes = end + 1 - start;
3173		if (cur_offset < start)
3174			btrfs_free_reserved_data_space(inode, data_reserved,
3175					cur_offset, start - cur_offset);
3176		ret = btrfs_prealloc_file_range(inode, 0, start,
3177						num_bytes, num_bytes,
3178						end + 1, &alloc_hint);
3179		cur_offset = end + 1;
3180		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3181		if (ret)
3182			break;
3183		nr++;
3184	}
 
 
3185	if (cur_offset < prealloc_end)
3186		btrfs_free_reserved_data_space(inode, data_reserved,
3187				cur_offset, prealloc_end + 1 - cur_offset);
3188out:
3189	inode_unlock(inode);
3190	extent_changeset_free(data_reserved);
3191	return ret;
3192}
3193
3194static noinline_for_stack
3195int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
3196			 u64 block_start)
3197{
3198	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3199	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3200	struct extent_map *em;
3201	int ret = 0;
3202
3203	em = alloc_extent_map();
3204	if (!em)
3205		return -ENOMEM;
3206
3207	em->start = start;
3208	em->len = end + 1 - start;
3209	em->block_len = em->len;
3210	em->block_start = block_start;
3211	em->bdev = fs_info->fs_devices->latest_bdev;
3212	set_bit(EXTENT_FLAG_PINNED, &em->flags);
3213
3214	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3215	while (1) {
3216		write_lock(&em_tree->lock);
3217		ret = add_extent_mapping(em_tree, em, 0);
3218		write_unlock(&em_tree->lock);
3219		if (ret != -EEXIST) {
3220			free_extent_map(em);
3221			break;
3222		}
3223		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3224	}
3225	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3226	return ret;
3227}
3228
 
 
 
 
 
 
 
 
 
 
3229static int relocate_file_extent_cluster(struct inode *inode,
3230					struct file_extent_cluster *cluster)
3231{
3232	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3233	u64 page_start;
3234	u64 page_end;
3235	u64 offset = BTRFS_I(inode)->index_cnt;
3236	unsigned long index;
3237	unsigned long last_index;
3238	struct page *page;
3239	struct file_ra_state *ra;
3240	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3241	int nr = 0;
3242	int ret = 0;
3243
3244	if (!cluster->nr)
3245		return 0;
3246
3247	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3248	if (!ra)
3249		return -ENOMEM;
3250
3251	ret = prealloc_file_extent_cluster(inode, cluster);
3252	if (ret)
3253		goto out;
3254
3255	file_ra_state_init(ra, inode->i_mapping);
3256
3257	ret = setup_extent_mapping(inode, cluster->start - offset,
3258				   cluster->end - offset, cluster->start);
3259	if (ret)
3260		goto out;
3261
3262	index = (cluster->start - offset) >> PAGE_SHIFT;
3263	last_index = (cluster->end - offset) >> PAGE_SHIFT;
3264	while (index <= last_index) {
3265		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
3266				PAGE_SIZE);
3267		if (ret)
3268			goto out;
3269
3270		page = find_lock_page(inode->i_mapping, index);
3271		if (!page) {
3272			page_cache_sync_readahead(inode->i_mapping,
3273						  ra, NULL, index,
3274						  last_index + 1 - index);
3275			page = find_or_create_page(inode->i_mapping, index,
3276						   mask);
3277			if (!page) {
3278				btrfs_delalloc_release_metadata(BTRFS_I(inode),
3279							PAGE_SIZE, true);
3280				btrfs_delalloc_release_extents(BTRFS_I(inode),
3281							PAGE_SIZE);
3282				ret = -ENOMEM;
3283				goto out;
3284			}
3285		}
3286
3287		if (PageReadahead(page)) {
3288			page_cache_async_readahead(inode->i_mapping,
3289						   ra, NULL, page, index,
3290						   last_index + 1 - index);
3291		}
3292
3293		if (!PageUptodate(page)) {
3294			btrfs_readpage(NULL, page);
3295			lock_page(page);
3296			if (!PageUptodate(page)) {
3297				unlock_page(page);
3298				put_page(page);
3299				btrfs_delalloc_release_metadata(BTRFS_I(inode),
3300							PAGE_SIZE, true);
3301				btrfs_delalloc_release_extents(BTRFS_I(inode),
3302							       PAGE_SIZE);
3303				ret = -EIO;
3304				goto out;
3305			}
3306		}
3307
3308		page_start = page_offset(page);
3309		page_end = page_start + PAGE_SIZE - 1;
3310
3311		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3312
3313		set_page_extent_mapped(page);
3314
3315		if (nr < cluster->nr &&
3316		    page_start + offset == cluster->boundary[nr]) {
3317			set_extent_bits(&BTRFS_I(inode)->io_tree,
3318					page_start, page_end,
3319					EXTENT_BOUNDARY);
3320			nr++;
3321		}
3322
3323		ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
3324						NULL);
3325		if (ret) {
3326			unlock_page(page);
3327			put_page(page);
3328			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3329							 PAGE_SIZE, true);
3330			btrfs_delalloc_release_extents(BTRFS_I(inode),
3331			                               PAGE_SIZE);
3332
3333			clear_extent_bits(&BTRFS_I(inode)->io_tree,
3334					  page_start, page_end,
3335					  EXTENT_LOCKED | EXTENT_BOUNDARY);
3336			goto out;
3337
3338		}
3339		set_page_dirty(page);
3340
3341		unlock_extent(&BTRFS_I(inode)->io_tree,
3342			      page_start, page_end);
3343		unlock_page(page);
3344		put_page(page);
3345
3346		index++;
3347		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
3348		balance_dirty_pages_ratelimited(inode->i_mapping);
3349		btrfs_throttle(fs_info);
 
 
 
 
3350	}
3351	WARN_ON(nr != cluster->nr);
3352out:
3353	kfree(ra);
3354	return ret;
3355}
3356
3357static noinline_for_stack
3358int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3359			 struct file_extent_cluster *cluster)
3360{
3361	int ret;
3362
3363	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3364		ret = relocate_file_extent_cluster(inode, cluster);
3365		if (ret)
3366			return ret;
3367		cluster->nr = 0;
3368	}
3369
3370	if (!cluster->nr)
3371		cluster->start = extent_key->objectid;
3372	else
3373		BUG_ON(cluster->nr >= MAX_EXTENTS);
3374	cluster->end = extent_key->objectid + extent_key->offset - 1;
3375	cluster->boundary[cluster->nr] = extent_key->objectid;
3376	cluster->nr++;
3377
3378	if (cluster->nr >= MAX_EXTENTS) {
3379		ret = relocate_file_extent_cluster(inode, cluster);
3380		if (ret)
3381			return ret;
3382		cluster->nr = 0;
3383	}
3384	return 0;
3385}
3386
3387/*
3388 * helper to add a tree block to the list.
3389 * the major work is getting the generation and level of the block
3390 */
3391static int add_tree_block(struct reloc_control *rc,
3392			  struct btrfs_key *extent_key,
3393			  struct btrfs_path *path,
3394			  struct rb_root *blocks)
3395{
3396	struct extent_buffer *eb;
3397	struct btrfs_extent_item *ei;
3398	struct btrfs_tree_block_info *bi;
3399	struct tree_block *block;
3400	struct rb_node *rb_node;
3401	u32 item_size;
3402	int level = -1;
3403	u64 generation;
3404
3405	eb =  path->nodes[0];
3406	item_size = btrfs_item_size_nr(eb, path->slots[0]);
3407
3408	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3409	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3410		ei = btrfs_item_ptr(eb, path->slots[0],
3411				struct btrfs_extent_item);
3412		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3413			bi = (struct btrfs_tree_block_info *)(ei + 1);
3414			level = btrfs_tree_block_level(eb, bi);
3415		} else {
3416			level = (int)extent_key->offset;
3417		}
3418		generation = btrfs_extent_generation(eb, ei);
3419	} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3420		btrfs_print_v0_err(eb->fs_info);
3421		btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3422		return -EINVAL;
3423	} else {
3424		BUG();
3425	}
3426
3427	btrfs_release_path(path);
3428
3429	BUG_ON(level == -1);
3430
3431	block = kmalloc(sizeof(*block), GFP_NOFS);
3432	if (!block)
3433		return -ENOMEM;
3434
3435	block->bytenr = extent_key->objectid;
3436	block->key.objectid = rc->extent_root->fs_info->nodesize;
3437	block->key.offset = generation;
3438	block->level = level;
3439	block->key_ready = 0;
3440
3441	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3442	if (rb_node)
3443		backref_tree_panic(rb_node, -EEXIST, block->bytenr);
 
3444
3445	return 0;
3446}
3447
3448/*
3449 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3450 */
3451static int __add_tree_block(struct reloc_control *rc,
3452			    u64 bytenr, u32 blocksize,
3453			    struct rb_root *blocks)
3454{
3455	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3456	struct btrfs_path *path;
3457	struct btrfs_key key;
3458	int ret;
3459	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3460
3461	if (tree_block_processed(bytenr, rc))
3462		return 0;
3463
3464	if (tree_search(blocks, bytenr))
3465		return 0;
3466
3467	path = btrfs_alloc_path();
3468	if (!path)
3469		return -ENOMEM;
3470again:
3471	key.objectid = bytenr;
3472	if (skinny) {
3473		key.type = BTRFS_METADATA_ITEM_KEY;
3474		key.offset = (u64)-1;
3475	} else {
3476		key.type = BTRFS_EXTENT_ITEM_KEY;
3477		key.offset = blocksize;
3478	}
3479
3480	path->search_commit_root = 1;
3481	path->skip_locking = 1;
3482	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3483	if (ret < 0)
3484		goto out;
3485
3486	if (ret > 0 && skinny) {
3487		if (path->slots[0]) {
3488			path->slots[0]--;
3489			btrfs_item_key_to_cpu(path->nodes[0], &key,
3490					      path->slots[0]);
3491			if (key.objectid == bytenr &&
3492			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3493			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3494			      key.offset == blocksize)))
3495				ret = 0;
3496		}
3497
3498		if (ret) {
3499			skinny = false;
3500			btrfs_release_path(path);
3501			goto again;
3502		}
3503	}
3504	if (ret) {
3505		ASSERT(ret == 1);
3506		btrfs_print_leaf(path->nodes[0]);
3507		btrfs_err(fs_info,
3508	     "tree block extent item (%llu) is not found in extent tree",
3509		     bytenr);
3510		WARN_ON(1);
3511		ret = -EINVAL;
3512		goto out;
3513	}
3514
3515	ret = add_tree_block(rc, &key, path, blocks);
3516out:
3517	btrfs_free_path(path);
3518	return ret;
3519}
3520
3521/*
3522 * helper to check if the block use full backrefs for pointers in it
3523 */
3524static int block_use_full_backref(struct reloc_control *rc,
3525				  struct extent_buffer *eb)
3526{
3527	u64 flags;
3528	int ret;
3529
3530	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3531	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3532		return 1;
3533
3534	ret = btrfs_lookup_extent_info(NULL, rc->extent_root->fs_info,
3535				       eb->start, btrfs_header_level(eb), 1,
3536				       NULL, &flags);
3537	BUG_ON(ret);
3538
3539	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3540		ret = 1;
3541	else
3542		ret = 0;
3543	return ret;
3544}
3545
3546static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3547				    struct btrfs_block_group_cache *block_group,
3548				    struct inode *inode,
3549				    u64 ino)
3550{
3551	struct btrfs_key key;
3552	struct btrfs_root *root = fs_info->tree_root;
3553	struct btrfs_trans_handle *trans;
3554	int ret = 0;
3555
3556	if (inode)
3557		goto truncate;
3558
3559	key.objectid = ino;
3560	key.type = BTRFS_INODE_ITEM_KEY;
3561	key.offset = 0;
3562
3563	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3564	if (IS_ERR(inode))
3565		return -ENOENT;
3566
3567truncate:
3568	ret = btrfs_check_trunc_cache_free_space(fs_info,
3569						 &fs_info->global_block_rsv);
3570	if (ret)
3571		goto out;
3572
3573	trans = btrfs_join_transaction(root);
3574	if (IS_ERR(trans)) {
3575		ret = PTR_ERR(trans);
3576		goto out;
3577	}
3578
3579	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3580
3581	btrfs_end_transaction(trans);
3582	btrfs_btree_balance_dirty(fs_info);
3583out:
3584	iput(inode);
3585	return ret;
3586}
3587
3588/*
3589 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3590 * this function scans fs tree to find blocks reference the data extent
3591 */
3592static int find_data_references(struct reloc_control *rc,
3593				struct btrfs_key *extent_key,
3594				struct extent_buffer *leaf,
3595				struct btrfs_extent_data_ref *ref,
3596				struct rb_root *blocks)
3597{
3598	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3599	struct btrfs_path *path;
3600	struct tree_block *block;
3601	struct btrfs_root *root;
3602	struct btrfs_file_extent_item *fi;
3603	struct rb_node *rb_node;
3604	struct btrfs_key key;
3605	u64 ref_root;
3606	u64 ref_objectid;
3607	u64 ref_offset;
3608	u32 ref_count;
3609	u32 nritems;
3610	int err = 0;
3611	int added = 0;
3612	int counted;
3613	int ret;
3614
3615	ref_root = btrfs_extent_data_ref_root(leaf, ref);
3616	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3617	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3618	ref_count = btrfs_extent_data_ref_count(leaf, ref);
3619
3620	/*
3621	 * This is an extent belonging to the free space cache, lets just delete
3622	 * it and redo the search.
3623	 */
3624	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3625		ret = delete_block_group_cache(fs_info, rc->block_group,
3626					       NULL, ref_objectid);
3627		if (ret != -ENOENT)
3628			return ret;
3629		ret = 0;
3630	}
3631
3632	path = btrfs_alloc_path();
3633	if (!path)
3634		return -ENOMEM;
3635	path->reada = READA_FORWARD;
3636
3637	root = read_fs_root(fs_info, ref_root);
3638	if (IS_ERR(root)) {
3639		err = PTR_ERR(root);
3640		goto out;
3641	}
3642
3643	key.objectid = ref_objectid;
3644	key.type = BTRFS_EXTENT_DATA_KEY;
3645	if (ref_offset > ((u64)-1 << 32))
3646		key.offset = 0;
3647	else
3648		key.offset = ref_offset;
3649
3650	path->search_commit_root = 1;
3651	path->skip_locking = 1;
3652	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3653	if (ret < 0) {
3654		err = ret;
3655		goto out;
3656	}
3657
3658	leaf = path->nodes[0];
3659	nritems = btrfs_header_nritems(leaf);
3660	/*
3661	 * the references in tree blocks that use full backrefs
3662	 * are not counted in
3663	 */
3664	if (block_use_full_backref(rc, leaf))
3665		counted = 0;
3666	else
3667		counted = 1;
3668	rb_node = tree_search(blocks, leaf->start);
3669	if (rb_node) {
3670		if (counted)
3671			added = 1;
3672		else
3673			path->slots[0] = nritems;
3674	}
3675
3676	while (ref_count > 0) {
3677		while (path->slots[0] >= nritems) {
3678			ret = btrfs_next_leaf(root, path);
3679			if (ret < 0) {
3680				err = ret;
3681				goto out;
3682			}
3683			if (WARN_ON(ret > 0))
3684				goto out;
3685
3686			leaf = path->nodes[0];
3687			nritems = btrfs_header_nritems(leaf);
3688			added = 0;
3689
3690			if (block_use_full_backref(rc, leaf))
3691				counted = 0;
3692			else
3693				counted = 1;
3694			rb_node = tree_search(blocks, leaf->start);
3695			if (rb_node) {
3696				if (counted)
3697					added = 1;
3698				else
3699					path->slots[0] = nritems;
3700			}
3701		}
3702
3703		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3704		if (WARN_ON(key.objectid != ref_objectid ||
3705		    key.type != BTRFS_EXTENT_DATA_KEY))
 
 
 
 
 
 
3706			break;
3707
3708		fi = btrfs_item_ptr(leaf, path->slots[0],
3709				    struct btrfs_file_extent_item);
3710
3711		if (btrfs_file_extent_type(leaf, fi) ==
3712		    BTRFS_FILE_EXTENT_INLINE)
3713			goto next;
3714
3715		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3716		    extent_key->objectid)
3717			goto next;
3718
3719		key.offset -= btrfs_file_extent_offset(leaf, fi);
3720		if (key.offset != ref_offset)
3721			goto next;
3722
3723		if (counted)
3724			ref_count--;
3725		if (added)
3726			goto next;
3727
3728		if (!tree_block_processed(leaf->start, rc)) {
3729			block = kmalloc(sizeof(*block), GFP_NOFS);
3730			if (!block) {
3731				err = -ENOMEM;
3732				break;
3733			}
3734			block->bytenr = leaf->start;
3735			btrfs_item_key_to_cpu(leaf, &block->key, 0);
3736			block->level = 0;
3737			block->key_ready = 1;
3738			rb_node = tree_insert(blocks, block->bytenr,
3739					      &block->rb_node);
3740			if (rb_node)
3741				backref_tree_panic(rb_node, -EEXIST,
3742						   block->bytenr);
3743		}
3744		if (counted)
3745			added = 1;
3746		else
3747			path->slots[0] = nritems;
3748next:
3749		path->slots[0]++;
3750
3751	}
3752out:
3753	btrfs_free_path(path);
3754	return err;
 
 
3755}
3756
3757/*
3758 * helper to find all tree blocks that reference a given data extent
3759 */
3760static noinline_for_stack
3761int add_data_references(struct reloc_control *rc,
3762			struct btrfs_key *extent_key,
3763			struct btrfs_path *path,
3764			struct rb_root *blocks)
3765{
3766	struct btrfs_key key;
3767	struct extent_buffer *eb;
3768	struct btrfs_extent_data_ref *dref;
3769	struct btrfs_extent_inline_ref *iref;
3770	unsigned long ptr;
3771	unsigned long end;
3772	u32 blocksize = rc->extent_root->fs_info->nodesize;
3773	int ret = 0;
3774	int err = 0;
3775
3776	eb = path->nodes[0];
3777	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3778	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3779	ptr += sizeof(struct btrfs_extent_item);
3780
3781	while (ptr < end) {
3782		iref = (struct btrfs_extent_inline_ref *)ptr;
3783		key.type = btrfs_get_extent_inline_ref_type(eb, iref,
3784							BTRFS_REF_TYPE_DATA);
3785		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3786			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3787			ret = __add_tree_block(rc, key.offset, blocksize,
3788					       blocks);
3789		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3790			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3791			ret = find_data_references(rc, extent_key,
3792						   eb, dref, blocks);
3793		} else {
3794			ret = -EUCLEAN;
3795			btrfs_err(rc->extent_root->fs_info,
3796		     "extent %llu slot %d has an invalid inline ref type",
3797			     eb->start, path->slots[0]);
3798		}
3799		if (ret) {
3800			err = ret;
3801			goto out;
3802		}
3803		ptr += btrfs_extent_inline_ref_size(key.type);
3804	}
3805	WARN_ON(ptr > end);
3806
3807	while (1) {
3808		cond_resched();
3809		eb = path->nodes[0];
3810		if (path->slots[0] >= btrfs_header_nritems(eb)) {
3811			ret = btrfs_next_leaf(rc->extent_root, path);
3812			if (ret < 0) {
3813				err = ret;
3814				break;
3815			}
3816			if (ret > 0)
3817				break;
3818			eb = path->nodes[0];
3819		}
3820
3821		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3822		if (key.objectid != extent_key->objectid)
 
3823			break;
3824
3825		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3826			ret = __add_tree_block(rc, key.offset, blocksize,
3827					       blocks);
3828		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3829			dref = btrfs_item_ptr(eb, path->slots[0],
3830					      struct btrfs_extent_data_ref);
3831			ret = find_data_references(rc, extent_key,
3832						   eb, dref, blocks);
3833		} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
3834			btrfs_print_v0_err(eb->fs_info);
3835			btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3836			ret = -EINVAL;
3837		} else {
3838			ret = 0;
3839		}
3840		if (ret) {
3841			err = ret;
 
 
 
 
 
3842			break;
3843		}
3844		path->slots[0]++;
3845	}
3846out:
3847	btrfs_release_path(path);
3848	if (err)
3849		free_block_list(blocks);
3850	return err;
 
3851}
3852
3853/*
3854 * helper to find next unprocessed extent
3855 */
3856static noinline_for_stack
3857int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3858		     struct btrfs_key *extent_key)
3859{
3860	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3861	struct btrfs_key key;
3862	struct extent_buffer *leaf;
3863	u64 start, end, last;
3864	int ret;
3865
3866	last = rc->block_group->key.objectid + rc->block_group->key.offset;
3867	while (1) {
3868		cond_resched();
3869		if (rc->search_start >= last) {
3870			ret = 1;
3871			break;
3872		}
3873
3874		key.objectid = rc->search_start;
3875		key.type = BTRFS_EXTENT_ITEM_KEY;
3876		key.offset = 0;
3877
3878		path->search_commit_root = 1;
3879		path->skip_locking = 1;
3880		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3881					0, 0);
3882		if (ret < 0)
3883			break;
3884next:
3885		leaf = path->nodes[0];
3886		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3887			ret = btrfs_next_leaf(rc->extent_root, path);
3888			if (ret != 0)
3889				break;
3890			leaf = path->nodes[0];
3891		}
3892
3893		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3894		if (key.objectid >= last) {
3895			ret = 1;
3896			break;
3897		}
3898
3899		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3900		    key.type != BTRFS_METADATA_ITEM_KEY) {
3901			path->slots[0]++;
3902			goto next;
3903		}
3904
3905		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3906		    key.objectid + key.offset <= rc->search_start) {
3907			path->slots[0]++;
3908			goto next;
3909		}
3910
3911		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3912		    key.objectid + fs_info->nodesize <=
3913		    rc->search_start) {
3914			path->slots[0]++;
3915			goto next;
3916		}
3917
3918		ret = find_first_extent_bit(&rc->processed_blocks,
3919					    key.objectid, &start, &end,
3920					    EXTENT_DIRTY, NULL);
3921
3922		if (ret == 0 && start <= key.objectid) {
3923			btrfs_release_path(path);
3924			rc->search_start = end + 1;
3925		} else {
3926			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3927				rc->search_start = key.objectid + key.offset;
3928			else
3929				rc->search_start = key.objectid +
3930					fs_info->nodesize;
3931			memcpy(extent_key, &key, sizeof(key));
3932			return 0;
3933		}
3934	}
3935	btrfs_release_path(path);
3936	return ret;
3937}
3938
3939static void set_reloc_control(struct reloc_control *rc)
3940{
3941	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3942
3943	mutex_lock(&fs_info->reloc_mutex);
3944	fs_info->reloc_ctl = rc;
3945	mutex_unlock(&fs_info->reloc_mutex);
3946}
3947
3948static void unset_reloc_control(struct reloc_control *rc)
3949{
3950	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3951
3952	mutex_lock(&fs_info->reloc_mutex);
3953	fs_info->reloc_ctl = NULL;
3954	mutex_unlock(&fs_info->reloc_mutex);
3955}
3956
3957static int check_extent_flags(u64 flags)
3958{
3959	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3960	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3961		return 1;
3962	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3963	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3964		return 1;
3965	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3966	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3967		return 1;
3968	return 0;
3969}
3970
3971static noinline_for_stack
3972int prepare_to_relocate(struct reloc_control *rc)
3973{
3974	struct btrfs_trans_handle *trans;
3975	int ret;
3976
3977	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3978					      BTRFS_BLOCK_RSV_TEMP);
3979	if (!rc->block_rsv)
3980		return -ENOMEM;
3981
3982	memset(&rc->cluster, 0, sizeof(rc->cluster));
3983	rc->search_start = rc->block_group->key.objectid;
3984	rc->extents_found = 0;
3985	rc->nodes_relocated = 0;
3986	rc->merging_rsv_size = 0;
3987	rc->reserved_bytes = 0;
3988	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3989			      RELOCATION_RESERVED_NODES;
3990	ret = btrfs_block_rsv_refill(rc->extent_root,
3991				     rc->block_rsv, rc->block_rsv->size,
3992				     BTRFS_RESERVE_FLUSH_ALL);
3993	if (ret)
3994		return ret;
3995
3996	rc->create_reloc_tree = 1;
3997	set_reloc_control(rc);
3998
3999	trans = btrfs_join_transaction(rc->extent_root);
4000	if (IS_ERR(trans)) {
4001		unset_reloc_control(rc);
4002		/*
4003		 * extent tree is not a ref_cow tree and has no reloc_root to
4004		 * cleanup.  And callers are responsible to free the above
4005		 * block rsv.
4006		 */
4007		return PTR_ERR(trans);
4008	}
4009	btrfs_commit_transaction(trans);
4010	return 0;
4011}
4012
4013static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
4014{
4015	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
4016	struct rb_root blocks = RB_ROOT;
4017	struct btrfs_key key;
4018	struct btrfs_trans_handle *trans = NULL;
4019	struct btrfs_path *path;
4020	struct btrfs_extent_item *ei;
4021	u64 flags;
4022	u32 item_size;
4023	int ret;
4024	int err = 0;
4025	int progress = 0;
4026
4027	path = btrfs_alloc_path();
4028	if (!path)
4029		return -ENOMEM;
4030	path->reada = READA_FORWARD;
4031
4032	ret = prepare_to_relocate(rc);
4033	if (ret) {
4034		err = ret;
4035		goto out_free;
4036	}
4037
4038	while (1) {
4039		rc->reserved_bytes = 0;
4040		ret = btrfs_block_rsv_refill(rc->extent_root,
4041					rc->block_rsv, rc->block_rsv->size,
4042					BTRFS_RESERVE_FLUSH_ALL);
4043		if (ret) {
4044			err = ret;
4045			break;
4046		}
4047		progress++;
4048		trans = btrfs_start_transaction(rc->extent_root, 0);
4049		if (IS_ERR(trans)) {
4050			err = PTR_ERR(trans);
4051			trans = NULL;
4052			break;
4053		}
4054restart:
4055		if (update_backref_cache(trans, &rc->backref_cache)) {
4056			btrfs_end_transaction(trans);
4057			trans = NULL;
4058			continue;
4059		}
4060
4061		ret = find_next_extent(rc, path, &key);
4062		if (ret < 0)
4063			err = ret;
4064		if (ret != 0)
4065			break;
4066
4067		rc->extents_found++;
4068
4069		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4070				    struct btrfs_extent_item);
4071		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
4072		if (item_size >= sizeof(*ei)) {
4073			flags = btrfs_extent_flags(path->nodes[0], ei);
4074			ret = check_extent_flags(flags);
4075			BUG_ON(ret);
4076		} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
4077			err = -EINVAL;
4078			btrfs_print_v0_err(trans->fs_info);
4079			btrfs_abort_transaction(trans, err);
4080			break;
4081		} else {
4082			BUG();
4083		}
4084
4085		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
4086			ret = add_tree_block(rc, &key, path, &blocks);
4087		} else if (rc->stage == UPDATE_DATA_PTRS &&
4088			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
4089			ret = add_data_references(rc, &key, path, &blocks);
4090		} else {
4091			btrfs_release_path(path);
4092			ret = 0;
4093		}
4094		if (ret < 0) {
4095			err = ret;
4096			break;
4097		}
4098
4099		if (!RB_EMPTY_ROOT(&blocks)) {
4100			ret = relocate_tree_blocks(trans, rc, &blocks);
4101			if (ret < 0) {
4102				/*
4103				 * if we fail to relocate tree blocks, force to update
4104				 * backref cache when committing transaction.
4105				 */
4106				rc->backref_cache.last_trans = trans->transid - 1;
4107
4108				if (ret != -EAGAIN) {
4109					err = ret;
4110					break;
4111				}
4112				rc->extents_found--;
4113				rc->search_start = key.objectid;
4114			}
4115		}
4116
4117		btrfs_end_transaction_throttle(trans);
4118		btrfs_btree_balance_dirty(fs_info);
4119		trans = NULL;
4120
4121		if (rc->stage == MOVE_DATA_EXTENTS &&
4122		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
4123			rc->found_file_extent = 1;
4124			ret = relocate_data_extent(rc->data_inode,
4125						   &key, &rc->cluster);
4126			if (ret < 0) {
4127				err = ret;
4128				break;
4129			}
4130		}
 
 
 
 
4131	}
4132	if (trans && progress && err == -ENOSPC) {
4133		ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
4134		if (ret == 1) {
4135			err = 0;
4136			progress = 0;
4137			goto restart;
4138		}
4139	}
4140
4141	btrfs_release_path(path);
4142	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
4143
4144	if (trans) {
4145		btrfs_end_transaction_throttle(trans);
4146		btrfs_btree_balance_dirty(fs_info);
4147	}
4148
4149	if (!err) {
4150		ret = relocate_file_extent_cluster(rc->data_inode,
4151						   &rc->cluster);
4152		if (ret < 0)
4153			err = ret;
4154	}
4155
4156	rc->create_reloc_tree = 0;
4157	set_reloc_control(rc);
4158
4159	backref_cache_cleanup(&rc->backref_cache);
4160	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4161
 
 
 
 
 
 
 
 
4162	err = prepare_to_merge(rc, err);
4163
4164	merge_reloc_roots(rc);
4165
4166	rc->merge_reloc_tree = 0;
4167	unset_reloc_control(rc);
4168	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4169
4170	/* get rid of pinned extents */
4171	trans = btrfs_join_transaction(rc->extent_root);
4172	if (IS_ERR(trans)) {
4173		err = PTR_ERR(trans);
4174		goto out_free;
4175	}
4176	btrfs_commit_transaction(trans);
 
4177	ret = clean_dirty_subvols(rc);
4178	if (ret < 0 && !err)
4179		err = ret;
4180out_free:
4181	btrfs_free_block_rsv(fs_info, rc->block_rsv);
4182	btrfs_free_path(path);
4183	return err;
4184}
4185
4186static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4187				 struct btrfs_root *root, u64 objectid)
4188{
4189	struct btrfs_path *path;
4190	struct btrfs_inode_item *item;
4191	struct extent_buffer *leaf;
4192	int ret;
4193
4194	path = btrfs_alloc_path();
4195	if (!path)
4196		return -ENOMEM;
4197
4198	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
4199	if (ret)
4200		goto out;
4201
4202	leaf = path->nodes[0];
4203	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4204	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
4205	btrfs_set_inode_generation(leaf, item, 1);
4206	btrfs_set_inode_size(leaf, item, 0);
4207	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4208	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
4209					  BTRFS_INODE_PREALLOC);
4210	btrfs_mark_buffer_dirty(leaf);
4211out:
4212	btrfs_free_path(path);
4213	return ret;
4214}
4215
4216/*
4217 * helper to create inode for data relocation.
4218 * the inode is in data relocation tree and its link count is 0
4219 */
4220static noinline_for_stack
4221struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
4222				 struct btrfs_block_group_cache *group)
4223{
4224	struct inode *inode = NULL;
4225	struct btrfs_trans_handle *trans;
4226	struct btrfs_root *root;
4227	struct btrfs_key key;
4228	u64 objectid;
4229	int err = 0;
4230
4231	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4232	if (IS_ERR(root))
4233		return ERR_CAST(root);
4234
4235	trans = btrfs_start_transaction(root, 6);
4236	if (IS_ERR(trans))
 
4237		return ERR_CAST(trans);
 
4238
4239	err = btrfs_find_free_objectid(root, &objectid);
4240	if (err)
4241		goto out;
4242
4243	err = __insert_orphan_inode(trans, root, objectid);
4244	BUG_ON(err);
4245
4246	key.objectid = objectid;
4247	key.type = BTRFS_INODE_ITEM_KEY;
4248	key.offset = 0;
4249	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4250	BUG_ON(IS_ERR(inode));
4251	BTRFS_I(inode)->index_cnt = group->key.objectid;
4252
4253	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4254out:
 
4255	btrfs_end_transaction(trans);
4256	btrfs_btree_balance_dirty(fs_info);
4257	if (err) {
4258		if (inode)
4259			iput(inode);
4260		inode = ERR_PTR(err);
4261	}
4262	return inode;
4263}
4264
4265static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
4266{
4267	struct reloc_control *rc;
4268
4269	rc = kzalloc(sizeof(*rc), GFP_NOFS);
4270	if (!rc)
4271		return NULL;
4272
4273	INIT_LIST_HEAD(&rc->reloc_roots);
4274	INIT_LIST_HEAD(&rc->dirty_subvol_roots);
4275	backref_cache_init(&rc->backref_cache);
4276	mapping_tree_init(&rc->reloc_root_tree);
4277	extent_io_tree_init(fs_info, &rc->processed_blocks,
4278			    IO_TREE_RELOC_BLOCKS, NULL);
4279	return rc;
4280}
4281
 
 
 
 
 
 
 
 
 
 
 
 
4282/*
4283 * Print the block group being relocated
4284 */
4285static void describe_relocation(struct btrfs_fs_info *fs_info,
4286				struct btrfs_block_group_cache *block_group)
4287{
4288	char buf[128] = {'\0'};
4289
4290	btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
4291
4292	btrfs_info(fs_info,
4293		   "relocating block group %llu flags %s",
4294		   block_group->key.objectid, buf);
 
 
 
 
 
 
 
 
 
4295}
4296
4297/*
4298 * function to relocate all extents in a block group.
4299 */
4300int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
4301{
4302	struct btrfs_block_group_cache *bg;
4303	struct btrfs_root *extent_root = fs_info->extent_root;
4304	struct reloc_control *rc;
4305	struct inode *inode;
4306	struct btrfs_path *path;
4307	int ret;
4308	int rw = 0;
4309	int err = 0;
4310
4311	bg = btrfs_lookup_block_group(fs_info, group_start);
4312	if (!bg)
4313		return -ENOENT;
4314
4315	if (btrfs_pinned_by_swapfile(fs_info, bg)) {
4316		btrfs_put_block_group(bg);
4317		return -ETXTBSY;
4318	}
4319
4320	rc = alloc_reloc_control(fs_info);
4321	if (!rc) {
4322		btrfs_put_block_group(bg);
4323		return -ENOMEM;
4324	}
4325
4326	rc->extent_root = extent_root;
4327	rc->block_group = bg;
4328
4329	ret = btrfs_inc_block_group_ro(rc->block_group);
4330	if (ret) {
4331		err = ret;
4332		goto out;
4333	}
4334	rw = 1;
4335
4336	path = btrfs_alloc_path();
4337	if (!path) {
4338		err = -ENOMEM;
4339		goto out;
4340	}
4341
4342	inode = lookup_free_space_inode(rc->block_group, path);
4343	btrfs_free_path(path);
4344
4345	if (!IS_ERR(inode))
4346		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4347	else
4348		ret = PTR_ERR(inode);
4349
4350	if (ret && ret != -ENOENT) {
4351		err = ret;
4352		goto out;
4353	}
4354
4355	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4356	if (IS_ERR(rc->data_inode)) {
4357		err = PTR_ERR(rc->data_inode);
4358		rc->data_inode = NULL;
4359		goto out;
4360	}
4361
4362	describe_relocation(fs_info, rc->block_group);
4363
4364	btrfs_wait_block_group_reservations(rc->block_group);
4365	btrfs_wait_nocow_writers(rc->block_group);
4366	btrfs_wait_ordered_roots(fs_info, U64_MAX,
4367				 rc->block_group->key.objectid,
4368				 rc->block_group->key.offset);
4369
4370	while (1) {
 
 
4371		mutex_lock(&fs_info->cleaner_mutex);
4372		ret = relocate_block_group(rc);
4373		mutex_unlock(&fs_info->cleaner_mutex);
4374		if (ret < 0)
4375			err = ret;
4376
 
4377		/*
4378		 * We may have gotten ENOSPC after we already dirtied some
4379		 * extents.  If writeout happens while we're relocating a
4380		 * different block group we could end up hitting the
4381		 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4382		 * btrfs_reloc_cow_block.  Make sure we write everything out
4383		 * properly so we don't trip over this problem, and then break
4384		 * out of the loop if we hit an error.
4385		 */
4386		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4387			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4388						       (u64)-1);
4389			if (ret)
4390				err = ret;
4391			invalidate_mapping_pages(rc->data_inode->i_mapping,
4392						 0, -1);
4393			rc->stage = UPDATE_DATA_PTRS;
4394		}
4395
4396		if (err < 0)
4397			goto out;
4398
4399		if (rc->extents_found == 0)
4400			break;
4401
4402		btrfs_info(fs_info, "found %llu extents", rc->extents_found);
4403
4404	}
4405
4406	WARN_ON(rc->block_group->pinned > 0);
4407	WARN_ON(rc->block_group->reserved > 0);
4408	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4409out:
4410	if (err && rw)
4411		btrfs_dec_block_group_ro(rc->block_group);
4412	iput(rc->data_inode);
4413	btrfs_put_block_group(rc->block_group);
4414	kfree(rc);
4415	return err;
4416}
4417
4418static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4419{
4420	struct btrfs_fs_info *fs_info = root->fs_info;
4421	struct btrfs_trans_handle *trans;
4422	int ret, err;
4423
4424	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4425	if (IS_ERR(trans))
4426		return PTR_ERR(trans);
4427
4428	memset(&root->root_item.drop_progress, 0,
4429		sizeof(root->root_item.drop_progress));
4430	root->root_item.drop_level = 0;
4431	btrfs_set_root_refs(&root->root_item, 0);
4432	ret = btrfs_update_root(trans, fs_info->tree_root,
4433				&root->root_key, &root->root_item);
4434
4435	err = btrfs_end_transaction(trans);
4436	if (err)
4437		return err;
4438	return ret;
4439}
4440
4441/*
4442 * recover relocation interrupted by system crash.
4443 *
4444 * this function resumes merging reloc trees with corresponding fs trees.
4445 * this is important for keeping the sharing of tree blocks
4446 */
4447int btrfs_recover_relocation(struct btrfs_root *root)
4448{
4449	struct btrfs_fs_info *fs_info = root->fs_info;
4450	LIST_HEAD(reloc_roots);
4451	struct btrfs_key key;
4452	struct btrfs_root *fs_root;
4453	struct btrfs_root *reloc_root;
4454	struct btrfs_path *path;
4455	struct extent_buffer *leaf;
4456	struct reloc_control *rc = NULL;
4457	struct btrfs_trans_handle *trans;
4458	int ret;
4459	int err = 0;
4460
4461	path = btrfs_alloc_path();
4462	if (!path)
4463		return -ENOMEM;
4464	path->reada = READA_BACK;
4465
4466	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4467	key.type = BTRFS_ROOT_ITEM_KEY;
4468	key.offset = (u64)-1;
4469
4470	while (1) {
4471		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4472					path, 0, 0);
4473		if (ret < 0) {
4474			err = ret;
4475			goto out;
4476		}
4477		if (ret > 0) {
4478			if (path->slots[0] == 0)
4479				break;
4480			path->slots[0]--;
4481		}
4482		leaf = path->nodes[0];
4483		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4484		btrfs_release_path(path);
4485
4486		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4487		    key.type != BTRFS_ROOT_ITEM_KEY)
4488			break;
4489
4490		reloc_root = btrfs_read_fs_root(root, &key);
4491		if (IS_ERR(reloc_root)) {
4492			err = PTR_ERR(reloc_root);
4493			goto out;
4494		}
4495
 
4496		list_add(&reloc_root->root_list, &reloc_roots);
4497
4498		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4499			fs_root = read_fs_root(fs_info,
4500					       reloc_root->root_key.offset);
4501			if (IS_ERR(fs_root)) {
4502				ret = PTR_ERR(fs_root);
4503				if (ret != -ENOENT) {
4504					err = ret;
4505					goto out;
4506				}
4507				ret = mark_garbage_root(reloc_root);
4508				if (ret < 0) {
4509					err = ret;
4510					goto out;
4511				}
 
 
4512			}
4513		}
4514
4515		if (key.offset == 0)
4516			break;
4517
4518		key.offset--;
4519	}
4520	btrfs_release_path(path);
4521
4522	if (list_empty(&reloc_roots))
4523		goto out;
4524
4525	rc = alloc_reloc_control(fs_info);
4526	if (!rc) {
4527		err = -ENOMEM;
4528		goto out;
4529	}
4530
4531	rc->extent_root = fs_info->extent_root;
4532
4533	set_reloc_control(rc);
4534
4535	trans = btrfs_join_transaction(rc->extent_root);
4536	if (IS_ERR(trans)) {
4537		unset_reloc_control(rc);
4538		err = PTR_ERR(trans);
4539		goto out_free;
4540	}
4541
4542	rc->merge_reloc_tree = 1;
4543
4544	while (!list_empty(&reloc_roots)) {
4545		reloc_root = list_entry(reloc_roots.next,
4546					struct btrfs_root, root_list);
4547		list_del(&reloc_root->root_list);
4548
4549		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4550			list_add_tail(&reloc_root->root_list,
4551				      &rc->reloc_roots);
4552			continue;
4553		}
4554
4555		fs_root = read_fs_root(fs_info, reloc_root->root_key.offset);
 
4556		if (IS_ERR(fs_root)) {
4557			err = PTR_ERR(fs_root);
4558			goto out_free;
 
 
4559		}
4560
4561		err = __add_reloc_root(reloc_root);
4562		BUG_ON(err < 0); /* -ENOMEM or logic error */
4563		fs_root->reloc_root = reloc_root;
 
4564	}
4565
4566	err = btrfs_commit_transaction(trans);
4567	if (err)
4568		goto out_free;
4569
4570	merge_reloc_roots(rc);
4571
4572	unset_reloc_control(rc);
4573
4574	trans = btrfs_join_transaction(rc->extent_root);
4575	if (IS_ERR(trans)) {
4576		err = PTR_ERR(trans);
4577		goto out_free;
4578	}
4579	err = btrfs_commit_transaction(trans);
4580
4581	ret = clean_dirty_subvols(rc);
4582	if (ret < 0 && !err)
4583		err = ret;
4584out_free:
4585	kfree(rc);
 
4586out:
4587	if (!list_empty(&reloc_roots))
4588		free_reloc_roots(&reloc_roots);
4589
4590	btrfs_free_path(path);
4591
4592	if (err == 0) {
4593		/* cleanup orphan inode in data relocation tree */
4594		fs_root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4595		if (IS_ERR(fs_root))
4596			err = PTR_ERR(fs_root);
4597		else
4598			err = btrfs_orphan_cleanup(fs_root);
4599	}
4600	return err;
4601}
4602
4603/*
4604 * helper to add ordered checksum for data relocation.
4605 *
4606 * cloning checksum properly handles the nodatasum extents.
4607 * it also saves CPU time to re-calculate the checksum.
4608 */
4609int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4610{
4611	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4612	struct btrfs_ordered_sum *sums;
4613	struct btrfs_ordered_extent *ordered;
4614	int ret;
4615	u64 disk_bytenr;
4616	u64 new_bytenr;
4617	LIST_HEAD(list);
4618
4619	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4620	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4621
4622	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4623	ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
4624				       disk_bytenr + len - 1, &list, 0);
4625	if (ret)
4626		goto out;
4627
4628	while (!list_empty(&list)) {
4629		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4630		list_del_init(&sums->list);
4631
4632		/*
4633		 * We need to offset the new_bytenr based on where the csum is.
4634		 * We need to do this because we will read in entire prealloc
4635		 * extents but we may have written to say the middle of the
4636		 * prealloc extent, so we need to make sure the csum goes with
4637		 * the right disk offset.
4638		 *
4639		 * We can do this because the data reloc inode refers strictly
4640		 * to the on disk bytes, so we don't have to worry about
4641		 * disk_len vs real len like with real inodes since it's all
4642		 * disk length.
4643		 */
4644		new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
4645		sums->bytenr = new_bytenr;
4646
4647		btrfs_add_ordered_sum(ordered, sums);
4648	}
4649out:
4650	btrfs_put_ordered_extent(ordered);
4651	return ret;
4652}
4653
4654int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4655			  struct btrfs_root *root, struct extent_buffer *buf,
4656			  struct extent_buffer *cow)
4657{
4658	struct btrfs_fs_info *fs_info = root->fs_info;
4659	struct reloc_control *rc;
4660	struct backref_node *node;
4661	int first_cow = 0;
4662	int level;
4663	int ret = 0;
4664
4665	rc = fs_info->reloc_ctl;
4666	if (!rc)
4667		return 0;
4668
4669	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4670	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4671
4672	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
4673		if (buf == root->node)
4674			__update_reloc_root(root, cow->start);
4675	}
4676
4677	level = btrfs_header_level(buf);
4678	if (btrfs_header_generation(buf) <=
4679	    btrfs_root_last_snapshot(&root->root_item))
4680		first_cow = 1;
4681
4682	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4683	    rc->create_reloc_tree) {
4684		WARN_ON(!first_cow && level == 0);
4685
4686		node = rc->backref_cache.path[level];
4687		BUG_ON(node->bytenr != buf->start &&
4688		       node->new_bytenr != buf->start);
4689
4690		drop_node_buffer(node);
4691		extent_buffer_get(cow);
4692		node->eb = cow;
4693		node->new_bytenr = cow->start;
4694
4695		if (!node->pending) {
4696			list_move_tail(&node->list,
4697				       &rc->backref_cache.pending[level]);
4698			node->pending = 1;
4699		}
4700
4701		if (first_cow)
4702			__mark_block_processed(rc, node);
4703
4704		if (first_cow && level > 0)
4705			rc->nodes_relocated += buf->len;
4706	}
4707
4708	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4709		ret = replace_file_extents(trans, rc, root, cow);
4710	return ret;
4711}
4712
4713/*
4714 * called before creating snapshot. it calculates metadata reservation
4715 * required for relocating tree blocks in the snapshot
4716 */
4717void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4718			      u64 *bytes_to_reserve)
4719{
4720	struct btrfs_root *root = pending->root;
4721	struct reloc_control *rc = root->fs_info->reloc_ctl;
4722
4723	if (!root->reloc_root || !rc)
4724		return;
4725
4726	if (!rc->merge_reloc_tree)
4727		return;
4728
4729	root = root->reloc_root;
4730	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4731	/*
4732	 * relocation is in the stage of merging trees. the space
4733	 * used by merging a reloc tree is twice the size of
4734	 * relocated tree nodes in the worst case. half for cowing
4735	 * the reloc tree, half for cowing the fs tree. the space
4736	 * used by cowing the reloc tree will be freed after the
4737	 * tree is dropped. if we create snapshot, cowing the fs
4738	 * tree may use more space than it frees. so we need
4739	 * reserve extra space.
4740	 */
4741	*bytes_to_reserve += rc->nodes_relocated;
4742}
4743
4744/*
4745 * called after snapshot is created. migrate block reservation
4746 * and create reloc root for the newly created snapshot
 
 
 
 
4747 */
4748int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4749			       struct btrfs_pending_snapshot *pending)
4750{
4751	struct btrfs_root *root = pending->root;
4752	struct btrfs_root *reloc_root;
4753	struct btrfs_root *new_root;
4754	struct reloc_control *rc = root->fs_info->reloc_ctl;
4755	int ret;
4756
4757	if (!root->reloc_root || !rc)
4758		return 0;
4759
4760	rc = root->fs_info->reloc_ctl;
4761	rc->merging_rsv_size += rc->nodes_relocated;
4762
4763	if (rc->merge_reloc_tree) {
4764		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4765					      rc->block_rsv,
4766					      rc->nodes_relocated, true);
4767		if (ret)
4768			return ret;
4769	}
4770
4771	new_root = pending->snap;
4772	reloc_root = create_reloc_root(trans, root->reloc_root,
4773				       new_root->root_key.objectid);
4774	if (IS_ERR(reloc_root))
4775		return PTR_ERR(reloc_root);
4776
4777	ret = __add_reloc_root(reloc_root);
4778	BUG_ON(ret < 0);
4779	new_root->reloc_root = reloc_root;
4780
4781	if (rc->create_reloc_tree)
4782		ret = clone_backref_node(trans, rc, root, reloc_root);
4783	return ret;
4784}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2009 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/pagemap.h>
   8#include <linux/writeback.h>
   9#include <linux/blkdev.h>
  10#include <linux/rbtree.h>
  11#include <linux/slab.h>
  12#include <linux/error-injection.h>
  13#include "ctree.h"
  14#include "disk-io.h"
  15#include "transaction.h"
  16#include "volumes.h"
  17#include "locking.h"
  18#include "btrfs_inode.h"
  19#include "async-thread.h"
  20#include "free-space-cache.h"
  21#include "inode-map.h"
  22#include "qgroup.h"
  23#include "print-tree.h"
  24#include "delalloc-space.h"
  25#include "block-group.h"
  26#include "backref.h"
  27#include "misc.h"
  28
  29/*
  30 * Relocation overview
  31 *
  32 * [What does relocation do]
  33 *
  34 * The objective of relocation is to relocate all extents of the target block
  35 * group to other block groups.
  36 * This is utilized by resize (shrink only), profile converting, compacting
  37 * space, or balance routine to spread chunks over devices.
  38 *
  39 * 		Before		|		After
  40 * ------------------------------------------------------------------
  41 *  BG A: 10 data extents	| BG A: deleted
  42 *  BG B:  2 data extents	| BG B: 10 data extents (2 old + 8 relocated)
  43 *  BG C:  1 extents		| BG C:  3 data extents (1 old + 2 relocated)
  44 *
  45 * [How does relocation work]
  46 *
  47 * 1.   Mark the target block group read-only
  48 *      New extents won't be allocated from the target block group.
  49 *
  50 * 2.1  Record each extent in the target block group
  51 *      To build a proper map of extents to be relocated.
  52 *
  53 * 2.2  Build data reloc tree and reloc trees
  54 *      Data reloc tree will contain an inode, recording all newly relocated
  55 *      data extents.
  56 *      There will be only one data reloc tree for one data block group.
  57 *
  58 *      Reloc tree will be a special snapshot of its source tree, containing
  59 *      relocated tree blocks.
  60 *      Each tree referring to a tree block in target block group will get its
  61 *      reloc tree built.
  62 *
  63 * 2.3  Swap source tree with its corresponding reloc tree
  64 *      Each involved tree only refers to new extents after swap.
  65 *
  66 * 3.   Cleanup reloc trees and data reloc tree.
  67 *      As old extents in the target block group are still referenced by reloc
  68 *      trees, we need to clean them up before really freeing the target block
  69 *      group.
  70 *
  71 * The main complexity is in steps 2.2 and 2.3.
  72 *
  73 * The entry point of relocation is relocate_block_group() function.
 
 
 
 
 
 
 
 
 
  74 */
 
 
 
 
  75
 
 
  76#define RELOCATION_RESERVED_NODES	256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  77/*
  78 * map address of tree root to tree
  79 */
  80struct mapping_node {
  81	struct {
  82		struct rb_node rb_node;
  83		u64 bytenr;
  84	}; /* Use rb_simle_node for search/insert */
  85	void *data;
  86};
  87
  88struct mapping_tree {
  89	struct rb_root rb_root;
  90	spinlock_t lock;
  91};
  92
  93/*
  94 * present a tree block to process
  95 */
  96struct tree_block {
  97	struct {
  98		struct rb_node rb_node;
  99		u64 bytenr;
 100	}; /* Use rb_simple_node for search/insert */
 101	struct btrfs_key key;
 102	unsigned int level:8;
 103	unsigned int key_ready:1;
 104};
 105
 106#define MAX_EXTENTS 128
 107
 108struct file_extent_cluster {
 109	u64 start;
 110	u64 end;
 111	u64 boundary[MAX_EXTENTS];
 112	unsigned int nr;
 113};
 114
 115struct reloc_control {
 116	/* block group to relocate */
 117	struct btrfs_block_group *block_group;
 118	/* extent tree */
 119	struct btrfs_root *extent_root;
 120	/* inode for moving data */
 121	struct inode *data_inode;
 122
 123	struct btrfs_block_rsv *block_rsv;
 124
 125	struct btrfs_backref_cache backref_cache;
 126
 127	struct file_extent_cluster cluster;
 128	/* tree blocks have been processed */
 129	struct extent_io_tree processed_blocks;
 130	/* map start of tree root to corresponding reloc tree */
 131	struct mapping_tree reloc_root_tree;
 132	/* list of reloc trees */
 133	struct list_head reloc_roots;
 134	/* list of subvolume trees that get relocated */
 135	struct list_head dirty_subvol_roots;
 136	/* size of metadata reservation for merging reloc trees */
 137	u64 merging_rsv_size;
 138	/* size of relocated tree nodes */
 139	u64 nodes_relocated;
 140	/* reserved size for block group relocation*/
 141	u64 reserved_bytes;
 142
 143	u64 search_start;
 144	u64 extents_found;
 145
 146	unsigned int stage:8;
 147	unsigned int create_reloc_tree:1;
 148	unsigned int merge_reloc_tree:1;
 149	unsigned int found_file_extent:1;
 150};
 151
 152/* stages of data relocation */
 153#define MOVE_DATA_EXTENTS	0
 154#define UPDATE_DATA_PTRS	1
 155
 156static void mark_block_processed(struct reloc_control *rc,
 157				 struct btrfs_backref_node *node)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 158{
 159	u32 blocksize;
 
 
 
 
 
 
 160
 161	if (node->level == 0 ||
 162	    in_range(node->bytenr, rc->block_group->start,
 163		     rc->block_group->length)) {
 164		blocksize = rc->extent_root->fs_info->nodesize;
 165		set_extent_bits(&rc->processed_blocks, node->bytenr,
 166				node->bytenr + blocksize - 1, EXTENT_DIRTY);
 167	}
 168	node->processed = 1;
 
 
 
 169}
 170
 
 
 
 
 171
 172static void mapping_tree_init(struct mapping_tree *tree)
 
 
 
 
 
 
 
 
 
 
 
 
 
 173{
 174	tree->rb_root = RB_ROOT;
 175	spin_lock_init(&tree->lock);
 
 
 
 
 
 
 
 176}
 177
 178/*
 179 * walk up backref nodes until reach node presents tree root
 180 */
 181static struct btrfs_backref_node *walk_up_backref(
 182		struct btrfs_backref_node *node,
 183		struct btrfs_backref_edge *edges[], int *index)
 184{
 185	struct btrfs_backref_edge *edge;
 186	int idx = *index;
 187
 188	while (!list_empty(&node->upper)) {
 189		edge = list_entry(node->upper.next,
 190				  struct btrfs_backref_edge, list[LOWER]);
 191		edges[idx++] = edge;
 192		node = edge->node[UPPER];
 193	}
 194	BUG_ON(node->detached);
 195	*index = idx;
 196	return node;
 197}
 198
 199/*
 200 * walk down backref nodes to find start of next reference path
 201 */
 202static struct btrfs_backref_node *walk_down_backref(
 203		struct btrfs_backref_edge *edges[], int *index)
 204{
 205	struct btrfs_backref_edge *edge;
 206	struct btrfs_backref_node *lower;
 207	int idx = *index;
 208
 209	while (idx > 0) {
 210		edge = edges[idx - 1];
 211		lower = edge->node[LOWER];
 212		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
 213			idx--;
 214			continue;
 215		}
 216		edge = list_entry(edge->list[LOWER].next,
 217				  struct btrfs_backref_edge, list[LOWER]);
 218		edges[idx - 1] = edge;
 219		*index = idx;
 220		return edge->node[UPPER];
 221	}
 222	*index = 0;
 223	return NULL;
 224}
 225
 226static void update_backref_node(struct btrfs_backref_cache *cache,
 227				struct btrfs_backref_node *node, u64 bytenr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 228{
 229	struct rb_node *rb_node;
 230	rb_erase(&node->rb_node, &cache->rb_root);
 231	node->bytenr = bytenr;
 232	rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node);
 233	if (rb_node)
 234		btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST);
 235}
 236
 237/*
 238 * update backref cache after a transaction commit
 239 */
 240static int update_backref_cache(struct btrfs_trans_handle *trans,
 241				struct btrfs_backref_cache *cache)
 242{
 243	struct btrfs_backref_node *node;
 244	int level = 0;
 245
 246	if (cache->last_trans == 0) {
 247		cache->last_trans = trans->transid;
 248		return 0;
 249	}
 250
 251	if (cache->last_trans == trans->transid)
 252		return 0;
 253
 254	/*
 255	 * detached nodes are used to avoid unnecessary backref
 256	 * lookup. transaction commit changes the extent tree.
 257	 * so the detached nodes are no longer useful.
 258	 */
 259	while (!list_empty(&cache->detached)) {
 260		node = list_entry(cache->detached.next,
 261				  struct btrfs_backref_node, list);
 262		btrfs_backref_cleanup_node(cache, node);
 263	}
 264
 265	while (!list_empty(&cache->changed)) {
 266		node = list_entry(cache->changed.next,
 267				  struct btrfs_backref_node, list);
 268		list_del_init(&node->list);
 269		BUG_ON(node->pending);
 270		update_backref_node(cache, node, node->new_bytenr);
 271	}
 272
 273	/*
 274	 * some nodes can be left in the pending list if there were
 275	 * errors during processing the pending nodes.
 276	 */
 277	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
 278		list_for_each_entry(node, &cache->pending[level], list) {
 279			BUG_ON(!node->pending);
 280			if (node->bytenr == node->new_bytenr)
 281				continue;
 282			update_backref_node(cache, node, node->new_bytenr);
 283		}
 284	}
 285
 286	cache->last_trans = 0;
 287	return 1;
 288}
 289
 290static bool reloc_root_is_dead(struct btrfs_root *root)
 291{
 292	/*
 293	 * Pair with set_bit/clear_bit in clean_dirty_subvols and
 294	 * btrfs_update_reloc_root. We need to see the updated bit before
 295	 * trying to access reloc_root
 296	 */
 297	smp_rmb();
 298	if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
 299		return true;
 300	return false;
 301}
 302
 303/*
 304 * Check if this subvolume tree has valid reloc tree.
 305 *
 306 * Reloc tree after swap is considered dead, thus not considered as valid.
 307 * This is enough for most callers, as they don't distinguish dead reloc root
 308 * from no reloc root.  But btrfs_should_ignore_reloc_root() below is a
 309 * special case.
 310 */
 311static bool have_reloc_root(struct btrfs_root *root)
 312{
 313	if (reloc_root_is_dead(root))
 314		return false;
 315	if (!root->reloc_root)
 316		return false;
 317	return true;
 318}
 319
 320int btrfs_should_ignore_reloc_root(struct btrfs_root *root)
 321{
 322	struct btrfs_root *reloc_root;
 323
 324	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
 325		return 0;
 326
 327	/* This root has been merged with its reloc tree, we can ignore it */
 328	if (reloc_root_is_dead(root))
 329		return 1;
 330
 331	reloc_root = root->reloc_root;
 332	if (!reloc_root)
 333		return 0;
 334
 335	if (btrfs_header_generation(reloc_root->commit_root) ==
 336	    root->fs_info->running_transaction->transid)
 337		return 0;
 338	/*
 339	 * if there is reloc tree and it was created in previous
 340	 * transaction backref lookup can find the reloc tree,
 341	 * so backref node for the fs tree root is useless for
 342	 * relocation.
 343	 */
 344	return 1;
 345}
 346
 347/*
 348 * find reloc tree by address of tree root
 349 */
 350struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
 
 351{
 352	struct reloc_control *rc = fs_info->reloc_ctl;
 353	struct rb_node *rb_node;
 354	struct mapping_node *node;
 355	struct btrfs_root *root = NULL;
 356
 357	ASSERT(rc);
 358	spin_lock(&rc->reloc_root_tree.lock);
 359	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
 360	if (rb_node) {
 361		node = rb_entry(rb_node, struct mapping_node, rb_node);
 362		root = (struct btrfs_root *)node->data;
 363	}
 364	spin_unlock(&rc->reloc_root_tree.lock);
 365	return btrfs_grab_root(root);
 366}
 367
 368/*
 369 * For useless nodes, do two major clean ups:
 370 *
 371 * - Cleanup the children edges and nodes
 372 *   If child node is also orphan (no parent) during cleanup, then the child
 373 *   node will also be cleaned up.
 374 *
 375 * - Freeing up leaves (level 0), keeps nodes detached
 376 *   For nodes, the node is still cached as "detached"
 377 *
 378 * Return false if @node is not in the @useless_nodes list.
 379 * Return true if @node is in the @useless_nodes list.
 380 */
 381static bool handle_useless_nodes(struct reloc_control *rc,
 382				 struct btrfs_backref_node *node)
 383{
 384	struct btrfs_backref_cache *cache = &rc->backref_cache;
 385	struct list_head *useless_node = &cache->useless_node;
 386	bool ret = false;
 
 
 
 
 
 
 
 
 
 387
 388	while (!list_empty(useless_node)) {
 389		struct btrfs_backref_node *cur;
 
 
 390
 391		cur = list_first_entry(useless_node, struct btrfs_backref_node,
 392				 list);
 393		list_del_init(&cur->list);
 
 
 
 394
 395		/* Only tree root nodes can be added to @useless_nodes */
 396		ASSERT(list_empty(&cur->upper));
 397
 398		if (cur == node)
 399			ret = true;
 
 
 
 
 
 
 400
 401		/* The node is the lowest node */
 402		if (cur->lowest) {
 403			list_del_init(&cur->lower);
 404			cur->lowest = 0;
 405		}
 406
 407		/* Cleanup the lower edges */
 408		while (!list_empty(&cur->lower)) {
 409			struct btrfs_backref_edge *edge;
 410			struct btrfs_backref_node *lower;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 411
 412			edge = list_entry(cur->lower.next,
 413					struct btrfs_backref_edge, list[UPPER]);
 414			list_del(&edge->list[UPPER]);
 415			list_del(&edge->list[LOWER]);
 416			lower = edge->node[LOWER];
 417			btrfs_backref_free_edge(cache, edge);
 418
 419			/* Child node is also orphan, queue for cleanup */
 420			if (list_empty(&lower->upper))
 421				list_add(&lower->list, useless_node);
 422		}
 423		/* Mark this block processed for relocation */
 424		mark_block_processed(rc, cur);
 425
 426		/*
 427		 * Backref nodes for tree leaves are deleted from the cache.
 428		 * Backref nodes for upper level tree blocks are left in the
 429		 * cache to avoid unnecessary backref lookup.
 430		 */
 431		if (cur->level > 0) {
 432			list_add(&cur->list, &cache->detached);
 433			cur->detached = 1;
 434		} else {
 435			rb_erase(&cur->rb_node, &cache->rb_root);
 436			btrfs_backref_free_node(cache, cur);
 437		}
 438	}
 439	return ret;
 
 440}
 441
 442/*
 443 * Build backref tree for a given tree block. Root of the backref tree
 444 * corresponds the tree block, leaves of the backref tree correspond roots of
 445 * b-trees that reference the tree block.
 446 *
 447 * The basic idea of this function is check backrefs of a given block to find
 448 * upper level blocks that reference the block, and then check backrefs of
 449 * these upper level blocks recursively. The recursion stops when tree root is
 450 * reached or backrefs for the block is cached.
 451 *
 452 * NOTE: if we find that backrefs for a block are cached, we know backrefs for
 453 * all upper level blocks that directly/indirectly reference the block are also
 454 * cached.
 455 */
 456static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
 457			struct reloc_control *rc, struct btrfs_key *node_key,
 458			int level, u64 bytenr)
 459{
 460	struct btrfs_backref_iter *iter;
 461	struct btrfs_backref_cache *cache = &rc->backref_cache;
 462	/* For searching parent of TREE_BLOCK_REF */
 463	struct btrfs_path *path;
 464	struct btrfs_backref_node *cur;
 465	struct btrfs_backref_node *node = NULL;
 466	struct btrfs_backref_edge *edge;
 
 
 
 
 
 
 
 
 
 
 
 
 467	int ret;
 468	int err = 0;
 
 469
 470	iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info, GFP_NOFS);
 471	if (!iter)
 472		return ERR_PTR(-ENOMEM);
 473	path = btrfs_alloc_path();
 474	if (!path) {
 475		err = -ENOMEM;
 476		goto out;
 477	}
 
 
 478
 479	node = btrfs_backref_alloc_node(cache, bytenr, level);
 480	if (!node) {
 481		err = -ENOMEM;
 482		goto out;
 483	}
 484
 
 
 485	node->lowest = 1;
 486	cur = node;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 487
 488	/* Breadth-first search to build backref cache */
 489	do {
 490		ret = btrfs_backref_add_tree_node(cache, path, iter, node_key,
 491						  cur);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 492		if (ret < 0) {
 493			err = ret;
 494			goto out;
 495		}
 496		edge = list_first_entry_or_null(&cache->pending_edge,
 497				struct btrfs_backref_edge, list[UPPER]);
 498		/*
 499		 * The pending list isn't empty, take the first block to
 500		 * process
 501		 */
 502		if (edge) {
 503			list_del_init(&edge->list[UPPER]);
 504			cur = edge->node[UPPER];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 505		}
 506	} while (edge);
 507
 508	/* Finish the upper linkage of newly added edges/nodes */
 509	ret = btrfs_backref_finish_upper_links(cache, node);
 510	if (ret < 0) {
 511		err = ret;
 512		goto out;
 513	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 514
 515	if (handle_useless_nodes(rc, node))
 516		node = NULL;
 
 
 
 
 
 
 
 
 
 
 517out:
 518	btrfs_backref_iter_free(iter);
 519	btrfs_free_path(path);
 520	if (err) {
 521		btrfs_backref_error_cleanup(cache, node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 522		return ERR_PTR(err);
 523	}
 524	ASSERT(!node || !node->detached);
 525	ASSERT(list_empty(&cache->useless_node) &&
 526	       list_empty(&cache->pending_edge));
 527	return node;
 528}
 529
 530/*
 531 * helper to add backref node for the newly created snapshot.
 532 * the backref node is created by cloning backref node that
 533 * corresponds to root of source tree
 534 */
 535static int clone_backref_node(struct btrfs_trans_handle *trans,
 536			      struct reloc_control *rc,
 537			      struct btrfs_root *src,
 538			      struct btrfs_root *dest)
 539{
 540	struct btrfs_root *reloc_root = src->reloc_root;
 541	struct btrfs_backref_cache *cache = &rc->backref_cache;
 542	struct btrfs_backref_node *node = NULL;
 543	struct btrfs_backref_node *new_node;
 544	struct btrfs_backref_edge *edge;
 545	struct btrfs_backref_edge *new_edge;
 546	struct rb_node *rb_node;
 547
 548	if (cache->last_trans > 0)
 549		update_backref_cache(trans, cache);
 550
 551	rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
 552	if (rb_node) {
 553		node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
 554		if (node->detached)
 555			node = NULL;
 556		else
 557			BUG_ON(node->new_bytenr != reloc_root->node->start);
 558	}
 559
 560	if (!node) {
 561		rb_node = rb_simple_search(&cache->rb_root,
 562					   reloc_root->commit_root->start);
 563		if (rb_node) {
 564			node = rb_entry(rb_node, struct btrfs_backref_node,
 565					rb_node);
 566			BUG_ON(node->detached);
 567		}
 568	}
 569
 570	if (!node)
 571		return 0;
 572
 573	new_node = btrfs_backref_alloc_node(cache, dest->node->start,
 574					    node->level);
 575	if (!new_node)
 576		return -ENOMEM;
 577
 
 
 578	new_node->lowest = node->lowest;
 579	new_node->checked = 1;
 580	new_node->root = btrfs_grab_root(dest);
 581	ASSERT(new_node->root);
 582
 583	if (!node->lowest) {
 584		list_for_each_entry(edge, &node->lower, list[UPPER]) {
 585			new_edge = btrfs_backref_alloc_edge(cache);
 586			if (!new_edge)
 587				goto fail;
 588
 589			btrfs_backref_link_edge(new_edge, edge->node[LOWER],
 590						new_node, LINK_UPPER);
 
 
 591		}
 592	} else {
 593		list_add_tail(&new_node->lower, &cache->leaves);
 594	}
 595
 596	rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
 597				   &new_node->rb_node);
 598	if (rb_node)
 599		btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
 600
 601	if (!new_node->lowest) {
 602		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
 603			list_add_tail(&new_edge->list[LOWER],
 604				      &new_edge->node[LOWER]->upper);
 605		}
 606	}
 607	return 0;
 608fail:
 609	while (!list_empty(&new_node->lower)) {
 610		new_edge = list_entry(new_node->lower.next,
 611				      struct btrfs_backref_edge, list[UPPER]);
 612		list_del(&new_edge->list[UPPER]);
 613		btrfs_backref_free_edge(cache, new_edge);
 614	}
 615	btrfs_backref_free_node(cache, new_node);
 616	return -ENOMEM;
 617}
 618
 619/*
 620 * helper to add 'address of tree root -> reloc tree' mapping
 621 */
 622static int __must_check __add_reloc_root(struct btrfs_root *root)
 623{
 624	struct btrfs_fs_info *fs_info = root->fs_info;
 625	struct rb_node *rb_node;
 626	struct mapping_node *node;
 627	struct reloc_control *rc = fs_info->reloc_ctl;
 628
 629	node = kmalloc(sizeof(*node), GFP_NOFS);
 630	if (!node)
 631		return -ENOMEM;
 632
 633	node->bytenr = root->commit_root->start;
 634	node->data = root;
 635
 636	spin_lock(&rc->reloc_root_tree.lock);
 637	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
 638				   node->bytenr, &node->rb_node);
 639	spin_unlock(&rc->reloc_root_tree.lock);
 640	if (rb_node) {
 641		btrfs_panic(fs_info, -EEXIST,
 642			    "Duplicate root found for start=%llu while inserting into relocation tree",
 643			    node->bytenr);
 644	}
 645
 646	list_add_tail(&root->root_list, &rc->reloc_roots);
 647	return 0;
 648}
 649
 650/*
 651 * helper to delete the 'address of tree root -> reloc tree'
 652 * mapping
 653 */
 654static void __del_reloc_root(struct btrfs_root *root)
 655{
 656	struct btrfs_fs_info *fs_info = root->fs_info;
 657	struct rb_node *rb_node;
 658	struct mapping_node *node = NULL;
 659	struct reloc_control *rc = fs_info->reloc_ctl;
 660	bool put_ref = false;
 661
 662	if (rc && root->node) {
 663		spin_lock(&rc->reloc_root_tree.lock);
 664		rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
 665					   root->commit_root->start);
 666		if (rb_node) {
 667			node = rb_entry(rb_node, struct mapping_node, rb_node);
 668			rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
 669			RB_CLEAR_NODE(&node->rb_node);
 670		}
 671		spin_unlock(&rc->reloc_root_tree.lock);
 672		if (!node)
 673			return;
 674		BUG_ON((struct btrfs_root *)node->data != root);
 675	}
 676
 677	/*
 678	 * We only put the reloc root here if it's on the list.  There's a lot
 679	 * of places where the pattern is to splice the rc->reloc_roots, process
 680	 * the reloc roots, and then add the reloc root back onto
 681	 * rc->reloc_roots.  If we call __del_reloc_root while it's off of the
 682	 * list we don't want the reference being dropped, because the guy
 683	 * messing with the list is in charge of the reference.
 684	 */
 685	spin_lock(&fs_info->trans_lock);
 686	if (!list_empty(&root->root_list)) {
 687		put_ref = true;
 688		list_del_init(&root->root_list);
 689	}
 690	spin_unlock(&fs_info->trans_lock);
 691	if (put_ref)
 692		btrfs_put_root(root);
 693	kfree(node);
 694}
 695
 696/*
 697 * helper to update the 'address of tree root -> reloc tree'
 698 * mapping
 699 */
 700static int __update_reloc_root(struct btrfs_root *root)
 701{
 702	struct btrfs_fs_info *fs_info = root->fs_info;
 703	struct rb_node *rb_node;
 704	struct mapping_node *node = NULL;
 705	struct reloc_control *rc = fs_info->reloc_ctl;
 706
 707	spin_lock(&rc->reloc_root_tree.lock);
 708	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
 709				   root->commit_root->start);
 710	if (rb_node) {
 711		node = rb_entry(rb_node, struct mapping_node, rb_node);
 712		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
 713	}
 714	spin_unlock(&rc->reloc_root_tree.lock);
 715
 716	if (!node)
 717		return 0;
 718	BUG_ON((struct btrfs_root *)node->data != root);
 719
 720	spin_lock(&rc->reloc_root_tree.lock);
 721	node->bytenr = root->node->start;
 722	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
 723				   node->bytenr, &node->rb_node);
 724	spin_unlock(&rc->reloc_root_tree.lock);
 725	if (rb_node)
 726		btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
 727	return 0;
 728}
 729
 730static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
 731					struct btrfs_root *root, u64 objectid)
 732{
 733	struct btrfs_fs_info *fs_info = root->fs_info;
 734	struct btrfs_root *reloc_root;
 735	struct extent_buffer *eb;
 736	struct btrfs_root_item *root_item;
 737	struct btrfs_key root_key;
 738	int ret;
 739
 740	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
 741	BUG_ON(!root_item);
 742
 743	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
 744	root_key.type = BTRFS_ROOT_ITEM_KEY;
 745	root_key.offset = objectid;
 746
 747	if (root->root_key.objectid == objectid) {
 748		u64 commit_root_gen;
 749
 750		/* called by btrfs_init_reloc_root */
 751		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
 752				      BTRFS_TREE_RELOC_OBJECTID);
 753		BUG_ON(ret);
 754		/*
 755		 * Set the last_snapshot field to the generation of the commit
 756		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
 757		 * correctly (returns true) when the relocation root is created
 758		 * either inside the critical section of a transaction commit
 759		 * (through transaction.c:qgroup_account_snapshot()) and when
 760		 * it's created before the transaction commit is started.
 761		 */
 762		commit_root_gen = btrfs_header_generation(root->commit_root);
 763		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
 764	} else {
 765		/*
 766		 * called by btrfs_reloc_post_snapshot_hook.
 767		 * the source tree is a reloc tree, all tree blocks
 768		 * modified after it was created have RELOC flag
 769		 * set in their headers. so it's OK to not update
 770		 * the 'last_snapshot'.
 771		 */
 772		ret = btrfs_copy_root(trans, root, root->node, &eb,
 773				      BTRFS_TREE_RELOC_OBJECTID);
 774		BUG_ON(ret);
 775	}
 776
 777	memcpy(root_item, &root->root_item, sizeof(*root_item));
 778	btrfs_set_root_bytenr(root_item, eb->start);
 779	btrfs_set_root_level(root_item, btrfs_header_level(eb));
 780	btrfs_set_root_generation(root_item, trans->transid);
 781
 782	if (root->root_key.objectid == objectid) {
 783		btrfs_set_root_refs(root_item, 0);
 784		memset(&root_item->drop_progress, 0,
 785		       sizeof(struct btrfs_disk_key));
 786		root_item->drop_level = 0;
 787	}
 788
 789	btrfs_tree_unlock(eb);
 790	free_extent_buffer(eb);
 791
 792	ret = btrfs_insert_root(trans, fs_info->tree_root,
 793				&root_key, root_item);
 794	BUG_ON(ret);
 795	kfree(root_item);
 796
 797	reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
 798	BUG_ON(IS_ERR(reloc_root));
 799	set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
 800	reloc_root->last_trans = trans->transid;
 801	return reloc_root;
 802}
 803
 804/*
 805 * create reloc tree for a given fs tree. reloc tree is just a
 806 * snapshot of the fs tree with special root objectid.
 807 *
 808 * The reloc_root comes out of here with two references, one for
 809 * root->reloc_root, and another for being on the rc->reloc_roots list.
 810 */
 811int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
 812			  struct btrfs_root *root)
 813{
 814	struct btrfs_fs_info *fs_info = root->fs_info;
 815	struct btrfs_root *reloc_root;
 816	struct reloc_control *rc = fs_info->reloc_ctl;
 817	struct btrfs_block_rsv *rsv;
 818	int clear_rsv = 0;
 819	int ret;
 820
 821	if (!rc)
 822		return 0;
 823
 824	/*
 825	 * The subvolume has reloc tree but the swap is finished, no need to
 826	 * create/update the dead reloc tree
 827	 */
 828	if (reloc_root_is_dead(root))
 829		return 0;
 830
 831	/*
 832	 * This is subtle but important.  We do not do
 833	 * record_root_in_transaction for reloc roots, instead we record their
 834	 * corresponding fs root, and then here we update the last trans for the
 835	 * reloc root.  This means that we have to do this for the entire life
 836	 * of the reloc root, regardless of which stage of the relocation we are
 837	 * in.
 838	 */
 839	if (root->reloc_root) {
 840		reloc_root = root->reloc_root;
 841		reloc_root->last_trans = trans->transid;
 842		return 0;
 843	}
 844
 845	/*
 846	 * We are merging reloc roots, we do not need new reloc trees.  Also
 847	 * reloc trees never need their own reloc tree.
 848	 */
 849	if (!rc->create_reloc_tree ||
 850	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
 851		return 0;
 852
 853	if (!trans->reloc_reserved) {
 854		rsv = trans->block_rsv;
 855		trans->block_rsv = rc->block_rsv;
 856		clear_rsv = 1;
 857	}
 858	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
 859	if (clear_rsv)
 860		trans->block_rsv = rsv;
 861
 862	ret = __add_reloc_root(reloc_root);
 863	BUG_ON(ret < 0);
 864	root->reloc_root = btrfs_grab_root(reloc_root);
 865	return 0;
 866}
 867
 868/*
 869 * update root item of reloc tree
 870 */
 871int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
 872			    struct btrfs_root *root)
 873{
 874	struct btrfs_fs_info *fs_info = root->fs_info;
 875	struct btrfs_root *reloc_root;
 876	struct btrfs_root_item *root_item;
 877	int ret;
 878
 879	if (!have_reloc_root(root))
 
 880		goto out;
 881
 882	reloc_root = root->reloc_root;
 883	root_item = &reloc_root->root_item;
 884
 885	/*
 886	 * We are probably ok here, but __del_reloc_root() will drop its ref of
 887	 * the root.  We have the ref for root->reloc_root, but just in case
 888	 * hold it while we update the reloc root.
 889	 */
 890	btrfs_grab_root(reloc_root);
 891
 892	/* root->reloc_root will stay until current relocation finished */
 893	if (fs_info->reloc_ctl->merge_reloc_tree &&
 894	    btrfs_root_refs(root_item) == 0) {
 895		set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
 896		/*
 897		 * Mark the tree as dead before we change reloc_root so
 898		 * have_reloc_root will not touch it from now on.
 899		 */
 900		smp_wmb();
 901		__del_reloc_root(reloc_root);
 902	}
 903
 904	if (reloc_root->commit_root != reloc_root->node) {
 905		__update_reloc_root(reloc_root);
 906		btrfs_set_root_node(root_item, reloc_root->node);
 907		free_extent_buffer(reloc_root->commit_root);
 908		reloc_root->commit_root = btrfs_root_node(reloc_root);
 909	}
 910
 911	ret = btrfs_update_root(trans, fs_info->tree_root,
 912				&reloc_root->root_key, root_item);
 913	BUG_ON(ret);
 914	btrfs_put_root(reloc_root);
 915out:
 916	return 0;
 917}
 918
 919/*
 920 * helper to find first cached inode with inode number >= objectid
 921 * in a subvolume
 922 */
 923static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
 924{
 925	struct rb_node *node;
 926	struct rb_node *prev;
 927	struct btrfs_inode *entry;
 928	struct inode *inode;
 929
 930	spin_lock(&root->inode_lock);
 931again:
 932	node = root->inode_tree.rb_node;
 933	prev = NULL;
 934	while (node) {
 935		prev = node;
 936		entry = rb_entry(node, struct btrfs_inode, rb_node);
 937
 938		if (objectid < btrfs_ino(entry))
 939			node = node->rb_left;
 940		else if (objectid > btrfs_ino(entry))
 941			node = node->rb_right;
 942		else
 943			break;
 944	}
 945	if (!node) {
 946		while (prev) {
 947			entry = rb_entry(prev, struct btrfs_inode, rb_node);
 948			if (objectid <= btrfs_ino(entry)) {
 949				node = prev;
 950				break;
 951			}
 952			prev = rb_next(prev);
 953		}
 954	}
 955	while (node) {
 956		entry = rb_entry(node, struct btrfs_inode, rb_node);
 957		inode = igrab(&entry->vfs_inode);
 958		if (inode) {
 959			spin_unlock(&root->inode_lock);
 960			return inode;
 961		}
 962
 963		objectid = btrfs_ino(entry) + 1;
 964		if (cond_resched_lock(&root->inode_lock))
 965			goto again;
 966
 967		node = rb_next(node);
 968	}
 969	spin_unlock(&root->inode_lock);
 970	return NULL;
 971}
 972
 
 
 
 
 
 
 
 
 
 973/*
 974 * get new location of data
 975 */
 976static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
 977			    u64 bytenr, u64 num_bytes)
 978{
 979	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
 980	struct btrfs_path *path;
 981	struct btrfs_file_extent_item *fi;
 982	struct extent_buffer *leaf;
 983	int ret;
 984
 985	path = btrfs_alloc_path();
 986	if (!path)
 987		return -ENOMEM;
 988
 989	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
 990	ret = btrfs_lookup_file_extent(NULL, root, path,
 991			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
 992	if (ret < 0)
 993		goto out;
 994	if (ret > 0) {
 995		ret = -ENOENT;
 996		goto out;
 997	}
 998
 999	leaf = path->nodes[0];
1000	fi = btrfs_item_ptr(leaf, path->slots[0],
1001			    struct btrfs_file_extent_item);
1002
1003	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1004	       btrfs_file_extent_compression(leaf, fi) ||
1005	       btrfs_file_extent_encryption(leaf, fi) ||
1006	       btrfs_file_extent_other_encoding(leaf, fi));
1007
1008	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1009		ret = -EINVAL;
1010		goto out;
1011	}
1012
1013	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1014	ret = 0;
1015out:
1016	btrfs_free_path(path);
1017	return ret;
1018}
1019
1020/*
1021 * update file extent items in the tree leaf to point to
1022 * the new locations.
1023 */
1024static noinline_for_stack
1025int replace_file_extents(struct btrfs_trans_handle *trans,
1026			 struct reloc_control *rc,
1027			 struct btrfs_root *root,
1028			 struct extent_buffer *leaf)
1029{
1030	struct btrfs_fs_info *fs_info = root->fs_info;
1031	struct btrfs_key key;
1032	struct btrfs_file_extent_item *fi;
1033	struct inode *inode = NULL;
1034	u64 parent;
1035	u64 bytenr;
1036	u64 new_bytenr = 0;
1037	u64 num_bytes;
1038	u64 end;
1039	u32 nritems;
1040	u32 i;
1041	int ret = 0;
1042	int first = 1;
1043	int dirty = 0;
1044
1045	if (rc->stage != UPDATE_DATA_PTRS)
1046		return 0;
1047
1048	/* reloc trees always use full backref */
1049	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1050		parent = leaf->start;
1051	else
1052		parent = 0;
1053
1054	nritems = btrfs_header_nritems(leaf);
1055	for (i = 0; i < nritems; i++) {
1056		struct btrfs_ref ref = { 0 };
1057
1058		cond_resched();
1059		btrfs_item_key_to_cpu(leaf, &key, i);
1060		if (key.type != BTRFS_EXTENT_DATA_KEY)
1061			continue;
1062		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1063		if (btrfs_file_extent_type(leaf, fi) ==
1064		    BTRFS_FILE_EXTENT_INLINE)
1065			continue;
1066		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1067		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1068		if (bytenr == 0)
1069			continue;
1070		if (!in_range(bytenr, rc->block_group->start,
1071			      rc->block_group->length))
1072			continue;
1073
1074		/*
1075		 * if we are modifying block in fs tree, wait for readpage
1076		 * to complete and drop the extent cache
1077		 */
1078		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1079			if (first) {
1080				inode = find_next_inode(root, key.objectid);
1081				first = 0;
1082			} else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1083				btrfs_add_delayed_iput(inode);
1084				inode = find_next_inode(root, key.objectid);
1085			}
1086			if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1087				end = key.offset +
1088				      btrfs_file_extent_num_bytes(leaf, fi);
1089				WARN_ON(!IS_ALIGNED(key.offset,
1090						    fs_info->sectorsize));
1091				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1092				end--;
1093				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1094						      key.offset, end);
1095				if (!ret)
1096					continue;
1097
1098				btrfs_drop_extent_cache(BTRFS_I(inode),
1099						key.offset,	end, 1);
1100				unlock_extent(&BTRFS_I(inode)->io_tree,
1101					      key.offset, end);
1102			}
1103		}
1104
1105		ret = get_new_location(rc->data_inode, &new_bytenr,
1106				       bytenr, num_bytes);
1107		if (ret) {
1108			/*
1109			 * Don't have to abort since we've not changed anything
1110			 * in the file extent yet.
1111			 */
1112			break;
1113		}
1114
1115		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1116		dirty = 1;
1117
1118		key.offset -= btrfs_file_extent_offset(leaf, fi);
1119		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1120				       num_bytes, parent);
1121		ref.real_root = root->root_key.objectid;
1122		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1123				    key.objectid, key.offset);
1124		ret = btrfs_inc_extent_ref(trans, &ref);
1125		if (ret) {
1126			btrfs_abort_transaction(trans, ret);
1127			break;
1128		}
1129
1130		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1131				       num_bytes, parent);
1132		ref.real_root = root->root_key.objectid;
1133		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1134				    key.objectid, key.offset);
1135		ret = btrfs_free_extent(trans, &ref);
1136		if (ret) {
1137			btrfs_abort_transaction(trans, ret);
1138			break;
1139		}
1140	}
1141	if (dirty)
1142		btrfs_mark_buffer_dirty(leaf);
1143	if (inode)
1144		btrfs_add_delayed_iput(inode);
1145	return ret;
1146}
1147
1148static noinline_for_stack
1149int memcmp_node_keys(struct extent_buffer *eb, int slot,
1150		     struct btrfs_path *path, int level)
1151{
1152	struct btrfs_disk_key key1;
1153	struct btrfs_disk_key key2;
1154	btrfs_node_key(eb, &key1, slot);
1155	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1156	return memcmp(&key1, &key2, sizeof(key1));
1157}
1158
1159/*
1160 * try to replace tree blocks in fs tree with the new blocks
1161 * in reloc tree. tree blocks haven't been modified since the
1162 * reloc tree was create can be replaced.
1163 *
1164 * if a block was replaced, level of the block + 1 is returned.
1165 * if no block got replaced, 0 is returned. if there are other
1166 * errors, a negative error number is returned.
1167 */
1168static noinline_for_stack
1169int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1170		 struct btrfs_root *dest, struct btrfs_root *src,
1171		 struct btrfs_path *path, struct btrfs_key *next_key,
1172		 int lowest_level, int max_level)
1173{
1174	struct btrfs_fs_info *fs_info = dest->fs_info;
1175	struct extent_buffer *eb;
1176	struct extent_buffer *parent;
1177	struct btrfs_ref ref = { 0 };
1178	struct btrfs_key key;
1179	u64 old_bytenr;
1180	u64 new_bytenr;
1181	u64 old_ptr_gen;
1182	u64 new_ptr_gen;
1183	u64 last_snapshot;
1184	u32 blocksize;
1185	int cow = 0;
1186	int level;
1187	int ret;
1188	int slot;
1189
1190	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1191	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1192
1193	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1194again:
1195	slot = path->slots[lowest_level];
1196	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1197
1198	eb = btrfs_lock_root_node(dest);
1199	btrfs_set_lock_blocking_write(eb);
1200	level = btrfs_header_level(eb);
1201
1202	if (level < lowest_level) {
1203		btrfs_tree_unlock(eb);
1204		free_extent_buffer(eb);
1205		return 0;
1206	}
1207
1208	if (cow) {
1209		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1210		BUG_ON(ret);
1211	}
1212	btrfs_set_lock_blocking_write(eb);
1213
1214	if (next_key) {
1215		next_key->objectid = (u64)-1;
1216		next_key->type = (u8)-1;
1217		next_key->offset = (u64)-1;
1218	}
1219
1220	parent = eb;
1221	while (1) {
1222		struct btrfs_key first_key;
1223
1224		level = btrfs_header_level(parent);
1225		BUG_ON(level < lowest_level);
1226
1227		ret = btrfs_bin_search(parent, &key, &slot);
1228		if (ret < 0)
1229			break;
1230		if (ret && slot > 0)
1231			slot--;
1232
1233		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1234			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1235
1236		old_bytenr = btrfs_node_blockptr(parent, slot);
1237		blocksize = fs_info->nodesize;
1238		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1239		btrfs_node_key_to_cpu(parent, &first_key, slot);
1240
1241		if (level <= max_level) {
1242			eb = path->nodes[level];
1243			new_bytenr = btrfs_node_blockptr(eb,
1244							path->slots[level]);
1245			new_ptr_gen = btrfs_node_ptr_generation(eb,
1246							path->slots[level]);
1247		} else {
1248			new_bytenr = 0;
1249			new_ptr_gen = 0;
1250		}
1251
1252		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1253			ret = level;
1254			break;
1255		}
1256
1257		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1258		    memcmp_node_keys(parent, slot, path, level)) {
1259			if (level <= lowest_level) {
1260				ret = 0;
1261				break;
1262			}
1263
1264			eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen,
1265					     level - 1, &first_key);
1266			if (IS_ERR(eb)) {
1267				ret = PTR_ERR(eb);
1268				break;
1269			} else if (!extent_buffer_uptodate(eb)) {
1270				ret = -EIO;
1271				free_extent_buffer(eb);
1272				break;
1273			}
1274			btrfs_tree_lock(eb);
1275			if (cow) {
1276				ret = btrfs_cow_block(trans, dest, eb, parent,
1277						      slot, &eb);
1278				BUG_ON(ret);
1279			}
1280			btrfs_set_lock_blocking_write(eb);
1281
1282			btrfs_tree_unlock(parent);
1283			free_extent_buffer(parent);
1284
1285			parent = eb;
1286			continue;
1287		}
1288
1289		if (!cow) {
1290			btrfs_tree_unlock(parent);
1291			free_extent_buffer(parent);
1292			cow = 1;
1293			goto again;
1294		}
1295
1296		btrfs_node_key_to_cpu(path->nodes[level], &key,
1297				      path->slots[level]);
1298		btrfs_release_path(path);
1299
1300		path->lowest_level = level;
1301		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1302		path->lowest_level = 0;
1303		BUG_ON(ret);
1304
1305		/*
1306		 * Info qgroup to trace both subtrees.
1307		 *
1308		 * We must trace both trees.
1309		 * 1) Tree reloc subtree
1310		 *    If not traced, we will leak data numbers
1311		 * 2) Fs subtree
1312		 *    If not traced, we will double count old data
1313		 *
1314		 * We don't scan the subtree right now, but only record
1315		 * the swapped tree blocks.
1316		 * The real subtree rescan is delayed until we have new
1317		 * CoW on the subtree root node before transaction commit.
1318		 */
1319		ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1320				rc->block_group, parent, slot,
1321				path->nodes[level], path->slots[level],
1322				last_snapshot);
1323		if (ret < 0)
1324			break;
1325		/*
1326		 * swap blocks in fs tree and reloc tree.
1327		 */
1328		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1329		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1330		btrfs_mark_buffer_dirty(parent);
1331
1332		btrfs_set_node_blockptr(path->nodes[level],
1333					path->slots[level], old_bytenr);
1334		btrfs_set_node_ptr_generation(path->nodes[level],
1335					      path->slots[level], old_ptr_gen);
1336		btrfs_mark_buffer_dirty(path->nodes[level]);
1337
1338		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1339				       blocksize, path->nodes[level]->start);
1340		ref.skip_qgroup = true;
1341		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1342		ret = btrfs_inc_extent_ref(trans, &ref);
1343		BUG_ON(ret);
1344		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1345				       blocksize, 0);
1346		ref.skip_qgroup = true;
1347		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1348		ret = btrfs_inc_extent_ref(trans, &ref);
1349		BUG_ON(ret);
1350
1351		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1352				       blocksize, path->nodes[level]->start);
1353		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1354		ref.skip_qgroup = true;
1355		ret = btrfs_free_extent(trans, &ref);
1356		BUG_ON(ret);
1357
1358		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1359				       blocksize, 0);
1360		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1361		ref.skip_qgroup = true;
1362		ret = btrfs_free_extent(trans, &ref);
1363		BUG_ON(ret);
1364
1365		btrfs_unlock_up_safe(path, 0);
1366
1367		ret = level;
1368		break;
1369	}
1370	btrfs_tree_unlock(parent);
1371	free_extent_buffer(parent);
1372	return ret;
1373}
1374
1375/*
1376 * helper to find next relocated block in reloc tree
1377 */
1378static noinline_for_stack
1379int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1380		       int *level)
1381{
1382	struct extent_buffer *eb;
1383	int i;
1384	u64 last_snapshot;
1385	u32 nritems;
1386
1387	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1388
1389	for (i = 0; i < *level; i++) {
1390		free_extent_buffer(path->nodes[i]);
1391		path->nodes[i] = NULL;
1392	}
1393
1394	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1395		eb = path->nodes[i];
1396		nritems = btrfs_header_nritems(eb);
1397		while (path->slots[i] + 1 < nritems) {
1398			path->slots[i]++;
1399			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1400			    last_snapshot)
1401				continue;
1402
1403			*level = i;
1404			return 0;
1405		}
1406		free_extent_buffer(path->nodes[i]);
1407		path->nodes[i] = NULL;
1408	}
1409	return 1;
1410}
1411
1412/*
1413 * walk down reloc tree to find relocated block of lowest level
1414 */
1415static noinline_for_stack
1416int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1417			 int *level)
1418{
1419	struct btrfs_fs_info *fs_info = root->fs_info;
1420	struct extent_buffer *eb = NULL;
1421	int i;
1422	u64 bytenr;
1423	u64 ptr_gen = 0;
1424	u64 last_snapshot;
1425	u32 nritems;
1426
1427	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1428
1429	for (i = *level; i > 0; i--) {
1430		struct btrfs_key first_key;
1431
1432		eb = path->nodes[i];
1433		nritems = btrfs_header_nritems(eb);
1434		while (path->slots[i] < nritems) {
1435			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1436			if (ptr_gen > last_snapshot)
1437				break;
1438			path->slots[i]++;
1439		}
1440		if (path->slots[i] >= nritems) {
1441			if (i == *level)
1442				break;
1443			*level = i + 1;
1444			return 0;
1445		}
1446		if (i == 1) {
1447			*level = i;
1448			return 0;
1449		}
1450
1451		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
1452		btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]);
1453		eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1,
1454				     &first_key);
1455		if (IS_ERR(eb)) {
1456			return PTR_ERR(eb);
1457		} else if (!extent_buffer_uptodate(eb)) {
1458			free_extent_buffer(eb);
1459			return -EIO;
1460		}
1461		BUG_ON(btrfs_header_level(eb) != i - 1);
1462		path->nodes[i - 1] = eb;
1463		path->slots[i - 1] = 0;
1464	}
1465	return 1;
1466}
1467
1468/*
1469 * invalidate extent cache for file extents whose key in range of
1470 * [min_key, max_key)
1471 */
1472static int invalidate_extent_cache(struct btrfs_root *root,
1473				   struct btrfs_key *min_key,
1474				   struct btrfs_key *max_key)
1475{
1476	struct btrfs_fs_info *fs_info = root->fs_info;
1477	struct inode *inode = NULL;
1478	u64 objectid;
1479	u64 start, end;
1480	u64 ino;
1481
1482	objectid = min_key->objectid;
1483	while (1) {
1484		cond_resched();
1485		iput(inode);
1486
1487		if (objectid > max_key->objectid)
1488			break;
1489
1490		inode = find_next_inode(root, objectid);
1491		if (!inode)
1492			break;
1493		ino = btrfs_ino(BTRFS_I(inode));
1494
1495		if (ino > max_key->objectid) {
1496			iput(inode);
1497			break;
1498		}
1499
1500		objectid = ino + 1;
1501		if (!S_ISREG(inode->i_mode))
1502			continue;
1503
1504		if (unlikely(min_key->objectid == ino)) {
1505			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1506				continue;
1507			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1508				start = 0;
1509			else {
1510				start = min_key->offset;
1511				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1512			}
1513		} else {
1514			start = 0;
1515		}
1516
1517		if (unlikely(max_key->objectid == ino)) {
1518			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1519				continue;
1520			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1521				end = (u64)-1;
1522			} else {
1523				if (max_key->offset == 0)
1524					continue;
1525				end = max_key->offset;
1526				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1527				end--;
1528			}
1529		} else {
1530			end = (u64)-1;
1531		}
1532
1533		/* the lock_extent waits for readpage to complete */
1534		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
1535		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
1536		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
1537	}
1538	return 0;
1539}
1540
1541static int find_next_key(struct btrfs_path *path, int level,
1542			 struct btrfs_key *key)
1543
1544{
1545	while (level < BTRFS_MAX_LEVEL) {
1546		if (!path->nodes[level])
1547			break;
1548		if (path->slots[level] + 1 <
1549		    btrfs_header_nritems(path->nodes[level])) {
1550			btrfs_node_key_to_cpu(path->nodes[level], key,
1551					      path->slots[level] + 1);
1552			return 0;
1553		}
1554		level++;
1555	}
1556	return 1;
1557}
1558
1559/*
1560 * Insert current subvolume into reloc_control::dirty_subvol_roots
1561 */
1562static void insert_dirty_subvol(struct btrfs_trans_handle *trans,
1563				struct reloc_control *rc,
1564				struct btrfs_root *root)
1565{
1566	struct btrfs_root *reloc_root = root->reloc_root;
1567	struct btrfs_root_item *reloc_root_item;
1568
1569	/* @root must be a subvolume tree root with a valid reloc tree */
1570	ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1571	ASSERT(reloc_root);
1572
1573	reloc_root_item = &reloc_root->root_item;
1574	memset(&reloc_root_item->drop_progress, 0,
1575		sizeof(reloc_root_item->drop_progress));
1576	reloc_root_item->drop_level = 0;
1577	btrfs_set_root_refs(reloc_root_item, 0);
1578	btrfs_update_reloc_root(trans, root);
1579
1580	if (list_empty(&root->reloc_dirty_list)) {
1581		btrfs_grab_root(root);
1582		list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1583	}
1584}
1585
1586static int clean_dirty_subvols(struct reloc_control *rc)
1587{
1588	struct btrfs_root *root;
1589	struct btrfs_root *next;
1590	int ret = 0;
1591	int ret2;
1592
1593	list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1594				 reloc_dirty_list) {
1595		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1596			/* Merged subvolume, cleanup its reloc root */
1597			struct btrfs_root *reloc_root = root->reloc_root;
1598
1599			list_del_init(&root->reloc_dirty_list);
1600			root->reloc_root = NULL;
1601			/*
1602			 * Need barrier to ensure clear_bit() only happens after
1603			 * root->reloc_root = NULL. Pairs with have_reloc_root.
1604			 */
1605			smp_wmb();
1606			clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1607			if (reloc_root) {
1608				/*
1609				 * btrfs_drop_snapshot drops our ref we hold for
1610				 * ->reloc_root.  If it fails however we must
1611				 * drop the ref ourselves.
1612				 */
1613				ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1614				if (ret2 < 0) {
1615					btrfs_put_root(reloc_root);
1616					if (!ret)
1617						ret = ret2;
1618				}
1619			}
1620			btrfs_put_root(root);
 
1621		} else {
1622			/* Orphan reloc tree, just clean it up */
1623			ret2 = btrfs_drop_snapshot(root, 0, 1);
1624			if (ret2 < 0) {
1625				btrfs_put_root(root);
1626				if (!ret)
1627					ret = ret2;
1628			}
1629		}
1630	}
1631	return ret;
1632}
1633
1634/*
1635 * merge the relocated tree blocks in reloc tree with corresponding
1636 * fs tree.
1637 */
1638static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1639					       struct btrfs_root *root)
1640{
1641	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1642	struct btrfs_key key;
1643	struct btrfs_key next_key;
1644	struct btrfs_trans_handle *trans = NULL;
1645	struct btrfs_root *reloc_root;
1646	struct btrfs_root_item *root_item;
1647	struct btrfs_path *path;
1648	struct extent_buffer *leaf;
1649	int level;
1650	int max_level;
1651	int replaced = 0;
1652	int ret;
1653	int err = 0;
1654	u32 min_reserved;
1655
1656	path = btrfs_alloc_path();
1657	if (!path)
1658		return -ENOMEM;
1659	path->reada = READA_FORWARD;
1660
1661	reloc_root = root->reloc_root;
1662	root_item = &reloc_root->root_item;
1663
1664	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1665		level = btrfs_root_level(root_item);
1666		atomic_inc(&reloc_root->node->refs);
1667		path->nodes[level] = reloc_root->node;
1668		path->slots[level] = 0;
1669	} else {
1670		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1671
1672		level = root_item->drop_level;
1673		BUG_ON(level == 0);
1674		path->lowest_level = level;
1675		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1676		path->lowest_level = 0;
1677		if (ret < 0) {
1678			btrfs_free_path(path);
1679			return ret;
1680		}
1681
1682		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1683				      path->slots[level]);
1684		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1685
1686		btrfs_unlock_up_safe(path, 0);
1687	}
1688
1689	/*
1690	 * In merge_reloc_root(), we modify the upper level pointer to swap the
1691	 * tree blocks between reloc tree and subvolume tree.  Thus for tree
1692	 * block COW, we COW at most from level 1 to root level for each tree.
1693	 *
1694	 * Thus the needed metadata size is at most root_level * nodesize,
1695	 * and * 2 since we have two trees to COW.
1696	 */
1697	min_reserved = fs_info->nodesize * btrfs_root_level(root_item) * 2;
1698	memset(&next_key, 0, sizeof(next_key));
1699
1700	while (1) {
1701		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
1702					     BTRFS_RESERVE_FLUSH_LIMIT);
1703		if (ret) {
1704			err = ret;
1705			goto out;
1706		}
1707		trans = btrfs_start_transaction(root, 0);
1708		if (IS_ERR(trans)) {
1709			err = PTR_ERR(trans);
1710			trans = NULL;
1711			goto out;
1712		}
1713
1714		/*
1715		 * At this point we no longer have a reloc_control, so we can't
1716		 * depend on btrfs_init_reloc_root to update our last_trans.
1717		 *
1718		 * But that's ok, we started the trans handle on our
1719		 * corresponding fs_root, which means it's been added to the
1720		 * dirty list.  At commit time we'll still call
1721		 * btrfs_update_reloc_root() and update our root item
1722		 * appropriately.
1723		 */
1724		reloc_root->last_trans = trans->transid;
1725		trans->block_rsv = rc->block_rsv;
1726
1727		replaced = 0;
1728		max_level = level;
1729
1730		ret = walk_down_reloc_tree(reloc_root, path, &level);
1731		if (ret < 0) {
1732			err = ret;
1733			goto out;
1734		}
1735		if (ret > 0)
1736			break;
1737
1738		if (!find_next_key(path, level, &key) &&
1739		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1740			ret = 0;
1741		} else {
1742			ret = replace_path(trans, rc, root, reloc_root, path,
1743					   &next_key, level, max_level);
1744		}
1745		if (ret < 0) {
1746			err = ret;
1747			goto out;
1748		}
1749
1750		if (ret > 0) {
1751			level = ret;
1752			btrfs_node_key_to_cpu(path->nodes[level], &key,
1753					      path->slots[level]);
1754			replaced = 1;
1755		}
1756
1757		ret = walk_up_reloc_tree(reloc_root, path, &level);
1758		if (ret > 0)
1759			break;
1760
1761		BUG_ON(level == 0);
1762		/*
1763		 * save the merging progress in the drop_progress.
1764		 * this is OK since root refs == 1 in this case.
1765		 */
1766		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1767			       path->slots[level]);
1768		root_item->drop_level = level;
1769
1770		btrfs_end_transaction_throttle(trans);
1771		trans = NULL;
1772
1773		btrfs_btree_balance_dirty(fs_info);
1774
1775		if (replaced && rc->stage == UPDATE_DATA_PTRS)
1776			invalidate_extent_cache(root, &key, &next_key);
1777	}
1778
1779	/*
1780	 * handle the case only one block in the fs tree need to be
1781	 * relocated and the block is tree root.
1782	 */
1783	leaf = btrfs_lock_root_node(root);
1784	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
1785	btrfs_tree_unlock(leaf);
1786	free_extent_buffer(leaf);
1787	if (ret < 0)
1788		err = ret;
1789out:
1790	btrfs_free_path(path);
1791
1792	if (err == 0)
1793		insert_dirty_subvol(trans, rc, root);
1794
1795	if (trans)
1796		btrfs_end_transaction_throttle(trans);
1797
1798	btrfs_btree_balance_dirty(fs_info);
1799
1800	if (replaced && rc->stage == UPDATE_DATA_PTRS)
1801		invalidate_extent_cache(root, &key, &next_key);
1802
1803	return err;
1804}
1805
1806static noinline_for_stack
1807int prepare_to_merge(struct reloc_control *rc, int err)
1808{
1809	struct btrfs_root *root = rc->extent_root;
1810	struct btrfs_fs_info *fs_info = root->fs_info;
1811	struct btrfs_root *reloc_root;
1812	struct btrfs_trans_handle *trans;
1813	LIST_HEAD(reloc_roots);
1814	u64 num_bytes = 0;
1815	int ret;
1816
1817	mutex_lock(&fs_info->reloc_mutex);
1818	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1819	rc->merging_rsv_size += rc->nodes_relocated * 2;
1820	mutex_unlock(&fs_info->reloc_mutex);
1821
1822again:
1823	if (!err) {
1824		num_bytes = rc->merging_rsv_size;
1825		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
1826					  BTRFS_RESERVE_FLUSH_ALL);
1827		if (ret)
1828			err = ret;
1829	}
1830
1831	trans = btrfs_join_transaction(rc->extent_root);
1832	if (IS_ERR(trans)) {
1833		if (!err)
1834			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1835						num_bytes, NULL);
1836		return PTR_ERR(trans);
1837	}
1838
1839	if (!err) {
1840		if (num_bytes != rc->merging_rsv_size) {
1841			btrfs_end_transaction(trans);
1842			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1843						num_bytes, NULL);
1844			goto again;
1845		}
1846	}
1847
1848	rc->merge_reloc_tree = 1;
1849
1850	while (!list_empty(&rc->reloc_roots)) {
1851		reloc_root = list_entry(rc->reloc_roots.next,
1852					struct btrfs_root, root_list);
1853		list_del_init(&reloc_root->root_list);
1854
1855		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1856				false);
1857		BUG_ON(IS_ERR(root));
1858		BUG_ON(root->reloc_root != reloc_root);
1859
1860		/*
1861		 * set reference count to 1, so btrfs_recover_relocation
1862		 * knows it should resumes merging
1863		 */
1864		if (!err)
1865			btrfs_set_root_refs(&reloc_root->root_item, 1);
1866		btrfs_update_reloc_root(trans, root);
1867
1868		list_add(&reloc_root->root_list, &reloc_roots);
1869		btrfs_put_root(root);
1870	}
1871
1872	list_splice(&reloc_roots, &rc->reloc_roots);
1873
1874	if (!err)
1875		btrfs_commit_transaction(trans);
1876	else
1877		btrfs_end_transaction(trans);
1878	return err;
1879}
1880
1881static noinline_for_stack
1882void free_reloc_roots(struct list_head *list)
1883{
1884	struct btrfs_root *reloc_root, *tmp;
1885
1886	list_for_each_entry_safe(reloc_root, tmp, list, root_list)
 
 
1887		__del_reloc_root(reloc_root);
 
 
 
 
 
1888}
1889
1890static noinline_for_stack
1891void merge_reloc_roots(struct reloc_control *rc)
1892{
1893	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1894	struct btrfs_root *root;
1895	struct btrfs_root *reloc_root;
1896	LIST_HEAD(reloc_roots);
1897	int found = 0;
1898	int ret = 0;
1899again:
1900	root = rc->extent_root;
1901
1902	/*
1903	 * this serializes us with btrfs_record_root_in_transaction,
1904	 * we have to make sure nobody is in the middle of
1905	 * adding their roots to the list while we are
1906	 * doing this splice
1907	 */
1908	mutex_lock(&fs_info->reloc_mutex);
1909	list_splice_init(&rc->reloc_roots, &reloc_roots);
1910	mutex_unlock(&fs_info->reloc_mutex);
1911
1912	while (!list_empty(&reloc_roots)) {
1913		found = 1;
1914		reloc_root = list_entry(reloc_roots.next,
1915					struct btrfs_root, root_list);
1916
1917		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1918					 false);
1919		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
 
 
1920			BUG_ON(IS_ERR(root));
1921			BUG_ON(root->reloc_root != reloc_root);
 
1922			ret = merge_reloc_root(rc, root);
1923			btrfs_put_root(root);
1924			if (ret) {
1925				if (list_empty(&reloc_root->root_list))
1926					list_add_tail(&reloc_root->root_list,
1927						      &reloc_roots);
1928				goto out;
1929			}
1930		} else {
1931			if (!IS_ERR(root)) {
1932				if (root->reloc_root == reloc_root) {
1933					root->reloc_root = NULL;
1934					btrfs_put_root(reloc_root);
1935				}
1936				clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
1937					  &root->state);
1938				btrfs_put_root(root);
1939			}
1940
1941			list_del_init(&reloc_root->root_list);
1942			/* Don't forget to queue this reloc root for cleanup */
1943			list_add_tail(&reloc_root->reloc_dirty_list,
1944				      &rc->dirty_subvol_roots);
1945		}
1946	}
1947
1948	if (found) {
1949		found = 0;
1950		goto again;
1951	}
1952out:
1953	if (ret) {
1954		btrfs_handle_fs_error(fs_info, ret, NULL);
1955		free_reloc_roots(&reloc_roots);
 
1956
1957		/* new reloc root may be added */
1958		mutex_lock(&fs_info->reloc_mutex);
1959		list_splice_init(&rc->reloc_roots, &reloc_roots);
1960		mutex_unlock(&fs_info->reloc_mutex);
1961		free_reloc_roots(&reloc_roots);
 
1962	}
1963
1964	/*
1965	 * We used to have
1966	 *
1967	 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
1968	 *
1969	 * here, but it's wrong.  If we fail to start the transaction in
1970	 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
1971	 * have actually been removed from the reloc_root_tree rb tree.  This is
1972	 * fine because we're bailing here, and we hold a reference on the root
1973	 * for the list that holds it, so these roots will be cleaned up when we
1974	 * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root
1975	 * will be cleaned up on unmount.
1976	 *
1977	 * The remaining nodes will be cleaned up by free_reloc_control.
1978	 */
1979}
1980
1981static void free_block_list(struct rb_root *blocks)
1982{
1983	struct tree_block *block;
1984	struct rb_node *rb_node;
1985	while ((rb_node = rb_first(blocks))) {
1986		block = rb_entry(rb_node, struct tree_block, rb_node);
1987		rb_erase(rb_node, blocks);
1988		kfree(block);
1989	}
1990}
1991
1992static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
1993				      struct btrfs_root *reloc_root)
1994{
1995	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
1996	struct btrfs_root *root;
1997	int ret;
1998
1999	if (reloc_root->last_trans == trans->transid)
2000		return 0;
2001
2002	root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
2003	BUG_ON(IS_ERR(root));
2004	BUG_ON(root->reloc_root != reloc_root);
2005	ret = btrfs_record_root_in_trans(trans, root);
2006	btrfs_put_root(root);
2007
2008	return ret;
2009}
2010
2011static noinline_for_stack
2012struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2013				     struct reloc_control *rc,
2014				     struct btrfs_backref_node *node,
2015				     struct btrfs_backref_edge *edges[])
2016{
2017	struct btrfs_backref_node *next;
2018	struct btrfs_root *root;
2019	int index = 0;
2020
2021	next = node;
2022	while (1) {
2023		cond_resched();
2024		next = walk_up_backref(next, edges, &index);
2025		root = next->root;
2026		BUG_ON(!root);
2027		BUG_ON(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state));
2028
2029		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2030			record_reloc_root_in_trans(trans, root);
2031			break;
2032		}
2033
2034		btrfs_record_root_in_trans(trans, root);
2035		root = root->reloc_root;
2036
2037		if (next->new_bytenr != root->node->start) {
2038			BUG_ON(next->new_bytenr);
2039			BUG_ON(!list_empty(&next->list));
2040			next->new_bytenr = root->node->start;
2041			btrfs_put_root(next->root);
2042			next->root = btrfs_grab_root(root);
2043			ASSERT(next->root);
2044			list_add_tail(&next->list,
2045				      &rc->backref_cache.changed);
2046			mark_block_processed(rc, next);
2047			break;
2048		}
2049
2050		WARN_ON(1);
2051		root = NULL;
2052		next = walk_down_backref(edges, &index);
2053		if (!next || next->level <= node->level)
2054			break;
2055	}
2056	if (!root)
2057		return NULL;
2058
2059	next = node;
2060	/* setup backref node path for btrfs_reloc_cow_block */
2061	while (1) {
2062		rc->backref_cache.path[next->level] = next;
2063		if (--index < 0)
2064			break;
2065		next = edges[index]->node[UPPER];
2066	}
2067	return root;
2068}
2069
2070/*
2071 * Select a tree root for relocation.
2072 *
2073 * Return NULL if the block is not shareable. We should use do_relocation() in
2074 * this case.
2075 *
2076 * Return a tree root pointer if the block is shareable.
2077 * Return -ENOENT if the block is root of reloc tree.
2078 */
2079static noinline_for_stack
2080struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2081{
2082	struct btrfs_backref_node *next;
2083	struct btrfs_root *root;
2084	struct btrfs_root *fs_root = NULL;
2085	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2086	int index = 0;
2087
2088	next = node;
2089	while (1) {
2090		cond_resched();
2091		next = walk_up_backref(next, edges, &index);
2092		root = next->root;
2093		BUG_ON(!root);
2094
2095		/* No other choice for non-shareable tree */
2096		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2097			return root;
2098
2099		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2100			fs_root = root;
2101
2102		if (next != node)
2103			return NULL;
2104
2105		next = walk_down_backref(edges, &index);
2106		if (!next || next->level <= node->level)
2107			break;
2108	}
2109
2110	if (!fs_root)
2111		return ERR_PTR(-ENOENT);
2112	return fs_root;
2113}
2114
2115static noinline_for_stack
2116u64 calcu_metadata_size(struct reloc_control *rc,
2117			struct btrfs_backref_node *node, int reserve)
2118{
2119	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2120	struct btrfs_backref_node *next = node;
2121	struct btrfs_backref_edge *edge;
2122	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2123	u64 num_bytes = 0;
2124	int index = 0;
2125
2126	BUG_ON(reserve && node->processed);
2127
2128	while (next) {
2129		cond_resched();
2130		while (1) {
2131			if (next->processed && (reserve || next != node))
2132				break;
2133
2134			num_bytes += fs_info->nodesize;
2135
2136			if (list_empty(&next->upper))
2137				break;
2138
2139			edge = list_entry(next->upper.next,
2140					struct btrfs_backref_edge, list[LOWER]);
2141			edges[index++] = edge;
2142			next = edge->node[UPPER];
2143		}
2144		next = walk_down_backref(edges, &index);
2145	}
2146	return num_bytes;
2147}
2148
2149static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2150				  struct reloc_control *rc,
2151				  struct btrfs_backref_node *node)
2152{
2153	struct btrfs_root *root = rc->extent_root;
2154	struct btrfs_fs_info *fs_info = root->fs_info;
2155	u64 num_bytes;
2156	int ret;
2157	u64 tmp;
2158
2159	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2160
2161	trans->block_rsv = rc->block_rsv;
2162	rc->reserved_bytes += num_bytes;
2163
2164	/*
2165	 * We are under a transaction here so we can only do limited flushing.
2166	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2167	 * transaction and try to refill when we can flush all the things.
2168	 */
2169	ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2170				BTRFS_RESERVE_FLUSH_LIMIT);
2171	if (ret) {
2172		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2173		while (tmp <= rc->reserved_bytes)
2174			tmp <<= 1;
2175		/*
2176		 * only one thread can access block_rsv at this point,
2177		 * so we don't need hold lock to protect block_rsv.
2178		 * we expand more reservation size here to allow enough
2179		 * space for relocation and we will return earlier in
2180		 * enospc case.
2181		 */
2182		rc->block_rsv->size = tmp + fs_info->nodesize *
2183				      RELOCATION_RESERVED_NODES;
2184		return -EAGAIN;
2185	}
2186
2187	return 0;
2188}
2189
2190/*
2191 * relocate a block tree, and then update pointers in upper level
2192 * blocks that reference the block to point to the new location.
2193 *
2194 * if called by link_to_upper, the block has already been relocated.
2195 * in that case this function just updates pointers.
2196 */
2197static int do_relocation(struct btrfs_trans_handle *trans,
2198			 struct reloc_control *rc,
2199			 struct btrfs_backref_node *node,
2200			 struct btrfs_key *key,
2201			 struct btrfs_path *path, int lowest)
2202{
2203	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2204	struct btrfs_backref_node *upper;
2205	struct btrfs_backref_edge *edge;
2206	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2207	struct btrfs_root *root;
2208	struct extent_buffer *eb;
2209	u32 blocksize;
2210	u64 bytenr;
2211	u64 generation;
2212	int slot;
2213	int ret;
2214	int err = 0;
2215
2216	BUG_ON(lowest && node->eb);
2217
2218	path->lowest_level = node->level + 1;
2219	rc->backref_cache.path[node->level] = node;
2220	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2221		struct btrfs_key first_key;
2222		struct btrfs_ref ref = { 0 };
2223
2224		cond_resched();
2225
2226		upper = edge->node[UPPER];
2227		root = select_reloc_root(trans, rc, upper, edges);
2228		BUG_ON(!root);
2229
2230		if (upper->eb && !upper->locked) {
2231			if (!lowest) {
2232				ret = btrfs_bin_search(upper->eb, key, &slot);
 
2233				if (ret < 0) {
2234					err = ret;
2235					goto next;
2236				}
2237				BUG_ON(ret);
2238				bytenr = btrfs_node_blockptr(upper->eb, slot);
2239				if (node->eb->start == bytenr)
2240					goto next;
2241			}
2242			btrfs_backref_drop_node_buffer(upper);
2243		}
2244
2245		if (!upper->eb) {
2246			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2247			if (ret) {
2248				if (ret < 0)
2249					err = ret;
2250				else
2251					err = -ENOENT;
2252
2253				btrfs_release_path(path);
2254				break;
2255			}
2256
2257			if (!upper->eb) {
2258				upper->eb = path->nodes[upper->level];
2259				path->nodes[upper->level] = NULL;
2260			} else {
2261				BUG_ON(upper->eb != path->nodes[upper->level]);
2262			}
2263
2264			upper->locked = 1;
2265			path->locks[upper->level] = 0;
2266
2267			slot = path->slots[upper->level];
2268			btrfs_release_path(path);
2269		} else {
2270			ret = btrfs_bin_search(upper->eb, key, &slot);
 
2271			if (ret < 0) {
2272				err = ret;
2273				goto next;
2274			}
2275			BUG_ON(ret);
2276		}
2277
2278		bytenr = btrfs_node_blockptr(upper->eb, slot);
2279		if (lowest) {
2280			if (bytenr != node->bytenr) {
2281				btrfs_err(root->fs_info,
2282		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2283					  bytenr, node->bytenr, slot,
2284					  upper->eb->start);
2285				err = -EIO;
2286				goto next;
2287			}
2288		} else {
2289			if (node->eb->start == bytenr)
2290				goto next;
2291		}
2292
2293		blocksize = root->fs_info->nodesize;
2294		generation = btrfs_node_ptr_generation(upper->eb, slot);
2295		btrfs_node_key_to_cpu(upper->eb, &first_key, slot);
2296		eb = read_tree_block(fs_info, bytenr, generation,
2297				     upper->level - 1, &first_key);
2298		if (IS_ERR(eb)) {
2299			err = PTR_ERR(eb);
2300			goto next;
2301		} else if (!extent_buffer_uptodate(eb)) {
2302			free_extent_buffer(eb);
2303			err = -EIO;
2304			goto next;
2305		}
2306		btrfs_tree_lock(eb);
2307		btrfs_set_lock_blocking_write(eb);
2308
2309		if (!node->eb) {
2310			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2311					      slot, &eb);
2312			btrfs_tree_unlock(eb);
2313			free_extent_buffer(eb);
2314			if (ret < 0) {
2315				err = ret;
2316				goto next;
2317			}
2318			BUG_ON(node->eb != eb);
2319		} else {
2320			btrfs_set_node_blockptr(upper->eb, slot,
2321						node->eb->start);
2322			btrfs_set_node_ptr_generation(upper->eb, slot,
2323						      trans->transid);
2324			btrfs_mark_buffer_dirty(upper->eb);
2325
2326			btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2327					       node->eb->start, blocksize,
2328					       upper->eb->start);
2329			ref.real_root = root->root_key.objectid;
2330			btrfs_init_tree_ref(&ref, node->level,
2331					    btrfs_header_owner(upper->eb));
2332			ret = btrfs_inc_extent_ref(trans, &ref);
2333			BUG_ON(ret);
2334
2335			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2336			BUG_ON(ret);
2337		}
2338next:
2339		if (!upper->pending)
2340			btrfs_backref_drop_node_buffer(upper);
2341		else
2342			btrfs_backref_unlock_node_buffer(upper);
2343		if (err)
2344			break;
2345	}
2346
2347	if (!err && node->pending) {
2348		btrfs_backref_drop_node_buffer(node);
2349		list_move_tail(&node->list, &rc->backref_cache.changed);
2350		node->pending = 0;
2351	}
2352
2353	path->lowest_level = 0;
2354	BUG_ON(err == -ENOSPC);
2355	return err;
2356}
2357
2358static int link_to_upper(struct btrfs_trans_handle *trans,
2359			 struct reloc_control *rc,
2360			 struct btrfs_backref_node *node,
2361			 struct btrfs_path *path)
2362{
2363	struct btrfs_key key;
2364
2365	btrfs_node_key_to_cpu(node->eb, &key, 0);
2366	return do_relocation(trans, rc, node, &key, path, 0);
2367}
2368
2369static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2370				struct reloc_control *rc,
2371				struct btrfs_path *path, int err)
2372{
2373	LIST_HEAD(list);
2374	struct btrfs_backref_cache *cache = &rc->backref_cache;
2375	struct btrfs_backref_node *node;
2376	int level;
2377	int ret;
2378
2379	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2380		while (!list_empty(&cache->pending[level])) {
2381			node = list_entry(cache->pending[level].next,
2382					  struct btrfs_backref_node, list);
2383			list_move_tail(&node->list, &list);
2384			BUG_ON(!node->pending);
2385
2386			if (!err) {
2387				ret = link_to_upper(trans, rc, node, path);
2388				if (ret < 0)
2389					err = ret;
2390			}
2391		}
2392		list_splice_init(&list, &cache->pending[level]);
2393	}
2394	return err;
2395}
2396
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2397/*
2398 * mark a block and all blocks directly/indirectly reference the block
2399 * as processed.
2400 */
2401static void update_processed_blocks(struct reloc_control *rc,
2402				    struct btrfs_backref_node *node)
2403{
2404	struct btrfs_backref_node *next = node;
2405	struct btrfs_backref_edge *edge;
2406	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2407	int index = 0;
2408
2409	while (next) {
2410		cond_resched();
2411		while (1) {
2412			if (next->processed)
2413				break;
2414
2415			mark_block_processed(rc, next);
2416
2417			if (list_empty(&next->upper))
2418				break;
2419
2420			edge = list_entry(next->upper.next,
2421					struct btrfs_backref_edge, list[LOWER]);
2422			edges[index++] = edge;
2423			next = edge->node[UPPER];
2424		}
2425		next = walk_down_backref(edges, &index);
2426	}
2427}
2428
2429static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2430{
2431	u32 blocksize = rc->extent_root->fs_info->nodesize;
2432
2433	if (test_range_bit(&rc->processed_blocks, bytenr,
2434			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2435		return 1;
2436	return 0;
2437}
2438
2439static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2440			      struct tree_block *block)
2441{
2442	struct extent_buffer *eb;
2443
 
2444	eb = read_tree_block(fs_info, block->bytenr, block->key.offset,
2445			     block->level, NULL);
2446	if (IS_ERR(eb)) {
2447		return PTR_ERR(eb);
2448	} else if (!extent_buffer_uptodate(eb)) {
2449		free_extent_buffer(eb);
2450		return -EIO;
2451	}
2452	if (block->level == 0)
2453		btrfs_item_key_to_cpu(eb, &block->key, 0);
2454	else
2455		btrfs_node_key_to_cpu(eb, &block->key, 0);
2456	free_extent_buffer(eb);
2457	block->key_ready = 1;
2458	return 0;
2459}
2460
2461/*
2462 * helper function to relocate a tree block
2463 */
2464static int relocate_tree_block(struct btrfs_trans_handle *trans,
2465				struct reloc_control *rc,
2466				struct btrfs_backref_node *node,
2467				struct btrfs_key *key,
2468				struct btrfs_path *path)
2469{
2470	struct btrfs_root *root;
2471	int ret = 0;
2472
2473	if (!node)
2474		return 0;
2475
2476	/*
2477	 * If we fail here we want to drop our backref_node because we are going
2478	 * to start over and regenerate the tree for it.
2479	 */
2480	ret = reserve_metadata_space(trans, rc, node);
2481	if (ret)
2482		goto out;
2483
2484	BUG_ON(node->processed);
2485	root = select_one_root(node);
2486	if (root == ERR_PTR(-ENOENT)) {
2487		update_processed_blocks(rc, node);
2488		goto out;
2489	}
2490
 
 
 
 
 
 
2491	if (root) {
2492		if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2493			BUG_ON(node->new_bytenr);
2494			BUG_ON(!list_empty(&node->list));
2495			btrfs_record_root_in_trans(trans, root);
2496			root = root->reloc_root;
2497			node->new_bytenr = root->node->start;
2498			btrfs_put_root(node->root);
2499			node->root = btrfs_grab_root(root);
2500			ASSERT(node->root);
2501			list_add_tail(&node->list, &rc->backref_cache.changed);
2502		} else {
2503			path->lowest_level = node->level;
2504			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2505			btrfs_release_path(path);
2506			if (ret > 0)
2507				ret = 0;
2508		}
2509		if (!ret)
2510			update_processed_blocks(rc, node);
2511	} else {
2512		ret = do_relocation(trans, rc, node, key, path, 1);
2513	}
2514out:
2515	if (ret || node->level == 0 || node->cowonly)
2516		btrfs_backref_cleanup_node(&rc->backref_cache, node);
2517	return ret;
2518}
2519
2520/*
2521 * relocate a list of blocks
2522 */
2523static noinline_for_stack
2524int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2525			 struct reloc_control *rc, struct rb_root *blocks)
2526{
2527	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2528	struct btrfs_backref_node *node;
2529	struct btrfs_path *path;
2530	struct tree_block *block;
2531	struct tree_block *next;
2532	int ret;
2533	int err = 0;
2534
2535	path = btrfs_alloc_path();
2536	if (!path) {
2537		err = -ENOMEM;
2538		goto out_free_blocks;
2539	}
2540
2541	/* Kick in readahead for tree blocks with missing keys */
2542	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2543		if (!block->key_ready)
2544			readahead_tree_block(fs_info, block->bytenr);
2545	}
2546
2547	/* Get first keys */
2548	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2549		if (!block->key_ready) {
2550			err = get_tree_block_key(fs_info, block);
2551			if (err)
2552				goto out_free_path;
2553		}
2554	}
2555
2556	/* Do tree relocation */
2557	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2558		node = build_backref_tree(rc, &block->key,
2559					  block->level, block->bytenr);
2560		if (IS_ERR(node)) {
2561			err = PTR_ERR(node);
2562			goto out;
2563		}
2564
2565		ret = relocate_tree_block(trans, rc, node, &block->key,
2566					  path);
2567		if (ret < 0) {
2568			err = ret;
2569			break;
 
2570		}
2571	}
2572out:
2573	err = finish_pending_nodes(trans, rc, path, err);
2574
2575out_free_path:
2576	btrfs_free_path(path);
2577out_free_blocks:
2578	free_block_list(blocks);
2579	return err;
2580}
2581
2582static noinline_for_stack int prealloc_file_extent_cluster(
2583				struct btrfs_inode *inode,
2584				struct file_extent_cluster *cluster)
2585{
2586	u64 alloc_hint = 0;
2587	u64 start;
2588	u64 end;
2589	u64 offset = inode->index_cnt;
2590	u64 num_bytes;
2591	int nr;
2592	int ret = 0;
2593	u64 prealloc_start = cluster->start - offset;
2594	u64 prealloc_end = cluster->end - offset;
2595	u64 cur_offset = prealloc_start;
 
2596
2597	BUG_ON(cluster->start != cluster->boundary[0]);
2598	ret = btrfs_alloc_data_chunk_ondemand(inode,
2599					      prealloc_end + 1 - prealloc_start);
 
 
2600	if (ret)
2601		return ret;
2602
2603	inode_lock(&inode->vfs_inode);
2604	for (nr = 0; nr < cluster->nr; nr++) {
2605		start = cluster->boundary[nr] - offset;
2606		if (nr + 1 < cluster->nr)
2607			end = cluster->boundary[nr + 1] - 1 - offset;
2608		else
2609			end = cluster->end - offset;
2610
2611		lock_extent(&inode->io_tree, start, end);
2612		num_bytes = end + 1 - start;
2613		ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
 
 
 
2614						num_bytes, num_bytes,
2615						end + 1, &alloc_hint);
2616		cur_offset = end + 1;
2617		unlock_extent(&inode->io_tree, start, end);
2618		if (ret)
2619			break;
 
2620	}
2621	inode_unlock(&inode->vfs_inode);
2622
2623	if (cur_offset < prealloc_end)
2624		btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2625					       prealloc_end + 1 - cur_offset);
 
 
 
2626	return ret;
2627}
2628
2629static noinline_for_stack
2630int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
2631			 u64 block_start)
2632{
 
2633	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2634	struct extent_map *em;
2635	int ret = 0;
2636
2637	em = alloc_extent_map();
2638	if (!em)
2639		return -ENOMEM;
2640
2641	em->start = start;
2642	em->len = end + 1 - start;
2643	em->block_len = em->len;
2644	em->block_start = block_start;
 
2645	set_bit(EXTENT_FLAG_PINNED, &em->flags);
2646
2647	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2648	while (1) {
2649		write_lock(&em_tree->lock);
2650		ret = add_extent_mapping(em_tree, em, 0);
2651		write_unlock(&em_tree->lock);
2652		if (ret != -EEXIST) {
2653			free_extent_map(em);
2654			break;
2655		}
2656		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
2657	}
2658	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2659	return ret;
2660}
2661
2662/*
2663 * Allow error injection to test balance cancellation
2664 */
2665int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info)
2666{
2667	return atomic_read(&fs_info->balance_cancel_req) ||
2668		fatal_signal_pending(current);
2669}
2670ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2671
2672static int relocate_file_extent_cluster(struct inode *inode,
2673					struct file_extent_cluster *cluster)
2674{
2675	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2676	u64 page_start;
2677	u64 page_end;
2678	u64 offset = BTRFS_I(inode)->index_cnt;
2679	unsigned long index;
2680	unsigned long last_index;
2681	struct page *page;
2682	struct file_ra_state *ra;
2683	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2684	int nr = 0;
2685	int ret = 0;
2686
2687	if (!cluster->nr)
2688		return 0;
2689
2690	ra = kzalloc(sizeof(*ra), GFP_NOFS);
2691	if (!ra)
2692		return -ENOMEM;
2693
2694	ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster);
2695	if (ret)
2696		goto out;
2697
2698	file_ra_state_init(ra, inode->i_mapping);
2699
2700	ret = setup_extent_mapping(inode, cluster->start - offset,
2701				   cluster->end - offset, cluster->start);
2702	if (ret)
2703		goto out;
2704
2705	index = (cluster->start - offset) >> PAGE_SHIFT;
2706	last_index = (cluster->end - offset) >> PAGE_SHIFT;
2707	while (index <= last_index) {
2708		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
2709				PAGE_SIZE);
2710		if (ret)
2711			goto out;
2712
2713		page = find_lock_page(inode->i_mapping, index);
2714		if (!page) {
2715			page_cache_sync_readahead(inode->i_mapping,
2716						  ra, NULL, index,
2717						  last_index + 1 - index);
2718			page = find_or_create_page(inode->i_mapping, index,
2719						   mask);
2720			if (!page) {
2721				btrfs_delalloc_release_metadata(BTRFS_I(inode),
2722							PAGE_SIZE, true);
2723				btrfs_delalloc_release_extents(BTRFS_I(inode),
2724							PAGE_SIZE);
2725				ret = -ENOMEM;
2726				goto out;
2727			}
2728		}
2729
2730		if (PageReadahead(page)) {
2731			page_cache_async_readahead(inode->i_mapping,
2732						   ra, NULL, page, index,
2733						   last_index + 1 - index);
2734		}
2735
2736		if (!PageUptodate(page)) {
2737			btrfs_readpage(NULL, page);
2738			lock_page(page);
2739			if (!PageUptodate(page)) {
2740				unlock_page(page);
2741				put_page(page);
2742				btrfs_delalloc_release_metadata(BTRFS_I(inode),
2743							PAGE_SIZE, true);
2744				btrfs_delalloc_release_extents(BTRFS_I(inode),
2745							       PAGE_SIZE);
2746				ret = -EIO;
2747				goto out;
2748			}
2749		}
2750
2751		page_start = page_offset(page);
2752		page_end = page_start + PAGE_SIZE - 1;
2753
2754		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
2755
2756		set_page_extent_mapped(page);
2757
2758		if (nr < cluster->nr &&
2759		    page_start + offset == cluster->boundary[nr]) {
2760			set_extent_bits(&BTRFS_I(inode)->io_tree,
2761					page_start, page_end,
2762					EXTENT_BOUNDARY);
2763			nr++;
2764		}
2765
2766		ret = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start,
2767						page_end, 0, NULL);
2768		if (ret) {
2769			unlock_page(page);
2770			put_page(page);
2771			btrfs_delalloc_release_metadata(BTRFS_I(inode),
2772							 PAGE_SIZE, true);
2773			btrfs_delalloc_release_extents(BTRFS_I(inode),
2774			                               PAGE_SIZE);
2775
2776			clear_extent_bits(&BTRFS_I(inode)->io_tree,
2777					  page_start, page_end,
2778					  EXTENT_LOCKED | EXTENT_BOUNDARY);
2779			goto out;
2780
2781		}
2782		set_page_dirty(page);
2783
2784		unlock_extent(&BTRFS_I(inode)->io_tree,
2785			      page_start, page_end);
2786		unlock_page(page);
2787		put_page(page);
2788
2789		index++;
2790		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
2791		balance_dirty_pages_ratelimited(inode->i_mapping);
2792		btrfs_throttle(fs_info);
2793		if (btrfs_should_cancel_balance(fs_info)) {
2794			ret = -ECANCELED;
2795			goto out;
2796		}
2797	}
2798	WARN_ON(nr != cluster->nr);
2799out:
2800	kfree(ra);
2801	return ret;
2802}
2803
2804static noinline_for_stack
2805int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
2806			 struct file_extent_cluster *cluster)
2807{
2808	int ret;
2809
2810	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
2811		ret = relocate_file_extent_cluster(inode, cluster);
2812		if (ret)
2813			return ret;
2814		cluster->nr = 0;
2815	}
2816
2817	if (!cluster->nr)
2818		cluster->start = extent_key->objectid;
2819	else
2820		BUG_ON(cluster->nr >= MAX_EXTENTS);
2821	cluster->end = extent_key->objectid + extent_key->offset - 1;
2822	cluster->boundary[cluster->nr] = extent_key->objectid;
2823	cluster->nr++;
2824
2825	if (cluster->nr >= MAX_EXTENTS) {
2826		ret = relocate_file_extent_cluster(inode, cluster);
2827		if (ret)
2828			return ret;
2829		cluster->nr = 0;
2830	}
2831	return 0;
2832}
2833
2834/*
2835 * helper to add a tree block to the list.
2836 * the major work is getting the generation and level of the block
2837 */
2838static int add_tree_block(struct reloc_control *rc,
2839			  struct btrfs_key *extent_key,
2840			  struct btrfs_path *path,
2841			  struct rb_root *blocks)
2842{
2843	struct extent_buffer *eb;
2844	struct btrfs_extent_item *ei;
2845	struct btrfs_tree_block_info *bi;
2846	struct tree_block *block;
2847	struct rb_node *rb_node;
2848	u32 item_size;
2849	int level = -1;
2850	u64 generation;
2851
2852	eb =  path->nodes[0];
2853	item_size = btrfs_item_size_nr(eb, path->slots[0]);
2854
2855	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
2856	    item_size >= sizeof(*ei) + sizeof(*bi)) {
2857		ei = btrfs_item_ptr(eb, path->slots[0],
2858				struct btrfs_extent_item);
2859		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
2860			bi = (struct btrfs_tree_block_info *)(ei + 1);
2861			level = btrfs_tree_block_level(eb, bi);
2862		} else {
2863			level = (int)extent_key->offset;
2864		}
2865		generation = btrfs_extent_generation(eb, ei);
2866	} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
2867		btrfs_print_v0_err(eb->fs_info);
2868		btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
2869		return -EINVAL;
2870	} else {
2871		BUG();
2872	}
2873
2874	btrfs_release_path(path);
2875
2876	BUG_ON(level == -1);
2877
2878	block = kmalloc(sizeof(*block), GFP_NOFS);
2879	if (!block)
2880		return -ENOMEM;
2881
2882	block->bytenr = extent_key->objectid;
2883	block->key.objectid = rc->extent_root->fs_info->nodesize;
2884	block->key.offset = generation;
2885	block->level = level;
2886	block->key_ready = 0;
2887
2888	rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
2889	if (rb_node)
2890		btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
2891				    -EEXIST);
2892
2893	return 0;
2894}
2895
2896/*
2897 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
2898 */
2899static int __add_tree_block(struct reloc_control *rc,
2900			    u64 bytenr, u32 blocksize,
2901			    struct rb_root *blocks)
2902{
2903	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2904	struct btrfs_path *path;
2905	struct btrfs_key key;
2906	int ret;
2907	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2908
2909	if (tree_block_processed(bytenr, rc))
2910		return 0;
2911
2912	if (rb_simple_search(blocks, bytenr))
2913		return 0;
2914
2915	path = btrfs_alloc_path();
2916	if (!path)
2917		return -ENOMEM;
2918again:
2919	key.objectid = bytenr;
2920	if (skinny) {
2921		key.type = BTRFS_METADATA_ITEM_KEY;
2922		key.offset = (u64)-1;
2923	} else {
2924		key.type = BTRFS_EXTENT_ITEM_KEY;
2925		key.offset = blocksize;
2926	}
2927
2928	path->search_commit_root = 1;
2929	path->skip_locking = 1;
2930	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
2931	if (ret < 0)
2932		goto out;
2933
2934	if (ret > 0 && skinny) {
2935		if (path->slots[0]) {
2936			path->slots[0]--;
2937			btrfs_item_key_to_cpu(path->nodes[0], &key,
2938					      path->slots[0]);
2939			if (key.objectid == bytenr &&
2940			    (key.type == BTRFS_METADATA_ITEM_KEY ||
2941			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
2942			      key.offset == blocksize)))
2943				ret = 0;
2944		}
2945
2946		if (ret) {
2947			skinny = false;
2948			btrfs_release_path(path);
2949			goto again;
2950		}
2951	}
2952	if (ret) {
2953		ASSERT(ret == 1);
2954		btrfs_print_leaf(path->nodes[0]);
2955		btrfs_err(fs_info,
2956	     "tree block extent item (%llu) is not found in extent tree",
2957		     bytenr);
2958		WARN_ON(1);
2959		ret = -EINVAL;
2960		goto out;
2961	}
2962
2963	ret = add_tree_block(rc, &key, path, blocks);
2964out:
2965	btrfs_free_path(path);
2966	return ret;
2967}
2968
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2969static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
2970				    struct btrfs_block_group *block_group,
2971				    struct inode *inode,
2972				    u64 ino)
2973{
 
2974	struct btrfs_root *root = fs_info->tree_root;
2975	struct btrfs_trans_handle *trans;
2976	int ret = 0;
2977
2978	if (inode)
2979		goto truncate;
2980
2981	inode = btrfs_iget(fs_info->sb, ino, root);
 
 
 
 
2982	if (IS_ERR(inode))
2983		return -ENOENT;
2984
2985truncate:
2986	ret = btrfs_check_trunc_cache_free_space(fs_info,
2987						 &fs_info->global_block_rsv);
2988	if (ret)
2989		goto out;
2990
2991	trans = btrfs_join_transaction(root);
2992	if (IS_ERR(trans)) {
2993		ret = PTR_ERR(trans);
2994		goto out;
2995	}
2996
2997	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
2998
2999	btrfs_end_transaction(trans);
3000	btrfs_btree_balance_dirty(fs_info);
3001out:
3002	iput(inode);
3003	return ret;
3004}
3005
3006/*
3007 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3008 * cache inode, to avoid free space cache data extent blocking data relocation.
3009 */
3010static int delete_v1_space_cache(struct extent_buffer *leaf,
3011				 struct btrfs_block_group *block_group,
3012				 u64 data_bytenr)
 
 
3013{
3014	u64 space_cache_ino;
3015	struct btrfs_file_extent_item *ei;
 
 
 
 
3016	struct btrfs_key key;
3017	bool found = false;
3018	int i;
 
 
 
 
 
 
3019	int ret;
3020
3021	if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3022		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3023
3024	for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3025		btrfs_item_key_to_cpu(leaf, &key, i);
3026		if (key.type != BTRFS_EXTENT_DATA_KEY)
3027			continue;
3028		ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3029		if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_REG &&
3030		    btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3031			found = true;
3032			space_cache_ino = key.objectid;
3033			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3034		}
 
 
 
 
 
 
 
3035	}
3036	if (!found)
3037		return -ENOENT;
3038	ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3039					space_cache_ino);
3040	return ret;
3041}
3042
3043/*
3044 * helper to find all tree blocks that reference a given data extent
3045 */
3046static noinline_for_stack
3047int add_data_references(struct reloc_control *rc,
3048			struct btrfs_key *extent_key,
3049			struct btrfs_path *path,
3050			struct rb_root *blocks)
3051{
3052	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3053	struct ulist *leaves = NULL;
3054	struct ulist_iterator leaf_uiter;
3055	struct ulist_node *ref_node = NULL;
3056	const u32 blocksize = fs_info->nodesize;
 
 
3057	int ret = 0;
 
3058
3059	btrfs_release_path(path);
3060	ret = btrfs_find_all_leafs(NULL, fs_info, extent_key->objectid,
3061				   0, &leaves, NULL, true);
3062	if (ret < 0)
3063		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3064
3065	ULIST_ITER_INIT(&leaf_uiter);
3066	while ((ref_node = ulist_next(leaves, &leaf_uiter))) {
3067		struct extent_buffer *eb;
 
 
 
 
 
 
 
 
 
 
3068
3069		eb = read_tree_block(fs_info, ref_node->val, 0, 0, NULL);
3070		if (IS_ERR(eb)) {
3071			ret = PTR_ERR(eb);
3072			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3073		}
3074		ret = delete_v1_space_cache(eb, rc->block_group,
3075					    extent_key->objectid);
3076		free_extent_buffer(eb);
3077		if (ret < 0)
3078			break;
3079		ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3080		if (ret < 0)
3081			break;
 
 
3082	}
3083	if (ret < 0)
 
 
3084		free_block_list(blocks);
3085	ulist_free(leaves);
3086	return ret;
3087}
3088
3089/*
3090 * helper to find next unprocessed extent
3091 */
3092static noinline_for_stack
3093int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3094		     struct btrfs_key *extent_key)
3095{
3096	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3097	struct btrfs_key key;
3098	struct extent_buffer *leaf;
3099	u64 start, end, last;
3100	int ret;
3101
3102	last = rc->block_group->start + rc->block_group->length;
3103	while (1) {
3104		cond_resched();
3105		if (rc->search_start >= last) {
3106			ret = 1;
3107			break;
3108		}
3109
3110		key.objectid = rc->search_start;
3111		key.type = BTRFS_EXTENT_ITEM_KEY;
3112		key.offset = 0;
3113
3114		path->search_commit_root = 1;
3115		path->skip_locking = 1;
3116		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3117					0, 0);
3118		if (ret < 0)
3119			break;
3120next:
3121		leaf = path->nodes[0];
3122		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3123			ret = btrfs_next_leaf(rc->extent_root, path);
3124			if (ret != 0)
3125				break;
3126			leaf = path->nodes[0];
3127		}
3128
3129		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3130		if (key.objectid >= last) {
3131			ret = 1;
3132			break;
3133		}
3134
3135		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3136		    key.type != BTRFS_METADATA_ITEM_KEY) {
3137			path->slots[0]++;
3138			goto next;
3139		}
3140
3141		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3142		    key.objectid + key.offset <= rc->search_start) {
3143			path->slots[0]++;
3144			goto next;
3145		}
3146
3147		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3148		    key.objectid + fs_info->nodesize <=
3149		    rc->search_start) {
3150			path->slots[0]++;
3151			goto next;
3152		}
3153
3154		ret = find_first_extent_bit(&rc->processed_blocks,
3155					    key.objectid, &start, &end,
3156					    EXTENT_DIRTY, NULL);
3157
3158		if (ret == 0 && start <= key.objectid) {
3159			btrfs_release_path(path);
3160			rc->search_start = end + 1;
3161		} else {
3162			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3163				rc->search_start = key.objectid + key.offset;
3164			else
3165				rc->search_start = key.objectid +
3166					fs_info->nodesize;
3167			memcpy(extent_key, &key, sizeof(key));
3168			return 0;
3169		}
3170	}
3171	btrfs_release_path(path);
3172	return ret;
3173}
3174
3175static void set_reloc_control(struct reloc_control *rc)
3176{
3177	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3178
3179	mutex_lock(&fs_info->reloc_mutex);
3180	fs_info->reloc_ctl = rc;
3181	mutex_unlock(&fs_info->reloc_mutex);
3182}
3183
3184static void unset_reloc_control(struct reloc_control *rc)
3185{
3186	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3187
3188	mutex_lock(&fs_info->reloc_mutex);
3189	fs_info->reloc_ctl = NULL;
3190	mutex_unlock(&fs_info->reloc_mutex);
3191}
3192
3193static int check_extent_flags(u64 flags)
3194{
3195	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3196	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3197		return 1;
3198	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3199	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3200		return 1;
3201	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3202	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3203		return 1;
3204	return 0;
3205}
3206
3207static noinline_for_stack
3208int prepare_to_relocate(struct reloc_control *rc)
3209{
3210	struct btrfs_trans_handle *trans;
3211	int ret;
3212
3213	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3214					      BTRFS_BLOCK_RSV_TEMP);
3215	if (!rc->block_rsv)
3216		return -ENOMEM;
3217
3218	memset(&rc->cluster, 0, sizeof(rc->cluster));
3219	rc->search_start = rc->block_group->start;
3220	rc->extents_found = 0;
3221	rc->nodes_relocated = 0;
3222	rc->merging_rsv_size = 0;
3223	rc->reserved_bytes = 0;
3224	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3225			      RELOCATION_RESERVED_NODES;
3226	ret = btrfs_block_rsv_refill(rc->extent_root,
3227				     rc->block_rsv, rc->block_rsv->size,
3228				     BTRFS_RESERVE_FLUSH_ALL);
3229	if (ret)
3230		return ret;
3231
3232	rc->create_reloc_tree = 1;
3233	set_reloc_control(rc);
3234
3235	trans = btrfs_join_transaction(rc->extent_root);
3236	if (IS_ERR(trans)) {
3237		unset_reloc_control(rc);
3238		/*
3239		 * extent tree is not a ref_cow tree and has no reloc_root to
3240		 * cleanup.  And callers are responsible to free the above
3241		 * block rsv.
3242		 */
3243		return PTR_ERR(trans);
3244	}
3245	btrfs_commit_transaction(trans);
3246	return 0;
3247}
3248
3249static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3250{
3251	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3252	struct rb_root blocks = RB_ROOT;
3253	struct btrfs_key key;
3254	struct btrfs_trans_handle *trans = NULL;
3255	struct btrfs_path *path;
3256	struct btrfs_extent_item *ei;
3257	u64 flags;
3258	u32 item_size;
3259	int ret;
3260	int err = 0;
3261	int progress = 0;
3262
3263	path = btrfs_alloc_path();
3264	if (!path)
3265		return -ENOMEM;
3266	path->reada = READA_FORWARD;
3267
3268	ret = prepare_to_relocate(rc);
3269	if (ret) {
3270		err = ret;
3271		goto out_free;
3272	}
3273
3274	while (1) {
3275		rc->reserved_bytes = 0;
3276		ret = btrfs_block_rsv_refill(rc->extent_root,
3277					rc->block_rsv, rc->block_rsv->size,
3278					BTRFS_RESERVE_FLUSH_ALL);
3279		if (ret) {
3280			err = ret;
3281			break;
3282		}
3283		progress++;
3284		trans = btrfs_start_transaction(rc->extent_root, 0);
3285		if (IS_ERR(trans)) {
3286			err = PTR_ERR(trans);
3287			trans = NULL;
3288			break;
3289		}
3290restart:
3291		if (update_backref_cache(trans, &rc->backref_cache)) {
3292			btrfs_end_transaction(trans);
3293			trans = NULL;
3294			continue;
3295		}
3296
3297		ret = find_next_extent(rc, path, &key);
3298		if (ret < 0)
3299			err = ret;
3300		if (ret != 0)
3301			break;
3302
3303		rc->extents_found++;
3304
3305		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3306				    struct btrfs_extent_item);
3307		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3308		if (item_size >= sizeof(*ei)) {
3309			flags = btrfs_extent_flags(path->nodes[0], ei);
3310			ret = check_extent_flags(flags);
3311			BUG_ON(ret);
3312		} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3313			err = -EINVAL;
3314			btrfs_print_v0_err(trans->fs_info);
3315			btrfs_abort_transaction(trans, err);
3316			break;
3317		} else {
3318			BUG();
3319		}
3320
3321		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3322			ret = add_tree_block(rc, &key, path, &blocks);
3323		} else if (rc->stage == UPDATE_DATA_PTRS &&
3324			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3325			ret = add_data_references(rc, &key, path, &blocks);
3326		} else {
3327			btrfs_release_path(path);
3328			ret = 0;
3329		}
3330		if (ret < 0) {
3331			err = ret;
3332			break;
3333		}
3334
3335		if (!RB_EMPTY_ROOT(&blocks)) {
3336			ret = relocate_tree_blocks(trans, rc, &blocks);
3337			if (ret < 0) {
 
 
 
 
 
 
3338				if (ret != -EAGAIN) {
3339					err = ret;
3340					break;
3341				}
3342				rc->extents_found--;
3343				rc->search_start = key.objectid;
3344			}
3345		}
3346
3347		btrfs_end_transaction_throttle(trans);
3348		btrfs_btree_balance_dirty(fs_info);
3349		trans = NULL;
3350
3351		if (rc->stage == MOVE_DATA_EXTENTS &&
3352		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3353			rc->found_file_extent = 1;
3354			ret = relocate_data_extent(rc->data_inode,
3355						   &key, &rc->cluster);
3356			if (ret < 0) {
3357				err = ret;
3358				break;
3359			}
3360		}
3361		if (btrfs_should_cancel_balance(fs_info)) {
3362			err = -ECANCELED;
3363			break;
3364		}
3365	}
3366	if (trans && progress && err == -ENOSPC) {
3367		ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3368		if (ret == 1) {
3369			err = 0;
3370			progress = 0;
3371			goto restart;
3372		}
3373	}
3374
3375	btrfs_release_path(path);
3376	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3377
3378	if (trans) {
3379		btrfs_end_transaction_throttle(trans);
3380		btrfs_btree_balance_dirty(fs_info);
3381	}
3382
3383	if (!err) {
3384		ret = relocate_file_extent_cluster(rc->data_inode,
3385						   &rc->cluster);
3386		if (ret < 0)
3387			err = ret;
3388	}
3389
3390	rc->create_reloc_tree = 0;
3391	set_reloc_control(rc);
3392
3393	btrfs_backref_release_cache(&rc->backref_cache);
3394	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3395
3396	/*
3397	 * Even in the case when the relocation is cancelled, we should all go
3398	 * through prepare_to_merge() and merge_reloc_roots().
3399	 *
3400	 * For error (including cancelled balance), prepare_to_merge() will
3401	 * mark all reloc trees orphan, then queue them for cleanup in
3402	 * merge_reloc_roots()
3403	 */
3404	err = prepare_to_merge(rc, err);
3405
3406	merge_reloc_roots(rc);
3407
3408	rc->merge_reloc_tree = 0;
3409	unset_reloc_control(rc);
3410	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3411
3412	/* get rid of pinned extents */
3413	trans = btrfs_join_transaction(rc->extent_root);
3414	if (IS_ERR(trans)) {
3415		err = PTR_ERR(trans);
3416		goto out_free;
3417	}
3418	btrfs_commit_transaction(trans);
3419out_free:
3420	ret = clean_dirty_subvols(rc);
3421	if (ret < 0 && !err)
3422		err = ret;
 
3423	btrfs_free_block_rsv(fs_info, rc->block_rsv);
3424	btrfs_free_path(path);
3425	return err;
3426}
3427
3428static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3429				 struct btrfs_root *root, u64 objectid)
3430{
3431	struct btrfs_path *path;
3432	struct btrfs_inode_item *item;
3433	struct extent_buffer *leaf;
3434	int ret;
3435
3436	path = btrfs_alloc_path();
3437	if (!path)
3438		return -ENOMEM;
3439
3440	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3441	if (ret)
3442		goto out;
3443
3444	leaf = path->nodes[0];
3445	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3446	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3447	btrfs_set_inode_generation(leaf, item, 1);
3448	btrfs_set_inode_size(leaf, item, 0);
3449	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3450	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3451					  BTRFS_INODE_PREALLOC);
3452	btrfs_mark_buffer_dirty(leaf);
3453out:
3454	btrfs_free_path(path);
3455	return ret;
3456}
3457
3458/*
3459 * helper to create inode for data relocation.
3460 * the inode is in data relocation tree and its link count is 0
3461 */
3462static noinline_for_stack
3463struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3464				 struct btrfs_block_group *group)
3465{
3466	struct inode *inode = NULL;
3467	struct btrfs_trans_handle *trans;
3468	struct btrfs_root *root;
 
3469	u64 objectid;
3470	int err = 0;
3471
3472	root = btrfs_grab_root(fs_info->data_reloc_root);
 
 
 
3473	trans = btrfs_start_transaction(root, 6);
3474	if (IS_ERR(trans)) {
3475		btrfs_put_root(root);
3476		return ERR_CAST(trans);
3477	}
3478
3479	err = btrfs_find_free_objectid(root, &objectid);
3480	if (err)
3481		goto out;
3482
3483	err = __insert_orphan_inode(trans, root, objectid);
3484	BUG_ON(err);
3485
3486	inode = btrfs_iget(fs_info->sb, objectid, root);
 
 
 
3487	BUG_ON(IS_ERR(inode));
3488	BTRFS_I(inode)->index_cnt = group->start;
3489
3490	err = btrfs_orphan_add(trans, BTRFS_I(inode));
3491out:
3492	btrfs_put_root(root);
3493	btrfs_end_transaction(trans);
3494	btrfs_btree_balance_dirty(fs_info);
3495	if (err) {
3496		if (inode)
3497			iput(inode);
3498		inode = ERR_PTR(err);
3499	}
3500	return inode;
3501}
3502
3503static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3504{
3505	struct reloc_control *rc;
3506
3507	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3508	if (!rc)
3509		return NULL;
3510
3511	INIT_LIST_HEAD(&rc->reloc_roots);
3512	INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3513	btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1);
3514	mapping_tree_init(&rc->reloc_root_tree);
3515	extent_io_tree_init(fs_info, &rc->processed_blocks,
3516			    IO_TREE_RELOC_BLOCKS, NULL);
3517	return rc;
3518}
3519
3520static void free_reloc_control(struct reloc_control *rc)
3521{
3522	struct mapping_node *node, *tmp;
3523
3524	free_reloc_roots(&rc->reloc_roots);
3525	rbtree_postorder_for_each_entry_safe(node, tmp,
3526			&rc->reloc_root_tree.rb_root, rb_node)
3527		kfree(node);
3528
3529	kfree(rc);
3530}
3531
3532/*
3533 * Print the block group being relocated
3534 */
3535static void describe_relocation(struct btrfs_fs_info *fs_info,
3536				struct btrfs_block_group *block_group)
3537{
3538	char buf[128] = {'\0'};
3539
3540	btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
3541
3542	btrfs_info(fs_info,
3543		   "relocating block group %llu flags %s",
3544		   block_group->start, buf);
3545}
3546
3547static const char *stage_to_string(int stage)
3548{
3549	if (stage == MOVE_DATA_EXTENTS)
3550		return "move data extents";
3551	if (stage == UPDATE_DATA_PTRS)
3552		return "update data pointers";
3553	return "unknown";
3554}
3555
3556/*
3557 * function to relocate all extents in a block group.
3558 */
3559int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
3560{
3561	struct btrfs_block_group *bg;
3562	struct btrfs_root *extent_root = fs_info->extent_root;
3563	struct reloc_control *rc;
3564	struct inode *inode;
3565	struct btrfs_path *path;
3566	int ret;
3567	int rw = 0;
3568	int err = 0;
3569
3570	bg = btrfs_lookup_block_group(fs_info, group_start);
3571	if (!bg)
3572		return -ENOENT;
3573
3574	if (btrfs_pinned_by_swapfile(fs_info, bg)) {
3575		btrfs_put_block_group(bg);
3576		return -ETXTBSY;
3577	}
3578
3579	rc = alloc_reloc_control(fs_info);
3580	if (!rc) {
3581		btrfs_put_block_group(bg);
3582		return -ENOMEM;
3583	}
3584
3585	rc->extent_root = extent_root;
3586	rc->block_group = bg;
3587
3588	ret = btrfs_inc_block_group_ro(rc->block_group, true);
3589	if (ret) {
3590		err = ret;
3591		goto out;
3592	}
3593	rw = 1;
3594
3595	path = btrfs_alloc_path();
3596	if (!path) {
3597		err = -ENOMEM;
3598		goto out;
3599	}
3600
3601	inode = lookup_free_space_inode(rc->block_group, path);
3602	btrfs_free_path(path);
3603
3604	if (!IS_ERR(inode))
3605		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
3606	else
3607		ret = PTR_ERR(inode);
3608
3609	if (ret && ret != -ENOENT) {
3610		err = ret;
3611		goto out;
3612	}
3613
3614	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
3615	if (IS_ERR(rc->data_inode)) {
3616		err = PTR_ERR(rc->data_inode);
3617		rc->data_inode = NULL;
3618		goto out;
3619	}
3620
3621	describe_relocation(fs_info, rc->block_group);
3622
3623	btrfs_wait_block_group_reservations(rc->block_group);
3624	btrfs_wait_nocow_writers(rc->block_group);
3625	btrfs_wait_ordered_roots(fs_info, U64_MAX,
3626				 rc->block_group->start,
3627				 rc->block_group->length);
3628
3629	while (1) {
3630		int finishes_stage;
3631
3632		mutex_lock(&fs_info->cleaner_mutex);
3633		ret = relocate_block_group(rc);
3634		mutex_unlock(&fs_info->cleaner_mutex);
3635		if (ret < 0)
3636			err = ret;
3637
3638		finishes_stage = rc->stage;
3639		/*
3640		 * We may have gotten ENOSPC after we already dirtied some
3641		 * extents.  If writeout happens while we're relocating a
3642		 * different block group we could end up hitting the
3643		 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
3644		 * btrfs_reloc_cow_block.  Make sure we write everything out
3645		 * properly so we don't trip over this problem, and then break
3646		 * out of the loop if we hit an error.
3647		 */
3648		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
3649			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
3650						       (u64)-1);
3651			if (ret)
3652				err = ret;
3653			invalidate_mapping_pages(rc->data_inode->i_mapping,
3654						 0, -1);
3655			rc->stage = UPDATE_DATA_PTRS;
3656		}
3657
3658		if (err < 0)
3659			goto out;
3660
3661		if (rc->extents_found == 0)
3662			break;
3663
3664		btrfs_info(fs_info, "found %llu extents, stage: %s",
3665			   rc->extents_found, stage_to_string(finishes_stage));
3666	}
3667
3668	WARN_ON(rc->block_group->pinned > 0);
3669	WARN_ON(rc->block_group->reserved > 0);
3670	WARN_ON(rc->block_group->used > 0);
3671out:
3672	if (err && rw)
3673		btrfs_dec_block_group_ro(rc->block_group);
3674	iput(rc->data_inode);
3675	btrfs_put_block_group(rc->block_group);
3676	free_reloc_control(rc);
3677	return err;
3678}
3679
3680static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
3681{
3682	struct btrfs_fs_info *fs_info = root->fs_info;
3683	struct btrfs_trans_handle *trans;
3684	int ret, err;
3685
3686	trans = btrfs_start_transaction(fs_info->tree_root, 0);
3687	if (IS_ERR(trans))
3688		return PTR_ERR(trans);
3689
3690	memset(&root->root_item.drop_progress, 0,
3691		sizeof(root->root_item.drop_progress));
3692	root->root_item.drop_level = 0;
3693	btrfs_set_root_refs(&root->root_item, 0);
3694	ret = btrfs_update_root(trans, fs_info->tree_root,
3695				&root->root_key, &root->root_item);
3696
3697	err = btrfs_end_transaction(trans);
3698	if (err)
3699		return err;
3700	return ret;
3701}
3702
3703/*
3704 * recover relocation interrupted by system crash.
3705 *
3706 * this function resumes merging reloc trees with corresponding fs trees.
3707 * this is important for keeping the sharing of tree blocks
3708 */
3709int btrfs_recover_relocation(struct btrfs_root *root)
3710{
3711	struct btrfs_fs_info *fs_info = root->fs_info;
3712	LIST_HEAD(reloc_roots);
3713	struct btrfs_key key;
3714	struct btrfs_root *fs_root;
3715	struct btrfs_root *reloc_root;
3716	struct btrfs_path *path;
3717	struct extent_buffer *leaf;
3718	struct reloc_control *rc = NULL;
3719	struct btrfs_trans_handle *trans;
3720	int ret;
3721	int err = 0;
3722
3723	path = btrfs_alloc_path();
3724	if (!path)
3725		return -ENOMEM;
3726	path->reada = READA_BACK;
3727
3728	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
3729	key.type = BTRFS_ROOT_ITEM_KEY;
3730	key.offset = (u64)-1;
3731
3732	while (1) {
3733		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
3734					path, 0, 0);
3735		if (ret < 0) {
3736			err = ret;
3737			goto out;
3738		}
3739		if (ret > 0) {
3740			if (path->slots[0] == 0)
3741				break;
3742			path->slots[0]--;
3743		}
3744		leaf = path->nodes[0];
3745		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3746		btrfs_release_path(path);
3747
3748		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
3749		    key.type != BTRFS_ROOT_ITEM_KEY)
3750			break;
3751
3752		reloc_root = btrfs_read_tree_root(root, &key);
3753		if (IS_ERR(reloc_root)) {
3754			err = PTR_ERR(reloc_root);
3755			goto out;
3756		}
3757
3758		set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
3759		list_add(&reloc_root->root_list, &reloc_roots);
3760
3761		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
3762			fs_root = btrfs_get_fs_root(fs_info,
3763					reloc_root->root_key.offset, false);
3764			if (IS_ERR(fs_root)) {
3765				ret = PTR_ERR(fs_root);
3766				if (ret != -ENOENT) {
3767					err = ret;
3768					goto out;
3769				}
3770				ret = mark_garbage_root(reloc_root);
3771				if (ret < 0) {
3772					err = ret;
3773					goto out;
3774				}
3775			} else {
3776				btrfs_put_root(fs_root);
3777			}
3778		}
3779
3780		if (key.offset == 0)
3781			break;
3782
3783		key.offset--;
3784	}
3785	btrfs_release_path(path);
3786
3787	if (list_empty(&reloc_roots))
3788		goto out;
3789
3790	rc = alloc_reloc_control(fs_info);
3791	if (!rc) {
3792		err = -ENOMEM;
3793		goto out;
3794	}
3795
3796	rc->extent_root = fs_info->extent_root;
3797
3798	set_reloc_control(rc);
3799
3800	trans = btrfs_join_transaction(rc->extent_root);
3801	if (IS_ERR(trans)) {
 
3802		err = PTR_ERR(trans);
3803		goto out_unset;
3804	}
3805
3806	rc->merge_reloc_tree = 1;
3807
3808	while (!list_empty(&reloc_roots)) {
3809		reloc_root = list_entry(reloc_roots.next,
3810					struct btrfs_root, root_list);
3811		list_del(&reloc_root->root_list);
3812
3813		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
3814			list_add_tail(&reloc_root->root_list,
3815				      &rc->reloc_roots);
3816			continue;
3817		}
3818
3819		fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
3820					    false);
3821		if (IS_ERR(fs_root)) {
3822			err = PTR_ERR(fs_root);
3823			list_add_tail(&reloc_root->root_list, &reloc_roots);
3824			btrfs_end_transaction(trans);
3825			goto out_unset;
3826		}
3827
3828		err = __add_reloc_root(reloc_root);
3829		BUG_ON(err < 0); /* -ENOMEM or logic error */
3830		fs_root->reloc_root = btrfs_grab_root(reloc_root);
3831		btrfs_put_root(fs_root);
3832	}
3833
3834	err = btrfs_commit_transaction(trans);
3835	if (err)
3836		goto out_unset;
3837
3838	merge_reloc_roots(rc);
3839
3840	unset_reloc_control(rc);
3841
3842	trans = btrfs_join_transaction(rc->extent_root);
3843	if (IS_ERR(trans)) {
3844		err = PTR_ERR(trans);
3845		goto out_clean;
3846	}
3847	err = btrfs_commit_transaction(trans);
3848out_clean:
3849	ret = clean_dirty_subvols(rc);
3850	if (ret < 0 && !err)
3851		err = ret;
3852out_unset:
3853	unset_reloc_control(rc);
3854	free_reloc_control(rc);
3855out:
3856	free_reloc_roots(&reloc_roots);
 
3857
3858	btrfs_free_path(path);
3859
3860	if (err == 0) {
3861		/* cleanup orphan inode in data relocation tree */
3862		fs_root = btrfs_grab_root(fs_info->data_reloc_root);
3863		ASSERT(fs_root);
3864		err = btrfs_orphan_cleanup(fs_root);
3865		btrfs_put_root(fs_root);
 
3866	}
3867	return err;
3868}
3869
3870/*
3871 * helper to add ordered checksum for data relocation.
3872 *
3873 * cloning checksum properly handles the nodatasum extents.
3874 * it also saves CPU time to re-calculate the checksum.
3875 */
3876int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len)
3877{
3878	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3879	struct btrfs_ordered_sum *sums;
3880	struct btrfs_ordered_extent *ordered;
3881	int ret;
3882	u64 disk_bytenr;
3883	u64 new_bytenr;
3884	LIST_HEAD(list);
3885
3886	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
3887	BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len);
3888
3889	disk_bytenr = file_pos + inode->index_cnt;
3890	ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
3891				       disk_bytenr + len - 1, &list, 0);
3892	if (ret)
3893		goto out;
3894
3895	while (!list_empty(&list)) {
3896		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
3897		list_del_init(&sums->list);
3898
3899		/*
3900		 * We need to offset the new_bytenr based on where the csum is.
3901		 * We need to do this because we will read in entire prealloc
3902		 * extents but we may have written to say the middle of the
3903		 * prealloc extent, so we need to make sure the csum goes with
3904		 * the right disk offset.
3905		 *
3906		 * We can do this because the data reloc inode refers strictly
3907		 * to the on disk bytes, so we don't have to worry about
3908		 * disk_len vs real len like with real inodes since it's all
3909		 * disk length.
3910		 */
3911		new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr;
3912		sums->bytenr = new_bytenr;
3913
3914		btrfs_add_ordered_sum(ordered, sums);
3915	}
3916out:
3917	btrfs_put_ordered_extent(ordered);
3918	return ret;
3919}
3920
3921int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
3922			  struct btrfs_root *root, struct extent_buffer *buf,
3923			  struct extent_buffer *cow)
3924{
3925	struct btrfs_fs_info *fs_info = root->fs_info;
3926	struct reloc_control *rc;
3927	struct btrfs_backref_node *node;
3928	int first_cow = 0;
3929	int level;
3930	int ret = 0;
3931
3932	rc = fs_info->reloc_ctl;
3933	if (!rc)
3934		return 0;
3935
3936	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
3937	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
3938
 
 
 
 
 
3939	level = btrfs_header_level(buf);
3940	if (btrfs_header_generation(buf) <=
3941	    btrfs_root_last_snapshot(&root->root_item))
3942		first_cow = 1;
3943
3944	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
3945	    rc->create_reloc_tree) {
3946		WARN_ON(!first_cow && level == 0);
3947
3948		node = rc->backref_cache.path[level];
3949		BUG_ON(node->bytenr != buf->start &&
3950		       node->new_bytenr != buf->start);
3951
3952		btrfs_backref_drop_node_buffer(node);
3953		atomic_inc(&cow->refs);
3954		node->eb = cow;
3955		node->new_bytenr = cow->start;
3956
3957		if (!node->pending) {
3958			list_move_tail(&node->list,
3959				       &rc->backref_cache.pending[level]);
3960			node->pending = 1;
3961		}
3962
3963		if (first_cow)
3964			mark_block_processed(rc, node);
3965
3966		if (first_cow && level > 0)
3967			rc->nodes_relocated += buf->len;
3968	}
3969
3970	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
3971		ret = replace_file_extents(trans, rc, root, cow);
3972	return ret;
3973}
3974
3975/*
3976 * called before creating snapshot. it calculates metadata reservation
3977 * required for relocating tree blocks in the snapshot
3978 */
3979void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
3980			      u64 *bytes_to_reserve)
3981{
3982	struct btrfs_root *root = pending->root;
3983	struct reloc_control *rc = root->fs_info->reloc_ctl;
3984
3985	if (!rc || !have_reloc_root(root))
3986		return;
3987
3988	if (!rc->merge_reloc_tree)
3989		return;
3990
3991	root = root->reloc_root;
3992	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
3993	/*
3994	 * relocation is in the stage of merging trees. the space
3995	 * used by merging a reloc tree is twice the size of
3996	 * relocated tree nodes in the worst case. half for cowing
3997	 * the reloc tree, half for cowing the fs tree. the space
3998	 * used by cowing the reloc tree will be freed after the
3999	 * tree is dropped. if we create snapshot, cowing the fs
4000	 * tree may use more space than it frees. so we need
4001	 * reserve extra space.
4002	 */
4003	*bytes_to_reserve += rc->nodes_relocated;
4004}
4005
4006/*
4007 * called after snapshot is created. migrate block reservation
4008 * and create reloc root for the newly created snapshot
4009 *
4010 * This is similar to btrfs_init_reloc_root(), we come out of here with two
4011 * references held on the reloc_root, one for root->reloc_root and one for
4012 * rc->reloc_roots.
4013 */
4014int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4015			       struct btrfs_pending_snapshot *pending)
4016{
4017	struct btrfs_root *root = pending->root;
4018	struct btrfs_root *reloc_root;
4019	struct btrfs_root *new_root;
4020	struct reloc_control *rc = root->fs_info->reloc_ctl;
4021	int ret;
4022
4023	if (!rc || !have_reloc_root(root))
4024		return 0;
4025
4026	rc = root->fs_info->reloc_ctl;
4027	rc->merging_rsv_size += rc->nodes_relocated;
4028
4029	if (rc->merge_reloc_tree) {
4030		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4031					      rc->block_rsv,
4032					      rc->nodes_relocated, true);
4033		if (ret)
4034			return ret;
4035	}
4036
4037	new_root = pending->snap;
4038	reloc_root = create_reloc_root(trans, root->reloc_root,
4039				       new_root->root_key.objectid);
4040	if (IS_ERR(reloc_root))
4041		return PTR_ERR(reloc_root);
4042
4043	ret = __add_reloc_root(reloc_root);
4044	BUG_ON(ret < 0);
4045	new_root->reloc_root = btrfs_grab_root(reloc_root);
4046
4047	if (rc->create_reloc_tree)
4048		ret = clone_backref_node(trans, rc, root, reloc_root);
4049	return ret;
4050}