Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2009 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/pagemap.h>
8#include <linux/writeback.h>
9#include <linux/blkdev.h>
10#include <linux/rbtree.h>
11#include <linux/slab.h>
12#include "ctree.h"
13#include "disk-io.h"
14#include "transaction.h"
15#include "volumes.h"
16#include "locking.h"
17#include "btrfs_inode.h"
18#include "async-thread.h"
19#include "free-space-cache.h"
20#include "inode-map.h"
21#include "qgroup.h"
22#include "print-tree.h"
23#include "delalloc-space.h"
24#include "block-group.h"
25
26/*
27 * backref_node, mapping_node and tree_block start with this
28 */
29struct tree_entry {
30 struct rb_node rb_node;
31 u64 bytenr;
32};
33
34/*
35 * present a tree block in the backref cache
36 */
37struct backref_node {
38 struct rb_node rb_node;
39 u64 bytenr;
40
41 u64 new_bytenr;
42 /* objectid of tree block owner, can be not uptodate */
43 u64 owner;
44 /* link to pending, changed or detached list */
45 struct list_head list;
46 /* list of upper level blocks reference this block */
47 struct list_head upper;
48 /* list of child blocks in the cache */
49 struct list_head lower;
50 /* NULL if this node is not tree root */
51 struct btrfs_root *root;
52 /* extent buffer got by COW the block */
53 struct extent_buffer *eb;
54 /* level of tree block */
55 unsigned int level:8;
56 /* is the block in non-reference counted tree */
57 unsigned int cowonly:1;
58 /* 1 if no child node in the cache */
59 unsigned int lowest:1;
60 /* is the extent buffer locked */
61 unsigned int locked:1;
62 /* has the block been processed */
63 unsigned int processed:1;
64 /* have backrefs of this block been checked */
65 unsigned int checked:1;
66 /*
67 * 1 if corresponding block has been cowed but some upper
68 * level block pointers may not point to the new location
69 */
70 unsigned int pending:1;
71 /*
72 * 1 if the backref node isn't connected to any other
73 * backref node.
74 */
75 unsigned int detached:1;
76};
77
78/*
79 * present a block pointer in the backref cache
80 */
81struct backref_edge {
82 struct list_head list[2];
83 struct backref_node *node[2];
84};
85
86#define LOWER 0
87#define UPPER 1
88#define RELOCATION_RESERVED_NODES 256
89
90struct backref_cache {
91 /* red black tree of all backref nodes in the cache */
92 struct rb_root rb_root;
93 /* for passing backref nodes to btrfs_reloc_cow_block */
94 struct backref_node *path[BTRFS_MAX_LEVEL];
95 /*
96 * list of blocks that have been cowed but some block
97 * pointers in upper level blocks may not reflect the
98 * new location
99 */
100 struct list_head pending[BTRFS_MAX_LEVEL];
101 /* list of backref nodes with no child node */
102 struct list_head leaves;
103 /* list of blocks that have been cowed in current transaction */
104 struct list_head changed;
105 /* list of detached backref node. */
106 struct list_head detached;
107
108 u64 last_trans;
109
110 int nr_nodes;
111 int nr_edges;
112};
113
114/*
115 * map address of tree root to tree
116 */
117struct mapping_node {
118 struct rb_node rb_node;
119 u64 bytenr;
120 void *data;
121};
122
123struct mapping_tree {
124 struct rb_root rb_root;
125 spinlock_t lock;
126};
127
128/*
129 * present a tree block to process
130 */
131struct tree_block {
132 struct rb_node rb_node;
133 u64 bytenr;
134 struct btrfs_key key;
135 unsigned int level:8;
136 unsigned int key_ready:1;
137};
138
139#define MAX_EXTENTS 128
140
141struct file_extent_cluster {
142 u64 start;
143 u64 end;
144 u64 boundary[MAX_EXTENTS];
145 unsigned int nr;
146};
147
148struct reloc_control {
149 /* block group to relocate */
150 struct btrfs_block_group_cache *block_group;
151 /* extent tree */
152 struct btrfs_root *extent_root;
153 /* inode for moving data */
154 struct inode *data_inode;
155
156 struct btrfs_block_rsv *block_rsv;
157
158 struct backref_cache backref_cache;
159
160 struct file_extent_cluster cluster;
161 /* tree blocks have been processed */
162 struct extent_io_tree processed_blocks;
163 /* map start of tree root to corresponding reloc tree */
164 struct mapping_tree reloc_root_tree;
165 /* list of reloc trees */
166 struct list_head reloc_roots;
167 /* list of subvolume trees that get relocated */
168 struct list_head dirty_subvol_roots;
169 /* size of metadata reservation for merging reloc trees */
170 u64 merging_rsv_size;
171 /* size of relocated tree nodes */
172 u64 nodes_relocated;
173 /* reserved size for block group relocation*/
174 u64 reserved_bytes;
175
176 u64 search_start;
177 u64 extents_found;
178
179 unsigned int stage:8;
180 unsigned int create_reloc_tree:1;
181 unsigned int merge_reloc_tree:1;
182 unsigned int found_file_extent:1;
183};
184
185/* stages of data relocation */
186#define MOVE_DATA_EXTENTS 0
187#define UPDATE_DATA_PTRS 1
188
189static void remove_backref_node(struct backref_cache *cache,
190 struct backref_node *node);
191static void __mark_block_processed(struct reloc_control *rc,
192 struct backref_node *node);
193
194static void mapping_tree_init(struct mapping_tree *tree)
195{
196 tree->rb_root = RB_ROOT;
197 spin_lock_init(&tree->lock);
198}
199
200static void backref_cache_init(struct backref_cache *cache)
201{
202 int i;
203 cache->rb_root = RB_ROOT;
204 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
205 INIT_LIST_HEAD(&cache->pending[i]);
206 INIT_LIST_HEAD(&cache->changed);
207 INIT_LIST_HEAD(&cache->detached);
208 INIT_LIST_HEAD(&cache->leaves);
209}
210
211static void backref_cache_cleanup(struct backref_cache *cache)
212{
213 struct backref_node *node;
214 int i;
215
216 while (!list_empty(&cache->detached)) {
217 node = list_entry(cache->detached.next,
218 struct backref_node, list);
219 remove_backref_node(cache, node);
220 }
221
222 while (!list_empty(&cache->leaves)) {
223 node = list_entry(cache->leaves.next,
224 struct backref_node, lower);
225 remove_backref_node(cache, node);
226 }
227
228 cache->last_trans = 0;
229
230 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
231 ASSERT(list_empty(&cache->pending[i]));
232 ASSERT(list_empty(&cache->changed));
233 ASSERT(list_empty(&cache->detached));
234 ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
235 ASSERT(!cache->nr_nodes);
236 ASSERT(!cache->nr_edges);
237}
238
239static struct backref_node *alloc_backref_node(struct backref_cache *cache)
240{
241 struct backref_node *node;
242
243 node = kzalloc(sizeof(*node), GFP_NOFS);
244 if (node) {
245 INIT_LIST_HEAD(&node->list);
246 INIT_LIST_HEAD(&node->upper);
247 INIT_LIST_HEAD(&node->lower);
248 RB_CLEAR_NODE(&node->rb_node);
249 cache->nr_nodes++;
250 }
251 return node;
252}
253
254static void free_backref_node(struct backref_cache *cache,
255 struct backref_node *node)
256{
257 if (node) {
258 cache->nr_nodes--;
259 kfree(node);
260 }
261}
262
263static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
264{
265 struct backref_edge *edge;
266
267 edge = kzalloc(sizeof(*edge), GFP_NOFS);
268 if (edge)
269 cache->nr_edges++;
270 return edge;
271}
272
273static void free_backref_edge(struct backref_cache *cache,
274 struct backref_edge *edge)
275{
276 if (edge) {
277 cache->nr_edges--;
278 kfree(edge);
279 }
280}
281
282static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
283 struct rb_node *node)
284{
285 struct rb_node **p = &root->rb_node;
286 struct rb_node *parent = NULL;
287 struct tree_entry *entry;
288
289 while (*p) {
290 parent = *p;
291 entry = rb_entry(parent, struct tree_entry, rb_node);
292
293 if (bytenr < entry->bytenr)
294 p = &(*p)->rb_left;
295 else if (bytenr > entry->bytenr)
296 p = &(*p)->rb_right;
297 else
298 return parent;
299 }
300
301 rb_link_node(node, parent, p);
302 rb_insert_color(node, root);
303 return NULL;
304}
305
306static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
307{
308 struct rb_node *n = root->rb_node;
309 struct tree_entry *entry;
310
311 while (n) {
312 entry = rb_entry(n, struct tree_entry, rb_node);
313
314 if (bytenr < entry->bytenr)
315 n = n->rb_left;
316 else if (bytenr > entry->bytenr)
317 n = n->rb_right;
318 else
319 return n;
320 }
321 return NULL;
322}
323
324static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
325{
326
327 struct btrfs_fs_info *fs_info = NULL;
328 struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
329 rb_node);
330 if (bnode->root)
331 fs_info = bnode->root->fs_info;
332 btrfs_panic(fs_info, errno,
333 "Inconsistency in backref cache found at offset %llu",
334 bytenr);
335}
336
337/*
338 * walk up backref nodes until reach node presents tree root
339 */
340static struct backref_node *walk_up_backref(struct backref_node *node,
341 struct backref_edge *edges[],
342 int *index)
343{
344 struct backref_edge *edge;
345 int idx = *index;
346
347 while (!list_empty(&node->upper)) {
348 edge = list_entry(node->upper.next,
349 struct backref_edge, list[LOWER]);
350 edges[idx++] = edge;
351 node = edge->node[UPPER];
352 }
353 BUG_ON(node->detached);
354 *index = idx;
355 return node;
356}
357
358/*
359 * walk down backref nodes to find start of next reference path
360 */
361static struct backref_node *walk_down_backref(struct backref_edge *edges[],
362 int *index)
363{
364 struct backref_edge *edge;
365 struct backref_node *lower;
366 int idx = *index;
367
368 while (idx > 0) {
369 edge = edges[idx - 1];
370 lower = edge->node[LOWER];
371 if (list_is_last(&edge->list[LOWER], &lower->upper)) {
372 idx--;
373 continue;
374 }
375 edge = list_entry(edge->list[LOWER].next,
376 struct backref_edge, list[LOWER]);
377 edges[idx - 1] = edge;
378 *index = idx;
379 return edge->node[UPPER];
380 }
381 *index = 0;
382 return NULL;
383}
384
385static void unlock_node_buffer(struct backref_node *node)
386{
387 if (node->locked) {
388 btrfs_tree_unlock(node->eb);
389 node->locked = 0;
390 }
391}
392
393static void drop_node_buffer(struct backref_node *node)
394{
395 if (node->eb) {
396 unlock_node_buffer(node);
397 free_extent_buffer(node->eb);
398 node->eb = NULL;
399 }
400}
401
402static void drop_backref_node(struct backref_cache *tree,
403 struct backref_node *node)
404{
405 BUG_ON(!list_empty(&node->upper));
406
407 drop_node_buffer(node);
408 list_del(&node->list);
409 list_del(&node->lower);
410 if (!RB_EMPTY_NODE(&node->rb_node))
411 rb_erase(&node->rb_node, &tree->rb_root);
412 free_backref_node(tree, node);
413}
414
415/*
416 * remove a backref node from the backref cache
417 */
418static void remove_backref_node(struct backref_cache *cache,
419 struct backref_node *node)
420{
421 struct backref_node *upper;
422 struct backref_edge *edge;
423
424 if (!node)
425 return;
426
427 BUG_ON(!node->lowest && !node->detached);
428 while (!list_empty(&node->upper)) {
429 edge = list_entry(node->upper.next, struct backref_edge,
430 list[LOWER]);
431 upper = edge->node[UPPER];
432 list_del(&edge->list[LOWER]);
433 list_del(&edge->list[UPPER]);
434 free_backref_edge(cache, edge);
435
436 if (RB_EMPTY_NODE(&upper->rb_node)) {
437 BUG_ON(!list_empty(&node->upper));
438 drop_backref_node(cache, node);
439 node = upper;
440 node->lowest = 1;
441 continue;
442 }
443 /*
444 * add the node to leaf node list if no other
445 * child block cached.
446 */
447 if (list_empty(&upper->lower)) {
448 list_add_tail(&upper->lower, &cache->leaves);
449 upper->lowest = 1;
450 }
451 }
452
453 drop_backref_node(cache, node);
454}
455
456static void update_backref_node(struct backref_cache *cache,
457 struct backref_node *node, u64 bytenr)
458{
459 struct rb_node *rb_node;
460 rb_erase(&node->rb_node, &cache->rb_root);
461 node->bytenr = bytenr;
462 rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
463 if (rb_node)
464 backref_tree_panic(rb_node, -EEXIST, bytenr);
465}
466
467/*
468 * update backref cache after a transaction commit
469 */
470static int update_backref_cache(struct btrfs_trans_handle *trans,
471 struct backref_cache *cache)
472{
473 struct backref_node *node;
474 int level = 0;
475
476 if (cache->last_trans == 0) {
477 cache->last_trans = trans->transid;
478 return 0;
479 }
480
481 if (cache->last_trans == trans->transid)
482 return 0;
483
484 /*
485 * detached nodes are used to avoid unnecessary backref
486 * lookup. transaction commit changes the extent tree.
487 * so the detached nodes are no longer useful.
488 */
489 while (!list_empty(&cache->detached)) {
490 node = list_entry(cache->detached.next,
491 struct backref_node, list);
492 remove_backref_node(cache, node);
493 }
494
495 while (!list_empty(&cache->changed)) {
496 node = list_entry(cache->changed.next,
497 struct backref_node, list);
498 list_del_init(&node->list);
499 BUG_ON(node->pending);
500 update_backref_node(cache, node, node->new_bytenr);
501 }
502
503 /*
504 * some nodes can be left in the pending list if there were
505 * errors during processing the pending nodes.
506 */
507 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
508 list_for_each_entry(node, &cache->pending[level], list) {
509 BUG_ON(!node->pending);
510 if (node->bytenr == node->new_bytenr)
511 continue;
512 update_backref_node(cache, node, node->new_bytenr);
513 }
514 }
515
516 cache->last_trans = 0;
517 return 1;
518}
519
520
521static int should_ignore_root(struct btrfs_root *root)
522{
523 struct btrfs_root *reloc_root;
524
525 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
526 return 0;
527
528 reloc_root = root->reloc_root;
529 if (!reloc_root)
530 return 0;
531
532 if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
533 root->fs_info->running_transaction->transid - 1)
534 return 0;
535 /*
536 * if there is reloc tree and it was created in previous
537 * transaction backref lookup can find the reloc tree,
538 * so backref node for the fs tree root is useless for
539 * relocation.
540 */
541 return 1;
542}
543/*
544 * find reloc tree by address of tree root
545 */
546static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
547 u64 bytenr)
548{
549 struct rb_node *rb_node;
550 struct mapping_node *node;
551 struct btrfs_root *root = NULL;
552
553 spin_lock(&rc->reloc_root_tree.lock);
554 rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
555 if (rb_node) {
556 node = rb_entry(rb_node, struct mapping_node, rb_node);
557 root = (struct btrfs_root *)node->data;
558 }
559 spin_unlock(&rc->reloc_root_tree.lock);
560 return root;
561}
562
563static int is_cowonly_root(u64 root_objectid)
564{
565 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
566 root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
567 root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
568 root_objectid == BTRFS_DEV_TREE_OBJECTID ||
569 root_objectid == BTRFS_TREE_LOG_OBJECTID ||
570 root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
571 root_objectid == BTRFS_UUID_TREE_OBJECTID ||
572 root_objectid == BTRFS_QUOTA_TREE_OBJECTID ||
573 root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
574 return 1;
575 return 0;
576}
577
578static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
579 u64 root_objectid)
580{
581 struct btrfs_key key;
582
583 key.objectid = root_objectid;
584 key.type = BTRFS_ROOT_ITEM_KEY;
585 if (is_cowonly_root(root_objectid))
586 key.offset = 0;
587 else
588 key.offset = (u64)-1;
589
590 return btrfs_get_fs_root(fs_info, &key, false);
591}
592
593static noinline_for_stack
594int find_inline_backref(struct extent_buffer *leaf, int slot,
595 unsigned long *ptr, unsigned long *end)
596{
597 struct btrfs_key key;
598 struct btrfs_extent_item *ei;
599 struct btrfs_tree_block_info *bi;
600 u32 item_size;
601
602 btrfs_item_key_to_cpu(leaf, &key, slot);
603
604 item_size = btrfs_item_size_nr(leaf, slot);
605 if (item_size < sizeof(*ei)) {
606 btrfs_print_v0_err(leaf->fs_info);
607 btrfs_handle_fs_error(leaf->fs_info, -EINVAL, NULL);
608 return 1;
609 }
610 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
611 WARN_ON(!(btrfs_extent_flags(leaf, ei) &
612 BTRFS_EXTENT_FLAG_TREE_BLOCK));
613
614 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
615 item_size <= sizeof(*ei) + sizeof(*bi)) {
616 WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
617 return 1;
618 }
619 if (key.type == BTRFS_METADATA_ITEM_KEY &&
620 item_size <= sizeof(*ei)) {
621 WARN_ON(item_size < sizeof(*ei));
622 return 1;
623 }
624
625 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
626 bi = (struct btrfs_tree_block_info *)(ei + 1);
627 *ptr = (unsigned long)(bi + 1);
628 } else {
629 *ptr = (unsigned long)(ei + 1);
630 }
631 *end = (unsigned long)ei + item_size;
632 return 0;
633}
634
635/*
636 * build backref tree for a given tree block. root of the backref tree
637 * corresponds the tree block, leaves of the backref tree correspond
638 * roots of b-trees that reference the tree block.
639 *
640 * the basic idea of this function is check backrefs of a given block
641 * to find upper level blocks that reference the block, and then check
642 * backrefs of these upper level blocks recursively. the recursion stop
643 * when tree root is reached or backrefs for the block is cached.
644 *
645 * NOTE: if we find backrefs for a block are cached, we know backrefs
646 * for all upper level blocks that directly/indirectly reference the
647 * block are also cached.
648 */
649static noinline_for_stack
650struct backref_node *build_backref_tree(struct reloc_control *rc,
651 struct btrfs_key *node_key,
652 int level, u64 bytenr)
653{
654 struct backref_cache *cache = &rc->backref_cache;
655 struct btrfs_path *path1; /* For searching extent root */
656 struct btrfs_path *path2; /* For searching parent of TREE_BLOCK_REF */
657 struct extent_buffer *eb;
658 struct btrfs_root *root;
659 struct backref_node *cur;
660 struct backref_node *upper;
661 struct backref_node *lower;
662 struct backref_node *node = NULL;
663 struct backref_node *exist = NULL;
664 struct backref_edge *edge;
665 struct rb_node *rb_node;
666 struct btrfs_key key;
667 unsigned long end;
668 unsigned long ptr;
669 LIST_HEAD(list); /* Pending edge list, upper node needs to be checked */
670 LIST_HEAD(useless);
671 int cowonly;
672 int ret;
673 int err = 0;
674 bool need_check = true;
675
676 path1 = btrfs_alloc_path();
677 path2 = btrfs_alloc_path();
678 if (!path1 || !path2) {
679 err = -ENOMEM;
680 goto out;
681 }
682 path1->reada = READA_FORWARD;
683 path2->reada = READA_FORWARD;
684
685 node = alloc_backref_node(cache);
686 if (!node) {
687 err = -ENOMEM;
688 goto out;
689 }
690
691 node->bytenr = bytenr;
692 node->level = level;
693 node->lowest = 1;
694 cur = node;
695again:
696 end = 0;
697 ptr = 0;
698 key.objectid = cur->bytenr;
699 key.type = BTRFS_METADATA_ITEM_KEY;
700 key.offset = (u64)-1;
701
702 path1->search_commit_root = 1;
703 path1->skip_locking = 1;
704 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
705 0, 0);
706 if (ret < 0) {
707 err = ret;
708 goto out;
709 }
710 ASSERT(ret);
711 ASSERT(path1->slots[0]);
712
713 path1->slots[0]--;
714
715 WARN_ON(cur->checked);
716 if (!list_empty(&cur->upper)) {
717 /*
718 * the backref was added previously when processing
719 * backref of type BTRFS_TREE_BLOCK_REF_KEY
720 */
721 ASSERT(list_is_singular(&cur->upper));
722 edge = list_entry(cur->upper.next, struct backref_edge,
723 list[LOWER]);
724 ASSERT(list_empty(&edge->list[UPPER]));
725 exist = edge->node[UPPER];
726 /*
727 * add the upper level block to pending list if we need
728 * check its backrefs
729 */
730 if (!exist->checked)
731 list_add_tail(&edge->list[UPPER], &list);
732 } else {
733 exist = NULL;
734 }
735
736 while (1) {
737 cond_resched();
738 eb = path1->nodes[0];
739
740 if (ptr >= end) {
741 if (path1->slots[0] >= btrfs_header_nritems(eb)) {
742 ret = btrfs_next_leaf(rc->extent_root, path1);
743 if (ret < 0) {
744 err = ret;
745 goto out;
746 }
747 if (ret > 0)
748 break;
749 eb = path1->nodes[0];
750 }
751
752 btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
753 if (key.objectid != cur->bytenr) {
754 WARN_ON(exist);
755 break;
756 }
757
758 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
759 key.type == BTRFS_METADATA_ITEM_KEY) {
760 ret = find_inline_backref(eb, path1->slots[0],
761 &ptr, &end);
762 if (ret)
763 goto next;
764 }
765 }
766
767 if (ptr < end) {
768 /* update key for inline back ref */
769 struct btrfs_extent_inline_ref *iref;
770 int type;
771 iref = (struct btrfs_extent_inline_ref *)ptr;
772 type = btrfs_get_extent_inline_ref_type(eb, iref,
773 BTRFS_REF_TYPE_BLOCK);
774 if (type == BTRFS_REF_TYPE_INVALID) {
775 err = -EUCLEAN;
776 goto out;
777 }
778 key.type = type;
779 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
780
781 WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
782 key.type != BTRFS_SHARED_BLOCK_REF_KEY);
783 }
784
785 /*
786 * Parent node found and matches current inline ref, no need to
787 * rebuild this node for this inline ref.
788 */
789 if (exist &&
790 ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
791 exist->owner == key.offset) ||
792 (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
793 exist->bytenr == key.offset))) {
794 exist = NULL;
795 goto next;
796 }
797
798 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */
799 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
800 if (key.objectid == key.offset) {
801 /*
802 * Only root blocks of reloc trees use backref
803 * pointing to itself.
804 */
805 root = find_reloc_root(rc, cur->bytenr);
806 ASSERT(root);
807 cur->root = root;
808 break;
809 }
810
811 edge = alloc_backref_edge(cache);
812 if (!edge) {
813 err = -ENOMEM;
814 goto out;
815 }
816 rb_node = tree_search(&cache->rb_root, key.offset);
817 if (!rb_node) {
818 upper = alloc_backref_node(cache);
819 if (!upper) {
820 free_backref_edge(cache, edge);
821 err = -ENOMEM;
822 goto out;
823 }
824 upper->bytenr = key.offset;
825 upper->level = cur->level + 1;
826 /*
827 * backrefs for the upper level block isn't
828 * cached, add the block to pending list
829 */
830 list_add_tail(&edge->list[UPPER], &list);
831 } else {
832 upper = rb_entry(rb_node, struct backref_node,
833 rb_node);
834 ASSERT(upper->checked);
835 INIT_LIST_HEAD(&edge->list[UPPER]);
836 }
837 list_add_tail(&edge->list[LOWER], &cur->upper);
838 edge->node[LOWER] = cur;
839 edge->node[UPPER] = upper;
840
841 goto next;
842 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
843 err = -EINVAL;
844 btrfs_print_v0_err(rc->extent_root->fs_info);
845 btrfs_handle_fs_error(rc->extent_root->fs_info, err,
846 NULL);
847 goto out;
848 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
849 goto next;
850 }
851
852 /*
853 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
854 * means the root objectid. We need to search the tree to get
855 * its parent bytenr.
856 */
857 root = read_fs_root(rc->extent_root->fs_info, key.offset);
858 if (IS_ERR(root)) {
859 err = PTR_ERR(root);
860 goto out;
861 }
862
863 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
864 cur->cowonly = 1;
865
866 if (btrfs_root_level(&root->root_item) == cur->level) {
867 /* tree root */
868 ASSERT(btrfs_root_bytenr(&root->root_item) ==
869 cur->bytenr);
870 if (should_ignore_root(root))
871 list_add(&cur->list, &useless);
872 else
873 cur->root = root;
874 break;
875 }
876
877 level = cur->level + 1;
878
879 /* Search the tree to find parent blocks referring the block. */
880 path2->search_commit_root = 1;
881 path2->skip_locking = 1;
882 path2->lowest_level = level;
883 ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
884 path2->lowest_level = 0;
885 if (ret < 0) {
886 err = ret;
887 goto out;
888 }
889 if (ret > 0 && path2->slots[level] > 0)
890 path2->slots[level]--;
891
892 eb = path2->nodes[level];
893 if (btrfs_node_blockptr(eb, path2->slots[level]) !=
894 cur->bytenr) {
895 btrfs_err(root->fs_info,
896 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
897 cur->bytenr, level - 1,
898 root->root_key.objectid,
899 node_key->objectid, node_key->type,
900 node_key->offset);
901 err = -ENOENT;
902 goto out;
903 }
904 lower = cur;
905 need_check = true;
906
907 /* Add all nodes and edges in the path */
908 for (; level < BTRFS_MAX_LEVEL; level++) {
909 if (!path2->nodes[level]) {
910 ASSERT(btrfs_root_bytenr(&root->root_item) ==
911 lower->bytenr);
912 if (should_ignore_root(root))
913 list_add(&lower->list, &useless);
914 else
915 lower->root = root;
916 break;
917 }
918
919 edge = alloc_backref_edge(cache);
920 if (!edge) {
921 err = -ENOMEM;
922 goto out;
923 }
924
925 eb = path2->nodes[level];
926 rb_node = tree_search(&cache->rb_root, eb->start);
927 if (!rb_node) {
928 upper = alloc_backref_node(cache);
929 if (!upper) {
930 free_backref_edge(cache, edge);
931 err = -ENOMEM;
932 goto out;
933 }
934 upper->bytenr = eb->start;
935 upper->owner = btrfs_header_owner(eb);
936 upper->level = lower->level + 1;
937 if (!test_bit(BTRFS_ROOT_REF_COWS,
938 &root->state))
939 upper->cowonly = 1;
940
941 /*
942 * if we know the block isn't shared
943 * we can void checking its backrefs.
944 */
945 if (btrfs_block_can_be_shared(root, eb))
946 upper->checked = 0;
947 else
948 upper->checked = 1;
949
950 /*
951 * add the block to pending list if we
952 * need check its backrefs, we only do this once
953 * while walking up a tree as we will catch
954 * anything else later on.
955 */
956 if (!upper->checked && need_check) {
957 need_check = false;
958 list_add_tail(&edge->list[UPPER],
959 &list);
960 } else {
961 if (upper->checked)
962 need_check = true;
963 INIT_LIST_HEAD(&edge->list[UPPER]);
964 }
965 } else {
966 upper = rb_entry(rb_node, struct backref_node,
967 rb_node);
968 ASSERT(upper->checked);
969 INIT_LIST_HEAD(&edge->list[UPPER]);
970 if (!upper->owner)
971 upper->owner = btrfs_header_owner(eb);
972 }
973 list_add_tail(&edge->list[LOWER], &lower->upper);
974 edge->node[LOWER] = lower;
975 edge->node[UPPER] = upper;
976
977 if (rb_node)
978 break;
979 lower = upper;
980 upper = NULL;
981 }
982 btrfs_release_path(path2);
983next:
984 if (ptr < end) {
985 ptr += btrfs_extent_inline_ref_size(key.type);
986 if (ptr >= end) {
987 WARN_ON(ptr > end);
988 ptr = 0;
989 end = 0;
990 }
991 }
992 if (ptr >= end)
993 path1->slots[0]++;
994 }
995 btrfs_release_path(path1);
996
997 cur->checked = 1;
998 WARN_ON(exist);
999
1000 /* the pending list isn't empty, take the first block to process */
1001 if (!list_empty(&list)) {
1002 edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1003 list_del_init(&edge->list[UPPER]);
1004 cur = edge->node[UPPER];
1005 goto again;
1006 }
1007
1008 /*
1009 * everything goes well, connect backref nodes and insert backref nodes
1010 * into the cache.
1011 */
1012 ASSERT(node->checked);
1013 cowonly = node->cowonly;
1014 if (!cowonly) {
1015 rb_node = tree_insert(&cache->rb_root, node->bytenr,
1016 &node->rb_node);
1017 if (rb_node)
1018 backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1019 list_add_tail(&node->lower, &cache->leaves);
1020 }
1021
1022 list_for_each_entry(edge, &node->upper, list[LOWER])
1023 list_add_tail(&edge->list[UPPER], &list);
1024
1025 while (!list_empty(&list)) {
1026 edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1027 list_del_init(&edge->list[UPPER]);
1028 upper = edge->node[UPPER];
1029 if (upper->detached) {
1030 list_del(&edge->list[LOWER]);
1031 lower = edge->node[LOWER];
1032 free_backref_edge(cache, edge);
1033 if (list_empty(&lower->upper))
1034 list_add(&lower->list, &useless);
1035 continue;
1036 }
1037
1038 if (!RB_EMPTY_NODE(&upper->rb_node)) {
1039 if (upper->lowest) {
1040 list_del_init(&upper->lower);
1041 upper->lowest = 0;
1042 }
1043
1044 list_add_tail(&edge->list[UPPER], &upper->lower);
1045 continue;
1046 }
1047
1048 if (!upper->checked) {
1049 /*
1050 * Still want to blow up for developers since this is a
1051 * logic bug.
1052 */
1053 ASSERT(0);
1054 err = -EINVAL;
1055 goto out;
1056 }
1057 if (cowonly != upper->cowonly) {
1058 ASSERT(0);
1059 err = -EINVAL;
1060 goto out;
1061 }
1062
1063 if (!cowonly) {
1064 rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1065 &upper->rb_node);
1066 if (rb_node)
1067 backref_tree_panic(rb_node, -EEXIST,
1068 upper->bytenr);
1069 }
1070
1071 list_add_tail(&edge->list[UPPER], &upper->lower);
1072
1073 list_for_each_entry(edge, &upper->upper, list[LOWER])
1074 list_add_tail(&edge->list[UPPER], &list);
1075 }
1076 /*
1077 * process useless backref nodes. backref nodes for tree leaves
1078 * are deleted from the cache. backref nodes for upper level
1079 * tree blocks are left in the cache to avoid unnecessary backref
1080 * lookup.
1081 */
1082 while (!list_empty(&useless)) {
1083 upper = list_entry(useless.next, struct backref_node, list);
1084 list_del_init(&upper->list);
1085 ASSERT(list_empty(&upper->upper));
1086 if (upper == node)
1087 node = NULL;
1088 if (upper->lowest) {
1089 list_del_init(&upper->lower);
1090 upper->lowest = 0;
1091 }
1092 while (!list_empty(&upper->lower)) {
1093 edge = list_entry(upper->lower.next,
1094 struct backref_edge, list[UPPER]);
1095 list_del(&edge->list[UPPER]);
1096 list_del(&edge->list[LOWER]);
1097 lower = edge->node[LOWER];
1098 free_backref_edge(cache, edge);
1099
1100 if (list_empty(&lower->upper))
1101 list_add(&lower->list, &useless);
1102 }
1103 __mark_block_processed(rc, upper);
1104 if (upper->level > 0) {
1105 list_add(&upper->list, &cache->detached);
1106 upper->detached = 1;
1107 } else {
1108 rb_erase(&upper->rb_node, &cache->rb_root);
1109 free_backref_node(cache, upper);
1110 }
1111 }
1112out:
1113 btrfs_free_path(path1);
1114 btrfs_free_path(path2);
1115 if (err) {
1116 while (!list_empty(&useless)) {
1117 lower = list_entry(useless.next,
1118 struct backref_node, list);
1119 list_del_init(&lower->list);
1120 }
1121 while (!list_empty(&list)) {
1122 edge = list_first_entry(&list, struct backref_edge,
1123 list[UPPER]);
1124 list_del(&edge->list[UPPER]);
1125 list_del(&edge->list[LOWER]);
1126 lower = edge->node[LOWER];
1127 upper = edge->node[UPPER];
1128 free_backref_edge(cache, edge);
1129
1130 /*
1131 * Lower is no longer linked to any upper backref nodes
1132 * and isn't in the cache, we can free it ourselves.
1133 */
1134 if (list_empty(&lower->upper) &&
1135 RB_EMPTY_NODE(&lower->rb_node))
1136 list_add(&lower->list, &useless);
1137
1138 if (!RB_EMPTY_NODE(&upper->rb_node))
1139 continue;
1140
1141 /* Add this guy's upper edges to the list to process */
1142 list_for_each_entry(edge, &upper->upper, list[LOWER])
1143 list_add_tail(&edge->list[UPPER], &list);
1144 if (list_empty(&upper->upper))
1145 list_add(&upper->list, &useless);
1146 }
1147
1148 while (!list_empty(&useless)) {
1149 lower = list_entry(useless.next,
1150 struct backref_node, list);
1151 list_del_init(&lower->list);
1152 if (lower == node)
1153 node = NULL;
1154 free_backref_node(cache, lower);
1155 }
1156
1157 free_backref_node(cache, node);
1158 return ERR_PTR(err);
1159 }
1160 ASSERT(!node || !node->detached);
1161 return node;
1162}
1163
1164/*
1165 * helper to add backref node for the newly created snapshot.
1166 * the backref node is created by cloning backref node that
1167 * corresponds to root of source tree
1168 */
1169static int clone_backref_node(struct btrfs_trans_handle *trans,
1170 struct reloc_control *rc,
1171 struct btrfs_root *src,
1172 struct btrfs_root *dest)
1173{
1174 struct btrfs_root *reloc_root = src->reloc_root;
1175 struct backref_cache *cache = &rc->backref_cache;
1176 struct backref_node *node = NULL;
1177 struct backref_node *new_node;
1178 struct backref_edge *edge;
1179 struct backref_edge *new_edge;
1180 struct rb_node *rb_node;
1181
1182 if (cache->last_trans > 0)
1183 update_backref_cache(trans, cache);
1184
1185 rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1186 if (rb_node) {
1187 node = rb_entry(rb_node, struct backref_node, rb_node);
1188 if (node->detached)
1189 node = NULL;
1190 else
1191 BUG_ON(node->new_bytenr != reloc_root->node->start);
1192 }
1193
1194 if (!node) {
1195 rb_node = tree_search(&cache->rb_root,
1196 reloc_root->commit_root->start);
1197 if (rb_node) {
1198 node = rb_entry(rb_node, struct backref_node,
1199 rb_node);
1200 BUG_ON(node->detached);
1201 }
1202 }
1203
1204 if (!node)
1205 return 0;
1206
1207 new_node = alloc_backref_node(cache);
1208 if (!new_node)
1209 return -ENOMEM;
1210
1211 new_node->bytenr = dest->node->start;
1212 new_node->level = node->level;
1213 new_node->lowest = node->lowest;
1214 new_node->checked = 1;
1215 new_node->root = dest;
1216
1217 if (!node->lowest) {
1218 list_for_each_entry(edge, &node->lower, list[UPPER]) {
1219 new_edge = alloc_backref_edge(cache);
1220 if (!new_edge)
1221 goto fail;
1222
1223 new_edge->node[UPPER] = new_node;
1224 new_edge->node[LOWER] = edge->node[LOWER];
1225 list_add_tail(&new_edge->list[UPPER],
1226 &new_node->lower);
1227 }
1228 } else {
1229 list_add_tail(&new_node->lower, &cache->leaves);
1230 }
1231
1232 rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1233 &new_node->rb_node);
1234 if (rb_node)
1235 backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1236
1237 if (!new_node->lowest) {
1238 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1239 list_add_tail(&new_edge->list[LOWER],
1240 &new_edge->node[LOWER]->upper);
1241 }
1242 }
1243 return 0;
1244fail:
1245 while (!list_empty(&new_node->lower)) {
1246 new_edge = list_entry(new_node->lower.next,
1247 struct backref_edge, list[UPPER]);
1248 list_del(&new_edge->list[UPPER]);
1249 free_backref_edge(cache, new_edge);
1250 }
1251 free_backref_node(cache, new_node);
1252 return -ENOMEM;
1253}
1254
1255/*
1256 * helper to add 'address of tree root -> reloc tree' mapping
1257 */
1258static int __must_check __add_reloc_root(struct btrfs_root *root)
1259{
1260 struct btrfs_fs_info *fs_info = root->fs_info;
1261 struct rb_node *rb_node;
1262 struct mapping_node *node;
1263 struct reloc_control *rc = fs_info->reloc_ctl;
1264
1265 node = kmalloc(sizeof(*node), GFP_NOFS);
1266 if (!node)
1267 return -ENOMEM;
1268
1269 node->bytenr = root->node->start;
1270 node->data = root;
1271
1272 spin_lock(&rc->reloc_root_tree.lock);
1273 rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1274 node->bytenr, &node->rb_node);
1275 spin_unlock(&rc->reloc_root_tree.lock);
1276 if (rb_node) {
1277 btrfs_panic(fs_info, -EEXIST,
1278 "Duplicate root found for start=%llu while inserting into relocation tree",
1279 node->bytenr);
1280 }
1281
1282 list_add_tail(&root->root_list, &rc->reloc_roots);
1283 return 0;
1284}
1285
1286/*
1287 * helper to delete the 'address of tree root -> reloc tree'
1288 * mapping
1289 */
1290static void __del_reloc_root(struct btrfs_root *root)
1291{
1292 struct btrfs_fs_info *fs_info = root->fs_info;
1293 struct rb_node *rb_node;
1294 struct mapping_node *node = NULL;
1295 struct reloc_control *rc = fs_info->reloc_ctl;
1296
1297 if (rc && root->node) {
1298 spin_lock(&rc->reloc_root_tree.lock);
1299 rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1300 root->node->start);
1301 if (rb_node) {
1302 node = rb_entry(rb_node, struct mapping_node, rb_node);
1303 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1304 }
1305 spin_unlock(&rc->reloc_root_tree.lock);
1306 if (!node)
1307 return;
1308 BUG_ON((struct btrfs_root *)node->data != root);
1309 }
1310
1311 spin_lock(&fs_info->trans_lock);
1312 list_del_init(&root->root_list);
1313 spin_unlock(&fs_info->trans_lock);
1314 kfree(node);
1315}
1316
1317/*
1318 * helper to update the 'address of tree root -> reloc tree'
1319 * mapping
1320 */
1321static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
1322{
1323 struct btrfs_fs_info *fs_info = root->fs_info;
1324 struct rb_node *rb_node;
1325 struct mapping_node *node = NULL;
1326 struct reloc_control *rc = fs_info->reloc_ctl;
1327
1328 spin_lock(&rc->reloc_root_tree.lock);
1329 rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1330 root->node->start);
1331 if (rb_node) {
1332 node = rb_entry(rb_node, struct mapping_node, rb_node);
1333 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1334 }
1335 spin_unlock(&rc->reloc_root_tree.lock);
1336
1337 if (!node)
1338 return 0;
1339 BUG_ON((struct btrfs_root *)node->data != root);
1340
1341 spin_lock(&rc->reloc_root_tree.lock);
1342 node->bytenr = new_bytenr;
1343 rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1344 node->bytenr, &node->rb_node);
1345 spin_unlock(&rc->reloc_root_tree.lock);
1346 if (rb_node)
1347 backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1348 return 0;
1349}
1350
1351static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1352 struct btrfs_root *root, u64 objectid)
1353{
1354 struct btrfs_fs_info *fs_info = root->fs_info;
1355 struct btrfs_root *reloc_root;
1356 struct extent_buffer *eb;
1357 struct btrfs_root_item *root_item;
1358 struct btrfs_key root_key;
1359 int ret;
1360
1361 root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1362 BUG_ON(!root_item);
1363
1364 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1365 root_key.type = BTRFS_ROOT_ITEM_KEY;
1366 root_key.offset = objectid;
1367
1368 if (root->root_key.objectid == objectid) {
1369 u64 commit_root_gen;
1370
1371 /* called by btrfs_init_reloc_root */
1372 ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1373 BTRFS_TREE_RELOC_OBJECTID);
1374 BUG_ON(ret);
1375 /*
1376 * Set the last_snapshot field to the generation of the commit
1377 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
1378 * correctly (returns true) when the relocation root is created
1379 * either inside the critical section of a transaction commit
1380 * (through transaction.c:qgroup_account_snapshot()) and when
1381 * it's created before the transaction commit is started.
1382 */
1383 commit_root_gen = btrfs_header_generation(root->commit_root);
1384 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
1385 } else {
1386 /*
1387 * called by btrfs_reloc_post_snapshot_hook.
1388 * the source tree is a reloc tree, all tree blocks
1389 * modified after it was created have RELOC flag
1390 * set in their headers. so it's OK to not update
1391 * the 'last_snapshot'.
1392 */
1393 ret = btrfs_copy_root(trans, root, root->node, &eb,
1394 BTRFS_TREE_RELOC_OBJECTID);
1395 BUG_ON(ret);
1396 }
1397
1398 memcpy(root_item, &root->root_item, sizeof(*root_item));
1399 btrfs_set_root_bytenr(root_item, eb->start);
1400 btrfs_set_root_level(root_item, btrfs_header_level(eb));
1401 btrfs_set_root_generation(root_item, trans->transid);
1402
1403 if (root->root_key.objectid == objectid) {
1404 btrfs_set_root_refs(root_item, 0);
1405 memset(&root_item->drop_progress, 0,
1406 sizeof(struct btrfs_disk_key));
1407 root_item->drop_level = 0;
1408 }
1409
1410 btrfs_tree_unlock(eb);
1411 free_extent_buffer(eb);
1412
1413 ret = btrfs_insert_root(trans, fs_info->tree_root,
1414 &root_key, root_item);
1415 BUG_ON(ret);
1416 kfree(root_item);
1417
1418 reloc_root = btrfs_read_fs_root(fs_info->tree_root, &root_key);
1419 BUG_ON(IS_ERR(reloc_root));
1420 reloc_root->last_trans = trans->transid;
1421 return reloc_root;
1422}
1423
1424/*
1425 * create reloc tree for a given fs tree. reloc tree is just a
1426 * snapshot of the fs tree with special root objectid.
1427 */
1428int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1429 struct btrfs_root *root)
1430{
1431 struct btrfs_fs_info *fs_info = root->fs_info;
1432 struct btrfs_root *reloc_root;
1433 struct reloc_control *rc = fs_info->reloc_ctl;
1434 struct btrfs_block_rsv *rsv;
1435 int clear_rsv = 0;
1436 int ret;
1437
1438 /*
1439 * The subvolume has reloc tree but the swap is finished, no need to
1440 * create/update the dead reloc tree
1441 */
1442 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
1443 return 0;
1444
1445 if (root->reloc_root) {
1446 reloc_root = root->reloc_root;
1447 reloc_root->last_trans = trans->transid;
1448 return 0;
1449 }
1450
1451 if (!rc || !rc->create_reloc_tree ||
1452 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1453 return 0;
1454
1455 if (!trans->reloc_reserved) {
1456 rsv = trans->block_rsv;
1457 trans->block_rsv = rc->block_rsv;
1458 clear_rsv = 1;
1459 }
1460 reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1461 if (clear_rsv)
1462 trans->block_rsv = rsv;
1463
1464 ret = __add_reloc_root(reloc_root);
1465 BUG_ON(ret < 0);
1466 root->reloc_root = reloc_root;
1467 return 0;
1468}
1469
1470/*
1471 * update root item of reloc tree
1472 */
1473int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1474 struct btrfs_root *root)
1475{
1476 struct btrfs_fs_info *fs_info = root->fs_info;
1477 struct btrfs_root *reloc_root;
1478 struct btrfs_root_item *root_item;
1479 int ret;
1480
1481 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state) ||
1482 !root->reloc_root)
1483 goto out;
1484
1485 reloc_root = root->reloc_root;
1486 root_item = &reloc_root->root_item;
1487
1488 /* root->reloc_root will stay until current relocation finished */
1489 if (fs_info->reloc_ctl->merge_reloc_tree &&
1490 btrfs_root_refs(root_item) == 0) {
1491 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1492 __del_reloc_root(reloc_root);
1493 }
1494
1495 if (reloc_root->commit_root != reloc_root->node) {
1496 btrfs_set_root_node(root_item, reloc_root->node);
1497 free_extent_buffer(reloc_root->commit_root);
1498 reloc_root->commit_root = btrfs_root_node(reloc_root);
1499 }
1500
1501 ret = btrfs_update_root(trans, fs_info->tree_root,
1502 &reloc_root->root_key, root_item);
1503 BUG_ON(ret);
1504
1505out:
1506 return 0;
1507}
1508
1509/*
1510 * helper to find first cached inode with inode number >= objectid
1511 * in a subvolume
1512 */
1513static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1514{
1515 struct rb_node *node;
1516 struct rb_node *prev;
1517 struct btrfs_inode *entry;
1518 struct inode *inode;
1519
1520 spin_lock(&root->inode_lock);
1521again:
1522 node = root->inode_tree.rb_node;
1523 prev = NULL;
1524 while (node) {
1525 prev = node;
1526 entry = rb_entry(node, struct btrfs_inode, rb_node);
1527
1528 if (objectid < btrfs_ino(entry))
1529 node = node->rb_left;
1530 else if (objectid > btrfs_ino(entry))
1531 node = node->rb_right;
1532 else
1533 break;
1534 }
1535 if (!node) {
1536 while (prev) {
1537 entry = rb_entry(prev, struct btrfs_inode, rb_node);
1538 if (objectid <= btrfs_ino(entry)) {
1539 node = prev;
1540 break;
1541 }
1542 prev = rb_next(prev);
1543 }
1544 }
1545 while (node) {
1546 entry = rb_entry(node, struct btrfs_inode, rb_node);
1547 inode = igrab(&entry->vfs_inode);
1548 if (inode) {
1549 spin_unlock(&root->inode_lock);
1550 return inode;
1551 }
1552
1553 objectid = btrfs_ino(entry) + 1;
1554 if (cond_resched_lock(&root->inode_lock))
1555 goto again;
1556
1557 node = rb_next(node);
1558 }
1559 spin_unlock(&root->inode_lock);
1560 return NULL;
1561}
1562
1563static int in_block_group(u64 bytenr,
1564 struct btrfs_block_group_cache *block_group)
1565{
1566 if (bytenr >= block_group->key.objectid &&
1567 bytenr < block_group->key.objectid + block_group->key.offset)
1568 return 1;
1569 return 0;
1570}
1571
1572/*
1573 * get new location of data
1574 */
1575static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1576 u64 bytenr, u64 num_bytes)
1577{
1578 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1579 struct btrfs_path *path;
1580 struct btrfs_file_extent_item *fi;
1581 struct extent_buffer *leaf;
1582 int ret;
1583
1584 path = btrfs_alloc_path();
1585 if (!path)
1586 return -ENOMEM;
1587
1588 bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1589 ret = btrfs_lookup_file_extent(NULL, root, path,
1590 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1591 if (ret < 0)
1592 goto out;
1593 if (ret > 0) {
1594 ret = -ENOENT;
1595 goto out;
1596 }
1597
1598 leaf = path->nodes[0];
1599 fi = btrfs_item_ptr(leaf, path->slots[0],
1600 struct btrfs_file_extent_item);
1601
1602 BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1603 btrfs_file_extent_compression(leaf, fi) ||
1604 btrfs_file_extent_encryption(leaf, fi) ||
1605 btrfs_file_extent_other_encoding(leaf, fi));
1606
1607 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1608 ret = -EINVAL;
1609 goto out;
1610 }
1611
1612 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1613 ret = 0;
1614out:
1615 btrfs_free_path(path);
1616 return ret;
1617}
1618
1619/*
1620 * update file extent items in the tree leaf to point to
1621 * the new locations.
1622 */
1623static noinline_for_stack
1624int replace_file_extents(struct btrfs_trans_handle *trans,
1625 struct reloc_control *rc,
1626 struct btrfs_root *root,
1627 struct extent_buffer *leaf)
1628{
1629 struct btrfs_fs_info *fs_info = root->fs_info;
1630 struct btrfs_key key;
1631 struct btrfs_file_extent_item *fi;
1632 struct inode *inode = NULL;
1633 u64 parent;
1634 u64 bytenr;
1635 u64 new_bytenr = 0;
1636 u64 num_bytes;
1637 u64 end;
1638 u32 nritems;
1639 u32 i;
1640 int ret = 0;
1641 int first = 1;
1642 int dirty = 0;
1643
1644 if (rc->stage != UPDATE_DATA_PTRS)
1645 return 0;
1646
1647 /* reloc trees always use full backref */
1648 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1649 parent = leaf->start;
1650 else
1651 parent = 0;
1652
1653 nritems = btrfs_header_nritems(leaf);
1654 for (i = 0; i < nritems; i++) {
1655 struct btrfs_ref ref = { 0 };
1656
1657 cond_resched();
1658 btrfs_item_key_to_cpu(leaf, &key, i);
1659 if (key.type != BTRFS_EXTENT_DATA_KEY)
1660 continue;
1661 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1662 if (btrfs_file_extent_type(leaf, fi) ==
1663 BTRFS_FILE_EXTENT_INLINE)
1664 continue;
1665 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1666 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1667 if (bytenr == 0)
1668 continue;
1669 if (!in_block_group(bytenr, rc->block_group))
1670 continue;
1671
1672 /*
1673 * if we are modifying block in fs tree, wait for readpage
1674 * to complete and drop the extent cache
1675 */
1676 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1677 if (first) {
1678 inode = find_next_inode(root, key.objectid);
1679 first = 0;
1680 } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1681 btrfs_add_delayed_iput(inode);
1682 inode = find_next_inode(root, key.objectid);
1683 }
1684 if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1685 end = key.offset +
1686 btrfs_file_extent_num_bytes(leaf, fi);
1687 WARN_ON(!IS_ALIGNED(key.offset,
1688 fs_info->sectorsize));
1689 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1690 end--;
1691 ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1692 key.offset, end);
1693 if (!ret)
1694 continue;
1695
1696 btrfs_drop_extent_cache(BTRFS_I(inode),
1697 key.offset, end, 1);
1698 unlock_extent(&BTRFS_I(inode)->io_tree,
1699 key.offset, end);
1700 }
1701 }
1702
1703 ret = get_new_location(rc->data_inode, &new_bytenr,
1704 bytenr, num_bytes);
1705 if (ret) {
1706 /*
1707 * Don't have to abort since we've not changed anything
1708 * in the file extent yet.
1709 */
1710 break;
1711 }
1712
1713 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1714 dirty = 1;
1715
1716 key.offset -= btrfs_file_extent_offset(leaf, fi);
1717 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1718 num_bytes, parent);
1719 ref.real_root = root->root_key.objectid;
1720 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1721 key.objectid, key.offset);
1722 ret = btrfs_inc_extent_ref(trans, &ref);
1723 if (ret) {
1724 btrfs_abort_transaction(trans, ret);
1725 break;
1726 }
1727
1728 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1729 num_bytes, parent);
1730 ref.real_root = root->root_key.objectid;
1731 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1732 key.objectid, key.offset);
1733 ret = btrfs_free_extent(trans, &ref);
1734 if (ret) {
1735 btrfs_abort_transaction(trans, ret);
1736 break;
1737 }
1738 }
1739 if (dirty)
1740 btrfs_mark_buffer_dirty(leaf);
1741 if (inode)
1742 btrfs_add_delayed_iput(inode);
1743 return ret;
1744}
1745
1746static noinline_for_stack
1747int memcmp_node_keys(struct extent_buffer *eb, int slot,
1748 struct btrfs_path *path, int level)
1749{
1750 struct btrfs_disk_key key1;
1751 struct btrfs_disk_key key2;
1752 btrfs_node_key(eb, &key1, slot);
1753 btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1754 return memcmp(&key1, &key2, sizeof(key1));
1755}
1756
1757/*
1758 * try to replace tree blocks in fs tree with the new blocks
1759 * in reloc tree. tree blocks haven't been modified since the
1760 * reloc tree was create can be replaced.
1761 *
1762 * if a block was replaced, level of the block + 1 is returned.
1763 * if no block got replaced, 0 is returned. if there are other
1764 * errors, a negative error number is returned.
1765 */
1766static noinline_for_stack
1767int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1768 struct btrfs_root *dest, struct btrfs_root *src,
1769 struct btrfs_path *path, struct btrfs_key *next_key,
1770 int lowest_level, int max_level)
1771{
1772 struct btrfs_fs_info *fs_info = dest->fs_info;
1773 struct extent_buffer *eb;
1774 struct extent_buffer *parent;
1775 struct btrfs_ref ref = { 0 };
1776 struct btrfs_key key;
1777 u64 old_bytenr;
1778 u64 new_bytenr;
1779 u64 old_ptr_gen;
1780 u64 new_ptr_gen;
1781 u64 last_snapshot;
1782 u32 blocksize;
1783 int cow = 0;
1784 int level;
1785 int ret;
1786 int slot;
1787
1788 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1789 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1790
1791 last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1792again:
1793 slot = path->slots[lowest_level];
1794 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1795
1796 eb = btrfs_lock_root_node(dest);
1797 btrfs_set_lock_blocking_write(eb);
1798 level = btrfs_header_level(eb);
1799
1800 if (level < lowest_level) {
1801 btrfs_tree_unlock(eb);
1802 free_extent_buffer(eb);
1803 return 0;
1804 }
1805
1806 if (cow) {
1807 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1808 BUG_ON(ret);
1809 }
1810 btrfs_set_lock_blocking_write(eb);
1811
1812 if (next_key) {
1813 next_key->objectid = (u64)-1;
1814 next_key->type = (u8)-1;
1815 next_key->offset = (u64)-1;
1816 }
1817
1818 parent = eb;
1819 while (1) {
1820 struct btrfs_key first_key;
1821
1822 level = btrfs_header_level(parent);
1823 BUG_ON(level < lowest_level);
1824
1825 ret = btrfs_bin_search(parent, &key, level, &slot);
1826 if (ret < 0)
1827 break;
1828 if (ret && slot > 0)
1829 slot--;
1830
1831 if (next_key && slot + 1 < btrfs_header_nritems(parent))
1832 btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1833
1834 old_bytenr = btrfs_node_blockptr(parent, slot);
1835 blocksize = fs_info->nodesize;
1836 old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1837 btrfs_node_key_to_cpu(parent, &first_key, slot);
1838
1839 if (level <= max_level) {
1840 eb = path->nodes[level];
1841 new_bytenr = btrfs_node_blockptr(eb,
1842 path->slots[level]);
1843 new_ptr_gen = btrfs_node_ptr_generation(eb,
1844 path->slots[level]);
1845 } else {
1846 new_bytenr = 0;
1847 new_ptr_gen = 0;
1848 }
1849
1850 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1851 ret = level;
1852 break;
1853 }
1854
1855 if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1856 memcmp_node_keys(parent, slot, path, level)) {
1857 if (level <= lowest_level) {
1858 ret = 0;
1859 break;
1860 }
1861
1862 eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen,
1863 level - 1, &first_key);
1864 if (IS_ERR(eb)) {
1865 ret = PTR_ERR(eb);
1866 break;
1867 } else if (!extent_buffer_uptodate(eb)) {
1868 ret = -EIO;
1869 free_extent_buffer(eb);
1870 break;
1871 }
1872 btrfs_tree_lock(eb);
1873 if (cow) {
1874 ret = btrfs_cow_block(trans, dest, eb, parent,
1875 slot, &eb);
1876 BUG_ON(ret);
1877 }
1878 btrfs_set_lock_blocking_write(eb);
1879
1880 btrfs_tree_unlock(parent);
1881 free_extent_buffer(parent);
1882
1883 parent = eb;
1884 continue;
1885 }
1886
1887 if (!cow) {
1888 btrfs_tree_unlock(parent);
1889 free_extent_buffer(parent);
1890 cow = 1;
1891 goto again;
1892 }
1893
1894 btrfs_node_key_to_cpu(path->nodes[level], &key,
1895 path->slots[level]);
1896 btrfs_release_path(path);
1897
1898 path->lowest_level = level;
1899 ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1900 path->lowest_level = 0;
1901 BUG_ON(ret);
1902
1903 /*
1904 * Info qgroup to trace both subtrees.
1905 *
1906 * We must trace both trees.
1907 * 1) Tree reloc subtree
1908 * If not traced, we will leak data numbers
1909 * 2) Fs subtree
1910 * If not traced, we will double count old data
1911 *
1912 * We don't scan the subtree right now, but only record
1913 * the swapped tree blocks.
1914 * The real subtree rescan is delayed until we have new
1915 * CoW on the subtree root node before transaction commit.
1916 */
1917 ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1918 rc->block_group, parent, slot,
1919 path->nodes[level], path->slots[level],
1920 last_snapshot);
1921 if (ret < 0)
1922 break;
1923 /*
1924 * swap blocks in fs tree and reloc tree.
1925 */
1926 btrfs_set_node_blockptr(parent, slot, new_bytenr);
1927 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1928 btrfs_mark_buffer_dirty(parent);
1929
1930 btrfs_set_node_blockptr(path->nodes[level],
1931 path->slots[level], old_bytenr);
1932 btrfs_set_node_ptr_generation(path->nodes[level],
1933 path->slots[level], old_ptr_gen);
1934 btrfs_mark_buffer_dirty(path->nodes[level]);
1935
1936 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1937 blocksize, path->nodes[level]->start);
1938 ref.skip_qgroup = true;
1939 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1940 ret = btrfs_inc_extent_ref(trans, &ref);
1941 BUG_ON(ret);
1942 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1943 blocksize, 0);
1944 ref.skip_qgroup = true;
1945 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1946 ret = btrfs_inc_extent_ref(trans, &ref);
1947 BUG_ON(ret);
1948
1949 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1950 blocksize, path->nodes[level]->start);
1951 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1952 ref.skip_qgroup = true;
1953 ret = btrfs_free_extent(trans, &ref);
1954 BUG_ON(ret);
1955
1956 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1957 blocksize, 0);
1958 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1959 ref.skip_qgroup = true;
1960 ret = btrfs_free_extent(trans, &ref);
1961 BUG_ON(ret);
1962
1963 btrfs_unlock_up_safe(path, 0);
1964
1965 ret = level;
1966 break;
1967 }
1968 btrfs_tree_unlock(parent);
1969 free_extent_buffer(parent);
1970 return ret;
1971}
1972
1973/*
1974 * helper to find next relocated block in reloc tree
1975 */
1976static noinline_for_stack
1977int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1978 int *level)
1979{
1980 struct extent_buffer *eb;
1981 int i;
1982 u64 last_snapshot;
1983 u32 nritems;
1984
1985 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1986
1987 for (i = 0; i < *level; i++) {
1988 free_extent_buffer(path->nodes[i]);
1989 path->nodes[i] = NULL;
1990 }
1991
1992 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1993 eb = path->nodes[i];
1994 nritems = btrfs_header_nritems(eb);
1995 while (path->slots[i] + 1 < nritems) {
1996 path->slots[i]++;
1997 if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1998 last_snapshot)
1999 continue;
2000
2001 *level = i;
2002 return 0;
2003 }
2004 free_extent_buffer(path->nodes[i]);
2005 path->nodes[i] = NULL;
2006 }
2007 return 1;
2008}
2009
2010/*
2011 * walk down reloc tree to find relocated block of lowest level
2012 */
2013static noinline_for_stack
2014int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
2015 int *level)
2016{
2017 struct btrfs_fs_info *fs_info = root->fs_info;
2018 struct extent_buffer *eb = NULL;
2019 int i;
2020 u64 bytenr;
2021 u64 ptr_gen = 0;
2022 u64 last_snapshot;
2023 u32 nritems;
2024
2025 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2026
2027 for (i = *level; i > 0; i--) {
2028 struct btrfs_key first_key;
2029
2030 eb = path->nodes[i];
2031 nritems = btrfs_header_nritems(eb);
2032 while (path->slots[i] < nritems) {
2033 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
2034 if (ptr_gen > last_snapshot)
2035 break;
2036 path->slots[i]++;
2037 }
2038 if (path->slots[i] >= nritems) {
2039 if (i == *level)
2040 break;
2041 *level = i + 1;
2042 return 0;
2043 }
2044 if (i == 1) {
2045 *level = i;
2046 return 0;
2047 }
2048
2049 bytenr = btrfs_node_blockptr(eb, path->slots[i]);
2050 btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]);
2051 eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1,
2052 &first_key);
2053 if (IS_ERR(eb)) {
2054 return PTR_ERR(eb);
2055 } else if (!extent_buffer_uptodate(eb)) {
2056 free_extent_buffer(eb);
2057 return -EIO;
2058 }
2059 BUG_ON(btrfs_header_level(eb) != i - 1);
2060 path->nodes[i - 1] = eb;
2061 path->slots[i - 1] = 0;
2062 }
2063 return 1;
2064}
2065
2066/*
2067 * invalidate extent cache for file extents whose key in range of
2068 * [min_key, max_key)
2069 */
2070static int invalidate_extent_cache(struct btrfs_root *root,
2071 struct btrfs_key *min_key,
2072 struct btrfs_key *max_key)
2073{
2074 struct btrfs_fs_info *fs_info = root->fs_info;
2075 struct inode *inode = NULL;
2076 u64 objectid;
2077 u64 start, end;
2078 u64 ino;
2079
2080 objectid = min_key->objectid;
2081 while (1) {
2082 cond_resched();
2083 iput(inode);
2084
2085 if (objectid > max_key->objectid)
2086 break;
2087
2088 inode = find_next_inode(root, objectid);
2089 if (!inode)
2090 break;
2091 ino = btrfs_ino(BTRFS_I(inode));
2092
2093 if (ino > max_key->objectid) {
2094 iput(inode);
2095 break;
2096 }
2097
2098 objectid = ino + 1;
2099 if (!S_ISREG(inode->i_mode))
2100 continue;
2101
2102 if (unlikely(min_key->objectid == ino)) {
2103 if (min_key->type > BTRFS_EXTENT_DATA_KEY)
2104 continue;
2105 if (min_key->type < BTRFS_EXTENT_DATA_KEY)
2106 start = 0;
2107 else {
2108 start = min_key->offset;
2109 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
2110 }
2111 } else {
2112 start = 0;
2113 }
2114
2115 if (unlikely(max_key->objectid == ino)) {
2116 if (max_key->type < BTRFS_EXTENT_DATA_KEY)
2117 continue;
2118 if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
2119 end = (u64)-1;
2120 } else {
2121 if (max_key->offset == 0)
2122 continue;
2123 end = max_key->offset;
2124 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
2125 end--;
2126 }
2127 } else {
2128 end = (u64)-1;
2129 }
2130
2131 /* the lock_extent waits for readpage to complete */
2132 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2133 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
2134 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2135 }
2136 return 0;
2137}
2138
2139static int find_next_key(struct btrfs_path *path, int level,
2140 struct btrfs_key *key)
2141
2142{
2143 while (level < BTRFS_MAX_LEVEL) {
2144 if (!path->nodes[level])
2145 break;
2146 if (path->slots[level] + 1 <
2147 btrfs_header_nritems(path->nodes[level])) {
2148 btrfs_node_key_to_cpu(path->nodes[level], key,
2149 path->slots[level] + 1);
2150 return 0;
2151 }
2152 level++;
2153 }
2154 return 1;
2155}
2156
2157/*
2158 * Insert current subvolume into reloc_control::dirty_subvol_roots
2159 */
2160static void insert_dirty_subvol(struct btrfs_trans_handle *trans,
2161 struct reloc_control *rc,
2162 struct btrfs_root *root)
2163{
2164 struct btrfs_root *reloc_root = root->reloc_root;
2165 struct btrfs_root_item *reloc_root_item;
2166
2167 /* @root must be a subvolume tree root with a valid reloc tree */
2168 ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
2169 ASSERT(reloc_root);
2170
2171 reloc_root_item = &reloc_root->root_item;
2172 memset(&reloc_root_item->drop_progress, 0,
2173 sizeof(reloc_root_item->drop_progress));
2174 reloc_root_item->drop_level = 0;
2175 btrfs_set_root_refs(reloc_root_item, 0);
2176 btrfs_update_reloc_root(trans, root);
2177
2178 if (list_empty(&root->reloc_dirty_list)) {
2179 btrfs_grab_fs_root(root);
2180 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
2181 }
2182}
2183
2184static int clean_dirty_subvols(struct reloc_control *rc)
2185{
2186 struct btrfs_root *root;
2187 struct btrfs_root *next;
2188 int ret = 0;
2189 int ret2;
2190
2191 list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
2192 reloc_dirty_list) {
2193 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
2194 /* Merged subvolume, cleanup its reloc root */
2195 struct btrfs_root *reloc_root = root->reloc_root;
2196
2197 list_del_init(&root->reloc_dirty_list);
2198 root->reloc_root = NULL;
2199 if (reloc_root) {
2200
2201 ret2 = btrfs_drop_snapshot(reloc_root, NULL, 0, 1);
2202 if (ret2 < 0 && !ret)
2203 ret = ret2;
2204 }
2205 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
2206 btrfs_put_fs_root(root);
2207 } else {
2208 /* Orphan reloc tree, just clean it up */
2209 ret2 = btrfs_drop_snapshot(root, NULL, 0, 1);
2210 if (ret2 < 0 && !ret)
2211 ret = ret2;
2212 }
2213 }
2214 return ret;
2215}
2216
2217/*
2218 * merge the relocated tree blocks in reloc tree with corresponding
2219 * fs tree.
2220 */
2221static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2222 struct btrfs_root *root)
2223{
2224 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2225 struct btrfs_key key;
2226 struct btrfs_key next_key;
2227 struct btrfs_trans_handle *trans = NULL;
2228 struct btrfs_root *reloc_root;
2229 struct btrfs_root_item *root_item;
2230 struct btrfs_path *path;
2231 struct extent_buffer *leaf;
2232 int level;
2233 int max_level;
2234 int replaced = 0;
2235 int ret;
2236 int err = 0;
2237 u32 min_reserved;
2238
2239 path = btrfs_alloc_path();
2240 if (!path)
2241 return -ENOMEM;
2242 path->reada = READA_FORWARD;
2243
2244 reloc_root = root->reloc_root;
2245 root_item = &reloc_root->root_item;
2246
2247 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2248 level = btrfs_root_level(root_item);
2249 extent_buffer_get(reloc_root->node);
2250 path->nodes[level] = reloc_root->node;
2251 path->slots[level] = 0;
2252 } else {
2253 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2254
2255 level = root_item->drop_level;
2256 BUG_ON(level == 0);
2257 path->lowest_level = level;
2258 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2259 path->lowest_level = 0;
2260 if (ret < 0) {
2261 btrfs_free_path(path);
2262 return ret;
2263 }
2264
2265 btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2266 path->slots[level]);
2267 WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2268
2269 btrfs_unlock_up_safe(path, 0);
2270 }
2271
2272 min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2273 memset(&next_key, 0, sizeof(next_key));
2274
2275 while (1) {
2276 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2277 BTRFS_RESERVE_FLUSH_ALL);
2278 if (ret) {
2279 err = ret;
2280 goto out;
2281 }
2282 trans = btrfs_start_transaction(root, 0);
2283 if (IS_ERR(trans)) {
2284 err = PTR_ERR(trans);
2285 trans = NULL;
2286 goto out;
2287 }
2288 trans->block_rsv = rc->block_rsv;
2289
2290 replaced = 0;
2291 max_level = level;
2292
2293 ret = walk_down_reloc_tree(reloc_root, path, &level);
2294 if (ret < 0) {
2295 err = ret;
2296 goto out;
2297 }
2298 if (ret > 0)
2299 break;
2300
2301 if (!find_next_key(path, level, &key) &&
2302 btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2303 ret = 0;
2304 } else {
2305 ret = replace_path(trans, rc, root, reloc_root, path,
2306 &next_key, level, max_level);
2307 }
2308 if (ret < 0) {
2309 err = ret;
2310 goto out;
2311 }
2312
2313 if (ret > 0) {
2314 level = ret;
2315 btrfs_node_key_to_cpu(path->nodes[level], &key,
2316 path->slots[level]);
2317 replaced = 1;
2318 }
2319
2320 ret = walk_up_reloc_tree(reloc_root, path, &level);
2321 if (ret > 0)
2322 break;
2323
2324 BUG_ON(level == 0);
2325 /*
2326 * save the merging progress in the drop_progress.
2327 * this is OK since root refs == 1 in this case.
2328 */
2329 btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2330 path->slots[level]);
2331 root_item->drop_level = level;
2332
2333 btrfs_end_transaction_throttle(trans);
2334 trans = NULL;
2335
2336 btrfs_btree_balance_dirty(fs_info);
2337
2338 if (replaced && rc->stage == UPDATE_DATA_PTRS)
2339 invalidate_extent_cache(root, &key, &next_key);
2340 }
2341
2342 /*
2343 * handle the case only one block in the fs tree need to be
2344 * relocated and the block is tree root.
2345 */
2346 leaf = btrfs_lock_root_node(root);
2347 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2348 btrfs_tree_unlock(leaf);
2349 free_extent_buffer(leaf);
2350 if (ret < 0)
2351 err = ret;
2352out:
2353 btrfs_free_path(path);
2354
2355 if (err == 0)
2356 insert_dirty_subvol(trans, rc, root);
2357
2358 if (trans)
2359 btrfs_end_transaction_throttle(trans);
2360
2361 btrfs_btree_balance_dirty(fs_info);
2362
2363 if (replaced && rc->stage == UPDATE_DATA_PTRS)
2364 invalidate_extent_cache(root, &key, &next_key);
2365
2366 return err;
2367}
2368
2369static noinline_for_stack
2370int prepare_to_merge(struct reloc_control *rc, int err)
2371{
2372 struct btrfs_root *root = rc->extent_root;
2373 struct btrfs_fs_info *fs_info = root->fs_info;
2374 struct btrfs_root *reloc_root;
2375 struct btrfs_trans_handle *trans;
2376 LIST_HEAD(reloc_roots);
2377 u64 num_bytes = 0;
2378 int ret;
2379
2380 mutex_lock(&fs_info->reloc_mutex);
2381 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2382 rc->merging_rsv_size += rc->nodes_relocated * 2;
2383 mutex_unlock(&fs_info->reloc_mutex);
2384
2385again:
2386 if (!err) {
2387 num_bytes = rc->merging_rsv_size;
2388 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2389 BTRFS_RESERVE_FLUSH_ALL);
2390 if (ret)
2391 err = ret;
2392 }
2393
2394 trans = btrfs_join_transaction(rc->extent_root);
2395 if (IS_ERR(trans)) {
2396 if (!err)
2397 btrfs_block_rsv_release(fs_info, rc->block_rsv,
2398 num_bytes);
2399 return PTR_ERR(trans);
2400 }
2401
2402 if (!err) {
2403 if (num_bytes != rc->merging_rsv_size) {
2404 btrfs_end_transaction(trans);
2405 btrfs_block_rsv_release(fs_info, rc->block_rsv,
2406 num_bytes);
2407 goto again;
2408 }
2409 }
2410
2411 rc->merge_reloc_tree = 1;
2412
2413 while (!list_empty(&rc->reloc_roots)) {
2414 reloc_root = list_entry(rc->reloc_roots.next,
2415 struct btrfs_root, root_list);
2416 list_del_init(&reloc_root->root_list);
2417
2418 root = read_fs_root(fs_info, reloc_root->root_key.offset);
2419 BUG_ON(IS_ERR(root));
2420 BUG_ON(root->reloc_root != reloc_root);
2421
2422 /*
2423 * set reference count to 1, so btrfs_recover_relocation
2424 * knows it should resumes merging
2425 */
2426 if (!err)
2427 btrfs_set_root_refs(&reloc_root->root_item, 1);
2428 btrfs_update_reloc_root(trans, root);
2429
2430 list_add(&reloc_root->root_list, &reloc_roots);
2431 }
2432
2433 list_splice(&reloc_roots, &rc->reloc_roots);
2434
2435 if (!err)
2436 btrfs_commit_transaction(trans);
2437 else
2438 btrfs_end_transaction(trans);
2439 return err;
2440}
2441
2442static noinline_for_stack
2443void free_reloc_roots(struct list_head *list)
2444{
2445 struct btrfs_root *reloc_root;
2446
2447 while (!list_empty(list)) {
2448 reloc_root = list_entry(list->next, struct btrfs_root,
2449 root_list);
2450 __del_reloc_root(reloc_root);
2451 free_extent_buffer(reloc_root->node);
2452 free_extent_buffer(reloc_root->commit_root);
2453 reloc_root->node = NULL;
2454 reloc_root->commit_root = NULL;
2455 }
2456}
2457
2458static noinline_for_stack
2459void merge_reloc_roots(struct reloc_control *rc)
2460{
2461 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2462 struct btrfs_root *root;
2463 struct btrfs_root *reloc_root;
2464 LIST_HEAD(reloc_roots);
2465 int found = 0;
2466 int ret = 0;
2467again:
2468 root = rc->extent_root;
2469
2470 /*
2471 * this serializes us with btrfs_record_root_in_transaction,
2472 * we have to make sure nobody is in the middle of
2473 * adding their roots to the list while we are
2474 * doing this splice
2475 */
2476 mutex_lock(&fs_info->reloc_mutex);
2477 list_splice_init(&rc->reloc_roots, &reloc_roots);
2478 mutex_unlock(&fs_info->reloc_mutex);
2479
2480 while (!list_empty(&reloc_roots)) {
2481 found = 1;
2482 reloc_root = list_entry(reloc_roots.next,
2483 struct btrfs_root, root_list);
2484
2485 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2486 root = read_fs_root(fs_info,
2487 reloc_root->root_key.offset);
2488 BUG_ON(IS_ERR(root));
2489 BUG_ON(root->reloc_root != reloc_root);
2490
2491 ret = merge_reloc_root(rc, root);
2492 if (ret) {
2493 if (list_empty(&reloc_root->root_list))
2494 list_add_tail(&reloc_root->root_list,
2495 &reloc_roots);
2496 goto out;
2497 }
2498 } else {
2499 list_del_init(&reloc_root->root_list);
2500 /* Don't forget to queue this reloc root for cleanup */
2501 list_add_tail(&reloc_root->reloc_dirty_list,
2502 &rc->dirty_subvol_roots);
2503 }
2504 }
2505
2506 if (found) {
2507 found = 0;
2508 goto again;
2509 }
2510out:
2511 if (ret) {
2512 btrfs_handle_fs_error(fs_info, ret, NULL);
2513 if (!list_empty(&reloc_roots))
2514 free_reloc_roots(&reloc_roots);
2515
2516 /* new reloc root may be added */
2517 mutex_lock(&fs_info->reloc_mutex);
2518 list_splice_init(&rc->reloc_roots, &reloc_roots);
2519 mutex_unlock(&fs_info->reloc_mutex);
2520 if (!list_empty(&reloc_roots))
2521 free_reloc_roots(&reloc_roots);
2522 }
2523
2524 BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2525}
2526
2527static void free_block_list(struct rb_root *blocks)
2528{
2529 struct tree_block *block;
2530 struct rb_node *rb_node;
2531 while ((rb_node = rb_first(blocks))) {
2532 block = rb_entry(rb_node, struct tree_block, rb_node);
2533 rb_erase(rb_node, blocks);
2534 kfree(block);
2535 }
2536}
2537
2538static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2539 struct btrfs_root *reloc_root)
2540{
2541 struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2542 struct btrfs_root *root;
2543
2544 if (reloc_root->last_trans == trans->transid)
2545 return 0;
2546
2547 root = read_fs_root(fs_info, reloc_root->root_key.offset);
2548 BUG_ON(IS_ERR(root));
2549 BUG_ON(root->reloc_root != reloc_root);
2550
2551 return btrfs_record_root_in_trans(trans, root);
2552}
2553
2554static noinline_for_stack
2555struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2556 struct reloc_control *rc,
2557 struct backref_node *node,
2558 struct backref_edge *edges[])
2559{
2560 struct backref_node *next;
2561 struct btrfs_root *root;
2562 int index = 0;
2563
2564 next = node;
2565 while (1) {
2566 cond_resched();
2567 next = walk_up_backref(next, edges, &index);
2568 root = next->root;
2569 BUG_ON(!root);
2570 BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
2571
2572 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2573 record_reloc_root_in_trans(trans, root);
2574 break;
2575 }
2576
2577 btrfs_record_root_in_trans(trans, root);
2578 root = root->reloc_root;
2579
2580 if (next->new_bytenr != root->node->start) {
2581 BUG_ON(next->new_bytenr);
2582 BUG_ON(!list_empty(&next->list));
2583 next->new_bytenr = root->node->start;
2584 next->root = root;
2585 list_add_tail(&next->list,
2586 &rc->backref_cache.changed);
2587 __mark_block_processed(rc, next);
2588 break;
2589 }
2590
2591 WARN_ON(1);
2592 root = NULL;
2593 next = walk_down_backref(edges, &index);
2594 if (!next || next->level <= node->level)
2595 break;
2596 }
2597 if (!root)
2598 return NULL;
2599
2600 next = node;
2601 /* setup backref node path for btrfs_reloc_cow_block */
2602 while (1) {
2603 rc->backref_cache.path[next->level] = next;
2604 if (--index < 0)
2605 break;
2606 next = edges[index]->node[UPPER];
2607 }
2608 return root;
2609}
2610
2611/*
2612 * select a tree root for relocation. return NULL if the block
2613 * is reference counted. we should use do_relocation() in this
2614 * case. return a tree root pointer if the block isn't reference
2615 * counted. return -ENOENT if the block is root of reloc tree.
2616 */
2617static noinline_for_stack
2618struct btrfs_root *select_one_root(struct backref_node *node)
2619{
2620 struct backref_node *next;
2621 struct btrfs_root *root;
2622 struct btrfs_root *fs_root = NULL;
2623 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2624 int index = 0;
2625
2626 next = node;
2627 while (1) {
2628 cond_resched();
2629 next = walk_up_backref(next, edges, &index);
2630 root = next->root;
2631 BUG_ON(!root);
2632
2633 /* no other choice for non-references counted tree */
2634 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
2635 return root;
2636
2637 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2638 fs_root = root;
2639
2640 if (next != node)
2641 return NULL;
2642
2643 next = walk_down_backref(edges, &index);
2644 if (!next || next->level <= node->level)
2645 break;
2646 }
2647
2648 if (!fs_root)
2649 return ERR_PTR(-ENOENT);
2650 return fs_root;
2651}
2652
2653static noinline_for_stack
2654u64 calcu_metadata_size(struct reloc_control *rc,
2655 struct backref_node *node, int reserve)
2656{
2657 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2658 struct backref_node *next = node;
2659 struct backref_edge *edge;
2660 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2661 u64 num_bytes = 0;
2662 int index = 0;
2663
2664 BUG_ON(reserve && node->processed);
2665
2666 while (next) {
2667 cond_resched();
2668 while (1) {
2669 if (next->processed && (reserve || next != node))
2670 break;
2671
2672 num_bytes += fs_info->nodesize;
2673
2674 if (list_empty(&next->upper))
2675 break;
2676
2677 edge = list_entry(next->upper.next,
2678 struct backref_edge, list[LOWER]);
2679 edges[index++] = edge;
2680 next = edge->node[UPPER];
2681 }
2682 next = walk_down_backref(edges, &index);
2683 }
2684 return num_bytes;
2685}
2686
2687static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2688 struct reloc_control *rc,
2689 struct backref_node *node)
2690{
2691 struct btrfs_root *root = rc->extent_root;
2692 struct btrfs_fs_info *fs_info = root->fs_info;
2693 u64 num_bytes;
2694 int ret;
2695 u64 tmp;
2696
2697 num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2698
2699 trans->block_rsv = rc->block_rsv;
2700 rc->reserved_bytes += num_bytes;
2701
2702 /*
2703 * We are under a transaction here so we can only do limited flushing.
2704 * If we get an enospc just kick back -EAGAIN so we know to drop the
2705 * transaction and try to refill when we can flush all the things.
2706 */
2707 ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2708 BTRFS_RESERVE_FLUSH_LIMIT);
2709 if (ret) {
2710 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2711 while (tmp <= rc->reserved_bytes)
2712 tmp <<= 1;
2713 /*
2714 * only one thread can access block_rsv at this point,
2715 * so we don't need hold lock to protect block_rsv.
2716 * we expand more reservation size here to allow enough
2717 * space for relocation and we will return earlier in
2718 * enospc case.
2719 */
2720 rc->block_rsv->size = tmp + fs_info->nodesize *
2721 RELOCATION_RESERVED_NODES;
2722 return -EAGAIN;
2723 }
2724
2725 return 0;
2726}
2727
2728/*
2729 * relocate a block tree, and then update pointers in upper level
2730 * blocks that reference the block to point to the new location.
2731 *
2732 * if called by link_to_upper, the block has already been relocated.
2733 * in that case this function just updates pointers.
2734 */
2735static int do_relocation(struct btrfs_trans_handle *trans,
2736 struct reloc_control *rc,
2737 struct backref_node *node,
2738 struct btrfs_key *key,
2739 struct btrfs_path *path, int lowest)
2740{
2741 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2742 struct backref_node *upper;
2743 struct backref_edge *edge;
2744 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2745 struct btrfs_root *root;
2746 struct extent_buffer *eb;
2747 u32 blocksize;
2748 u64 bytenr;
2749 u64 generation;
2750 int slot;
2751 int ret;
2752 int err = 0;
2753
2754 BUG_ON(lowest && node->eb);
2755
2756 path->lowest_level = node->level + 1;
2757 rc->backref_cache.path[node->level] = node;
2758 list_for_each_entry(edge, &node->upper, list[LOWER]) {
2759 struct btrfs_key first_key;
2760 struct btrfs_ref ref = { 0 };
2761
2762 cond_resched();
2763
2764 upper = edge->node[UPPER];
2765 root = select_reloc_root(trans, rc, upper, edges);
2766 BUG_ON(!root);
2767
2768 if (upper->eb && !upper->locked) {
2769 if (!lowest) {
2770 ret = btrfs_bin_search(upper->eb, key,
2771 upper->level, &slot);
2772 if (ret < 0) {
2773 err = ret;
2774 goto next;
2775 }
2776 BUG_ON(ret);
2777 bytenr = btrfs_node_blockptr(upper->eb, slot);
2778 if (node->eb->start == bytenr)
2779 goto next;
2780 }
2781 drop_node_buffer(upper);
2782 }
2783
2784 if (!upper->eb) {
2785 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2786 if (ret) {
2787 if (ret < 0)
2788 err = ret;
2789 else
2790 err = -ENOENT;
2791
2792 btrfs_release_path(path);
2793 break;
2794 }
2795
2796 if (!upper->eb) {
2797 upper->eb = path->nodes[upper->level];
2798 path->nodes[upper->level] = NULL;
2799 } else {
2800 BUG_ON(upper->eb != path->nodes[upper->level]);
2801 }
2802
2803 upper->locked = 1;
2804 path->locks[upper->level] = 0;
2805
2806 slot = path->slots[upper->level];
2807 btrfs_release_path(path);
2808 } else {
2809 ret = btrfs_bin_search(upper->eb, key, upper->level,
2810 &slot);
2811 if (ret < 0) {
2812 err = ret;
2813 goto next;
2814 }
2815 BUG_ON(ret);
2816 }
2817
2818 bytenr = btrfs_node_blockptr(upper->eb, slot);
2819 if (lowest) {
2820 if (bytenr != node->bytenr) {
2821 btrfs_err(root->fs_info,
2822 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2823 bytenr, node->bytenr, slot,
2824 upper->eb->start);
2825 err = -EIO;
2826 goto next;
2827 }
2828 } else {
2829 if (node->eb->start == bytenr)
2830 goto next;
2831 }
2832
2833 blocksize = root->fs_info->nodesize;
2834 generation = btrfs_node_ptr_generation(upper->eb, slot);
2835 btrfs_node_key_to_cpu(upper->eb, &first_key, slot);
2836 eb = read_tree_block(fs_info, bytenr, generation,
2837 upper->level - 1, &first_key);
2838 if (IS_ERR(eb)) {
2839 err = PTR_ERR(eb);
2840 goto next;
2841 } else if (!extent_buffer_uptodate(eb)) {
2842 free_extent_buffer(eb);
2843 err = -EIO;
2844 goto next;
2845 }
2846 btrfs_tree_lock(eb);
2847 btrfs_set_lock_blocking_write(eb);
2848
2849 if (!node->eb) {
2850 ret = btrfs_cow_block(trans, root, eb, upper->eb,
2851 slot, &eb);
2852 btrfs_tree_unlock(eb);
2853 free_extent_buffer(eb);
2854 if (ret < 0) {
2855 err = ret;
2856 goto next;
2857 }
2858 BUG_ON(node->eb != eb);
2859 } else {
2860 btrfs_set_node_blockptr(upper->eb, slot,
2861 node->eb->start);
2862 btrfs_set_node_ptr_generation(upper->eb, slot,
2863 trans->transid);
2864 btrfs_mark_buffer_dirty(upper->eb);
2865
2866 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2867 node->eb->start, blocksize,
2868 upper->eb->start);
2869 ref.real_root = root->root_key.objectid;
2870 btrfs_init_tree_ref(&ref, node->level,
2871 btrfs_header_owner(upper->eb));
2872 ret = btrfs_inc_extent_ref(trans, &ref);
2873 BUG_ON(ret);
2874
2875 ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2876 BUG_ON(ret);
2877 }
2878next:
2879 if (!upper->pending)
2880 drop_node_buffer(upper);
2881 else
2882 unlock_node_buffer(upper);
2883 if (err)
2884 break;
2885 }
2886
2887 if (!err && node->pending) {
2888 drop_node_buffer(node);
2889 list_move_tail(&node->list, &rc->backref_cache.changed);
2890 node->pending = 0;
2891 }
2892
2893 path->lowest_level = 0;
2894 BUG_ON(err == -ENOSPC);
2895 return err;
2896}
2897
2898static int link_to_upper(struct btrfs_trans_handle *trans,
2899 struct reloc_control *rc,
2900 struct backref_node *node,
2901 struct btrfs_path *path)
2902{
2903 struct btrfs_key key;
2904
2905 btrfs_node_key_to_cpu(node->eb, &key, 0);
2906 return do_relocation(trans, rc, node, &key, path, 0);
2907}
2908
2909static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2910 struct reloc_control *rc,
2911 struct btrfs_path *path, int err)
2912{
2913 LIST_HEAD(list);
2914 struct backref_cache *cache = &rc->backref_cache;
2915 struct backref_node *node;
2916 int level;
2917 int ret;
2918
2919 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2920 while (!list_empty(&cache->pending[level])) {
2921 node = list_entry(cache->pending[level].next,
2922 struct backref_node, list);
2923 list_move_tail(&node->list, &list);
2924 BUG_ON(!node->pending);
2925
2926 if (!err) {
2927 ret = link_to_upper(trans, rc, node, path);
2928 if (ret < 0)
2929 err = ret;
2930 }
2931 }
2932 list_splice_init(&list, &cache->pending[level]);
2933 }
2934 return err;
2935}
2936
2937static void mark_block_processed(struct reloc_control *rc,
2938 u64 bytenr, u32 blocksize)
2939{
2940 set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2941 EXTENT_DIRTY);
2942}
2943
2944static void __mark_block_processed(struct reloc_control *rc,
2945 struct backref_node *node)
2946{
2947 u32 blocksize;
2948 if (node->level == 0 ||
2949 in_block_group(node->bytenr, rc->block_group)) {
2950 blocksize = rc->extent_root->fs_info->nodesize;
2951 mark_block_processed(rc, node->bytenr, blocksize);
2952 }
2953 node->processed = 1;
2954}
2955
2956/*
2957 * mark a block and all blocks directly/indirectly reference the block
2958 * as processed.
2959 */
2960static void update_processed_blocks(struct reloc_control *rc,
2961 struct backref_node *node)
2962{
2963 struct backref_node *next = node;
2964 struct backref_edge *edge;
2965 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2966 int index = 0;
2967
2968 while (next) {
2969 cond_resched();
2970 while (1) {
2971 if (next->processed)
2972 break;
2973
2974 __mark_block_processed(rc, next);
2975
2976 if (list_empty(&next->upper))
2977 break;
2978
2979 edge = list_entry(next->upper.next,
2980 struct backref_edge, list[LOWER]);
2981 edges[index++] = edge;
2982 next = edge->node[UPPER];
2983 }
2984 next = walk_down_backref(edges, &index);
2985 }
2986}
2987
2988static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2989{
2990 u32 blocksize = rc->extent_root->fs_info->nodesize;
2991
2992 if (test_range_bit(&rc->processed_blocks, bytenr,
2993 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2994 return 1;
2995 return 0;
2996}
2997
2998static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2999 struct tree_block *block)
3000{
3001 struct extent_buffer *eb;
3002
3003 BUG_ON(block->key_ready);
3004 eb = read_tree_block(fs_info, block->bytenr, block->key.offset,
3005 block->level, NULL);
3006 if (IS_ERR(eb)) {
3007 return PTR_ERR(eb);
3008 } else if (!extent_buffer_uptodate(eb)) {
3009 free_extent_buffer(eb);
3010 return -EIO;
3011 }
3012 if (block->level == 0)
3013 btrfs_item_key_to_cpu(eb, &block->key, 0);
3014 else
3015 btrfs_node_key_to_cpu(eb, &block->key, 0);
3016 free_extent_buffer(eb);
3017 block->key_ready = 1;
3018 return 0;
3019}
3020
3021/*
3022 * helper function to relocate a tree block
3023 */
3024static int relocate_tree_block(struct btrfs_trans_handle *trans,
3025 struct reloc_control *rc,
3026 struct backref_node *node,
3027 struct btrfs_key *key,
3028 struct btrfs_path *path)
3029{
3030 struct btrfs_root *root;
3031 int ret = 0;
3032
3033 if (!node)
3034 return 0;
3035
3036 BUG_ON(node->processed);
3037 root = select_one_root(node);
3038 if (root == ERR_PTR(-ENOENT)) {
3039 update_processed_blocks(rc, node);
3040 goto out;
3041 }
3042
3043 if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
3044 ret = reserve_metadata_space(trans, rc, node);
3045 if (ret)
3046 goto out;
3047 }
3048
3049 if (root) {
3050 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
3051 BUG_ON(node->new_bytenr);
3052 BUG_ON(!list_empty(&node->list));
3053 btrfs_record_root_in_trans(trans, root);
3054 root = root->reloc_root;
3055 node->new_bytenr = root->node->start;
3056 node->root = root;
3057 list_add_tail(&node->list, &rc->backref_cache.changed);
3058 } else {
3059 path->lowest_level = node->level;
3060 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
3061 btrfs_release_path(path);
3062 if (ret > 0)
3063 ret = 0;
3064 }
3065 if (!ret)
3066 update_processed_blocks(rc, node);
3067 } else {
3068 ret = do_relocation(trans, rc, node, key, path, 1);
3069 }
3070out:
3071 if (ret || node->level == 0 || node->cowonly)
3072 remove_backref_node(&rc->backref_cache, node);
3073 return ret;
3074}
3075
3076/*
3077 * relocate a list of blocks
3078 */
3079static noinline_for_stack
3080int relocate_tree_blocks(struct btrfs_trans_handle *trans,
3081 struct reloc_control *rc, struct rb_root *blocks)
3082{
3083 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3084 struct backref_node *node;
3085 struct btrfs_path *path;
3086 struct tree_block *block;
3087 struct tree_block *next;
3088 int ret;
3089 int err = 0;
3090
3091 path = btrfs_alloc_path();
3092 if (!path) {
3093 err = -ENOMEM;
3094 goto out_free_blocks;
3095 }
3096
3097 /* Kick in readahead for tree blocks with missing keys */
3098 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
3099 if (!block->key_ready)
3100 readahead_tree_block(fs_info, block->bytenr);
3101 }
3102
3103 /* Get first keys */
3104 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
3105 if (!block->key_ready) {
3106 err = get_tree_block_key(fs_info, block);
3107 if (err)
3108 goto out_free_path;
3109 }
3110 }
3111
3112 /* Do tree relocation */
3113 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
3114 node = build_backref_tree(rc, &block->key,
3115 block->level, block->bytenr);
3116 if (IS_ERR(node)) {
3117 err = PTR_ERR(node);
3118 goto out;
3119 }
3120
3121 ret = relocate_tree_block(trans, rc, node, &block->key,
3122 path);
3123 if (ret < 0) {
3124 if (ret != -EAGAIN || &block->rb_node == rb_first(blocks))
3125 err = ret;
3126 goto out;
3127 }
3128 }
3129out:
3130 err = finish_pending_nodes(trans, rc, path, err);
3131
3132out_free_path:
3133 btrfs_free_path(path);
3134out_free_blocks:
3135 free_block_list(blocks);
3136 return err;
3137}
3138
3139static noinline_for_stack
3140int prealloc_file_extent_cluster(struct inode *inode,
3141 struct file_extent_cluster *cluster)
3142{
3143 u64 alloc_hint = 0;
3144 u64 start;
3145 u64 end;
3146 u64 offset = BTRFS_I(inode)->index_cnt;
3147 u64 num_bytes;
3148 int nr = 0;
3149 int ret = 0;
3150 u64 prealloc_start = cluster->start - offset;
3151 u64 prealloc_end = cluster->end - offset;
3152 u64 cur_offset;
3153 struct extent_changeset *data_reserved = NULL;
3154
3155 BUG_ON(cluster->start != cluster->boundary[0]);
3156 inode_lock(inode);
3157
3158 ret = btrfs_check_data_free_space(inode, &data_reserved, prealloc_start,
3159 prealloc_end + 1 - prealloc_start);
3160 if (ret)
3161 goto out;
3162
3163 cur_offset = prealloc_start;
3164 while (nr < cluster->nr) {
3165 start = cluster->boundary[nr] - offset;
3166 if (nr + 1 < cluster->nr)
3167 end = cluster->boundary[nr + 1] - 1 - offset;
3168 else
3169 end = cluster->end - offset;
3170
3171 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3172 num_bytes = end + 1 - start;
3173 if (cur_offset < start)
3174 btrfs_free_reserved_data_space(inode, data_reserved,
3175 cur_offset, start - cur_offset);
3176 ret = btrfs_prealloc_file_range(inode, 0, start,
3177 num_bytes, num_bytes,
3178 end + 1, &alloc_hint);
3179 cur_offset = end + 1;
3180 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3181 if (ret)
3182 break;
3183 nr++;
3184 }
3185 if (cur_offset < prealloc_end)
3186 btrfs_free_reserved_data_space(inode, data_reserved,
3187 cur_offset, prealloc_end + 1 - cur_offset);
3188out:
3189 inode_unlock(inode);
3190 extent_changeset_free(data_reserved);
3191 return ret;
3192}
3193
3194static noinline_for_stack
3195int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
3196 u64 block_start)
3197{
3198 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3199 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3200 struct extent_map *em;
3201 int ret = 0;
3202
3203 em = alloc_extent_map();
3204 if (!em)
3205 return -ENOMEM;
3206
3207 em->start = start;
3208 em->len = end + 1 - start;
3209 em->block_len = em->len;
3210 em->block_start = block_start;
3211 em->bdev = fs_info->fs_devices->latest_bdev;
3212 set_bit(EXTENT_FLAG_PINNED, &em->flags);
3213
3214 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3215 while (1) {
3216 write_lock(&em_tree->lock);
3217 ret = add_extent_mapping(em_tree, em, 0);
3218 write_unlock(&em_tree->lock);
3219 if (ret != -EEXIST) {
3220 free_extent_map(em);
3221 break;
3222 }
3223 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3224 }
3225 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3226 return ret;
3227}
3228
3229static int relocate_file_extent_cluster(struct inode *inode,
3230 struct file_extent_cluster *cluster)
3231{
3232 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3233 u64 page_start;
3234 u64 page_end;
3235 u64 offset = BTRFS_I(inode)->index_cnt;
3236 unsigned long index;
3237 unsigned long last_index;
3238 struct page *page;
3239 struct file_ra_state *ra;
3240 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3241 int nr = 0;
3242 int ret = 0;
3243
3244 if (!cluster->nr)
3245 return 0;
3246
3247 ra = kzalloc(sizeof(*ra), GFP_NOFS);
3248 if (!ra)
3249 return -ENOMEM;
3250
3251 ret = prealloc_file_extent_cluster(inode, cluster);
3252 if (ret)
3253 goto out;
3254
3255 file_ra_state_init(ra, inode->i_mapping);
3256
3257 ret = setup_extent_mapping(inode, cluster->start - offset,
3258 cluster->end - offset, cluster->start);
3259 if (ret)
3260 goto out;
3261
3262 index = (cluster->start - offset) >> PAGE_SHIFT;
3263 last_index = (cluster->end - offset) >> PAGE_SHIFT;
3264 while (index <= last_index) {
3265 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
3266 PAGE_SIZE);
3267 if (ret)
3268 goto out;
3269
3270 page = find_lock_page(inode->i_mapping, index);
3271 if (!page) {
3272 page_cache_sync_readahead(inode->i_mapping,
3273 ra, NULL, index,
3274 last_index + 1 - index);
3275 page = find_or_create_page(inode->i_mapping, index,
3276 mask);
3277 if (!page) {
3278 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3279 PAGE_SIZE, true);
3280 btrfs_delalloc_release_extents(BTRFS_I(inode),
3281 PAGE_SIZE);
3282 ret = -ENOMEM;
3283 goto out;
3284 }
3285 }
3286
3287 if (PageReadahead(page)) {
3288 page_cache_async_readahead(inode->i_mapping,
3289 ra, NULL, page, index,
3290 last_index + 1 - index);
3291 }
3292
3293 if (!PageUptodate(page)) {
3294 btrfs_readpage(NULL, page);
3295 lock_page(page);
3296 if (!PageUptodate(page)) {
3297 unlock_page(page);
3298 put_page(page);
3299 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3300 PAGE_SIZE, true);
3301 btrfs_delalloc_release_extents(BTRFS_I(inode),
3302 PAGE_SIZE);
3303 ret = -EIO;
3304 goto out;
3305 }
3306 }
3307
3308 page_start = page_offset(page);
3309 page_end = page_start + PAGE_SIZE - 1;
3310
3311 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3312
3313 set_page_extent_mapped(page);
3314
3315 if (nr < cluster->nr &&
3316 page_start + offset == cluster->boundary[nr]) {
3317 set_extent_bits(&BTRFS_I(inode)->io_tree,
3318 page_start, page_end,
3319 EXTENT_BOUNDARY);
3320 nr++;
3321 }
3322
3323 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
3324 NULL);
3325 if (ret) {
3326 unlock_page(page);
3327 put_page(page);
3328 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3329 PAGE_SIZE, true);
3330 btrfs_delalloc_release_extents(BTRFS_I(inode),
3331 PAGE_SIZE);
3332
3333 clear_extent_bits(&BTRFS_I(inode)->io_tree,
3334 page_start, page_end,
3335 EXTENT_LOCKED | EXTENT_BOUNDARY);
3336 goto out;
3337
3338 }
3339 set_page_dirty(page);
3340
3341 unlock_extent(&BTRFS_I(inode)->io_tree,
3342 page_start, page_end);
3343 unlock_page(page);
3344 put_page(page);
3345
3346 index++;
3347 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
3348 balance_dirty_pages_ratelimited(inode->i_mapping);
3349 btrfs_throttle(fs_info);
3350 }
3351 WARN_ON(nr != cluster->nr);
3352out:
3353 kfree(ra);
3354 return ret;
3355}
3356
3357static noinline_for_stack
3358int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3359 struct file_extent_cluster *cluster)
3360{
3361 int ret;
3362
3363 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3364 ret = relocate_file_extent_cluster(inode, cluster);
3365 if (ret)
3366 return ret;
3367 cluster->nr = 0;
3368 }
3369
3370 if (!cluster->nr)
3371 cluster->start = extent_key->objectid;
3372 else
3373 BUG_ON(cluster->nr >= MAX_EXTENTS);
3374 cluster->end = extent_key->objectid + extent_key->offset - 1;
3375 cluster->boundary[cluster->nr] = extent_key->objectid;
3376 cluster->nr++;
3377
3378 if (cluster->nr >= MAX_EXTENTS) {
3379 ret = relocate_file_extent_cluster(inode, cluster);
3380 if (ret)
3381 return ret;
3382 cluster->nr = 0;
3383 }
3384 return 0;
3385}
3386
3387/*
3388 * helper to add a tree block to the list.
3389 * the major work is getting the generation and level of the block
3390 */
3391static int add_tree_block(struct reloc_control *rc,
3392 struct btrfs_key *extent_key,
3393 struct btrfs_path *path,
3394 struct rb_root *blocks)
3395{
3396 struct extent_buffer *eb;
3397 struct btrfs_extent_item *ei;
3398 struct btrfs_tree_block_info *bi;
3399 struct tree_block *block;
3400 struct rb_node *rb_node;
3401 u32 item_size;
3402 int level = -1;
3403 u64 generation;
3404
3405 eb = path->nodes[0];
3406 item_size = btrfs_item_size_nr(eb, path->slots[0]);
3407
3408 if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3409 item_size >= sizeof(*ei) + sizeof(*bi)) {
3410 ei = btrfs_item_ptr(eb, path->slots[0],
3411 struct btrfs_extent_item);
3412 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3413 bi = (struct btrfs_tree_block_info *)(ei + 1);
3414 level = btrfs_tree_block_level(eb, bi);
3415 } else {
3416 level = (int)extent_key->offset;
3417 }
3418 generation = btrfs_extent_generation(eb, ei);
3419 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3420 btrfs_print_v0_err(eb->fs_info);
3421 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3422 return -EINVAL;
3423 } else {
3424 BUG();
3425 }
3426
3427 btrfs_release_path(path);
3428
3429 BUG_ON(level == -1);
3430
3431 block = kmalloc(sizeof(*block), GFP_NOFS);
3432 if (!block)
3433 return -ENOMEM;
3434
3435 block->bytenr = extent_key->objectid;
3436 block->key.objectid = rc->extent_root->fs_info->nodesize;
3437 block->key.offset = generation;
3438 block->level = level;
3439 block->key_ready = 0;
3440
3441 rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3442 if (rb_node)
3443 backref_tree_panic(rb_node, -EEXIST, block->bytenr);
3444
3445 return 0;
3446}
3447
3448/*
3449 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3450 */
3451static int __add_tree_block(struct reloc_control *rc,
3452 u64 bytenr, u32 blocksize,
3453 struct rb_root *blocks)
3454{
3455 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3456 struct btrfs_path *path;
3457 struct btrfs_key key;
3458 int ret;
3459 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3460
3461 if (tree_block_processed(bytenr, rc))
3462 return 0;
3463
3464 if (tree_search(blocks, bytenr))
3465 return 0;
3466
3467 path = btrfs_alloc_path();
3468 if (!path)
3469 return -ENOMEM;
3470again:
3471 key.objectid = bytenr;
3472 if (skinny) {
3473 key.type = BTRFS_METADATA_ITEM_KEY;
3474 key.offset = (u64)-1;
3475 } else {
3476 key.type = BTRFS_EXTENT_ITEM_KEY;
3477 key.offset = blocksize;
3478 }
3479
3480 path->search_commit_root = 1;
3481 path->skip_locking = 1;
3482 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3483 if (ret < 0)
3484 goto out;
3485
3486 if (ret > 0 && skinny) {
3487 if (path->slots[0]) {
3488 path->slots[0]--;
3489 btrfs_item_key_to_cpu(path->nodes[0], &key,
3490 path->slots[0]);
3491 if (key.objectid == bytenr &&
3492 (key.type == BTRFS_METADATA_ITEM_KEY ||
3493 (key.type == BTRFS_EXTENT_ITEM_KEY &&
3494 key.offset == blocksize)))
3495 ret = 0;
3496 }
3497
3498 if (ret) {
3499 skinny = false;
3500 btrfs_release_path(path);
3501 goto again;
3502 }
3503 }
3504 if (ret) {
3505 ASSERT(ret == 1);
3506 btrfs_print_leaf(path->nodes[0]);
3507 btrfs_err(fs_info,
3508 "tree block extent item (%llu) is not found in extent tree",
3509 bytenr);
3510 WARN_ON(1);
3511 ret = -EINVAL;
3512 goto out;
3513 }
3514
3515 ret = add_tree_block(rc, &key, path, blocks);
3516out:
3517 btrfs_free_path(path);
3518 return ret;
3519}
3520
3521/*
3522 * helper to check if the block use full backrefs for pointers in it
3523 */
3524static int block_use_full_backref(struct reloc_control *rc,
3525 struct extent_buffer *eb)
3526{
3527 u64 flags;
3528 int ret;
3529
3530 if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3531 btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3532 return 1;
3533
3534 ret = btrfs_lookup_extent_info(NULL, rc->extent_root->fs_info,
3535 eb->start, btrfs_header_level(eb), 1,
3536 NULL, &flags);
3537 BUG_ON(ret);
3538
3539 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3540 ret = 1;
3541 else
3542 ret = 0;
3543 return ret;
3544}
3545
3546static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3547 struct btrfs_block_group_cache *block_group,
3548 struct inode *inode,
3549 u64 ino)
3550{
3551 struct btrfs_key key;
3552 struct btrfs_root *root = fs_info->tree_root;
3553 struct btrfs_trans_handle *trans;
3554 int ret = 0;
3555
3556 if (inode)
3557 goto truncate;
3558
3559 key.objectid = ino;
3560 key.type = BTRFS_INODE_ITEM_KEY;
3561 key.offset = 0;
3562
3563 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3564 if (IS_ERR(inode))
3565 return -ENOENT;
3566
3567truncate:
3568 ret = btrfs_check_trunc_cache_free_space(fs_info,
3569 &fs_info->global_block_rsv);
3570 if (ret)
3571 goto out;
3572
3573 trans = btrfs_join_transaction(root);
3574 if (IS_ERR(trans)) {
3575 ret = PTR_ERR(trans);
3576 goto out;
3577 }
3578
3579 ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3580
3581 btrfs_end_transaction(trans);
3582 btrfs_btree_balance_dirty(fs_info);
3583out:
3584 iput(inode);
3585 return ret;
3586}
3587
3588/*
3589 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3590 * this function scans fs tree to find blocks reference the data extent
3591 */
3592static int find_data_references(struct reloc_control *rc,
3593 struct btrfs_key *extent_key,
3594 struct extent_buffer *leaf,
3595 struct btrfs_extent_data_ref *ref,
3596 struct rb_root *blocks)
3597{
3598 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3599 struct btrfs_path *path;
3600 struct tree_block *block;
3601 struct btrfs_root *root;
3602 struct btrfs_file_extent_item *fi;
3603 struct rb_node *rb_node;
3604 struct btrfs_key key;
3605 u64 ref_root;
3606 u64 ref_objectid;
3607 u64 ref_offset;
3608 u32 ref_count;
3609 u32 nritems;
3610 int err = 0;
3611 int added = 0;
3612 int counted;
3613 int ret;
3614
3615 ref_root = btrfs_extent_data_ref_root(leaf, ref);
3616 ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3617 ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3618 ref_count = btrfs_extent_data_ref_count(leaf, ref);
3619
3620 /*
3621 * This is an extent belonging to the free space cache, lets just delete
3622 * it and redo the search.
3623 */
3624 if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3625 ret = delete_block_group_cache(fs_info, rc->block_group,
3626 NULL, ref_objectid);
3627 if (ret != -ENOENT)
3628 return ret;
3629 ret = 0;
3630 }
3631
3632 path = btrfs_alloc_path();
3633 if (!path)
3634 return -ENOMEM;
3635 path->reada = READA_FORWARD;
3636
3637 root = read_fs_root(fs_info, ref_root);
3638 if (IS_ERR(root)) {
3639 err = PTR_ERR(root);
3640 goto out;
3641 }
3642
3643 key.objectid = ref_objectid;
3644 key.type = BTRFS_EXTENT_DATA_KEY;
3645 if (ref_offset > ((u64)-1 << 32))
3646 key.offset = 0;
3647 else
3648 key.offset = ref_offset;
3649
3650 path->search_commit_root = 1;
3651 path->skip_locking = 1;
3652 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3653 if (ret < 0) {
3654 err = ret;
3655 goto out;
3656 }
3657
3658 leaf = path->nodes[0];
3659 nritems = btrfs_header_nritems(leaf);
3660 /*
3661 * the references in tree blocks that use full backrefs
3662 * are not counted in
3663 */
3664 if (block_use_full_backref(rc, leaf))
3665 counted = 0;
3666 else
3667 counted = 1;
3668 rb_node = tree_search(blocks, leaf->start);
3669 if (rb_node) {
3670 if (counted)
3671 added = 1;
3672 else
3673 path->slots[0] = nritems;
3674 }
3675
3676 while (ref_count > 0) {
3677 while (path->slots[0] >= nritems) {
3678 ret = btrfs_next_leaf(root, path);
3679 if (ret < 0) {
3680 err = ret;
3681 goto out;
3682 }
3683 if (WARN_ON(ret > 0))
3684 goto out;
3685
3686 leaf = path->nodes[0];
3687 nritems = btrfs_header_nritems(leaf);
3688 added = 0;
3689
3690 if (block_use_full_backref(rc, leaf))
3691 counted = 0;
3692 else
3693 counted = 1;
3694 rb_node = tree_search(blocks, leaf->start);
3695 if (rb_node) {
3696 if (counted)
3697 added = 1;
3698 else
3699 path->slots[0] = nritems;
3700 }
3701 }
3702
3703 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3704 if (WARN_ON(key.objectid != ref_objectid ||
3705 key.type != BTRFS_EXTENT_DATA_KEY))
3706 break;
3707
3708 fi = btrfs_item_ptr(leaf, path->slots[0],
3709 struct btrfs_file_extent_item);
3710
3711 if (btrfs_file_extent_type(leaf, fi) ==
3712 BTRFS_FILE_EXTENT_INLINE)
3713 goto next;
3714
3715 if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3716 extent_key->objectid)
3717 goto next;
3718
3719 key.offset -= btrfs_file_extent_offset(leaf, fi);
3720 if (key.offset != ref_offset)
3721 goto next;
3722
3723 if (counted)
3724 ref_count--;
3725 if (added)
3726 goto next;
3727
3728 if (!tree_block_processed(leaf->start, rc)) {
3729 block = kmalloc(sizeof(*block), GFP_NOFS);
3730 if (!block) {
3731 err = -ENOMEM;
3732 break;
3733 }
3734 block->bytenr = leaf->start;
3735 btrfs_item_key_to_cpu(leaf, &block->key, 0);
3736 block->level = 0;
3737 block->key_ready = 1;
3738 rb_node = tree_insert(blocks, block->bytenr,
3739 &block->rb_node);
3740 if (rb_node)
3741 backref_tree_panic(rb_node, -EEXIST,
3742 block->bytenr);
3743 }
3744 if (counted)
3745 added = 1;
3746 else
3747 path->slots[0] = nritems;
3748next:
3749 path->slots[0]++;
3750
3751 }
3752out:
3753 btrfs_free_path(path);
3754 return err;
3755}
3756
3757/*
3758 * helper to find all tree blocks that reference a given data extent
3759 */
3760static noinline_for_stack
3761int add_data_references(struct reloc_control *rc,
3762 struct btrfs_key *extent_key,
3763 struct btrfs_path *path,
3764 struct rb_root *blocks)
3765{
3766 struct btrfs_key key;
3767 struct extent_buffer *eb;
3768 struct btrfs_extent_data_ref *dref;
3769 struct btrfs_extent_inline_ref *iref;
3770 unsigned long ptr;
3771 unsigned long end;
3772 u32 blocksize = rc->extent_root->fs_info->nodesize;
3773 int ret = 0;
3774 int err = 0;
3775
3776 eb = path->nodes[0];
3777 ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3778 end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3779 ptr += sizeof(struct btrfs_extent_item);
3780
3781 while (ptr < end) {
3782 iref = (struct btrfs_extent_inline_ref *)ptr;
3783 key.type = btrfs_get_extent_inline_ref_type(eb, iref,
3784 BTRFS_REF_TYPE_DATA);
3785 if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3786 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3787 ret = __add_tree_block(rc, key.offset, blocksize,
3788 blocks);
3789 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3790 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3791 ret = find_data_references(rc, extent_key,
3792 eb, dref, blocks);
3793 } else {
3794 ret = -EUCLEAN;
3795 btrfs_err(rc->extent_root->fs_info,
3796 "extent %llu slot %d has an invalid inline ref type",
3797 eb->start, path->slots[0]);
3798 }
3799 if (ret) {
3800 err = ret;
3801 goto out;
3802 }
3803 ptr += btrfs_extent_inline_ref_size(key.type);
3804 }
3805 WARN_ON(ptr > end);
3806
3807 while (1) {
3808 cond_resched();
3809 eb = path->nodes[0];
3810 if (path->slots[0] >= btrfs_header_nritems(eb)) {
3811 ret = btrfs_next_leaf(rc->extent_root, path);
3812 if (ret < 0) {
3813 err = ret;
3814 break;
3815 }
3816 if (ret > 0)
3817 break;
3818 eb = path->nodes[0];
3819 }
3820
3821 btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3822 if (key.objectid != extent_key->objectid)
3823 break;
3824
3825 if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3826 ret = __add_tree_block(rc, key.offset, blocksize,
3827 blocks);
3828 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3829 dref = btrfs_item_ptr(eb, path->slots[0],
3830 struct btrfs_extent_data_ref);
3831 ret = find_data_references(rc, extent_key,
3832 eb, dref, blocks);
3833 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
3834 btrfs_print_v0_err(eb->fs_info);
3835 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3836 ret = -EINVAL;
3837 } else {
3838 ret = 0;
3839 }
3840 if (ret) {
3841 err = ret;
3842 break;
3843 }
3844 path->slots[0]++;
3845 }
3846out:
3847 btrfs_release_path(path);
3848 if (err)
3849 free_block_list(blocks);
3850 return err;
3851}
3852
3853/*
3854 * helper to find next unprocessed extent
3855 */
3856static noinline_for_stack
3857int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3858 struct btrfs_key *extent_key)
3859{
3860 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3861 struct btrfs_key key;
3862 struct extent_buffer *leaf;
3863 u64 start, end, last;
3864 int ret;
3865
3866 last = rc->block_group->key.objectid + rc->block_group->key.offset;
3867 while (1) {
3868 cond_resched();
3869 if (rc->search_start >= last) {
3870 ret = 1;
3871 break;
3872 }
3873
3874 key.objectid = rc->search_start;
3875 key.type = BTRFS_EXTENT_ITEM_KEY;
3876 key.offset = 0;
3877
3878 path->search_commit_root = 1;
3879 path->skip_locking = 1;
3880 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3881 0, 0);
3882 if (ret < 0)
3883 break;
3884next:
3885 leaf = path->nodes[0];
3886 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3887 ret = btrfs_next_leaf(rc->extent_root, path);
3888 if (ret != 0)
3889 break;
3890 leaf = path->nodes[0];
3891 }
3892
3893 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3894 if (key.objectid >= last) {
3895 ret = 1;
3896 break;
3897 }
3898
3899 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3900 key.type != BTRFS_METADATA_ITEM_KEY) {
3901 path->slots[0]++;
3902 goto next;
3903 }
3904
3905 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3906 key.objectid + key.offset <= rc->search_start) {
3907 path->slots[0]++;
3908 goto next;
3909 }
3910
3911 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3912 key.objectid + fs_info->nodesize <=
3913 rc->search_start) {
3914 path->slots[0]++;
3915 goto next;
3916 }
3917
3918 ret = find_first_extent_bit(&rc->processed_blocks,
3919 key.objectid, &start, &end,
3920 EXTENT_DIRTY, NULL);
3921
3922 if (ret == 0 && start <= key.objectid) {
3923 btrfs_release_path(path);
3924 rc->search_start = end + 1;
3925 } else {
3926 if (key.type == BTRFS_EXTENT_ITEM_KEY)
3927 rc->search_start = key.objectid + key.offset;
3928 else
3929 rc->search_start = key.objectid +
3930 fs_info->nodesize;
3931 memcpy(extent_key, &key, sizeof(key));
3932 return 0;
3933 }
3934 }
3935 btrfs_release_path(path);
3936 return ret;
3937}
3938
3939static void set_reloc_control(struct reloc_control *rc)
3940{
3941 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3942
3943 mutex_lock(&fs_info->reloc_mutex);
3944 fs_info->reloc_ctl = rc;
3945 mutex_unlock(&fs_info->reloc_mutex);
3946}
3947
3948static void unset_reloc_control(struct reloc_control *rc)
3949{
3950 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3951
3952 mutex_lock(&fs_info->reloc_mutex);
3953 fs_info->reloc_ctl = NULL;
3954 mutex_unlock(&fs_info->reloc_mutex);
3955}
3956
3957static int check_extent_flags(u64 flags)
3958{
3959 if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3960 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3961 return 1;
3962 if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3963 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3964 return 1;
3965 if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3966 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3967 return 1;
3968 return 0;
3969}
3970
3971static noinline_for_stack
3972int prepare_to_relocate(struct reloc_control *rc)
3973{
3974 struct btrfs_trans_handle *trans;
3975 int ret;
3976
3977 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3978 BTRFS_BLOCK_RSV_TEMP);
3979 if (!rc->block_rsv)
3980 return -ENOMEM;
3981
3982 memset(&rc->cluster, 0, sizeof(rc->cluster));
3983 rc->search_start = rc->block_group->key.objectid;
3984 rc->extents_found = 0;
3985 rc->nodes_relocated = 0;
3986 rc->merging_rsv_size = 0;
3987 rc->reserved_bytes = 0;
3988 rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3989 RELOCATION_RESERVED_NODES;
3990 ret = btrfs_block_rsv_refill(rc->extent_root,
3991 rc->block_rsv, rc->block_rsv->size,
3992 BTRFS_RESERVE_FLUSH_ALL);
3993 if (ret)
3994 return ret;
3995
3996 rc->create_reloc_tree = 1;
3997 set_reloc_control(rc);
3998
3999 trans = btrfs_join_transaction(rc->extent_root);
4000 if (IS_ERR(trans)) {
4001 unset_reloc_control(rc);
4002 /*
4003 * extent tree is not a ref_cow tree and has no reloc_root to
4004 * cleanup. And callers are responsible to free the above
4005 * block rsv.
4006 */
4007 return PTR_ERR(trans);
4008 }
4009 btrfs_commit_transaction(trans);
4010 return 0;
4011}
4012
4013static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
4014{
4015 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
4016 struct rb_root blocks = RB_ROOT;
4017 struct btrfs_key key;
4018 struct btrfs_trans_handle *trans = NULL;
4019 struct btrfs_path *path;
4020 struct btrfs_extent_item *ei;
4021 u64 flags;
4022 u32 item_size;
4023 int ret;
4024 int err = 0;
4025 int progress = 0;
4026
4027 path = btrfs_alloc_path();
4028 if (!path)
4029 return -ENOMEM;
4030 path->reada = READA_FORWARD;
4031
4032 ret = prepare_to_relocate(rc);
4033 if (ret) {
4034 err = ret;
4035 goto out_free;
4036 }
4037
4038 while (1) {
4039 rc->reserved_bytes = 0;
4040 ret = btrfs_block_rsv_refill(rc->extent_root,
4041 rc->block_rsv, rc->block_rsv->size,
4042 BTRFS_RESERVE_FLUSH_ALL);
4043 if (ret) {
4044 err = ret;
4045 break;
4046 }
4047 progress++;
4048 trans = btrfs_start_transaction(rc->extent_root, 0);
4049 if (IS_ERR(trans)) {
4050 err = PTR_ERR(trans);
4051 trans = NULL;
4052 break;
4053 }
4054restart:
4055 if (update_backref_cache(trans, &rc->backref_cache)) {
4056 btrfs_end_transaction(trans);
4057 trans = NULL;
4058 continue;
4059 }
4060
4061 ret = find_next_extent(rc, path, &key);
4062 if (ret < 0)
4063 err = ret;
4064 if (ret != 0)
4065 break;
4066
4067 rc->extents_found++;
4068
4069 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4070 struct btrfs_extent_item);
4071 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
4072 if (item_size >= sizeof(*ei)) {
4073 flags = btrfs_extent_flags(path->nodes[0], ei);
4074 ret = check_extent_flags(flags);
4075 BUG_ON(ret);
4076 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
4077 err = -EINVAL;
4078 btrfs_print_v0_err(trans->fs_info);
4079 btrfs_abort_transaction(trans, err);
4080 break;
4081 } else {
4082 BUG();
4083 }
4084
4085 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
4086 ret = add_tree_block(rc, &key, path, &blocks);
4087 } else if (rc->stage == UPDATE_DATA_PTRS &&
4088 (flags & BTRFS_EXTENT_FLAG_DATA)) {
4089 ret = add_data_references(rc, &key, path, &blocks);
4090 } else {
4091 btrfs_release_path(path);
4092 ret = 0;
4093 }
4094 if (ret < 0) {
4095 err = ret;
4096 break;
4097 }
4098
4099 if (!RB_EMPTY_ROOT(&blocks)) {
4100 ret = relocate_tree_blocks(trans, rc, &blocks);
4101 if (ret < 0) {
4102 /*
4103 * if we fail to relocate tree blocks, force to update
4104 * backref cache when committing transaction.
4105 */
4106 rc->backref_cache.last_trans = trans->transid - 1;
4107
4108 if (ret != -EAGAIN) {
4109 err = ret;
4110 break;
4111 }
4112 rc->extents_found--;
4113 rc->search_start = key.objectid;
4114 }
4115 }
4116
4117 btrfs_end_transaction_throttle(trans);
4118 btrfs_btree_balance_dirty(fs_info);
4119 trans = NULL;
4120
4121 if (rc->stage == MOVE_DATA_EXTENTS &&
4122 (flags & BTRFS_EXTENT_FLAG_DATA)) {
4123 rc->found_file_extent = 1;
4124 ret = relocate_data_extent(rc->data_inode,
4125 &key, &rc->cluster);
4126 if (ret < 0) {
4127 err = ret;
4128 break;
4129 }
4130 }
4131 }
4132 if (trans && progress && err == -ENOSPC) {
4133 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
4134 if (ret == 1) {
4135 err = 0;
4136 progress = 0;
4137 goto restart;
4138 }
4139 }
4140
4141 btrfs_release_path(path);
4142 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
4143
4144 if (trans) {
4145 btrfs_end_transaction_throttle(trans);
4146 btrfs_btree_balance_dirty(fs_info);
4147 }
4148
4149 if (!err) {
4150 ret = relocate_file_extent_cluster(rc->data_inode,
4151 &rc->cluster);
4152 if (ret < 0)
4153 err = ret;
4154 }
4155
4156 rc->create_reloc_tree = 0;
4157 set_reloc_control(rc);
4158
4159 backref_cache_cleanup(&rc->backref_cache);
4160 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4161
4162 err = prepare_to_merge(rc, err);
4163
4164 merge_reloc_roots(rc);
4165
4166 rc->merge_reloc_tree = 0;
4167 unset_reloc_control(rc);
4168 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4169
4170 /* get rid of pinned extents */
4171 trans = btrfs_join_transaction(rc->extent_root);
4172 if (IS_ERR(trans)) {
4173 err = PTR_ERR(trans);
4174 goto out_free;
4175 }
4176 btrfs_commit_transaction(trans);
4177 ret = clean_dirty_subvols(rc);
4178 if (ret < 0 && !err)
4179 err = ret;
4180out_free:
4181 btrfs_free_block_rsv(fs_info, rc->block_rsv);
4182 btrfs_free_path(path);
4183 return err;
4184}
4185
4186static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4187 struct btrfs_root *root, u64 objectid)
4188{
4189 struct btrfs_path *path;
4190 struct btrfs_inode_item *item;
4191 struct extent_buffer *leaf;
4192 int ret;
4193
4194 path = btrfs_alloc_path();
4195 if (!path)
4196 return -ENOMEM;
4197
4198 ret = btrfs_insert_empty_inode(trans, root, path, objectid);
4199 if (ret)
4200 goto out;
4201
4202 leaf = path->nodes[0];
4203 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4204 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
4205 btrfs_set_inode_generation(leaf, item, 1);
4206 btrfs_set_inode_size(leaf, item, 0);
4207 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4208 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
4209 BTRFS_INODE_PREALLOC);
4210 btrfs_mark_buffer_dirty(leaf);
4211out:
4212 btrfs_free_path(path);
4213 return ret;
4214}
4215
4216/*
4217 * helper to create inode for data relocation.
4218 * the inode is in data relocation tree and its link count is 0
4219 */
4220static noinline_for_stack
4221struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
4222 struct btrfs_block_group_cache *group)
4223{
4224 struct inode *inode = NULL;
4225 struct btrfs_trans_handle *trans;
4226 struct btrfs_root *root;
4227 struct btrfs_key key;
4228 u64 objectid;
4229 int err = 0;
4230
4231 root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4232 if (IS_ERR(root))
4233 return ERR_CAST(root);
4234
4235 trans = btrfs_start_transaction(root, 6);
4236 if (IS_ERR(trans))
4237 return ERR_CAST(trans);
4238
4239 err = btrfs_find_free_objectid(root, &objectid);
4240 if (err)
4241 goto out;
4242
4243 err = __insert_orphan_inode(trans, root, objectid);
4244 BUG_ON(err);
4245
4246 key.objectid = objectid;
4247 key.type = BTRFS_INODE_ITEM_KEY;
4248 key.offset = 0;
4249 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4250 BUG_ON(IS_ERR(inode));
4251 BTRFS_I(inode)->index_cnt = group->key.objectid;
4252
4253 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4254out:
4255 btrfs_end_transaction(trans);
4256 btrfs_btree_balance_dirty(fs_info);
4257 if (err) {
4258 if (inode)
4259 iput(inode);
4260 inode = ERR_PTR(err);
4261 }
4262 return inode;
4263}
4264
4265static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
4266{
4267 struct reloc_control *rc;
4268
4269 rc = kzalloc(sizeof(*rc), GFP_NOFS);
4270 if (!rc)
4271 return NULL;
4272
4273 INIT_LIST_HEAD(&rc->reloc_roots);
4274 INIT_LIST_HEAD(&rc->dirty_subvol_roots);
4275 backref_cache_init(&rc->backref_cache);
4276 mapping_tree_init(&rc->reloc_root_tree);
4277 extent_io_tree_init(fs_info, &rc->processed_blocks,
4278 IO_TREE_RELOC_BLOCKS, NULL);
4279 return rc;
4280}
4281
4282/*
4283 * Print the block group being relocated
4284 */
4285static void describe_relocation(struct btrfs_fs_info *fs_info,
4286 struct btrfs_block_group_cache *block_group)
4287{
4288 char buf[128] = {'\0'};
4289
4290 btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
4291
4292 btrfs_info(fs_info,
4293 "relocating block group %llu flags %s",
4294 block_group->key.objectid, buf);
4295}
4296
4297/*
4298 * function to relocate all extents in a block group.
4299 */
4300int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
4301{
4302 struct btrfs_block_group_cache *bg;
4303 struct btrfs_root *extent_root = fs_info->extent_root;
4304 struct reloc_control *rc;
4305 struct inode *inode;
4306 struct btrfs_path *path;
4307 int ret;
4308 int rw = 0;
4309 int err = 0;
4310
4311 bg = btrfs_lookup_block_group(fs_info, group_start);
4312 if (!bg)
4313 return -ENOENT;
4314
4315 if (btrfs_pinned_by_swapfile(fs_info, bg)) {
4316 btrfs_put_block_group(bg);
4317 return -ETXTBSY;
4318 }
4319
4320 rc = alloc_reloc_control(fs_info);
4321 if (!rc) {
4322 btrfs_put_block_group(bg);
4323 return -ENOMEM;
4324 }
4325
4326 rc->extent_root = extent_root;
4327 rc->block_group = bg;
4328
4329 ret = btrfs_inc_block_group_ro(rc->block_group);
4330 if (ret) {
4331 err = ret;
4332 goto out;
4333 }
4334 rw = 1;
4335
4336 path = btrfs_alloc_path();
4337 if (!path) {
4338 err = -ENOMEM;
4339 goto out;
4340 }
4341
4342 inode = lookup_free_space_inode(rc->block_group, path);
4343 btrfs_free_path(path);
4344
4345 if (!IS_ERR(inode))
4346 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4347 else
4348 ret = PTR_ERR(inode);
4349
4350 if (ret && ret != -ENOENT) {
4351 err = ret;
4352 goto out;
4353 }
4354
4355 rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4356 if (IS_ERR(rc->data_inode)) {
4357 err = PTR_ERR(rc->data_inode);
4358 rc->data_inode = NULL;
4359 goto out;
4360 }
4361
4362 describe_relocation(fs_info, rc->block_group);
4363
4364 btrfs_wait_block_group_reservations(rc->block_group);
4365 btrfs_wait_nocow_writers(rc->block_group);
4366 btrfs_wait_ordered_roots(fs_info, U64_MAX,
4367 rc->block_group->key.objectid,
4368 rc->block_group->key.offset);
4369
4370 while (1) {
4371 mutex_lock(&fs_info->cleaner_mutex);
4372 ret = relocate_block_group(rc);
4373 mutex_unlock(&fs_info->cleaner_mutex);
4374 if (ret < 0)
4375 err = ret;
4376
4377 /*
4378 * We may have gotten ENOSPC after we already dirtied some
4379 * extents. If writeout happens while we're relocating a
4380 * different block group we could end up hitting the
4381 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4382 * btrfs_reloc_cow_block. Make sure we write everything out
4383 * properly so we don't trip over this problem, and then break
4384 * out of the loop if we hit an error.
4385 */
4386 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4387 ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4388 (u64)-1);
4389 if (ret)
4390 err = ret;
4391 invalidate_mapping_pages(rc->data_inode->i_mapping,
4392 0, -1);
4393 rc->stage = UPDATE_DATA_PTRS;
4394 }
4395
4396 if (err < 0)
4397 goto out;
4398
4399 if (rc->extents_found == 0)
4400 break;
4401
4402 btrfs_info(fs_info, "found %llu extents", rc->extents_found);
4403
4404 }
4405
4406 WARN_ON(rc->block_group->pinned > 0);
4407 WARN_ON(rc->block_group->reserved > 0);
4408 WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4409out:
4410 if (err && rw)
4411 btrfs_dec_block_group_ro(rc->block_group);
4412 iput(rc->data_inode);
4413 btrfs_put_block_group(rc->block_group);
4414 kfree(rc);
4415 return err;
4416}
4417
4418static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4419{
4420 struct btrfs_fs_info *fs_info = root->fs_info;
4421 struct btrfs_trans_handle *trans;
4422 int ret, err;
4423
4424 trans = btrfs_start_transaction(fs_info->tree_root, 0);
4425 if (IS_ERR(trans))
4426 return PTR_ERR(trans);
4427
4428 memset(&root->root_item.drop_progress, 0,
4429 sizeof(root->root_item.drop_progress));
4430 root->root_item.drop_level = 0;
4431 btrfs_set_root_refs(&root->root_item, 0);
4432 ret = btrfs_update_root(trans, fs_info->tree_root,
4433 &root->root_key, &root->root_item);
4434
4435 err = btrfs_end_transaction(trans);
4436 if (err)
4437 return err;
4438 return ret;
4439}
4440
4441/*
4442 * recover relocation interrupted by system crash.
4443 *
4444 * this function resumes merging reloc trees with corresponding fs trees.
4445 * this is important for keeping the sharing of tree blocks
4446 */
4447int btrfs_recover_relocation(struct btrfs_root *root)
4448{
4449 struct btrfs_fs_info *fs_info = root->fs_info;
4450 LIST_HEAD(reloc_roots);
4451 struct btrfs_key key;
4452 struct btrfs_root *fs_root;
4453 struct btrfs_root *reloc_root;
4454 struct btrfs_path *path;
4455 struct extent_buffer *leaf;
4456 struct reloc_control *rc = NULL;
4457 struct btrfs_trans_handle *trans;
4458 int ret;
4459 int err = 0;
4460
4461 path = btrfs_alloc_path();
4462 if (!path)
4463 return -ENOMEM;
4464 path->reada = READA_BACK;
4465
4466 key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4467 key.type = BTRFS_ROOT_ITEM_KEY;
4468 key.offset = (u64)-1;
4469
4470 while (1) {
4471 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4472 path, 0, 0);
4473 if (ret < 0) {
4474 err = ret;
4475 goto out;
4476 }
4477 if (ret > 0) {
4478 if (path->slots[0] == 0)
4479 break;
4480 path->slots[0]--;
4481 }
4482 leaf = path->nodes[0];
4483 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4484 btrfs_release_path(path);
4485
4486 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4487 key.type != BTRFS_ROOT_ITEM_KEY)
4488 break;
4489
4490 reloc_root = btrfs_read_fs_root(root, &key);
4491 if (IS_ERR(reloc_root)) {
4492 err = PTR_ERR(reloc_root);
4493 goto out;
4494 }
4495
4496 list_add(&reloc_root->root_list, &reloc_roots);
4497
4498 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4499 fs_root = read_fs_root(fs_info,
4500 reloc_root->root_key.offset);
4501 if (IS_ERR(fs_root)) {
4502 ret = PTR_ERR(fs_root);
4503 if (ret != -ENOENT) {
4504 err = ret;
4505 goto out;
4506 }
4507 ret = mark_garbage_root(reloc_root);
4508 if (ret < 0) {
4509 err = ret;
4510 goto out;
4511 }
4512 }
4513 }
4514
4515 if (key.offset == 0)
4516 break;
4517
4518 key.offset--;
4519 }
4520 btrfs_release_path(path);
4521
4522 if (list_empty(&reloc_roots))
4523 goto out;
4524
4525 rc = alloc_reloc_control(fs_info);
4526 if (!rc) {
4527 err = -ENOMEM;
4528 goto out;
4529 }
4530
4531 rc->extent_root = fs_info->extent_root;
4532
4533 set_reloc_control(rc);
4534
4535 trans = btrfs_join_transaction(rc->extent_root);
4536 if (IS_ERR(trans)) {
4537 unset_reloc_control(rc);
4538 err = PTR_ERR(trans);
4539 goto out_free;
4540 }
4541
4542 rc->merge_reloc_tree = 1;
4543
4544 while (!list_empty(&reloc_roots)) {
4545 reloc_root = list_entry(reloc_roots.next,
4546 struct btrfs_root, root_list);
4547 list_del(&reloc_root->root_list);
4548
4549 if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4550 list_add_tail(&reloc_root->root_list,
4551 &rc->reloc_roots);
4552 continue;
4553 }
4554
4555 fs_root = read_fs_root(fs_info, reloc_root->root_key.offset);
4556 if (IS_ERR(fs_root)) {
4557 err = PTR_ERR(fs_root);
4558 goto out_free;
4559 }
4560
4561 err = __add_reloc_root(reloc_root);
4562 BUG_ON(err < 0); /* -ENOMEM or logic error */
4563 fs_root->reloc_root = reloc_root;
4564 }
4565
4566 err = btrfs_commit_transaction(trans);
4567 if (err)
4568 goto out_free;
4569
4570 merge_reloc_roots(rc);
4571
4572 unset_reloc_control(rc);
4573
4574 trans = btrfs_join_transaction(rc->extent_root);
4575 if (IS_ERR(trans)) {
4576 err = PTR_ERR(trans);
4577 goto out_free;
4578 }
4579 err = btrfs_commit_transaction(trans);
4580
4581 ret = clean_dirty_subvols(rc);
4582 if (ret < 0 && !err)
4583 err = ret;
4584out_free:
4585 kfree(rc);
4586out:
4587 if (!list_empty(&reloc_roots))
4588 free_reloc_roots(&reloc_roots);
4589
4590 btrfs_free_path(path);
4591
4592 if (err == 0) {
4593 /* cleanup orphan inode in data relocation tree */
4594 fs_root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4595 if (IS_ERR(fs_root))
4596 err = PTR_ERR(fs_root);
4597 else
4598 err = btrfs_orphan_cleanup(fs_root);
4599 }
4600 return err;
4601}
4602
4603/*
4604 * helper to add ordered checksum for data relocation.
4605 *
4606 * cloning checksum properly handles the nodatasum extents.
4607 * it also saves CPU time to re-calculate the checksum.
4608 */
4609int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4610{
4611 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4612 struct btrfs_ordered_sum *sums;
4613 struct btrfs_ordered_extent *ordered;
4614 int ret;
4615 u64 disk_bytenr;
4616 u64 new_bytenr;
4617 LIST_HEAD(list);
4618
4619 ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4620 BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4621
4622 disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4623 ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
4624 disk_bytenr + len - 1, &list, 0);
4625 if (ret)
4626 goto out;
4627
4628 while (!list_empty(&list)) {
4629 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4630 list_del_init(&sums->list);
4631
4632 /*
4633 * We need to offset the new_bytenr based on where the csum is.
4634 * We need to do this because we will read in entire prealloc
4635 * extents but we may have written to say the middle of the
4636 * prealloc extent, so we need to make sure the csum goes with
4637 * the right disk offset.
4638 *
4639 * We can do this because the data reloc inode refers strictly
4640 * to the on disk bytes, so we don't have to worry about
4641 * disk_len vs real len like with real inodes since it's all
4642 * disk length.
4643 */
4644 new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
4645 sums->bytenr = new_bytenr;
4646
4647 btrfs_add_ordered_sum(ordered, sums);
4648 }
4649out:
4650 btrfs_put_ordered_extent(ordered);
4651 return ret;
4652}
4653
4654int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4655 struct btrfs_root *root, struct extent_buffer *buf,
4656 struct extent_buffer *cow)
4657{
4658 struct btrfs_fs_info *fs_info = root->fs_info;
4659 struct reloc_control *rc;
4660 struct backref_node *node;
4661 int first_cow = 0;
4662 int level;
4663 int ret = 0;
4664
4665 rc = fs_info->reloc_ctl;
4666 if (!rc)
4667 return 0;
4668
4669 BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4670 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4671
4672 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
4673 if (buf == root->node)
4674 __update_reloc_root(root, cow->start);
4675 }
4676
4677 level = btrfs_header_level(buf);
4678 if (btrfs_header_generation(buf) <=
4679 btrfs_root_last_snapshot(&root->root_item))
4680 first_cow = 1;
4681
4682 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4683 rc->create_reloc_tree) {
4684 WARN_ON(!first_cow && level == 0);
4685
4686 node = rc->backref_cache.path[level];
4687 BUG_ON(node->bytenr != buf->start &&
4688 node->new_bytenr != buf->start);
4689
4690 drop_node_buffer(node);
4691 extent_buffer_get(cow);
4692 node->eb = cow;
4693 node->new_bytenr = cow->start;
4694
4695 if (!node->pending) {
4696 list_move_tail(&node->list,
4697 &rc->backref_cache.pending[level]);
4698 node->pending = 1;
4699 }
4700
4701 if (first_cow)
4702 __mark_block_processed(rc, node);
4703
4704 if (first_cow && level > 0)
4705 rc->nodes_relocated += buf->len;
4706 }
4707
4708 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4709 ret = replace_file_extents(trans, rc, root, cow);
4710 return ret;
4711}
4712
4713/*
4714 * called before creating snapshot. it calculates metadata reservation
4715 * required for relocating tree blocks in the snapshot
4716 */
4717void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4718 u64 *bytes_to_reserve)
4719{
4720 struct btrfs_root *root = pending->root;
4721 struct reloc_control *rc = root->fs_info->reloc_ctl;
4722
4723 if (!root->reloc_root || !rc)
4724 return;
4725
4726 if (!rc->merge_reloc_tree)
4727 return;
4728
4729 root = root->reloc_root;
4730 BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4731 /*
4732 * relocation is in the stage of merging trees. the space
4733 * used by merging a reloc tree is twice the size of
4734 * relocated tree nodes in the worst case. half for cowing
4735 * the reloc tree, half for cowing the fs tree. the space
4736 * used by cowing the reloc tree will be freed after the
4737 * tree is dropped. if we create snapshot, cowing the fs
4738 * tree may use more space than it frees. so we need
4739 * reserve extra space.
4740 */
4741 *bytes_to_reserve += rc->nodes_relocated;
4742}
4743
4744/*
4745 * called after snapshot is created. migrate block reservation
4746 * and create reloc root for the newly created snapshot
4747 */
4748int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4749 struct btrfs_pending_snapshot *pending)
4750{
4751 struct btrfs_root *root = pending->root;
4752 struct btrfs_root *reloc_root;
4753 struct btrfs_root *new_root;
4754 struct reloc_control *rc = root->fs_info->reloc_ctl;
4755 int ret;
4756
4757 if (!root->reloc_root || !rc)
4758 return 0;
4759
4760 rc = root->fs_info->reloc_ctl;
4761 rc->merging_rsv_size += rc->nodes_relocated;
4762
4763 if (rc->merge_reloc_tree) {
4764 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4765 rc->block_rsv,
4766 rc->nodes_relocated, true);
4767 if (ret)
4768 return ret;
4769 }
4770
4771 new_root = pending->snap;
4772 reloc_root = create_reloc_root(trans, root->reloc_root,
4773 new_root->root_key.objectid);
4774 if (IS_ERR(reloc_root))
4775 return PTR_ERR(reloc_root);
4776
4777 ret = __add_reloc_root(reloc_root);
4778 BUG_ON(ret < 0);
4779 new_root->reloc_root = reloc_root;
4780
4781 if (rc->create_reloc_tree)
4782 ret = clone_backref_node(trans, rc, root, reloc_root);
4783 return ret;
4784}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2009 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/pagemap.h>
8#include <linux/writeback.h>
9#include <linux/blkdev.h>
10#include <linux/rbtree.h>
11#include <linux/slab.h>
12#include <linux/error-injection.h>
13#include "ctree.h"
14#include "disk-io.h"
15#include "transaction.h"
16#include "volumes.h"
17#include "locking.h"
18#include "btrfs_inode.h"
19#include "async-thread.h"
20#include "free-space-cache.h"
21#include "inode-map.h"
22#include "qgroup.h"
23#include "print-tree.h"
24#include "delalloc-space.h"
25#include "block-group.h"
26#include "backref.h"
27#include "misc.h"
28
29/*
30 * Relocation overview
31 *
32 * [What does relocation do]
33 *
34 * The objective of relocation is to relocate all extents of the target block
35 * group to other block groups.
36 * This is utilized by resize (shrink only), profile converting, compacting
37 * space, or balance routine to spread chunks over devices.
38 *
39 * Before | After
40 * ------------------------------------------------------------------
41 * BG A: 10 data extents | BG A: deleted
42 * BG B: 2 data extents | BG B: 10 data extents (2 old + 8 relocated)
43 * BG C: 1 extents | BG C: 3 data extents (1 old + 2 relocated)
44 *
45 * [How does relocation work]
46 *
47 * 1. Mark the target block group read-only
48 * New extents won't be allocated from the target block group.
49 *
50 * 2.1 Record each extent in the target block group
51 * To build a proper map of extents to be relocated.
52 *
53 * 2.2 Build data reloc tree and reloc trees
54 * Data reloc tree will contain an inode, recording all newly relocated
55 * data extents.
56 * There will be only one data reloc tree for one data block group.
57 *
58 * Reloc tree will be a special snapshot of its source tree, containing
59 * relocated tree blocks.
60 * Each tree referring to a tree block in target block group will get its
61 * reloc tree built.
62 *
63 * 2.3 Swap source tree with its corresponding reloc tree
64 * Each involved tree only refers to new extents after swap.
65 *
66 * 3. Cleanup reloc trees and data reloc tree.
67 * As old extents in the target block group are still referenced by reloc
68 * trees, we need to clean them up before really freeing the target block
69 * group.
70 *
71 * The main complexity is in steps 2.2 and 2.3.
72 *
73 * The entry point of relocation is relocate_block_group() function.
74 */
75
76#define RELOCATION_RESERVED_NODES 256
77/*
78 * map address of tree root to tree
79 */
80struct mapping_node {
81 struct {
82 struct rb_node rb_node;
83 u64 bytenr;
84 }; /* Use rb_simle_node for search/insert */
85 void *data;
86};
87
88struct mapping_tree {
89 struct rb_root rb_root;
90 spinlock_t lock;
91};
92
93/*
94 * present a tree block to process
95 */
96struct tree_block {
97 struct {
98 struct rb_node rb_node;
99 u64 bytenr;
100 }; /* Use rb_simple_node for search/insert */
101 struct btrfs_key key;
102 unsigned int level:8;
103 unsigned int key_ready:1;
104};
105
106#define MAX_EXTENTS 128
107
108struct file_extent_cluster {
109 u64 start;
110 u64 end;
111 u64 boundary[MAX_EXTENTS];
112 unsigned int nr;
113};
114
115struct reloc_control {
116 /* block group to relocate */
117 struct btrfs_block_group *block_group;
118 /* extent tree */
119 struct btrfs_root *extent_root;
120 /* inode for moving data */
121 struct inode *data_inode;
122
123 struct btrfs_block_rsv *block_rsv;
124
125 struct btrfs_backref_cache backref_cache;
126
127 struct file_extent_cluster cluster;
128 /* tree blocks have been processed */
129 struct extent_io_tree processed_blocks;
130 /* map start of tree root to corresponding reloc tree */
131 struct mapping_tree reloc_root_tree;
132 /* list of reloc trees */
133 struct list_head reloc_roots;
134 /* list of subvolume trees that get relocated */
135 struct list_head dirty_subvol_roots;
136 /* size of metadata reservation for merging reloc trees */
137 u64 merging_rsv_size;
138 /* size of relocated tree nodes */
139 u64 nodes_relocated;
140 /* reserved size for block group relocation*/
141 u64 reserved_bytes;
142
143 u64 search_start;
144 u64 extents_found;
145
146 unsigned int stage:8;
147 unsigned int create_reloc_tree:1;
148 unsigned int merge_reloc_tree:1;
149 unsigned int found_file_extent:1;
150};
151
152/* stages of data relocation */
153#define MOVE_DATA_EXTENTS 0
154#define UPDATE_DATA_PTRS 1
155
156static void mark_block_processed(struct reloc_control *rc,
157 struct btrfs_backref_node *node)
158{
159 u32 blocksize;
160
161 if (node->level == 0 ||
162 in_range(node->bytenr, rc->block_group->start,
163 rc->block_group->length)) {
164 blocksize = rc->extent_root->fs_info->nodesize;
165 set_extent_bits(&rc->processed_blocks, node->bytenr,
166 node->bytenr + blocksize - 1, EXTENT_DIRTY);
167 }
168 node->processed = 1;
169}
170
171
172static void mapping_tree_init(struct mapping_tree *tree)
173{
174 tree->rb_root = RB_ROOT;
175 spin_lock_init(&tree->lock);
176}
177
178/*
179 * walk up backref nodes until reach node presents tree root
180 */
181static struct btrfs_backref_node *walk_up_backref(
182 struct btrfs_backref_node *node,
183 struct btrfs_backref_edge *edges[], int *index)
184{
185 struct btrfs_backref_edge *edge;
186 int idx = *index;
187
188 while (!list_empty(&node->upper)) {
189 edge = list_entry(node->upper.next,
190 struct btrfs_backref_edge, list[LOWER]);
191 edges[idx++] = edge;
192 node = edge->node[UPPER];
193 }
194 BUG_ON(node->detached);
195 *index = idx;
196 return node;
197}
198
199/*
200 * walk down backref nodes to find start of next reference path
201 */
202static struct btrfs_backref_node *walk_down_backref(
203 struct btrfs_backref_edge *edges[], int *index)
204{
205 struct btrfs_backref_edge *edge;
206 struct btrfs_backref_node *lower;
207 int idx = *index;
208
209 while (idx > 0) {
210 edge = edges[idx - 1];
211 lower = edge->node[LOWER];
212 if (list_is_last(&edge->list[LOWER], &lower->upper)) {
213 idx--;
214 continue;
215 }
216 edge = list_entry(edge->list[LOWER].next,
217 struct btrfs_backref_edge, list[LOWER]);
218 edges[idx - 1] = edge;
219 *index = idx;
220 return edge->node[UPPER];
221 }
222 *index = 0;
223 return NULL;
224}
225
226static void update_backref_node(struct btrfs_backref_cache *cache,
227 struct btrfs_backref_node *node, u64 bytenr)
228{
229 struct rb_node *rb_node;
230 rb_erase(&node->rb_node, &cache->rb_root);
231 node->bytenr = bytenr;
232 rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node);
233 if (rb_node)
234 btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST);
235}
236
237/*
238 * update backref cache after a transaction commit
239 */
240static int update_backref_cache(struct btrfs_trans_handle *trans,
241 struct btrfs_backref_cache *cache)
242{
243 struct btrfs_backref_node *node;
244 int level = 0;
245
246 if (cache->last_trans == 0) {
247 cache->last_trans = trans->transid;
248 return 0;
249 }
250
251 if (cache->last_trans == trans->transid)
252 return 0;
253
254 /*
255 * detached nodes are used to avoid unnecessary backref
256 * lookup. transaction commit changes the extent tree.
257 * so the detached nodes are no longer useful.
258 */
259 while (!list_empty(&cache->detached)) {
260 node = list_entry(cache->detached.next,
261 struct btrfs_backref_node, list);
262 btrfs_backref_cleanup_node(cache, node);
263 }
264
265 while (!list_empty(&cache->changed)) {
266 node = list_entry(cache->changed.next,
267 struct btrfs_backref_node, list);
268 list_del_init(&node->list);
269 BUG_ON(node->pending);
270 update_backref_node(cache, node, node->new_bytenr);
271 }
272
273 /*
274 * some nodes can be left in the pending list if there were
275 * errors during processing the pending nodes.
276 */
277 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
278 list_for_each_entry(node, &cache->pending[level], list) {
279 BUG_ON(!node->pending);
280 if (node->bytenr == node->new_bytenr)
281 continue;
282 update_backref_node(cache, node, node->new_bytenr);
283 }
284 }
285
286 cache->last_trans = 0;
287 return 1;
288}
289
290static bool reloc_root_is_dead(struct btrfs_root *root)
291{
292 /*
293 * Pair with set_bit/clear_bit in clean_dirty_subvols and
294 * btrfs_update_reloc_root. We need to see the updated bit before
295 * trying to access reloc_root
296 */
297 smp_rmb();
298 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
299 return true;
300 return false;
301}
302
303/*
304 * Check if this subvolume tree has valid reloc tree.
305 *
306 * Reloc tree after swap is considered dead, thus not considered as valid.
307 * This is enough for most callers, as they don't distinguish dead reloc root
308 * from no reloc root. But btrfs_should_ignore_reloc_root() below is a
309 * special case.
310 */
311static bool have_reloc_root(struct btrfs_root *root)
312{
313 if (reloc_root_is_dead(root))
314 return false;
315 if (!root->reloc_root)
316 return false;
317 return true;
318}
319
320int btrfs_should_ignore_reloc_root(struct btrfs_root *root)
321{
322 struct btrfs_root *reloc_root;
323
324 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
325 return 0;
326
327 /* This root has been merged with its reloc tree, we can ignore it */
328 if (reloc_root_is_dead(root))
329 return 1;
330
331 reloc_root = root->reloc_root;
332 if (!reloc_root)
333 return 0;
334
335 if (btrfs_header_generation(reloc_root->commit_root) ==
336 root->fs_info->running_transaction->transid)
337 return 0;
338 /*
339 * if there is reloc tree and it was created in previous
340 * transaction backref lookup can find the reloc tree,
341 * so backref node for the fs tree root is useless for
342 * relocation.
343 */
344 return 1;
345}
346
347/*
348 * find reloc tree by address of tree root
349 */
350struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
351{
352 struct reloc_control *rc = fs_info->reloc_ctl;
353 struct rb_node *rb_node;
354 struct mapping_node *node;
355 struct btrfs_root *root = NULL;
356
357 ASSERT(rc);
358 spin_lock(&rc->reloc_root_tree.lock);
359 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
360 if (rb_node) {
361 node = rb_entry(rb_node, struct mapping_node, rb_node);
362 root = (struct btrfs_root *)node->data;
363 }
364 spin_unlock(&rc->reloc_root_tree.lock);
365 return btrfs_grab_root(root);
366}
367
368/*
369 * For useless nodes, do two major clean ups:
370 *
371 * - Cleanup the children edges and nodes
372 * If child node is also orphan (no parent) during cleanup, then the child
373 * node will also be cleaned up.
374 *
375 * - Freeing up leaves (level 0), keeps nodes detached
376 * For nodes, the node is still cached as "detached"
377 *
378 * Return false if @node is not in the @useless_nodes list.
379 * Return true if @node is in the @useless_nodes list.
380 */
381static bool handle_useless_nodes(struct reloc_control *rc,
382 struct btrfs_backref_node *node)
383{
384 struct btrfs_backref_cache *cache = &rc->backref_cache;
385 struct list_head *useless_node = &cache->useless_node;
386 bool ret = false;
387
388 while (!list_empty(useless_node)) {
389 struct btrfs_backref_node *cur;
390
391 cur = list_first_entry(useless_node, struct btrfs_backref_node,
392 list);
393 list_del_init(&cur->list);
394
395 /* Only tree root nodes can be added to @useless_nodes */
396 ASSERT(list_empty(&cur->upper));
397
398 if (cur == node)
399 ret = true;
400
401 /* The node is the lowest node */
402 if (cur->lowest) {
403 list_del_init(&cur->lower);
404 cur->lowest = 0;
405 }
406
407 /* Cleanup the lower edges */
408 while (!list_empty(&cur->lower)) {
409 struct btrfs_backref_edge *edge;
410 struct btrfs_backref_node *lower;
411
412 edge = list_entry(cur->lower.next,
413 struct btrfs_backref_edge, list[UPPER]);
414 list_del(&edge->list[UPPER]);
415 list_del(&edge->list[LOWER]);
416 lower = edge->node[LOWER];
417 btrfs_backref_free_edge(cache, edge);
418
419 /* Child node is also orphan, queue for cleanup */
420 if (list_empty(&lower->upper))
421 list_add(&lower->list, useless_node);
422 }
423 /* Mark this block processed for relocation */
424 mark_block_processed(rc, cur);
425
426 /*
427 * Backref nodes for tree leaves are deleted from the cache.
428 * Backref nodes for upper level tree blocks are left in the
429 * cache to avoid unnecessary backref lookup.
430 */
431 if (cur->level > 0) {
432 list_add(&cur->list, &cache->detached);
433 cur->detached = 1;
434 } else {
435 rb_erase(&cur->rb_node, &cache->rb_root);
436 btrfs_backref_free_node(cache, cur);
437 }
438 }
439 return ret;
440}
441
442/*
443 * Build backref tree for a given tree block. Root of the backref tree
444 * corresponds the tree block, leaves of the backref tree correspond roots of
445 * b-trees that reference the tree block.
446 *
447 * The basic idea of this function is check backrefs of a given block to find
448 * upper level blocks that reference the block, and then check backrefs of
449 * these upper level blocks recursively. The recursion stops when tree root is
450 * reached or backrefs for the block is cached.
451 *
452 * NOTE: if we find that backrefs for a block are cached, we know backrefs for
453 * all upper level blocks that directly/indirectly reference the block are also
454 * cached.
455 */
456static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
457 struct reloc_control *rc, struct btrfs_key *node_key,
458 int level, u64 bytenr)
459{
460 struct btrfs_backref_iter *iter;
461 struct btrfs_backref_cache *cache = &rc->backref_cache;
462 /* For searching parent of TREE_BLOCK_REF */
463 struct btrfs_path *path;
464 struct btrfs_backref_node *cur;
465 struct btrfs_backref_node *node = NULL;
466 struct btrfs_backref_edge *edge;
467 int ret;
468 int err = 0;
469
470 iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info, GFP_NOFS);
471 if (!iter)
472 return ERR_PTR(-ENOMEM);
473 path = btrfs_alloc_path();
474 if (!path) {
475 err = -ENOMEM;
476 goto out;
477 }
478
479 node = btrfs_backref_alloc_node(cache, bytenr, level);
480 if (!node) {
481 err = -ENOMEM;
482 goto out;
483 }
484
485 node->lowest = 1;
486 cur = node;
487
488 /* Breadth-first search to build backref cache */
489 do {
490 ret = btrfs_backref_add_tree_node(cache, path, iter, node_key,
491 cur);
492 if (ret < 0) {
493 err = ret;
494 goto out;
495 }
496 edge = list_first_entry_or_null(&cache->pending_edge,
497 struct btrfs_backref_edge, list[UPPER]);
498 /*
499 * The pending list isn't empty, take the first block to
500 * process
501 */
502 if (edge) {
503 list_del_init(&edge->list[UPPER]);
504 cur = edge->node[UPPER];
505 }
506 } while (edge);
507
508 /* Finish the upper linkage of newly added edges/nodes */
509 ret = btrfs_backref_finish_upper_links(cache, node);
510 if (ret < 0) {
511 err = ret;
512 goto out;
513 }
514
515 if (handle_useless_nodes(rc, node))
516 node = NULL;
517out:
518 btrfs_backref_iter_free(iter);
519 btrfs_free_path(path);
520 if (err) {
521 btrfs_backref_error_cleanup(cache, node);
522 return ERR_PTR(err);
523 }
524 ASSERT(!node || !node->detached);
525 ASSERT(list_empty(&cache->useless_node) &&
526 list_empty(&cache->pending_edge));
527 return node;
528}
529
530/*
531 * helper to add backref node for the newly created snapshot.
532 * the backref node is created by cloning backref node that
533 * corresponds to root of source tree
534 */
535static int clone_backref_node(struct btrfs_trans_handle *trans,
536 struct reloc_control *rc,
537 struct btrfs_root *src,
538 struct btrfs_root *dest)
539{
540 struct btrfs_root *reloc_root = src->reloc_root;
541 struct btrfs_backref_cache *cache = &rc->backref_cache;
542 struct btrfs_backref_node *node = NULL;
543 struct btrfs_backref_node *new_node;
544 struct btrfs_backref_edge *edge;
545 struct btrfs_backref_edge *new_edge;
546 struct rb_node *rb_node;
547
548 if (cache->last_trans > 0)
549 update_backref_cache(trans, cache);
550
551 rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
552 if (rb_node) {
553 node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
554 if (node->detached)
555 node = NULL;
556 else
557 BUG_ON(node->new_bytenr != reloc_root->node->start);
558 }
559
560 if (!node) {
561 rb_node = rb_simple_search(&cache->rb_root,
562 reloc_root->commit_root->start);
563 if (rb_node) {
564 node = rb_entry(rb_node, struct btrfs_backref_node,
565 rb_node);
566 BUG_ON(node->detached);
567 }
568 }
569
570 if (!node)
571 return 0;
572
573 new_node = btrfs_backref_alloc_node(cache, dest->node->start,
574 node->level);
575 if (!new_node)
576 return -ENOMEM;
577
578 new_node->lowest = node->lowest;
579 new_node->checked = 1;
580 new_node->root = btrfs_grab_root(dest);
581 ASSERT(new_node->root);
582
583 if (!node->lowest) {
584 list_for_each_entry(edge, &node->lower, list[UPPER]) {
585 new_edge = btrfs_backref_alloc_edge(cache);
586 if (!new_edge)
587 goto fail;
588
589 btrfs_backref_link_edge(new_edge, edge->node[LOWER],
590 new_node, LINK_UPPER);
591 }
592 } else {
593 list_add_tail(&new_node->lower, &cache->leaves);
594 }
595
596 rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
597 &new_node->rb_node);
598 if (rb_node)
599 btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
600
601 if (!new_node->lowest) {
602 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
603 list_add_tail(&new_edge->list[LOWER],
604 &new_edge->node[LOWER]->upper);
605 }
606 }
607 return 0;
608fail:
609 while (!list_empty(&new_node->lower)) {
610 new_edge = list_entry(new_node->lower.next,
611 struct btrfs_backref_edge, list[UPPER]);
612 list_del(&new_edge->list[UPPER]);
613 btrfs_backref_free_edge(cache, new_edge);
614 }
615 btrfs_backref_free_node(cache, new_node);
616 return -ENOMEM;
617}
618
619/*
620 * helper to add 'address of tree root -> reloc tree' mapping
621 */
622static int __must_check __add_reloc_root(struct btrfs_root *root)
623{
624 struct btrfs_fs_info *fs_info = root->fs_info;
625 struct rb_node *rb_node;
626 struct mapping_node *node;
627 struct reloc_control *rc = fs_info->reloc_ctl;
628
629 node = kmalloc(sizeof(*node), GFP_NOFS);
630 if (!node)
631 return -ENOMEM;
632
633 node->bytenr = root->commit_root->start;
634 node->data = root;
635
636 spin_lock(&rc->reloc_root_tree.lock);
637 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
638 node->bytenr, &node->rb_node);
639 spin_unlock(&rc->reloc_root_tree.lock);
640 if (rb_node) {
641 btrfs_panic(fs_info, -EEXIST,
642 "Duplicate root found for start=%llu while inserting into relocation tree",
643 node->bytenr);
644 }
645
646 list_add_tail(&root->root_list, &rc->reloc_roots);
647 return 0;
648}
649
650/*
651 * helper to delete the 'address of tree root -> reloc tree'
652 * mapping
653 */
654static void __del_reloc_root(struct btrfs_root *root)
655{
656 struct btrfs_fs_info *fs_info = root->fs_info;
657 struct rb_node *rb_node;
658 struct mapping_node *node = NULL;
659 struct reloc_control *rc = fs_info->reloc_ctl;
660 bool put_ref = false;
661
662 if (rc && root->node) {
663 spin_lock(&rc->reloc_root_tree.lock);
664 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
665 root->commit_root->start);
666 if (rb_node) {
667 node = rb_entry(rb_node, struct mapping_node, rb_node);
668 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
669 RB_CLEAR_NODE(&node->rb_node);
670 }
671 spin_unlock(&rc->reloc_root_tree.lock);
672 if (!node)
673 return;
674 BUG_ON((struct btrfs_root *)node->data != root);
675 }
676
677 /*
678 * We only put the reloc root here if it's on the list. There's a lot
679 * of places where the pattern is to splice the rc->reloc_roots, process
680 * the reloc roots, and then add the reloc root back onto
681 * rc->reloc_roots. If we call __del_reloc_root while it's off of the
682 * list we don't want the reference being dropped, because the guy
683 * messing with the list is in charge of the reference.
684 */
685 spin_lock(&fs_info->trans_lock);
686 if (!list_empty(&root->root_list)) {
687 put_ref = true;
688 list_del_init(&root->root_list);
689 }
690 spin_unlock(&fs_info->trans_lock);
691 if (put_ref)
692 btrfs_put_root(root);
693 kfree(node);
694}
695
696/*
697 * helper to update the 'address of tree root -> reloc tree'
698 * mapping
699 */
700static int __update_reloc_root(struct btrfs_root *root)
701{
702 struct btrfs_fs_info *fs_info = root->fs_info;
703 struct rb_node *rb_node;
704 struct mapping_node *node = NULL;
705 struct reloc_control *rc = fs_info->reloc_ctl;
706
707 spin_lock(&rc->reloc_root_tree.lock);
708 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
709 root->commit_root->start);
710 if (rb_node) {
711 node = rb_entry(rb_node, struct mapping_node, rb_node);
712 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
713 }
714 spin_unlock(&rc->reloc_root_tree.lock);
715
716 if (!node)
717 return 0;
718 BUG_ON((struct btrfs_root *)node->data != root);
719
720 spin_lock(&rc->reloc_root_tree.lock);
721 node->bytenr = root->node->start;
722 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
723 node->bytenr, &node->rb_node);
724 spin_unlock(&rc->reloc_root_tree.lock);
725 if (rb_node)
726 btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
727 return 0;
728}
729
730static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
731 struct btrfs_root *root, u64 objectid)
732{
733 struct btrfs_fs_info *fs_info = root->fs_info;
734 struct btrfs_root *reloc_root;
735 struct extent_buffer *eb;
736 struct btrfs_root_item *root_item;
737 struct btrfs_key root_key;
738 int ret;
739
740 root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
741 BUG_ON(!root_item);
742
743 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
744 root_key.type = BTRFS_ROOT_ITEM_KEY;
745 root_key.offset = objectid;
746
747 if (root->root_key.objectid == objectid) {
748 u64 commit_root_gen;
749
750 /* called by btrfs_init_reloc_root */
751 ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
752 BTRFS_TREE_RELOC_OBJECTID);
753 BUG_ON(ret);
754 /*
755 * Set the last_snapshot field to the generation of the commit
756 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
757 * correctly (returns true) when the relocation root is created
758 * either inside the critical section of a transaction commit
759 * (through transaction.c:qgroup_account_snapshot()) and when
760 * it's created before the transaction commit is started.
761 */
762 commit_root_gen = btrfs_header_generation(root->commit_root);
763 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
764 } else {
765 /*
766 * called by btrfs_reloc_post_snapshot_hook.
767 * the source tree is a reloc tree, all tree blocks
768 * modified after it was created have RELOC flag
769 * set in their headers. so it's OK to not update
770 * the 'last_snapshot'.
771 */
772 ret = btrfs_copy_root(trans, root, root->node, &eb,
773 BTRFS_TREE_RELOC_OBJECTID);
774 BUG_ON(ret);
775 }
776
777 memcpy(root_item, &root->root_item, sizeof(*root_item));
778 btrfs_set_root_bytenr(root_item, eb->start);
779 btrfs_set_root_level(root_item, btrfs_header_level(eb));
780 btrfs_set_root_generation(root_item, trans->transid);
781
782 if (root->root_key.objectid == objectid) {
783 btrfs_set_root_refs(root_item, 0);
784 memset(&root_item->drop_progress, 0,
785 sizeof(struct btrfs_disk_key));
786 root_item->drop_level = 0;
787 }
788
789 btrfs_tree_unlock(eb);
790 free_extent_buffer(eb);
791
792 ret = btrfs_insert_root(trans, fs_info->tree_root,
793 &root_key, root_item);
794 BUG_ON(ret);
795 kfree(root_item);
796
797 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
798 BUG_ON(IS_ERR(reloc_root));
799 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
800 reloc_root->last_trans = trans->transid;
801 return reloc_root;
802}
803
804/*
805 * create reloc tree for a given fs tree. reloc tree is just a
806 * snapshot of the fs tree with special root objectid.
807 *
808 * The reloc_root comes out of here with two references, one for
809 * root->reloc_root, and another for being on the rc->reloc_roots list.
810 */
811int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
812 struct btrfs_root *root)
813{
814 struct btrfs_fs_info *fs_info = root->fs_info;
815 struct btrfs_root *reloc_root;
816 struct reloc_control *rc = fs_info->reloc_ctl;
817 struct btrfs_block_rsv *rsv;
818 int clear_rsv = 0;
819 int ret;
820
821 if (!rc)
822 return 0;
823
824 /*
825 * The subvolume has reloc tree but the swap is finished, no need to
826 * create/update the dead reloc tree
827 */
828 if (reloc_root_is_dead(root))
829 return 0;
830
831 /*
832 * This is subtle but important. We do not do
833 * record_root_in_transaction for reloc roots, instead we record their
834 * corresponding fs root, and then here we update the last trans for the
835 * reloc root. This means that we have to do this for the entire life
836 * of the reloc root, regardless of which stage of the relocation we are
837 * in.
838 */
839 if (root->reloc_root) {
840 reloc_root = root->reloc_root;
841 reloc_root->last_trans = trans->transid;
842 return 0;
843 }
844
845 /*
846 * We are merging reloc roots, we do not need new reloc trees. Also
847 * reloc trees never need their own reloc tree.
848 */
849 if (!rc->create_reloc_tree ||
850 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
851 return 0;
852
853 if (!trans->reloc_reserved) {
854 rsv = trans->block_rsv;
855 trans->block_rsv = rc->block_rsv;
856 clear_rsv = 1;
857 }
858 reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
859 if (clear_rsv)
860 trans->block_rsv = rsv;
861
862 ret = __add_reloc_root(reloc_root);
863 BUG_ON(ret < 0);
864 root->reloc_root = btrfs_grab_root(reloc_root);
865 return 0;
866}
867
868/*
869 * update root item of reloc tree
870 */
871int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
872 struct btrfs_root *root)
873{
874 struct btrfs_fs_info *fs_info = root->fs_info;
875 struct btrfs_root *reloc_root;
876 struct btrfs_root_item *root_item;
877 int ret;
878
879 if (!have_reloc_root(root))
880 goto out;
881
882 reloc_root = root->reloc_root;
883 root_item = &reloc_root->root_item;
884
885 /*
886 * We are probably ok here, but __del_reloc_root() will drop its ref of
887 * the root. We have the ref for root->reloc_root, but just in case
888 * hold it while we update the reloc root.
889 */
890 btrfs_grab_root(reloc_root);
891
892 /* root->reloc_root will stay until current relocation finished */
893 if (fs_info->reloc_ctl->merge_reloc_tree &&
894 btrfs_root_refs(root_item) == 0) {
895 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
896 /*
897 * Mark the tree as dead before we change reloc_root so
898 * have_reloc_root will not touch it from now on.
899 */
900 smp_wmb();
901 __del_reloc_root(reloc_root);
902 }
903
904 if (reloc_root->commit_root != reloc_root->node) {
905 __update_reloc_root(reloc_root);
906 btrfs_set_root_node(root_item, reloc_root->node);
907 free_extent_buffer(reloc_root->commit_root);
908 reloc_root->commit_root = btrfs_root_node(reloc_root);
909 }
910
911 ret = btrfs_update_root(trans, fs_info->tree_root,
912 &reloc_root->root_key, root_item);
913 BUG_ON(ret);
914 btrfs_put_root(reloc_root);
915out:
916 return 0;
917}
918
919/*
920 * helper to find first cached inode with inode number >= objectid
921 * in a subvolume
922 */
923static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
924{
925 struct rb_node *node;
926 struct rb_node *prev;
927 struct btrfs_inode *entry;
928 struct inode *inode;
929
930 spin_lock(&root->inode_lock);
931again:
932 node = root->inode_tree.rb_node;
933 prev = NULL;
934 while (node) {
935 prev = node;
936 entry = rb_entry(node, struct btrfs_inode, rb_node);
937
938 if (objectid < btrfs_ino(entry))
939 node = node->rb_left;
940 else if (objectid > btrfs_ino(entry))
941 node = node->rb_right;
942 else
943 break;
944 }
945 if (!node) {
946 while (prev) {
947 entry = rb_entry(prev, struct btrfs_inode, rb_node);
948 if (objectid <= btrfs_ino(entry)) {
949 node = prev;
950 break;
951 }
952 prev = rb_next(prev);
953 }
954 }
955 while (node) {
956 entry = rb_entry(node, struct btrfs_inode, rb_node);
957 inode = igrab(&entry->vfs_inode);
958 if (inode) {
959 spin_unlock(&root->inode_lock);
960 return inode;
961 }
962
963 objectid = btrfs_ino(entry) + 1;
964 if (cond_resched_lock(&root->inode_lock))
965 goto again;
966
967 node = rb_next(node);
968 }
969 spin_unlock(&root->inode_lock);
970 return NULL;
971}
972
973/*
974 * get new location of data
975 */
976static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
977 u64 bytenr, u64 num_bytes)
978{
979 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
980 struct btrfs_path *path;
981 struct btrfs_file_extent_item *fi;
982 struct extent_buffer *leaf;
983 int ret;
984
985 path = btrfs_alloc_path();
986 if (!path)
987 return -ENOMEM;
988
989 bytenr -= BTRFS_I(reloc_inode)->index_cnt;
990 ret = btrfs_lookup_file_extent(NULL, root, path,
991 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
992 if (ret < 0)
993 goto out;
994 if (ret > 0) {
995 ret = -ENOENT;
996 goto out;
997 }
998
999 leaf = path->nodes[0];
1000 fi = btrfs_item_ptr(leaf, path->slots[0],
1001 struct btrfs_file_extent_item);
1002
1003 BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1004 btrfs_file_extent_compression(leaf, fi) ||
1005 btrfs_file_extent_encryption(leaf, fi) ||
1006 btrfs_file_extent_other_encoding(leaf, fi));
1007
1008 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1009 ret = -EINVAL;
1010 goto out;
1011 }
1012
1013 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1014 ret = 0;
1015out:
1016 btrfs_free_path(path);
1017 return ret;
1018}
1019
1020/*
1021 * update file extent items in the tree leaf to point to
1022 * the new locations.
1023 */
1024static noinline_for_stack
1025int replace_file_extents(struct btrfs_trans_handle *trans,
1026 struct reloc_control *rc,
1027 struct btrfs_root *root,
1028 struct extent_buffer *leaf)
1029{
1030 struct btrfs_fs_info *fs_info = root->fs_info;
1031 struct btrfs_key key;
1032 struct btrfs_file_extent_item *fi;
1033 struct inode *inode = NULL;
1034 u64 parent;
1035 u64 bytenr;
1036 u64 new_bytenr = 0;
1037 u64 num_bytes;
1038 u64 end;
1039 u32 nritems;
1040 u32 i;
1041 int ret = 0;
1042 int first = 1;
1043 int dirty = 0;
1044
1045 if (rc->stage != UPDATE_DATA_PTRS)
1046 return 0;
1047
1048 /* reloc trees always use full backref */
1049 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1050 parent = leaf->start;
1051 else
1052 parent = 0;
1053
1054 nritems = btrfs_header_nritems(leaf);
1055 for (i = 0; i < nritems; i++) {
1056 struct btrfs_ref ref = { 0 };
1057
1058 cond_resched();
1059 btrfs_item_key_to_cpu(leaf, &key, i);
1060 if (key.type != BTRFS_EXTENT_DATA_KEY)
1061 continue;
1062 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1063 if (btrfs_file_extent_type(leaf, fi) ==
1064 BTRFS_FILE_EXTENT_INLINE)
1065 continue;
1066 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1067 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1068 if (bytenr == 0)
1069 continue;
1070 if (!in_range(bytenr, rc->block_group->start,
1071 rc->block_group->length))
1072 continue;
1073
1074 /*
1075 * if we are modifying block in fs tree, wait for readpage
1076 * to complete and drop the extent cache
1077 */
1078 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1079 if (first) {
1080 inode = find_next_inode(root, key.objectid);
1081 first = 0;
1082 } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1083 btrfs_add_delayed_iput(inode);
1084 inode = find_next_inode(root, key.objectid);
1085 }
1086 if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1087 end = key.offset +
1088 btrfs_file_extent_num_bytes(leaf, fi);
1089 WARN_ON(!IS_ALIGNED(key.offset,
1090 fs_info->sectorsize));
1091 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1092 end--;
1093 ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1094 key.offset, end);
1095 if (!ret)
1096 continue;
1097
1098 btrfs_drop_extent_cache(BTRFS_I(inode),
1099 key.offset, end, 1);
1100 unlock_extent(&BTRFS_I(inode)->io_tree,
1101 key.offset, end);
1102 }
1103 }
1104
1105 ret = get_new_location(rc->data_inode, &new_bytenr,
1106 bytenr, num_bytes);
1107 if (ret) {
1108 /*
1109 * Don't have to abort since we've not changed anything
1110 * in the file extent yet.
1111 */
1112 break;
1113 }
1114
1115 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1116 dirty = 1;
1117
1118 key.offset -= btrfs_file_extent_offset(leaf, fi);
1119 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1120 num_bytes, parent);
1121 ref.real_root = root->root_key.objectid;
1122 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1123 key.objectid, key.offset);
1124 ret = btrfs_inc_extent_ref(trans, &ref);
1125 if (ret) {
1126 btrfs_abort_transaction(trans, ret);
1127 break;
1128 }
1129
1130 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1131 num_bytes, parent);
1132 ref.real_root = root->root_key.objectid;
1133 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1134 key.objectid, key.offset);
1135 ret = btrfs_free_extent(trans, &ref);
1136 if (ret) {
1137 btrfs_abort_transaction(trans, ret);
1138 break;
1139 }
1140 }
1141 if (dirty)
1142 btrfs_mark_buffer_dirty(leaf);
1143 if (inode)
1144 btrfs_add_delayed_iput(inode);
1145 return ret;
1146}
1147
1148static noinline_for_stack
1149int memcmp_node_keys(struct extent_buffer *eb, int slot,
1150 struct btrfs_path *path, int level)
1151{
1152 struct btrfs_disk_key key1;
1153 struct btrfs_disk_key key2;
1154 btrfs_node_key(eb, &key1, slot);
1155 btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1156 return memcmp(&key1, &key2, sizeof(key1));
1157}
1158
1159/*
1160 * try to replace tree blocks in fs tree with the new blocks
1161 * in reloc tree. tree blocks haven't been modified since the
1162 * reloc tree was create can be replaced.
1163 *
1164 * if a block was replaced, level of the block + 1 is returned.
1165 * if no block got replaced, 0 is returned. if there are other
1166 * errors, a negative error number is returned.
1167 */
1168static noinline_for_stack
1169int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1170 struct btrfs_root *dest, struct btrfs_root *src,
1171 struct btrfs_path *path, struct btrfs_key *next_key,
1172 int lowest_level, int max_level)
1173{
1174 struct btrfs_fs_info *fs_info = dest->fs_info;
1175 struct extent_buffer *eb;
1176 struct extent_buffer *parent;
1177 struct btrfs_ref ref = { 0 };
1178 struct btrfs_key key;
1179 u64 old_bytenr;
1180 u64 new_bytenr;
1181 u64 old_ptr_gen;
1182 u64 new_ptr_gen;
1183 u64 last_snapshot;
1184 u32 blocksize;
1185 int cow = 0;
1186 int level;
1187 int ret;
1188 int slot;
1189
1190 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1191 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1192
1193 last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1194again:
1195 slot = path->slots[lowest_level];
1196 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1197
1198 eb = btrfs_lock_root_node(dest);
1199 btrfs_set_lock_blocking_write(eb);
1200 level = btrfs_header_level(eb);
1201
1202 if (level < lowest_level) {
1203 btrfs_tree_unlock(eb);
1204 free_extent_buffer(eb);
1205 return 0;
1206 }
1207
1208 if (cow) {
1209 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1210 BUG_ON(ret);
1211 }
1212 btrfs_set_lock_blocking_write(eb);
1213
1214 if (next_key) {
1215 next_key->objectid = (u64)-1;
1216 next_key->type = (u8)-1;
1217 next_key->offset = (u64)-1;
1218 }
1219
1220 parent = eb;
1221 while (1) {
1222 struct btrfs_key first_key;
1223
1224 level = btrfs_header_level(parent);
1225 BUG_ON(level < lowest_level);
1226
1227 ret = btrfs_bin_search(parent, &key, &slot);
1228 if (ret < 0)
1229 break;
1230 if (ret && slot > 0)
1231 slot--;
1232
1233 if (next_key && slot + 1 < btrfs_header_nritems(parent))
1234 btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1235
1236 old_bytenr = btrfs_node_blockptr(parent, slot);
1237 blocksize = fs_info->nodesize;
1238 old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1239 btrfs_node_key_to_cpu(parent, &first_key, slot);
1240
1241 if (level <= max_level) {
1242 eb = path->nodes[level];
1243 new_bytenr = btrfs_node_blockptr(eb,
1244 path->slots[level]);
1245 new_ptr_gen = btrfs_node_ptr_generation(eb,
1246 path->slots[level]);
1247 } else {
1248 new_bytenr = 0;
1249 new_ptr_gen = 0;
1250 }
1251
1252 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1253 ret = level;
1254 break;
1255 }
1256
1257 if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1258 memcmp_node_keys(parent, slot, path, level)) {
1259 if (level <= lowest_level) {
1260 ret = 0;
1261 break;
1262 }
1263
1264 eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen,
1265 level - 1, &first_key);
1266 if (IS_ERR(eb)) {
1267 ret = PTR_ERR(eb);
1268 break;
1269 } else if (!extent_buffer_uptodate(eb)) {
1270 ret = -EIO;
1271 free_extent_buffer(eb);
1272 break;
1273 }
1274 btrfs_tree_lock(eb);
1275 if (cow) {
1276 ret = btrfs_cow_block(trans, dest, eb, parent,
1277 slot, &eb);
1278 BUG_ON(ret);
1279 }
1280 btrfs_set_lock_blocking_write(eb);
1281
1282 btrfs_tree_unlock(parent);
1283 free_extent_buffer(parent);
1284
1285 parent = eb;
1286 continue;
1287 }
1288
1289 if (!cow) {
1290 btrfs_tree_unlock(parent);
1291 free_extent_buffer(parent);
1292 cow = 1;
1293 goto again;
1294 }
1295
1296 btrfs_node_key_to_cpu(path->nodes[level], &key,
1297 path->slots[level]);
1298 btrfs_release_path(path);
1299
1300 path->lowest_level = level;
1301 ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1302 path->lowest_level = 0;
1303 BUG_ON(ret);
1304
1305 /*
1306 * Info qgroup to trace both subtrees.
1307 *
1308 * We must trace both trees.
1309 * 1) Tree reloc subtree
1310 * If not traced, we will leak data numbers
1311 * 2) Fs subtree
1312 * If not traced, we will double count old data
1313 *
1314 * We don't scan the subtree right now, but only record
1315 * the swapped tree blocks.
1316 * The real subtree rescan is delayed until we have new
1317 * CoW on the subtree root node before transaction commit.
1318 */
1319 ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1320 rc->block_group, parent, slot,
1321 path->nodes[level], path->slots[level],
1322 last_snapshot);
1323 if (ret < 0)
1324 break;
1325 /*
1326 * swap blocks in fs tree and reloc tree.
1327 */
1328 btrfs_set_node_blockptr(parent, slot, new_bytenr);
1329 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1330 btrfs_mark_buffer_dirty(parent);
1331
1332 btrfs_set_node_blockptr(path->nodes[level],
1333 path->slots[level], old_bytenr);
1334 btrfs_set_node_ptr_generation(path->nodes[level],
1335 path->slots[level], old_ptr_gen);
1336 btrfs_mark_buffer_dirty(path->nodes[level]);
1337
1338 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1339 blocksize, path->nodes[level]->start);
1340 ref.skip_qgroup = true;
1341 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1342 ret = btrfs_inc_extent_ref(trans, &ref);
1343 BUG_ON(ret);
1344 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1345 blocksize, 0);
1346 ref.skip_qgroup = true;
1347 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1348 ret = btrfs_inc_extent_ref(trans, &ref);
1349 BUG_ON(ret);
1350
1351 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1352 blocksize, path->nodes[level]->start);
1353 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1354 ref.skip_qgroup = true;
1355 ret = btrfs_free_extent(trans, &ref);
1356 BUG_ON(ret);
1357
1358 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1359 blocksize, 0);
1360 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1361 ref.skip_qgroup = true;
1362 ret = btrfs_free_extent(trans, &ref);
1363 BUG_ON(ret);
1364
1365 btrfs_unlock_up_safe(path, 0);
1366
1367 ret = level;
1368 break;
1369 }
1370 btrfs_tree_unlock(parent);
1371 free_extent_buffer(parent);
1372 return ret;
1373}
1374
1375/*
1376 * helper to find next relocated block in reloc tree
1377 */
1378static noinline_for_stack
1379int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1380 int *level)
1381{
1382 struct extent_buffer *eb;
1383 int i;
1384 u64 last_snapshot;
1385 u32 nritems;
1386
1387 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1388
1389 for (i = 0; i < *level; i++) {
1390 free_extent_buffer(path->nodes[i]);
1391 path->nodes[i] = NULL;
1392 }
1393
1394 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1395 eb = path->nodes[i];
1396 nritems = btrfs_header_nritems(eb);
1397 while (path->slots[i] + 1 < nritems) {
1398 path->slots[i]++;
1399 if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1400 last_snapshot)
1401 continue;
1402
1403 *level = i;
1404 return 0;
1405 }
1406 free_extent_buffer(path->nodes[i]);
1407 path->nodes[i] = NULL;
1408 }
1409 return 1;
1410}
1411
1412/*
1413 * walk down reloc tree to find relocated block of lowest level
1414 */
1415static noinline_for_stack
1416int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1417 int *level)
1418{
1419 struct btrfs_fs_info *fs_info = root->fs_info;
1420 struct extent_buffer *eb = NULL;
1421 int i;
1422 u64 bytenr;
1423 u64 ptr_gen = 0;
1424 u64 last_snapshot;
1425 u32 nritems;
1426
1427 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1428
1429 for (i = *level; i > 0; i--) {
1430 struct btrfs_key first_key;
1431
1432 eb = path->nodes[i];
1433 nritems = btrfs_header_nritems(eb);
1434 while (path->slots[i] < nritems) {
1435 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1436 if (ptr_gen > last_snapshot)
1437 break;
1438 path->slots[i]++;
1439 }
1440 if (path->slots[i] >= nritems) {
1441 if (i == *level)
1442 break;
1443 *level = i + 1;
1444 return 0;
1445 }
1446 if (i == 1) {
1447 *level = i;
1448 return 0;
1449 }
1450
1451 bytenr = btrfs_node_blockptr(eb, path->slots[i]);
1452 btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]);
1453 eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1,
1454 &first_key);
1455 if (IS_ERR(eb)) {
1456 return PTR_ERR(eb);
1457 } else if (!extent_buffer_uptodate(eb)) {
1458 free_extent_buffer(eb);
1459 return -EIO;
1460 }
1461 BUG_ON(btrfs_header_level(eb) != i - 1);
1462 path->nodes[i - 1] = eb;
1463 path->slots[i - 1] = 0;
1464 }
1465 return 1;
1466}
1467
1468/*
1469 * invalidate extent cache for file extents whose key in range of
1470 * [min_key, max_key)
1471 */
1472static int invalidate_extent_cache(struct btrfs_root *root,
1473 struct btrfs_key *min_key,
1474 struct btrfs_key *max_key)
1475{
1476 struct btrfs_fs_info *fs_info = root->fs_info;
1477 struct inode *inode = NULL;
1478 u64 objectid;
1479 u64 start, end;
1480 u64 ino;
1481
1482 objectid = min_key->objectid;
1483 while (1) {
1484 cond_resched();
1485 iput(inode);
1486
1487 if (objectid > max_key->objectid)
1488 break;
1489
1490 inode = find_next_inode(root, objectid);
1491 if (!inode)
1492 break;
1493 ino = btrfs_ino(BTRFS_I(inode));
1494
1495 if (ino > max_key->objectid) {
1496 iput(inode);
1497 break;
1498 }
1499
1500 objectid = ino + 1;
1501 if (!S_ISREG(inode->i_mode))
1502 continue;
1503
1504 if (unlikely(min_key->objectid == ino)) {
1505 if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1506 continue;
1507 if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1508 start = 0;
1509 else {
1510 start = min_key->offset;
1511 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1512 }
1513 } else {
1514 start = 0;
1515 }
1516
1517 if (unlikely(max_key->objectid == ino)) {
1518 if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1519 continue;
1520 if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1521 end = (u64)-1;
1522 } else {
1523 if (max_key->offset == 0)
1524 continue;
1525 end = max_key->offset;
1526 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1527 end--;
1528 }
1529 } else {
1530 end = (u64)-1;
1531 }
1532
1533 /* the lock_extent waits for readpage to complete */
1534 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
1535 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
1536 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
1537 }
1538 return 0;
1539}
1540
1541static int find_next_key(struct btrfs_path *path, int level,
1542 struct btrfs_key *key)
1543
1544{
1545 while (level < BTRFS_MAX_LEVEL) {
1546 if (!path->nodes[level])
1547 break;
1548 if (path->slots[level] + 1 <
1549 btrfs_header_nritems(path->nodes[level])) {
1550 btrfs_node_key_to_cpu(path->nodes[level], key,
1551 path->slots[level] + 1);
1552 return 0;
1553 }
1554 level++;
1555 }
1556 return 1;
1557}
1558
1559/*
1560 * Insert current subvolume into reloc_control::dirty_subvol_roots
1561 */
1562static void insert_dirty_subvol(struct btrfs_trans_handle *trans,
1563 struct reloc_control *rc,
1564 struct btrfs_root *root)
1565{
1566 struct btrfs_root *reloc_root = root->reloc_root;
1567 struct btrfs_root_item *reloc_root_item;
1568
1569 /* @root must be a subvolume tree root with a valid reloc tree */
1570 ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1571 ASSERT(reloc_root);
1572
1573 reloc_root_item = &reloc_root->root_item;
1574 memset(&reloc_root_item->drop_progress, 0,
1575 sizeof(reloc_root_item->drop_progress));
1576 reloc_root_item->drop_level = 0;
1577 btrfs_set_root_refs(reloc_root_item, 0);
1578 btrfs_update_reloc_root(trans, root);
1579
1580 if (list_empty(&root->reloc_dirty_list)) {
1581 btrfs_grab_root(root);
1582 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1583 }
1584}
1585
1586static int clean_dirty_subvols(struct reloc_control *rc)
1587{
1588 struct btrfs_root *root;
1589 struct btrfs_root *next;
1590 int ret = 0;
1591 int ret2;
1592
1593 list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1594 reloc_dirty_list) {
1595 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1596 /* Merged subvolume, cleanup its reloc root */
1597 struct btrfs_root *reloc_root = root->reloc_root;
1598
1599 list_del_init(&root->reloc_dirty_list);
1600 root->reloc_root = NULL;
1601 /*
1602 * Need barrier to ensure clear_bit() only happens after
1603 * root->reloc_root = NULL. Pairs with have_reloc_root.
1604 */
1605 smp_wmb();
1606 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1607 if (reloc_root) {
1608 /*
1609 * btrfs_drop_snapshot drops our ref we hold for
1610 * ->reloc_root. If it fails however we must
1611 * drop the ref ourselves.
1612 */
1613 ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1614 if (ret2 < 0) {
1615 btrfs_put_root(reloc_root);
1616 if (!ret)
1617 ret = ret2;
1618 }
1619 }
1620 btrfs_put_root(root);
1621 } else {
1622 /* Orphan reloc tree, just clean it up */
1623 ret2 = btrfs_drop_snapshot(root, 0, 1);
1624 if (ret2 < 0) {
1625 btrfs_put_root(root);
1626 if (!ret)
1627 ret = ret2;
1628 }
1629 }
1630 }
1631 return ret;
1632}
1633
1634/*
1635 * merge the relocated tree blocks in reloc tree with corresponding
1636 * fs tree.
1637 */
1638static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1639 struct btrfs_root *root)
1640{
1641 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1642 struct btrfs_key key;
1643 struct btrfs_key next_key;
1644 struct btrfs_trans_handle *trans = NULL;
1645 struct btrfs_root *reloc_root;
1646 struct btrfs_root_item *root_item;
1647 struct btrfs_path *path;
1648 struct extent_buffer *leaf;
1649 int level;
1650 int max_level;
1651 int replaced = 0;
1652 int ret;
1653 int err = 0;
1654 u32 min_reserved;
1655
1656 path = btrfs_alloc_path();
1657 if (!path)
1658 return -ENOMEM;
1659 path->reada = READA_FORWARD;
1660
1661 reloc_root = root->reloc_root;
1662 root_item = &reloc_root->root_item;
1663
1664 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1665 level = btrfs_root_level(root_item);
1666 atomic_inc(&reloc_root->node->refs);
1667 path->nodes[level] = reloc_root->node;
1668 path->slots[level] = 0;
1669 } else {
1670 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1671
1672 level = root_item->drop_level;
1673 BUG_ON(level == 0);
1674 path->lowest_level = level;
1675 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1676 path->lowest_level = 0;
1677 if (ret < 0) {
1678 btrfs_free_path(path);
1679 return ret;
1680 }
1681
1682 btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1683 path->slots[level]);
1684 WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1685
1686 btrfs_unlock_up_safe(path, 0);
1687 }
1688
1689 /*
1690 * In merge_reloc_root(), we modify the upper level pointer to swap the
1691 * tree blocks between reloc tree and subvolume tree. Thus for tree
1692 * block COW, we COW at most from level 1 to root level for each tree.
1693 *
1694 * Thus the needed metadata size is at most root_level * nodesize,
1695 * and * 2 since we have two trees to COW.
1696 */
1697 min_reserved = fs_info->nodesize * btrfs_root_level(root_item) * 2;
1698 memset(&next_key, 0, sizeof(next_key));
1699
1700 while (1) {
1701 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
1702 BTRFS_RESERVE_FLUSH_LIMIT);
1703 if (ret) {
1704 err = ret;
1705 goto out;
1706 }
1707 trans = btrfs_start_transaction(root, 0);
1708 if (IS_ERR(trans)) {
1709 err = PTR_ERR(trans);
1710 trans = NULL;
1711 goto out;
1712 }
1713
1714 /*
1715 * At this point we no longer have a reloc_control, so we can't
1716 * depend on btrfs_init_reloc_root to update our last_trans.
1717 *
1718 * But that's ok, we started the trans handle on our
1719 * corresponding fs_root, which means it's been added to the
1720 * dirty list. At commit time we'll still call
1721 * btrfs_update_reloc_root() and update our root item
1722 * appropriately.
1723 */
1724 reloc_root->last_trans = trans->transid;
1725 trans->block_rsv = rc->block_rsv;
1726
1727 replaced = 0;
1728 max_level = level;
1729
1730 ret = walk_down_reloc_tree(reloc_root, path, &level);
1731 if (ret < 0) {
1732 err = ret;
1733 goto out;
1734 }
1735 if (ret > 0)
1736 break;
1737
1738 if (!find_next_key(path, level, &key) &&
1739 btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1740 ret = 0;
1741 } else {
1742 ret = replace_path(trans, rc, root, reloc_root, path,
1743 &next_key, level, max_level);
1744 }
1745 if (ret < 0) {
1746 err = ret;
1747 goto out;
1748 }
1749
1750 if (ret > 0) {
1751 level = ret;
1752 btrfs_node_key_to_cpu(path->nodes[level], &key,
1753 path->slots[level]);
1754 replaced = 1;
1755 }
1756
1757 ret = walk_up_reloc_tree(reloc_root, path, &level);
1758 if (ret > 0)
1759 break;
1760
1761 BUG_ON(level == 0);
1762 /*
1763 * save the merging progress in the drop_progress.
1764 * this is OK since root refs == 1 in this case.
1765 */
1766 btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1767 path->slots[level]);
1768 root_item->drop_level = level;
1769
1770 btrfs_end_transaction_throttle(trans);
1771 trans = NULL;
1772
1773 btrfs_btree_balance_dirty(fs_info);
1774
1775 if (replaced && rc->stage == UPDATE_DATA_PTRS)
1776 invalidate_extent_cache(root, &key, &next_key);
1777 }
1778
1779 /*
1780 * handle the case only one block in the fs tree need to be
1781 * relocated and the block is tree root.
1782 */
1783 leaf = btrfs_lock_root_node(root);
1784 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
1785 btrfs_tree_unlock(leaf);
1786 free_extent_buffer(leaf);
1787 if (ret < 0)
1788 err = ret;
1789out:
1790 btrfs_free_path(path);
1791
1792 if (err == 0)
1793 insert_dirty_subvol(trans, rc, root);
1794
1795 if (trans)
1796 btrfs_end_transaction_throttle(trans);
1797
1798 btrfs_btree_balance_dirty(fs_info);
1799
1800 if (replaced && rc->stage == UPDATE_DATA_PTRS)
1801 invalidate_extent_cache(root, &key, &next_key);
1802
1803 return err;
1804}
1805
1806static noinline_for_stack
1807int prepare_to_merge(struct reloc_control *rc, int err)
1808{
1809 struct btrfs_root *root = rc->extent_root;
1810 struct btrfs_fs_info *fs_info = root->fs_info;
1811 struct btrfs_root *reloc_root;
1812 struct btrfs_trans_handle *trans;
1813 LIST_HEAD(reloc_roots);
1814 u64 num_bytes = 0;
1815 int ret;
1816
1817 mutex_lock(&fs_info->reloc_mutex);
1818 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1819 rc->merging_rsv_size += rc->nodes_relocated * 2;
1820 mutex_unlock(&fs_info->reloc_mutex);
1821
1822again:
1823 if (!err) {
1824 num_bytes = rc->merging_rsv_size;
1825 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
1826 BTRFS_RESERVE_FLUSH_ALL);
1827 if (ret)
1828 err = ret;
1829 }
1830
1831 trans = btrfs_join_transaction(rc->extent_root);
1832 if (IS_ERR(trans)) {
1833 if (!err)
1834 btrfs_block_rsv_release(fs_info, rc->block_rsv,
1835 num_bytes, NULL);
1836 return PTR_ERR(trans);
1837 }
1838
1839 if (!err) {
1840 if (num_bytes != rc->merging_rsv_size) {
1841 btrfs_end_transaction(trans);
1842 btrfs_block_rsv_release(fs_info, rc->block_rsv,
1843 num_bytes, NULL);
1844 goto again;
1845 }
1846 }
1847
1848 rc->merge_reloc_tree = 1;
1849
1850 while (!list_empty(&rc->reloc_roots)) {
1851 reloc_root = list_entry(rc->reloc_roots.next,
1852 struct btrfs_root, root_list);
1853 list_del_init(&reloc_root->root_list);
1854
1855 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1856 false);
1857 BUG_ON(IS_ERR(root));
1858 BUG_ON(root->reloc_root != reloc_root);
1859
1860 /*
1861 * set reference count to 1, so btrfs_recover_relocation
1862 * knows it should resumes merging
1863 */
1864 if (!err)
1865 btrfs_set_root_refs(&reloc_root->root_item, 1);
1866 btrfs_update_reloc_root(trans, root);
1867
1868 list_add(&reloc_root->root_list, &reloc_roots);
1869 btrfs_put_root(root);
1870 }
1871
1872 list_splice(&reloc_roots, &rc->reloc_roots);
1873
1874 if (!err)
1875 btrfs_commit_transaction(trans);
1876 else
1877 btrfs_end_transaction(trans);
1878 return err;
1879}
1880
1881static noinline_for_stack
1882void free_reloc_roots(struct list_head *list)
1883{
1884 struct btrfs_root *reloc_root, *tmp;
1885
1886 list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1887 __del_reloc_root(reloc_root);
1888}
1889
1890static noinline_for_stack
1891void merge_reloc_roots(struct reloc_control *rc)
1892{
1893 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1894 struct btrfs_root *root;
1895 struct btrfs_root *reloc_root;
1896 LIST_HEAD(reloc_roots);
1897 int found = 0;
1898 int ret = 0;
1899again:
1900 root = rc->extent_root;
1901
1902 /*
1903 * this serializes us with btrfs_record_root_in_transaction,
1904 * we have to make sure nobody is in the middle of
1905 * adding their roots to the list while we are
1906 * doing this splice
1907 */
1908 mutex_lock(&fs_info->reloc_mutex);
1909 list_splice_init(&rc->reloc_roots, &reloc_roots);
1910 mutex_unlock(&fs_info->reloc_mutex);
1911
1912 while (!list_empty(&reloc_roots)) {
1913 found = 1;
1914 reloc_root = list_entry(reloc_roots.next,
1915 struct btrfs_root, root_list);
1916
1917 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1918 false);
1919 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
1920 BUG_ON(IS_ERR(root));
1921 BUG_ON(root->reloc_root != reloc_root);
1922 ret = merge_reloc_root(rc, root);
1923 btrfs_put_root(root);
1924 if (ret) {
1925 if (list_empty(&reloc_root->root_list))
1926 list_add_tail(&reloc_root->root_list,
1927 &reloc_roots);
1928 goto out;
1929 }
1930 } else {
1931 if (!IS_ERR(root)) {
1932 if (root->reloc_root == reloc_root) {
1933 root->reloc_root = NULL;
1934 btrfs_put_root(reloc_root);
1935 }
1936 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
1937 &root->state);
1938 btrfs_put_root(root);
1939 }
1940
1941 list_del_init(&reloc_root->root_list);
1942 /* Don't forget to queue this reloc root for cleanup */
1943 list_add_tail(&reloc_root->reloc_dirty_list,
1944 &rc->dirty_subvol_roots);
1945 }
1946 }
1947
1948 if (found) {
1949 found = 0;
1950 goto again;
1951 }
1952out:
1953 if (ret) {
1954 btrfs_handle_fs_error(fs_info, ret, NULL);
1955 free_reloc_roots(&reloc_roots);
1956
1957 /* new reloc root may be added */
1958 mutex_lock(&fs_info->reloc_mutex);
1959 list_splice_init(&rc->reloc_roots, &reloc_roots);
1960 mutex_unlock(&fs_info->reloc_mutex);
1961 free_reloc_roots(&reloc_roots);
1962 }
1963
1964 /*
1965 * We used to have
1966 *
1967 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
1968 *
1969 * here, but it's wrong. If we fail to start the transaction in
1970 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
1971 * have actually been removed from the reloc_root_tree rb tree. This is
1972 * fine because we're bailing here, and we hold a reference on the root
1973 * for the list that holds it, so these roots will be cleaned up when we
1974 * do the reloc_dirty_list afterwards. Meanwhile the root->reloc_root
1975 * will be cleaned up on unmount.
1976 *
1977 * The remaining nodes will be cleaned up by free_reloc_control.
1978 */
1979}
1980
1981static void free_block_list(struct rb_root *blocks)
1982{
1983 struct tree_block *block;
1984 struct rb_node *rb_node;
1985 while ((rb_node = rb_first(blocks))) {
1986 block = rb_entry(rb_node, struct tree_block, rb_node);
1987 rb_erase(rb_node, blocks);
1988 kfree(block);
1989 }
1990}
1991
1992static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
1993 struct btrfs_root *reloc_root)
1994{
1995 struct btrfs_fs_info *fs_info = reloc_root->fs_info;
1996 struct btrfs_root *root;
1997 int ret;
1998
1999 if (reloc_root->last_trans == trans->transid)
2000 return 0;
2001
2002 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
2003 BUG_ON(IS_ERR(root));
2004 BUG_ON(root->reloc_root != reloc_root);
2005 ret = btrfs_record_root_in_trans(trans, root);
2006 btrfs_put_root(root);
2007
2008 return ret;
2009}
2010
2011static noinline_for_stack
2012struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2013 struct reloc_control *rc,
2014 struct btrfs_backref_node *node,
2015 struct btrfs_backref_edge *edges[])
2016{
2017 struct btrfs_backref_node *next;
2018 struct btrfs_root *root;
2019 int index = 0;
2020
2021 next = node;
2022 while (1) {
2023 cond_resched();
2024 next = walk_up_backref(next, edges, &index);
2025 root = next->root;
2026 BUG_ON(!root);
2027 BUG_ON(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state));
2028
2029 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2030 record_reloc_root_in_trans(trans, root);
2031 break;
2032 }
2033
2034 btrfs_record_root_in_trans(trans, root);
2035 root = root->reloc_root;
2036
2037 if (next->new_bytenr != root->node->start) {
2038 BUG_ON(next->new_bytenr);
2039 BUG_ON(!list_empty(&next->list));
2040 next->new_bytenr = root->node->start;
2041 btrfs_put_root(next->root);
2042 next->root = btrfs_grab_root(root);
2043 ASSERT(next->root);
2044 list_add_tail(&next->list,
2045 &rc->backref_cache.changed);
2046 mark_block_processed(rc, next);
2047 break;
2048 }
2049
2050 WARN_ON(1);
2051 root = NULL;
2052 next = walk_down_backref(edges, &index);
2053 if (!next || next->level <= node->level)
2054 break;
2055 }
2056 if (!root)
2057 return NULL;
2058
2059 next = node;
2060 /* setup backref node path for btrfs_reloc_cow_block */
2061 while (1) {
2062 rc->backref_cache.path[next->level] = next;
2063 if (--index < 0)
2064 break;
2065 next = edges[index]->node[UPPER];
2066 }
2067 return root;
2068}
2069
2070/*
2071 * Select a tree root for relocation.
2072 *
2073 * Return NULL if the block is not shareable. We should use do_relocation() in
2074 * this case.
2075 *
2076 * Return a tree root pointer if the block is shareable.
2077 * Return -ENOENT if the block is root of reloc tree.
2078 */
2079static noinline_for_stack
2080struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2081{
2082 struct btrfs_backref_node *next;
2083 struct btrfs_root *root;
2084 struct btrfs_root *fs_root = NULL;
2085 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2086 int index = 0;
2087
2088 next = node;
2089 while (1) {
2090 cond_resched();
2091 next = walk_up_backref(next, edges, &index);
2092 root = next->root;
2093 BUG_ON(!root);
2094
2095 /* No other choice for non-shareable tree */
2096 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2097 return root;
2098
2099 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2100 fs_root = root;
2101
2102 if (next != node)
2103 return NULL;
2104
2105 next = walk_down_backref(edges, &index);
2106 if (!next || next->level <= node->level)
2107 break;
2108 }
2109
2110 if (!fs_root)
2111 return ERR_PTR(-ENOENT);
2112 return fs_root;
2113}
2114
2115static noinline_for_stack
2116u64 calcu_metadata_size(struct reloc_control *rc,
2117 struct btrfs_backref_node *node, int reserve)
2118{
2119 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2120 struct btrfs_backref_node *next = node;
2121 struct btrfs_backref_edge *edge;
2122 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2123 u64 num_bytes = 0;
2124 int index = 0;
2125
2126 BUG_ON(reserve && node->processed);
2127
2128 while (next) {
2129 cond_resched();
2130 while (1) {
2131 if (next->processed && (reserve || next != node))
2132 break;
2133
2134 num_bytes += fs_info->nodesize;
2135
2136 if (list_empty(&next->upper))
2137 break;
2138
2139 edge = list_entry(next->upper.next,
2140 struct btrfs_backref_edge, list[LOWER]);
2141 edges[index++] = edge;
2142 next = edge->node[UPPER];
2143 }
2144 next = walk_down_backref(edges, &index);
2145 }
2146 return num_bytes;
2147}
2148
2149static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2150 struct reloc_control *rc,
2151 struct btrfs_backref_node *node)
2152{
2153 struct btrfs_root *root = rc->extent_root;
2154 struct btrfs_fs_info *fs_info = root->fs_info;
2155 u64 num_bytes;
2156 int ret;
2157 u64 tmp;
2158
2159 num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2160
2161 trans->block_rsv = rc->block_rsv;
2162 rc->reserved_bytes += num_bytes;
2163
2164 /*
2165 * We are under a transaction here so we can only do limited flushing.
2166 * If we get an enospc just kick back -EAGAIN so we know to drop the
2167 * transaction and try to refill when we can flush all the things.
2168 */
2169 ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2170 BTRFS_RESERVE_FLUSH_LIMIT);
2171 if (ret) {
2172 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2173 while (tmp <= rc->reserved_bytes)
2174 tmp <<= 1;
2175 /*
2176 * only one thread can access block_rsv at this point,
2177 * so we don't need hold lock to protect block_rsv.
2178 * we expand more reservation size here to allow enough
2179 * space for relocation and we will return earlier in
2180 * enospc case.
2181 */
2182 rc->block_rsv->size = tmp + fs_info->nodesize *
2183 RELOCATION_RESERVED_NODES;
2184 return -EAGAIN;
2185 }
2186
2187 return 0;
2188}
2189
2190/*
2191 * relocate a block tree, and then update pointers in upper level
2192 * blocks that reference the block to point to the new location.
2193 *
2194 * if called by link_to_upper, the block has already been relocated.
2195 * in that case this function just updates pointers.
2196 */
2197static int do_relocation(struct btrfs_trans_handle *trans,
2198 struct reloc_control *rc,
2199 struct btrfs_backref_node *node,
2200 struct btrfs_key *key,
2201 struct btrfs_path *path, int lowest)
2202{
2203 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2204 struct btrfs_backref_node *upper;
2205 struct btrfs_backref_edge *edge;
2206 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2207 struct btrfs_root *root;
2208 struct extent_buffer *eb;
2209 u32 blocksize;
2210 u64 bytenr;
2211 u64 generation;
2212 int slot;
2213 int ret;
2214 int err = 0;
2215
2216 BUG_ON(lowest && node->eb);
2217
2218 path->lowest_level = node->level + 1;
2219 rc->backref_cache.path[node->level] = node;
2220 list_for_each_entry(edge, &node->upper, list[LOWER]) {
2221 struct btrfs_key first_key;
2222 struct btrfs_ref ref = { 0 };
2223
2224 cond_resched();
2225
2226 upper = edge->node[UPPER];
2227 root = select_reloc_root(trans, rc, upper, edges);
2228 BUG_ON(!root);
2229
2230 if (upper->eb && !upper->locked) {
2231 if (!lowest) {
2232 ret = btrfs_bin_search(upper->eb, key, &slot);
2233 if (ret < 0) {
2234 err = ret;
2235 goto next;
2236 }
2237 BUG_ON(ret);
2238 bytenr = btrfs_node_blockptr(upper->eb, slot);
2239 if (node->eb->start == bytenr)
2240 goto next;
2241 }
2242 btrfs_backref_drop_node_buffer(upper);
2243 }
2244
2245 if (!upper->eb) {
2246 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2247 if (ret) {
2248 if (ret < 0)
2249 err = ret;
2250 else
2251 err = -ENOENT;
2252
2253 btrfs_release_path(path);
2254 break;
2255 }
2256
2257 if (!upper->eb) {
2258 upper->eb = path->nodes[upper->level];
2259 path->nodes[upper->level] = NULL;
2260 } else {
2261 BUG_ON(upper->eb != path->nodes[upper->level]);
2262 }
2263
2264 upper->locked = 1;
2265 path->locks[upper->level] = 0;
2266
2267 slot = path->slots[upper->level];
2268 btrfs_release_path(path);
2269 } else {
2270 ret = btrfs_bin_search(upper->eb, key, &slot);
2271 if (ret < 0) {
2272 err = ret;
2273 goto next;
2274 }
2275 BUG_ON(ret);
2276 }
2277
2278 bytenr = btrfs_node_blockptr(upper->eb, slot);
2279 if (lowest) {
2280 if (bytenr != node->bytenr) {
2281 btrfs_err(root->fs_info,
2282 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2283 bytenr, node->bytenr, slot,
2284 upper->eb->start);
2285 err = -EIO;
2286 goto next;
2287 }
2288 } else {
2289 if (node->eb->start == bytenr)
2290 goto next;
2291 }
2292
2293 blocksize = root->fs_info->nodesize;
2294 generation = btrfs_node_ptr_generation(upper->eb, slot);
2295 btrfs_node_key_to_cpu(upper->eb, &first_key, slot);
2296 eb = read_tree_block(fs_info, bytenr, generation,
2297 upper->level - 1, &first_key);
2298 if (IS_ERR(eb)) {
2299 err = PTR_ERR(eb);
2300 goto next;
2301 } else if (!extent_buffer_uptodate(eb)) {
2302 free_extent_buffer(eb);
2303 err = -EIO;
2304 goto next;
2305 }
2306 btrfs_tree_lock(eb);
2307 btrfs_set_lock_blocking_write(eb);
2308
2309 if (!node->eb) {
2310 ret = btrfs_cow_block(trans, root, eb, upper->eb,
2311 slot, &eb);
2312 btrfs_tree_unlock(eb);
2313 free_extent_buffer(eb);
2314 if (ret < 0) {
2315 err = ret;
2316 goto next;
2317 }
2318 BUG_ON(node->eb != eb);
2319 } else {
2320 btrfs_set_node_blockptr(upper->eb, slot,
2321 node->eb->start);
2322 btrfs_set_node_ptr_generation(upper->eb, slot,
2323 trans->transid);
2324 btrfs_mark_buffer_dirty(upper->eb);
2325
2326 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2327 node->eb->start, blocksize,
2328 upper->eb->start);
2329 ref.real_root = root->root_key.objectid;
2330 btrfs_init_tree_ref(&ref, node->level,
2331 btrfs_header_owner(upper->eb));
2332 ret = btrfs_inc_extent_ref(trans, &ref);
2333 BUG_ON(ret);
2334
2335 ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2336 BUG_ON(ret);
2337 }
2338next:
2339 if (!upper->pending)
2340 btrfs_backref_drop_node_buffer(upper);
2341 else
2342 btrfs_backref_unlock_node_buffer(upper);
2343 if (err)
2344 break;
2345 }
2346
2347 if (!err && node->pending) {
2348 btrfs_backref_drop_node_buffer(node);
2349 list_move_tail(&node->list, &rc->backref_cache.changed);
2350 node->pending = 0;
2351 }
2352
2353 path->lowest_level = 0;
2354 BUG_ON(err == -ENOSPC);
2355 return err;
2356}
2357
2358static int link_to_upper(struct btrfs_trans_handle *trans,
2359 struct reloc_control *rc,
2360 struct btrfs_backref_node *node,
2361 struct btrfs_path *path)
2362{
2363 struct btrfs_key key;
2364
2365 btrfs_node_key_to_cpu(node->eb, &key, 0);
2366 return do_relocation(trans, rc, node, &key, path, 0);
2367}
2368
2369static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2370 struct reloc_control *rc,
2371 struct btrfs_path *path, int err)
2372{
2373 LIST_HEAD(list);
2374 struct btrfs_backref_cache *cache = &rc->backref_cache;
2375 struct btrfs_backref_node *node;
2376 int level;
2377 int ret;
2378
2379 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2380 while (!list_empty(&cache->pending[level])) {
2381 node = list_entry(cache->pending[level].next,
2382 struct btrfs_backref_node, list);
2383 list_move_tail(&node->list, &list);
2384 BUG_ON(!node->pending);
2385
2386 if (!err) {
2387 ret = link_to_upper(trans, rc, node, path);
2388 if (ret < 0)
2389 err = ret;
2390 }
2391 }
2392 list_splice_init(&list, &cache->pending[level]);
2393 }
2394 return err;
2395}
2396
2397/*
2398 * mark a block and all blocks directly/indirectly reference the block
2399 * as processed.
2400 */
2401static void update_processed_blocks(struct reloc_control *rc,
2402 struct btrfs_backref_node *node)
2403{
2404 struct btrfs_backref_node *next = node;
2405 struct btrfs_backref_edge *edge;
2406 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2407 int index = 0;
2408
2409 while (next) {
2410 cond_resched();
2411 while (1) {
2412 if (next->processed)
2413 break;
2414
2415 mark_block_processed(rc, next);
2416
2417 if (list_empty(&next->upper))
2418 break;
2419
2420 edge = list_entry(next->upper.next,
2421 struct btrfs_backref_edge, list[LOWER]);
2422 edges[index++] = edge;
2423 next = edge->node[UPPER];
2424 }
2425 next = walk_down_backref(edges, &index);
2426 }
2427}
2428
2429static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2430{
2431 u32 blocksize = rc->extent_root->fs_info->nodesize;
2432
2433 if (test_range_bit(&rc->processed_blocks, bytenr,
2434 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2435 return 1;
2436 return 0;
2437}
2438
2439static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2440 struct tree_block *block)
2441{
2442 struct extent_buffer *eb;
2443
2444 eb = read_tree_block(fs_info, block->bytenr, block->key.offset,
2445 block->level, NULL);
2446 if (IS_ERR(eb)) {
2447 return PTR_ERR(eb);
2448 } else if (!extent_buffer_uptodate(eb)) {
2449 free_extent_buffer(eb);
2450 return -EIO;
2451 }
2452 if (block->level == 0)
2453 btrfs_item_key_to_cpu(eb, &block->key, 0);
2454 else
2455 btrfs_node_key_to_cpu(eb, &block->key, 0);
2456 free_extent_buffer(eb);
2457 block->key_ready = 1;
2458 return 0;
2459}
2460
2461/*
2462 * helper function to relocate a tree block
2463 */
2464static int relocate_tree_block(struct btrfs_trans_handle *trans,
2465 struct reloc_control *rc,
2466 struct btrfs_backref_node *node,
2467 struct btrfs_key *key,
2468 struct btrfs_path *path)
2469{
2470 struct btrfs_root *root;
2471 int ret = 0;
2472
2473 if (!node)
2474 return 0;
2475
2476 /*
2477 * If we fail here we want to drop our backref_node because we are going
2478 * to start over and regenerate the tree for it.
2479 */
2480 ret = reserve_metadata_space(trans, rc, node);
2481 if (ret)
2482 goto out;
2483
2484 BUG_ON(node->processed);
2485 root = select_one_root(node);
2486 if (root == ERR_PTR(-ENOENT)) {
2487 update_processed_blocks(rc, node);
2488 goto out;
2489 }
2490
2491 if (root) {
2492 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2493 BUG_ON(node->new_bytenr);
2494 BUG_ON(!list_empty(&node->list));
2495 btrfs_record_root_in_trans(trans, root);
2496 root = root->reloc_root;
2497 node->new_bytenr = root->node->start;
2498 btrfs_put_root(node->root);
2499 node->root = btrfs_grab_root(root);
2500 ASSERT(node->root);
2501 list_add_tail(&node->list, &rc->backref_cache.changed);
2502 } else {
2503 path->lowest_level = node->level;
2504 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2505 btrfs_release_path(path);
2506 if (ret > 0)
2507 ret = 0;
2508 }
2509 if (!ret)
2510 update_processed_blocks(rc, node);
2511 } else {
2512 ret = do_relocation(trans, rc, node, key, path, 1);
2513 }
2514out:
2515 if (ret || node->level == 0 || node->cowonly)
2516 btrfs_backref_cleanup_node(&rc->backref_cache, node);
2517 return ret;
2518}
2519
2520/*
2521 * relocate a list of blocks
2522 */
2523static noinline_for_stack
2524int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2525 struct reloc_control *rc, struct rb_root *blocks)
2526{
2527 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2528 struct btrfs_backref_node *node;
2529 struct btrfs_path *path;
2530 struct tree_block *block;
2531 struct tree_block *next;
2532 int ret;
2533 int err = 0;
2534
2535 path = btrfs_alloc_path();
2536 if (!path) {
2537 err = -ENOMEM;
2538 goto out_free_blocks;
2539 }
2540
2541 /* Kick in readahead for tree blocks with missing keys */
2542 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2543 if (!block->key_ready)
2544 readahead_tree_block(fs_info, block->bytenr);
2545 }
2546
2547 /* Get first keys */
2548 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2549 if (!block->key_ready) {
2550 err = get_tree_block_key(fs_info, block);
2551 if (err)
2552 goto out_free_path;
2553 }
2554 }
2555
2556 /* Do tree relocation */
2557 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2558 node = build_backref_tree(rc, &block->key,
2559 block->level, block->bytenr);
2560 if (IS_ERR(node)) {
2561 err = PTR_ERR(node);
2562 goto out;
2563 }
2564
2565 ret = relocate_tree_block(trans, rc, node, &block->key,
2566 path);
2567 if (ret < 0) {
2568 err = ret;
2569 break;
2570 }
2571 }
2572out:
2573 err = finish_pending_nodes(trans, rc, path, err);
2574
2575out_free_path:
2576 btrfs_free_path(path);
2577out_free_blocks:
2578 free_block_list(blocks);
2579 return err;
2580}
2581
2582static noinline_for_stack int prealloc_file_extent_cluster(
2583 struct btrfs_inode *inode,
2584 struct file_extent_cluster *cluster)
2585{
2586 u64 alloc_hint = 0;
2587 u64 start;
2588 u64 end;
2589 u64 offset = inode->index_cnt;
2590 u64 num_bytes;
2591 int nr;
2592 int ret = 0;
2593 u64 prealloc_start = cluster->start - offset;
2594 u64 prealloc_end = cluster->end - offset;
2595 u64 cur_offset = prealloc_start;
2596
2597 BUG_ON(cluster->start != cluster->boundary[0]);
2598 ret = btrfs_alloc_data_chunk_ondemand(inode,
2599 prealloc_end + 1 - prealloc_start);
2600 if (ret)
2601 return ret;
2602
2603 inode_lock(&inode->vfs_inode);
2604 for (nr = 0; nr < cluster->nr; nr++) {
2605 start = cluster->boundary[nr] - offset;
2606 if (nr + 1 < cluster->nr)
2607 end = cluster->boundary[nr + 1] - 1 - offset;
2608 else
2609 end = cluster->end - offset;
2610
2611 lock_extent(&inode->io_tree, start, end);
2612 num_bytes = end + 1 - start;
2613 ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2614 num_bytes, num_bytes,
2615 end + 1, &alloc_hint);
2616 cur_offset = end + 1;
2617 unlock_extent(&inode->io_tree, start, end);
2618 if (ret)
2619 break;
2620 }
2621 inode_unlock(&inode->vfs_inode);
2622
2623 if (cur_offset < prealloc_end)
2624 btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2625 prealloc_end + 1 - cur_offset);
2626 return ret;
2627}
2628
2629static noinline_for_stack
2630int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
2631 u64 block_start)
2632{
2633 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2634 struct extent_map *em;
2635 int ret = 0;
2636
2637 em = alloc_extent_map();
2638 if (!em)
2639 return -ENOMEM;
2640
2641 em->start = start;
2642 em->len = end + 1 - start;
2643 em->block_len = em->len;
2644 em->block_start = block_start;
2645 set_bit(EXTENT_FLAG_PINNED, &em->flags);
2646
2647 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2648 while (1) {
2649 write_lock(&em_tree->lock);
2650 ret = add_extent_mapping(em_tree, em, 0);
2651 write_unlock(&em_tree->lock);
2652 if (ret != -EEXIST) {
2653 free_extent_map(em);
2654 break;
2655 }
2656 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
2657 }
2658 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2659 return ret;
2660}
2661
2662/*
2663 * Allow error injection to test balance cancellation
2664 */
2665int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info)
2666{
2667 return atomic_read(&fs_info->balance_cancel_req) ||
2668 fatal_signal_pending(current);
2669}
2670ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2671
2672static int relocate_file_extent_cluster(struct inode *inode,
2673 struct file_extent_cluster *cluster)
2674{
2675 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2676 u64 page_start;
2677 u64 page_end;
2678 u64 offset = BTRFS_I(inode)->index_cnt;
2679 unsigned long index;
2680 unsigned long last_index;
2681 struct page *page;
2682 struct file_ra_state *ra;
2683 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2684 int nr = 0;
2685 int ret = 0;
2686
2687 if (!cluster->nr)
2688 return 0;
2689
2690 ra = kzalloc(sizeof(*ra), GFP_NOFS);
2691 if (!ra)
2692 return -ENOMEM;
2693
2694 ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster);
2695 if (ret)
2696 goto out;
2697
2698 file_ra_state_init(ra, inode->i_mapping);
2699
2700 ret = setup_extent_mapping(inode, cluster->start - offset,
2701 cluster->end - offset, cluster->start);
2702 if (ret)
2703 goto out;
2704
2705 index = (cluster->start - offset) >> PAGE_SHIFT;
2706 last_index = (cluster->end - offset) >> PAGE_SHIFT;
2707 while (index <= last_index) {
2708 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
2709 PAGE_SIZE);
2710 if (ret)
2711 goto out;
2712
2713 page = find_lock_page(inode->i_mapping, index);
2714 if (!page) {
2715 page_cache_sync_readahead(inode->i_mapping,
2716 ra, NULL, index,
2717 last_index + 1 - index);
2718 page = find_or_create_page(inode->i_mapping, index,
2719 mask);
2720 if (!page) {
2721 btrfs_delalloc_release_metadata(BTRFS_I(inode),
2722 PAGE_SIZE, true);
2723 btrfs_delalloc_release_extents(BTRFS_I(inode),
2724 PAGE_SIZE);
2725 ret = -ENOMEM;
2726 goto out;
2727 }
2728 }
2729
2730 if (PageReadahead(page)) {
2731 page_cache_async_readahead(inode->i_mapping,
2732 ra, NULL, page, index,
2733 last_index + 1 - index);
2734 }
2735
2736 if (!PageUptodate(page)) {
2737 btrfs_readpage(NULL, page);
2738 lock_page(page);
2739 if (!PageUptodate(page)) {
2740 unlock_page(page);
2741 put_page(page);
2742 btrfs_delalloc_release_metadata(BTRFS_I(inode),
2743 PAGE_SIZE, true);
2744 btrfs_delalloc_release_extents(BTRFS_I(inode),
2745 PAGE_SIZE);
2746 ret = -EIO;
2747 goto out;
2748 }
2749 }
2750
2751 page_start = page_offset(page);
2752 page_end = page_start + PAGE_SIZE - 1;
2753
2754 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
2755
2756 set_page_extent_mapped(page);
2757
2758 if (nr < cluster->nr &&
2759 page_start + offset == cluster->boundary[nr]) {
2760 set_extent_bits(&BTRFS_I(inode)->io_tree,
2761 page_start, page_end,
2762 EXTENT_BOUNDARY);
2763 nr++;
2764 }
2765
2766 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start,
2767 page_end, 0, NULL);
2768 if (ret) {
2769 unlock_page(page);
2770 put_page(page);
2771 btrfs_delalloc_release_metadata(BTRFS_I(inode),
2772 PAGE_SIZE, true);
2773 btrfs_delalloc_release_extents(BTRFS_I(inode),
2774 PAGE_SIZE);
2775
2776 clear_extent_bits(&BTRFS_I(inode)->io_tree,
2777 page_start, page_end,
2778 EXTENT_LOCKED | EXTENT_BOUNDARY);
2779 goto out;
2780
2781 }
2782 set_page_dirty(page);
2783
2784 unlock_extent(&BTRFS_I(inode)->io_tree,
2785 page_start, page_end);
2786 unlock_page(page);
2787 put_page(page);
2788
2789 index++;
2790 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
2791 balance_dirty_pages_ratelimited(inode->i_mapping);
2792 btrfs_throttle(fs_info);
2793 if (btrfs_should_cancel_balance(fs_info)) {
2794 ret = -ECANCELED;
2795 goto out;
2796 }
2797 }
2798 WARN_ON(nr != cluster->nr);
2799out:
2800 kfree(ra);
2801 return ret;
2802}
2803
2804static noinline_for_stack
2805int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
2806 struct file_extent_cluster *cluster)
2807{
2808 int ret;
2809
2810 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
2811 ret = relocate_file_extent_cluster(inode, cluster);
2812 if (ret)
2813 return ret;
2814 cluster->nr = 0;
2815 }
2816
2817 if (!cluster->nr)
2818 cluster->start = extent_key->objectid;
2819 else
2820 BUG_ON(cluster->nr >= MAX_EXTENTS);
2821 cluster->end = extent_key->objectid + extent_key->offset - 1;
2822 cluster->boundary[cluster->nr] = extent_key->objectid;
2823 cluster->nr++;
2824
2825 if (cluster->nr >= MAX_EXTENTS) {
2826 ret = relocate_file_extent_cluster(inode, cluster);
2827 if (ret)
2828 return ret;
2829 cluster->nr = 0;
2830 }
2831 return 0;
2832}
2833
2834/*
2835 * helper to add a tree block to the list.
2836 * the major work is getting the generation and level of the block
2837 */
2838static int add_tree_block(struct reloc_control *rc,
2839 struct btrfs_key *extent_key,
2840 struct btrfs_path *path,
2841 struct rb_root *blocks)
2842{
2843 struct extent_buffer *eb;
2844 struct btrfs_extent_item *ei;
2845 struct btrfs_tree_block_info *bi;
2846 struct tree_block *block;
2847 struct rb_node *rb_node;
2848 u32 item_size;
2849 int level = -1;
2850 u64 generation;
2851
2852 eb = path->nodes[0];
2853 item_size = btrfs_item_size_nr(eb, path->slots[0]);
2854
2855 if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
2856 item_size >= sizeof(*ei) + sizeof(*bi)) {
2857 ei = btrfs_item_ptr(eb, path->slots[0],
2858 struct btrfs_extent_item);
2859 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
2860 bi = (struct btrfs_tree_block_info *)(ei + 1);
2861 level = btrfs_tree_block_level(eb, bi);
2862 } else {
2863 level = (int)extent_key->offset;
2864 }
2865 generation = btrfs_extent_generation(eb, ei);
2866 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
2867 btrfs_print_v0_err(eb->fs_info);
2868 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
2869 return -EINVAL;
2870 } else {
2871 BUG();
2872 }
2873
2874 btrfs_release_path(path);
2875
2876 BUG_ON(level == -1);
2877
2878 block = kmalloc(sizeof(*block), GFP_NOFS);
2879 if (!block)
2880 return -ENOMEM;
2881
2882 block->bytenr = extent_key->objectid;
2883 block->key.objectid = rc->extent_root->fs_info->nodesize;
2884 block->key.offset = generation;
2885 block->level = level;
2886 block->key_ready = 0;
2887
2888 rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
2889 if (rb_node)
2890 btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
2891 -EEXIST);
2892
2893 return 0;
2894}
2895
2896/*
2897 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
2898 */
2899static int __add_tree_block(struct reloc_control *rc,
2900 u64 bytenr, u32 blocksize,
2901 struct rb_root *blocks)
2902{
2903 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2904 struct btrfs_path *path;
2905 struct btrfs_key key;
2906 int ret;
2907 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2908
2909 if (tree_block_processed(bytenr, rc))
2910 return 0;
2911
2912 if (rb_simple_search(blocks, bytenr))
2913 return 0;
2914
2915 path = btrfs_alloc_path();
2916 if (!path)
2917 return -ENOMEM;
2918again:
2919 key.objectid = bytenr;
2920 if (skinny) {
2921 key.type = BTRFS_METADATA_ITEM_KEY;
2922 key.offset = (u64)-1;
2923 } else {
2924 key.type = BTRFS_EXTENT_ITEM_KEY;
2925 key.offset = blocksize;
2926 }
2927
2928 path->search_commit_root = 1;
2929 path->skip_locking = 1;
2930 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
2931 if (ret < 0)
2932 goto out;
2933
2934 if (ret > 0 && skinny) {
2935 if (path->slots[0]) {
2936 path->slots[0]--;
2937 btrfs_item_key_to_cpu(path->nodes[0], &key,
2938 path->slots[0]);
2939 if (key.objectid == bytenr &&
2940 (key.type == BTRFS_METADATA_ITEM_KEY ||
2941 (key.type == BTRFS_EXTENT_ITEM_KEY &&
2942 key.offset == blocksize)))
2943 ret = 0;
2944 }
2945
2946 if (ret) {
2947 skinny = false;
2948 btrfs_release_path(path);
2949 goto again;
2950 }
2951 }
2952 if (ret) {
2953 ASSERT(ret == 1);
2954 btrfs_print_leaf(path->nodes[0]);
2955 btrfs_err(fs_info,
2956 "tree block extent item (%llu) is not found in extent tree",
2957 bytenr);
2958 WARN_ON(1);
2959 ret = -EINVAL;
2960 goto out;
2961 }
2962
2963 ret = add_tree_block(rc, &key, path, blocks);
2964out:
2965 btrfs_free_path(path);
2966 return ret;
2967}
2968
2969static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
2970 struct btrfs_block_group *block_group,
2971 struct inode *inode,
2972 u64 ino)
2973{
2974 struct btrfs_root *root = fs_info->tree_root;
2975 struct btrfs_trans_handle *trans;
2976 int ret = 0;
2977
2978 if (inode)
2979 goto truncate;
2980
2981 inode = btrfs_iget(fs_info->sb, ino, root);
2982 if (IS_ERR(inode))
2983 return -ENOENT;
2984
2985truncate:
2986 ret = btrfs_check_trunc_cache_free_space(fs_info,
2987 &fs_info->global_block_rsv);
2988 if (ret)
2989 goto out;
2990
2991 trans = btrfs_join_transaction(root);
2992 if (IS_ERR(trans)) {
2993 ret = PTR_ERR(trans);
2994 goto out;
2995 }
2996
2997 ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
2998
2999 btrfs_end_transaction(trans);
3000 btrfs_btree_balance_dirty(fs_info);
3001out:
3002 iput(inode);
3003 return ret;
3004}
3005
3006/*
3007 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3008 * cache inode, to avoid free space cache data extent blocking data relocation.
3009 */
3010static int delete_v1_space_cache(struct extent_buffer *leaf,
3011 struct btrfs_block_group *block_group,
3012 u64 data_bytenr)
3013{
3014 u64 space_cache_ino;
3015 struct btrfs_file_extent_item *ei;
3016 struct btrfs_key key;
3017 bool found = false;
3018 int i;
3019 int ret;
3020
3021 if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3022 return 0;
3023
3024 for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3025 btrfs_item_key_to_cpu(leaf, &key, i);
3026 if (key.type != BTRFS_EXTENT_DATA_KEY)
3027 continue;
3028 ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3029 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_REG &&
3030 btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3031 found = true;
3032 space_cache_ino = key.objectid;
3033 break;
3034 }
3035 }
3036 if (!found)
3037 return -ENOENT;
3038 ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3039 space_cache_ino);
3040 return ret;
3041}
3042
3043/*
3044 * helper to find all tree blocks that reference a given data extent
3045 */
3046static noinline_for_stack
3047int add_data_references(struct reloc_control *rc,
3048 struct btrfs_key *extent_key,
3049 struct btrfs_path *path,
3050 struct rb_root *blocks)
3051{
3052 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3053 struct ulist *leaves = NULL;
3054 struct ulist_iterator leaf_uiter;
3055 struct ulist_node *ref_node = NULL;
3056 const u32 blocksize = fs_info->nodesize;
3057 int ret = 0;
3058
3059 btrfs_release_path(path);
3060 ret = btrfs_find_all_leafs(NULL, fs_info, extent_key->objectid,
3061 0, &leaves, NULL, true);
3062 if (ret < 0)
3063 return ret;
3064
3065 ULIST_ITER_INIT(&leaf_uiter);
3066 while ((ref_node = ulist_next(leaves, &leaf_uiter))) {
3067 struct extent_buffer *eb;
3068
3069 eb = read_tree_block(fs_info, ref_node->val, 0, 0, NULL);
3070 if (IS_ERR(eb)) {
3071 ret = PTR_ERR(eb);
3072 break;
3073 }
3074 ret = delete_v1_space_cache(eb, rc->block_group,
3075 extent_key->objectid);
3076 free_extent_buffer(eb);
3077 if (ret < 0)
3078 break;
3079 ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3080 if (ret < 0)
3081 break;
3082 }
3083 if (ret < 0)
3084 free_block_list(blocks);
3085 ulist_free(leaves);
3086 return ret;
3087}
3088
3089/*
3090 * helper to find next unprocessed extent
3091 */
3092static noinline_for_stack
3093int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3094 struct btrfs_key *extent_key)
3095{
3096 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3097 struct btrfs_key key;
3098 struct extent_buffer *leaf;
3099 u64 start, end, last;
3100 int ret;
3101
3102 last = rc->block_group->start + rc->block_group->length;
3103 while (1) {
3104 cond_resched();
3105 if (rc->search_start >= last) {
3106 ret = 1;
3107 break;
3108 }
3109
3110 key.objectid = rc->search_start;
3111 key.type = BTRFS_EXTENT_ITEM_KEY;
3112 key.offset = 0;
3113
3114 path->search_commit_root = 1;
3115 path->skip_locking = 1;
3116 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3117 0, 0);
3118 if (ret < 0)
3119 break;
3120next:
3121 leaf = path->nodes[0];
3122 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3123 ret = btrfs_next_leaf(rc->extent_root, path);
3124 if (ret != 0)
3125 break;
3126 leaf = path->nodes[0];
3127 }
3128
3129 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3130 if (key.objectid >= last) {
3131 ret = 1;
3132 break;
3133 }
3134
3135 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3136 key.type != BTRFS_METADATA_ITEM_KEY) {
3137 path->slots[0]++;
3138 goto next;
3139 }
3140
3141 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3142 key.objectid + key.offset <= rc->search_start) {
3143 path->slots[0]++;
3144 goto next;
3145 }
3146
3147 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3148 key.objectid + fs_info->nodesize <=
3149 rc->search_start) {
3150 path->slots[0]++;
3151 goto next;
3152 }
3153
3154 ret = find_first_extent_bit(&rc->processed_blocks,
3155 key.objectid, &start, &end,
3156 EXTENT_DIRTY, NULL);
3157
3158 if (ret == 0 && start <= key.objectid) {
3159 btrfs_release_path(path);
3160 rc->search_start = end + 1;
3161 } else {
3162 if (key.type == BTRFS_EXTENT_ITEM_KEY)
3163 rc->search_start = key.objectid + key.offset;
3164 else
3165 rc->search_start = key.objectid +
3166 fs_info->nodesize;
3167 memcpy(extent_key, &key, sizeof(key));
3168 return 0;
3169 }
3170 }
3171 btrfs_release_path(path);
3172 return ret;
3173}
3174
3175static void set_reloc_control(struct reloc_control *rc)
3176{
3177 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3178
3179 mutex_lock(&fs_info->reloc_mutex);
3180 fs_info->reloc_ctl = rc;
3181 mutex_unlock(&fs_info->reloc_mutex);
3182}
3183
3184static void unset_reloc_control(struct reloc_control *rc)
3185{
3186 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3187
3188 mutex_lock(&fs_info->reloc_mutex);
3189 fs_info->reloc_ctl = NULL;
3190 mutex_unlock(&fs_info->reloc_mutex);
3191}
3192
3193static int check_extent_flags(u64 flags)
3194{
3195 if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3196 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3197 return 1;
3198 if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3199 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3200 return 1;
3201 if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3202 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3203 return 1;
3204 return 0;
3205}
3206
3207static noinline_for_stack
3208int prepare_to_relocate(struct reloc_control *rc)
3209{
3210 struct btrfs_trans_handle *trans;
3211 int ret;
3212
3213 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3214 BTRFS_BLOCK_RSV_TEMP);
3215 if (!rc->block_rsv)
3216 return -ENOMEM;
3217
3218 memset(&rc->cluster, 0, sizeof(rc->cluster));
3219 rc->search_start = rc->block_group->start;
3220 rc->extents_found = 0;
3221 rc->nodes_relocated = 0;
3222 rc->merging_rsv_size = 0;
3223 rc->reserved_bytes = 0;
3224 rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3225 RELOCATION_RESERVED_NODES;
3226 ret = btrfs_block_rsv_refill(rc->extent_root,
3227 rc->block_rsv, rc->block_rsv->size,
3228 BTRFS_RESERVE_FLUSH_ALL);
3229 if (ret)
3230 return ret;
3231
3232 rc->create_reloc_tree = 1;
3233 set_reloc_control(rc);
3234
3235 trans = btrfs_join_transaction(rc->extent_root);
3236 if (IS_ERR(trans)) {
3237 unset_reloc_control(rc);
3238 /*
3239 * extent tree is not a ref_cow tree and has no reloc_root to
3240 * cleanup. And callers are responsible to free the above
3241 * block rsv.
3242 */
3243 return PTR_ERR(trans);
3244 }
3245 btrfs_commit_transaction(trans);
3246 return 0;
3247}
3248
3249static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3250{
3251 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3252 struct rb_root blocks = RB_ROOT;
3253 struct btrfs_key key;
3254 struct btrfs_trans_handle *trans = NULL;
3255 struct btrfs_path *path;
3256 struct btrfs_extent_item *ei;
3257 u64 flags;
3258 u32 item_size;
3259 int ret;
3260 int err = 0;
3261 int progress = 0;
3262
3263 path = btrfs_alloc_path();
3264 if (!path)
3265 return -ENOMEM;
3266 path->reada = READA_FORWARD;
3267
3268 ret = prepare_to_relocate(rc);
3269 if (ret) {
3270 err = ret;
3271 goto out_free;
3272 }
3273
3274 while (1) {
3275 rc->reserved_bytes = 0;
3276 ret = btrfs_block_rsv_refill(rc->extent_root,
3277 rc->block_rsv, rc->block_rsv->size,
3278 BTRFS_RESERVE_FLUSH_ALL);
3279 if (ret) {
3280 err = ret;
3281 break;
3282 }
3283 progress++;
3284 trans = btrfs_start_transaction(rc->extent_root, 0);
3285 if (IS_ERR(trans)) {
3286 err = PTR_ERR(trans);
3287 trans = NULL;
3288 break;
3289 }
3290restart:
3291 if (update_backref_cache(trans, &rc->backref_cache)) {
3292 btrfs_end_transaction(trans);
3293 trans = NULL;
3294 continue;
3295 }
3296
3297 ret = find_next_extent(rc, path, &key);
3298 if (ret < 0)
3299 err = ret;
3300 if (ret != 0)
3301 break;
3302
3303 rc->extents_found++;
3304
3305 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3306 struct btrfs_extent_item);
3307 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3308 if (item_size >= sizeof(*ei)) {
3309 flags = btrfs_extent_flags(path->nodes[0], ei);
3310 ret = check_extent_flags(flags);
3311 BUG_ON(ret);
3312 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3313 err = -EINVAL;
3314 btrfs_print_v0_err(trans->fs_info);
3315 btrfs_abort_transaction(trans, err);
3316 break;
3317 } else {
3318 BUG();
3319 }
3320
3321 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3322 ret = add_tree_block(rc, &key, path, &blocks);
3323 } else if (rc->stage == UPDATE_DATA_PTRS &&
3324 (flags & BTRFS_EXTENT_FLAG_DATA)) {
3325 ret = add_data_references(rc, &key, path, &blocks);
3326 } else {
3327 btrfs_release_path(path);
3328 ret = 0;
3329 }
3330 if (ret < 0) {
3331 err = ret;
3332 break;
3333 }
3334
3335 if (!RB_EMPTY_ROOT(&blocks)) {
3336 ret = relocate_tree_blocks(trans, rc, &blocks);
3337 if (ret < 0) {
3338 if (ret != -EAGAIN) {
3339 err = ret;
3340 break;
3341 }
3342 rc->extents_found--;
3343 rc->search_start = key.objectid;
3344 }
3345 }
3346
3347 btrfs_end_transaction_throttle(trans);
3348 btrfs_btree_balance_dirty(fs_info);
3349 trans = NULL;
3350
3351 if (rc->stage == MOVE_DATA_EXTENTS &&
3352 (flags & BTRFS_EXTENT_FLAG_DATA)) {
3353 rc->found_file_extent = 1;
3354 ret = relocate_data_extent(rc->data_inode,
3355 &key, &rc->cluster);
3356 if (ret < 0) {
3357 err = ret;
3358 break;
3359 }
3360 }
3361 if (btrfs_should_cancel_balance(fs_info)) {
3362 err = -ECANCELED;
3363 break;
3364 }
3365 }
3366 if (trans && progress && err == -ENOSPC) {
3367 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3368 if (ret == 1) {
3369 err = 0;
3370 progress = 0;
3371 goto restart;
3372 }
3373 }
3374
3375 btrfs_release_path(path);
3376 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3377
3378 if (trans) {
3379 btrfs_end_transaction_throttle(trans);
3380 btrfs_btree_balance_dirty(fs_info);
3381 }
3382
3383 if (!err) {
3384 ret = relocate_file_extent_cluster(rc->data_inode,
3385 &rc->cluster);
3386 if (ret < 0)
3387 err = ret;
3388 }
3389
3390 rc->create_reloc_tree = 0;
3391 set_reloc_control(rc);
3392
3393 btrfs_backref_release_cache(&rc->backref_cache);
3394 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3395
3396 /*
3397 * Even in the case when the relocation is cancelled, we should all go
3398 * through prepare_to_merge() and merge_reloc_roots().
3399 *
3400 * For error (including cancelled balance), prepare_to_merge() will
3401 * mark all reloc trees orphan, then queue them for cleanup in
3402 * merge_reloc_roots()
3403 */
3404 err = prepare_to_merge(rc, err);
3405
3406 merge_reloc_roots(rc);
3407
3408 rc->merge_reloc_tree = 0;
3409 unset_reloc_control(rc);
3410 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3411
3412 /* get rid of pinned extents */
3413 trans = btrfs_join_transaction(rc->extent_root);
3414 if (IS_ERR(trans)) {
3415 err = PTR_ERR(trans);
3416 goto out_free;
3417 }
3418 btrfs_commit_transaction(trans);
3419out_free:
3420 ret = clean_dirty_subvols(rc);
3421 if (ret < 0 && !err)
3422 err = ret;
3423 btrfs_free_block_rsv(fs_info, rc->block_rsv);
3424 btrfs_free_path(path);
3425 return err;
3426}
3427
3428static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3429 struct btrfs_root *root, u64 objectid)
3430{
3431 struct btrfs_path *path;
3432 struct btrfs_inode_item *item;
3433 struct extent_buffer *leaf;
3434 int ret;
3435
3436 path = btrfs_alloc_path();
3437 if (!path)
3438 return -ENOMEM;
3439
3440 ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3441 if (ret)
3442 goto out;
3443
3444 leaf = path->nodes[0];
3445 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3446 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3447 btrfs_set_inode_generation(leaf, item, 1);
3448 btrfs_set_inode_size(leaf, item, 0);
3449 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3450 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3451 BTRFS_INODE_PREALLOC);
3452 btrfs_mark_buffer_dirty(leaf);
3453out:
3454 btrfs_free_path(path);
3455 return ret;
3456}
3457
3458/*
3459 * helper to create inode for data relocation.
3460 * the inode is in data relocation tree and its link count is 0
3461 */
3462static noinline_for_stack
3463struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3464 struct btrfs_block_group *group)
3465{
3466 struct inode *inode = NULL;
3467 struct btrfs_trans_handle *trans;
3468 struct btrfs_root *root;
3469 u64 objectid;
3470 int err = 0;
3471
3472 root = btrfs_grab_root(fs_info->data_reloc_root);
3473 trans = btrfs_start_transaction(root, 6);
3474 if (IS_ERR(trans)) {
3475 btrfs_put_root(root);
3476 return ERR_CAST(trans);
3477 }
3478
3479 err = btrfs_find_free_objectid(root, &objectid);
3480 if (err)
3481 goto out;
3482
3483 err = __insert_orphan_inode(trans, root, objectid);
3484 BUG_ON(err);
3485
3486 inode = btrfs_iget(fs_info->sb, objectid, root);
3487 BUG_ON(IS_ERR(inode));
3488 BTRFS_I(inode)->index_cnt = group->start;
3489
3490 err = btrfs_orphan_add(trans, BTRFS_I(inode));
3491out:
3492 btrfs_put_root(root);
3493 btrfs_end_transaction(trans);
3494 btrfs_btree_balance_dirty(fs_info);
3495 if (err) {
3496 if (inode)
3497 iput(inode);
3498 inode = ERR_PTR(err);
3499 }
3500 return inode;
3501}
3502
3503static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3504{
3505 struct reloc_control *rc;
3506
3507 rc = kzalloc(sizeof(*rc), GFP_NOFS);
3508 if (!rc)
3509 return NULL;
3510
3511 INIT_LIST_HEAD(&rc->reloc_roots);
3512 INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3513 btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1);
3514 mapping_tree_init(&rc->reloc_root_tree);
3515 extent_io_tree_init(fs_info, &rc->processed_blocks,
3516 IO_TREE_RELOC_BLOCKS, NULL);
3517 return rc;
3518}
3519
3520static void free_reloc_control(struct reloc_control *rc)
3521{
3522 struct mapping_node *node, *tmp;
3523
3524 free_reloc_roots(&rc->reloc_roots);
3525 rbtree_postorder_for_each_entry_safe(node, tmp,
3526 &rc->reloc_root_tree.rb_root, rb_node)
3527 kfree(node);
3528
3529 kfree(rc);
3530}
3531
3532/*
3533 * Print the block group being relocated
3534 */
3535static void describe_relocation(struct btrfs_fs_info *fs_info,
3536 struct btrfs_block_group *block_group)
3537{
3538 char buf[128] = {'\0'};
3539
3540 btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
3541
3542 btrfs_info(fs_info,
3543 "relocating block group %llu flags %s",
3544 block_group->start, buf);
3545}
3546
3547static const char *stage_to_string(int stage)
3548{
3549 if (stage == MOVE_DATA_EXTENTS)
3550 return "move data extents";
3551 if (stage == UPDATE_DATA_PTRS)
3552 return "update data pointers";
3553 return "unknown";
3554}
3555
3556/*
3557 * function to relocate all extents in a block group.
3558 */
3559int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
3560{
3561 struct btrfs_block_group *bg;
3562 struct btrfs_root *extent_root = fs_info->extent_root;
3563 struct reloc_control *rc;
3564 struct inode *inode;
3565 struct btrfs_path *path;
3566 int ret;
3567 int rw = 0;
3568 int err = 0;
3569
3570 bg = btrfs_lookup_block_group(fs_info, group_start);
3571 if (!bg)
3572 return -ENOENT;
3573
3574 if (btrfs_pinned_by_swapfile(fs_info, bg)) {
3575 btrfs_put_block_group(bg);
3576 return -ETXTBSY;
3577 }
3578
3579 rc = alloc_reloc_control(fs_info);
3580 if (!rc) {
3581 btrfs_put_block_group(bg);
3582 return -ENOMEM;
3583 }
3584
3585 rc->extent_root = extent_root;
3586 rc->block_group = bg;
3587
3588 ret = btrfs_inc_block_group_ro(rc->block_group, true);
3589 if (ret) {
3590 err = ret;
3591 goto out;
3592 }
3593 rw = 1;
3594
3595 path = btrfs_alloc_path();
3596 if (!path) {
3597 err = -ENOMEM;
3598 goto out;
3599 }
3600
3601 inode = lookup_free_space_inode(rc->block_group, path);
3602 btrfs_free_path(path);
3603
3604 if (!IS_ERR(inode))
3605 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
3606 else
3607 ret = PTR_ERR(inode);
3608
3609 if (ret && ret != -ENOENT) {
3610 err = ret;
3611 goto out;
3612 }
3613
3614 rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
3615 if (IS_ERR(rc->data_inode)) {
3616 err = PTR_ERR(rc->data_inode);
3617 rc->data_inode = NULL;
3618 goto out;
3619 }
3620
3621 describe_relocation(fs_info, rc->block_group);
3622
3623 btrfs_wait_block_group_reservations(rc->block_group);
3624 btrfs_wait_nocow_writers(rc->block_group);
3625 btrfs_wait_ordered_roots(fs_info, U64_MAX,
3626 rc->block_group->start,
3627 rc->block_group->length);
3628
3629 while (1) {
3630 int finishes_stage;
3631
3632 mutex_lock(&fs_info->cleaner_mutex);
3633 ret = relocate_block_group(rc);
3634 mutex_unlock(&fs_info->cleaner_mutex);
3635 if (ret < 0)
3636 err = ret;
3637
3638 finishes_stage = rc->stage;
3639 /*
3640 * We may have gotten ENOSPC after we already dirtied some
3641 * extents. If writeout happens while we're relocating a
3642 * different block group we could end up hitting the
3643 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
3644 * btrfs_reloc_cow_block. Make sure we write everything out
3645 * properly so we don't trip over this problem, and then break
3646 * out of the loop if we hit an error.
3647 */
3648 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
3649 ret = btrfs_wait_ordered_range(rc->data_inode, 0,
3650 (u64)-1);
3651 if (ret)
3652 err = ret;
3653 invalidate_mapping_pages(rc->data_inode->i_mapping,
3654 0, -1);
3655 rc->stage = UPDATE_DATA_PTRS;
3656 }
3657
3658 if (err < 0)
3659 goto out;
3660
3661 if (rc->extents_found == 0)
3662 break;
3663
3664 btrfs_info(fs_info, "found %llu extents, stage: %s",
3665 rc->extents_found, stage_to_string(finishes_stage));
3666 }
3667
3668 WARN_ON(rc->block_group->pinned > 0);
3669 WARN_ON(rc->block_group->reserved > 0);
3670 WARN_ON(rc->block_group->used > 0);
3671out:
3672 if (err && rw)
3673 btrfs_dec_block_group_ro(rc->block_group);
3674 iput(rc->data_inode);
3675 btrfs_put_block_group(rc->block_group);
3676 free_reloc_control(rc);
3677 return err;
3678}
3679
3680static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
3681{
3682 struct btrfs_fs_info *fs_info = root->fs_info;
3683 struct btrfs_trans_handle *trans;
3684 int ret, err;
3685
3686 trans = btrfs_start_transaction(fs_info->tree_root, 0);
3687 if (IS_ERR(trans))
3688 return PTR_ERR(trans);
3689
3690 memset(&root->root_item.drop_progress, 0,
3691 sizeof(root->root_item.drop_progress));
3692 root->root_item.drop_level = 0;
3693 btrfs_set_root_refs(&root->root_item, 0);
3694 ret = btrfs_update_root(trans, fs_info->tree_root,
3695 &root->root_key, &root->root_item);
3696
3697 err = btrfs_end_transaction(trans);
3698 if (err)
3699 return err;
3700 return ret;
3701}
3702
3703/*
3704 * recover relocation interrupted by system crash.
3705 *
3706 * this function resumes merging reloc trees with corresponding fs trees.
3707 * this is important for keeping the sharing of tree blocks
3708 */
3709int btrfs_recover_relocation(struct btrfs_root *root)
3710{
3711 struct btrfs_fs_info *fs_info = root->fs_info;
3712 LIST_HEAD(reloc_roots);
3713 struct btrfs_key key;
3714 struct btrfs_root *fs_root;
3715 struct btrfs_root *reloc_root;
3716 struct btrfs_path *path;
3717 struct extent_buffer *leaf;
3718 struct reloc_control *rc = NULL;
3719 struct btrfs_trans_handle *trans;
3720 int ret;
3721 int err = 0;
3722
3723 path = btrfs_alloc_path();
3724 if (!path)
3725 return -ENOMEM;
3726 path->reada = READA_BACK;
3727
3728 key.objectid = BTRFS_TREE_RELOC_OBJECTID;
3729 key.type = BTRFS_ROOT_ITEM_KEY;
3730 key.offset = (u64)-1;
3731
3732 while (1) {
3733 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
3734 path, 0, 0);
3735 if (ret < 0) {
3736 err = ret;
3737 goto out;
3738 }
3739 if (ret > 0) {
3740 if (path->slots[0] == 0)
3741 break;
3742 path->slots[0]--;
3743 }
3744 leaf = path->nodes[0];
3745 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3746 btrfs_release_path(path);
3747
3748 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
3749 key.type != BTRFS_ROOT_ITEM_KEY)
3750 break;
3751
3752 reloc_root = btrfs_read_tree_root(root, &key);
3753 if (IS_ERR(reloc_root)) {
3754 err = PTR_ERR(reloc_root);
3755 goto out;
3756 }
3757
3758 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
3759 list_add(&reloc_root->root_list, &reloc_roots);
3760
3761 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
3762 fs_root = btrfs_get_fs_root(fs_info,
3763 reloc_root->root_key.offset, false);
3764 if (IS_ERR(fs_root)) {
3765 ret = PTR_ERR(fs_root);
3766 if (ret != -ENOENT) {
3767 err = ret;
3768 goto out;
3769 }
3770 ret = mark_garbage_root(reloc_root);
3771 if (ret < 0) {
3772 err = ret;
3773 goto out;
3774 }
3775 } else {
3776 btrfs_put_root(fs_root);
3777 }
3778 }
3779
3780 if (key.offset == 0)
3781 break;
3782
3783 key.offset--;
3784 }
3785 btrfs_release_path(path);
3786
3787 if (list_empty(&reloc_roots))
3788 goto out;
3789
3790 rc = alloc_reloc_control(fs_info);
3791 if (!rc) {
3792 err = -ENOMEM;
3793 goto out;
3794 }
3795
3796 rc->extent_root = fs_info->extent_root;
3797
3798 set_reloc_control(rc);
3799
3800 trans = btrfs_join_transaction(rc->extent_root);
3801 if (IS_ERR(trans)) {
3802 err = PTR_ERR(trans);
3803 goto out_unset;
3804 }
3805
3806 rc->merge_reloc_tree = 1;
3807
3808 while (!list_empty(&reloc_roots)) {
3809 reloc_root = list_entry(reloc_roots.next,
3810 struct btrfs_root, root_list);
3811 list_del(&reloc_root->root_list);
3812
3813 if (btrfs_root_refs(&reloc_root->root_item) == 0) {
3814 list_add_tail(&reloc_root->root_list,
3815 &rc->reloc_roots);
3816 continue;
3817 }
3818
3819 fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
3820 false);
3821 if (IS_ERR(fs_root)) {
3822 err = PTR_ERR(fs_root);
3823 list_add_tail(&reloc_root->root_list, &reloc_roots);
3824 btrfs_end_transaction(trans);
3825 goto out_unset;
3826 }
3827
3828 err = __add_reloc_root(reloc_root);
3829 BUG_ON(err < 0); /* -ENOMEM or logic error */
3830 fs_root->reloc_root = btrfs_grab_root(reloc_root);
3831 btrfs_put_root(fs_root);
3832 }
3833
3834 err = btrfs_commit_transaction(trans);
3835 if (err)
3836 goto out_unset;
3837
3838 merge_reloc_roots(rc);
3839
3840 unset_reloc_control(rc);
3841
3842 trans = btrfs_join_transaction(rc->extent_root);
3843 if (IS_ERR(trans)) {
3844 err = PTR_ERR(trans);
3845 goto out_clean;
3846 }
3847 err = btrfs_commit_transaction(trans);
3848out_clean:
3849 ret = clean_dirty_subvols(rc);
3850 if (ret < 0 && !err)
3851 err = ret;
3852out_unset:
3853 unset_reloc_control(rc);
3854 free_reloc_control(rc);
3855out:
3856 free_reloc_roots(&reloc_roots);
3857
3858 btrfs_free_path(path);
3859
3860 if (err == 0) {
3861 /* cleanup orphan inode in data relocation tree */
3862 fs_root = btrfs_grab_root(fs_info->data_reloc_root);
3863 ASSERT(fs_root);
3864 err = btrfs_orphan_cleanup(fs_root);
3865 btrfs_put_root(fs_root);
3866 }
3867 return err;
3868}
3869
3870/*
3871 * helper to add ordered checksum for data relocation.
3872 *
3873 * cloning checksum properly handles the nodatasum extents.
3874 * it also saves CPU time to re-calculate the checksum.
3875 */
3876int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len)
3877{
3878 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3879 struct btrfs_ordered_sum *sums;
3880 struct btrfs_ordered_extent *ordered;
3881 int ret;
3882 u64 disk_bytenr;
3883 u64 new_bytenr;
3884 LIST_HEAD(list);
3885
3886 ordered = btrfs_lookup_ordered_extent(inode, file_pos);
3887 BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len);
3888
3889 disk_bytenr = file_pos + inode->index_cnt;
3890 ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
3891 disk_bytenr + len - 1, &list, 0);
3892 if (ret)
3893 goto out;
3894
3895 while (!list_empty(&list)) {
3896 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
3897 list_del_init(&sums->list);
3898
3899 /*
3900 * We need to offset the new_bytenr based on where the csum is.
3901 * We need to do this because we will read in entire prealloc
3902 * extents but we may have written to say the middle of the
3903 * prealloc extent, so we need to make sure the csum goes with
3904 * the right disk offset.
3905 *
3906 * We can do this because the data reloc inode refers strictly
3907 * to the on disk bytes, so we don't have to worry about
3908 * disk_len vs real len like with real inodes since it's all
3909 * disk length.
3910 */
3911 new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr;
3912 sums->bytenr = new_bytenr;
3913
3914 btrfs_add_ordered_sum(ordered, sums);
3915 }
3916out:
3917 btrfs_put_ordered_extent(ordered);
3918 return ret;
3919}
3920
3921int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
3922 struct btrfs_root *root, struct extent_buffer *buf,
3923 struct extent_buffer *cow)
3924{
3925 struct btrfs_fs_info *fs_info = root->fs_info;
3926 struct reloc_control *rc;
3927 struct btrfs_backref_node *node;
3928 int first_cow = 0;
3929 int level;
3930 int ret = 0;
3931
3932 rc = fs_info->reloc_ctl;
3933 if (!rc)
3934 return 0;
3935
3936 BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
3937 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
3938
3939 level = btrfs_header_level(buf);
3940 if (btrfs_header_generation(buf) <=
3941 btrfs_root_last_snapshot(&root->root_item))
3942 first_cow = 1;
3943
3944 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
3945 rc->create_reloc_tree) {
3946 WARN_ON(!first_cow && level == 0);
3947
3948 node = rc->backref_cache.path[level];
3949 BUG_ON(node->bytenr != buf->start &&
3950 node->new_bytenr != buf->start);
3951
3952 btrfs_backref_drop_node_buffer(node);
3953 atomic_inc(&cow->refs);
3954 node->eb = cow;
3955 node->new_bytenr = cow->start;
3956
3957 if (!node->pending) {
3958 list_move_tail(&node->list,
3959 &rc->backref_cache.pending[level]);
3960 node->pending = 1;
3961 }
3962
3963 if (first_cow)
3964 mark_block_processed(rc, node);
3965
3966 if (first_cow && level > 0)
3967 rc->nodes_relocated += buf->len;
3968 }
3969
3970 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
3971 ret = replace_file_extents(trans, rc, root, cow);
3972 return ret;
3973}
3974
3975/*
3976 * called before creating snapshot. it calculates metadata reservation
3977 * required for relocating tree blocks in the snapshot
3978 */
3979void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
3980 u64 *bytes_to_reserve)
3981{
3982 struct btrfs_root *root = pending->root;
3983 struct reloc_control *rc = root->fs_info->reloc_ctl;
3984
3985 if (!rc || !have_reloc_root(root))
3986 return;
3987
3988 if (!rc->merge_reloc_tree)
3989 return;
3990
3991 root = root->reloc_root;
3992 BUG_ON(btrfs_root_refs(&root->root_item) == 0);
3993 /*
3994 * relocation is in the stage of merging trees. the space
3995 * used by merging a reloc tree is twice the size of
3996 * relocated tree nodes in the worst case. half for cowing
3997 * the reloc tree, half for cowing the fs tree. the space
3998 * used by cowing the reloc tree will be freed after the
3999 * tree is dropped. if we create snapshot, cowing the fs
4000 * tree may use more space than it frees. so we need
4001 * reserve extra space.
4002 */
4003 *bytes_to_reserve += rc->nodes_relocated;
4004}
4005
4006/*
4007 * called after snapshot is created. migrate block reservation
4008 * and create reloc root for the newly created snapshot
4009 *
4010 * This is similar to btrfs_init_reloc_root(), we come out of here with two
4011 * references held on the reloc_root, one for root->reloc_root and one for
4012 * rc->reloc_roots.
4013 */
4014int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4015 struct btrfs_pending_snapshot *pending)
4016{
4017 struct btrfs_root *root = pending->root;
4018 struct btrfs_root *reloc_root;
4019 struct btrfs_root *new_root;
4020 struct reloc_control *rc = root->fs_info->reloc_ctl;
4021 int ret;
4022
4023 if (!rc || !have_reloc_root(root))
4024 return 0;
4025
4026 rc = root->fs_info->reloc_ctl;
4027 rc->merging_rsv_size += rc->nodes_relocated;
4028
4029 if (rc->merge_reloc_tree) {
4030 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4031 rc->block_rsv,
4032 rc->nodes_relocated, true);
4033 if (ret)
4034 return ret;
4035 }
4036
4037 new_root = pending->snap;
4038 reloc_root = create_reloc_root(trans, root->reloc_root,
4039 new_root->root_key.objectid);
4040 if (IS_ERR(reloc_root))
4041 return PTR_ERR(reloc_root);
4042
4043 ret = __add_reloc_root(reloc_root);
4044 BUG_ON(ret < 0);
4045 new_root->reloc_root = btrfs_grab_root(reloc_root);
4046
4047 if (rc->create_reloc_tree)
4048 ret = clone_backref_node(trans, rc, root, reloc_root);
4049 return ret;
4050}