Linux Audio

Check our new training course

Linux BSP upgrade and security maintenance

Need help to get security updates for your Linux BSP?
Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2009 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/pagemap.h>
   8#include <linux/writeback.h>
   9#include <linux/blkdev.h>
  10#include <linux/rbtree.h>
  11#include <linux/slab.h>
 
  12#include "ctree.h"
  13#include "disk-io.h"
  14#include "transaction.h"
  15#include "volumes.h"
  16#include "locking.h"
  17#include "btrfs_inode.h"
  18#include "async-thread.h"
  19#include "free-space-cache.h"
  20#include "inode-map.h"
  21#include "qgroup.h"
  22#include "print-tree.h"
  23#include "delalloc-space.h"
  24#include "block-group.h"
 
 
  25
  26/*
  27 * backref_node, mapping_node and tree_block start with this
  28 */
  29struct tree_entry {
  30	struct rb_node rb_node;
  31	u64 bytenr;
  32};
  33
  34/*
  35 * present a tree block in the backref cache
  36 */
  37struct backref_node {
  38	struct rb_node rb_node;
  39	u64 bytenr;
  40
  41	u64 new_bytenr;
  42	/* objectid of tree block owner, can be not uptodate */
  43	u64 owner;
  44	/* link to pending, changed or detached list */
  45	struct list_head list;
  46	/* list of upper level blocks reference this block */
  47	struct list_head upper;
  48	/* list of child blocks in the cache */
  49	struct list_head lower;
  50	/* NULL if this node is not tree root */
  51	struct btrfs_root *root;
  52	/* extent buffer got by COW the block */
  53	struct extent_buffer *eb;
  54	/* level of tree block */
  55	unsigned int level:8;
  56	/* is the block in non-reference counted tree */
  57	unsigned int cowonly:1;
  58	/* 1 if no child node in the cache */
  59	unsigned int lowest:1;
  60	/* is the extent buffer locked */
  61	unsigned int locked:1;
  62	/* has the block been processed */
  63	unsigned int processed:1;
  64	/* have backrefs of this block been checked */
  65	unsigned int checked:1;
  66	/*
  67	 * 1 if corresponding block has been cowed but some upper
  68	 * level block pointers may not point to the new location
  69	 */
  70	unsigned int pending:1;
  71	/*
  72	 * 1 if the backref node isn't connected to any other
  73	 * backref node.
  74	 */
  75	unsigned int detached:1;
  76};
  77
  78/*
  79 * present a block pointer in the backref cache
  80 */
  81struct backref_edge {
  82	struct list_head list[2];
  83	struct backref_node *node[2];
  84};
  85
  86#define LOWER	0
  87#define UPPER	1
  88#define RELOCATION_RESERVED_NODES	256
  89
  90struct backref_cache {
  91	/* red black tree of all backref nodes in the cache */
  92	struct rb_root rb_root;
  93	/* for passing backref nodes to btrfs_reloc_cow_block */
  94	struct backref_node *path[BTRFS_MAX_LEVEL];
  95	/*
  96	 * list of blocks that have been cowed but some block
  97	 * pointers in upper level blocks may not reflect the
  98	 * new location
  99	 */
 100	struct list_head pending[BTRFS_MAX_LEVEL];
 101	/* list of backref nodes with no child node */
 102	struct list_head leaves;
 103	/* list of blocks that have been cowed in current transaction */
 104	struct list_head changed;
 105	/* list of detached backref node. */
 106	struct list_head detached;
 107
 108	u64 last_trans;
 109
 110	int nr_nodes;
 111	int nr_edges;
 112};
 113
 114/*
 115 * map address of tree root to tree
 116 */
 117struct mapping_node {
 118	struct rb_node rb_node;
 119	u64 bytenr;
 
 
 120	void *data;
 121};
 122
 123struct mapping_tree {
 124	struct rb_root rb_root;
 125	spinlock_t lock;
 126};
 127
 128/*
 129 * present a tree block to process
 130 */
 131struct tree_block {
 132	struct rb_node rb_node;
 133	u64 bytenr;
 
 
 
 134	struct btrfs_key key;
 135	unsigned int level:8;
 136	unsigned int key_ready:1;
 137};
 138
 139#define MAX_EXTENTS 128
 140
 141struct file_extent_cluster {
 142	u64 start;
 143	u64 end;
 144	u64 boundary[MAX_EXTENTS];
 145	unsigned int nr;
 146};
 147
 148struct reloc_control {
 149	/* block group to relocate */
 150	struct btrfs_block_group_cache *block_group;
 151	/* extent tree */
 152	struct btrfs_root *extent_root;
 153	/* inode for moving data */
 154	struct inode *data_inode;
 155
 156	struct btrfs_block_rsv *block_rsv;
 157
 158	struct backref_cache backref_cache;
 159
 160	struct file_extent_cluster cluster;
 161	/* tree blocks have been processed */
 162	struct extent_io_tree processed_blocks;
 163	/* map start of tree root to corresponding reloc tree */
 164	struct mapping_tree reloc_root_tree;
 165	/* list of reloc trees */
 166	struct list_head reloc_roots;
 167	/* list of subvolume trees that get relocated */
 168	struct list_head dirty_subvol_roots;
 169	/* size of metadata reservation for merging reloc trees */
 170	u64 merging_rsv_size;
 171	/* size of relocated tree nodes */
 172	u64 nodes_relocated;
 173	/* reserved size for block group relocation*/
 174	u64 reserved_bytes;
 175
 176	u64 search_start;
 177	u64 extents_found;
 178
 179	unsigned int stage:8;
 180	unsigned int create_reloc_tree:1;
 181	unsigned int merge_reloc_tree:1;
 182	unsigned int found_file_extent:1;
 183};
 184
 185/* stages of data relocation */
 186#define MOVE_DATA_EXTENTS	0
 187#define UPDATE_DATA_PTRS	1
 188
 189static void remove_backref_node(struct backref_cache *cache,
 190				struct backref_node *node);
 191static void __mark_block_processed(struct reloc_control *rc,
 192				   struct backref_node *node);
 193
 194static void mapping_tree_init(struct mapping_tree *tree)
 195{
 196	tree->rb_root = RB_ROOT;
 197	spin_lock_init(&tree->lock);
 198}
 199
 200static void backref_cache_init(struct backref_cache *cache)
 201{
 202	int i;
 203	cache->rb_root = RB_ROOT;
 204	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
 205		INIT_LIST_HEAD(&cache->pending[i]);
 206	INIT_LIST_HEAD(&cache->changed);
 207	INIT_LIST_HEAD(&cache->detached);
 208	INIT_LIST_HEAD(&cache->leaves);
 209}
 210
 211static void backref_cache_cleanup(struct backref_cache *cache)
 212{
 213	struct backref_node *node;
 214	int i;
 215
 216	while (!list_empty(&cache->detached)) {
 217		node = list_entry(cache->detached.next,
 218				  struct backref_node, list);
 219		remove_backref_node(cache, node);
 220	}
 221
 222	while (!list_empty(&cache->leaves)) {
 223		node = list_entry(cache->leaves.next,
 224				  struct backref_node, lower);
 225		remove_backref_node(cache, node);
 226	}
 227
 228	cache->last_trans = 0;
 229
 230	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
 231		ASSERT(list_empty(&cache->pending[i]));
 232	ASSERT(list_empty(&cache->changed));
 233	ASSERT(list_empty(&cache->detached));
 234	ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
 235	ASSERT(!cache->nr_nodes);
 236	ASSERT(!cache->nr_edges);
 237}
 238
 239static struct backref_node *alloc_backref_node(struct backref_cache *cache)
 240{
 241	struct backref_node *node;
 242
 243	node = kzalloc(sizeof(*node), GFP_NOFS);
 244	if (node) {
 245		INIT_LIST_HEAD(&node->list);
 246		INIT_LIST_HEAD(&node->upper);
 247		INIT_LIST_HEAD(&node->lower);
 248		RB_CLEAR_NODE(&node->rb_node);
 249		cache->nr_nodes++;
 250	}
 251	return node;
 252}
 253
 254static void free_backref_node(struct backref_cache *cache,
 255			      struct backref_node *node)
 256{
 257	if (node) {
 258		cache->nr_nodes--;
 259		kfree(node);
 260	}
 261}
 262
 263static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
 264{
 265	struct backref_edge *edge;
 266
 267	edge = kzalloc(sizeof(*edge), GFP_NOFS);
 268	if (edge)
 269		cache->nr_edges++;
 270	return edge;
 271}
 272
 273static void free_backref_edge(struct backref_cache *cache,
 274			      struct backref_edge *edge)
 275{
 276	if (edge) {
 277		cache->nr_edges--;
 278		kfree(edge);
 279	}
 280}
 281
 282static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
 283				   struct rb_node *node)
 284{
 285	struct rb_node **p = &root->rb_node;
 286	struct rb_node *parent = NULL;
 287	struct tree_entry *entry;
 288
 289	while (*p) {
 290		parent = *p;
 291		entry = rb_entry(parent, struct tree_entry, rb_node);
 292
 293		if (bytenr < entry->bytenr)
 294			p = &(*p)->rb_left;
 295		else if (bytenr > entry->bytenr)
 296			p = &(*p)->rb_right;
 297		else
 298			return parent;
 299	}
 300
 301	rb_link_node(node, parent, p);
 302	rb_insert_color(node, root);
 303	return NULL;
 304}
 305
 306static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
 307{
 308	struct rb_node *n = root->rb_node;
 309	struct tree_entry *entry;
 310
 311	while (n) {
 312		entry = rb_entry(n, struct tree_entry, rb_node);
 313
 314		if (bytenr < entry->bytenr)
 315			n = n->rb_left;
 316		else if (bytenr > entry->bytenr)
 317			n = n->rb_right;
 318		else
 319			return n;
 320	}
 321	return NULL;
 322}
 323
 324static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
 325{
 326
 327	struct btrfs_fs_info *fs_info = NULL;
 328	struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
 329					      rb_node);
 330	if (bnode->root)
 331		fs_info = bnode->root->fs_info;
 332	btrfs_panic(fs_info, errno,
 333		    "Inconsistency in backref cache found at offset %llu",
 334		    bytenr);
 335}
 336
 337/*
 338 * walk up backref nodes until reach node presents tree root
 339 */
 340static struct backref_node *walk_up_backref(struct backref_node *node,
 341					    struct backref_edge *edges[],
 342					    int *index)
 343{
 344	struct backref_edge *edge;
 345	int idx = *index;
 346
 347	while (!list_empty(&node->upper)) {
 348		edge = list_entry(node->upper.next,
 349				  struct backref_edge, list[LOWER]);
 350		edges[idx++] = edge;
 351		node = edge->node[UPPER];
 352	}
 353	BUG_ON(node->detached);
 354	*index = idx;
 355	return node;
 356}
 357
 358/*
 359 * walk down backref nodes to find start of next reference path
 360 */
 361static struct backref_node *walk_down_backref(struct backref_edge *edges[],
 362					      int *index)
 363{
 364	struct backref_edge *edge;
 365	struct backref_node *lower;
 366	int idx = *index;
 367
 368	while (idx > 0) {
 369		edge = edges[idx - 1];
 370		lower = edge->node[LOWER];
 371		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
 372			idx--;
 373			continue;
 374		}
 375		edge = list_entry(edge->list[LOWER].next,
 376				  struct backref_edge, list[LOWER]);
 377		edges[idx - 1] = edge;
 378		*index = idx;
 379		return edge->node[UPPER];
 380	}
 381	*index = 0;
 382	return NULL;
 383}
 384
 385static void unlock_node_buffer(struct backref_node *node)
 386{
 387	if (node->locked) {
 388		btrfs_tree_unlock(node->eb);
 389		node->locked = 0;
 390	}
 391}
 392
 393static void drop_node_buffer(struct backref_node *node)
 394{
 395	if (node->eb) {
 396		unlock_node_buffer(node);
 397		free_extent_buffer(node->eb);
 398		node->eb = NULL;
 399	}
 400}
 401
 402static void drop_backref_node(struct backref_cache *tree,
 403			      struct backref_node *node)
 404{
 405	BUG_ON(!list_empty(&node->upper));
 406
 407	drop_node_buffer(node);
 408	list_del(&node->list);
 409	list_del(&node->lower);
 410	if (!RB_EMPTY_NODE(&node->rb_node))
 411		rb_erase(&node->rb_node, &tree->rb_root);
 412	free_backref_node(tree, node);
 413}
 414
 415/*
 416 * remove a backref node from the backref cache
 417 */
 418static void remove_backref_node(struct backref_cache *cache,
 419				struct backref_node *node)
 420{
 421	struct backref_node *upper;
 422	struct backref_edge *edge;
 423
 424	if (!node)
 425		return;
 426
 427	BUG_ON(!node->lowest && !node->detached);
 428	while (!list_empty(&node->upper)) {
 429		edge = list_entry(node->upper.next, struct backref_edge,
 430				  list[LOWER]);
 431		upper = edge->node[UPPER];
 432		list_del(&edge->list[LOWER]);
 433		list_del(&edge->list[UPPER]);
 434		free_backref_edge(cache, edge);
 435
 436		if (RB_EMPTY_NODE(&upper->rb_node)) {
 437			BUG_ON(!list_empty(&node->upper));
 438			drop_backref_node(cache, node);
 439			node = upper;
 440			node->lowest = 1;
 441			continue;
 442		}
 443		/*
 444		 * add the node to leaf node list if no other
 445		 * child block cached.
 446		 */
 447		if (list_empty(&upper->lower)) {
 448			list_add_tail(&upper->lower, &cache->leaves);
 449			upper->lowest = 1;
 450		}
 451	}
 452
 453	drop_backref_node(cache, node);
 454}
 455
 456static void update_backref_node(struct backref_cache *cache,
 457				struct backref_node *node, u64 bytenr)
 458{
 459	struct rb_node *rb_node;
 460	rb_erase(&node->rb_node, &cache->rb_root);
 461	node->bytenr = bytenr;
 462	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
 463	if (rb_node)
 464		backref_tree_panic(rb_node, -EEXIST, bytenr);
 465}
 466
 467/*
 468 * update backref cache after a transaction commit
 469 */
 470static int update_backref_cache(struct btrfs_trans_handle *trans,
 471				struct backref_cache *cache)
 472{
 473	struct backref_node *node;
 474	int level = 0;
 475
 476	if (cache->last_trans == 0) {
 477		cache->last_trans = trans->transid;
 478		return 0;
 479	}
 480
 481	if (cache->last_trans == trans->transid)
 482		return 0;
 483
 484	/*
 485	 * detached nodes are used to avoid unnecessary backref
 486	 * lookup. transaction commit changes the extent tree.
 487	 * so the detached nodes are no longer useful.
 488	 */
 489	while (!list_empty(&cache->detached)) {
 490		node = list_entry(cache->detached.next,
 491				  struct backref_node, list);
 492		remove_backref_node(cache, node);
 493	}
 494
 495	while (!list_empty(&cache->changed)) {
 496		node = list_entry(cache->changed.next,
 497				  struct backref_node, list);
 498		list_del_init(&node->list);
 499		BUG_ON(node->pending);
 500		update_backref_node(cache, node, node->new_bytenr);
 501	}
 502
 503	/*
 504	 * some nodes can be left in the pending list if there were
 505	 * errors during processing the pending nodes.
 506	 */
 507	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
 508		list_for_each_entry(node, &cache->pending[level], list) {
 509			BUG_ON(!node->pending);
 510			if (node->bytenr == node->new_bytenr)
 511				continue;
 512			update_backref_node(cache, node, node->new_bytenr);
 513		}
 514	}
 515
 516	cache->last_trans = 0;
 517	return 1;
 518}
 519
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 520
 521static int should_ignore_root(struct btrfs_root *root)
 522{
 523	struct btrfs_root *reloc_root;
 524
 525	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
 526		return 0;
 527
 
 
 
 
 528	reloc_root = root->reloc_root;
 529	if (!reloc_root)
 530		return 0;
 531
 532	if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
 533	    root->fs_info->running_transaction->transid - 1)
 534		return 0;
 535	/*
 536	 * if there is reloc tree and it was created in previous
 537	 * transaction backref lookup can find the reloc tree,
 538	 * so backref node for the fs tree root is useless for
 539	 * relocation.
 540	 */
 541	return 1;
 542}
 
 543/*
 544 * find reloc tree by address of tree root
 545 */
 546static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
 547					  u64 bytenr)
 548{
 
 549	struct rb_node *rb_node;
 550	struct mapping_node *node;
 551	struct btrfs_root *root = NULL;
 552
 
 553	spin_lock(&rc->reloc_root_tree.lock);
 554	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
 555	if (rb_node) {
 556		node = rb_entry(rb_node, struct mapping_node, rb_node);
 557		root = (struct btrfs_root *)node->data;
 558	}
 559	spin_unlock(&rc->reloc_root_tree.lock);
 560	return root;
 561}
 562
 563static int is_cowonly_root(u64 root_objectid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 564{
 565	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
 566	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
 567	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
 568	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
 569	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
 570	    root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
 571	    root_objectid == BTRFS_UUID_TREE_OBJECTID ||
 572	    root_objectid == BTRFS_QUOTA_TREE_OBJECTID ||
 573	    root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
 574		return 1;
 575	return 0;
 576}
 577
 578static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
 579					u64 root_objectid)
 580{
 581	struct btrfs_key key;
 582
 583	key.objectid = root_objectid;
 584	key.type = BTRFS_ROOT_ITEM_KEY;
 585	if (is_cowonly_root(root_objectid))
 586		key.offset = 0;
 587	else
 588		key.offset = (u64)-1;
 589
 590	return btrfs_get_fs_root(fs_info, &key, false);
 591}
 592
 593static noinline_for_stack
 594int find_inline_backref(struct extent_buffer *leaf, int slot,
 595			unsigned long *ptr, unsigned long *end)
 596{
 597	struct btrfs_key key;
 598	struct btrfs_extent_item *ei;
 599	struct btrfs_tree_block_info *bi;
 600	u32 item_size;
 601
 602	btrfs_item_key_to_cpu(leaf, &key, slot);
 
 
 
 
 603
 604	item_size = btrfs_item_size_nr(leaf, slot);
 605	if (item_size < sizeof(*ei)) {
 606		btrfs_print_v0_err(leaf->fs_info);
 607		btrfs_handle_fs_error(leaf->fs_info, -EINVAL, NULL);
 608		return 1;
 609	}
 610	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
 611	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
 612		  BTRFS_EXTENT_FLAG_TREE_BLOCK));
 613
 614	if (key.type == BTRFS_EXTENT_ITEM_KEY &&
 615	    item_size <= sizeof(*ei) + sizeof(*bi)) {
 616		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
 617		return 1;
 618	}
 619	if (key.type == BTRFS_METADATA_ITEM_KEY &&
 620	    item_size <= sizeof(*ei)) {
 621		WARN_ON(item_size < sizeof(*ei));
 622		return 1;
 623	}
 624
 625	if (key.type == BTRFS_EXTENT_ITEM_KEY) {
 626		bi = (struct btrfs_tree_block_info *)(ei + 1);
 627		*ptr = (unsigned long)(bi + 1);
 628	} else {
 629		*ptr = (unsigned long)(ei + 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 630	}
 631	*end = (unsigned long)ei + item_size;
 632	return 0;
 633}
 634
 635/*
 636 * build backref tree for a given tree block. root of the backref tree
 637 * corresponds the tree block, leaves of the backref tree correspond
 638 * roots of b-trees that reference the tree block.
 639 *
 640 * the basic idea of this function is check backrefs of a given block
 641 * to find upper level blocks that reference the block, and then check
 642 * backrefs of these upper level blocks recursively. the recursion stop
 643 * when tree root is reached or backrefs for the block is cached.
 644 *
 645 * NOTE: if we find backrefs for a block are cached, we know backrefs
 646 * for all upper level blocks that directly/indirectly reference the
 647 * block are also cached.
 648 */
 649static noinline_for_stack
 650struct backref_node *build_backref_tree(struct reloc_control *rc,
 651					struct btrfs_key *node_key,
 652					int level, u64 bytenr)
 653{
 654	struct backref_cache *cache = &rc->backref_cache;
 655	struct btrfs_path *path1; /* For searching extent root */
 656	struct btrfs_path *path2; /* For searching parent of TREE_BLOCK_REF */
 657	struct extent_buffer *eb;
 658	struct btrfs_root *root;
 659	struct backref_node *cur;
 660	struct backref_node *upper;
 661	struct backref_node *lower;
 662	struct backref_node *node = NULL;
 663	struct backref_node *exist = NULL;
 664	struct backref_edge *edge;
 665	struct rb_node *rb_node;
 666	struct btrfs_key key;
 667	unsigned long end;
 668	unsigned long ptr;
 669	LIST_HEAD(list); /* Pending edge list, upper node needs to be checked */
 670	LIST_HEAD(useless);
 671	int cowonly;
 672	int ret;
 673	int err = 0;
 674	bool need_check = true;
 675
 676	path1 = btrfs_alloc_path();
 677	path2 = btrfs_alloc_path();
 678	if (!path1 || !path2) {
 
 
 679		err = -ENOMEM;
 680		goto out;
 681	}
 682	path1->reada = READA_FORWARD;
 683	path2->reada = READA_FORWARD;
 684
 685	node = alloc_backref_node(cache);
 686	if (!node) {
 687		err = -ENOMEM;
 688		goto out;
 689	}
 690
 691	node->bytenr = bytenr;
 692	node->level = level;
 693	node->lowest = 1;
 694	cur = node;
 695again:
 696	end = 0;
 697	ptr = 0;
 698	key.objectid = cur->bytenr;
 699	key.type = BTRFS_METADATA_ITEM_KEY;
 700	key.offset = (u64)-1;
 701
 702	path1->search_commit_root = 1;
 703	path1->skip_locking = 1;
 704	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
 705				0, 0);
 706	if (ret < 0) {
 707		err = ret;
 708		goto out;
 709	}
 710	ASSERT(ret);
 711	ASSERT(path1->slots[0]);
 712
 713	path1->slots[0]--;
 714
 715	WARN_ON(cur->checked);
 716	if (!list_empty(&cur->upper)) {
 717		/*
 718		 * the backref was added previously when processing
 719		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
 720		 */
 721		ASSERT(list_is_singular(&cur->upper));
 722		edge = list_entry(cur->upper.next, struct backref_edge,
 723				  list[LOWER]);
 724		ASSERT(list_empty(&edge->list[UPPER]));
 725		exist = edge->node[UPPER];
 726		/*
 727		 * add the upper level block to pending list if we need
 728		 * check its backrefs
 729		 */
 730		if (!exist->checked)
 731			list_add_tail(&edge->list[UPPER], &list);
 732	} else {
 733		exist = NULL;
 734	}
 735
 736	while (1) {
 737		cond_resched();
 738		eb = path1->nodes[0];
 739
 740		if (ptr >= end) {
 741			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
 742				ret = btrfs_next_leaf(rc->extent_root, path1);
 743				if (ret < 0) {
 744					err = ret;
 745					goto out;
 746				}
 747				if (ret > 0)
 748					break;
 749				eb = path1->nodes[0];
 750			}
 751
 752			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
 753			if (key.objectid != cur->bytenr) {
 754				WARN_ON(exist);
 755				break;
 756			}
 757
 758			if (key.type == BTRFS_EXTENT_ITEM_KEY ||
 759			    key.type == BTRFS_METADATA_ITEM_KEY) {
 760				ret = find_inline_backref(eb, path1->slots[0],
 761							  &ptr, &end);
 762				if (ret)
 763					goto next;
 764			}
 765		}
 766
 767		if (ptr < end) {
 768			/* update key for inline back ref */
 769			struct btrfs_extent_inline_ref *iref;
 770			int type;
 771			iref = (struct btrfs_extent_inline_ref *)ptr;
 772			type = btrfs_get_extent_inline_ref_type(eb, iref,
 773							BTRFS_REF_TYPE_BLOCK);
 774			if (type == BTRFS_REF_TYPE_INVALID) {
 775				err = -EUCLEAN;
 776				goto out;
 777			}
 778			key.type = type;
 779			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
 780
 781			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
 782				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
 783		}
 784
 785		/*
 786		 * Parent node found and matches current inline ref, no need to
 787		 * rebuild this node for this inline ref.
 788		 */
 789		if (exist &&
 790		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
 791		      exist->owner == key.offset) ||
 792		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
 793		      exist->bytenr == key.offset))) {
 794			exist = NULL;
 795			goto next;
 796		}
 797
 798		/* SHARED_BLOCK_REF means key.offset is the parent bytenr */
 799		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
 800			if (key.objectid == key.offset) {
 801				/*
 802				 * Only root blocks of reloc trees use backref
 803				 * pointing to itself.
 804				 */
 805				root = find_reloc_root(rc, cur->bytenr);
 806				ASSERT(root);
 807				cur->root = root;
 808				break;
 809			}
 810
 811			edge = alloc_backref_edge(cache);
 812			if (!edge) {
 813				err = -ENOMEM;
 814				goto out;
 815			}
 816			rb_node = tree_search(&cache->rb_root, key.offset);
 817			if (!rb_node) {
 818				upper = alloc_backref_node(cache);
 819				if (!upper) {
 820					free_backref_edge(cache, edge);
 821					err = -ENOMEM;
 822					goto out;
 823				}
 824				upper->bytenr = key.offset;
 825				upper->level = cur->level + 1;
 826				/*
 827				 *  backrefs for the upper level block isn't
 828				 *  cached, add the block to pending list
 829				 */
 830				list_add_tail(&edge->list[UPPER], &list);
 831			} else {
 832				upper = rb_entry(rb_node, struct backref_node,
 833						 rb_node);
 834				ASSERT(upper->checked);
 835				INIT_LIST_HEAD(&edge->list[UPPER]);
 836			}
 837			list_add_tail(&edge->list[LOWER], &cur->upper);
 838			edge->node[LOWER] = cur;
 839			edge->node[UPPER] = upper;
 840
 841			goto next;
 842		} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
 843			err = -EINVAL;
 844			btrfs_print_v0_err(rc->extent_root->fs_info);
 845			btrfs_handle_fs_error(rc->extent_root->fs_info, err,
 846					      NULL);
 847			goto out;
 848		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
 849			goto next;
 850		}
 851
 852		/*
 853		 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
 854		 * means the root objectid. We need to search the tree to get
 855		 * its parent bytenr.
 856		 */
 857		root = read_fs_root(rc->extent_root->fs_info, key.offset);
 858		if (IS_ERR(root)) {
 859			err = PTR_ERR(root);
 860			goto out;
 861		}
 862
 863		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
 864			cur->cowonly = 1;
 865
 866		if (btrfs_root_level(&root->root_item) == cur->level) {
 867			/* tree root */
 868			ASSERT(btrfs_root_bytenr(&root->root_item) ==
 869			       cur->bytenr);
 870			if (should_ignore_root(root))
 871				list_add(&cur->list, &useless);
 872			else
 873				cur->root = root;
 874			break;
 875		}
 876
 877		level = cur->level + 1;
 878
 879		/* Search the tree to find parent blocks referring the block. */
 880		path2->search_commit_root = 1;
 881		path2->skip_locking = 1;
 882		path2->lowest_level = level;
 883		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
 884		path2->lowest_level = 0;
 885		if (ret < 0) {
 886			err = ret;
 887			goto out;
 888		}
 889		if (ret > 0 && path2->slots[level] > 0)
 890			path2->slots[level]--;
 891
 892		eb = path2->nodes[level];
 893		if (btrfs_node_blockptr(eb, path2->slots[level]) !=
 894		    cur->bytenr) {
 895			btrfs_err(root->fs_info,
 896	"couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
 897				  cur->bytenr, level - 1,
 898				  root->root_key.objectid,
 899				  node_key->objectid, node_key->type,
 900				  node_key->offset);
 901			err = -ENOENT;
 902			goto out;
 903		}
 904		lower = cur;
 905		need_check = true;
 906
 907		/* Add all nodes and edges in the path */
 908		for (; level < BTRFS_MAX_LEVEL; level++) {
 909			if (!path2->nodes[level]) {
 910				ASSERT(btrfs_root_bytenr(&root->root_item) ==
 911				       lower->bytenr);
 912				if (should_ignore_root(root))
 913					list_add(&lower->list, &useless);
 914				else
 915					lower->root = root;
 916				break;
 917			}
 918
 919			edge = alloc_backref_edge(cache);
 920			if (!edge) {
 921				err = -ENOMEM;
 922				goto out;
 923			}
 924
 925			eb = path2->nodes[level];
 926			rb_node = tree_search(&cache->rb_root, eb->start);
 927			if (!rb_node) {
 928				upper = alloc_backref_node(cache);
 929				if (!upper) {
 930					free_backref_edge(cache, edge);
 931					err = -ENOMEM;
 932					goto out;
 933				}
 934				upper->bytenr = eb->start;
 935				upper->owner = btrfs_header_owner(eb);
 936				upper->level = lower->level + 1;
 937				if (!test_bit(BTRFS_ROOT_REF_COWS,
 938					      &root->state))
 939					upper->cowonly = 1;
 940
 941				/*
 942				 * if we know the block isn't shared
 943				 * we can void checking its backrefs.
 944				 */
 945				if (btrfs_block_can_be_shared(root, eb))
 946					upper->checked = 0;
 947				else
 948					upper->checked = 1;
 949
 950				/*
 951				 * add the block to pending list if we
 952				 * need check its backrefs, we only do this once
 953				 * while walking up a tree as we will catch
 954				 * anything else later on.
 955				 */
 956				if (!upper->checked && need_check) {
 957					need_check = false;
 958					list_add_tail(&edge->list[UPPER],
 959						      &list);
 960				} else {
 961					if (upper->checked)
 962						need_check = true;
 963					INIT_LIST_HEAD(&edge->list[UPPER]);
 964				}
 965			} else {
 966				upper = rb_entry(rb_node, struct backref_node,
 967						 rb_node);
 968				ASSERT(upper->checked);
 969				INIT_LIST_HEAD(&edge->list[UPPER]);
 970				if (!upper->owner)
 971					upper->owner = btrfs_header_owner(eb);
 972			}
 973			list_add_tail(&edge->list[LOWER], &lower->upper);
 974			edge->node[LOWER] = lower;
 975			edge->node[UPPER] = upper;
 976
 977			if (rb_node)
 978				break;
 979			lower = upper;
 980			upper = NULL;
 981		}
 982		btrfs_release_path(path2);
 983next:
 984		if (ptr < end) {
 985			ptr += btrfs_extent_inline_ref_size(key.type);
 986			if (ptr >= end) {
 987				WARN_ON(ptr > end);
 988				ptr = 0;
 989				end = 0;
 990			}
 991		}
 992		if (ptr >= end)
 993			path1->slots[0]++;
 994	}
 995	btrfs_release_path(path1);
 996
 997	cur->checked = 1;
 998	WARN_ON(exist);
 999
1000	/* the pending list isn't empty, take the first block to process */
1001	if (!list_empty(&list)) {
1002		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1003		list_del_init(&edge->list[UPPER]);
1004		cur = edge->node[UPPER];
1005		goto again;
1006	}
1007
1008	/*
1009	 * everything goes well, connect backref nodes and insert backref nodes
1010	 * into the cache.
1011	 */
1012	ASSERT(node->checked);
1013	cowonly = node->cowonly;
1014	if (!cowonly) {
1015		rb_node = tree_insert(&cache->rb_root, node->bytenr,
1016				      &node->rb_node);
1017		if (rb_node)
1018			backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1019		list_add_tail(&node->lower, &cache->leaves);
1020	}
1021
1022	list_for_each_entry(edge, &node->upper, list[LOWER])
1023		list_add_tail(&edge->list[UPPER], &list);
1024
1025	while (!list_empty(&list)) {
1026		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1027		list_del_init(&edge->list[UPPER]);
1028		upper = edge->node[UPPER];
1029		if (upper->detached) {
1030			list_del(&edge->list[LOWER]);
1031			lower = edge->node[LOWER];
1032			free_backref_edge(cache, edge);
1033			if (list_empty(&lower->upper))
1034				list_add(&lower->list, &useless);
1035			continue;
1036		}
1037
1038		if (!RB_EMPTY_NODE(&upper->rb_node)) {
1039			if (upper->lowest) {
1040				list_del_init(&upper->lower);
1041				upper->lowest = 0;
1042			}
1043
1044			list_add_tail(&edge->list[UPPER], &upper->lower);
1045			continue;
1046		}
1047
1048		if (!upper->checked) {
1049			/*
1050			 * Still want to blow up for developers since this is a
1051			 * logic bug.
1052			 */
1053			ASSERT(0);
1054			err = -EINVAL;
1055			goto out;
1056		}
1057		if (cowonly != upper->cowonly) {
1058			ASSERT(0);
1059			err = -EINVAL;
1060			goto out;
1061		}
1062
1063		if (!cowonly) {
1064			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1065					      &upper->rb_node);
1066			if (rb_node)
1067				backref_tree_panic(rb_node, -EEXIST,
1068						   upper->bytenr);
1069		}
 
1070
1071		list_add_tail(&edge->list[UPPER], &upper->lower);
1072
1073		list_for_each_entry(edge, &upper->upper, list[LOWER])
1074			list_add_tail(&edge->list[UPPER], &list);
 
1075	}
1076	/*
1077	 * process useless backref nodes. backref nodes for tree leaves
1078	 * are deleted from the cache. backref nodes for upper level
1079	 * tree blocks are left in the cache to avoid unnecessary backref
1080	 * lookup.
1081	 */
1082	while (!list_empty(&useless)) {
1083		upper = list_entry(useless.next, struct backref_node, list);
1084		list_del_init(&upper->list);
1085		ASSERT(list_empty(&upper->upper));
1086		if (upper == node)
1087			node = NULL;
1088		if (upper->lowest) {
1089			list_del_init(&upper->lower);
1090			upper->lowest = 0;
1091		}
1092		while (!list_empty(&upper->lower)) {
1093			edge = list_entry(upper->lower.next,
1094					  struct backref_edge, list[UPPER]);
1095			list_del(&edge->list[UPPER]);
1096			list_del(&edge->list[LOWER]);
1097			lower = edge->node[LOWER];
1098			free_backref_edge(cache, edge);
1099
1100			if (list_empty(&lower->upper))
1101				list_add(&lower->list, &useless);
1102		}
1103		__mark_block_processed(rc, upper);
1104		if (upper->level > 0) {
1105			list_add(&upper->list, &cache->detached);
1106			upper->detached = 1;
1107		} else {
1108			rb_erase(&upper->rb_node, &cache->rb_root);
1109			free_backref_node(cache, upper);
1110		}
1111	}
1112out:
1113	btrfs_free_path(path1);
1114	btrfs_free_path(path2);
1115	if (err) {
1116		while (!list_empty(&useless)) {
1117			lower = list_entry(useless.next,
1118					   struct backref_node, list);
1119			list_del_init(&lower->list);
1120		}
1121		while (!list_empty(&list)) {
1122			edge = list_first_entry(&list, struct backref_edge,
1123						list[UPPER]);
1124			list_del(&edge->list[UPPER]);
1125			list_del(&edge->list[LOWER]);
1126			lower = edge->node[LOWER];
1127			upper = edge->node[UPPER];
1128			free_backref_edge(cache, edge);
1129
1130			/*
1131			 * Lower is no longer linked to any upper backref nodes
1132			 * and isn't in the cache, we can free it ourselves.
1133			 */
1134			if (list_empty(&lower->upper) &&
1135			    RB_EMPTY_NODE(&lower->rb_node))
1136				list_add(&lower->list, &useless);
1137
1138			if (!RB_EMPTY_NODE(&upper->rb_node))
1139				continue;
1140
1141			/* Add this guy's upper edges to the list to process */
1142			list_for_each_entry(edge, &upper->upper, list[LOWER])
1143				list_add_tail(&edge->list[UPPER], &list);
1144			if (list_empty(&upper->upper))
1145				list_add(&upper->list, &useless);
1146		}
1147
1148		while (!list_empty(&useless)) {
1149			lower = list_entry(useless.next,
1150					   struct backref_node, list);
1151			list_del_init(&lower->list);
1152			if (lower == node)
1153				node = NULL;
1154			free_backref_node(cache, lower);
1155		}
1156
1157		free_backref_node(cache, node);
1158		return ERR_PTR(err);
1159	}
1160	ASSERT(!node || !node->detached);
 
 
1161	return node;
1162}
1163
1164/*
1165 * helper to add backref node for the newly created snapshot.
1166 * the backref node is created by cloning backref node that
1167 * corresponds to root of source tree
1168 */
1169static int clone_backref_node(struct btrfs_trans_handle *trans,
1170			      struct reloc_control *rc,
1171			      struct btrfs_root *src,
1172			      struct btrfs_root *dest)
1173{
1174	struct btrfs_root *reloc_root = src->reloc_root;
1175	struct backref_cache *cache = &rc->backref_cache;
1176	struct backref_node *node = NULL;
1177	struct backref_node *new_node;
1178	struct backref_edge *edge;
1179	struct backref_edge *new_edge;
1180	struct rb_node *rb_node;
1181
1182	if (cache->last_trans > 0)
1183		update_backref_cache(trans, cache);
1184
1185	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1186	if (rb_node) {
1187		node = rb_entry(rb_node, struct backref_node, rb_node);
1188		if (node->detached)
1189			node = NULL;
1190		else
1191			BUG_ON(node->new_bytenr != reloc_root->node->start);
1192	}
1193
1194	if (!node) {
1195		rb_node = tree_search(&cache->rb_root,
1196				      reloc_root->commit_root->start);
1197		if (rb_node) {
1198			node = rb_entry(rb_node, struct backref_node,
1199					rb_node);
1200			BUG_ON(node->detached);
1201		}
1202	}
1203
1204	if (!node)
1205		return 0;
1206
1207	new_node = alloc_backref_node(cache);
 
1208	if (!new_node)
1209		return -ENOMEM;
1210
1211	new_node->bytenr = dest->node->start;
1212	new_node->level = node->level;
1213	new_node->lowest = node->lowest;
1214	new_node->checked = 1;
1215	new_node->root = dest;
 
1216
1217	if (!node->lowest) {
1218		list_for_each_entry(edge, &node->lower, list[UPPER]) {
1219			new_edge = alloc_backref_edge(cache);
1220			if (!new_edge)
1221				goto fail;
1222
1223			new_edge->node[UPPER] = new_node;
1224			new_edge->node[LOWER] = edge->node[LOWER];
1225			list_add_tail(&new_edge->list[UPPER],
1226				      &new_node->lower);
1227		}
1228	} else {
1229		list_add_tail(&new_node->lower, &cache->leaves);
1230	}
1231
1232	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1233			      &new_node->rb_node);
1234	if (rb_node)
1235		backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1236
1237	if (!new_node->lowest) {
1238		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1239			list_add_tail(&new_edge->list[LOWER],
1240				      &new_edge->node[LOWER]->upper);
1241		}
1242	}
1243	return 0;
1244fail:
1245	while (!list_empty(&new_node->lower)) {
1246		new_edge = list_entry(new_node->lower.next,
1247				      struct backref_edge, list[UPPER]);
1248		list_del(&new_edge->list[UPPER]);
1249		free_backref_edge(cache, new_edge);
1250	}
1251	free_backref_node(cache, new_node);
1252	return -ENOMEM;
1253}
1254
1255/*
1256 * helper to add 'address of tree root -> reloc tree' mapping
1257 */
1258static int __must_check __add_reloc_root(struct btrfs_root *root)
1259{
1260	struct btrfs_fs_info *fs_info = root->fs_info;
1261	struct rb_node *rb_node;
1262	struct mapping_node *node;
1263	struct reloc_control *rc = fs_info->reloc_ctl;
1264
1265	node = kmalloc(sizeof(*node), GFP_NOFS);
1266	if (!node)
1267		return -ENOMEM;
1268
1269	node->bytenr = root->node->start;
1270	node->data = root;
1271
1272	spin_lock(&rc->reloc_root_tree.lock);
1273	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1274			      node->bytenr, &node->rb_node);
1275	spin_unlock(&rc->reloc_root_tree.lock);
1276	if (rb_node) {
1277		btrfs_panic(fs_info, -EEXIST,
1278			    "Duplicate root found for start=%llu while inserting into relocation tree",
1279			    node->bytenr);
 
1280	}
1281
1282	list_add_tail(&root->root_list, &rc->reloc_roots);
1283	return 0;
1284}
1285
1286/*
1287 * helper to delete the 'address of tree root -> reloc tree'
1288 * mapping
1289 */
1290static void __del_reloc_root(struct btrfs_root *root)
1291{
1292	struct btrfs_fs_info *fs_info = root->fs_info;
1293	struct rb_node *rb_node;
1294	struct mapping_node *node = NULL;
1295	struct reloc_control *rc = fs_info->reloc_ctl;
 
1296
1297	if (rc && root->node) {
1298		spin_lock(&rc->reloc_root_tree.lock);
1299		rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1300				      root->node->start);
1301		if (rb_node) {
1302			node = rb_entry(rb_node, struct mapping_node, rb_node);
1303			rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
 
1304		}
1305		spin_unlock(&rc->reloc_root_tree.lock);
1306		if (!node)
1307			return;
1308		BUG_ON((struct btrfs_root *)node->data != root);
1309	}
1310
 
 
 
 
 
 
 
 
1311	spin_lock(&fs_info->trans_lock);
1312	list_del_init(&root->root_list);
 
 
 
1313	spin_unlock(&fs_info->trans_lock);
 
 
1314	kfree(node);
1315}
1316
1317/*
1318 * helper to update the 'address of tree root -> reloc tree'
1319 * mapping
1320 */
1321static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
1322{
1323	struct btrfs_fs_info *fs_info = root->fs_info;
1324	struct rb_node *rb_node;
1325	struct mapping_node *node = NULL;
1326	struct reloc_control *rc = fs_info->reloc_ctl;
1327
1328	spin_lock(&rc->reloc_root_tree.lock);
1329	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1330			      root->node->start);
1331	if (rb_node) {
1332		node = rb_entry(rb_node, struct mapping_node, rb_node);
1333		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1334	}
1335	spin_unlock(&rc->reloc_root_tree.lock);
1336
1337	if (!node)
1338		return 0;
1339	BUG_ON((struct btrfs_root *)node->data != root);
1340
1341	spin_lock(&rc->reloc_root_tree.lock);
1342	node->bytenr = new_bytenr;
1343	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1344			      node->bytenr, &node->rb_node);
1345	spin_unlock(&rc->reloc_root_tree.lock);
1346	if (rb_node)
1347		backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1348	return 0;
1349}
1350
1351static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1352					struct btrfs_root *root, u64 objectid)
1353{
1354	struct btrfs_fs_info *fs_info = root->fs_info;
1355	struct btrfs_root *reloc_root;
1356	struct extent_buffer *eb;
1357	struct btrfs_root_item *root_item;
1358	struct btrfs_key root_key;
1359	int ret;
 
1360
1361	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1362	BUG_ON(!root_item);
 
1363
1364	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1365	root_key.type = BTRFS_ROOT_ITEM_KEY;
1366	root_key.offset = objectid;
1367
1368	if (root->root_key.objectid == objectid) {
1369		u64 commit_root_gen;
1370
1371		/* called by btrfs_init_reloc_root */
1372		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1373				      BTRFS_TREE_RELOC_OBJECTID);
1374		BUG_ON(ret);
 
 
1375		/*
1376		 * Set the last_snapshot field to the generation of the commit
1377		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
1378		 * correctly (returns true) when the relocation root is created
1379		 * either inside the critical section of a transaction commit
1380		 * (through transaction.c:qgroup_account_snapshot()) and when
1381		 * it's created before the transaction commit is started.
1382		 */
1383		commit_root_gen = btrfs_header_generation(root->commit_root);
1384		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
1385	} else {
1386		/*
1387		 * called by btrfs_reloc_post_snapshot_hook.
1388		 * the source tree is a reloc tree, all tree blocks
1389		 * modified after it was created have RELOC flag
1390		 * set in their headers. so it's OK to not update
1391		 * the 'last_snapshot'.
1392		 */
1393		ret = btrfs_copy_root(trans, root, root->node, &eb,
1394				      BTRFS_TREE_RELOC_OBJECTID);
1395		BUG_ON(ret);
 
1396	}
1397
 
 
 
 
 
 
1398	memcpy(root_item, &root->root_item, sizeof(*root_item));
1399	btrfs_set_root_bytenr(root_item, eb->start);
1400	btrfs_set_root_level(root_item, btrfs_header_level(eb));
1401	btrfs_set_root_generation(root_item, trans->transid);
1402
1403	if (root->root_key.objectid == objectid) {
1404		btrfs_set_root_refs(root_item, 0);
1405		memset(&root_item->drop_progress, 0,
1406		       sizeof(struct btrfs_disk_key));
1407		root_item->drop_level = 0;
1408	}
1409
1410	btrfs_tree_unlock(eb);
1411	free_extent_buffer(eb);
1412
1413	ret = btrfs_insert_root(trans, fs_info->tree_root,
1414				&root_key, root_item);
1415	BUG_ON(ret);
 
 
1416	kfree(root_item);
1417
1418	reloc_root = btrfs_read_fs_root(fs_info->tree_root, &root_key);
1419	BUG_ON(IS_ERR(reloc_root));
 
 
 
 
1420	reloc_root->last_trans = trans->transid;
1421	return reloc_root;
 
 
 
 
 
 
1422}
1423
1424/*
1425 * create reloc tree for a given fs tree. reloc tree is just a
1426 * snapshot of the fs tree with special root objectid.
 
 
 
1427 */
1428int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1429			  struct btrfs_root *root)
1430{
1431	struct btrfs_fs_info *fs_info = root->fs_info;
1432	struct btrfs_root *reloc_root;
1433	struct reloc_control *rc = fs_info->reloc_ctl;
1434	struct btrfs_block_rsv *rsv;
1435	int clear_rsv = 0;
1436	int ret;
1437
 
 
 
1438	/*
1439	 * The subvolume has reloc tree but the swap is finished, no need to
1440	 * create/update the dead reloc tree
1441	 */
1442	if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
1443		return 0;
1444
 
 
 
 
 
 
 
 
1445	if (root->reloc_root) {
1446		reloc_root = root->reloc_root;
1447		reloc_root->last_trans = trans->transid;
1448		return 0;
1449	}
1450
1451	if (!rc || !rc->create_reloc_tree ||
 
 
 
 
1452	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1453		return 0;
1454
1455	if (!trans->reloc_reserved) {
1456		rsv = trans->block_rsv;
1457		trans->block_rsv = rc->block_rsv;
1458		clear_rsv = 1;
1459	}
1460	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1461	if (clear_rsv)
1462		trans->block_rsv = rsv;
 
 
1463
1464	ret = __add_reloc_root(reloc_root);
1465	BUG_ON(ret < 0);
1466	root->reloc_root = reloc_root;
 
 
 
 
 
1467	return 0;
1468}
1469
1470/*
1471 * update root item of reloc tree
1472 */
1473int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1474			    struct btrfs_root *root)
1475{
1476	struct btrfs_fs_info *fs_info = root->fs_info;
1477	struct btrfs_root *reloc_root;
1478	struct btrfs_root_item *root_item;
1479	int ret;
1480
1481	if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state) ||
1482	    !root->reloc_root)
1483		goto out;
1484
1485	reloc_root = root->reloc_root;
1486	root_item = &reloc_root->root_item;
1487
 
 
 
 
 
 
 
1488	/* root->reloc_root will stay until current relocation finished */
1489	if (fs_info->reloc_ctl->merge_reloc_tree &&
1490	    btrfs_root_refs(root_item) == 0) {
1491		set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
 
 
 
 
 
1492		__del_reloc_root(reloc_root);
1493	}
1494
1495	if (reloc_root->commit_root != reloc_root->node) {
 
1496		btrfs_set_root_node(root_item, reloc_root->node);
1497		free_extent_buffer(reloc_root->commit_root);
1498		reloc_root->commit_root = btrfs_root_node(reloc_root);
1499	}
1500
1501	ret = btrfs_update_root(trans, fs_info->tree_root,
1502				&reloc_root->root_key, root_item);
1503	BUG_ON(ret);
1504
1505out:
1506	return 0;
1507}
1508
1509/*
1510 * helper to find first cached inode with inode number >= objectid
1511 * in a subvolume
1512 */
1513static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1514{
1515	struct rb_node *node;
1516	struct rb_node *prev;
1517	struct btrfs_inode *entry;
1518	struct inode *inode;
1519
1520	spin_lock(&root->inode_lock);
1521again:
1522	node = root->inode_tree.rb_node;
1523	prev = NULL;
1524	while (node) {
1525		prev = node;
1526		entry = rb_entry(node, struct btrfs_inode, rb_node);
1527
1528		if (objectid < btrfs_ino(entry))
1529			node = node->rb_left;
1530		else if (objectid > btrfs_ino(entry))
1531			node = node->rb_right;
1532		else
1533			break;
1534	}
1535	if (!node) {
1536		while (prev) {
1537			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1538			if (objectid <= btrfs_ino(entry)) {
1539				node = prev;
1540				break;
1541			}
1542			prev = rb_next(prev);
1543		}
1544	}
1545	while (node) {
1546		entry = rb_entry(node, struct btrfs_inode, rb_node);
1547		inode = igrab(&entry->vfs_inode);
1548		if (inode) {
1549			spin_unlock(&root->inode_lock);
1550			return inode;
1551		}
1552
1553		objectid = btrfs_ino(entry) + 1;
1554		if (cond_resched_lock(&root->inode_lock))
1555			goto again;
1556
1557		node = rb_next(node);
1558	}
1559	spin_unlock(&root->inode_lock);
1560	return NULL;
1561}
1562
1563static int in_block_group(u64 bytenr,
1564			  struct btrfs_block_group_cache *block_group)
1565{
1566	if (bytenr >= block_group->key.objectid &&
1567	    bytenr < block_group->key.objectid + block_group->key.offset)
1568		return 1;
1569	return 0;
1570}
1571
1572/*
1573 * get new location of data
1574 */
1575static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1576			    u64 bytenr, u64 num_bytes)
1577{
1578	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1579	struct btrfs_path *path;
1580	struct btrfs_file_extent_item *fi;
1581	struct extent_buffer *leaf;
1582	int ret;
1583
1584	path = btrfs_alloc_path();
1585	if (!path)
1586		return -ENOMEM;
1587
1588	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1589	ret = btrfs_lookup_file_extent(NULL, root, path,
1590			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1591	if (ret < 0)
1592		goto out;
1593	if (ret > 0) {
1594		ret = -ENOENT;
1595		goto out;
1596	}
1597
1598	leaf = path->nodes[0];
1599	fi = btrfs_item_ptr(leaf, path->slots[0],
1600			    struct btrfs_file_extent_item);
1601
1602	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1603	       btrfs_file_extent_compression(leaf, fi) ||
1604	       btrfs_file_extent_encryption(leaf, fi) ||
1605	       btrfs_file_extent_other_encoding(leaf, fi));
1606
1607	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1608		ret = -EINVAL;
1609		goto out;
1610	}
1611
1612	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1613	ret = 0;
1614out:
1615	btrfs_free_path(path);
1616	return ret;
1617}
1618
1619/*
1620 * update file extent items in the tree leaf to point to
1621 * the new locations.
1622 */
1623static noinline_for_stack
1624int replace_file_extents(struct btrfs_trans_handle *trans,
1625			 struct reloc_control *rc,
1626			 struct btrfs_root *root,
1627			 struct extent_buffer *leaf)
1628{
1629	struct btrfs_fs_info *fs_info = root->fs_info;
1630	struct btrfs_key key;
1631	struct btrfs_file_extent_item *fi;
1632	struct inode *inode = NULL;
1633	u64 parent;
1634	u64 bytenr;
1635	u64 new_bytenr = 0;
1636	u64 num_bytes;
1637	u64 end;
1638	u32 nritems;
1639	u32 i;
1640	int ret = 0;
1641	int first = 1;
1642	int dirty = 0;
1643
1644	if (rc->stage != UPDATE_DATA_PTRS)
1645		return 0;
1646
1647	/* reloc trees always use full backref */
1648	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1649		parent = leaf->start;
1650	else
1651		parent = 0;
1652
1653	nritems = btrfs_header_nritems(leaf);
1654	for (i = 0; i < nritems; i++) {
1655		struct btrfs_ref ref = { 0 };
1656
1657		cond_resched();
1658		btrfs_item_key_to_cpu(leaf, &key, i);
1659		if (key.type != BTRFS_EXTENT_DATA_KEY)
1660			continue;
1661		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1662		if (btrfs_file_extent_type(leaf, fi) ==
1663		    BTRFS_FILE_EXTENT_INLINE)
1664			continue;
1665		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1666		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1667		if (bytenr == 0)
1668			continue;
1669		if (!in_block_group(bytenr, rc->block_group))
 
1670			continue;
1671
1672		/*
1673		 * if we are modifying block in fs tree, wait for readpage
1674		 * to complete and drop the extent cache
1675		 */
1676		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1677			if (first) {
1678				inode = find_next_inode(root, key.objectid);
1679				first = 0;
1680			} else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1681				btrfs_add_delayed_iput(inode);
1682				inode = find_next_inode(root, key.objectid);
1683			}
1684			if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1685				end = key.offset +
1686				      btrfs_file_extent_num_bytes(leaf, fi);
1687				WARN_ON(!IS_ALIGNED(key.offset,
1688						    fs_info->sectorsize));
1689				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1690				end--;
1691				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1692						      key.offset, end);
1693				if (!ret)
1694					continue;
1695
1696				btrfs_drop_extent_cache(BTRFS_I(inode),
1697						key.offset,	end, 1);
1698				unlock_extent(&BTRFS_I(inode)->io_tree,
1699					      key.offset, end);
1700			}
1701		}
1702
1703		ret = get_new_location(rc->data_inode, &new_bytenr,
1704				       bytenr, num_bytes);
1705		if (ret) {
1706			/*
1707			 * Don't have to abort since we've not changed anything
1708			 * in the file extent yet.
1709			 */
1710			break;
1711		}
1712
1713		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1714		dirty = 1;
1715
1716		key.offset -= btrfs_file_extent_offset(leaf, fi);
1717		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1718				       num_bytes, parent);
1719		ref.real_root = root->root_key.objectid;
1720		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1721				    key.objectid, key.offset);
1722		ret = btrfs_inc_extent_ref(trans, &ref);
1723		if (ret) {
1724			btrfs_abort_transaction(trans, ret);
1725			break;
1726		}
1727
1728		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1729				       num_bytes, parent);
1730		ref.real_root = root->root_key.objectid;
1731		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1732				    key.objectid, key.offset);
1733		ret = btrfs_free_extent(trans, &ref);
1734		if (ret) {
1735			btrfs_abort_transaction(trans, ret);
1736			break;
1737		}
1738	}
1739	if (dirty)
1740		btrfs_mark_buffer_dirty(leaf);
1741	if (inode)
1742		btrfs_add_delayed_iput(inode);
1743	return ret;
1744}
1745
1746static noinline_for_stack
1747int memcmp_node_keys(struct extent_buffer *eb, int slot,
1748		     struct btrfs_path *path, int level)
1749{
1750	struct btrfs_disk_key key1;
1751	struct btrfs_disk_key key2;
1752	btrfs_node_key(eb, &key1, slot);
1753	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1754	return memcmp(&key1, &key2, sizeof(key1));
1755}
1756
1757/*
1758 * try to replace tree blocks in fs tree with the new blocks
1759 * in reloc tree. tree blocks haven't been modified since the
1760 * reloc tree was create can be replaced.
1761 *
1762 * if a block was replaced, level of the block + 1 is returned.
1763 * if no block got replaced, 0 is returned. if there are other
1764 * errors, a negative error number is returned.
1765 */
1766static noinline_for_stack
1767int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1768		 struct btrfs_root *dest, struct btrfs_root *src,
1769		 struct btrfs_path *path, struct btrfs_key *next_key,
1770		 int lowest_level, int max_level)
1771{
1772	struct btrfs_fs_info *fs_info = dest->fs_info;
1773	struct extent_buffer *eb;
1774	struct extent_buffer *parent;
1775	struct btrfs_ref ref = { 0 };
1776	struct btrfs_key key;
1777	u64 old_bytenr;
1778	u64 new_bytenr;
1779	u64 old_ptr_gen;
1780	u64 new_ptr_gen;
1781	u64 last_snapshot;
1782	u32 blocksize;
1783	int cow = 0;
1784	int level;
1785	int ret;
1786	int slot;
1787
1788	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1789	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1790
1791	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1792again:
1793	slot = path->slots[lowest_level];
1794	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1795
1796	eb = btrfs_lock_root_node(dest);
1797	btrfs_set_lock_blocking_write(eb);
1798	level = btrfs_header_level(eb);
1799
1800	if (level < lowest_level) {
1801		btrfs_tree_unlock(eb);
1802		free_extent_buffer(eb);
1803		return 0;
1804	}
1805
1806	if (cow) {
1807		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1808		BUG_ON(ret);
 
 
 
 
 
1809	}
1810	btrfs_set_lock_blocking_write(eb);
1811
1812	if (next_key) {
1813		next_key->objectid = (u64)-1;
1814		next_key->type = (u8)-1;
1815		next_key->offset = (u64)-1;
1816	}
1817
1818	parent = eb;
1819	while (1) {
1820		struct btrfs_key first_key;
1821
1822		level = btrfs_header_level(parent);
1823		BUG_ON(level < lowest_level);
1824
1825		ret = btrfs_bin_search(parent, &key, level, &slot);
1826		if (ret < 0)
1827			break;
1828		if (ret && slot > 0)
1829			slot--;
1830
1831		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1832			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1833
1834		old_bytenr = btrfs_node_blockptr(parent, slot);
1835		blocksize = fs_info->nodesize;
1836		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1837		btrfs_node_key_to_cpu(parent, &first_key, slot);
1838
1839		if (level <= max_level) {
1840			eb = path->nodes[level];
1841			new_bytenr = btrfs_node_blockptr(eb,
1842							path->slots[level]);
1843			new_ptr_gen = btrfs_node_ptr_generation(eb,
1844							path->slots[level]);
1845		} else {
1846			new_bytenr = 0;
1847			new_ptr_gen = 0;
1848		}
1849
1850		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1851			ret = level;
1852			break;
1853		}
1854
1855		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1856		    memcmp_node_keys(parent, slot, path, level)) {
1857			if (level <= lowest_level) {
1858				ret = 0;
1859				break;
1860			}
1861
1862			eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen,
1863					     level - 1, &first_key);
1864			if (IS_ERR(eb)) {
1865				ret = PTR_ERR(eb);
1866				break;
1867			} else if (!extent_buffer_uptodate(eb)) {
1868				ret = -EIO;
1869				free_extent_buffer(eb);
1870				break;
1871			}
1872			btrfs_tree_lock(eb);
1873			if (cow) {
1874				ret = btrfs_cow_block(trans, dest, eb, parent,
1875						      slot, &eb);
1876				BUG_ON(ret);
 
 
 
 
 
1877			}
1878			btrfs_set_lock_blocking_write(eb);
1879
1880			btrfs_tree_unlock(parent);
1881			free_extent_buffer(parent);
1882
1883			parent = eb;
1884			continue;
1885		}
1886
1887		if (!cow) {
1888			btrfs_tree_unlock(parent);
1889			free_extent_buffer(parent);
1890			cow = 1;
1891			goto again;
1892		}
1893
1894		btrfs_node_key_to_cpu(path->nodes[level], &key,
1895				      path->slots[level]);
1896		btrfs_release_path(path);
1897
1898		path->lowest_level = level;
1899		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1900		path->lowest_level = 0;
1901		BUG_ON(ret);
 
 
 
 
1902
1903		/*
1904		 * Info qgroup to trace both subtrees.
1905		 *
1906		 * We must trace both trees.
1907		 * 1) Tree reloc subtree
1908		 *    If not traced, we will leak data numbers
1909		 * 2) Fs subtree
1910		 *    If not traced, we will double count old data
1911		 *
1912		 * We don't scan the subtree right now, but only record
1913		 * the swapped tree blocks.
1914		 * The real subtree rescan is delayed until we have new
1915		 * CoW on the subtree root node before transaction commit.
1916		 */
1917		ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1918				rc->block_group, parent, slot,
1919				path->nodes[level], path->slots[level],
1920				last_snapshot);
1921		if (ret < 0)
1922			break;
1923		/*
1924		 * swap blocks in fs tree and reloc tree.
1925		 */
1926		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1927		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1928		btrfs_mark_buffer_dirty(parent);
1929
1930		btrfs_set_node_blockptr(path->nodes[level],
1931					path->slots[level], old_bytenr);
1932		btrfs_set_node_ptr_generation(path->nodes[level],
1933					      path->slots[level], old_ptr_gen);
1934		btrfs_mark_buffer_dirty(path->nodes[level]);
1935
1936		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1937				       blocksize, path->nodes[level]->start);
1938		ref.skip_qgroup = true;
1939		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1940		ret = btrfs_inc_extent_ref(trans, &ref);
1941		BUG_ON(ret);
 
 
 
1942		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1943				       blocksize, 0);
1944		ref.skip_qgroup = true;
1945		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1946		ret = btrfs_inc_extent_ref(trans, &ref);
1947		BUG_ON(ret);
 
 
 
1948
1949		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1950				       blocksize, path->nodes[level]->start);
1951		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1952		ref.skip_qgroup = true;
1953		ret = btrfs_free_extent(trans, &ref);
1954		BUG_ON(ret);
 
 
 
1955
1956		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1957				       blocksize, 0);
1958		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1959		ref.skip_qgroup = true;
1960		ret = btrfs_free_extent(trans, &ref);
1961		BUG_ON(ret);
 
 
 
1962
1963		btrfs_unlock_up_safe(path, 0);
1964
1965		ret = level;
1966		break;
1967	}
1968	btrfs_tree_unlock(parent);
1969	free_extent_buffer(parent);
1970	return ret;
1971}
1972
1973/*
1974 * helper to find next relocated block in reloc tree
1975 */
1976static noinline_for_stack
1977int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1978		       int *level)
1979{
1980	struct extent_buffer *eb;
1981	int i;
1982	u64 last_snapshot;
1983	u32 nritems;
1984
1985	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1986
1987	for (i = 0; i < *level; i++) {
1988		free_extent_buffer(path->nodes[i]);
1989		path->nodes[i] = NULL;
1990	}
1991
1992	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1993		eb = path->nodes[i];
1994		nritems = btrfs_header_nritems(eb);
1995		while (path->slots[i] + 1 < nritems) {
1996			path->slots[i]++;
1997			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1998			    last_snapshot)
1999				continue;
2000
2001			*level = i;
2002			return 0;
2003		}
2004		free_extent_buffer(path->nodes[i]);
2005		path->nodes[i] = NULL;
2006	}
2007	return 1;
2008}
2009
2010/*
2011 * walk down reloc tree to find relocated block of lowest level
2012 */
2013static noinline_for_stack
2014int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
2015			 int *level)
2016{
2017	struct btrfs_fs_info *fs_info = root->fs_info;
2018	struct extent_buffer *eb = NULL;
2019	int i;
2020	u64 bytenr;
2021	u64 ptr_gen = 0;
2022	u64 last_snapshot;
2023	u32 nritems;
2024
2025	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2026
2027	for (i = *level; i > 0; i--) {
2028		struct btrfs_key first_key;
2029
2030		eb = path->nodes[i];
2031		nritems = btrfs_header_nritems(eb);
2032		while (path->slots[i] < nritems) {
2033			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
2034			if (ptr_gen > last_snapshot)
2035				break;
2036			path->slots[i]++;
2037		}
2038		if (path->slots[i] >= nritems) {
2039			if (i == *level)
2040				break;
2041			*level = i + 1;
2042			return 0;
2043		}
2044		if (i == 1) {
2045			*level = i;
2046			return 0;
2047		}
2048
2049		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
2050		btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]);
2051		eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1,
2052				     &first_key);
2053		if (IS_ERR(eb)) {
2054			return PTR_ERR(eb);
2055		} else if (!extent_buffer_uptodate(eb)) {
2056			free_extent_buffer(eb);
2057			return -EIO;
2058		}
2059		BUG_ON(btrfs_header_level(eb) != i - 1);
2060		path->nodes[i - 1] = eb;
2061		path->slots[i - 1] = 0;
2062	}
2063	return 1;
2064}
2065
2066/*
2067 * invalidate extent cache for file extents whose key in range of
2068 * [min_key, max_key)
2069 */
2070static int invalidate_extent_cache(struct btrfs_root *root,
2071				   struct btrfs_key *min_key,
2072				   struct btrfs_key *max_key)
2073{
2074	struct btrfs_fs_info *fs_info = root->fs_info;
2075	struct inode *inode = NULL;
2076	u64 objectid;
2077	u64 start, end;
2078	u64 ino;
2079
2080	objectid = min_key->objectid;
2081	while (1) {
2082		cond_resched();
2083		iput(inode);
2084
2085		if (objectid > max_key->objectid)
2086			break;
2087
2088		inode = find_next_inode(root, objectid);
2089		if (!inode)
2090			break;
2091		ino = btrfs_ino(BTRFS_I(inode));
2092
2093		if (ino > max_key->objectid) {
2094			iput(inode);
2095			break;
2096		}
2097
2098		objectid = ino + 1;
2099		if (!S_ISREG(inode->i_mode))
2100			continue;
2101
2102		if (unlikely(min_key->objectid == ino)) {
2103			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
2104				continue;
2105			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
2106				start = 0;
2107			else {
2108				start = min_key->offset;
2109				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
2110			}
2111		} else {
2112			start = 0;
2113		}
2114
2115		if (unlikely(max_key->objectid == ino)) {
2116			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
2117				continue;
2118			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
2119				end = (u64)-1;
2120			} else {
2121				if (max_key->offset == 0)
2122					continue;
2123				end = max_key->offset;
2124				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
2125				end--;
2126			}
2127		} else {
2128			end = (u64)-1;
2129		}
2130
2131		/* the lock_extent waits for readpage to complete */
2132		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2133		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
2134		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2135	}
2136	return 0;
2137}
2138
2139static int find_next_key(struct btrfs_path *path, int level,
2140			 struct btrfs_key *key)
2141
2142{
2143	while (level < BTRFS_MAX_LEVEL) {
2144		if (!path->nodes[level])
2145			break;
2146		if (path->slots[level] + 1 <
2147		    btrfs_header_nritems(path->nodes[level])) {
2148			btrfs_node_key_to_cpu(path->nodes[level], key,
2149					      path->slots[level] + 1);
2150			return 0;
2151		}
2152		level++;
2153	}
2154	return 1;
2155}
2156
2157/*
2158 * Insert current subvolume into reloc_control::dirty_subvol_roots
2159 */
2160static void insert_dirty_subvol(struct btrfs_trans_handle *trans,
2161				struct reloc_control *rc,
2162				struct btrfs_root *root)
2163{
2164	struct btrfs_root *reloc_root = root->reloc_root;
2165	struct btrfs_root_item *reloc_root_item;
 
2166
2167	/* @root must be a subvolume tree root with a valid reloc tree */
2168	ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
2169	ASSERT(reloc_root);
2170
2171	reloc_root_item = &reloc_root->root_item;
2172	memset(&reloc_root_item->drop_progress, 0,
2173		sizeof(reloc_root_item->drop_progress));
2174	reloc_root_item->drop_level = 0;
2175	btrfs_set_root_refs(reloc_root_item, 0);
2176	btrfs_update_reloc_root(trans, root);
 
 
2177
2178	if (list_empty(&root->reloc_dirty_list)) {
2179		btrfs_grab_fs_root(root);
2180		list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
2181	}
 
 
2182}
2183
2184static int clean_dirty_subvols(struct reloc_control *rc)
2185{
2186	struct btrfs_root *root;
2187	struct btrfs_root *next;
2188	int ret = 0;
2189	int ret2;
2190
2191	list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
2192				 reloc_dirty_list) {
2193		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
2194			/* Merged subvolume, cleanup its reloc root */
2195			struct btrfs_root *reloc_root = root->reloc_root;
2196
2197			list_del_init(&root->reloc_dirty_list);
2198			root->reloc_root = NULL;
 
 
 
 
 
 
2199			if (reloc_root) {
2200
2201				ret2 = btrfs_drop_snapshot(reloc_root, NULL, 0, 1);
2202				if (ret2 < 0 && !ret)
2203					ret = ret2;
 
 
 
 
 
 
 
2204			}
2205			clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
2206			btrfs_put_fs_root(root);
2207		} else {
2208			/* Orphan reloc tree, just clean it up */
2209			ret2 = btrfs_drop_snapshot(root, NULL, 0, 1);
2210			if (ret2 < 0 && !ret)
2211				ret = ret2;
 
 
 
2212		}
2213	}
2214	return ret;
2215}
2216
2217/*
2218 * merge the relocated tree blocks in reloc tree with corresponding
2219 * fs tree.
2220 */
2221static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2222					       struct btrfs_root *root)
2223{
2224	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2225	struct btrfs_key key;
2226	struct btrfs_key next_key;
2227	struct btrfs_trans_handle *trans = NULL;
2228	struct btrfs_root *reloc_root;
2229	struct btrfs_root_item *root_item;
2230	struct btrfs_path *path;
2231	struct extent_buffer *leaf;
 
2232	int level;
2233	int max_level;
2234	int replaced = 0;
2235	int ret;
2236	int err = 0;
2237	u32 min_reserved;
2238
2239	path = btrfs_alloc_path();
2240	if (!path)
2241		return -ENOMEM;
2242	path->reada = READA_FORWARD;
2243
2244	reloc_root = root->reloc_root;
2245	root_item = &reloc_root->root_item;
2246
2247	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2248		level = btrfs_root_level(root_item);
2249		extent_buffer_get(reloc_root->node);
2250		path->nodes[level] = reloc_root->node;
2251		path->slots[level] = 0;
2252	} else {
2253		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2254
2255		level = root_item->drop_level;
2256		BUG_ON(level == 0);
2257		path->lowest_level = level;
2258		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2259		path->lowest_level = 0;
2260		if (ret < 0) {
2261			btrfs_free_path(path);
2262			return ret;
2263		}
2264
2265		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2266				      path->slots[level]);
2267		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2268
2269		btrfs_unlock_up_safe(path, 0);
2270	}
2271
2272	min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
 
 
 
 
 
 
 
 
 
2273	memset(&next_key, 0, sizeof(next_key));
2274
2275	while (1) {
2276		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2277					     BTRFS_RESERVE_FLUSH_ALL);
2278		if (ret) {
2279			err = ret;
2280			goto out;
2281		}
2282		trans = btrfs_start_transaction(root, 0);
2283		if (IS_ERR(trans)) {
2284			err = PTR_ERR(trans);
2285			trans = NULL;
2286			goto out;
2287		}
 
 
 
 
 
 
 
 
 
 
 
 
2288		trans->block_rsv = rc->block_rsv;
2289
2290		replaced = 0;
2291		max_level = level;
2292
2293		ret = walk_down_reloc_tree(reloc_root, path, &level);
2294		if (ret < 0) {
2295			err = ret;
2296			goto out;
2297		}
2298		if (ret > 0)
2299			break;
2300
2301		if (!find_next_key(path, level, &key) &&
2302		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2303			ret = 0;
2304		} else {
2305			ret = replace_path(trans, rc, root, reloc_root, path,
2306					   &next_key, level, max_level);
2307		}
2308		if (ret < 0) {
2309			err = ret;
2310			goto out;
2311		}
2312
2313		if (ret > 0) {
2314			level = ret;
2315			btrfs_node_key_to_cpu(path->nodes[level], &key,
2316					      path->slots[level]);
2317			replaced = 1;
2318		}
2319
2320		ret = walk_up_reloc_tree(reloc_root, path, &level);
2321		if (ret > 0)
2322			break;
2323
2324		BUG_ON(level == 0);
2325		/*
2326		 * save the merging progress in the drop_progress.
2327		 * this is OK since root refs == 1 in this case.
2328		 */
2329		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2330			       path->slots[level]);
2331		root_item->drop_level = level;
2332
2333		btrfs_end_transaction_throttle(trans);
2334		trans = NULL;
2335
2336		btrfs_btree_balance_dirty(fs_info);
2337
2338		if (replaced && rc->stage == UPDATE_DATA_PTRS)
2339			invalidate_extent_cache(root, &key, &next_key);
2340	}
2341
2342	/*
2343	 * handle the case only one block in the fs tree need to be
2344	 * relocated and the block is tree root.
2345	 */
2346	leaf = btrfs_lock_root_node(root);
2347	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
 
2348	btrfs_tree_unlock(leaf);
2349	free_extent_buffer(leaf);
2350	if (ret < 0)
2351		err = ret;
2352out:
2353	btrfs_free_path(path);
2354
2355	if (err == 0)
2356		insert_dirty_subvol(trans, rc, root);
 
 
 
2357
2358	if (trans)
2359		btrfs_end_transaction_throttle(trans);
2360
2361	btrfs_btree_balance_dirty(fs_info);
2362
2363	if (replaced && rc->stage == UPDATE_DATA_PTRS)
2364		invalidate_extent_cache(root, &key, &next_key);
2365
2366	return err;
2367}
2368
2369static noinline_for_stack
2370int prepare_to_merge(struct reloc_control *rc, int err)
2371{
2372	struct btrfs_root *root = rc->extent_root;
2373	struct btrfs_fs_info *fs_info = root->fs_info;
2374	struct btrfs_root *reloc_root;
2375	struct btrfs_trans_handle *trans;
2376	LIST_HEAD(reloc_roots);
2377	u64 num_bytes = 0;
2378	int ret;
2379
2380	mutex_lock(&fs_info->reloc_mutex);
2381	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2382	rc->merging_rsv_size += rc->nodes_relocated * 2;
2383	mutex_unlock(&fs_info->reloc_mutex);
2384
2385again:
2386	if (!err) {
2387		num_bytes = rc->merging_rsv_size;
2388		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2389					  BTRFS_RESERVE_FLUSH_ALL);
2390		if (ret)
2391			err = ret;
2392	}
2393
2394	trans = btrfs_join_transaction(rc->extent_root);
2395	if (IS_ERR(trans)) {
2396		if (!err)
2397			btrfs_block_rsv_release(fs_info, rc->block_rsv,
2398						num_bytes);
2399		return PTR_ERR(trans);
2400	}
2401
2402	if (!err) {
2403		if (num_bytes != rc->merging_rsv_size) {
2404			btrfs_end_transaction(trans);
2405			btrfs_block_rsv_release(fs_info, rc->block_rsv,
2406						num_bytes);
2407			goto again;
2408		}
2409	}
2410
2411	rc->merge_reloc_tree = 1;
2412
2413	while (!list_empty(&rc->reloc_roots)) {
2414		reloc_root = list_entry(rc->reloc_roots.next,
2415					struct btrfs_root, root_list);
2416		list_del_init(&reloc_root->root_list);
2417
2418		root = read_fs_root(fs_info, reloc_root->root_key.offset);
2419		BUG_ON(IS_ERR(root));
2420		BUG_ON(root->reloc_root != reloc_root);
 
 
 
 
 
 
 
 
 
 
 
2421
2422		/*
2423		 * set reference count to 1, so btrfs_recover_relocation
2424		 * knows it should resumes merging
2425		 */
2426		if (!err)
2427			btrfs_set_root_refs(&reloc_root->root_item, 1);
2428		btrfs_update_reloc_root(trans, root);
2429
 
 
 
 
2430		list_add(&reloc_root->root_list, &reloc_roots);
 
 
 
 
 
 
 
 
2431	}
2432
2433	list_splice(&reloc_roots, &rc->reloc_roots);
2434
2435	if (!err)
2436		btrfs_commit_transaction(trans);
2437	else
2438		btrfs_end_transaction(trans);
2439	return err;
2440}
2441
2442static noinline_for_stack
2443void free_reloc_roots(struct list_head *list)
2444{
2445	struct btrfs_root *reloc_root;
2446
2447	while (!list_empty(list)) {
2448		reloc_root = list_entry(list->next, struct btrfs_root,
2449					root_list);
2450		__del_reloc_root(reloc_root);
2451		free_extent_buffer(reloc_root->node);
2452		free_extent_buffer(reloc_root->commit_root);
2453		reloc_root->node = NULL;
2454		reloc_root->commit_root = NULL;
2455	}
2456}
2457
2458static noinline_for_stack
2459void merge_reloc_roots(struct reloc_control *rc)
2460{
2461	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2462	struct btrfs_root *root;
2463	struct btrfs_root *reloc_root;
2464	LIST_HEAD(reloc_roots);
2465	int found = 0;
2466	int ret = 0;
2467again:
2468	root = rc->extent_root;
2469
2470	/*
2471	 * this serializes us with btrfs_record_root_in_transaction,
2472	 * we have to make sure nobody is in the middle of
2473	 * adding their roots to the list while we are
2474	 * doing this splice
2475	 */
2476	mutex_lock(&fs_info->reloc_mutex);
2477	list_splice_init(&rc->reloc_roots, &reloc_roots);
2478	mutex_unlock(&fs_info->reloc_mutex);
2479
2480	while (!list_empty(&reloc_roots)) {
2481		found = 1;
2482		reloc_root = list_entry(reloc_roots.next,
2483					struct btrfs_root, root_list);
2484
 
 
2485		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2486			root = read_fs_root(fs_info,
2487					    reloc_root->root_key.offset);
2488			BUG_ON(IS_ERR(root));
2489			BUG_ON(root->reloc_root != reloc_root);
2490
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2491			ret = merge_reloc_root(rc, root);
 
2492			if (ret) {
2493				if (list_empty(&reloc_root->root_list))
2494					list_add_tail(&reloc_root->root_list,
2495						      &reloc_roots);
2496				goto out;
2497			}
2498		} else {
 
 
 
 
 
 
 
 
 
 
2499			list_del_init(&reloc_root->root_list);
2500			/* Don't forget to queue this reloc root for cleanup */
2501			list_add_tail(&reloc_root->reloc_dirty_list,
2502				      &rc->dirty_subvol_roots);
2503		}
2504	}
2505
2506	if (found) {
2507		found = 0;
2508		goto again;
2509	}
2510out:
2511	if (ret) {
2512		btrfs_handle_fs_error(fs_info, ret, NULL);
2513		if (!list_empty(&reloc_roots))
2514			free_reloc_roots(&reloc_roots);
2515
2516		/* new reloc root may be added */
2517		mutex_lock(&fs_info->reloc_mutex);
2518		list_splice_init(&rc->reloc_roots, &reloc_roots);
2519		mutex_unlock(&fs_info->reloc_mutex);
2520		if (!list_empty(&reloc_roots))
2521			free_reloc_roots(&reloc_roots);
2522	}
2523
2524	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2525}
2526
2527static void free_block_list(struct rb_root *blocks)
2528{
2529	struct tree_block *block;
2530	struct rb_node *rb_node;
2531	while ((rb_node = rb_first(blocks))) {
2532		block = rb_entry(rb_node, struct tree_block, rb_node);
2533		rb_erase(rb_node, blocks);
2534		kfree(block);
2535	}
2536}
2537
2538static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2539				      struct btrfs_root *reloc_root)
2540{
2541	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2542	struct btrfs_root *root;
 
2543
2544	if (reloc_root->last_trans == trans->transid)
2545		return 0;
2546
2547	root = read_fs_root(fs_info, reloc_root->root_key.offset);
2548	BUG_ON(IS_ERR(root));
2549	BUG_ON(root->reloc_root != reloc_root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2550
2551	return btrfs_record_root_in_trans(trans, root);
2552}
2553
2554static noinline_for_stack
2555struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2556				     struct reloc_control *rc,
2557				     struct backref_node *node,
2558				     struct backref_edge *edges[])
2559{
2560	struct backref_node *next;
2561	struct btrfs_root *root;
2562	int index = 0;
 
2563
2564	next = node;
2565	while (1) {
2566		cond_resched();
2567		next = walk_up_backref(next, edges, &index);
2568		root = next->root;
2569		BUG_ON(!root);
2570		BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2571
2572		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2573			record_reloc_root_in_trans(trans, root);
 
 
2574			break;
2575		}
2576
2577		btrfs_record_root_in_trans(trans, root);
 
 
2578		root = root->reloc_root;
2579
 
 
 
 
 
 
 
2580		if (next->new_bytenr != root->node->start) {
2581			BUG_ON(next->new_bytenr);
2582			BUG_ON(!list_empty(&next->list));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2583			next->new_bytenr = root->node->start;
2584			next->root = root;
 
 
2585			list_add_tail(&next->list,
2586				      &rc->backref_cache.changed);
2587			__mark_block_processed(rc, next);
2588			break;
2589		}
2590
2591		WARN_ON(1);
2592		root = NULL;
2593		next = walk_down_backref(edges, &index);
2594		if (!next || next->level <= node->level)
2595			break;
2596	}
2597	if (!root)
2598		return NULL;
 
 
 
 
 
 
2599
2600	next = node;
2601	/* setup backref node path for btrfs_reloc_cow_block */
2602	while (1) {
2603		rc->backref_cache.path[next->level] = next;
2604		if (--index < 0)
2605			break;
2606		next = edges[index]->node[UPPER];
2607	}
2608	return root;
2609}
2610
2611/*
2612 * select a tree root for relocation. return NULL if the block
2613 * is reference counted. we should use do_relocation() in this
2614 * case. return a tree root pointer if the block isn't reference
2615 * counted. return -ENOENT if the block is root of reloc tree.
 
 
 
2616 */
2617static noinline_for_stack
2618struct btrfs_root *select_one_root(struct backref_node *node)
2619{
2620	struct backref_node *next;
2621	struct btrfs_root *root;
2622	struct btrfs_root *fs_root = NULL;
2623	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2624	int index = 0;
2625
2626	next = node;
2627	while (1) {
2628		cond_resched();
2629		next = walk_up_backref(next, edges, &index);
2630		root = next->root;
2631		BUG_ON(!root);
2632
2633		/* no other choice for non-references counted tree */
2634		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
 
 
 
 
 
 
 
2635			return root;
2636
2637		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2638			fs_root = root;
2639
2640		if (next != node)
2641			return NULL;
2642
2643		next = walk_down_backref(edges, &index);
2644		if (!next || next->level <= node->level)
2645			break;
2646	}
2647
2648	if (!fs_root)
2649		return ERR_PTR(-ENOENT);
2650	return fs_root;
2651}
2652
2653static noinline_for_stack
2654u64 calcu_metadata_size(struct reloc_control *rc,
2655			struct backref_node *node, int reserve)
2656{
2657	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2658	struct backref_node *next = node;
2659	struct backref_edge *edge;
2660	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2661	u64 num_bytes = 0;
2662	int index = 0;
2663
2664	BUG_ON(reserve && node->processed);
2665
2666	while (next) {
2667		cond_resched();
2668		while (1) {
2669			if (next->processed && (reserve || next != node))
2670				break;
2671
2672			num_bytes += fs_info->nodesize;
2673
2674			if (list_empty(&next->upper))
2675				break;
2676
2677			edge = list_entry(next->upper.next,
2678					  struct backref_edge, list[LOWER]);
2679			edges[index++] = edge;
2680			next = edge->node[UPPER];
2681		}
2682		next = walk_down_backref(edges, &index);
2683	}
2684	return num_bytes;
2685}
2686
2687static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2688				  struct reloc_control *rc,
2689				  struct backref_node *node)
2690{
2691	struct btrfs_root *root = rc->extent_root;
2692	struct btrfs_fs_info *fs_info = root->fs_info;
2693	u64 num_bytes;
2694	int ret;
2695	u64 tmp;
2696
2697	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2698
2699	trans->block_rsv = rc->block_rsv;
2700	rc->reserved_bytes += num_bytes;
2701
2702	/*
2703	 * We are under a transaction here so we can only do limited flushing.
2704	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2705	 * transaction and try to refill when we can flush all the things.
2706	 */
2707	ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2708				BTRFS_RESERVE_FLUSH_LIMIT);
2709	if (ret) {
2710		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2711		while (tmp <= rc->reserved_bytes)
2712			tmp <<= 1;
2713		/*
2714		 * only one thread can access block_rsv at this point,
2715		 * so we don't need hold lock to protect block_rsv.
2716		 * we expand more reservation size here to allow enough
2717		 * space for relocation and we will return earlier in
2718		 * enospc case.
2719		 */
2720		rc->block_rsv->size = tmp + fs_info->nodesize *
2721				      RELOCATION_RESERVED_NODES;
2722		return -EAGAIN;
2723	}
2724
2725	return 0;
2726}
2727
2728/*
2729 * relocate a block tree, and then update pointers in upper level
2730 * blocks that reference the block to point to the new location.
2731 *
2732 * if called by link_to_upper, the block has already been relocated.
2733 * in that case this function just updates pointers.
2734 */
2735static int do_relocation(struct btrfs_trans_handle *trans,
2736			 struct reloc_control *rc,
2737			 struct backref_node *node,
2738			 struct btrfs_key *key,
2739			 struct btrfs_path *path, int lowest)
2740{
2741	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2742	struct backref_node *upper;
2743	struct backref_edge *edge;
2744	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2745	struct btrfs_root *root;
2746	struct extent_buffer *eb;
2747	u32 blocksize;
2748	u64 bytenr;
2749	u64 generation;
2750	int slot;
2751	int ret;
2752	int err = 0;
2753
2754	BUG_ON(lowest && node->eb);
 
 
 
 
2755
2756	path->lowest_level = node->level + 1;
2757	rc->backref_cache.path[node->level] = node;
2758	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2759		struct btrfs_key first_key;
2760		struct btrfs_ref ref = { 0 };
2761
2762		cond_resched();
2763
2764		upper = edge->node[UPPER];
2765		root = select_reloc_root(trans, rc, upper, edges);
2766		BUG_ON(!root);
 
 
 
2767
2768		if (upper->eb && !upper->locked) {
2769			if (!lowest) {
2770				ret = btrfs_bin_search(upper->eb, key,
2771						       upper->level, &slot);
2772				if (ret < 0) {
2773					err = ret;
2774					goto next;
2775				}
2776				BUG_ON(ret);
2777				bytenr = btrfs_node_blockptr(upper->eb, slot);
2778				if (node->eb->start == bytenr)
2779					goto next;
2780			}
2781			drop_node_buffer(upper);
2782		}
2783
2784		if (!upper->eb) {
2785			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2786			if (ret) {
2787				if (ret < 0)
2788					err = ret;
2789				else
2790					err = -ENOENT;
2791
2792				btrfs_release_path(path);
2793				break;
2794			}
2795
2796			if (!upper->eb) {
2797				upper->eb = path->nodes[upper->level];
2798				path->nodes[upper->level] = NULL;
2799			} else {
2800				BUG_ON(upper->eb != path->nodes[upper->level]);
2801			}
2802
2803			upper->locked = 1;
2804			path->locks[upper->level] = 0;
2805
2806			slot = path->slots[upper->level];
2807			btrfs_release_path(path);
2808		} else {
2809			ret = btrfs_bin_search(upper->eb, key, upper->level,
2810					       &slot);
2811			if (ret < 0) {
2812				err = ret;
2813				goto next;
2814			}
2815			BUG_ON(ret);
2816		}
2817
2818		bytenr = btrfs_node_blockptr(upper->eb, slot);
2819		if (lowest) {
2820			if (bytenr != node->bytenr) {
2821				btrfs_err(root->fs_info,
2822		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2823					  bytenr, node->bytenr, slot,
2824					  upper->eb->start);
2825				err = -EIO;
2826				goto next;
2827			}
2828		} else {
2829			if (node->eb->start == bytenr)
2830				goto next;
2831		}
2832
2833		blocksize = root->fs_info->nodesize;
2834		generation = btrfs_node_ptr_generation(upper->eb, slot);
2835		btrfs_node_key_to_cpu(upper->eb, &first_key, slot);
2836		eb = read_tree_block(fs_info, bytenr, generation,
2837				     upper->level - 1, &first_key);
2838		if (IS_ERR(eb)) {
2839			err = PTR_ERR(eb);
2840			goto next;
2841		} else if (!extent_buffer_uptodate(eb)) {
2842			free_extent_buffer(eb);
2843			err = -EIO;
2844			goto next;
2845		}
2846		btrfs_tree_lock(eb);
2847		btrfs_set_lock_blocking_write(eb);
2848
2849		if (!node->eb) {
2850			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2851					      slot, &eb);
2852			btrfs_tree_unlock(eb);
2853			free_extent_buffer(eb);
2854			if (ret < 0) {
2855				err = ret;
2856				goto next;
2857			}
2858			BUG_ON(node->eb != eb);
 
 
 
2859		} else {
2860			btrfs_set_node_blockptr(upper->eb, slot,
2861						node->eb->start);
2862			btrfs_set_node_ptr_generation(upper->eb, slot,
2863						      trans->transid);
2864			btrfs_mark_buffer_dirty(upper->eb);
2865
2866			btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2867					       node->eb->start, blocksize,
2868					       upper->eb->start);
2869			ref.real_root = root->root_key.objectid;
2870			btrfs_init_tree_ref(&ref, node->level,
2871					    btrfs_header_owner(upper->eb));
2872			ret = btrfs_inc_extent_ref(trans, &ref);
2873			BUG_ON(ret);
2874
2875			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2876			BUG_ON(ret);
 
2877		}
2878next:
2879		if (!upper->pending)
2880			drop_node_buffer(upper);
2881		else
2882			unlock_node_buffer(upper);
2883		if (err)
2884			break;
2885	}
2886
2887	if (!err && node->pending) {
2888		drop_node_buffer(node);
2889		list_move_tail(&node->list, &rc->backref_cache.changed);
2890		node->pending = 0;
2891	}
2892
2893	path->lowest_level = 0;
2894	BUG_ON(err == -ENOSPC);
2895	return err;
 
 
 
 
 
2896}
2897
2898static int link_to_upper(struct btrfs_trans_handle *trans,
2899			 struct reloc_control *rc,
2900			 struct backref_node *node,
2901			 struct btrfs_path *path)
2902{
2903	struct btrfs_key key;
2904
2905	btrfs_node_key_to_cpu(node->eb, &key, 0);
2906	return do_relocation(trans, rc, node, &key, path, 0);
2907}
2908
2909static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2910				struct reloc_control *rc,
2911				struct btrfs_path *path, int err)
2912{
2913	LIST_HEAD(list);
2914	struct backref_cache *cache = &rc->backref_cache;
2915	struct backref_node *node;
2916	int level;
2917	int ret;
2918
2919	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2920		while (!list_empty(&cache->pending[level])) {
2921			node = list_entry(cache->pending[level].next,
2922					  struct backref_node, list);
2923			list_move_tail(&node->list, &list);
2924			BUG_ON(!node->pending);
2925
2926			if (!err) {
2927				ret = link_to_upper(trans, rc, node, path);
2928				if (ret < 0)
2929					err = ret;
2930			}
2931		}
2932		list_splice_init(&list, &cache->pending[level]);
2933	}
2934	return err;
2935}
2936
2937static void mark_block_processed(struct reloc_control *rc,
2938				 u64 bytenr, u32 blocksize)
2939{
2940	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2941			EXTENT_DIRTY);
2942}
2943
2944static void __mark_block_processed(struct reloc_control *rc,
2945				   struct backref_node *node)
2946{
2947	u32 blocksize;
2948	if (node->level == 0 ||
2949	    in_block_group(node->bytenr, rc->block_group)) {
2950		blocksize = rc->extent_root->fs_info->nodesize;
2951		mark_block_processed(rc, node->bytenr, blocksize);
2952	}
2953	node->processed = 1;
2954}
2955
2956/*
2957 * mark a block and all blocks directly/indirectly reference the block
2958 * as processed.
2959 */
2960static void update_processed_blocks(struct reloc_control *rc,
2961				    struct backref_node *node)
2962{
2963	struct backref_node *next = node;
2964	struct backref_edge *edge;
2965	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2966	int index = 0;
2967
2968	while (next) {
2969		cond_resched();
2970		while (1) {
2971			if (next->processed)
2972				break;
2973
2974			__mark_block_processed(rc, next);
2975
2976			if (list_empty(&next->upper))
2977				break;
2978
2979			edge = list_entry(next->upper.next,
2980					  struct backref_edge, list[LOWER]);
2981			edges[index++] = edge;
2982			next = edge->node[UPPER];
2983		}
2984		next = walk_down_backref(edges, &index);
2985	}
2986}
2987
2988static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2989{
2990	u32 blocksize = rc->extent_root->fs_info->nodesize;
2991
2992	if (test_range_bit(&rc->processed_blocks, bytenr,
2993			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2994		return 1;
2995	return 0;
2996}
2997
2998static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2999			      struct tree_block *block)
3000{
3001	struct extent_buffer *eb;
3002
3003	BUG_ON(block->key_ready);
3004	eb = read_tree_block(fs_info, block->bytenr, block->key.offset,
3005			     block->level, NULL);
3006	if (IS_ERR(eb)) {
3007		return PTR_ERR(eb);
3008	} else if (!extent_buffer_uptodate(eb)) {
3009		free_extent_buffer(eb);
3010		return -EIO;
3011	}
3012	if (block->level == 0)
3013		btrfs_item_key_to_cpu(eb, &block->key, 0);
3014	else
3015		btrfs_node_key_to_cpu(eb, &block->key, 0);
3016	free_extent_buffer(eb);
3017	block->key_ready = 1;
3018	return 0;
3019}
3020
3021/*
3022 * helper function to relocate a tree block
3023 */
3024static int relocate_tree_block(struct btrfs_trans_handle *trans,
3025				struct reloc_control *rc,
3026				struct backref_node *node,
3027				struct btrfs_key *key,
3028				struct btrfs_path *path)
3029{
3030	struct btrfs_root *root;
3031	int ret = 0;
3032
3033	if (!node)
3034		return 0;
3035
 
 
 
 
 
 
 
 
3036	BUG_ON(node->processed);
3037	root = select_one_root(node);
3038	if (root == ERR_PTR(-ENOENT)) {
3039		update_processed_blocks(rc, node);
3040		goto out;
3041	}
3042
3043	if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
3044		ret = reserve_metadata_space(trans, rc, node);
3045		if (ret)
3046			goto out;
 
 
 
3047	}
3048
3049	if (root) {
3050		if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
3051			BUG_ON(node->new_bytenr);
3052			BUG_ON(!list_empty(&node->list));
3053			btrfs_record_root_in_trans(trans, root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3054			root = root->reloc_root;
3055			node->new_bytenr = root->node->start;
3056			node->root = root;
 
 
3057			list_add_tail(&node->list, &rc->backref_cache.changed);
3058		} else {
3059			path->lowest_level = node->level;
3060			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
3061			btrfs_release_path(path);
3062			if (ret > 0)
3063				ret = 0;
3064		}
3065		if (!ret)
3066			update_processed_blocks(rc, node);
3067	} else {
3068		ret = do_relocation(trans, rc, node, key, path, 1);
3069	}
3070out:
3071	if (ret || node->level == 0 || node->cowonly)
3072		remove_backref_node(&rc->backref_cache, node);
3073	return ret;
3074}
3075
3076/*
3077 * relocate a list of blocks
3078 */
3079static noinline_for_stack
3080int relocate_tree_blocks(struct btrfs_trans_handle *trans,
3081			 struct reloc_control *rc, struct rb_root *blocks)
3082{
3083	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3084	struct backref_node *node;
3085	struct btrfs_path *path;
3086	struct tree_block *block;
3087	struct tree_block *next;
3088	int ret;
3089	int err = 0;
3090
3091	path = btrfs_alloc_path();
3092	if (!path) {
3093		err = -ENOMEM;
3094		goto out_free_blocks;
3095	}
3096
3097	/* Kick in readahead for tree blocks with missing keys */
3098	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
3099		if (!block->key_ready)
3100			readahead_tree_block(fs_info, block->bytenr);
 
 
3101	}
3102
3103	/* Get first keys */
3104	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
3105		if (!block->key_ready) {
3106			err = get_tree_block_key(fs_info, block);
3107			if (err)
3108				goto out_free_path;
3109		}
3110	}
3111
3112	/* Do tree relocation */
3113	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
3114		node = build_backref_tree(rc, &block->key,
3115					  block->level, block->bytenr);
3116		if (IS_ERR(node)) {
3117			err = PTR_ERR(node);
3118			goto out;
3119		}
3120
3121		ret = relocate_tree_block(trans, rc, node, &block->key,
3122					  path);
3123		if (ret < 0) {
3124			if (ret != -EAGAIN || &block->rb_node == rb_first(blocks))
3125				err = ret;
3126			goto out;
3127		}
3128	}
3129out:
3130	err = finish_pending_nodes(trans, rc, path, err);
3131
3132out_free_path:
3133	btrfs_free_path(path);
3134out_free_blocks:
3135	free_block_list(blocks);
3136	return err;
3137}
3138
3139static noinline_for_stack
3140int prealloc_file_extent_cluster(struct inode *inode,
3141				 struct file_extent_cluster *cluster)
3142{
3143	u64 alloc_hint = 0;
3144	u64 start;
3145	u64 end;
3146	u64 offset = BTRFS_I(inode)->index_cnt;
3147	u64 num_bytes;
3148	int nr = 0;
3149	int ret = 0;
3150	u64 prealloc_start = cluster->start - offset;
3151	u64 prealloc_end = cluster->end - offset;
3152	u64 cur_offset;
3153	struct extent_changeset *data_reserved = NULL;
3154
3155	BUG_ON(cluster->start != cluster->boundary[0]);
3156	inode_lock(inode);
3157
3158	ret = btrfs_check_data_free_space(inode, &data_reserved, prealloc_start,
3159					  prealloc_end + 1 - prealloc_start);
3160	if (ret)
3161		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3162
3163	cur_offset = prealloc_start;
3164	while (nr < cluster->nr) {
 
 
 
3165		start = cluster->boundary[nr] - offset;
3166		if (nr + 1 < cluster->nr)
3167			end = cluster->boundary[nr + 1] - 1 - offset;
3168		else
3169			end = cluster->end - offset;
3170
3171		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3172		num_bytes = end + 1 - start;
3173		if (cur_offset < start)
3174			btrfs_free_reserved_data_space(inode, data_reserved,
3175					cur_offset, start - cur_offset);
3176		ret = btrfs_prealloc_file_range(inode, 0, start,
3177						num_bytes, num_bytes,
3178						end + 1, &alloc_hint);
3179		cur_offset = end + 1;
3180		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3181		if (ret)
3182			break;
3183		nr++;
3184	}
 
 
3185	if (cur_offset < prealloc_end)
3186		btrfs_free_reserved_data_space(inode, data_reserved,
3187				cur_offset, prealloc_end + 1 - cur_offset);
3188out:
3189	inode_unlock(inode);
3190	extent_changeset_free(data_reserved);
3191	return ret;
3192}
3193
3194static noinline_for_stack
3195int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
3196			 u64 block_start)
3197{
3198	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3199	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3200	struct extent_map *em;
3201	int ret = 0;
3202
3203	em = alloc_extent_map();
3204	if (!em)
3205		return -ENOMEM;
3206
3207	em->start = start;
3208	em->len = end + 1 - start;
3209	em->block_len = em->len;
3210	em->block_start = block_start;
3211	em->bdev = fs_info->fs_devices->latest_bdev;
3212	set_bit(EXTENT_FLAG_PINNED, &em->flags);
3213
3214	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3215	while (1) {
3216		write_lock(&em_tree->lock);
3217		ret = add_extent_mapping(em_tree, em, 0);
3218		write_unlock(&em_tree->lock);
3219		if (ret != -EEXIST) {
3220			free_extent_map(em);
3221			break;
3222		}
3223		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3224	}
3225	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3226	return ret;
3227}
3228
 
 
 
 
 
 
 
 
 
 
 
3229static int relocate_file_extent_cluster(struct inode *inode,
3230					struct file_extent_cluster *cluster)
3231{
3232	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3233	u64 page_start;
3234	u64 page_end;
3235	u64 offset = BTRFS_I(inode)->index_cnt;
3236	unsigned long index;
3237	unsigned long last_index;
3238	struct page *page;
3239	struct file_ra_state *ra;
3240	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3241	int nr = 0;
3242	int ret = 0;
3243
3244	if (!cluster->nr)
3245		return 0;
3246
3247	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3248	if (!ra)
3249		return -ENOMEM;
3250
3251	ret = prealloc_file_extent_cluster(inode, cluster);
3252	if (ret)
3253		goto out;
3254
3255	file_ra_state_init(ra, inode->i_mapping);
3256
3257	ret = setup_extent_mapping(inode, cluster->start - offset,
3258				   cluster->end - offset, cluster->start);
3259	if (ret)
3260		goto out;
3261
3262	index = (cluster->start - offset) >> PAGE_SHIFT;
3263	last_index = (cluster->end - offset) >> PAGE_SHIFT;
3264	while (index <= last_index) {
3265		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
3266				PAGE_SIZE);
3267		if (ret)
3268			goto out;
3269
3270		page = find_lock_page(inode->i_mapping, index);
3271		if (!page) {
3272			page_cache_sync_readahead(inode->i_mapping,
3273						  ra, NULL, index,
3274						  last_index + 1 - index);
3275			page = find_or_create_page(inode->i_mapping, index,
3276						   mask);
3277			if (!page) {
3278				btrfs_delalloc_release_metadata(BTRFS_I(inode),
3279							PAGE_SIZE, true);
3280				btrfs_delalloc_release_extents(BTRFS_I(inode),
3281							PAGE_SIZE);
3282				ret = -ENOMEM;
3283				goto out;
3284			}
3285		}
 
 
 
 
 
 
 
 
 
3286
3287		if (PageReadahead(page)) {
3288			page_cache_async_readahead(inode->i_mapping,
3289						   ra, NULL, page, index,
3290						   last_index + 1 - index);
3291		}
3292
3293		if (!PageUptodate(page)) {
3294			btrfs_readpage(NULL, page);
3295			lock_page(page);
3296			if (!PageUptodate(page)) {
3297				unlock_page(page);
3298				put_page(page);
3299				btrfs_delalloc_release_metadata(BTRFS_I(inode),
3300							PAGE_SIZE, true);
3301				btrfs_delalloc_release_extents(BTRFS_I(inode),
3302							       PAGE_SIZE);
3303				ret = -EIO;
3304				goto out;
3305			}
3306		}
3307
3308		page_start = page_offset(page);
3309		page_end = page_start + PAGE_SIZE - 1;
3310
3311		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3312
3313		set_page_extent_mapped(page);
3314
3315		if (nr < cluster->nr &&
3316		    page_start + offset == cluster->boundary[nr]) {
3317			set_extent_bits(&BTRFS_I(inode)->io_tree,
3318					page_start, page_end,
3319					EXTENT_BOUNDARY);
3320			nr++;
3321		}
3322
3323		ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
3324						NULL);
3325		if (ret) {
3326			unlock_page(page);
3327			put_page(page);
3328			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3329							 PAGE_SIZE, true);
3330			btrfs_delalloc_release_extents(BTRFS_I(inode),
3331			                               PAGE_SIZE);
3332
3333			clear_extent_bits(&BTRFS_I(inode)->io_tree,
3334					  page_start, page_end,
3335					  EXTENT_LOCKED | EXTENT_BOUNDARY);
3336			goto out;
3337
3338		}
3339		set_page_dirty(page);
3340
3341		unlock_extent(&BTRFS_I(inode)->io_tree,
3342			      page_start, page_end);
3343		unlock_page(page);
3344		put_page(page);
3345
3346		index++;
3347		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
3348		balance_dirty_pages_ratelimited(inode->i_mapping);
3349		btrfs_throttle(fs_info);
 
 
 
 
3350	}
3351	WARN_ON(nr != cluster->nr);
 
 
3352out:
3353	kfree(ra);
3354	return ret;
3355}
3356
3357static noinline_for_stack
3358int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3359			 struct file_extent_cluster *cluster)
3360{
3361	int ret;
3362
3363	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3364		ret = relocate_file_extent_cluster(inode, cluster);
3365		if (ret)
3366			return ret;
3367		cluster->nr = 0;
3368	}
3369
3370	if (!cluster->nr)
3371		cluster->start = extent_key->objectid;
3372	else
3373		BUG_ON(cluster->nr >= MAX_EXTENTS);
3374	cluster->end = extent_key->objectid + extent_key->offset - 1;
3375	cluster->boundary[cluster->nr] = extent_key->objectid;
3376	cluster->nr++;
3377
3378	if (cluster->nr >= MAX_EXTENTS) {
3379		ret = relocate_file_extent_cluster(inode, cluster);
3380		if (ret)
3381			return ret;
3382		cluster->nr = 0;
3383	}
3384	return 0;
3385}
3386
3387/*
3388 * helper to add a tree block to the list.
3389 * the major work is getting the generation and level of the block
3390 */
3391static int add_tree_block(struct reloc_control *rc,
3392			  struct btrfs_key *extent_key,
3393			  struct btrfs_path *path,
3394			  struct rb_root *blocks)
3395{
3396	struct extent_buffer *eb;
3397	struct btrfs_extent_item *ei;
3398	struct btrfs_tree_block_info *bi;
3399	struct tree_block *block;
3400	struct rb_node *rb_node;
3401	u32 item_size;
3402	int level = -1;
3403	u64 generation;
 
3404
3405	eb =  path->nodes[0];
3406	item_size = btrfs_item_size_nr(eb, path->slots[0]);
3407
3408	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3409	    item_size >= sizeof(*ei) + sizeof(*bi)) {
 
 
3410		ei = btrfs_item_ptr(eb, path->slots[0],
3411				struct btrfs_extent_item);
 
3412		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3413			bi = (struct btrfs_tree_block_info *)(ei + 1);
3414			level = btrfs_tree_block_level(eb, bi);
 
3415		} else {
3416			level = (int)extent_key->offset;
 
3417		}
3418		generation = btrfs_extent_generation(eb, ei);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3419	} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3420		btrfs_print_v0_err(eb->fs_info);
3421		btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3422		return -EINVAL;
3423	} else {
3424		BUG();
3425	}
3426
3427	btrfs_release_path(path);
3428
3429	BUG_ON(level == -1);
3430
3431	block = kmalloc(sizeof(*block), GFP_NOFS);
3432	if (!block)
3433		return -ENOMEM;
3434
3435	block->bytenr = extent_key->objectid;
3436	block->key.objectid = rc->extent_root->fs_info->nodesize;
3437	block->key.offset = generation;
3438	block->level = level;
3439	block->key_ready = 0;
 
3440
3441	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3442	if (rb_node)
3443		backref_tree_panic(rb_node, -EEXIST, block->bytenr);
 
3444
3445	return 0;
3446}
3447
3448/*
3449 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3450 */
3451static int __add_tree_block(struct reloc_control *rc,
3452			    u64 bytenr, u32 blocksize,
3453			    struct rb_root *blocks)
3454{
3455	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3456	struct btrfs_path *path;
3457	struct btrfs_key key;
3458	int ret;
3459	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3460
3461	if (tree_block_processed(bytenr, rc))
3462		return 0;
3463
3464	if (tree_search(blocks, bytenr))
3465		return 0;
3466
3467	path = btrfs_alloc_path();
3468	if (!path)
3469		return -ENOMEM;
3470again:
3471	key.objectid = bytenr;
3472	if (skinny) {
3473		key.type = BTRFS_METADATA_ITEM_KEY;
3474		key.offset = (u64)-1;
3475	} else {
3476		key.type = BTRFS_EXTENT_ITEM_KEY;
3477		key.offset = blocksize;
3478	}
3479
3480	path->search_commit_root = 1;
3481	path->skip_locking = 1;
3482	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3483	if (ret < 0)
3484		goto out;
3485
3486	if (ret > 0 && skinny) {
3487		if (path->slots[0]) {
3488			path->slots[0]--;
3489			btrfs_item_key_to_cpu(path->nodes[0], &key,
3490					      path->slots[0]);
3491			if (key.objectid == bytenr &&
3492			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3493			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3494			      key.offset == blocksize)))
3495				ret = 0;
3496		}
3497
3498		if (ret) {
3499			skinny = false;
3500			btrfs_release_path(path);
3501			goto again;
3502		}
3503	}
3504	if (ret) {
3505		ASSERT(ret == 1);
3506		btrfs_print_leaf(path->nodes[0]);
3507		btrfs_err(fs_info,
3508	     "tree block extent item (%llu) is not found in extent tree",
3509		     bytenr);
3510		WARN_ON(1);
3511		ret = -EINVAL;
3512		goto out;
3513	}
3514
3515	ret = add_tree_block(rc, &key, path, blocks);
3516out:
3517	btrfs_free_path(path);
3518	return ret;
3519}
3520
3521/*
3522 * helper to check if the block use full backrefs for pointers in it
3523 */
3524static int block_use_full_backref(struct reloc_control *rc,
3525				  struct extent_buffer *eb)
3526{
3527	u64 flags;
3528	int ret;
3529
3530	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3531	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3532		return 1;
3533
3534	ret = btrfs_lookup_extent_info(NULL, rc->extent_root->fs_info,
3535				       eb->start, btrfs_header_level(eb), 1,
3536				       NULL, &flags);
3537	BUG_ON(ret);
3538
3539	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3540		ret = 1;
3541	else
3542		ret = 0;
3543	return ret;
3544}
3545
3546static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3547				    struct btrfs_block_group_cache *block_group,
3548				    struct inode *inode,
3549				    u64 ino)
3550{
3551	struct btrfs_key key;
3552	struct btrfs_root *root = fs_info->tree_root;
3553	struct btrfs_trans_handle *trans;
3554	int ret = 0;
3555
3556	if (inode)
3557		goto truncate;
3558
3559	key.objectid = ino;
3560	key.type = BTRFS_INODE_ITEM_KEY;
3561	key.offset = 0;
3562
3563	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3564	if (IS_ERR(inode))
3565		return -ENOENT;
3566
3567truncate:
3568	ret = btrfs_check_trunc_cache_free_space(fs_info,
3569						 &fs_info->global_block_rsv);
3570	if (ret)
3571		goto out;
3572
3573	trans = btrfs_join_transaction(root);
3574	if (IS_ERR(trans)) {
3575		ret = PTR_ERR(trans);
3576		goto out;
3577	}
3578
3579	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3580
3581	btrfs_end_transaction(trans);
3582	btrfs_btree_balance_dirty(fs_info);
3583out:
3584	iput(inode);
3585	return ret;
3586}
3587
3588/*
3589 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3590 * this function scans fs tree to find blocks reference the data extent
3591 */
3592static int find_data_references(struct reloc_control *rc,
3593				struct btrfs_key *extent_key,
3594				struct extent_buffer *leaf,
3595				struct btrfs_extent_data_ref *ref,
3596				struct rb_root *blocks)
3597{
3598	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3599	struct btrfs_path *path;
3600	struct tree_block *block;
3601	struct btrfs_root *root;
3602	struct btrfs_file_extent_item *fi;
3603	struct rb_node *rb_node;
3604	struct btrfs_key key;
3605	u64 ref_root;
3606	u64 ref_objectid;
3607	u64 ref_offset;
3608	u32 ref_count;
3609	u32 nritems;
3610	int err = 0;
3611	int added = 0;
3612	int counted;
3613	int ret;
3614
3615	ref_root = btrfs_extent_data_ref_root(leaf, ref);
3616	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3617	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3618	ref_count = btrfs_extent_data_ref_count(leaf, ref);
3619
3620	/*
3621	 * This is an extent belonging to the free space cache, lets just delete
3622	 * it and redo the search.
3623	 */
3624	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3625		ret = delete_block_group_cache(fs_info, rc->block_group,
3626					       NULL, ref_objectid);
3627		if (ret != -ENOENT)
3628			return ret;
3629		ret = 0;
3630	}
3631
3632	path = btrfs_alloc_path();
3633	if (!path)
3634		return -ENOMEM;
3635	path->reada = READA_FORWARD;
3636
3637	root = read_fs_root(fs_info, ref_root);
3638	if (IS_ERR(root)) {
3639		err = PTR_ERR(root);
3640		goto out;
3641	}
3642
3643	key.objectid = ref_objectid;
3644	key.type = BTRFS_EXTENT_DATA_KEY;
3645	if (ref_offset > ((u64)-1 << 32))
3646		key.offset = 0;
3647	else
3648		key.offset = ref_offset;
3649
3650	path->search_commit_root = 1;
3651	path->skip_locking = 1;
3652	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3653	if (ret < 0) {
3654		err = ret;
3655		goto out;
3656	}
3657
3658	leaf = path->nodes[0];
3659	nritems = btrfs_header_nritems(leaf);
3660	/*
3661	 * the references in tree blocks that use full backrefs
3662	 * are not counted in
3663	 */
3664	if (block_use_full_backref(rc, leaf))
3665		counted = 0;
3666	else
3667		counted = 1;
3668	rb_node = tree_search(blocks, leaf->start);
3669	if (rb_node) {
3670		if (counted)
3671			added = 1;
3672		else
3673			path->slots[0] = nritems;
3674	}
3675
3676	while (ref_count > 0) {
3677		while (path->slots[0] >= nritems) {
3678			ret = btrfs_next_leaf(root, path);
3679			if (ret < 0) {
3680				err = ret;
3681				goto out;
3682			}
3683			if (WARN_ON(ret > 0))
3684				goto out;
3685
3686			leaf = path->nodes[0];
3687			nritems = btrfs_header_nritems(leaf);
3688			added = 0;
3689
3690			if (block_use_full_backref(rc, leaf))
3691				counted = 0;
3692			else
3693				counted = 1;
3694			rb_node = tree_search(blocks, leaf->start);
3695			if (rb_node) {
3696				if (counted)
3697					added = 1;
3698				else
3699					path->slots[0] = nritems;
3700			}
3701		}
3702
3703		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3704		if (WARN_ON(key.objectid != ref_objectid ||
3705		    key.type != BTRFS_EXTENT_DATA_KEY))
 
 
3706			break;
3707
3708		fi = btrfs_item_ptr(leaf, path->slots[0],
3709				    struct btrfs_file_extent_item);
3710
3711		if (btrfs_file_extent_type(leaf, fi) ==
3712		    BTRFS_FILE_EXTENT_INLINE)
3713			goto next;
3714
3715		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3716		    extent_key->objectid)
3717			goto next;
3718
3719		key.offset -= btrfs_file_extent_offset(leaf, fi);
3720		if (key.offset != ref_offset)
3721			goto next;
3722
3723		if (counted)
3724			ref_count--;
3725		if (added)
3726			goto next;
3727
3728		if (!tree_block_processed(leaf->start, rc)) {
3729			block = kmalloc(sizeof(*block), GFP_NOFS);
3730			if (!block) {
3731				err = -ENOMEM;
3732				break;
3733			}
3734			block->bytenr = leaf->start;
3735			btrfs_item_key_to_cpu(leaf, &block->key, 0);
3736			block->level = 0;
3737			block->key_ready = 1;
3738			rb_node = tree_insert(blocks, block->bytenr,
3739					      &block->rb_node);
3740			if (rb_node)
3741				backref_tree_panic(rb_node, -EEXIST,
3742						   block->bytenr);
3743		}
3744		if (counted)
3745			added = 1;
3746		else
3747			path->slots[0] = nritems;
3748next:
3749		path->slots[0]++;
3750
3751	}
3752out:
3753	btrfs_free_path(path);
3754	return err;
 
 
3755}
3756
3757/*
3758 * helper to find all tree blocks that reference a given data extent
3759 */
3760static noinline_for_stack
3761int add_data_references(struct reloc_control *rc,
3762			struct btrfs_key *extent_key,
3763			struct btrfs_path *path,
3764			struct rb_root *blocks)
3765{
3766	struct btrfs_key key;
3767	struct extent_buffer *eb;
3768	struct btrfs_extent_data_ref *dref;
3769	struct btrfs_extent_inline_ref *iref;
3770	unsigned long ptr;
3771	unsigned long end;
3772	u32 blocksize = rc->extent_root->fs_info->nodesize;
3773	int ret = 0;
3774	int err = 0;
3775
3776	eb = path->nodes[0];
3777	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3778	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3779	ptr += sizeof(struct btrfs_extent_item);
3780
3781	while (ptr < end) {
3782		iref = (struct btrfs_extent_inline_ref *)ptr;
3783		key.type = btrfs_get_extent_inline_ref_type(eb, iref,
3784							BTRFS_REF_TYPE_DATA);
3785		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3786			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3787			ret = __add_tree_block(rc, key.offset, blocksize,
3788					       blocks);
3789		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3790			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3791			ret = find_data_references(rc, extent_key,
3792						   eb, dref, blocks);
3793		} else {
3794			ret = -EUCLEAN;
3795			btrfs_err(rc->extent_root->fs_info,
3796		     "extent %llu slot %d has an invalid inline ref type",
3797			     eb->start, path->slots[0]);
3798		}
3799		if (ret) {
3800			err = ret;
3801			goto out;
3802		}
3803		ptr += btrfs_extent_inline_ref_size(key.type);
3804	}
3805	WARN_ON(ptr > end);
3806
3807	while (1) {
3808		cond_resched();
3809		eb = path->nodes[0];
3810		if (path->slots[0] >= btrfs_header_nritems(eb)) {
3811			ret = btrfs_next_leaf(rc->extent_root, path);
3812			if (ret < 0) {
3813				err = ret;
3814				break;
3815			}
3816			if (ret > 0)
3817				break;
3818			eb = path->nodes[0];
3819		}
3820
3821		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3822		if (key.objectid != extent_key->objectid)
 
3823			break;
3824
3825		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3826			ret = __add_tree_block(rc, key.offset, blocksize,
3827					       blocks);
3828		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3829			dref = btrfs_item_ptr(eb, path->slots[0],
3830					      struct btrfs_extent_data_ref);
3831			ret = find_data_references(rc, extent_key,
3832						   eb, dref, blocks);
3833		} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
3834			btrfs_print_v0_err(eb->fs_info);
3835			btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3836			ret = -EINVAL;
3837		} else {
3838			ret = 0;
3839		}
3840		if (ret) {
3841			err = ret;
 
 
 
 
 
3842			break;
3843		}
3844		path->slots[0]++;
3845	}
3846out:
3847	btrfs_release_path(path);
3848	if (err)
3849		free_block_list(blocks);
3850	return err;
 
3851}
3852
3853/*
3854 * helper to find next unprocessed extent
3855 */
3856static noinline_for_stack
3857int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3858		     struct btrfs_key *extent_key)
3859{
3860	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3861	struct btrfs_key key;
3862	struct extent_buffer *leaf;
3863	u64 start, end, last;
3864	int ret;
3865
3866	last = rc->block_group->key.objectid + rc->block_group->key.offset;
3867	while (1) {
3868		cond_resched();
3869		if (rc->search_start >= last) {
3870			ret = 1;
3871			break;
3872		}
3873
3874		key.objectid = rc->search_start;
3875		key.type = BTRFS_EXTENT_ITEM_KEY;
3876		key.offset = 0;
3877
3878		path->search_commit_root = 1;
3879		path->skip_locking = 1;
3880		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3881					0, 0);
3882		if (ret < 0)
3883			break;
3884next:
3885		leaf = path->nodes[0];
3886		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3887			ret = btrfs_next_leaf(rc->extent_root, path);
3888			if (ret != 0)
3889				break;
3890			leaf = path->nodes[0];
3891		}
3892
3893		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3894		if (key.objectid >= last) {
3895			ret = 1;
3896			break;
3897		}
3898
3899		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3900		    key.type != BTRFS_METADATA_ITEM_KEY) {
3901			path->slots[0]++;
3902			goto next;
3903		}
3904
3905		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3906		    key.objectid + key.offset <= rc->search_start) {
3907			path->slots[0]++;
3908			goto next;
3909		}
3910
3911		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3912		    key.objectid + fs_info->nodesize <=
3913		    rc->search_start) {
3914			path->slots[0]++;
3915			goto next;
3916		}
3917
3918		ret = find_first_extent_bit(&rc->processed_blocks,
3919					    key.objectid, &start, &end,
3920					    EXTENT_DIRTY, NULL);
3921
3922		if (ret == 0 && start <= key.objectid) {
3923			btrfs_release_path(path);
3924			rc->search_start = end + 1;
3925		} else {
3926			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3927				rc->search_start = key.objectid + key.offset;
3928			else
3929				rc->search_start = key.objectid +
3930					fs_info->nodesize;
3931			memcpy(extent_key, &key, sizeof(key));
3932			return 0;
3933		}
3934	}
3935	btrfs_release_path(path);
3936	return ret;
3937}
3938
3939static void set_reloc_control(struct reloc_control *rc)
3940{
3941	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3942
3943	mutex_lock(&fs_info->reloc_mutex);
3944	fs_info->reloc_ctl = rc;
3945	mutex_unlock(&fs_info->reloc_mutex);
3946}
3947
3948static void unset_reloc_control(struct reloc_control *rc)
3949{
3950	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3951
3952	mutex_lock(&fs_info->reloc_mutex);
3953	fs_info->reloc_ctl = NULL;
3954	mutex_unlock(&fs_info->reloc_mutex);
3955}
3956
3957static int check_extent_flags(u64 flags)
3958{
3959	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3960	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3961		return 1;
3962	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3963	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3964		return 1;
3965	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3966	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3967		return 1;
3968	return 0;
3969}
3970
3971static noinline_for_stack
3972int prepare_to_relocate(struct reloc_control *rc)
3973{
3974	struct btrfs_trans_handle *trans;
3975	int ret;
3976
3977	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3978					      BTRFS_BLOCK_RSV_TEMP);
3979	if (!rc->block_rsv)
3980		return -ENOMEM;
3981
3982	memset(&rc->cluster, 0, sizeof(rc->cluster));
3983	rc->search_start = rc->block_group->key.objectid;
3984	rc->extents_found = 0;
3985	rc->nodes_relocated = 0;
3986	rc->merging_rsv_size = 0;
3987	rc->reserved_bytes = 0;
3988	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3989			      RELOCATION_RESERVED_NODES;
3990	ret = btrfs_block_rsv_refill(rc->extent_root,
3991				     rc->block_rsv, rc->block_rsv->size,
3992				     BTRFS_RESERVE_FLUSH_ALL);
3993	if (ret)
3994		return ret;
3995
3996	rc->create_reloc_tree = 1;
3997	set_reloc_control(rc);
3998
3999	trans = btrfs_join_transaction(rc->extent_root);
4000	if (IS_ERR(trans)) {
4001		unset_reloc_control(rc);
4002		/*
4003		 * extent tree is not a ref_cow tree and has no reloc_root to
4004		 * cleanup.  And callers are responsible to free the above
4005		 * block rsv.
4006		 */
4007		return PTR_ERR(trans);
4008	}
4009	btrfs_commit_transaction(trans);
4010	return 0;
4011}
4012
4013static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
4014{
4015	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
4016	struct rb_root blocks = RB_ROOT;
4017	struct btrfs_key key;
4018	struct btrfs_trans_handle *trans = NULL;
4019	struct btrfs_path *path;
4020	struct btrfs_extent_item *ei;
4021	u64 flags;
4022	u32 item_size;
4023	int ret;
4024	int err = 0;
4025	int progress = 0;
4026
4027	path = btrfs_alloc_path();
4028	if (!path)
4029		return -ENOMEM;
4030	path->reada = READA_FORWARD;
4031
4032	ret = prepare_to_relocate(rc);
4033	if (ret) {
4034		err = ret;
4035		goto out_free;
4036	}
4037
4038	while (1) {
4039		rc->reserved_bytes = 0;
4040		ret = btrfs_block_rsv_refill(rc->extent_root,
4041					rc->block_rsv, rc->block_rsv->size,
4042					BTRFS_RESERVE_FLUSH_ALL);
4043		if (ret) {
4044			err = ret;
4045			break;
4046		}
4047		progress++;
4048		trans = btrfs_start_transaction(rc->extent_root, 0);
4049		if (IS_ERR(trans)) {
4050			err = PTR_ERR(trans);
4051			trans = NULL;
4052			break;
4053		}
4054restart:
4055		if (update_backref_cache(trans, &rc->backref_cache)) {
4056			btrfs_end_transaction(trans);
4057			trans = NULL;
4058			continue;
4059		}
4060
4061		ret = find_next_extent(rc, path, &key);
4062		if (ret < 0)
4063			err = ret;
4064		if (ret != 0)
4065			break;
4066
4067		rc->extents_found++;
4068
4069		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4070				    struct btrfs_extent_item);
4071		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
4072		if (item_size >= sizeof(*ei)) {
4073			flags = btrfs_extent_flags(path->nodes[0], ei);
4074			ret = check_extent_flags(flags);
4075			BUG_ON(ret);
4076		} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
4077			err = -EINVAL;
4078			btrfs_print_v0_err(trans->fs_info);
4079			btrfs_abort_transaction(trans, err);
4080			break;
4081		} else {
4082			BUG();
4083		}
4084
4085		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
4086			ret = add_tree_block(rc, &key, path, &blocks);
4087		} else if (rc->stage == UPDATE_DATA_PTRS &&
4088			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
4089			ret = add_data_references(rc, &key, path, &blocks);
4090		} else {
4091			btrfs_release_path(path);
4092			ret = 0;
4093		}
4094		if (ret < 0) {
4095			err = ret;
4096			break;
4097		}
4098
4099		if (!RB_EMPTY_ROOT(&blocks)) {
4100			ret = relocate_tree_blocks(trans, rc, &blocks);
4101			if (ret < 0) {
4102				/*
4103				 * if we fail to relocate tree blocks, force to update
4104				 * backref cache when committing transaction.
4105				 */
4106				rc->backref_cache.last_trans = trans->transid - 1;
4107
4108				if (ret != -EAGAIN) {
4109					err = ret;
4110					break;
4111				}
4112				rc->extents_found--;
4113				rc->search_start = key.objectid;
4114			}
4115		}
4116
4117		btrfs_end_transaction_throttle(trans);
4118		btrfs_btree_balance_dirty(fs_info);
4119		trans = NULL;
4120
4121		if (rc->stage == MOVE_DATA_EXTENTS &&
4122		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
4123			rc->found_file_extent = 1;
4124			ret = relocate_data_extent(rc->data_inode,
4125						   &key, &rc->cluster);
4126			if (ret < 0) {
4127				err = ret;
4128				break;
4129			}
4130		}
 
 
 
 
4131	}
4132	if (trans && progress && err == -ENOSPC) {
4133		ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
4134		if (ret == 1) {
4135			err = 0;
4136			progress = 0;
4137			goto restart;
4138		}
4139	}
4140
4141	btrfs_release_path(path);
4142	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
4143
4144	if (trans) {
4145		btrfs_end_transaction_throttle(trans);
4146		btrfs_btree_balance_dirty(fs_info);
4147	}
4148
4149	if (!err) {
4150		ret = relocate_file_extent_cluster(rc->data_inode,
4151						   &rc->cluster);
4152		if (ret < 0)
4153			err = ret;
4154	}
4155
4156	rc->create_reloc_tree = 0;
4157	set_reloc_control(rc);
4158
4159	backref_cache_cleanup(&rc->backref_cache);
4160	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4161
 
 
 
 
 
 
 
 
4162	err = prepare_to_merge(rc, err);
4163
4164	merge_reloc_roots(rc);
4165
4166	rc->merge_reloc_tree = 0;
4167	unset_reloc_control(rc);
4168	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4169
4170	/* get rid of pinned extents */
4171	trans = btrfs_join_transaction(rc->extent_root);
4172	if (IS_ERR(trans)) {
4173		err = PTR_ERR(trans);
4174		goto out_free;
4175	}
4176	btrfs_commit_transaction(trans);
 
 
 
4177	ret = clean_dirty_subvols(rc);
4178	if (ret < 0 && !err)
4179		err = ret;
4180out_free:
4181	btrfs_free_block_rsv(fs_info, rc->block_rsv);
4182	btrfs_free_path(path);
4183	return err;
4184}
4185
4186static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4187				 struct btrfs_root *root, u64 objectid)
4188{
4189	struct btrfs_path *path;
4190	struct btrfs_inode_item *item;
4191	struct extent_buffer *leaf;
 
4192	int ret;
4193
 
 
 
4194	path = btrfs_alloc_path();
4195	if (!path)
4196		return -ENOMEM;
4197
4198	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
4199	if (ret)
4200		goto out;
4201
4202	leaf = path->nodes[0];
4203	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4204	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
4205	btrfs_set_inode_generation(leaf, item, 1);
4206	btrfs_set_inode_size(leaf, item, 0);
4207	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4208	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
4209					  BTRFS_INODE_PREALLOC);
4210	btrfs_mark_buffer_dirty(leaf);
4211out:
4212	btrfs_free_path(path);
4213	return ret;
4214}
4215
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4216/*
4217 * helper to create inode for data relocation.
4218 * the inode is in data relocation tree and its link count is 0
4219 */
4220static noinline_for_stack
4221struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
4222				 struct btrfs_block_group_cache *group)
4223{
4224	struct inode *inode = NULL;
4225	struct btrfs_trans_handle *trans;
4226	struct btrfs_root *root;
4227	struct btrfs_key key;
4228	u64 objectid;
4229	int err = 0;
4230
4231	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4232	if (IS_ERR(root))
4233		return ERR_CAST(root);
4234
4235	trans = btrfs_start_transaction(root, 6);
4236	if (IS_ERR(trans))
 
4237		return ERR_CAST(trans);
 
4238
4239	err = btrfs_find_free_objectid(root, &objectid);
4240	if (err)
4241		goto out;
4242
4243	err = __insert_orphan_inode(trans, root, objectid);
4244	BUG_ON(err);
 
4245
4246	key.objectid = objectid;
4247	key.type = BTRFS_INODE_ITEM_KEY;
4248	key.offset = 0;
4249	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4250	BUG_ON(IS_ERR(inode));
4251	BTRFS_I(inode)->index_cnt = group->key.objectid;
 
 
4252
4253	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4254out:
 
4255	btrfs_end_transaction(trans);
4256	btrfs_btree_balance_dirty(fs_info);
4257	if (err) {
4258		if (inode)
4259			iput(inode);
4260		inode = ERR_PTR(err);
4261	}
4262	return inode;
4263}
4264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4265static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
4266{
4267	struct reloc_control *rc;
4268
4269	rc = kzalloc(sizeof(*rc), GFP_NOFS);
4270	if (!rc)
4271		return NULL;
4272
4273	INIT_LIST_HEAD(&rc->reloc_roots);
4274	INIT_LIST_HEAD(&rc->dirty_subvol_roots);
4275	backref_cache_init(&rc->backref_cache);
4276	mapping_tree_init(&rc->reloc_root_tree);
4277	extent_io_tree_init(fs_info, &rc->processed_blocks,
4278			    IO_TREE_RELOC_BLOCKS, NULL);
4279	return rc;
4280}
4281
 
 
 
 
 
 
 
 
 
 
 
 
4282/*
4283 * Print the block group being relocated
4284 */
4285static void describe_relocation(struct btrfs_fs_info *fs_info,
4286				struct btrfs_block_group_cache *block_group)
4287{
4288	char buf[128] = {'\0'};
4289
4290	btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
4291
4292	btrfs_info(fs_info,
4293		   "relocating block group %llu flags %s",
4294		   block_group->key.objectid, buf);
 
 
 
 
 
 
 
 
 
4295}
4296
4297/*
4298 * function to relocate all extents in a block group.
4299 */
4300int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
4301{
4302	struct btrfs_block_group_cache *bg;
4303	struct btrfs_root *extent_root = fs_info->extent_root;
4304	struct reloc_control *rc;
4305	struct inode *inode;
4306	struct btrfs_path *path;
4307	int ret;
4308	int rw = 0;
4309	int err = 0;
4310
4311	bg = btrfs_lookup_block_group(fs_info, group_start);
4312	if (!bg)
4313		return -ENOENT;
4314
4315	if (btrfs_pinned_by_swapfile(fs_info, bg)) {
4316		btrfs_put_block_group(bg);
4317		return -ETXTBSY;
4318	}
4319
4320	rc = alloc_reloc_control(fs_info);
4321	if (!rc) {
4322		btrfs_put_block_group(bg);
4323		return -ENOMEM;
4324	}
4325
 
 
 
 
 
 
4326	rc->extent_root = extent_root;
4327	rc->block_group = bg;
4328
4329	ret = btrfs_inc_block_group_ro(rc->block_group);
4330	if (ret) {
4331		err = ret;
4332		goto out;
4333	}
4334	rw = 1;
4335
4336	path = btrfs_alloc_path();
4337	if (!path) {
4338		err = -ENOMEM;
4339		goto out;
4340	}
4341
4342	inode = lookup_free_space_inode(rc->block_group, path);
4343	btrfs_free_path(path);
4344
4345	if (!IS_ERR(inode))
4346		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4347	else
4348		ret = PTR_ERR(inode);
4349
4350	if (ret && ret != -ENOENT) {
4351		err = ret;
4352		goto out;
4353	}
4354
4355	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4356	if (IS_ERR(rc->data_inode)) {
4357		err = PTR_ERR(rc->data_inode);
4358		rc->data_inode = NULL;
4359		goto out;
4360	}
4361
4362	describe_relocation(fs_info, rc->block_group);
4363
4364	btrfs_wait_block_group_reservations(rc->block_group);
4365	btrfs_wait_nocow_writers(rc->block_group);
4366	btrfs_wait_ordered_roots(fs_info, U64_MAX,
4367				 rc->block_group->key.objectid,
4368				 rc->block_group->key.offset);
4369
4370	while (1) {
 
 
4371		mutex_lock(&fs_info->cleaner_mutex);
4372		ret = relocate_block_group(rc);
4373		mutex_unlock(&fs_info->cleaner_mutex);
4374		if (ret < 0)
4375			err = ret;
4376
 
4377		/*
4378		 * We may have gotten ENOSPC after we already dirtied some
4379		 * extents.  If writeout happens while we're relocating a
4380		 * different block group we could end up hitting the
4381		 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4382		 * btrfs_reloc_cow_block.  Make sure we write everything out
4383		 * properly so we don't trip over this problem, and then break
4384		 * out of the loop if we hit an error.
4385		 */
4386		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4387			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4388						       (u64)-1);
4389			if (ret)
4390				err = ret;
4391			invalidate_mapping_pages(rc->data_inode->i_mapping,
4392						 0, -1);
4393			rc->stage = UPDATE_DATA_PTRS;
4394		}
4395
4396		if (err < 0)
4397			goto out;
4398
4399		if (rc->extents_found == 0)
4400			break;
4401
4402		btrfs_info(fs_info, "found %llu extents", rc->extents_found);
4403
4404	}
4405
4406	WARN_ON(rc->block_group->pinned > 0);
4407	WARN_ON(rc->block_group->reserved > 0);
4408	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4409out:
4410	if (err && rw)
4411		btrfs_dec_block_group_ro(rc->block_group);
4412	iput(rc->data_inode);
4413	btrfs_put_block_group(rc->block_group);
4414	kfree(rc);
 
 
4415	return err;
4416}
4417
4418static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4419{
4420	struct btrfs_fs_info *fs_info = root->fs_info;
4421	struct btrfs_trans_handle *trans;
4422	int ret, err;
4423
4424	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4425	if (IS_ERR(trans))
4426		return PTR_ERR(trans);
4427
4428	memset(&root->root_item.drop_progress, 0,
4429		sizeof(root->root_item.drop_progress));
4430	root->root_item.drop_level = 0;
4431	btrfs_set_root_refs(&root->root_item, 0);
4432	ret = btrfs_update_root(trans, fs_info->tree_root,
4433				&root->root_key, &root->root_item);
4434
4435	err = btrfs_end_transaction(trans);
4436	if (err)
4437		return err;
4438	return ret;
4439}
4440
4441/*
4442 * recover relocation interrupted by system crash.
4443 *
4444 * this function resumes merging reloc trees with corresponding fs trees.
4445 * this is important for keeping the sharing of tree blocks
4446 */
4447int btrfs_recover_relocation(struct btrfs_root *root)
4448{
4449	struct btrfs_fs_info *fs_info = root->fs_info;
4450	LIST_HEAD(reloc_roots);
4451	struct btrfs_key key;
4452	struct btrfs_root *fs_root;
4453	struct btrfs_root *reloc_root;
4454	struct btrfs_path *path;
4455	struct extent_buffer *leaf;
4456	struct reloc_control *rc = NULL;
4457	struct btrfs_trans_handle *trans;
4458	int ret;
4459	int err = 0;
4460
4461	path = btrfs_alloc_path();
4462	if (!path)
4463		return -ENOMEM;
4464	path->reada = READA_BACK;
4465
4466	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4467	key.type = BTRFS_ROOT_ITEM_KEY;
4468	key.offset = (u64)-1;
4469
4470	while (1) {
4471		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4472					path, 0, 0);
4473		if (ret < 0) {
4474			err = ret;
4475			goto out;
4476		}
4477		if (ret > 0) {
4478			if (path->slots[0] == 0)
4479				break;
4480			path->slots[0]--;
4481		}
4482		leaf = path->nodes[0];
4483		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4484		btrfs_release_path(path);
4485
4486		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4487		    key.type != BTRFS_ROOT_ITEM_KEY)
4488			break;
4489
4490		reloc_root = btrfs_read_fs_root(root, &key);
4491		if (IS_ERR(reloc_root)) {
4492			err = PTR_ERR(reloc_root);
4493			goto out;
4494		}
4495
 
4496		list_add(&reloc_root->root_list, &reloc_roots);
4497
4498		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4499			fs_root = read_fs_root(fs_info,
4500					       reloc_root->root_key.offset);
4501			if (IS_ERR(fs_root)) {
4502				ret = PTR_ERR(fs_root);
4503				if (ret != -ENOENT) {
4504					err = ret;
4505					goto out;
4506				}
4507				ret = mark_garbage_root(reloc_root);
4508				if (ret < 0) {
4509					err = ret;
4510					goto out;
4511				}
 
 
4512			}
4513		}
4514
4515		if (key.offset == 0)
4516			break;
4517
4518		key.offset--;
4519	}
4520	btrfs_release_path(path);
4521
4522	if (list_empty(&reloc_roots))
4523		goto out;
4524
4525	rc = alloc_reloc_control(fs_info);
4526	if (!rc) {
4527		err = -ENOMEM;
4528		goto out;
4529	}
4530
 
 
 
 
 
 
4531	rc->extent_root = fs_info->extent_root;
4532
4533	set_reloc_control(rc);
4534
4535	trans = btrfs_join_transaction(rc->extent_root);
4536	if (IS_ERR(trans)) {
4537		unset_reloc_control(rc);
4538		err = PTR_ERR(trans);
4539		goto out_free;
4540	}
4541
4542	rc->merge_reloc_tree = 1;
4543
4544	while (!list_empty(&reloc_roots)) {
4545		reloc_root = list_entry(reloc_roots.next,
4546					struct btrfs_root, root_list);
4547		list_del(&reloc_root->root_list);
4548
4549		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4550			list_add_tail(&reloc_root->root_list,
4551				      &rc->reloc_roots);
4552			continue;
4553		}
4554
4555		fs_root = read_fs_root(fs_info, reloc_root->root_key.offset);
 
4556		if (IS_ERR(fs_root)) {
4557			err = PTR_ERR(fs_root);
4558			goto out_free;
 
 
4559		}
4560
4561		err = __add_reloc_root(reloc_root);
4562		BUG_ON(err < 0); /* -ENOMEM or logic error */
4563		fs_root->reloc_root = reloc_root;
 
 
 
 
 
 
 
4564	}
4565
4566	err = btrfs_commit_transaction(trans);
4567	if (err)
4568		goto out_free;
4569
4570	merge_reloc_roots(rc);
4571
4572	unset_reloc_control(rc);
4573
4574	trans = btrfs_join_transaction(rc->extent_root);
4575	if (IS_ERR(trans)) {
4576		err = PTR_ERR(trans);
4577		goto out_free;
4578	}
4579	err = btrfs_commit_transaction(trans);
4580
4581	ret = clean_dirty_subvols(rc);
4582	if (ret < 0 && !err)
4583		err = ret;
4584out_free:
4585	kfree(rc);
 
 
 
4586out:
4587	if (!list_empty(&reloc_roots))
4588		free_reloc_roots(&reloc_roots);
4589
4590	btrfs_free_path(path);
4591
4592	if (err == 0) {
4593		/* cleanup orphan inode in data relocation tree */
4594		fs_root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4595		if (IS_ERR(fs_root))
4596			err = PTR_ERR(fs_root);
4597		else
4598			err = btrfs_orphan_cleanup(fs_root);
4599	}
4600	return err;
4601}
4602
4603/*
4604 * helper to add ordered checksum for data relocation.
4605 *
4606 * cloning checksum properly handles the nodatasum extents.
4607 * it also saves CPU time to re-calculate the checksum.
4608 */
4609int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4610{
4611	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4612	struct btrfs_ordered_sum *sums;
4613	struct btrfs_ordered_extent *ordered;
4614	int ret;
4615	u64 disk_bytenr;
4616	u64 new_bytenr;
4617	LIST_HEAD(list);
4618
4619	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4620	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4621
4622	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4623	ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
4624				       disk_bytenr + len - 1, &list, 0);
4625	if (ret)
4626		goto out;
4627
4628	while (!list_empty(&list)) {
4629		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4630		list_del_init(&sums->list);
4631
4632		/*
4633		 * We need to offset the new_bytenr based on where the csum is.
4634		 * We need to do this because we will read in entire prealloc
4635		 * extents but we may have written to say the middle of the
4636		 * prealloc extent, so we need to make sure the csum goes with
4637		 * the right disk offset.
4638		 *
4639		 * We can do this because the data reloc inode refers strictly
4640		 * to the on disk bytes, so we don't have to worry about
4641		 * disk_len vs real len like with real inodes since it's all
4642		 * disk length.
4643		 */
4644		new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
4645		sums->bytenr = new_bytenr;
4646
4647		btrfs_add_ordered_sum(ordered, sums);
4648	}
4649out:
4650	btrfs_put_ordered_extent(ordered);
4651	return ret;
4652}
4653
4654int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4655			  struct btrfs_root *root, struct extent_buffer *buf,
4656			  struct extent_buffer *cow)
4657{
4658	struct btrfs_fs_info *fs_info = root->fs_info;
4659	struct reloc_control *rc;
4660	struct backref_node *node;
4661	int first_cow = 0;
4662	int level;
4663	int ret = 0;
4664
4665	rc = fs_info->reloc_ctl;
4666	if (!rc)
4667		return 0;
4668
4669	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4670	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4671
4672	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
4673		if (buf == root->node)
4674			__update_reloc_root(root, cow->start);
4675	}
4676
4677	level = btrfs_header_level(buf);
4678	if (btrfs_header_generation(buf) <=
4679	    btrfs_root_last_snapshot(&root->root_item))
4680		first_cow = 1;
4681
4682	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4683	    rc->create_reloc_tree) {
4684		WARN_ON(!first_cow && level == 0);
4685
4686		node = rc->backref_cache.path[level];
4687		BUG_ON(node->bytenr != buf->start &&
4688		       node->new_bytenr != buf->start);
4689
4690		drop_node_buffer(node);
4691		extent_buffer_get(cow);
4692		node->eb = cow;
4693		node->new_bytenr = cow->start;
4694
4695		if (!node->pending) {
4696			list_move_tail(&node->list,
4697				       &rc->backref_cache.pending[level]);
4698			node->pending = 1;
4699		}
4700
4701		if (first_cow)
4702			__mark_block_processed(rc, node);
4703
4704		if (first_cow && level > 0)
4705			rc->nodes_relocated += buf->len;
4706	}
4707
4708	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4709		ret = replace_file_extents(trans, rc, root, cow);
4710	return ret;
4711}
4712
4713/*
4714 * called before creating snapshot. it calculates metadata reservation
4715 * required for relocating tree blocks in the snapshot
4716 */
4717void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4718			      u64 *bytes_to_reserve)
4719{
4720	struct btrfs_root *root = pending->root;
4721	struct reloc_control *rc = root->fs_info->reloc_ctl;
4722
4723	if (!root->reloc_root || !rc)
4724		return;
4725
4726	if (!rc->merge_reloc_tree)
4727		return;
4728
4729	root = root->reloc_root;
4730	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4731	/*
4732	 * relocation is in the stage of merging trees. the space
4733	 * used by merging a reloc tree is twice the size of
4734	 * relocated tree nodes in the worst case. half for cowing
4735	 * the reloc tree, half for cowing the fs tree. the space
4736	 * used by cowing the reloc tree will be freed after the
4737	 * tree is dropped. if we create snapshot, cowing the fs
4738	 * tree may use more space than it frees. so we need
4739	 * reserve extra space.
4740	 */
4741	*bytes_to_reserve += rc->nodes_relocated;
4742}
4743
4744/*
4745 * called after snapshot is created. migrate block reservation
4746 * and create reloc root for the newly created snapshot
 
 
 
 
4747 */
4748int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4749			       struct btrfs_pending_snapshot *pending)
4750{
4751	struct btrfs_root *root = pending->root;
4752	struct btrfs_root *reloc_root;
4753	struct btrfs_root *new_root;
4754	struct reloc_control *rc = root->fs_info->reloc_ctl;
4755	int ret;
4756
4757	if (!root->reloc_root || !rc)
4758		return 0;
4759
4760	rc = root->fs_info->reloc_ctl;
4761	rc->merging_rsv_size += rc->nodes_relocated;
4762
4763	if (rc->merge_reloc_tree) {
4764		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4765					      rc->block_rsv,
4766					      rc->nodes_relocated, true);
4767		if (ret)
4768			return ret;
4769	}
4770
4771	new_root = pending->snap;
4772	reloc_root = create_reloc_root(trans, root->reloc_root,
4773				       new_root->root_key.objectid);
4774	if (IS_ERR(reloc_root))
4775		return PTR_ERR(reloc_root);
4776
4777	ret = __add_reloc_root(reloc_root);
4778	BUG_ON(ret < 0);
4779	new_root->reloc_root = reloc_root;
 
 
 
 
 
4780
4781	if (rc->create_reloc_tree)
4782		ret = clone_backref_node(trans, rc, root, reloc_root);
4783	return ret;
4784}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2009 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/pagemap.h>
   8#include <linux/writeback.h>
   9#include <linux/blkdev.h>
  10#include <linux/rbtree.h>
  11#include <linux/slab.h>
  12#include <linux/error-injection.h>
  13#include "ctree.h"
  14#include "disk-io.h"
  15#include "transaction.h"
  16#include "volumes.h"
  17#include "locking.h"
  18#include "btrfs_inode.h"
  19#include "async-thread.h"
  20#include "free-space-cache.h"
 
  21#include "qgroup.h"
  22#include "print-tree.h"
  23#include "delalloc-space.h"
  24#include "block-group.h"
  25#include "backref.h"
  26#include "misc.h"
  27
  28/*
  29 * Relocation overview
  30 *
  31 * [What does relocation do]
  32 *
  33 * The objective of relocation is to relocate all extents of the target block
  34 * group to other block groups.
  35 * This is utilized by resize (shrink only), profile converting, compacting
  36 * space, or balance routine to spread chunks over devices.
  37 *
  38 * 		Before		|		After
  39 * ------------------------------------------------------------------
  40 *  BG A: 10 data extents	| BG A: deleted
  41 *  BG B:  2 data extents	| BG B: 10 data extents (2 old + 8 relocated)
  42 *  BG C:  1 extents		| BG C:  3 data extents (1 old + 2 relocated)
  43 *
  44 * [How does relocation work]
  45 *
  46 * 1.   Mark the target block group read-only
  47 *      New extents won't be allocated from the target block group.
  48 *
  49 * 2.1  Record each extent in the target block group
  50 *      To build a proper map of extents to be relocated.
  51 *
  52 * 2.2  Build data reloc tree and reloc trees
  53 *      Data reloc tree will contain an inode, recording all newly relocated
  54 *      data extents.
  55 *      There will be only one data reloc tree for one data block group.
  56 *
  57 *      Reloc tree will be a special snapshot of its source tree, containing
  58 *      relocated tree blocks.
  59 *      Each tree referring to a tree block in target block group will get its
  60 *      reloc tree built.
  61 *
  62 * 2.3  Swap source tree with its corresponding reloc tree
  63 *      Each involved tree only refers to new extents after swap.
  64 *
  65 * 3.   Cleanup reloc trees and data reloc tree.
  66 *      As old extents in the target block group are still referenced by reloc
  67 *      trees, we need to clean them up before really freeing the target block
  68 *      group.
  69 *
  70 * The main complexity is in steps 2.2 and 2.3.
  71 *
  72 * The entry point of relocation is relocate_block_group() function.
 
 
 
 
 
 
 
 
 
  73 */
 
 
 
 
  74
 
 
  75#define RELOCATION_RESERVED_NODES	256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  76/*
  77 * map address of tree root to tree
  78 */
  79struct mapping_node {
  80	struct {
  81		struct rb_node rb_node;
  82		u64 bytenr;
  83	}; /* Use rb_simle_node for search/insert */
  84	void *data;
  85};
  86
  87struct mapping_tree {
  88	struct rb_root rb_root;
  89	spinlock_t lock;
  90};
  91
  92/*
  93 * present a tree block to process
  94 */
  95struct tree_block {
  96	struct {
  97		struct rb_node rb_node;
  98		u64 bytenr;
  99	}; /* Use rb_simple_node for search/insert */
 100	u64 owner;
 101	struct btrfs_key key;
 102	unsigned int level:8;
 103	unsigned int key_ready:1;
 104};
 105
 106#define MAX_EXTENTS 128
 107
 108struct file_extent_cluster {
 109	u64 start;
 110	u64 end;
 111	u64 boundary[MAX_EXTENTS];
 112	unsigned int nr;
 113};
 114
 115struct reloc_control {
 116	/* block group to relocate */
 117	struct btrfs_block_group *block_group;
 118	/* extent tree */
 119	struct btrfs_root *extent_root;
 120	/* inode for moving data */
 121	struct inode *data_inode;
 122
 123	struct btrfs_block_rsv *block_rsv;
 124
 125	struct btrfs_backref_cache backref_cache;
 126
 127	struct file_extent_cluster cluster;
 128	/* tree blocks have been processed */
 129	struct extent_io_tree processed_blocks;
 130	/* map start of tree root to corresponding reloc tree */
 131	struct mapping_tree reloc_root_tree;
 132	/* list of reloc trees */
 133	struct list_head reloc_roots;
 134	/* list of subvolume trees that get relocated */
 135	struct list_head dirty_subvol_roots;
 136	/* size of metadata reservation for merging reloc trees */
 137	u64 merging_rsv_size;
 138	/* size of relocated tree nodes */
 139	u64 nodes_relocated;
 140	/* reserved size for block group relocation*/
 141	u64 reserved_bytes;
 142
 143	u64 search_start;
 144	u64 extents_found;
 145
 146	unsigned int stage:8;
 147	unsigned int create_reloc_tree:1;
 148	unsigned int merge_reloc_tree:1;
 149	unsigned int found_file_extent:1;
 150};
 151
 152/* stages of data relocation */
 153#define MOVE_DATA_EXTENTS	0
 154#define UPDATE_DATA_PTRS	1
 155
 156static void mark_block_processed(struct reloc_control *rc,
 157				 struct btrfs_backref_node *node)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 158{
 159	u32 blocksize;
 
 
 
 
 
 
 160
 161	if (node->level == 0 ||
 162	    in_range(node->bytenr, rc->block_group->start,
 163		     rc->block_group->length)) {
 164		blocksize = rc->extent_root->fs_info->nodesize;
 165		set_extent_bits(&rc->processed_blocks, node->bytenr,
 166				node->bytenr + blocksize - 1, EXTENT_DIRTY);
 167	}
 168	node->processed = 1;
 
 
 
 169}
 170
 
 
 
 
 
 
 
 171
 172static void mapping_tree_init(struct mapping_tree *tree)
 
 
 
 
 
 
 
 
 
 
 173{
 174	tree->rb_root = RB_ROOT;
 175	spin_lock_init(&tree->lock);
 
 
 
 
 
 
 
 176}
 177
 178/*
 179 * walk up backref nodes until reach node presents tree root
 180 */
 181static struct btrfs_backref_node *walk_up_backref(
 182		struct btrfs_backref_node *node,
 183		struct btrfs_backref_edge *edges[], int *index)
 184{
 185	struct btrfs_backref_edge *edge;
 186	int idx = *index;
 187
 188	while (!list_empty(&node->upper)) {
 189		edge = list_entry(node->upper.next,
 190				  struct btrfs_backref_edge, list[LOWER]);
 191		edges[idx++] = edge;
 192		node = edge->node[UPPER];
 193	}
 194	BUG_ON(node->detached);
 195	*index = idx;
 196	return node;
 197}
 198
 199/*
 200 * walk down backref nodes to find start of next reference path
 201 */
 202static struct btrfs_backref_node *walk_down_backref(
 203		struct btrfs_backref_edge *edges[], int *index)
 204{
 205	struct btrfs_backref_edge *edge;
 206	struct btrfs_backref_node *lower;
 207	int idx = *index;
 208
 209	while (idx > 0) {
 210		edge = edges[idx - 1];
 211		lower = edge->node[LOWER];
 212		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
 213			idx--;
 214			continue;
 215		}
 216		edge = list_entry(edge->list[LOWER].next,
 217				  struct btrfs_backref_edge, list[LOWER]);
 218		edges[idx - 1] = edge;
 219		*index = idx;
 220		return edge->node[UPPER];
 221	}
 222	*index = 0;
 223	return NULL;
 224}
 225
 226static void update_backref_node(struct btrfs_backref_cache *cache,
 227				struct btrfs_backref_node *node, u64 bytenr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 228{
 229	struct rb_node *rb_node;
 230	rb_erase(&node->rb_node, &cache->rb_root);
 231	node->bytenr = bytenr;
 232	rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node);
 233	if (rb_node)
 234		btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST);
 235}
 236
 237/*
 238 * update backref cache after a transaction commit
 239 */
 240static int update_backref_cache(struct btrfs_trans_handle *trans,
 241				struct btrfs_backref_cache *cache)
 242{
 243	struct btrfs_backref_node *node;
 244	int level = 0;
 245
 246	if (cache->last_trans == 0) {
 247		cache->last_trans = trans->transid;
 248		return 0;
 249	}
 250
 251	if (cache->last_trans == trans->transid)
 252		return 0;
 253
 254	/*
 255	 * detached nodes are used to avoid unnecessary backref
 256	 * lookup. transaction commit changes the extent tree.
 257	 * so the detached nodes are no longer useful.
 258	 */
 259	while (!list_empty(&cache->detached)) {
 260		node = list_entry(cache->detached.next,
 261				  struct btrfs_backref_node, list);
 262		btrfs_backref_cleanup_node(cache, node);
 263	}
 264
 265	while (!list_empty(&cache->changed)) {
 266		node = list_entry(cache->changed.next,
 267				  struct btrfs_backref_node, list);
 268		list_del_init(&node->list);
 269		BUG_ON(node->pending);
 270		update_backref_node(cache, node, node->new_bytenr);
 271	}
 272
 273	/*
 274	 * some nodes can be left in the pending list if there were
 275	 * errors during processing the pending nodes.
 276	 */
 277	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
 278		list_for_each_entry(node, &cache->pending[level], list) {
 279			BUG_ON(!node->pending);
 280			if (node->bytenr == node->new_bytenr)
 281				continue;
 282			update_backref_node(cache, node, node->new_bytenr);
 283		}
 284	}
 285
 286	cache->last_trans = 0;
 287	return 1;
 288}
 289
 290static bool reloc_root_is_dead(struct btrfs_root *root)
 291{
 292	/*
 293	 * Pair with set_bit/clear_bit in clean_dirty_subvols and
 294	 * btrfs_update_reloc_root. We need to see the updated bit before
 295	 * trying to access reloc_root
 296	 */
 297	smp_rmb();
 298	if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
 299		return true;
 300	return false;
 301}
 302
 303/*
 304 * Check if this subvolume tree has valid reloc tree.
 305 *
 306 * Reloc tree after swap is considered dead, thus not considered as valid.
 307 * This is enough for most callers, as they don't distinguish dead reloc root
 308 * from no reloc root.  But btrfs_should_ignore_reloc_root() below is a
 309 * special case.
 310 */
 311static bool have_reloc_root(struct btrfs_root *root)
 312{
 313	if (reloc_root_is_dead(root))
 314		return false;
 315	if (!root->reloc_root)
 316		return false;
 317	return true;
 318}
 319
 320int btrfs_should_ignore_reloc_root(struct btrfs_root *root)
 321{
 322	struct btrfs_root *reloc_root;
 323
 324	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
 325		return 0;
 326
 327	/* This root has been merged with its reloc tree, we can ignore it */
 328	if (reloc_root_is_dead(root))
 329		return 1;
 330
 331	reloc_root = root->reloc_root;
 332	if (!reloc_root)
 333		return 0;
 334
 335	if (btrfs_header_generation(reloc_root->commit_root) ==
 336	    root->fs_info->running_transaction->transid)
 337		return 0;
 338	/*
 339	 * if there is reloc tree and it was created in previous
 340	 * transaction backref lookup can find the reloc tree,
 341	 * so backref node for the fs tree root is useless for
 342	 * relocation.
 343	 */
 344	return 1;
 345}
 346
 347/*
 348 * find reloc tree by address of tree root
 349 */
 350struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
 
 351{
 352	struct reloc_control *rc = fs_info->reloc_ctl;
 353	struct rb_node *rb_node;
 354	struct mapping_node *node;
 355	struct btrfs_root *root = NULL;
 356
 357	ASSERT(rc);
 358	spin_lock(&rc->reloc_root_tree.lock);
 359	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
 360	if (rb_node) {
 361		node = rb_entry(rb_node, struct mapping_node, rb_node);
 362		root = (struct btrfs_root *)node->data;
 363	}
 364	spin_unlock(&rc->reloc_root_tree.lock);
 365	return btrfs_grab_root(root);
 366}
 367
 368/*
 369 * For useless nodes, do two major clean ups:
 370 *
 371 * - Cleanup the children edges and nodes
 372 *   If child node is also orphan (no parent) during cleanup, then the child
 373 *   node will also be cleaned up.
 374 *
 375 * - Freeing up leaves (level 0), keeps nodes detached
 376 *   For nodes, the node is still cached as "detached"
 377 *
 378 * Return false if @node is not in the @useless_nodes list.
 379 * Return true if @node is in the @useless_nodes list.
 380 */
 381static bool handle_useless_nodes(struct reloc_control *rc,
 382				 struct btrfs_backref_node *node)
 383{
 384	struct btrfs_backref_cache *cache = &rc->backref_cache;
 385	struct list_head *useless_node = &cache->useless_node;
 386	bool ret = false;
 
 
 
 
 
 
 
 
 
 387
 388	while (!list_empty(useless_node)) {
 389		struct btrfs_backref_node *cur;
 
 
 390
 391		cur = list_first_entry(useless_node, struct btrfs_backref_node,
 392				 list);
 393		list_del_init(&cur->list);
 
 
 
 394
 395		/* Only tree root nodes can be added to @useless_nodes */
 396		ASSERT(list_empty(&cur->upper));
 397
 398		if (cur == node)
 399			ret = true;
 
 
 
 
 
 
 400
 401		/* The node is the lowest node */
 402		if (cur->lowest) {
 403			list_del_init(&cur->lower);
 404			cur->lowest = 0;
 405		}
 406
 407		/* Cleanup the lower edges */
 408		while (!list_empty(&cur->lower)) {
 409			struct btrfs_backref_edge *edge;
 410			struct btrfs_backref_node *lower;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 411
 412			edge = list_entry(cur->lower.next,
 413					struct btrfs_backref_edge, list[UPPER]);
 414			list_del(&edge->list[UPPER]);
 415			list_del(&edge->list[LOWER]);
 416			lower = edge->node[LOWER];
 417			btrfs_backref_free_edge(cache, edge);
 418
 419			/* Child node is also orphan, queue for cleanup */
 420			if (list_empty(&lower->upper))
 421				list_add(&lower->list, useless_node);
 422		}
 423		/* Mark this block processed for relocation */
 424		mark_block_processed(rc, cur);
 425
 426		/*
 427		 * Backref nodes for tree leaves are deleted from the cache.
 428		 * Backref nodes for upper level tree blocks are left in the
 429		 * cache to avoid unnecessary backref lookup.
 430		 */
 431		if (cur->level > 0) {
 432			list_add(&cur->list, &cache->detached);
 433			cur->detached = 1;
 434		} else {
 435			rb_erase(&cur->rb_node, &cache->rb_root);
 436			btrfs_backref_free_node(cache, cur);
 437		}
 438	}
 439	return ret;
 
 440}
 441
 442/*
 443 * Build backref tree for a given tree block. Root of the backref tree
 444 * corresponds the tree block, leaves of the backref tree correspond roots of
 445 * b-trees that reference the tree block.
 446 *
 447 * The basic idea of this function is check backrefs of a given block to find
 448 * upper level blocks that reference the block, and then check backrefs of
 449 * these upper level blocks recursively. The recursion stops when tree root is
 450 * reached or backrefs for the block is cached.
 451 *
 452 * NOTE: if we find that backrefs for a block are cached, we know backrefs for
 453 * all upper level blocks that directly/indirectly reference the block are also
 454 * cached.
 455 */
 456static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
 457			struct reloc_control *rc, struct btrfs_key *node_key,
 458			int level, u64 bytenr)
 459{
 460	struct btrfs_backref_iter *iter;
 461	struct btrfs_backref_cache *cache = &rc->backref_cache;
 462	/* For searching parent of TREE_BLOCK_REF */
 463	struct btrfs_path *path;
 464	struct btrfs_backref_node *cur;
 465	struct btrfs_backref_node *node = NULL;
 466	struct btrfs_backref_edge *edge;
 
 
 
 
 
 
 
 
 
 
 
 
 467	int ret;
 468	int err = 0;
 
 469
 470	iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info, GFP_NOFS);
 471	if (!iter)
 472		return ERR_PTR(-ENOMEM);
 473	path = btrfs_alloc_path();
 474	if (!path) {
 475		err = -ENOMEM;
 476		goto out;
 477	}
 
 
 478
 479	node = btrfs_backref_alloc_node(cache, bytenr, level);
 480	if (!node) {
 481		err = -ENOMEM;
 482		goto out;
 483	}
 484
 
 
 485	node->lowest = 1;
 486	cur = node;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 487
 488	/* Breadth-first search to build backref cache */
 489	do {
 490		ret = btrfs_backref_add_tree_node(cache, path, iter, node_key,
 491						  cur);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 492		if (ret < 0) {
 493			err = ret;
 494			goto out;
 495		}
 496		edge = list_first_entry_or_null(&cache->pending_edge,
 497				struct btrfs_backref_edge, list[UPPER]);
 498		/*
 499		 * The pending list isn't empty, take the first block to
 500		 * process
 501		 */
 502		if (edge) {
 503			list_del_init(&edge->list[UPPER]);
 504			cur = edge->node[UPPER];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 505		}
 506	} while (edge);
 507
 508	/* Finish the upper linkage of newly added edges/nodes */
 509	ret = btrfs_backref_finish_upper_links(cache, node);
 510	if (ret < 0) {
 511		err = ret;
 512		goto out;
 513	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 514
 515	if (handle_useless_nodes(rc, node))
 516		node = NULL;
 
 
 
 
 
 
 
 
 
 
 517out:
 518	btrfs_backref_iter_free(iter);
 519	btrfs_free_path(path);
 520	if (err) {
 521		btrfs_backref_error_cleanup(cache, node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 522		return ERR_PTR(err);
 523	}
 524	ASSERT(!node || !node->detached);
 525	ASSERT(list_empty(&cache->useless_node) &&
 526	       list_empty(&cache->pending_edge));
 527	return node;
 528}
 529
 530/*
 531 * helper to add backref node for the newly created snapshot.
 532 * the backref node is created by cloning backref node that
 533 * corresponds to root of source tree
 534 */
 535static int clone_backref_node(struct btrfs_trans_handle *trans,
 536			      struct reloc_control *rc,
 537			      struct btrfs_root *src,
 538			      struct btrfs_root *dest)
 539{
 540	struct btrfs_root *reloc_root = src->reloc_root;
 541	struct btrfs_backref_cache *cache = &rc->backref_cache;
 542	struct btrfs_backref_node *node = NULL;
 543	struct btrfs_backref_node *new_node;
 544	struct btrfs_backref_edge *edge;
 545	struct btrfs_backref_edge *new_edge;
 546	struct rb_node *rb_node;
 547
 548	if (cache->last_trans > 0)
 549		update_backref_cache(trans, cache);
 550
 551	rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
 552	if (rb_node) {
 553		node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
 554		if (node->detached)
 555			node = NULL;
 556		else
 557			BUG_ON(node->new_bytenr != reloc_root->node->start);
 558	}
 559
 560	if (!node) {
 561		rb_node = rb_simple_search(&cache->rb_root,
 562					   reloc_root->commit_root->start);
 563		if (rb_node) {
 564			node = rb_entry(rb_node, struct btrfs_backref_node,
 565					rb_node);
 566			BUG_ON(node->detached);
 567		}
 568	}
 569
 570	if (!node)
 571		return 0;
 572
 573	new_node = btrfs_backref_alloc_node(cache, dest->node->start,
 574					    node->level);
 575	if (!new_node)
 576		return -ENOMEM;
 577
 
 
 578	new_node->lowest = node->lowest;
 579	new_node->checked = 1;
 580	new_node->root = btrfs_grab_root(dest);
 581	ASSERT(new_node->root);
 582
 583	if (!node->lowest) {
 584		list_for_each_entry(edge, &node->lower, list[UPPER]) {
 585			new_edge = btrfs_backref_alloc_edge(cache);
 586			if (!new_edge)
 587				goto fail;
 588
 589			btrfs_backref_link_edge(new_edge, edge->node[LOWER],
 590						new_node, LINK_UPPER);
 
 
 591		}
 592	} else {
 593		list_add_tail(&new_node->lower, &cache->leaves);
 594	}
 595
 596	rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
 597				   &new_node->rb_node);
 598	if (rb_node)
 599		btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
 600
 601	if (!new_node->lowest) {
 602		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
 603			list_add_tail(&new_edge->list[LOWER],
 604				      &new_edge->node[LOWER]->upper);
 605		}
 606	}
 607	return 0;
 608fail:
 609	while (!list_empty(&new_node->lower)) {
 610		new_edge = list_entry(new_node->lower.next,
 611				      struct btrfs_backref_edge, list[UPPER]);
 612		list_del(&new_edge->list[UPPER]);
 613		btrfs_backref_free_edge(cache, new_edge);
 614	}
 615	btrfs_backref_free_node(cache, new_node);
 616	return -ENOMEM;
 617}
 618
 619/*
 620 * helper to add 'address of tree root -> reloc tree' mapping
 621 */
 622static int __must_check __add_reloc_root(struct btrfs_root *root)
 623{
 624	struct btrfs_fs_info *fs_info = root->fs_info;
 625	struct rb_node *rb_node;
 626	struct mapping_node *node;
 627	struct reloc_control *rc = fs_info->reloc_ctl;
 628
 629	node = kmalloc(sizeof(*node), GFP_NOFS);
 630	if (!node)
 631		return -ENOMEM;
 632
 633	node->bytenr = root->commit_root->start;
 634	node->data = root;
 635
 636	spin_lock(&rc->reloc_root_tree.lock);
 637	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
 638				   node->bytenr, &node->rb_node);
 639	spin_unlock(&rc->reloc_root_tree.lock);
 640	if (rb_node) {
 641		btrfs_err(fs_info,
 642			    "Duplicate root found for start=%llu while inserting into relocation tree",
 643			    node->bytenr);
 644		return -EEXIST;
 645	}
 646
 647	list_add_tail(&root->root_list, &rc->reloc_roots);
 648	return 0;
 649}
 650
 651/*
 652 * helper to delete the 'address of tree root -> reloc tree'
 653 * mapping
 654 */
 655static void __del_reloc_root(struct btrfs_root *root)
 656{
 657	struct btrfs_fs_info *fs_info = root->fs_info;
 658	struct rb_node *rb_node;
 659	struct mapping_node *node = NULL;
 660	struct reloc_control *rc = fs_info->reloc_ctl;
 661	bool put_ref = false;
 662
 663	if (rc && root->node) {
 664		spin_lock(&rc->reloc_root_tree.lock);
 665		rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
 666					   root->commit_root->start);
 667		if (rb_node) {
 668			node = rb_entry(rb_node, struct mapping_node, rb_node);
 669			rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
 670			RB_CLEAR_NODE(&node->rb_node);
 671		}
 672		spin_unlock(&rc->reloc_root_tree.lock);
 673		ASSERT(!node || (struct btrfs_root *)node->data == root);
 
 
 674	}
 675
 676	/*
 677	 * We only put the reloc root here if it's on the list.  There's a lot
 678	 * of places where the pattern is to splice the rc->reloc_roots, process
 679	 * the reloc roots, and then add the reloc root back onto
 680	 * rc->reloc_roots.  If we call __del_reloc_root while it's off of the
 681	 * list we don't want the reference being dropped, because the guy
 682	 * messing with the list is in charge of the reference.
 683	 */
 684	spin_lock(&fs_info->trans_lock);
 685	if (!list_empty(&root->root_list)) {
 686		put_ref = true;
 687		list_del_init(&root->root_list);
 688	}
 689	spin_unlock(&fs_info->trans_lock);
 690	if (put_ref)
 691		btrfs_put_root(root);
 692	kfree(node);
 693}
 694
 695/*
 696 * helper to update the 'address of tree root -> reloc tree'
 697 * mapping
 698 */
 699static int __update_reloc_root(struct btrfs_root *root)
 700{
 701	struct btrfs_fs_info *fs_info = root->fs_info;
 702	struct rb_node *rb_node;
 703	struct mapping_node *node = NULL;
 704	struct reloc_control *rc = fs_info->reloc_ctl;
 705
 706	spin_lock(&rc->reloc_root_tree.lock);
 707	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
 708				   root->commit_root->start);
 709	if (rb_node) {
 710		node = rb_entry(rb_node, struct mapping_node, rb_node);
 711		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
 712	}
 713	spin_unlock(&rc->reloc_root_tree.lock);
 714
 715	if (!node)
 716		return 0;
 717	BUG_ON((struct btrfs_root *)node->data != root);
 718
 719	spin_lock(&rc->reloc_root_tree.lock);
 720	node->bytenr = root->node->start;
 721	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
 722				   node->bytenr, &node->rb_node);
 723	spin_unlock(&rc->reloc_root_tree.lock);
 724	if (rb_node)
 725		btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
 726	return 0;
 727}
 728
 729static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
 730					struct btrfs_root *root, u64 objectid)
 731{
 732	struct btrfs_fs_info *fs_info = root->fs_info;
 733	struct btrfs_root *reloc_root;
 734	struct extent_buffer *eb;
 735	struct btrfs_root_item *root_item;
 736	struct btrfs_key root_key;
 737	int ret = 0;
 738	bool must_abort = false;
 739
 740	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
 741	if (!root_item)
 742		return ERR_PTR(-ENOMEM);
 743
 744	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
 745	root_key.type = BTRFS_ROOT_ITEM_KEY;
 746	root_key.offset = objectid;
 747
 748	if (root->root_key.objectid == objectid) {
 749		u64 commit_root_gen;
 750
 751		/* called by btrfs_init_reloc_root */
 752		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
 753				      BTRFS_TREE_RELOC_OBJECTID);
 754		if (ret)
 755			goto fail;
 756
 757		/*
 758		 * Set the last_snapshot field to the generation of the commit
 759		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
 760		 * correctly (returns true) when the relocation root is created
 761		 * either inside the critical section of a transaction commit
 762		 * (through transaction.c:qgroup_account_snapshot()) and when
 763		 * it's created before the transaction commit is started.
 764		 */
 765		commit_root_gen = btrfs_header_generation(root->commit_root);
 766		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
 767	} else {
 768		/*
 769		 * called by btrfs_reloc_post_snapshot_hook.
 770		 * the source tree is a reloc tree, all tree blocks
 771		 * modified after it was created have RELOC flag
 772		 * set in their headers. so it's OK to not update
 773		 * the 'last_snapshot'.
 774		 */
 775		ret = btrfs_copy_root(trans, root, root->node, &eb,
 776				      BTRFS_TREE_RELOC_OBJECTID);
 777		if (ret)
 778			goto fail;
 779	}
 780
 781	/*
 782	 * We have changed references at this point, we must abort the
 783	 * transaction if anything fails.
 784	 */
 785	must_abort = true;
 786
 787	memcpy(root_item, &root->root_item, sizeof(*root_item));
 788	btrfs_set_root_bytenr(root_item, eb->start);
 789	btrfs_set_root_level(root_item, btrfs_header_level(eb));
 790	btrfs_set_root_generation(root_item, trans->transid);
 791
 792	if (root->root_key.objectid == objectid) {
 793		btrfs_set_root_refs(root_item, 0);
 794		memset(&root_item->drop_progress, 0,
 795		       sizeof(struct btrfs_disk_key));
 796		btrfs_set_root_drop_level(root_item, 0);
 797	}
 798
 799	btrfs_tree_unlock(eb);
 800	free_extent_buffer(eb);
 801
 802	ret = btrfs_insert_root(trans, fs_info->tree_root,
 803				&root_key, root_item);
 804	if (ret)
 805		goto fail;
 806
 807	kfree(root_item);
 808
 809	reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
 810	if (IS_ERR(reloc_root)) {
 811		ret = PTR_ERR(reloc_root);
 812		goto abort;
 813	}
 814	set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
 815	reloc_root->last_trans = trans->transid;
 816	return reloc_root;
 817fail:
 818	kfree(root_item);
 819abort:
 820	if (must_abort)
 821		btrfs_abort_transaction(trans, ret);
 822	return ERR_PTR(ret);
 823}
 824
 825/*
 826 * create reloc tree for a given fs tree. reloc tree is just a
 827 * snapshot of the fs tree with special root objectid.
 828 *
 829 * The reloc_root comes out of here with two references, one for
 830 * root->reloc_root, and another for being on the rc->reloc_roots list.
 831 */
 832int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
 833			  struct btrfs_root *root)
 834{
 835	struct btrfs_fs_info *fs_info = root->fs_info;
 836	struct btrfs_root *reloc_root;
 837	struct reloc_control *rc = fs_info->reloc_ctl;
 838	struct btrfs_block_rsv *rsv;
 839	int clear_rsv = 0;
 840	int ret;
 841
 842	if (!rc)
 843		return 0;
 844
 845	/*
 846	 * The subvolume has reloc tree but the swap is finished, no need to
 847	 * create/update the dead reloc tree
 848	 */
 849	if (reloc_root_is_dead(root))
 850		return 0;
 851
 852	/*
 853	 * This is subtle but important.  We do not do
 854	 * record_root_in_transaction for reloc roots, instead we record their
 855	 * corresponding fs root, and then here we update the last trans for the
 856	 * reloc root.  This means that we have to do this for the entire life
 857	 * of the reloc root, regardless of which stage of the relocation we are
 858	 * in.
 859	 */
 860	if (root->reloc_root) {
 861		reloc_root = root->reloc_root;
 862		reloc_root->last_trans = trans->transid;
 863		return 0;
 864	}
 865
 866	/*
 867	 * We are merging reloc roots, we do not need new reloc trees.  Also
 868	 * reloc trees never need their own reloc tree.
 869	 */
 870	if (!rc->create_reloc_tree ||
 871	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
 872		return 0;
 873
 874	if (!trans->reloc_reserved) {
 875		rsv = trans->block_rsv;
 876		trans->block_rsv = rc->block_rsv;
 877		clear_rsv = 1;
 878	}
 879	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
 880	if (clear_rsv)
 881		trans->block_rsv = rsv;
 882	if (IS_ERR(reloc_root))
 883		return PTR_ERR(reloc_root);
 884
 885	ret = __add_reloc_root(reloc_root);
 886	ASSERT(ret != -EEXIST);
 887	if (ret) {
 888		/* Pairs with create_reloc_root */
 889		btrfs_put_root(reloc_root);
 890		return ret;
 891	}
 892	root->reloc_root = btrfs_grab_root(reloc_root);
 893	return 0;
 894}
 895
 896/*
 897 * update root item of reloc tree
 898 */
 899int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
 900			    struct btrfs_root *root)
 901{
 902	struct btrfs_fs_info *fs_info = root->fs_info;
 903	struct btrfs_root *reloc_root;
 904	struct btrfs_root_item *root_item;
 905	int ret;
 906
 907	if (!have_reloc_root(root))
 908		return 0;
 
 909
 910	reloc_root = root->reloc_root;
 911	root_item = &reloc_root->root_item;
 912
 913	/*
 914	 * We are probably ok here, but __del_reloc_root() will drop its ref of
 915	 * the root.  We have the ref for root->reloc_root, but just in case
 916	 * hold it while we update the reloc root.
 917	 */
 918	btrfs_grab_root(reloc_root);
 919
 920	/* root->reloc_root will stay until current relocation finished */
 921	if (fs_info->reloc_ctl->merge_reloc_tree &&
 922	    btrfs_root_refs(root_item) == 0) {
 923		set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
 924		/*
 925		 * Mark the tree as dead before we change reloc_root so
 926		 * have_reloc_root will not touch it from now on.
 927		 */
 928		smp_wmb();
 929		__del_reloc_root(reloc_root);
 930	}
 931
 932	if (reloc_root->commit_root != reloc_root->node) {
 933		__update_reloc_root(reloc_root);
 934		btrfs_set_root_node(root_item, reloc_root->node);
 935		free_extent_buffer(reloc_root->commit_root);
 936		reloc_root->commit_root = btrfs_root_node(reloc_root);
 937	}
 938
 939	ret = btrfs_update_root(trans, fs_info->tree_root,
 940				&reloc_root->root_key, root_item);
 941	btrfs_put_root(reloc_root);
 942	return ret;
 
 
 943}
 944
 945/*
 946 * helper to find first cached inode with inode number >= objectid
 947 * in a subvolume
 948 */
 949static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
 950{
 951	struct rb_node *node;
 952	struct rb_node *prev;
 953	struct btrfs_inode *entry;
 954	struct inode *inode;
 955
 956	spin_lock(&root->inode_lock);
 957again:
 958	node = root->inode_tree.rb_node;
 959	prev = NULL;
 960	while (node) {
 961		prev = node;
 962		entry = rb_entry(node, struct btrfs_inode, rb_node);
 963
 964		if (objectid < btrfs_ino(entry))
 965			node = node->rb_left;
 966		else if (objectid > btrfs_ino(entry))
 967			node = node->rb_right;
 968		else
 969			break;
 970	}
 971	if (!node) {
 972		while (prev) {
 973			entry = rb_entry(prev, struct btrfs_inode, rb_node);
 974			if (objectid <= btrfs_ino(entry)) {
 975				node = prev;
 976				break;
 977			}
 978			prev = rb_next(prev);
 979		}
 980	}
 981	while (node) {
 982		entry = rb_entry(node, struct btrfs_inode, rb_node);
 983		inode = igrab(&entry->vfs_inode);
 984		if (inode) {
 985			spin_unlock(&root->inode_lock);
 986			return inode;
 987		}
 988
 989		objectid = btrfs_ino(entry) + 1;
 990		if (cond_resched_lock(&root->inode_lock))
 991			goto again;
 992
 993		node = rb_next(node);
 994	}
 995	spin_unlock(&root->inode_lock);
 996	return NULL;
 997}
 998
 
 
 
 
 
 
 
 
 
 999/*
1000 * get new location of data
1001 */
1002static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1003			    u64 bytenr, u64 num_bytes)
1004{
1005	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1006	struct btrfs_path *path;
1007	struct btrfs_file_extent_item *fi;
1008	struct extent_buffer *leaf;
1009	int ret;
1010
1011	path = btrfs_alloc_path();
1012	if (!path)
1013		return -ENOMEM;
1014
1015	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1016	ret = btrfs_lookup_file_extent(NULL, root, path,
1017			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1018	if (ret < 0)
1019		goto out;
1020	if (ret > 0) {
1021		ret = -ENOENT;
1022		goto out;
1023	}
1024
1025	leaf = path->nodes[0];
1026	fi = btrfs_item_ptr(leaf, path->slots[0],
1027			    struct btrfs_file_extent_item);
1028
1029	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1030	       btrfs_file_extent_compression(leaf, fi) ||
1031	       btrfs_file_extent_encryption(leaf, fi) ||
1032	       btrfs_file_extent_other_encoding(leaf, fi));
1033
1034	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1035		ret = -EINVAL;
1036		goto out;
1037	}
1038
1039	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1040	ret = 0;
1041out:
1042	btrfs_free_path(path);
1043	return ret;
1044}
1045
1046/*
1047 * update file extent items in the tree leaf to point to
1048 * the new locations.
1049 */
1050static noinline_for_stack
1051int replace_file_extents(struct btrfs_trans_handle *trans,
1052			 struct reloc_control *rc,
1053			 struct btrfs_root *root,
1054			 struct extent_buffer *leaf)
1055{
1056	struct btrfs_fs_info *fs_info = root->fs_info;
1057	struct btrfs_key key;
1058	struct btrfs_file_extent_item *fi;
1059	struct inode *inode = NULL;
1060	u64 parent;
1061	u64 bytenr;
1062	u64 new_bytenr = 0;
1063	u64 num_bytes;
1064	u64 end;
1065	u32 nritems;
1066	u32 i;
1067	int ret = 0;
1068	int first = 1;
1069	int dirty = 0;
1070
1071	if (rc->stage != UPDATE_DATA_PTRS)
1072		return 0;
1073
1074	/* reloc trees always use full backref */
1075	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1076		parent = leaf->start;
1077	else
1078		parent = 0;
1079
1080	nritems = btrfs_header_nritems(leaf);
1081	for (i = 0; i < nritems; i++) {
1082		struct btrfs_ref ref = { 0 };
1083
1084		cond_resched();
1085		btrfs_item_key_to_cpu(leaf, &key, i);
1086		if (key.type != BTRFS_EXTENT_DATA_KEY)
1087			continue;
1088		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1089		if (btrfs_file_extent_type(leaf, fi) ==
1090		    BTRFS_FILE_EXTENT_INLINE)
1091			continue;
1092		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1093		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1094		if (bytenr == 0)
1095			continue;
1096		if (!in_range(bytenr, rc->block_group->start,
1097			      rc->block_group->length))
1098			continue;
1099
1100		/*
1101		 * if we are modifying block in fs tree, wait for readpage
1102		 * to complete and drop the extent cache
1103		 */
1104		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1105			if (first) {
1106				inode = find_next_inode(root, key.objectid);
1107				first = 0;
1108			} else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1109				btrfs_add_delayed_iput(inode);
1110				inode = find_next_inode(root, key.objectid);
1111			}
1112			if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1113				end = key.offset +
1114				      btrfs_file_extent_num_bytes(leaf, fi);
1115				WARN_ON(!IS_ALIGNED(key.offset,
1116						    fs_info->sectorsize));
1117				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1118				end--;
1119				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1120						      key.offset, end);
1121				if (!ret)
1122					continue;
1123
1124				btrfs_drop_extent_cache(BTRFS_I(inode),
1125						key.offset,	end, 1);
1126				unlock_extent(&BTRFS_I(inode)->io_tree,
1127					      key.offset, end);
1128			}
1129		}
1130
1131		ret = get_new_location(rc->data_inode, &new_bytenr,
1132				       bytenr, num_bytes);
1133		if (ret) {
1134			/*
1135			 * Don't have to abort since we've not changed anything
1136			 * in the file extent yet.
1137			 */
1138			break;
1139		}
1140
1141		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1142		dirty = 1;
1143
1144		key.offset -= btrfs_file_extent_offset(leaf, fi);
1145		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1146				       num_bytes, parent);
1147		ref.real_root = root->root_key.objectid;
1148		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1149				    key.objectid, key.offset);
1150		ret = btrfs_inc_extent_ref(trans, &ref);
1151		if (ret) {
1152			btrfs_abort_transaction(trans, ret);
1153			break;
1154		}
1155
1156		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1157				       num_bytes, parent);
1158		ref.real_root = root->root_key.objectid;
1159		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1160				    key.objectid, key.offset);
1161		ret = btrfs_free_extent(trans, &ref);
1162		if (ret) {
1163			btrfs_abort_transaction(trans, ret);
1164			break;
1165		}
1166	}
1167	if (dirty)
1168		btrfs_mark_buffer_dirty(leaf);
1169	if (inode)
1170		btrfs_add_delayed_iput(inode);
1171	return ret;
1172}
1173
1174static noinline_for_stack
1175int memcmp_node_keys(struct extent_buffer *eb, int slot,
1176		     struct btrfs_path *path, int level)
1177{
1178	struct btrfs_disk_key key1;
1179	struct btrfs_disk_key key2;
1180	btrfs_node_key(eb, &key1, slot);
1181	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1182	return memcmp(&key1, &key2, sizeof(key1));
1183}
1184
1185/*
1186 * try to replace tree blocks in fs tree with the new blocks
1187 * in reloc tree. tree blocks haven't been modified since the
1188 * reloc tree was create can be replaced.
1189 *
1190 * if a block was replaced, level of the block + 1 is returned.
1191 * if no block got replaced, 0 is returned. if there are other
1192 * errors, a negative error number is returned.
1193 */
1194static noinline_for_stack
1195int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1196		 struct btrfs_root *dest, struct btrfs_root *src,
1197		 struct btrfs_path *path, struct btrfs_key *next_key,
1198		 int lowest_level, int max_level)
1199{
1200	struct btrfs_fs_info *fs_info = dest->fs_info;
1201	struct extent_buffer *eb;
1202	struct extent_buffer *parent;
1203	struct btrfs_ref ref = { 0 };
1204	struct btrfs_key key;
1205	u64 old_bytenr;
1206	u64 new_bytenr;
1207	u64 old_ptr_gen;
1208	u64 new_ptr_gen;
1209	u64 last_snapshot;
1210	u32 blocksize;
1211	int cow = 0;
1212	int level;
1213	int ret;
1214	int slot;
1215
1216	ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1217	ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1218
1219	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1220again:
1221	slot = path->slots[lowest_level];
1222	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1223
1224	eb = btrfs_lock_root_node(dest);
 
1225	level = btrfs_header_level(eb);
1226
1227	if (level < lowest_level) {
1228		btrfs_tree_unlock(eb);
1229		free_extent_buffer(eb);
1230		return 0;
1231	}
1232
1233	if (cow) {
1234		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1235				      BTRFS_NESTING_COW);
1236		if (ret) {
1237			btrfs_tree_unlock(eb);
1238			free_extent_buffer(eb);
1239			return ret;
1240		}
1241	}
 
1242
1243	if (next_key) {
1244		next_key->objectid = (u64)-1;
1245		next_key->type = (u8)-1;
1246		next_key->offset = (u64)-1;
1247	}
1248
1249	parent = eb;
1250	while (1) {
 
 
1251		level = btrfs_header_level(parent);
1252		ASSERT(level >= lowest_level);
1253
1254		ret = btrfs_bin_search(parent, &key, &slot);
1255		if (ret < 0)
1256			break;
1257		if (ret && slot > 0)
1258			slot--;
1259
1260		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1261			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1262
1263		old_bytenr = btrfs_node_blockptr(parent, slot);
1264		blocksize = fs_info->nodesize;
1265		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
 
1266
1267		if (level <= max_level) {
1268			eb = path->nodes[level];
1269			new_bytenr = btrfs_node_blockptr(eb,
1270							path->slots[level]);
1271			new_ptr_gen = btrfs_node_ptr_generation(eb,
1272							path->slots[level]);
1273		} else {
1274			new_bytenr = 0;
1275			new_ptr_gen = 0;
1276		}
1277
1278		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1279			ret = level;
1280			break;
1281		}
1282
1283		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1284		    memcmp_node_keys(parent, slot, path, level)) {
1285			if (level <= lowest_level) {
1286				ret = 0;
1287				break;
1288			}
1289
1290			eb = btrfs_read_node_slot(parent, slot);
 
1291			if (IS_ERR(eb)) {
1292				ret = PTR_ERR(eb);
1293				break;
 
 
 
 
1294			}
1295			btrfs_tree_lock(eb);
1296			if (cow) {
1297				ret = btrfs_cow_block(trans, dest, eb, parent,
1298						      slot, &eb,
1299						      BTRFS_NESTING_COW);
1300				if (ret) {
1301					btrfs_tree_unlock(eb);
1302					free_extent_buffer(eb);
1303					break;
1304				}
1305			}
 
1306
1307			btrfs_tree_unlock(parent);
1308			free_extent_buffer(parent);
1309
1310			parent = eb;
1311			continue;
1312		}
1313
1314		if (!cow) {
1315			btrfs_tree_unlock(parent);
1316			free_extent_buffer(parent);
1317			cow = 1;
1318			goto again;
1319		}
1320
1321		btrfs_node_key_to_cpu(path->nodes[level], &key,
1322				      path->slots[level]);
1323		btrfs_release_path(path);
1324
1325		path->lowest_level = level;
1326		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1327		path->lowest_level = 0;
1328		if (ret) {
1329			if (ret > 0)
1330				ret = -ENOENT;
1331			break;
1332		}
1333
1334		/*
1335		 * Info qgroup to trace both subtrees.
1336		 *
1337		 * We must trace both trees.
1338		 * 1) Tree reloc subtree
1339		 *    If not traced, we will leak data numbers
1340		 * 2) Fs subtree
1341		 *    If not traced, we will double count old data
1342		 *
1343		 * We don't scan the subtree right now, but only record
1344		 * the swapped tree blocks.
1345		 * The real subtree rescan is delayed until we have new
1346		 * CoW on the subtree root node before transaction commit.
1347		 */
1348		ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1349				rc->block_group, parent, slot,
1350				path->nodes[level], path->slots[level],
1351				last_snapshot);
1352		if (ret < 0)
1353			break;
1354		/*
1355		 * swap blocks in fs tree and reloc tree.
1356		 */
1357		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1358		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1359		btrfs_mark_buffer_dirty(parent);
1360
1361		btrfs_set_node_blockptr(path->nodes[level],
1362					path->slots[level], old_bytenr);
1363		btrfs_set_node_ptr_generation(path->nodes[level],
1364					      path->slots[level], old_ptr_gen);
1365		btrfs_mark_buffer_dirty(path->nodes[level]);
1366
1367		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1368				       blocksize, path->nodes[level]->start);
1369		ref.skip_qgroup = true;
1370		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1371		ret = btrfs_inc_extent_ref(trans, &ref);
1372		if (ret) {
1373			btrfs_abort_transaction(trans, ret);
1374			break;
1375		}
1376		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1377				       blocksize, 0);
1378		ref.skip_qgroup = true;
1379		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1380		ret = btrfs_inc_extent_ref(trans, &ref);
1381		if (ret) {
1382			btrfs_abort_transaction(trans, ret);
1383			break;
1384		}
1385
1386		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1387				       blocksize, path->nodes[level]->start);
1388		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1389		ref.skip_qgroup = true;
1390		ret = btrfs_free_extent(trans, &ref);
1391		if (ret) {
1392			btrfs_abort_transaction(trans, ret);
1393			break;
1394		}
1395
1396		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1397				       blocksize, 0);
1398		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1399		ref.skip_qgroup = true;
1400		ret = btrfs_free_extent(trans, &ref);
1401		if (ret) {
1402			btrfs_abort_transaction(trans, ret);
1403			break;
1404		}
1405
1406		btrfs_unlock_up_safe(path, 0);
1407
1408		ret = level;
1409		break;
1410	}
1411	btrfs_tree_unlock(parent);
1412	free_extent_buffer(parent);
1413	return ret;
1414}
1415
1416/*
1417 * helper to find next relocated block in reloc tree
1418 */
1419static noinline_for_stack
1420int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1421		       int *level)
1422{
1423	struct extent_buffer *eb;
1424	int i;
1425	u64 last_snapshot;
1426	u32 nritems;
1427
1428	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1429
1430	for (i = 0; i < *level; i++) {
1431		free_extent_buffer(path->nodes[i]);
1432		path->nodes[i] = NULL;
1433	}
1434
1435	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1436		eb = path->nodes[i];
1437		nritems = btrfs_header_nritems(eb);
1438		while (path->slots[i] + 1 < nritems) {
1439			path->slots[i]++;
1440			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1441			    last_snapshot)
1442				continue;
1443
1444			*level = i;
1445			return 0;
1446		}
1447		free_extent_buffer(path->nodes[i]);
1448		path->nodes[i] = NULL;
1449	}
1450	return 1;
1451}
1452
1453/*
1454 * walk down reloc tree to find relocated block of lowest level
1455 */
1456static noinline_for_stack
1457int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1458			 int *level)
1459{
 
1460	struct extent_buffer *eb = NULL;
1461	int i;
 
1462	u64 ptr_gen = 0;
1463	u64 last_snapshot;
1464	u32 nritems;
1465
1466	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1467
1468	for (i = *level; i > 0; i--) {
 
 
1469		eb = path->nodes[i];
1470		nritems = btrfs_header_nritems(eb);
1471		while (path->slots[i] < nritems) {
1472			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1473			if (ptr_gen > last_snapshot)
1474				break;
1475			path->slots[i]++;
1476		}
1477		if (path->slots[i] >= nritems) {
1478			if (i == *level)
1479				break;
1480			*level = i + 1;
1481			return 0;
1482		}
1483		if (i == 1) {
1484			*level = i;
1485			return 0;
1486		}
1487
1488		eb = btrfs_read_node_slot(eb, path->slots[i]);
1489		if (IS_ERR(eb))
 
 
 
1490			return PTR_ERR(eb);
 
 
 
 
1491		BUG_ON(btrfs_header_level(eb) != i - 1);
1492		path->nodes[i - 1] = eb;
1493		path->slots[i - 1] = 0;
1494	}
1495	return 1;
1496}
1497
1498/*
1499 * invalidate extent cache for file extents whose key in range of
1500 * [min_key, max_key)
1501 */
1502static int invalidate_extent_cache(struct btrfs_root *root,
1503				   struct btrfs_key *min_key,
1504				   struct btrfs_key *max_key)
1505{
1506	struct btrfs_fs_info *fs_info = root->fs_info;
1507	struct inode *inode = NULL;
1508	u64 objectid;
1509	u64 start, end;
1510	u64 ino;
1511
1512	objectid = min_key->objectid;
1513	while (1) {
1514		cond_resched();
1515		iput(inode);
1516
1517		if (objectid > max_key->objectid)
1518			break;
1519
1520		inode = find_next_inode(root, objectid);
1521		if (!inode)
1522			break;
1523		ino = btrfs_ino(BTRFS_I(inode));
1524
1525		if (ino > max_key->objectid) {
1526			iput(inode);
1527			break;
1528		}
1529
1530		objectid = ino + 1;
1531		if (!S_ISREG(inode->i_mode))
1532			continue;
1533
1534		if (unlikely(min_key->objectid == ino)) {
1535			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1536				continue;
1537			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1538				start = 0;
1539			else {
1540				start = min_key->offset;
1541				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1542			}
1543		} else {
1544			start = 0;
1545		}
1546
1547		if (unlikely(max_key->objectid == ino)) {
1548			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1549				continue;
1550			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1551				end = (u64)-1;
1552			} else {
1553				if (max_key->offset == 0)
1554					continue;
1555				end = max_key->offset;
1556				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1557				end--;
1558			}
1559		} else {
1560			end = (u64)-1;
1561		}
1562
1563		/* the lock_extent waits for readpage to complete */
1564		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
1565		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
1566		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
1567	}
1568	return 0;
1569}
1570
1571static int find_next_key(struct btrfs_path *path, int level,
1572			 struct btrfs_key *key)
1573
1574{
1575	while (level < BTRFS_MAX_LEVEL) {
1576		if (!path->nodes[level])
1577			break;
1578		if (path->slots[level] + 1 <
1579		    btrfs_header_nritems(path->nodes[level])) {
1580			btrfs_node_key_to_cpu(path->nodes[level], key,
1581					      path->slots[level] + 1);
1582			return 0;
1583		}
1584		level++;
1585	}
1586	return 1;
1587}
1588
1589/*
1590 * Insert current subvolume into reloc_control::dirty_subvol_roots
1591 */
1592static int insert_dirty_subvol(struct btrfs_trans_handle *trans,
1593			       struct reloc_control *rc,
1594			       struct btrfs_root *root)
1595{
1596	struct btrfs_root *reloc_root = root->reloc_root;
1597	struct btrfs_root_item *reloc_root_item;
1598	int ret;
1599
1600	/* @root must be a subvolume tree root with a valid reloc tree */
1601	ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1602	ASSERT(reloc_root);
1603
1604	reloc_root_item = &reloc_root->root_item;
1605	memset(&reloc_root_item->drop_progress, 0,
1606		sizeof(reloc_root_item->drop_progress));
1607	btrfs_set_root_drop_level(reloc_root_item, 0);
1608	btrfs_set_root_refs(reloc_root_item, 0);
1609	ret = btrfs_update_reloc_root(trans, root);
1610	if (ret)
1611		return ret;
1612
1613	if (list_empty(&root->reloc_dirty_list)) {
1614		btrfs_grab_root(root);
1615		list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1616	}
1617
1618	return 0;
1619}
1620
1621static int clean_dirty_subvols(struct reloc_control *rc)
1622{
1623	struct btrfs_root *root;
1624	struct btrfs_root *next;
1625	int ret = 0;
1626	int ret2;
1627
1628	list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1629				 reloc_dirty_list) {
1630		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1631			/* Merged subvolume, cleanup its reloc root */
1632			struct btrfs_root *reloc_root = root->reloc_root;
1633
1634			list_del_init(&root->reloc_dirty_list);
1635			root->reloc_root = NULL;
1636			/*
1637			 * Need barrier to ensure clear_bit() only happens after
1638			 * root->reloc_root = NULL. Pairs with have_reloc_root.
1639			 */
1640			smp_wmb();
1641			clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1642			if (reloc_root) {
1643				/*
1644				 * btrfs_drop_snapshot drops our ref we hold for
1645				 * ->reloc_root.  If it fails however we must
1646				 * drop the ref ourselves.
1647				 */
1648				ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1649				if (ret2 < 0) {
1650					btrfs_put_root(reloc_root);
1651					if (!ret)
1652						ret = ret2;
1653				}
1654			}
1655			btrfs_put_root(root);
 
1656		} else {
1657			/* Orphan reloc tree, just clean it up */
1658			ret2 = btrfs_drop_snapshot(root, 0, 1);
1659			if (ret2 < 0) {
1660				btrfs_put_root(root);
1661				if (!ret)
1662					ret = ret2;
1663			}
1664		}
1665	}
1666	return ret;
1667}
1668
1669/*
1670 * merge the relocated tree blocks in reloc tree with corresponding
1671 * fs tree.
1672 */
1673static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1674					       struct btrfs_root *root)
1675{
1676	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1677	struct btrfs_key key;
1678	struct btrfs_key next_key;
1679	struct btrfs_trans_handle *trans = NULL;
1680	struct btrfs_root *reloc_root;
1681	struct btrfs_root_item *root_item;
1682	struct btrfs_path *path;
1683	struct extent_buffer *leaf;
1684	int reserve_level;
1685	int level;
1686	int max_level;
1687	int replaced = 0;
1688	int ret = 0;
 
1689	u32 min_reserved;
1690
1691	path = btrfs_alloc_path();
1692	if (!path)
1693		return -ENOMEM;
1694	path->reada = READA_FORWARD;
1695
1696	reloc_root = root->reloc_root;
1697	root_item = &reloc_root->root_item;
1698
1699	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1700		level = btrfs_root_level(root_item);
1701		atomic_inc(&reloc_root->node->refs);
1702		path->nodes[level] = reloc_root->node;
1703		path->slots[level] = 0;
1704	} else {
1705		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1706
1707		level = btrfs_root_drop_level(root_item);
1708		BUG_ON(level == 0);
1709		path->lowest_level = level;
1710		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1711		path->lowest_level = 0;
1712		if (ret < 0) {
1713			btrfs_free_path(path);
1714			return ret;
1715		}
1716
1717		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1718				      path->slots[level]);
1719		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1720
1721		btrfs_unlock_up_safe(path, 0);
1722	}
1723
1724	/*
1725	 * In merge_reloc_root(), we modify the upper level pointer to swap the
1726	 * tree blocks between reloc tree and subvolume tree.  Thus for tree
1727	 * block COW, we COW at most from level 1 to root level for each tree.
1728	 *
1729	 * Thus the needed metadata size is at most root_level * nodesize,
1730	 * and * 2 since we have two trees to COW.
1731	 */
1732	reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1733	min_reserved = fs_info->nodesize * reserve_level * 2;
1734	memset(&next_key, 0, sizeof(next_key));
1735
1736	while (1) {
1737		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
1738					     BTRFS_RESERVE_FLUSH_LIMIT);
1739		if (ret)
 
1740			goto out;
 
1741		trans = btrfs_start_transaction(root, 0);
1742		if (IS_ERR(trans)) {
1743			ret = PTR_ERR(trans);
1744			trans = NULL;
1745			goto out;
1746		}
1747
1748		/*
1749		 * At this point we no longer have a reloc_control, so we can't
1750		 * depend on btrfs_init_reloc_root to update our last_trans.
1751		 *
1752		 * But that's ok, we started the trans handle on our
1753		 * corresponding fs_root, which means it's been added to the
1754		 * dirty list.  At commit time we'll still call
1755		 * btrfs_update_reloc_root() and update our root item
1756		 * appropriately.
1757		 */
1758		reloc_root->last_trans = trans->transid;
1759		trans->block_rsv = rc->block_rsv;
1760
1761		replaced = 0;
1762		max_level = level;
1763
1764		ret = walk_down_reloc_tree(reloc_root, path, &level);
1765		if (ret < 0)
 
1766			goto out;
 
1767		if (ret > 0)
1768			break;
1769
1770		if (!find_next_key(path, level, &key) &&
1771		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1772			ret = 0;
1773		} else {
1774			ret = replace_path(trans, rc, root, reloc_root, path,
1775					   &next_key, level, max_level);
1776		}
1777		if (ret < 0)
 
1778			goto out;
 
 
1779		if (ret > 0) {
1780			level = ret;
1781			btrfs_node_key_to_cpu(path->nodes[level], &key,
1782					      path->slots[level]);
1783			replaced = 1;
1784		}
1785
1786		ret = walk_up_reloc_tree(reloc_root, path, &level);
1787		if (ret > 0)
1788			break;
1789
1790		BUG_ON(level == 0);
1791		/*
1792		 * save the merging progress in the drop_progress.
1793		 * this is OK since root refs == 1 in this case.
1794		 */
1795		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1796			       path->slots[level]);
1797		btrfs_set_root_drop_level(root_item, level);
1798
1799		btrfs_end_transaction_throttle(trans);
1800		trans = NULL;
1801
1802		btrfs_btree_balance_dirty(fs_info);
1803
1804		if (replaced && rc->stage == UPDATE_DATA_PTRS)
1805			invalidate_extent_cache(root, &key, &next_key);
1806	}
1807
1808	/*
1809	 * handle the case only one block in the fs tree need to be
1810	 * relocated and the block is tree root.
1811	 */
1812	leaf = btrfs_lock_root_node(root);
1813	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1814			      BTRFS_NESTING_COW);
1815	btrfs_tree_unlock(leaf);
1816	free_extent_buffer(leaf);
 
 
1817out:
1818	btrfs_free_path(path);
1819
1820	if (ret == 0) {
1821		ret = insert_dirty_subvol(trans, rc, root);
1822		if (ret)
1823			btrfs_abort_transaction(trans, ret);
1824	}
1825
1826	if (trans)
1827		btrfs_end_transaction_throttle(trans);
1828
1829	btrfs_btree_balance_dirty(fs_info);
1830
1831	if (replaced && rc->stage == UPDATE_DATA_PTRS)
1832		invalidate_extent_cache(root, &key, &next_key);
1833
1834	return ret;
1835}
1836
1837static noinline_for_stack
1838int prepare_to_merge(struct reloc_control *rc, int err)
1839{
1840	struct btrfs_root *root = rc->extent_root;
1841	struct btrfs_fs_info *fs_info = root->fs_info;
1842	struct btrfs_root *reloc_root;
1843	struct btrfs_trans_handle *trans;
1844	LIST_HEAD(reloc_roots);
1845	u64 num_bytes = 0;
1846	int ret;
1847
1848	mutex_lock(&fs_info->reloc_mutex);
1849	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1850	rc->merging_rsv_size += rc->nodes_relocated * 2;
1851	mutex_unlock(&fs_info->reloc_mutex);
1852
1853again:
1854	if (!err) {
1855		num_bytes = rc->merging_rsv_size;
1856		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
1857					  BTRFS_RESERVE_FLUSH_ALL);
1858		if (ret)
1859			err = ret;
1860	}
1861
1862	trans = btrfs_join_transaction(rc->extent_root);
1863	if (IS_ERR(trans)) {
1864		if (!err)
1865			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1866						num_bytes, NULL);
1867		return PTR_ERR(trans);
1868	}
1869
1870	if (!err) {
1871		if (num_bytes != rc->merging_rsv_size) {
1872			btrfs_end_transaction(trans);
1873			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1874						num_bytes, NULL);
1875			goto again;
1876		}
1877	}
1878
1879	rc->merge_reloc_tree = 1;
1880
1881	while (!list_empty(&rc->reloc_roots)) {
1882		reloc_root = list_entry(rc->reloc_roots.next,
1883					struct btrfs_root, root_list);
1884		list_del_init(&reloc_root->root_list);
1885
1886		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1887				false);
1888		if (IS_ERR(root)) {
1889			/*
1890			 * Even if we have an error we need this reloc root
1891			 * back on our list so we can clean up properly.
1892			 */
1893			list_add(&reloc_root->root_list, &reloc_roots);
1894			btrfs_abort_transaction(trans, (int)PTR_ERR(root));
1895			if (!err)
1896				err = PTR_ERR(root);
1897			break;
1898		}
1899		ASSERT(root->reloc_root == reloc_root);
1900
1901		/*
1902		 * set reference count to 1, so btrfs_recover_relocation
1903		 * knows it should resumes merging
1904		 */
1905		if (!err)
1906			btrfs_set_root_refs(&reloc_root->root_item, 1);
1907		ret = btrfs_update_reloc_root(trans, root);
1908
1909		/*
1910		 * Even if we have an error we need this reloc root back on our
1911		 * list so we can clean up properly.
1912		 */
1913		list_add(&reloc_root->root_list, &reloc_roots);
1914		btrfs_put_root(root);
1915
1916		if (ret) {
1917			btrfs_abort_transaction(trans, ret);
1918			if (!err)
1919				err = ret;
1920			break;
1921		}
1922	}
1923
1924	list_splice(&reloc_roots, &rc->reloc_roots);
1925
1926	if (!err)
1927		err = btrfs_commit_transaction(trans);
1928	else
1929		btrfs_end_transaction(trans);
1930	return err;
1931}
1932
1933static noinline_for_stack
1934void free_reloc_roots(struct list_head *list)
1935{
1936	struct btrfs_root *reloc_root, *tmp;
1937
1938	list_for_each_entry_safe(reloc_root, tmp, list, root_list)
 
 
1939		__del_reloc_root(reloc_root);
 
 
 
 
 
1940}
1941
1942static noinline_for_stack
1943void merge_reloc_roots(struct reloc_control *rc)
1944{
1945	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1946	struct btrfs_root *root;
1947	struct btrfs_root *reloc_root;
1948	LIST_HEAD(reloc_roots);
1949	int found = 0;
1950	int ret = 0;
1951again:
1952	root = rc->extent_root;
1953
1954	/*
1955	 * this serializes us with btrfs_record_root_in_transaction,
1956	 * we have to make sure nobody is in the middle of
1957	 * adding their roots to the list while we are
1958	 * doing this splice
1959	 */
1960	mutex_lock(&fs_info->reloc_mutex);
1961	list_splice_init(&rc->reloc_roots, &reloc_roots);
1962	mutex_unlock(&fs_info->reloc_mutex);
1963
1964	while (!list_empty(&reloc_roots)) {
1965		found = 1;
1966		reloc_root = list_entry(reloc_roots.next,
1967					struct btrfs_root, root_list);
1968
1969		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1970					 false);
1971		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
1972			if (IS_ERR(root)) {
1973				/*
1974				 * For recovery we read the fs roots on mount,
1975				 * and if we didn't find the root then we marked
1976				 * the reloc root as a garbage root.  For normal
1977				 * relocation obviously the root should exist in
1978				 * memory.  However there's no reason we can't
1979				 * handle the error properly here just in case.
1980				 */
1981				ASSERT(0);
1982				ret = PTR_ERR(root);
1983				goto out;
1984			}
1985			if (root->reloc_root != reloc_root) {
1986				/*
1987				 * This is actually impossible without something
1988				 * going really wrong (like weird race condition
1989				 * or cosmic rays).
1990				 */
1991				ASSERT(0);
1992				ret = -EINVAL;
1993				goto out;
1994			}
1995			ret = merge_reloc_root(rc, root);
1996			btrfs_put_root(root);
1997			if (ret) {
1998				if (list_empty(&reloc_root->root_list))
1999					list_add_tail(&reloc_root->root_list,
2000						      &reloc_roots);
2001				goto out;
2002			}
2003		} else {
2004			if (!IS_ERR(root)) {
2005				if (root->reloc_root == reloc_root) {
2006					root->reloc_root = NULL;
2007					btrfs_put_root(reloc_root);
2008				}
2009				clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
2010					  &root->state);
2011				btrfs_put_root(root);
2012			}
2013
2014			list_del_init(&reloc_root->root_list);
2015			/* Don't forget to queue this reloc root for cleanup */
2016			list_add_tail(&reloc_root->reloc_dirty_list,
2017				      &rc->dirty_subvol_roots);
2018		}
2019	}
2020
2021	if (found) {
2022		found = 0;
2023		goto again;
2024	}
2025out:
2026	if (ret) {
2027		btrfs_handle_fs_error(fs_info, ret, NULL);
2028		free_reloc_roots(&reloc_roots);
 
2029
2030		/* new reloc root may be added */
2031		mutex_lock(&fs_info->reloc_mutex);
2032		list_splice_init(&rc->reloc_roots, &reloc_roots);
2033		mutex_unlock(&fs_info->reloc_mutex);
2034		free_reloc_roots(&reloc_roots);
 
2035	}
2036
2037	/*
2038	 * We used to have
2039	 *
2040	 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2041	 *
2042	 * here, but it's wrong.  If we fail to start the transaction in
2043	 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
2044	 * have actually been removed from the reloc_root_tree rb tree.  This is
2045	 * fine because we're bailing here, and we hold a reference on the root
2046	 * for the list that holds it, so these roots will be cleaned up when we
2047	 * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root
2048	 * will be cleaned up on unmount.
2049	 *
2050	 * The remaining nodes will be cleaned up by free_reloc_control.
2051	 */
2052}
2053
2054static void free_block_list(struct rb_root *blocks)
2055{
2056	struct tree_block *block;
2057	struct rb_node *rb_node;
2058	while ((rb_node = rb_first(blocks))) {
2059		block = rb_entry(rb_node, struct tree_block, rb_node);
2060		rb_erase(rb_node, blocks);
2061		kfree(block);
2062	}
2063}
2064
2065static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2066				      struct btrfs_root *reloc_root)
2067{
2068	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2069	struct btrfs_root *root;
2070	int ret;
2071
2072	if (reloc_root->last_trans == trans->transid)
2073		return 0;
2074
2075	root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
2076
2077	/*
2078	 * This should succeed, since we can't have a reloc root without having
2079	 * already looked up the actual root and created the reloc root for this
2080	 * root.
2081	 *
2082	 * However if there's some sort of corruption where we have a ref to a
2083	 * reloc root without a corresponding root this could return ENOENT.
2084	 */
2085	if (IS_ERR(root)) {
2086		ASSERT(0);
2087		return PTR_ERR(root);
2088	}
2089	if (root->reloc_root != reloc_root) {
2090		ASSERT(0);
2091		btrfs_err(fs_info,
2092			  "root %llu has two reloc roots associated with it",
2093			  reloc_root->root_key.offset);
2094		btrfs_put_root(root);
2095		return -EUCLEAN;
2096	}
2097	ret = btrfs_record_root_in_trans(trans, root);
2098	btrfs_put_root(root);
2099
2100	return ret;
2101}
2102
2103static noinline_for_stack
2104struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2105				     struct reloc_control *rc,
2106				     struct btrfs_backref_node *node,
2107				     struct btrfs_backref_edge *edges[])
2108{
2109	struct btrfs_backref_node *next;
2110	struct btrfs_root *root;
2111	int index = 0;
2112	int ret;
2113
2114	next = node;
2115	while (1) {
2116		cond_resched();
2117		next = walk_up_backref(next, edges, &index);
2118		root = next->root;
2119
2120		/*
2121		 * If there is no root, then our references for this block are
2122		 * incomplete, as we should be able to walk all the way up to a
2123		 * block that is owned by a root.
2124		 *
2125		 * This path is only for SHAREABLE roots, so if we come upon a
2126		 * non-SHAREABLE root then we have backrefs that resolve
2127		 * improperly.
2128		 *
2129		 * Both of these cases indicate file system corruption, or a bug
2130		 * in the backref walking code.
2131		 */
2132		if (!root) {
2133			ASSERT(0);
2134			btrfs_err(trans->fs_info,
2135		"bytenr %llu doesn't have a backref path ending in a root",
2136				  node->bytenr);
2137			return ERR_PTR(-EUCLEAN);
2138		}
2139		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2140			ASSERT(0);
2141			btrfs_err(trans->fs_info,
2142	"bytenr %llu has multiple refs with one ending in a non-shareable root",
2143				  node->bytenr);
2144			return ERR_PTR(-EUCLEAN);
2145		}
2146
2147		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2148			ret = record_reloc_root_in_trans(trans, root);
2149			if (ret)
2150				return ERR_PTR(ret);
2151			break;
2152		}
2153
2154		ret = btrfs_record_root_in_trans(trans, root);
2155		if (ret)
2156			return ERR_PTR(ret);
2157		root = root->reloc_root;
2158
2159		/*
2160		 * We could have raced with another thread which failed, so
2161		 * root->reloc_root may not be set, return ENOENT in this case.
2162		 */
2163		if (!root)
2164			return ERR_PTR(-ENOENT);
2165
2166		if (next->new_bytenr != root->node->start) {
2167			/*
2168			 * We just created the reloc root, so we shouldn't have
2169			 * ->new_bytenr set and this shouldn't be in the changed
2170			 *  list.  If it is then we have multiple roots pointing
2171			 *  at the same bytenr which indicates corruption, or
2172			 *  we've made a mistake in the backref walking code.
2173			 */
2174			ASSERT(next->new_bytenr == 0);
2175			ASSERT(list_empty(&next->list));
2176			if (next->new_bytenr || !list_empty(&next->list)) {
2177				btrfs_err(trans->fs_info,
2178	"bytenr %llu possibly has multiple roots pointing at the same bytenr %llu",
2179					  node->bytenr, next->bytenr);
2180				return ERR_PTR(-EUCLEAN);
2181			}
2182
2183			next->new_bytenr = root->node->start;
2184			btrfs_put_root(next->root);
2185			next->root = btrfs_grab_root(root);
2186			ASSERT(next->root);
2187			list_add_tail(&next->list,
2188				      &rc->backref_cache.changed);
2189			mark_block_processed(rc, next);
2190			break;
2191		}
2192
2193		WARN_ON(1);
2194		root = NULL;
2195		next = walk_down_backref(edges, &index);
2196		if (!next || next->level <= node->level)
2197			break;
2198	}
2199	if (!root) {
2200		/*
2201		 * This can happen if there's fs corruption or if there's a bug
2202		 * in the backref lookup code.
2203		 */
2204		ASSERT(0);
2205		return ERR_PTR(-ENOENT);
2206	}
2207
2208	next = node;
2209	/* setup backref node path for btrfs_reloc_cow_block */
2210	while (1) {
2211		rc->backref_cache.path[next->level] = next;
2212		if (--index < 0)
2213			break;
2214		next = edges[index]->node[UPPER];
2215	}
2216	return root;
2217}
2218
2219/*
2220 * Select a tree root for relocation.
2221 *
2222 * Return NULL if the block is not shareable. We should use do_relocation() in
2223 * this case.
2224 *
2225 * Return a tree root pointer if the block is shareable.
2226 * Return -ENOENT if the block is root of reloc tree.
2227 */
2228static noinline_for_stack
2229struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2230{
2231	struct btrfs_backref_node *next;
2232	struct btrfs_root *root;
2233	struct btrfs_root *fs_root = NULL;
2234	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2235	int index = 0;
2236
2237	next = node;
2238	while (1) {
2239		cond_resched();
2240		next = walk_up_backref(next, edges, &index);
2241		root = next->root;
 
2242
2243		/*
2244		 * This can occur if we have incomplete extent refs leading all
2245		 * the way up a particular path, in this case return -EUCLEAN.
2246		 */
2247		if (!root)
2248			return ERR_PTR(-EUCLEAN);
2249
2250		/* No other choice for non-shareable tree */
2251		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2252			return root;
2253
2254		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2255			fs_root = root;
2256
2257		if (next != node)
2258			return NULL;
2259
2260		next = walk_down_backref(edges, &index);
2261		if (!next || next->level <= node->level)
2262			break;
2263	}
2264
2265	if (!fs_root)
2266		return ERR_PTR(-ENOENT);
2267	return fs_root;
2268}
2269
2270static noinline_for_stack
2271u64 calcu_metadata_size(struct reloc_control *rc,
2272			struct btrfs_backref_node *node, int reserve)
2273{
2274	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2275	struct btrfs_backref_node *next = node;
2276	struct btrfs_backref_edge *edge;
2277	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2278	u64 num_bytes = 0;
2279	int index = 0;
2280
2281	BUG_ON(reserve && node->processed);
2282
2283	while (next) {
2284		cond_resched();
2285		while (1) {
2286			if (next->processed && (reserve || next != node))
2287				break;
2288
2289			num_bytes += fs_info->nodesize;
2290
2291			if (list_empty(&next->upper))
2292				break;
2293
2294			edge = list_entry(next->upper.next,
2295					struct btrfs_backref_edge, list[LOWER]);
2296			edges[index++] = edge;
2297			next = edge->node[UPPER];
2298		}
2299		next = walk_down_backref(edges, &index);
2300	}
2301	return num_bytes;
2302}
2303
2304static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2305				  struct reloc_control *rc,
2306				  struct btrfs_backref_node *node)
2307{
2308	struct btrfs_root *root = rc->extent_root;
2309	struct btrfs_fs_info *fs_info = root->fs_info;
2310	u64 num_bytes;
2311	int ret;
2312	u64 tmp;
2313
2314	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2315
2316	trans->block_rsv = rc->block_rsv;
2317	rc->reserved_bytes += num_bytes;
2318
2319	/*
2320	 * We are under a transaction here so we can only do limited flushing.
2321	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2322	 * transaction and try to refill when we can flush all the things.
2323	 */
2324	ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2325				BTRFS_RESERVE_FLUSH_LIMIT);
2326	if (ret) {
2327		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2328		while (tmp <= rc->reserved_bytes)
2329			tmp <<= 1;
2330		/*
2331		 * only one thread can access block_rsv at this point,
2332		 * so we don't need hold lock to protect block_rsv.
2333		 * we expand more reservation size here to allow enough
2334		 * space for relocation and we will return earlier in
2335		 * enospc case.
2336		 */
2337		rc->block_rsv->size = tmp + fs_info->nodesize *
2338				      RELOCATION_RESERVED_NODES;
2339		return -EAGAIN;
2340	}
2341
2342	return 0;
2343}
2344
2345/*
2346 * relocate a block tree, and then update pointers in upper level
2347 * blocks that reference the block to point to the new location.
2348 *
2349 * if called by link_to_upper, the block has already been relocated.
2350 * in that case this function just updates pointers.
2351 */
2352static int do_relocation(struct btrfs_trans_handle *trans,
2353			 struct reloc_control *rc,
2354			 struct btrfs_backref_node *node,
2355			 struct btrfs_key *key,
2356			 struct btrfs_path *path, int lowest)
2357{
2358	struct btrfs_backref_node *upper;
2359	struct btrfs_backref_edge *edge;
2360	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
 
2361	struct btrfs_root *root;
2362	struct extent_buffer *eb;
2363	u32 blocksize;
2364	u64 bytenr;
 
2365	int slot;
2366	int ret = 0;
 
2367
2368	/*
2369	 * If we are lowest then this is the first time we're processing this
2370	 * block, and thus shouldn't have an eb associated with it yet.
2371	 */
2372	ASSERT(!lowest || !node->eb);
2373
2374	path->lowest_level = node->level + 1;
2375	rc->backref_cache.path[node->level] = node;
2376	list_for_each_entry(edge, &node->upper, list[LOWER]) {
 
2377		struct btrfs_ref ref = { 0 };
2378
2379		cond_resched();
2380
2381		upper = edge->node[UPPER];
2382		root = select_reloc_root(trans, rc, upper, edges);
2383		if (IS_ERR(root)) {
2384			ret = PTR_ERR(root);
2385			goto next;
2386		}
2387
2388		if (upper->eb && !upper->locked) {
2389			if (!lowest) {
2390				ret = btrfs_bin_search(upper->eb, key, &slot);
2391				if (ret < 0)
 
 
2392					goto next;
 
2393				BUG_ON(ret);
2394				bytenr = btrfs_node_blockptr(upper->eb, slot);
2395				if (node->eb->start == bytenr)
2396					goto next;
2397			}
2398			btrfs_backref_drop_node_buffer(upper);
2399		}
2400
2401		if (!upper->eb) {
2402			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2403			if (ret) {
2404				if (ret > 0)
2405					ret = -ENOENT;
 
 
2406
2407				btrfs_release_path(path);
2408				break;
2409			}
2410
2411			if (!upper->eb) {
2412				upper->eb = path->nodes[upper->level];
2413				path->nodes[upper->level] = NULL;
2414			} else {
2415				BUG_ON(upper->eb != path->nodes[upper->level]);
2416			}
2417
2418			upper->locked = 1;
2419			path->locks[upper->level] = 0;
2420
2421			slot = path->slots[upper->level];
2422			btrfs_release_path(path);
2423		} else {
2424			ret = btrfs_bin_search(upper->eb, key, &slot);
2425			if (ret < 0)
 
 
2426				goto next;
 
2427			BUG_ON(ret);
2428		}
2429
2430		bytenr = btrfs_node_blockptr(upper->eb, slot);
2431		if (lowest) {
2432			if (bytenr != node->bytenr) {
2433				btrfs_err(root->fs_info,
2434		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2435					  bytenr, node->bytenr, slot,
2436					  upper->eb->start);
2437				ret = -EIO;
2438				goto next;
2439			}
2440		} else {
2441			if (node->eb->start == bytenr)
2442				goto next;
2443		}
2444
2445		blocksize = root->fs_info->nodesize;
2446		eb = btrfs_read_node_slot(upper->eb, slot);
 
 
 
2447		if (IS_ERR(eb)) {
2448			ret = PTR_ERR(eb);
 
 
 
 
2449			goto next;
2450		}
2451		btrfs_tree_lock(eb);
 
2452
2453		if (!node->eb) {
2454			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2455					      slot, &eb, BTRFS_NESTING_COW);
2456			btrfs_tree_unlock(eb);
2457			free_extent_buffer(eb);
2458			if (ret < 0)
 
2459				goto next;
2460			/*
2461			 * We've just COWed this block, it should have updated
2462			 * the correct backref node entry.
2463			 */
2464			ASSERT(node->eb == eb);
2465		} else {
2466			btrfs_set_node_blockptr(upper->eb, slot,
2467						node->eb->start);
2468			btrfs_set_node_ptr_generation(upper->eb, slot,
2469						      trans->transid);
2470			btrfs_mark_buffer_dirty(upper->eb);
2471
2472			btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2473					       node->eb->start, blocksize,
2474					       upper->eb->start);
2475			ref.real_root = root->root_key.objectid;
2476			btrfs_init_tree_ref(&ref, node->level,
2477					    btrfs_header_owner(upper->eb));
2478			ret = btrfs_inc_extent_ref(trans, &ref);
2479			if (!ret)
2480				ret = btrfs_drop_subtree(trans, root, eb,
2481							 upper->eb);
2482			if (ret)
2483				btrfs_abort_transaction(trans, ret);
2484		}
2485next:
2486		if (!upper->pending)
2487			btrfs_backref_drop_node_buffer(upper);
2488		else
2489			btrfs_backref_unlock_node_buffer(upper);
2490		if (ret)
2491			break;
2492	}
2493
2494	if (!ret && node->pending) {
2495		btrfs_backref_drop_node_buffer(node);
2496		list_move_tail(&node->list, &rc->backref_cache.changed);
2497		node->pending = 0;
2498	}
2499
2500	path->lowest_level = 0;
2501
2502	/*
2503	 * We should have allocated all of our space in the block rsv and thus
2504	 * shouldn't ENOSPC.
2505	 */
2506	ASSERT(ret != -ENOSPC);
2507	return ret;
2508}
2509
2510static int link_to_upper(struct btrfs_trans_handle *trans,
2511			 struct reloc_control *rc,
2512			 struct btrfs_backref_node *node,
2513			 struct btrfs_path *path)
2514{
2515	struct btrfs_key key;
2516
2517	btrfs_node_key_to_cpu(node->eb, &key, 0);
2518	return do_relocation(trans, rc, node, &key, path, 0);
2519}
2520
2521static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2522				struct reloc_control *rc,
2523				struct btrfs_path *path, int err)
2524{
2525	LIST_HEAD(list);
2526	struct btrfs_backref_cache *cache = &rc->backref_cache;
2527	struct btrfs_backref_node *node;
2528	int level;
2529	int ret;
2530
2531	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2532		while (!list_empty(&cache->pending[level])) {
2533			node = list_entry(cache->pending[level].next,
2534					  struct btrfs_backref_node, list);
2535			list_move_tail(&node->list, &list);
2536			BUG_ON(!node->pending);
2537
2538			if (!err) {
2539				ret = link_to_upper(trans, rc, node, path);
2540				if (ret < 0)
2541					err = ret;
2542			}
2543		}
2544		list_splice_init(&list, &cache->pending[level]);
2545	}
2546	return err;
2547}
2548
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2549/*
2550 * mark a block and all blocks directly/indirectly reference the block
2551 * as processed.
2552 */
2553static void update_processed_blocks(struct reloc_control *rc,
2554				    struct btrfs_backref_node *node)
2555{
2556	struct btrfs_backref_node *next = node;
2557	struct btrfs_backref_edge *edge;
2558	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2559	int index = 0;
2560
2561	while (next) {
2562		cond_resched();
2563		while (1) {
2564			if (next->processed)
2565				break;
2566
2567			mark_block_processed(rc, next);
2568
2569			if (list_empty(&next->upper))
2570				break;
2571
2572			edge = list_entry(next->upper.next,
2573					struct btrfs_backref_edge, list[LOWER]);
2574			edges[index++] = edge;
2575			next = edge->node[UPPER];
2576		}
2577		next = walk_down_backref(edges, &index);
2578	}
2579}
2580
2581static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2582{
2583	u32 blocksize = rc->extent_root->fs_info->nodesize;
2584
2585	if (test_range_bit(&rc->processed_blocks, bytenr,
2586			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2587		return 1;
2588	return 0;
2589}
2590
2591static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2592			      struct tree_block *block)
2593{
2594	struct extent_buffer *eb;
2595
2596	eb = read_tree_block(fs_info, block->bytenr, block->owner,
2597			     block->key.offset, block->level, NULL);
 
2598	if (IS_ERR(eb)) {
2599		return PTR_ERR(eb);
2600	} else if (!extent_buffer_uptodate(eb)) {
2601		free_extent_buffer(eb);
2602		return -EIO;
2603	}
2604	if (block->level == 0)
2605		btrfs_item_key_to_cpu(eb, &block->key, 0);
2606	else
2607		btrfs_node_key_to_cpu(eb, &block->key, 0);
2608	free_extent_buffer(eb);
2609	block->key_ready = 1;
2610	return 0;
2611}
2612
2613/*
2614 * helper function to relocate a tree block
2615 */
2616static int relocate_tree_block(struct btrfs_trans_handle *trans,
2617				struct reloc_control *rc,
2618				struct btrfs_backref_node *node,
2619				struct btrfs_key *key,
2620				struct btrfs_path *path)
2621{
2622	struct btrfs_root *root;
2623	int ret = 0;
2624
2625	if (!node)
2626		return 0;
2627
2628	/*
2629	 * If we fail here we want to drop our backref_node because we are going
2630	 * to start over and regenerate the tree for it.
2631	 */
2632	ret = reserve_metadata_space(trans, rc, node);
2633	if (ret)
2634		goto out;
2635
2636	BUG_ON(node->processed);
2637	root = select_one_root(node);
2638	if (IS_ERR(root)) {
2639		ret = PTR_ERR(root);
 
 
2640
2641		/* See explanation in select_one_root for the -EUCLEAN case. */
2642		ASSERT(ret == -ENOENT);
2643		if (ret == -ENOENT) {
2644			ret = 0;
2645			update_processed_blocks(rc, node);
2646		}
2647		goto out;
2648	}
2649
2650	if (root) {
2651		if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2652			/*
2653			 * This block was the root block of a root, and this is
2654			 * the first time we're processing the block and thus it
2655			 * should not have had the ->new_bytenr modified and
2656			 * should have not been included on the changed list.
2657			 *
2658			 * However in the case of corruption we could have
2659			 * multiple refs pointing to the same block improperly,
2660			 * and thus we would trip over these checks.  ASSERT()
2661			 * for the developer case, because it could indicate a
2662			 * bug in the backref code, however error out for a
2663			 * normal user in the case of corruption.
2664			 */
2665			ASSERT(node->new_bytenr == 0);
2666			ASSERT(list_empty(&node->list));
2667			if (node->new_bytenr || !list_empty(&node->list)) {
2668				btrfs_err(root->fs_info,
2669				  "bytenr %llu has improper references to it",
2670					  node->bytenr);
2671				ret = -EUCLEAN;
2672				goto out;
2673			}
2674			ret = btrfs_record_root_in_trans(trans, root);
2675			if (ret)
2676				goto out;
2677			/*
2678			 * Another thread could have failed, need to check if we
2679			 * have reloc_root actually set.
2680			 */
2681			if (!root->reloc_root) {
2682				ret = -ENOENT;
2683				goto out;
2684			}
2685			root = root->reloc_root;
2686			node->new_bytenr = root->node->start;
2687			btrfs_put_root(node->root);
2688			node->root = btrfs_grab_root(root);
2689			ASSERT(node->root);
2690			list_add_tail(&node->list, &rc->backref_cache.changed);
2691		} else {
2692			path->lowest_level = node->level;
2693			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2694			btrfs_release_path(path);
2695			if (ret > 0)
2696				ret = 0;
2697		}
2698		if (!ret)
2699			update_processed_blocks(rc, node);
2700	} else {
2701		ret = do_relocation(trans, rc, node, key, path, 1);
2702	}
2703out:
2704	if (ret || node->level == 0 || node->cowonly)
2705		btrfs_backref_cleanup_node(&rc->backref_cache, node);
2706	return ret;
2707}
2708
2709/*
2710 * relocate a list of blocks
2711 */
2712static noinline_for_stack
2713int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2714			 struct reloc_control *rc, struct rb_root *blocks)
2715{
2716	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2717	struct btrfs_backref_node *node;
2718	struct btrfs_path *path;
2719	struct tree_block *block;
2720	struct tree_block *next;
2721	int ret;
2722	int err = 0;
2723
2724	path = btrfs_alloc_path();
2725	if (!path) {
2726		err = -ENOMEM;
2727		goto out_free_blocks;
2728	}
2729
2730	/* Kick in readahead for tree blocks with missing keys */
2731	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2732		if (!block->key_ready)
2733			btrfs_readahead_tree_block(fs_info, block->bytenr,
2734						   block->owner, 0,
2735						   block->level);
2736	}
2737
2738	/* Get first keys */
2739	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2740		if (!block->key_ready) {
2741			err = get_tree_block_key(fs_info, block);
2742			if (err)
2743				goto out_free_path;
2744		}
2745	}
2746
2747	/* Do tree relocation */
2748	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2749		node = build_backref_tree(rc, &block->key,
2750					  block->level, block->bytenr);
2751		if (IS_ERR(node)) {
2752			err = PTR_ERR(node);
2753			goto out;
2754		}
2755
2756		ret = relocate_tree_block(trans, rc, node, &block->key,
2757					  path);
2758		if (ret < 0) {
2759			err = ret;
2760			break;
 
2761		}
2762	}
2763out:
2764	err = finish_pending_nodes(trans, rc, path, err);
2765
2766out_free_path:
2767	btrfs_free_path(path);
2768out_free_blocks:
2769	free_block_list(blocks);
2770	return err;
2771}
2772
2773static noinline_for_stack int prealloc_file_extent_cluster(
2774				struct btrfs_inode *inode,
2775				struct file_extent_cluster *cluster)
2776{
2777	u64 alloc_hint = 0;
2778	u64 start;
2779	u64 end;
2780	u64 offset = inode->index_cnt;
2781	u64 num_bytes;
2782	int nr;
2783	int ret = 0;
2784	u64 prealloc_start = cluster->start - offset;
2785	u64 prealloc_end = cluster->end - offset;
2786	u64 cur_offset = prealloc_start;
 
2787
2788	BUG_ON(cluster->start != cluster->boundary[0]);
2789	ret = btrfs_alloc_data_chunk_ondemand(inode,
2790					      prealloc_end + 1 - prealloc_start);
 
 
2791	if (ret)
2792		return ret;
2793
2794	/*
2795	 * On a zoned filesystem, we cannot preallocate the file region.
2796	 * Instead, we dirty and fiemap_write the region.
2797	 */
2798	if (btrfs_is_zoned(inode->root->fs_info)) {
2799		struct btrfs_root *root = inode->root;
2800		struct btrfs_trans_handle *trans;
2801
2802		end = cluster->end - offset + 1;
2803		trans = btrfs_start_transaction(root, 1);
2804		if (IS_ERR(trans))
2805			return PTR_ERR(trans);
2806
2807		inode->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
2808		i_size_write(&inode->vfs_inode, end);
2809		ret = btrfs_update_inode(trans, root, inode);
2810		if (ret) {
2811			btrfs_abort_transaction(trans, ret);
2812			btrfs_end_transaction(trans);
2813			return ret;
2814		}
2815
2816		return btrfs_end_transaction(trans);
2817	}
2818
2819	btrfs_inode_lock(&inode->vfs_inode, 0);
2820	for (nr = 0; nr < cluster->nr; nr++) {
2821		start = cluster->boundary[nr] - offset;
2822		if (nr + 1 < cluster->nr)
2823			end = cluster->boundary[nr + 1] - 1 - offset;
2824		else
2825			end = cluster->end - offset;
2826
2827		lock_extent(&inode->io_tree, start, end);
2828		num_bytes = end + 1 - start;
2829		ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
 
 
 
2830						num_bytes, num_bytes,
2831						end + 1, &alloc_hint);
2832		cur_offset = end + 1;
2833		unlock_extent(&inode->io_tree, start, end);
2834		if (ret)
2835			break;
 
2836	}
2837	btrfs_inode_unlock(&inode->vfs_inode, 0);
2838
2839	if (cur_offset < prealloc_end)
2840		btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2841					       prealloc_end + 1 - cur_offset);
 
 
 
2842	return ret;
2843}
2844
2845static noinline_for_stack
2846int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
2847			 u64 block_start)
2848{
 
2849	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2850	struct extent_map *em;
2851	int ret = 0;
2852
2853	em = alloc_extent_map();
2854	if (!em)
2855		return -ENOMEM;
2856
2857	em->start = start;
2858	em->len = end + 1 - start;
2859	em->block_len = em->len;
2860	em->block_start = block_start;
 
2861	set_bit(EXTENT_FLAG_PINNED, &em->flags);
2862
2863	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2864	while (1) {
2865		write_lock(&em_tree->lock);
2866		ret = add_extent_mapping(em_tree, em, 0);
2867		write_unlock(&em_tree->lock);
2868		if (ret != -EEXIST) {
2869			free_extent_map(em);
2870			break;
2871		}
2872		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
2873	}
2874	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2875	return ret;
2876}
2877
2878/*
2879 * Allow error injection to test balance/relocation cancellation
2880 */
2881noinline int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info)
2882{
2883	return atomic_read(&fs_info->balance_cancel_req) ||
2884		atomic_read(&fs_info->reloc_cancel_req) ||
2885		fatal_signal_pending(current);
2886}
2887ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2888
2889static int relocate_file_extent_cluster(struct inode *inode,
2890					struct file_extent_cluster *cluster)
2891{
2892	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2893	u64 page_start;
2894	u64 page_end;
2895	u64 offset = BTRFS_I(inode)->index_cnt;
2896	unsigned long index;
2897	unsigned long last_index;
2898	struct page *page;
2899	struct file_ra_state *ra;
2900	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2901	int nr = 0;
2902	int ret = 0;
2903
2904	if (!cluster->nr)
2905		return 0;
2906
2907	ra = kzalloc(sizeof(*ra), GFP_NOFS);
2908	if (!ra)
2909		return -ENOMEM;
2910
2911	ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster);
2912	if (ret)
2913		goto out;
2914
2915	file_ra_state_init(ra, inode->i_mapping);
2916
2917	ret = setup_extent_mapping(inode, cluster->start - offset,
2918				   cluster->end - offset, cluster->start);
2919	if (ret)
2920		goto out;
2921
2922	index = (cluster->start - offset) >> PAGE_SHIFT;
2923	last_index = (cluster->end - offset) >> PAGE_SHIFT;
2924	while (index <= last_index) {
2925		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
2926				PAGE_SIZE);
2927		if (ret)
2928			goto out;
2929
2930		page = find_lock_page(inode->i_mapping, index);
2931		if (!page) {
2932			page_cache_sync_readahead(inode->i_mapping,
2933						  ra, NULL, index,
2934						  last_index + 1 - index);
2935			page = find_or_create_page(inode->i_mapping, index,
2936						   mask);
2937			if (!page) {
2938				btrfs_delalloc_release_metadata(BTRFS_I(inode),
2939							PAGE_SIZE, true);
2940				btrfs_delalloc_release_extents(BTRFS_I(inode),
2941							PAGE_SIZE);
2942				ret = -ENOMEM;
2943				goto out;
2944			}
2945		}
2946		ret = set_page_extent_mapped(page);
2947		if (ret < 0) {
2948			btrfs_delalloc_release_metadata(BTRFS_I(inode),
2949							PAGE_SIZE, true);
2950			btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
2951			unlock_page(page);
2952			put_page(page);
2953			goto out;
2954		}
2955
2956		if (PageReadahead(page)) {
2957			page_cache_async_readahead(inode->i_mapping,
2958						   ra, NULL, page, index,
2959						   last_index + 1 - index);
2960		}
2961
2962		if (!PageUptodate(page)) {
2963			btrfs_readpage(NULL, page);
2964			lock_page(page);
2965			if (!PageUptodate(page)) {
2966				unlock_page(page);
2967				put_page(page);
2968				btrfs_delalloc_release_metadata(BTRFS_I(inode),
2969							PAGE_SIZE, true);
2970				btrfs_delalloc_release_extents(BTRFS_I(inode),
2971							       PAGE_SIZE);
2972				ret = -EIO;
2973				goto out;
2974			}
2975		}
2976
2977		page_start = page_offset(page);
2978		page_end = page_start + PAGE_SIZE - 1;
2979
2980		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
2981
 
 
2982		if (nr < cluster->nr &&
2983		    page_start + offset == cluster->boundary[nr]) {
2984			set_extent_bits(&BTRFS_I(inode)->io_tree,
2985					page_start, page_end,
2986					EXTENT_BOUNDARY);
2987			nr++;
2988		}
2989
2990		ret = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start,
2991						page_end, 0, NULL);
2992		if (ret) {
2993			unlock_page(page);
2994			put_page(page);
2995			btrfs_delalloc_release_metadata(BTRFS_I(inode),
2996							 PAGE_SIZE, true);
2997			btrfs_delalloc_release_extents(BTRFS_I(inode),
2998			                               PAGE_SIZE);
2999
3000			clear_extent_bits(&BTRFS_I(inode)->io_tree,
3001					  page_start, page_end,
3002					  EXTENT_LOCKED | EXTENT_BOUNDARY);
3003			goto out;
3004
3005		}
3006		set_page_dirty(page);
3007
3008		unlock_extent(&BTRFS_I(inode)->io_tree,
3009			      page_start, page_end);
3010		unlock_page(page);
3011		put_page(page);
3012
3013		index++;
3014		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
3015		balance_dirty_pages_ratelimited(inode->i_mapping);
3016		btrfs_throttle(fs_info);
3017		if (btrfs_should_cancel_balance(fs_info)) {
3018			ret = -ECANCELED;
3019			goto out;
3020		}
3021	}
3022	WARN_ON(nr != cluster->nr);
3023	if (btrfs_is_zoned(fs_info) && !ret)
3024		ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
3025out:
3026	kfree(ra);
3027	return ret;
3028}
3029
3030static noinline_for_stack
3031int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3032			 struct file_extent_cluster *cluster)
3033{
3034	int ret;
3035
3036	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3037		ret = relocate_file_extent_cluster(inode, cluster);
3038		if (ret)
3039			return ret;
3040		cluster->nr = 0;
3041	}
3042
3043	if (!cluster->nr)
3044		cluster->start = extent_key->objectid;
3045	else
3046		BUG_ON(cluster->nr >= MAX_EXTENTS);
3047	cluster->end = extent_key->objectid + extent_key->offset - 1;
3048	cluster->boundary[cluster->nr] = extent_key->objectid;
3049	cluster->nr++;
3050
3051	if (cluster->nr >= MAX_EXTENTS) {
3052		ret = relocate_file_extent_cluster(inode, cluster);
3053		if (ret)
3054			return ret;
3055		cluster->nr = 0;
3056	}
3057	return 0;
3058}
3059
3060/*
3061 * helper to add a tree block to the list.
3062 * the major work is getting the generation and level of the block
3063 */
3064static int add_tree_block(struct reloc_control *rc,
3065			  struct btrfs_key *extent_key,
3066			  struct btrfs_path *path,
3067			  struct rb_root *blocks)
3068{
3069	struct extent_buffer *eb;
3070	struct btrfs_extent_item *ei;
3071	struct btrfs_tree_block_info *bi;
3072	struct tree_block *block;
3073	struct rb_node *rb_node;
3074	u32 item_size;
3075	int level = -1;
3076	u64 generation;
3077	u64 owner = 0;
3078
3079	eb =  path->nodes[0];
3080	item_size = btrfs_item_size_nr(eb, path->slots[0]);
3081
3082	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3083	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3084		unsigned long ptr = 0, end;
3085
3086		ei = btrfs_item_ptr(eb, path->slots[0],
3087				struct btrfs_extent_item);
3088		end = (unsigned long)ei + item_size;
3089		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3090			bi = (struct btrfs_tree_block_info *)(ei + 1);
3091			level = btrfs_tree_block_level(eb, bi);
3092			ptr = (unsigned long)(bi + 1);
3093		} else {
3094			level = (int)extent_key->offset;
3095			ptr = (unsigned long)(ei + 1);
3096		}
3097		generation = btrfs_extent_generation(eb, ei);
3098
3099		/*
3100		 * We're reading random blocks without knowing their owner ahead
3101		 * of time.  This is ok most of the time, as all reloc roots and
3102		 * fs roots have the same lock type.  However normal trees do
3103		 * not, and the only way to know ahead of time is to read the
3104		 * inline ref offset.  We know it's an fs root if
3105		 *
3106		 * 1. There's more than one ref.
3107		 * 2. There's a SHARED_DATA_REF_KEY set.
3108		 * 3. FULL_BACKREF is set on the flags.
3109		 *
3110		 * Otherwise it's safe to assume that the ref offset == the
3111		 * owner of this block, so we can use that when calling
3112		 * read_tree_block.
3113		 */
3114		if (btrfs_extent_refs(eb, ei) == 1 &&
3115		    !(btrfs_extent_flags(eb, ei) &
3116		      BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
3117		    ptr < end) {
3118			struct btrfs_extent_inline_ref *iref;
3119			int type;
3120
3121			iref = (struct btrfs_extent_inline_ref *)ptr;
3122			type = btrfs_get_extent_inline_ref_type(eb, iref,
3123							BTRFS_REF_TYPE_BLOCK);
3124			if (type == BTRFS_REF_TYPE_INVALID)
3125				return -EINVAL;
3126			if (type == BTRFS_TREE_BLOCK_REF_KEY)
3127				owner = btrfs_extent_inline_ref_offset(eb, iref);
3128		}
3129	} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3130		btrfs_print_v0_err(eb->fs_info);
3131		btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3132		return -EINVAL;
3133	} else {
3134		BUG();
3135	}
3136
3137	btrfs_release_path(path);
3138
3139	BUG_ON(level == -1);
3140
3141	block = kmalloc(sizeof(*block), GFP_NOFS);
3142	if (!block)
3143		return -ENOMEM;
3144
3145	block->bytenr = extent_key->objectid;
3146	block->key.objectid = rc->extent_root->fs_info->nodesize;
3147	block->key.offset = generation;
3148	block->level = level;
3149	block->key_ready = 0;
3150	block->owner = owner;
3151
3152	rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
3153	if (rb_node)
3154		btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
3155				    -EEXIST);
3156
3157	return 0;
3158}
3159
3160/*
3161 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3162 */
3163static int __add_tree_block(struct reloc_control *rc,
3164			    u64 bytenr, u32 blocksize,
3165			    struct rb_root *blocks)
3166{
3167	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3168	struct btrfs_path *path;
3169	struct btrfs_key key;
3170	int ret;
3171	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3172
3173	if (tree_block_processed(bytenr, rc))
3174		return 0;
3175
3176	if (rb_simple_search(blocks, bytenr))
3177		return 0;
3178
3179	path = btrfs_alloc_path();
3180	if (!path)
3181		return -ENOMEM;
3182again:
3183	key.objectid = bytenr;
3184	if (skinny) {
3185		key.type = BTRFS_METADATA_ITEM_KEY;
3186		key.offset = (u64)-1;
3187	} else {
3188		key.type = BTRFS_EXTENT_ITEM_KEY;
3189		key.offset = blocksize;
3190	}
3191
3192	path->search_commit_root = 1;
3193	path->skip_locking = 1;
3194	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3195	if (ret < 0)
3196		goto out;
3197
3198	if (ret > 0 && skinny) {
3199		if (path->slots[0]) {
3200			path->slots[0]--;
3201			btrfs_item_key_to_cpu(path->nodes[0], &key,
3202					      path->slots[0]);
3203			if (key.objectid == bytenr &&
3204			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3205			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3206			      key.offset == blocksize)))
3207				ret = 0;
3208		}
3209
3210		if (ret) {
3211			skinny = false;
3212			btrfs_release_path(path);
3213			goto again;
3214		}
3215	}
3216	if (ret) {
3217		ASSERT(ret == 1);
3218		btrfs_print_leaf(path->nodes[0]);
3219		btrfs_err(fs_info,
3220	     "tree block extent item (%llu) is not found in extent tree",
3221		     bytenr);
3222		WARN_ON(1);
3223		ret = -EINVAL;
3224		goto out;
3225	}
3226
3227	ret = add_tree_block(rc, &key, path, blocks);
3228out:
3229	btrfs_free_path(path);
3230	return ret;
3231}
3232
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3233static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3234				    struct btrfs_block_group *block_group,
3235				    struct inode *inode,
3236				    u64 ino)
3237{
 
3238	struct btrfs_root *root = fs_info->tree_root;
3239	struct btrfs_trans_handle *trans;
3240	int ret = 0;
3241
3242	if (inode)
3243		goto truncate;
3244
3245	inode = btrfs_iget(fs_info->sb, ino, root);
 
 
 
 
3246	if (IS_ERR(inode))
3247		return -ENOENT;
3248
3249truncate:
3250	ret = btrfs_check_trunc_cache_free_space(fs_info,
3251						 &fs_info->global_block_rsv);
3252	if (ret)
3253		goto out;
3254
3255	trans = btrfs_join_transaction(root);
3256	if (IS_ERR(trans)) {
3257		ret = PTR_ERR(trans);
3258		goto out;
3259	}
3260
3261	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3262
3263	btrfs_end_transaction(trans);
3264	btrfs_btree_balance_dirty(fs_info);
3265out:
3266	iput(inode);
3267	return ret;
3268}
3269
3270/*
3271 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3272 * cache inode, to avoid free space cache data extent blocking data relocation.
3273 */
3274static int delete_v1_space_cache(struct extent_buffer *leaf,
3275				 struct btrfs_block_group *block_group,
3276				 u64 data_bytenr)
 
 
3277{
3278	u64 space_cache_ino;
3279	struct btrfs_file_extent_item *ei;
 
 
 
 
3280	struct btrfs_key key;
3281	bool found = false;
3282	int i;
 
 
 
 
 
 
3283	int ret;
3284
3285	if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3286		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3287
3288	for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3289		u8 type;
 
3290
3291		btrfs_item_key_to_cpu(leaf, &key, i);
3292		if (key.type != BTRFS_EXTENT_DATA_KEY)
3293			continue;
3294		ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3295		type = btrfs_file_extent_type(leaf, ei);
 
 
 
 
 
 
 
3296
3297		if ((type == BTRFS_FILE_EXTENT_REG ||
3298		     type == BTRFS_FILE_EXTENT_PREALLOC) &&
3299		    btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3300			found = true;
3301			space_cache_ino = key.objectid;
3302			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3303		}
 
 
 
 
 
 
 
3304	}
3305	if (!found)
3306		return -ENOENT;
3307	ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3308					space_cache_ino);
3309	return ret;
3310}
3311
3312/*
3313 * helper to find all tree blocks that reference a given data extent
3314 */
3315static noinline_for_stack
3316int add_data_references(struct reloc_control *rc,
3317			struct btrfs_key *extent_key,
3318			struct btrfs_path *path,
3319			struct rb_root *blocks)
3320{
3321	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3322	struct ulist *leaves = NULL;
3323	struct ulist_iterator leaf_uiter;
3324	struct ulist_node *ref_node = NULL;
3325	const u32 blocksize = fs_info->nodesize;
 
 
3326	int ret = 0;
 
3327
3328	btrfs_release_path(path);
3329	ret = btrfs_find_all_leafs(NULL, fs_info, extent_key->objectid,
3330				   0, &leaves, NULL, true);
3331	if (ret < 0)
3332		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3333
3334	ULIST_ITER_INIT(&leaf_uiter);
3335	while ((ref_node = ulist_next(leaves, &leaf_uiter))) {
3336		struct extent_buffer *eb;
 
 
 
 
 
 
 
 
 
 
3337
3338		eb = read_tree_block(fs_info, ref_node->val, 0, 0, 0, NULL);
3339		if (IS_ERR(eb)) {
3340			ret = PTR_ERR(eb);
3341			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3342		}
3343		ret = delete_v1_space_cache(eb, rc->block_group,
3344					    extent_key->objectid);
3345		free_extent_buffer(eb);
3346		if (ret < 0)
3347			break;
3348		ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3349		if (ret < 0)
3350			break;
 
 
3351	}
3352	if (ret < 0)
 
 
3353		free_block_list(blocks);
3354	ulist_free(leaves);
3355	return ret;
3356}
3357
3358/*
3359 * helper to find next unprocessed extent
3360 */
3361static noinline_for_stack
3362int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3363		     struct btrfs_key *extent_key)
3364{
3365	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3366	struct btrfs_key key;
3367	struct extent_buffer *leaf;
3368	u64 start, end, last;
3369	int ret;
3370
3371	last = rc->block_group->start + rc->block_group->length;
3372	while (1) {
3373		cond_resched();
3374		if (rc->search_start >= last) {
3375			ret = 1;
3376			break;
3377		}
3378
3379		key.objectid = rc->search_start;
3380		key.type = BTRFS_EXTENT_ITEM_KEY;
3381		key.offset = 0;
3382
3383		path->search_commit_root = 1;
3384		path->skip_locking = 1;
3385		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3386					0, 0);
3387		if (ret < 0)
3388			break;
3389next:
3390		leaf = path->nodes[0];
3391		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3392			ret = btrfs_next_leaf(rc->extent_root, path);
3393			if (ret != 0)
3394				break;
3395			leaf = path->nodes[0];
3396		}
3397
3398		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3399		if (key.objectid >= last) {
3400			ret = 1;
3401			break;
3402		}
3403
3404		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3405		    key.type != BTRFS_METADATA_ITEM_KEY) {
3406			path->slots[0]++;
3407			goto next;
3408		}
3409
3410		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3411		    key.objectid + key.offset <= rc->search_start) {
3412			path->slots[0]++;
3413			goto next;
3414		}
3415
3416		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3417		    key.objectid + fs_info->nodesize <=
3418		    rc->search_start) {
3419			path->slots[0]++;
3420			goto next;
3421		}
3422
3423		ret = find_first_extent_bit(&rc->processed_blocks,
3424					    key.objectid, &start, &end,
3425					    EXTENT_DIRTY, NULL);
3426
3427		if (ret == 0 && start <= key.objectid) {
3428			btrfs_release_path(path);
3429			rc->search_start = end + 1;
3430		} else {
3431			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3432				rc->search_start = key.objectid + key.offset;
3433			else
3434				rc->search_start = key.objectid +
3435					fs_info->nodesize;
3436			memcpy(extent_key, &key, sizeof(key));
3437			return 0;
3438		}
3439	}
3440	btrfs_release_path(path);
3441	return ret;
3442}
3443
3444static void set_reloc_control(struct reloc_control *rc)
3445{
3446	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3447
3448	mutex_lock(&fs_info->reloc_mutex);
3449	fs_info->reloc_ctl = rc;
3450	mutex_unlock(&fs_info->reloc_mutex);
3451}
3452
3453static void unset_reloc_control(struct reloc_control *rc)
3454{
3455	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3456
3457	mutex_lock(&fs_info->reloc_mutex);
3458	fs_info->reloc_ctl = NULL;
3459	mutex_unlock(&fs_info->reloc_mutex);
3460}
3461
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3462static noinline_for_stack
3463int prepare_to_relocate(struct reloc_control *rc)
3464{
3465	struct btrfs_trans_handle *trans;
3466	int ret;
3467
3468	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3469					      BTRFS_BLOCK_RSV_TEMP);
3470	if (!rc->block_rsv)
3471		return -ENOMEM;
3472
3473	memset(&rc->cluster, 0, sizeof(rc->cluster));
3474	rc->search_start = rc->block_group->start;
3475	rc->extents_found = 0;
3476	rc->nodes_relocated = 0;
3477	rc->merging_rsv_size = 0;
3478	rc->reserved_bytes = 0;
3479	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3480			      RELOCATION_RESERVED_NODES;
3481	ret = btrfs_block_rsv_refill(rc->extent_root,
3482				     rc->block_rsv, rc->block_rsv->size,
3483				     BTRFS_RESERVE_FLUSH_ALL);
3484	if (ret)
3485		return ret;
3486
3487	rc->create_reloc_tree = 1;
3488	set_reloc_control(rc);
3489
3490	trans = btrfs_join_transaction(rc->extent_root);
3491	if (IS_ERR(trans)) {
3492		unset_reloc_control(rc);
3493		/*
3494		 * extent tree is not a ref_cow tree and has no reloc_root to
3495		 * cleanup.  And callers are responsible to free the above
3496		 * block rsv.
3497		 */
3498		return PTR_ERR(trans);
3499	}
3500	return btrfs_commit_transaction(trans);
 
3501}
3502
3503static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3504{
3505	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3506	struct rb_root blocks = RB_ROOT;
3507	struct btrfs_key key;
3508	struct btrfs_trans_handle *trans = NULL;
3509	struct btrfs_path *path;
3510	struct btrfs_extent_item *ei;
3511	u64 flags;
 
3512	int ret;
3513	int err = 0;
3514	int progress = 0;
3515
3516	path = btrfs_alloc_path();
3517	if (!path)
3518		return -ENOMEM;
3519	path->reada = READA_FORWARD;
3520
3521	ret = prepare_to_relocate(rc);
3522	if (ret) {
3523		err = ret;
3524		goto out_free;
3525	}
3526
3527	while (1) {
3528		rc->reserved_bytes = 0;
3529		ret = btrfs_block_rsv_refill(rc->extent_root,
3530					rc->block_rsv, rc->block_rsv->size,
3531					BTRFS_RESERVE_FLUSH_ALL);
3532		if (ret) {
3533			err = ret;
3534			break;
3535		}
3536		progress++;
3537		trans = btrfs_start_transaction(rc->extent_root, 0);
3538		if (IS_ERR(trans)) {
3539			err = PTR_ERR(trans);
3540			trans = NULL;
3541			break;
3542		}
3543restart:
3544		if (update_backref_cache(trans, &rc->backref_cache)) {
3545			btrfs_end_transaction(trans);
3546			trans = NULL;
3547			continue;
3548		}
3549
3550		ret = find_next_extent(rc, path, &key);
3551		if (ret < 0)
3552			err = ret;
3553		if (ret != 0)
3554			break;
3555
3556		rc->extents_found++;
3557
3558		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3559				    struct btrfs_extent_item);
3560		flags = btrfs_extent_flags(path->nodes[0], ei);
 
 
 
 
 
 
 
 
 
 
 
 
3561
3562		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3563			ret = add_tree_block(rc, &key, path, &blocks);
3564		} else if (rc->stage == UPDATE_DATA_PTRS &&
3565			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3566			ret = add_data_references(rc, &key, path, &blocks);
3567		} else {
3568			btrfs_release_path(path);
3569			ret = 0;
3570		}
3571		if (ret < 0) {
3572			err = ret;
3573			break;
3574		}
3575
3576		if (!RB_EMPTY_ROOT(&blocks)) {
3577			ret = relocate_tree_blocks(trans, rc, &blocks);
3578			if (ret < 0) {
 
 
 
 
 
 
3579				if (ret != -EAGAIN) {
3580					err = ret;
3581					break;
3582				}
3583				rc->extents_found--;
3584				rc->search_start = key.objectid;
3585			}
3586		}
3587
3588		btrfs_end_transaction_throttle(trans);
3589		btrfs_btree_balance_dirty(fs_info);
3590		trans = NULL;
3591
3592		if (rc->stage == MOVE_DATA_EXTENTS &&
3593		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3594			rc->found_file_extent = 1;
3595			ret = relocate_data_extent(rc->data_inode,
3596						   &key, &rc->cluster);
3597			if (ret < 0) {
3598				err = ret;
3599				break;
3600			}
3601		}
3602		if (btrfs_should_cancel_balance(fs_info)) {
3603			err = -ECANCELED;
3604			break;
3605		}
3606	}
3607	if (trans && progress && err == -ENOSPC) {
3608		ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3609		if (ret == 1) {
3610			err = 0;
3611			progress = 0;
3612			goto restart;
3613		}
3614	}
3615
3616	btrfs_release_path(path);
3617	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3618
3619	if (trans) {
3620		btrfs_end_transaction_throttle(trans);
3621		btrfs_btree_balance_dirty(fs_info);
3622	}
3623
3624	if (!err) {
3625		ret = relocate_file_extent_cluster(rc->data_inode,
3626						   &rc->cluster);
3627		if (ret < 0)
3628			err = ret;
3629	}
3630
3631	rc->create_reloc_tree = 0;
3632	set_reloc_control(rc);
3633
3634	btrfs_backref_release_cache(&rc->backref_cache);
3635	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3636
3637	/*
3638	 * Even in the case when the relocation is cancelled, we should all go
3639	 * through prepare_to_merge() and merge_reloc_roots().
3640	 *
3641	 * For error (including cancelled balance), prepare_to_merge() will
3642	 * mark all reloc trees orphan, then queue them for cleanup in
3643	 * merge_reloc_roots()
3644	 */
3645	err = prepare_to_merge(rc, err);
3646
3647	merge_reloc_roots(rc);
3648
3649	rc->merge_reloc_tree = 0;
3650	unset_reloc_control(rc);
3651	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3652
3653	/* get rid of pinned extents */
3654	trans = btrfs_join_transaction(rc->extent_root);
3655	if (IS_ERR(trans)) {
3656		err = PTR_ERR(trans);
3657		goto out_free;
3658	}
3659	ret = btrfs_commit_transaction(trans);
3660	if (ret && !err)
3661		err = ret;
3662out_free:
3663	ret = clean_dirty_subvols(rc);
3664	if (ret < 0 && !err)
3665		err = ret;
 
3666	btrfs_free_block_rsv(fs_info, rc->block_rsv);
3667	btrfs_free_path(path);
3668	return err;
3669}
3670
3671static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3672				 struct btrfs_root *root, u64 objectid)
3673{
3674	struct btrfs_path *path;
3675	struct btrfs_inode_item *item;
3676	struct extent_buffer *leaf;
3677	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
3678	int ret;
3679
3680	if (btrfs_is_zoned(trans->fs_info))
3681		flags &= ~BTRFS_INODE_PREALLOC;
3682
3683	path = btrfs_alloc_path();
3684	if (!path)
3685		return -ENOMEM;
3686
3687	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3688	if (ret)
3689		goto out;
3690
3691	leaf = path->nodes[0];
3692	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3693	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3694	btrfs_set_inode_generation(leaf, item, 1);
3695	btrfs_set_inode_size(leaf, item, 0);
3696	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3697	btrfs_set_inode_flags(leaf, item, flags);
 
3698	btrfs_mark_buffer_dirty(leaf);
3699out:
3700	btrfs_free_path(path);
3701	return ret;
3702}
3703
3704static void delete_orphan_inode(struct btrfs_trans_handle *trans,
3705				struct btrfs_root *root, u64 objectid)
3706{
3707	struct btrfs_path *path;
3708	struct btrfs_key key;
3709	int ret = 0;
3710
3711	path = btrfs_alloc_path();
3712	if (!path) {
3713		ret = -ENOMEM;
3714		goto out;
3715	}
3716
3717	key.objectid = objectid;
3718	key.type = BTRFS_INODE_ITEM_KEY;
3719	key.offset = 0;
3720	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3721	if (ret) {
3722		if (ret > 0)
3723			ret = -ENOENT;
3724		goto out;
3725	}
3726	ret = btrfs_del_item(trans, root, path);
3727out:
3728	if (ret)
3729		btrfs_abort_transaction(trans, ret);
3730	btrfs_free_path(path);
3731}
3732
3733/*
3734 * helper to create inode for data relocation.
3735 * the inode is in data relocation tree and its link count is 0
3736 */
3737static noinline_for_stack
3738struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3739				 struct btrfs_block_group *group)
3740{
3741	struct inode *inode = NULL;
3742	struct btrfs_trans_handle *trans;
3743	struct btrfs_root *root;
 
3744	u64 objectid;
3745	int err = 0;
3746
3747	root = btrfs_grab_root(fs_info->data_reloc_root);
 
 
 
3748	trans = btrfs_start_transaction(root, 6);
3749	if (IS_ERR(trans)) {
3750		btrfs_put_root(root);
3751		return ERR_CAST(trans);
3752	}
3753
3754	err = btrfs_get_free_objectid(root, &objectid);
3755	if (err)
3756		goto out;
3757
3758	err = __insert_orphan_inode(trans, root, objectid);
3759	if (err)
3760		goto out;
3761
3762	inode = btrfs_iget(fs_info->sb, objectid, root);
3763	if (IS_ERR(inode)) {
3764		delete_orphan_inode(trans, root, objectid);
3765		err = PTR_ERR(inode);
3766		inode = NULL;
3767		goto out;
3768	}
3769	BTRFS_I(inode)->index_cnt = group->start;
3770
3771	err = btrfs_orphan_add(trans, BTRFS_I(inode));
3772out:
3773	btrfs_put_root(root);
3774	btrfs_end_transaction(trans);
3775	btrfs_btree_balance_dirty(fs_info);
3776	if (err) {
3777		if (inode)
3778			iput(inode);
3779		inode = ERR_PTR(err);
3780	}
3781	return inode;
3782}
3783
3784/*
3785 * Mark start of chunk relocation that is cancellable. Check if the cancellation
3786 * has been requested meanwhile and don't start in that case.
3787 *
3788 * Return:
3789 *   0             success
3790 *   -EINPROGRESS  operation is already in progress, that's probably a bug
3791 *   -ECANCELED    cancellation request was set before the operation started
3792 *   -EAGAIN       can not start because there are ongoing send operations
3793 */
3794static int reloc_chunk_start(struct btrfs_fs_info *fs_info)
3795{
3796	spin_lock(&fs_info->send_reloc_lock);
3797	if (fs_info->send_in_progress) {
3798		btrfs_warn_rl(fs_info,
3799"cannot run relocation while send operations are in progress (%d in progress)",
3800			      fs_info->send_in_progress);
3801		spin_unlock(&fs_info->send_reloc_lock);
3802		return -EAGAIN;
3803	}
3804	if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
3805		/* This should not happen */
3806		spin_unlock(&fs_info->send_reloc_lock);
3807		btrfs_err(fs_info, "reloc already running, cannot start");
3808		return -EINPROGRESS;
3809	}
3810	spin_unlock(&fs_info->send_reloc_lock);
3811
3812	if (atomic_read(&fs_info->reloc_cancel_req) > 0) {
3813		btrfs_info(fs_info, "chunk relocation canceled on start");
3814		/*
3815		 * On cancel, clear all requests but let the caller mark
3816		 * the end after cleanup operations.
3817		 */
3818		atomic_set(&fs_info->reloc_cancel_req, 0);
3819		return -ECANCELED;
3820	}
3821	return 0;
3822}
3823
3824/*
3825 * Mark end of chunk relocation that is cancellable and wake any waiters.
3826 */
3827static void reloc_chunk_end(struct btrfs_fs_info *fs_info)
3828{
3829	/* Requested after start, clear bit first so any waiters can continue */
3830	if (atomic_read(&fs_info->reloc_cancel_req) > 0)
3831		btrfs_info(fs_info, "chunk relocation canceled during operation");
3832	spin_lock(&fs_info->send_reloc_lock);
3833	clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags);
3834	spin_unlock(&fs_info->send_reloc_lock);
3835	atomic_set(&fs_info->reloc_cancel_req, 0);
3836}
3837
3838static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3839{
3840	struct reloc_control *rc;
3841
3842	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3843	if (!rc)
3844		return NULL;
3845
3846	INIT_LIST_HEAD(&rc->reloc_roots);
3847	INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3848	btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1);
3849	mapping_tree_init(&rc->reloc_root_tree);
3850	extent_io_tree_init(fs_info, &rc->processed_blocks,
3851			    IO_TREE_RELOC_BLOCKS, NULL);
3852	return rc;
3853}
3854
3855static void free_reloc_control(struct reloc_control *rc)
3856{
3857	struct mapping_node *node, *tmp;
3858
3859	free_reloc_roots(&rc->reloc_roots);
3860	rbtree_postorder_for_each_entry_safe(node, tmp,
3861			&rc->reloc_root_tree.rb_root, rb_node)
3862		kfree(node);
3863
3864	kfree(rc);
3865}
3866
3867/*
3868 * Print the block group being relocated
3869 */
3870static void describe_relocation(struct btrfs_fs_info *fs_info,
3871				struct btrfs_block_group *block_group)
3872{
3873	char buf[128] = {'\0'};
3874
3875	btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
3876
3877	btrfs_info(fs_info,
3878		   "relocating block group %llu flags %s",
3879		   block_group->start, buf);
3880}
3881
3882static const char *stage_to_string(int stage)
3883{
3884	if (stage == MOVE_DATA_EXTENTS)
3885		return "move data extents";
3886	if (stage == UPDATE_DATA_PTRS)
3887		return "update data pointers";
3888	return "unknown";
3889}
3890
3891/*
3892 * function to relocate all extents in a block group.
3893 */
3894int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
3895{
3896	struct btrfs_block_group *bg;
3897	struct btrfs_root *extent_root = fs_info->extent_root;
3898	struct reloc_control *rc;
3899	struct inode *inode;
3900	struct btrfs_path *path;
3901	int ret;
3902	int rw = 0;
3903	int err = 0;
3904
3905	bg = btrfs_lookup_block_group(fs_info, group_start);
3906	if (!bg)
3907		return -ENOENT;
3908
3909	if (btrfs_pinned_by_swapfile(fs_info, bg)) {
3910		btrfs_put_block_group(bg);
3911		return -ETXTBSY;
3912	}
3913
3914	rc = alloc_reloc_control(fs_info);
3915	if (!rc) {
3916		btrfs_put_block_group(bg);
3917		return -ENOMEM;
3918	}
3919
3920	ret = reloc_chunk_start(fs_info);
3921	if (ret < 0) {
3922		err = ret;
3923		goto out_put_bg;
3924	}
3925
3926	rc->extent_root = extent_root;
3927	rc->block_group = bg;
3928
3929	ret = btrfs_inc_block_group_ro(rc->block_group, true);
3930	if (ret) {
3931		err = ret;
3932		goto out;
3933	}
3934	rw = 1;
3935
3936	path = btrfs_alloc_path();
3937	if (!path) {
3938		err = -ENOMEM;
3939		goto out;
3940	}
3941
3942	inode = lookup_free_space_inode(rc->block_group, path);
3943	btrfs_free_path(path);
3944
3945	if (!IS_ERR(inode))
3946		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
3947	else
3948		ret = PTR_ERR(inode);
3949
3950	if (ret && ret != -ENOENT) {
3951		err = ret;
3952		goto out;
3953	}
3954
3955	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
3956	if (IS_ERR(rc->data_inode)) {
3957		err = PTR_ERR(rc->data_inode);
3958		rc->data_inode = NULL;
3959		goto out;
3960	}
3961
3962	describe_relocation(fs_info, rc->block_group);
3963
3964	btrfs_wait_block_group_reservations(rc->block_group);
3965	btrfs_wait_nocow_writers(rc->block_group);
3966	btrfs_wait_ordered_roots(fs_info, U64_MAX,
3967				 rc->block_group->start,
3968				 rc->block_group->length);
3969
3970	while (1) {
3971		int finishes_stage;
3972
3973		mutex_lock(&fs_info->cleaner_mutex);
3974		ret = relocate_block_group(rc);
3975		mutex_unlock(&fs_info->cleaner_mutex);
3976		if (ret < 0)
3977			err = ret;
3978
3979		finishes_stage = rc->stage;
3980		/*
3981		 * We may have gotten ENOSPC after we already dirtied some
3982		 * extents.  If writeout happens while we're relocating a
3983		 * different block group we could end up hitting the
3984		 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
3985		 * btrfs_reloc_cow_block.  Make sure we write everything out
3986		 * properly so we don't trip over this problem, and then break
3987		 * out of the loop if we hit an error.
3988		 */
3989		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
3990			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
3991						       (u64)-1);
3992			if (ret)
3993				err = ret;
3994			invalidate_mapping_pages(rc->data_inode->i_mapping,
3995						 0, -1);
3996			rc->stage = UPDATE_DATA_PTRS;
3997		}
3998
3999		if (err < 0)
4000			goto out;
4001
4002		if (rc->extents_found == 0)
4003			break;
4004
4005		btrfs_info(fs_info, "found %llu extents, stage: %s",
4006			   rc->extents_found, stage_to_string(finishes_stage));
4007	}
4008
4009	WARN_ON(rc->block_group->pinned > 0);
4010	WARN_ON(rc->block_group->reserved > 0);
4011	WARN_ON(rc->block_group->used > 0);
4012out:
4013	if (err && rw)
4014		btrfs_dec_block_group_ro(rc->block_group);
4015	iput(rc->data_inode);
4016out_put_bg:
4017	btrfs_put_block_group(bg);
4018	reloc_chunk_end(fs_info);
4019	free_reloc_control(rc);
4020	return err;
4021}
4022
4023static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4024{
4025	struct btrfs_fs_info *fs_info = root->fs_info;
4026	struct btrfs_trans_handle *trans;
4027	int ret, err;
4028
4029	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4030	if (IS_ERR(trans))
4031		return PTR_ERR(trans);
4032
4033	memset(&root->root_item.drop_progress, 0,
4034		sizeof(root->root_item.drop_progress));
4035	btrfs_set_root_drop_level(&root->root_item, 0);
4036	btrfs_set_root_refs(&root->root_item, 0);
4037	ret = btrfs_update_root(trans, fs_info->tree_root,
4038				&root->root_key, &root->root_item);
4039
4040	err = btrfs_end_transaction(trans);
4041	if (err)
4042		return err;
4043	return ret;
4044}
4045
4046/*
4047 * recover relocation interrupted by system crash.
4048 *
4049 * this function resumes merging reloc trees with corresponding fs trees.
4050 * this is important for keeping the sharing of tree blocks
4051 */
4052int btrfs_recover_relocation(struct btrfs_root *root)
4053{
4054	struct btrfs_fs_info *fs_info = root->fs_info;
4055	LIST_HEAD(reloc_roots);
4056	struct btrfs_key key;
4057	struct btrfs_root *fs_root;
4058	struct btrfs_root *reloc_root;
4059	struct btrfs_path *path;
4060	struct extent_buffer *leaf;
4061	struct reloc_control *rc = NULL;
4062	struct btrfs_trans_handle *trans;
4063	int ret;
4064	int err = 0;
4065
4066	path = btrfs_alloc_path();
4067	if (!path)
4068		return -ENOMEM;
4069	path->reada = READA_BACK;
4070
4071	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4072	key.type = BTRFS_ROOT_ITEM_KEY;
4073	key.offset = (u64)-1;
4074
4075	while (1) {
4076		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4077					path, 0, 0);
4078		if (ret < 0) {
4079			err = ret;
4080			goto out;
4081		}
4082		if (ret > 0) {
4083			if (path->slots[0] == 0)
4084				break;
4085			path->slots[0]--;
4086		}
4087		leaf = path->nodes[0];
4088		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4089		btrfs_release_path(path);
4090
4091		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4092		    key.type != BTRFS_ROOT_ITEM_KEY)
4093			break;
4094
4095		reloc_root = btrfs_read_tree_root(root, &key);
4096		if (IS_ERR(reloc_root)) {
4097			err = PTR_ERR(reloc_root);
4098			goto out;
4099		}
4100
4101		set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
4102		list_add(&reloc_root->root_list, &reloc_roots);
4103
4104		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4105			fs_root = btrfs_get_fs_root(fs_info,
4106					reloc_root->root_key.offset, false);
4107			if (IS_ERR(fs_root)) {
4108				ret = PTR_ERR(fs_root);
4109				if (ret != -ENOENT) {
4110					err = ret;
4111					goto out;
4112				}
4113				ret = mark_garbage_root(reloc_root);
4114				if (ret < 0) {
4115					err = ret;
4116					goto out;
4117				}
4118			} else {
4119				btrfs_put_root(fs_root);
4120			}
4121		}
4122
4123		if (key.offset == 0)
4124			break;
4125
4126		key.offset--;
4127	}
4128	btrfs_release_path(path);
4129
4130	if (list_empty(&reloc_roots))
4131		goto out;
4132
4133	rc = alloc_reloc_control(fs_info);
4134	if (!rc) {
4135		err = -ENOMEM;
4136		goto out;
4137	}
4138
4139	ret = reloc_chunk_start(fs_info);
4140	if (ret < 0) {
4141		err = ret;
4142		goto out_end;
4143	}
4144
4145	rc->extent_root = fs_info->extent_root;
4146
4147	set_reloc_control(rc);
4148
4149	trans = btrfs_join_transaction(rc->extent_root);
4150	if (IS_ERR(trans)) {
 
4151		err = PTR_ERR(trans);
4152		goto out_unset;
4153	}
4154
4155	rc->merge_reloc_tree = 1;
4156
4157	while (!list_empty(&reloc_roots)) {
4158		reloc_root = list_entry(reloc_roots.next,
4159					struct btrfs_root, root_list);
4160		list_del(&reloc_root->root_list);
4161
4162		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4163			list_add_tail(&reloc_root->root_list,
4164				      &rc->reloc_roots);
4165			continue;
4166		}
4167
4168		fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
4169					    false);
4170		if (IS_ERR(fs_root)) {
4171			err = PTR_ERR(fs_root);
4172			list_add_tail(&reloc_root->root_list, &reloc_roots);
4173			btrfs_end_transaction(trans);
4174			goto out_unset;
4175		}
4176
4177		err = __add_reloc_root(reloc_root);
4178		ASSERT(err != -EEXIST);
4179		if (err) {
4180			list_add_tail(&reloc_root->root_list, &reloc_roots);
4181			btrfs_put_root(fs_root);
4182			btrfs_end_transaction(trans);
4183			goto out_unset;
4184		}
4185		fs_root->reloc_root = btrfs_grab_root(reloc_root);
4186		btrfs_put_root(fs_root);
4187	}
4188
4189	err = btrfs_commit_transaction(trans);
4190	if (err)
4191		goto out_unset;
4192
4193	merge_reloc_roots(rc);
4194
4195	unset_reloc_control(rc);
4196
4197	trans = btrfs_join_transaction(rc->extent_root);
4198	if (IS_ERR(trans)) {
4199		err = PTR_ERR(trans);
4200		goto out_clean;
4201	}
4202	err = btrfs_commit_transaction(trans);
4203out_clean:
4204	ret = clean_dirty_subvols(rc);
4205	if (ret < 0 && !err)
4206		err = ret;
4207out_unset:
4208	unset_reloc_control(rc);
4209out_end:
4210	reloc_chunk_end(fs_info);
4211	free_reloc_control(rc);
4212out:
4213	free_reloc_roots(&reloc_roots);
 
4214
4215	btrfs_free_path(path);
4216
4217	if (err == 0) {
4218		/* cleanup orphan inode in data relocation tree */
4219		fs_root = btrfs_grab_root(fs_info->data_reloc_root);
4220		ASSERT(fs_root);
4221		err = btrfs_orphan_cleanup(fs_root);
4222		btrfs_put_root(fs_root);
 
4223	}
4224	return err;
4225}
4226
4227/*
4228 * helper to add ordered checksum for data relocation.
4229 *
4230 * cloning checksum properly handles the nodatasum extents.
4231 * it also saves CPU time to re-calculate the checksum.
4232 */
4233int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len)
4234{
4235	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4236	struct btrfs_ordered_sum *sums;
4237	struct btrfs_ordered_extent *ordered;
4238	int ret;
4239	u64 disk_bytenr;
4240	u64 new_bytenr;
4241	LIST_HEAD(list);
4242
4243	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4244	BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len);
4245
4246	disk_bytenr = file_pos + inode->index_cnt;
4247	ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
4248				       disk_bytenr + len - 1, &list, 0);
4249	if (ret)
4250		goto out;
4251
4252	while (!list_empty(&list)) {
4253		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4254		list_del_init(&sums->list);
4255
4256		/*
4257		 * We need to offset the new_bytenr based on where the csum is.
4258		 * We need to do this because we will read in entire prealloc
4259		 * extents but we may have written to say the middle of the
4260		 * prealloc extent, so we need to make sure the csum goes with
4261		 * the right disk offset.
4262		 *
4263		 * We can do this because the data reloc inode refers strictly
4264		 * to the on disk bytes, so we don't have to worry about
4265		 * disk_len vs real len like with real inodes since it's all
4266		 * disk length.
4267		 */
4268		new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr;
4269		sums->bytenr = new_bytenr;
4270
4271		btrfs_add_ordered_sum(ordered, sums);
4272	}
4273out:
4274	btrfs_put_ordered_extent(ordered);
4275	return ret;
4276}
4277
4278int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4279			  struct btrfs_root *root, struct extent_buffer *buf,
4280			  struct extent_buffer *cow)
4281{
4282	struct btrfs_fs_info *fs_info = root->fs_info;
4283	struct reloc_control *rc;
4284	struct btrfs_backref_node *node;
4285	int first_cow = 0;
4286	int level;
4287	int ret = 0;
4288
4289	rc = fs_info->reloc_ctl;
4290	if (!rc)
4291		return 0;
4292
4293	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4294	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4295
 
 
 
 
 
4296	level = btrfs_header_level(buf);
4297	if (btrfs_header_generation(buf) <=
4298	    btrfs_root_last_snapshot(&root->root_item))
4299		first_cow = 1;
4300
4301	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4302	    rc->create_reloc_tree) {
4303		WARN_ON(!first_cow && level == 0);
4304
4305		node = rc->backref_cache.path[level];
4306		BUG_ON(node->bytenr != buf->start &&
4307		       node->new_bytenr != buf->start);
4308
4309		btrfs_backref_drop_node_buffer(node);
4310		atomic_inc(&cow->refs);
4311		node->eb = cow;
4312		node->new_bytenr = cow->start;
4313
4314		if (!node->pending) {
4315			list_move_tail(&node->list,
4316				       &rc->backref_cache.pending[level]);
4317			node->pending = 1;
4318		}
4319
4320		if (first_cow)
4321			mark_block_processed(rc, node);
4322
4323		if (first_cow && level > 0)
4324			rc->nodes_relocated += buf->len;
4325	}
4326
4327	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4328		ret = replace_file_extents(trans, rc, root, cow);
4329	return ret;
4330}
4331
4332/*
4333 * called before creating snapshot. it calculates metadata reservation
4334 * required for relocating tree blocks in the snapshot
4335 */
4336void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4337			      u64 *bytes_to_reserve)
4338{
4339	struct btrfs_root *root = pending->root;
4340	struct reloc_control *rc = root->fs_info->reloc_ctl;
4341
4342	if (!rc || !have_reloc_root(root))
4343		return;
4344
4345	if (!rc->merge_reloc_tree)
4346		return;
4347
4348	root = root->reloc_root;
4349	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4350	/*
4351	 * relocation is in the stage of merging trees. the space
4352	 * used by merging a reloc tree is twice the size of
4353	 * relocated tree nodes in the worst case. half for cowing
4354	 * the reloc tree, half for cowing the fs tree. the space
4355	 * used by cowing the reloc tree will be freed after the
4356	 * tree is dropped. if we create snapshot, cowing the fs
4357	 * tree may use more space than it frees. so we need
4358	 * reserve extra space.
4359	 */
4360	*bytes_to_reserve += rc->nodes_relocated;
4361}
4362
4363/*
4364 * called after snapshot is created. migrate block reservation
4365 * and create reloc root for the newly created snapshot
4366 *
4367 * This is similar to btrfs_init_reloc_root(), we come out of here with two
4368 * references held on the reloc_root, one for root->reloc_root and one for
4369 * rc->reloc_roots.
4370 */
4371int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4372			       struct btrfs_pending_snapshot *pending)
4373{
4374	struct btrfs_root *root = pending->root;
4375	struct btrfs_root *reloc_root;
4376	struct btrfs_root *new_root;
4377	struct reloc_control *rc = root->fs_info->reloc_ctl;
4378	int ret;
4379
4380	if (!rc || !have_reloc_root(root))
4381		return 0;
4382
4383	rc = root->fs_info->reloc_ctl;
4384	rc->merging_rsv_size += rc->nodes_relocated;
4385
4386	if (rc->merge_reloc_tree) {
4387		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4388					      rc->block_rsv,
4389					      rc->nodes_relocated, true);
4390		if (ret)
4391			return ret;
4392	}
4393
4394	new_root = pending->snap;
4395	reloc_root = create_reloc_root(trans, root->reloc_root,
4396				       new_root->root_key.objectid);
4397	if (IS_ERR(reloc_root))
4398		return PTR_ERR(reloc_root);
4399
4400	ret = __add_reloc_root(reloc_root);
4401	ASSERT(ret != -EEXIST);
4402	if (ret) {
4403		/* Pairs with create_reloc_root */
4404		btrfs_put_root(reloc_root);
4405		return ret;
4406	}
4407	new_root->reloc_root = btrfs_grab_root(reloc_root);
4408
4409	if (rc->create_reloc_tree)
4410		ret = clone_backref_node(trans, rc, root, reloc_root);
4411	return ret;
4412}