Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/bio.h>
   7#include <linux/slab.h>
   8#include <linux/pagemap.h>
   9#include <linux/highmem.h>
  10#include <linux/sched/mm.h>
  11#include <crypto/hash.h>
  12#include "ctree.h"
  13#include "disk-io.h"
  14#include "transaction.h"
  15#include "volumes.h"
  16#include "print-tree.h"
  17#include "compression.h"
  18
  19#define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
  20				   sizeof(struct btrfs_item) * 2) / \
  21				  size) - 1))
  22
  23#define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
  24				       PAGE_SIZE))
  25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  26static inline u32 max_ordered_sum_bytes(struct btrfs_fs_info *fs_info,
  27					u16 csum_size)
  28{
  29	u32 ncsums = (PAGE_SIZE - sizeof(struct btrfs_ordered_sum)) / csum_size;
  30
  31	return ncsums * fs_info->sectorsize;
  32}
  33
  34int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
  35			     struct btrfs_root *root,
  36			     u64 objectid, u64 pos,
  37			     u64 disk_offset, u64 disk_num_bytes,
  38			     u64 num_bytes, u64 offset, u64 ram_bytes,
  39			     u8 compression, u8 encryption, u16 other_encoding)
  40{
  41	int ret = 0;
  42	struct btrfs_file_extent_item *item;
  43	struct btrfs_key file_key;
  44	struct btrfs_path *path;
  45	struct extent_buffer *leaf;
  46
  47	path = btrfs_alloc_path();
  48	if (!path)
  49		return -ENOMEM;
  50	file_key.objectid = objectid;
  51	file_key.offset = pos;
  52	file_key.type = BTRFS_EXTENT_DATA_KEY;
  53
  54	path->leave_spinning = 1;
  55	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
  56				      sizeof(*item));
  57	if (ret < 0)
  58		goto out;
  59	BUG_ON(ret); /* Can't happen */
  60	leaf = path->nodes[0];
  61	item = btrfs_item_ptr(leaf, path->slots[0],
  62			      struct btrfs_file_extent_item);
  63	btrfs_set_file_extent_disk_bytenr(leaf, item, disk_offset);
  64	btrfs_set_file_extent_disk_num_bytes(leaf, item, disk_num_bytes);
  65	btrfs_set_file_extent_offset(leaf, item, offset);
  66	btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
  67	btrfs_set_file_extent_ram_bytes(leaf, item, ram_bytes);
  68	btrfs_set_file_extent_generation(leaf, item, trans->transid);
  69	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
  70	btrfs_set_file_extent_compression(leaf, item, compression);
  71	btrfs_set_file_extent_encryption(leaf, item, encryption);
  72	btrfs_set_file_extent_other_encoding(leaf, item, other_encoding);
  73
  74	btrfs_mark_buffer_dirty(leaf);
  75out:
  76	btrfs_free_path(path);
  77	return ret;
  78}
  79
  80static struct btrfs_csum_item *
  81btrfs_lookup_csum(struct btrfs_trans_handle *trans,
  82		  struct btrfs_root *root,
  83		  struct btrfs_path *path,
  84		  u64 bytenr, int cow)
  85{
  86	struct btrfs_fs_info *fs_info = root->fs_info;
  87	int ret;
  88	struct btrfs_key file_key;
  89	struct btrfs_key found_key;
  90	struct btrfs_csum_item *item;
  91	struct extent_buffer *leaf;
  92	u64 csum_offset = 0;
  93	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
  94	int csums_in_item;
  95
  96	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
  97	file_key.offset = bytenr;
  98	file_key.type = BTRFS_EXTENT_CSUM_KEY;
  99	ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
 100	if (ret < 0)
 101		goto fail;
 102	leaf = path->nodes[0];
 103	if (ret > 0) {
 104		ret = 1;
 105		if (path->slots[0] == 0)
 106			goto fail;
 107		path->slots[0]--;
 108		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
 109		if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
 110			goto fail;
 111
 112		csum_offset = (bytenr - found_key.offset) >>
 113				fs_info->sb->s_blocksize_bits;
 114		csums_in_item = btrfs_item_size_nr(leaf, path->slots[0]);
 115		csums_in_item /= csum_size;
 116
 117		if (csum_offset == csums_in_item) {
 118			ret = -EFBIG;
 119			goto fail;
 120		} else if (csum_offset > csums_in_item) {
 121			goto fail;
 122		}
 123	}
 124	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
 125	item = (struct btrfs_csum_item *)((unsigned char *)item +
 126					  csum_offset * csum_size);
 127	return item;
 128fail:
 129	if (ret > 0)
 130		ret = -ENOENT;
 131	return ERR_PTR(ret);
 132}
 133
 134int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
 135			     struct btrfs_root *root,
 136			     struct btrfs_path *path, u64 objectid,
 137			     u64 offset, int mod)
 138{
 139	int ret;
 140	struct btrfs_key file_key;
 141	int ins_len = mod < 0 ? -1 : 0;
 142	int cow = mod != 0;
 143
 144	file_key.objectid = objectid;
 145	file_key.offset = offset;
 146	file_key.type = BTRFS_EXTENT_DATA_KEY;
 147	ret = btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
 148	return ret;
 149}
 150
 151static blk_status_t __btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio,
 152				   u64 logical_offset, u8 *dst, int dio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 153{
 154	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 155	struct bio_vec bvec;
 156	struct bvec_iter iter;
 157	struct btrfs_io_bio *btrfs_bio = btrfs_io_bio(bio);
 158	struct btrfs_csum_item *item = NULL;
 159	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 160	struct btrfs_path *path;
 
 161	u8 *csum;
 162	u64 offset = 0;
 163	u64 item_start_offset = 0;
 164	u64 item_last_offset = 0;
 165	u64 disk_bytenr;
 166	u64 page_bytes_left;
 167	u32 diff;
 168	int nblocks;
 169	int count = 0;
 170	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 171
 172	path = btrfs_alloc_path();
 173	if (!path)
 174		return BLK_STS_RESOURCE;
 175
 176	nblocks = bio->bi_iter.bi_size >> inode->i_sb->s_blocksize_bits;
 177	if (!dst) {
 
 
 178		if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
 179			btrfs_bio->csum = kmalloc_array(nblocks, csum_size,
 180							GFP_NOFS);
 181			if (!btrfs_bio->csum) {
 182				btrfs_free_path(path);
 183				return BLK_STS_RESOURCE;
 184			}
 185		} else {
 186			btrfs_bio->csum = btrfs_bio->csum_inline;
 187		}
 188		csum = btrfs_bio->csum;
 189	} else {
 190		csum = dst;
 191	}
 192
 193	if (bio->bi_iter.bi_size > PAGE_SIZE * 8)
 194		path->reada = READA_FORWARD;
 195
 196	/*
 197	 * the free space stuff is only read when it hasn't been
 198	 * updated in the current transaction.  So, we can safely
 199	 * read from the commit root and sidestep a nasty deadlock
 200	 * between reading the free space cache and updating the csum tree.
 201	 */
 202	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
 203		path->search_commit_root = 1;
 204		path->skip_locking = 1;
 205	}
 206
 207	disk_bytenr = (u64)bio->bi_iter.bi_sector << 9;
 208	if (dio)
 209		offset = logical_offset;
 210
 211	bio_for_each_segment(bvec, bio, iter) {
 212		page_bytes_left = bvec.bv_len;
 213		if (count)
 214			goto next;
 215
 216		if (!dio)
 217			offset = page_offset(bvec.bv_page) + bvec.bv_offset;
 218		count = btrfs_find_ordered_sum(inode, offset, disk_bytenr,
 219					       csum, nblocks);
 220		if (count)
 221			goto found;
 222
 223		if (!item || disk_bytenr < item_start_offset ||
 224		    disk_bytenr >= item_last_offset) {
 225			struct btrfs_key found_key;
 226			u32 item_size;
 227
 228			if (item)
 229				btrfs_release_path(path);
 230			item = btrfs_lookup_csum(NULL, fs_info->csum_root,
 231						 path, disk_bytenr, 0);
 232			if (IS_ERR(item)) {
 233				count = 1;
 234				memset(csum, 0, csum_size);
 235				if (BTRFS_I(inode)->root->root_key.objectid ==
 236				    BTRFS_DATA_RELOC_TREE_OBJECTID) {
 237					set_extent_bits(io_tree, offset,
 238						offset + fs_info->sectorsize - 1,
 239						EXTENT_NODATASUM);
 240				} else {
 241					btrfs_info_rl(fs_info,
 242						   "no csum found for inode %llu start %llu",
 243					       btrfs_ino(BTRFS_I(inode)), offset);
 244				}
 245				item = NULL;
 246				btrfs_release_path(path);
 247				goto found;
 248			}
 249			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
 250					      path->slots[0]);
 251
 252			item_start_offset = found_key.offset;
 253			item_size = btrfs_item_size_nr(path->nodes[0],
 254						       path->slots[0]);
 255			item_last_offset = item_start_offset +
 256				(item_size / csum_size) *
 257				fs_info->sectorsize;
 258			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 259					      struct btrfs_csum_item);
 260		}
 261		/*
 262		 * this byte range must be able to fit inside
 263		 * a single leaf so it will also fit inside a u32
 264		 */
 265		diff = disk_bytenr - item_start_offset;
 266		diff = diff / fs_info->sectorsize;
 267		diff = diff * csum_size;
 268		count = min_t(int, nblocks, (item_last_offset - disk_bytenr) >>
 269					    inode->i_sb->s_blocksize_bits);
 270		read_extent_buffer(path->nodes[0], csum,
 271				   ((unsigned long)item) + diff,
 272				   csum_size * count);
 273found:
 274		csum += count * csum_size;
 275		nblocks -= count;
 276next:
 277		while (count--) {
 
 278			disk_bytenr += fs_info->sectorsize;
 279			offset += fs_info->sectorsize;
 280			page_bytes_left -= fs_info->sectorsize;
 281			if (!page_bytes_left)
 282				break; /* move to next bio */
 283		}
 284	}
 285
 286	WARN_ON_ONCE(count);
 287	btrfs_free_path(path);
 288	return 0;
 289}
 290
 291blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio,
 292				   u8 *dst)
 293{
 294	return __btrfs_lookup_bio_sums(inode, bio, 0, dst, 0);
 295}
 296
 297blk_status_t btrfs_lookup_bio_sums_dio(struct inode *inode, struct bio *bio, u64 offset)
 298{
 299	return __btrfs_lookup_bio_sums(inode, bio, offset, NULL, 1);
 300}
 301
 302int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
 303			     struct list_head *list, int search_commit)
 304{
 305	struct btrfs_fs_info *fs_info = root->fs_info;
 306	struct btrfs_key key;
 307	struct btrfs_path *path;
 308	struct extent_buffer *leaf;
 309	struct btrfs_ordered_sum *sums;
 310	struct btrfs_csum_item *item;
 311	LIST_HEAD(tmplist);
 312	unsigned long offset;
 313	int ret;
 314	size_t size;
 315	u64 csum_end;
 316	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 317
 318	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
 319	       IS_ALIGNED(end + 1, fs_info->sectorsize));
 320
 321	path = btrfs_alloc_path();
 322	if (!path)
 323		return -ENOMEM;
 324
 325	if (search_commit) {
 326		path->skip_locking = 1;
 327		path->reada = READA_FORWARD;
 328		path->search_commit_root = 1;
 329	}
 330
 331	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 332	key.offset = start;
 333	key.type = BTRFS_EXTENT_CSUM_KEY;
 334
 335	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 336	if (ret < 0)
 337		goto fail;
 338	if (ret > 0 && path->slots[0] > 0) {
 339		leaf = path->nodes[0];
 340		btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 341		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
 342		    key.type == BTRFS_EXTENT_CSUM_KEY) {
 343			offset = (start - key.offset) >>
 344				 fs_info->sb->s_blocksize_bits;
 345			if (offset * csum_size <
 346			    btrfs_item_size_nr(leaf, path->slots[0] - 1))
 347				path->slots[0]--;
 348		}
 349	}
 350
 351	while (start <= end) {
 352		leaf = path->nodes[0];
 353		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 354			ret = btrfs_next_leaf(root, path);
 355			if (ret < 0)
 356				goto fail;
 357			if (ret > 0)
 358				break;
 359			leaf = path->nodes[0];
 360		}
 361
 362		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 363		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
 364		    key.type != BTRFS_EXTENT_CSUM_KEY ||
 365		    key.offset > end)
 366			break;
 367
 368		if (key.offset > start)
 369			start = key.offset;
 370
 371		size = btrfs_item_size_nr(leaf, path->slots[0]);
 372		csum_end = key.offset + (size / csum_size) * fs_info->sectorsize;
 373		if (csum_end <= start) {
 374			path->slots[0]++;
 375			continue;
 376		}
 377
 378		csum_end = min(csum_end, end + 1);
 379		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 380				      struct btrfs_csum_item);
 381		while (start < csum_end) {
 382			size = min_t(size_t, csum_end - start,
 383				     max_ordered_sum_bytes(fs_info, csum_size));
 384			sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
 385				       GFP_NOFS);
 386			if (!sums) {
 387				ret = -ENOMEM;
 388				goto fail;
 389			}
 390
 391			sums->bytenr = start;
 392			sums->len = (int)size;
 393
 394			offset = (start - key.offset) >>
 395				fs_info->sb->s_blocksize_bits;
 396			offset *= csum_size;
 397			size >>= fs_info->sb->s_blocksize_bits;
 398
 399			read_extent_buffer(path->nodes[0],
 400					   sums->sums,
 401					   ((unsigned long)item) + offset,
 402					   csum_size * size);
 403
 404			start += fs_info->sectorsize * size;
 405			list_add_tail(&sums->list, &tmplist);
 406		}
 407		path->slots[0]++;
 408	}
 409	ret = 0;
 410fail:
 411	while (ret < 0 && !list_empty(&tmplist)) {
 412		sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list);
 413		list_del(&sums->list);
 414		kfree(sums);
 415	}
 416	list_splice_tail(&tmplist, list);
 417
 418	btrfs_free_path(path);
 419	return ret;
 420}
 421
 422/*
 423 * btrfs_csum_one_bio - Calculates checksums of the data contained inside a bio
 424 * @inode:	 Owner of the data inside the bio
 425 * @bio:	 Contains the data to be checksummed
 426 * @file_start:  offset in file this bio begins to describe
 427 * @contig:	 Boolean. If true/1 means all bio vecs in this bio are
 428 *		 contiguous and they begin at @file_start in the file. False/0
 429 *		 means this bio can contains potentially discontigous bio vecs
 430 *		 so the logical offset of each should be calculated separately.
 431 */
 432blk_status_t btrfs_csum_one_bio(struct inode *inode, struct bio *bio,
 433		       u64 file_start, int contig)
 434{
 435	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 436	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 437	struct btrfs_ordered_sum *sums;
 438	struct btrfs_ordered_extent *ordered = NULL;
 439	char *data;
 440	struct bvec_iter iter;
 441	struct bio_vec bvec;
 442	int index;
 443	int nr_sectors;
 444	unsigned long total_bytes = 0;
 445	unsigned long this_sum_bytes = 0;
 446	int i;
 447	u64 offset;
 448	unsigned nofs_flag;
 449	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 450
 451	nofs_flag = memalloc_nofs_save();
 452	sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
 453		       GFP_KERNEL);
 454	memalloc_nofs_restore(nofs_flag);
 455
 456	if (!sums)
 457		return BLK_STS_RESOURCE;
 458
 459	sums->len = bio->bi_iter.bi_size;
 460	INIT_LIST_HEAD(&sums->list);
 461
 462	if (contig)
 463		offset = file_start;
 464	else
 465		offset = 0; /* shut up gcc */
 466
 467	sums->bytenr = (u64)bio->bi_iter.bi_sector << 9;
 468	index = 0;
 469
 470	shash->tfm = fs_info->csum_shash;
 471
 472	bio_for_each_segment(bvec, bio, iter) {
 473		if (!contig)
 474			offset = page_offset(bvec.bv_page) + bvec.bv_offset;
 475
 476		if (!ordered) {
 477			ordered = btrfs_lookup_ordered_extent(inode, offset);
 478			BUG_ON(!ordered); /* Logic error */
 479		}
 480
 481		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info,
 482						 bvec.bv_len + fs_info->sectorsize
 483						 - 1);
 484
 485		for (i = 0; i < nr_sectors; i++) {
 486			if (offset >= ordered->file_offset + ordered->len ||
 487				offset < ordered->file_offset) {
 488				unsigned long bytes_left;
 489
 490				sums->len = this_sum_bytes;
 491				this_sum_bytes = 0;
 492				btrfs_add_ordered_sum(ordered, sums);
 493				btrfs_put_ordered_extent(ordered);
 494
 495				bytes_left = bio->bi_iter.bi_size - total_bytes;
 496
 497				nofs_flag = memalloc_nofs_save();
 498				sums = kvzalloc(btrfs_ordered_sum_size(fs_info,
 499						      bytes_left), GFP_KERNEL);
 500				memalloc_nofs_restore(nofs_flag);
 501				BUG_ON(!sums); /* -ENOMEM */
 502				sums->len = bytes_left;
 503				ordered = btrfs_lookup_ordered_extent(inode,
 504								offset);
 505				ASSERT(ordered); /* Logic error */
 506				sums->bytenr = ((u64)bio->bi_iter.bi_sector << 9)
 507					+ total_bytes;
 508				index = 0;
 509			}
 510
 511			crypto_shash_init(shash);
 512			data = kmap_atomic(bvec.bv_page);
 513			crypto_shash_update(shash, data + bvec.bv_offset
 514					    + (i * fs_info->sectorsize),
 515					    fs_info->sectorsize);
 
 516			kunmap_atomic(data);
 517			crypto_shash_final(shash, (char *)(sums->sums + index));
 518			index += csum_size;
 519			offset += fs_info->sectorsize;
 520			this_sum_bytes += fs_info->sectorsize;
 521			total_bytes += fs_info->sectorsize;
 522		}
 523
 524	}
 525	this_sum_bytes = 0;
 526	btrfs_add_ordered_sum(ordered, sums);
 527	btrfs_put_ordered_extent(ordered);
 528	return 0;
 529}
 530
 531/*
 532 * helper function for csum removal, this expects the
 533 * key to describe the csum pointed to by the path, and it expects
 534 * the csum to overlap the range [bytenr, len]
 535 *
 536 * The csum should not be entirely contained in the range and the
 537 * range should not be entirely contained in the csum.
 538 *
 539 * This calls btrfs_truncate_item with the correct args based on the
 540 * overlap, and fixes up the key as required.
 541 */
 542static noinline void truncate_one_csum(struct btrfs_fs_info *fs_info,
 543				       struct btrfs_path *path,
 544				       struct btrfs_key *key,
 545				       u64 bytenr, u64 len)
 546{
 547	struct extent_buffer *leaf;
 548	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 549	u64 csum_end;
 550	u64 end_byte = bytenr + len;
 551	u32 blocksize_bits = fs_info->sb->s_blocksize_bits;
 552
 553	leaf = path->nodes[0];
 554	csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size;
 555	csum_end <<= fs_info->sb->s_blocksize_bits;
 556	csum_end += key->offset;
 557
 558	if (key->offset < bytenr && csum_end <= end_byte) {
 559		/*
 560		 *         [ bytenr - len ]
 561		 *         [   ]
 562		 *   [csum     ]
 563		 *   A simple truncate off the end of the item
 564		 */
 565		u32 new_size = (bytenr - key->offset) >> blocksize_bits;
 566		new_size *= csum_size;
 567		btrfs_truncate_item(path, new_size, 1);
 568	} else if (key->offset >= bytenr && csum_end > end_byte &&
 569		   end_byte > key->offset) {
 570		/*
 571		 *         [ bytenr - len ]
 572		 *                 [ ]
 573		 *                 [csum     ]
 574		 * we need to truncate from the beginning of the csum
 575		 */
 576		u32 new_size = (csum_end - end_byte) >> blocksize_bits;
 577		new_size *= csum_size;
 578
 579		btrfs_truncate_item(path, new_size, 0);
 580
 581		key->offset = end_byte;
 582		btrfs_set_item_key_safe(fs_info, path, key);
 583	} else {
 584		BUG();
 585	}
 586}
 587
 588/*
 589 * deletes the csum items from the csum tree for a given
 590 * range of bytes.
 591 */
 592int btrfs_del_csums(struct btrfs_trans_handle *trans,
 593		    struct btrfs_fs_info *fs_info, u64 bytenr, u64 len)
 594{
 595	struct btrfs_root *root = fs_info->csum_root;
 596	struct btrfs_path *path;
 597	struct btrfs_key key;
 598	u64 end_byte = bytenr + len;
 599	u64 csum_end;
 600	struct extent_buffer *leaf;
 601	int ret;
 602	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 603	int blocksize_bits = fs_info->sb->s_blocksize_bits;
 604
 
 
 
 605	path = btrfs_alloc_path();
 606	if (!path)
 607		return -ENOMEM;
 608
 609	while (1) {
 610		key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 611		key.offset = end_byte - 1;
 612		key.type = BTRFS_EXTENT_CSUM_KEY;
 613
 614		path->leave_spinning = 1;
 615		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 616		if (ret > 0) {
 617			if (path->slots[0] == 0)
 618				break;
 619			path->slots[0]--;
 620		} else if (ret < 0) {
 621			break;
 622		}
 623
 624		leaf = path->nodes[0];
 625		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 626
 627		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
 628		    key.type != BTRFS_EXTENT_CSUM_KEY) {
 629			break;
 630		}
 631
 632		if (key.offset >= end_byte)
 633			break;
 634
 635		csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size;
 636		csum_end <<= blocksize_bits;
 637		csum_end += key.offset;
 638
 639		/* this csum ends before we start, we're done */
 640		if (csum_end <= bytenr)
 641			break;
 642
 643		/* delete the entire item, it is inside our range */
 644		if (key.offset >= bytenr && csum_end <= end_byte) {
 645			int del_nr = 1;
 646
 647			/*
 648			 * Check how many csum items preceding this one in this
 649			 * leaf correspond to our range and then delete them all
 650			 * at once.
 651			 */
 652			if (key.offset > bytenr && path->slots[0] > 0) {
 653				int slot = path->slots[0] - 1;
 654
 655				while (slot >= 0) {
 656					struct btrfs_key pk;
 657
 658					btrfs_item_key_to_cpu(leaf, &pk, slot);
 659					if (pk.offset < bytenr ||
 660					    pk.type != BTRFS_EXTENT_CSUM_KEY ||
 661					    pk.objectid !=
 662					    BTRFS_EXTENT_CSUM_OBJECTID)
 663						break;
 664					path->slots[0] = slot;
 665					del_nr++;
 666					key.offset = pk.offset;
 667					slot--;
 668				}
 669			}
 670			ret = btrfs_del_items(trans, root, path,
 671					      path->slots[0], del_nr);
 672			if (ret)
 673				goto out;
 674			if (key.offset == bytenr)
 675				break;
 676		} else if (key.offset < bytenr && csum_end > end_byte) {
 677			unsigned long offset;
 678			unsigned long shift_len;
 679			unsigned long item_offset;
 680			/*
 681			 *        [ bytenr - len ]
 682			 *     [csum                ]
 683			 *
 684			 * Our bytes are in the middle of the csum,
 685			 * we need to split this item and insert a new one.
 686			 *
 687			 * But we can't drop the path because the
 688			 * csum could change, get removed, extended etc.
 689			 *
 690			 * The trick here is the max size of a csum item leaves
 691			 * enough room in the tree block for a single
 692			 * item header.  So, we split the item in place,
 693			 * adding a new header pointing to the existing
 694			 * bytes.  Then we loop around again and we have
 695			 * a nicely formed csum item that we can neatly
 696			 * truncate.
 697			 */
 698			offset = (bytenr - key.offset) >> blocksize_bits;
 699			offset *= csum_size;
 700
 701			shift_len = (len >> blocksize_bits) * csum_size;
 702
 703			item_offset = btrfs_item_ptr_offset(leaf,
 704							    path->slots[0]);
 705
 706			memzero_extent_buffer(leaf, item_offset + offset,
 707					     shift_len);
 708			key.offset = bytenr;
 709
 710			/*
 711			 * btrfs_split_item returns -EAGAIN when the
 712			 * item changed size or key
 713			 */
 714			ret = btrfs_split_item(trans, root, path, &key, offset);
 715			if (ret && ret != -EAGAIN) {
 716				btrfs_abort_transaction(trans, ret);
 717				goto out;
 718			}
 719
 720			key.offset = end_byte - 1;
 721		} else {
 722			truncate_one_csum(fs_info, path, &key, bytenr, len);
 723			if (key.offset < bytenr)
 724				break;
 725		}
 726		btrfs_release_path(path);
 727	}
 728	ret = 0;
 729out:
 730	btrfs_free_path(path);
 731	return ret;
 732}
 733
 734int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
 735			   struct btrfs_root *root,
 736			   struct btrfs_ordered_sum *sums)
 737{
 738	struct btrfs_fs_info *fs_info = root->fs_info;
 739	struct btrfs_key file_key;
 740	struct btrfs_key found_key;
 741	struct btrfs_path *path;
 742	struct btrfs_csum_item *item;
 743	struct btrfs_csum_item *item_end;
 744	struct extent_buffer *leaf = NULL;
 745	u64 next_offset;
 746	u64 total_bytes = 0;
 747	u64 csum_offset;
 748	u64 bytenr;
 749	u32 nritems;
 750	u32 ins_size;
 751	int index = 0;
 752	int found_next;
 753	int ret;
 754	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 755
 756	path = btrfs_alloc_path();
 757	if (!path)
 758		return -ENOMEM;
 759again:
 760	next_offset = (u64)-1;
 761	found_next = 0;
 762	bytenr = sums->bytenr + total_bytes;
 763	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 764	file_key.offset = bytenr;
 765	file_key.type = BTRFS_EXTENT_CSUM_KEY;
 766
 767	item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
 768	if (!IS_ERR(item)) {
 769		ret = 0;
 770		leaf = path->nodes[0];
 771		item_end = btrfs_item_ptr(leaf, path->slots[0],
 772					  struct btrfs_csum_item);
 773		item_end = (struct btrfs_csum_item *)((char *)item_end +
 774			   btrfs_item_size_nr(leaf, path->slots[0]));
 775		goto found;
 776	}
 777	ret = PTR_ERR(item);
 778	if (ret != -EFBIG && ret != -ENOENT)
 779		goto fail_unlock;
 780
 781	if (ret == -EFBIG) {
 782		u32 item_size;
 783		/* we found one, but it isn't big enough yet */
 784		leaf = path->nodes[0];
 785		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 786		if ((item_size / csum_size) >=
 787		    MAX_CSUM_ITEMS(fs_info, csum_size)) {
 788			/* already at max size, make a new one */
 789			goto insert;
 790		}
 791	} else {
 792		int slot = path->slots[0] + 1;
 793		/* we didn't find a csum item, insert one */
 794		nritems = btrfs_header_nritems(path->nodes[0]);
 795		if (!nritems || (path->slots[0] >= nritems - 1)) {
 796			ret = btrfs_next_leaf(root, path);
 797			if (ret == 1)
 
 
 798				found_next = 1;
 799			if (ret != 0)
 800				goto insert;
 
 801			slot = path->slots[0];
 802		}
 803		btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
 804		if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
 805		    found_key.type != BTRFS_EXTENT_CSUM_KEY) {
 806			found_next = 1;
 807			goto insert;
 808		}
 809		next_offset = found_key.offset;
 810		found_next = 1;
 811		goto insert;
 812	}
 813
 814	/*
 815	 * at this point, we know the tree has an item, but it isn't big
 816	 * enough yet to put our csum in.  Grow it
 
 
 
 
 
 
 817	 */
 
 
 
 
 
 
 
 818	btrfs_release_path(path);
 819	ret = btrfs_search_slot(trans, root, &file_key, path,
 820				csum_size, 1);
 821	if (ret < 0)
 822		goto fail_unlock;
 823
 824	if (ret > 0) {
 825		if (path->slots[0] == 0)
 826			goto insert;
 827		path->slots[0]--;
 828	}
 829
 830	leaf = path->nodes[0];
 831	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
 832	csum_offset = (bytenr - found_key.offset) >>
 833			fs_info->sb->s_blocksize_bits;
 834
 835	if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
 836	    found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
 837	    csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
 838		goto insert;
 839	}
 840
 
 841	if (csum_offset == btrfs_item_size_nr(leaf, path->slots[0]) /
 842	    csum_size) {
 843		int extend_nr;
 844		u64 tmp;
 845		u32 diff;
 846		u32 free_space;
 847
 848		if (btrfs_leaf_free_space(leaf) <
 849				 sizeof(struct btrfs_item) + csum_size * 2)
 850			goto insert;
 851
 852		free_space = btrfs_leaf_free_space(leaf) -
 853					 sizeof(struct btrfs_item) - csum_size;
 854		tmp = sums->len - total_bytes;
 855		tmp >>= fs_info->sb->s_blocksize_bits;
 856		WARN_ON(tmp < 1);
 857
 858		extend_nr = max_t(int, 1, (int)tmp);
 859		diff = (csum_offset + extend_nr) * csum_size;
 860		diff = min(diff,
 861			   MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
 862
 863		diff = diff - btrfs_item_size_nr(leaf, path->slots[0]);
 864		diff = min(free_space, diff);
 865		diff /= csum_size;
 866		diff *= csum_size;
 867
 868		btrfs_extend_item(path, diff);
 869		ret = 0;
 870		goto csum;
 871	}
 872
 873insert:
 874	btrfs_release_path(path);
 875	csum_offset = 0;
 876	if (found_next) {
 877		u64 tmp;
 878
 879		tmp = sums->len - total_bytes;
 880		tmp >>= fs_info->sb->s_blocksize_bits;
 881		tmp = min(tmp, (next_offset - file_key.offset) >>
 882					 fs_info->sb->s_blocksize_bits);
 883
 884		tmp = max_t(u64, 1, tmp);
 885		tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
 886		ins_size = csum_size * tmp;
 887	} else {
 888		ins_size = csum_size;
 889	}
 890	path->leave_spinning = 1;
 891	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
 892				      ins_size);
 893	path->leave_spinning = 0;
 894	if (ret < 0)
 895		goto fail_unlock;
 896	if (WARN_ON(ret != 0))
 897		goto fail_unlock;
 898	leaf = path->nodes[0];
 899csum:
 900	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
 901	item_end = (struct btrfs_csum_item *)((unsigned char *)item +
 902				      btrfs_item_size_nr(leaf, path->slots[0]));
 903	item = (struct btrfs_csum_item *)((unsigned char *)item +
 904					  csum_offset * csum_size);
 905found:
 906	ins_size = (u32)(sums->len - total_bytes) >>
 907		   fs_info->sb->s_blocksize_bits;
 908	ins_size *= csum_size;
 909	ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
 910			      ins_size);
 911	write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
 912			    ins_size);
 913
 914	index += ins_size;
 915	ins_size /= csum_size;
 916	total_bytes += ins_size * fs_info->sectorsize;
 917
 918	btrfs_mark_buffer_dirty(path->nodes[0]);
 919	if (total_bytes < sums->len) {
 920		btrfs_release_path(path);
 921		cond_resched();
 922		goto again;
 923	}
 924out:
 925	btrfs_free_path(path);
 926	return ret;
 927
 928fail_unlock:
 929	goto out;
 930}
 931
 932void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
 933				     const struct btrfs_path *path,
 934				     struct btrfs_file_extent_item *fi,
 935				     const bool new_inline,
 936				     struct extent_map *em)
 937{
 938	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 939	struct btrfs_root *root = inode->root;
 940	struct extent_buffer *leaf = path->nodes[0];
 941	const int slot = path->slots[0];
 942	struct btrfs_key key;
 943	u64 extent_start, extent_end;
 944	u64 bytenr;
 945	u8 type = btrfs_file_extent_type(leaf, fi);
 946	int compress_type = btrfs_file_extent_compression(leaf, fi);
 947
 948	em->bdev = fs_info->fs_devices->latest_bdev;
 949	btrfs_item_key_to_cpu(leaf, &key, slot);
 950	extent_start = key.offset;
 951
 952	if (type == BTRFS_FILE_EXTENT_REG ||
 953	    type == BTRFS_FILE_EXTENT_PREALLOC) {
 954		extent_end = extent_start +
 955			btrfs_file_extent_num_bytes(leaf, fi);
 956	} else if (type == BTRFS_FILE_EXTENT_INLINE) {
 957		size_t size;
 958		size = btrfs_file_extent_ram_bytes(leaf, fi);
 959		extent_end = ALIGN(extent_start + size,
 960				   fs_info->sectorsize);
 961	}
 962
 963	em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
 964	if (type == BTRFS_FILE_EXTENT_REG ||
 965	    type == BTRFS_FILE_EXTENT_PREALLOC) {
 966		em->start = extent_start;
 967		em->len = extent_end - extent_start;
 968		em->orig_start = extent_start -
 969			btrfs_file_extent_offset(leaf, fi);
 970		em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
 971		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 972		if (bytenr == 0) {
 973			em->block_start = EXTENT_MAP_HOLE;
 974			return;
 975		}
 976		if (compress_type != BTRFS_COMPRESS_NONE) {
 977			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
 978			em->compress_type = compress_type;
 979			em->block_start = bytenr;
 980			em->block_len = em->orig_block_len;
 981		} else {
 982			bytenr += btrfs_file_extent_offset(leaf, fi);
 983			em->block_start = bytenr;
 984			em->block_len = em->len;
 985			if (type == BTRFS_FILE_EXTENT_PREALLOC)
 986				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
 987		}
 988	} else if (type == BTRFS_FILE_EXTENT_INLINE) {
 989		em->block_start = EXTENT_MAP_INLINE;
 990		em->start = extent_start;
 991		em->len = extent_end - extent_start;
 992		/*
 993		 * Initialize orig_start and block_len with the same values
 994		 * as in inode.c:btrfs_get_extent().
 995		 */
 996		em->orig_start = EXTENT_MAP_HOLE;
 997		em->block_len = (u64)-1;
 998		if (!new_inline && compress_type != BTRFS_COMPRESS_NONE) {
 999			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1000			em->compress_type = compress_type;
1001		}
1002	} else {
1003		btrfs_err(fs_info,
1004			  "unknown file extent item type %d, inode %llu, offset %llu, "
1005			  "root %llu", type, btrfs_ino(inode), extent_start,
1006			  root->root_key.objectid);
1007	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1008}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/bio.h>
   7#include <linux/slab.h>
   8#include <linux/pagemap.h>
   9#include <linux/highmem.h>
  10#include <linux/sched/mm.h>
  11#include <crypto/hash.h>
  12#include "ctree.h"
  13#include "disk-io.h"
  14#include "transaction.h"
  15#include "volumes.h"
  16#include "print-tree.h"
  17#include "compression.h"
  18
  19#define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
  20				   sizeof(struct btrfs_item) * 2) / \
  21				  size) - 1))
  22
  23#define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
  24				       PAGE_SIZE))
  25
  26/**
  27 * @inode - the inode we want to update the disk_i_size for
  28 * @new_i_size - the i_size we want to set to, 0 if we use i_size
  29 *
  30 * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
  31 * returns as it is perfectly fine with a file that has holes without hole file
  32 * extent items.
  33 *
  34 * However without NO_HOLES we need to only return the area that is contiguous
  35 * from the 0 offset of the file.  Otherwise we could end up adjust i_size up
  36 * to an extent that has a gap in between.
  37 *
  38 * Finally new_i_size should only be set in the case of truncate where we're not
  39 * ready to use i_size_read() as the limiter yet.
  40 */
  41void btrfs_inode_safe_disk_i_size_write(struct inode *inode, u64 new_i_size)
  42{
  43	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
  44	u64 start, end, i_size;
  45	int ret;
  46
  47	i_size = new_i_size ?: i_size_read(inode);
  48	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
  49		BTRFS_I(inode)->disk_i_size = i_size;
  50		return;
  51	}
  52
  53	spin_lock(&BTRFS_I(inode)->lock);
  54	ret = find_contiguous_extent_bit(&BTRFS_I(inode)->file_extent_tree, 0,
  55					 &start, &end, EXTENT_DIRTY);
  56	if (!ret && start == 0)
  57		i_size = min(i_size, end + 1);
  58	else
  59		i_size = 0;
  60	BTRFS_I(inode)->disk_i_size = i_size;
  61	spin_unlock(&BTRFS_I(inode)->lock);
  62}
  63
  64/**
  65 * @inode - the inode we're modifying
  66 * @start - the start file offset of the file extent we've inserted
  67 * @len - the logical length of the file extent item
  68 *
  69 * Call when we are inserting a new file extent where there was none before.
  70 * Does not need to call this in the case where we're replacing an existing file
  71 * extent, however if not sure it's fine to call this multiple times.
  72 *
  73 * The start and len must match the file extent item, so thus must be sectorsize
  74 * aligned.
  75 */
  76int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
  77				      u64 len)
  78{
  79	if (len == 0)
  80		return 0;
  81
  82	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));
  83
  84	if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
  85		return 0;
  86	return set_extent_bits(&inode->file_extent_tree, start, start + len - 1,
  87			       EXTENT_DIRTY);
  88}
  89
  90/**
  91 * @inode - the inode we're modifying
  92 * @start - the start file offset of the file extent we've inserted
  93 * @len - the logical length of the file extent item
  94 *
  95 * Called when we drop a file extent, for example when we truncate.  Doesn't
  96 * need to be called for cases where we're replacing a file extent, like when
  97 * we've COWed a file extent.
  98 *
  99 * The start and len must match the file extent item, so thus must be sectorsize
 100 * aligned.
 101 */
 102int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
 103					u64 len)
 104{
 105	if (len == 0)
 106		return 0;
 107
 108	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
 109	       len == (u64)-1);
 110
 111	if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
 112		return 0;
 113	return clear_extent_bit(&inode->file_extent_tree, start,
 114				start + len - 1, EXTENT_DIRTY, 0, 0, NULL);
 115}
 116
 117static inline u32 max_ordered_sum_bytes(struct btrfs_fs_info *fs_info,
 118					u16 csum_size)
 119{
 120	u32 ncsums = (PAGE_SIZE - sizeof(struct btrfs_ordered_sum)) / csum_size;
 121
 122	return ncsums * fs_info->sectorsize;
 123}
 124
 125int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
 126			     struct btrfs_root *root,
 127			     u64 objectid, u64 pos,
 128			     u64 disk_offset, u64 disk_num_bytes,
 129			     u64 num_bytes, u64 offset, u64 ram_bytes,
 130			     u8 compression, u8 encryption, u16 other_encoding)
 131{
 132	int ret = 0;
 133	struct btrfs_file_extent_item *item;
 134	struct btrfs_key file_key;
 135	struct btrfs_path *path;
 136	struct extent_buffer *leaf;
 137
 138	path = btrfs_alloc_path();
 139	if (!path)
 140		return -ENOMEM;
 141	file_key.objectid = objectid;
 142	file_key.offset = pos;
 143	file_key.type = BTRFS_EXTENT_DATA_KEY;
 144
 145	path->leave_spinning = 1;
 146	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
 147				      sizeof(*item));
 148	if (ret < 0)
 149		goto out;
 150	BUG_ON(ret); /* Can't happen */
 151	leaf = path->nodes[0];
 152	item = btrfs_item_ptr(leaf, path->slots[0],
 153			      struct btrfs_file_extent_item);
 154	btrfs_set_file_extent_disk_bytenr(leaf, item, disk_offset);
 155	btrfs_set_file_extent_disk_num_bytes(leaf, item, disk_num_bytes);
 156	btrfs_set_file_extent_offset(leaf, item, offset);
 157	btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
 158	btrfs_set_file_extent_ram_bytes(leaf, item, ram_bytes);
 159	btrfs_set_file_extent_generation(leaf, item, trans->transid);
 160	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
 161	btrfs_set_file_extent_compression(leaf, item, compression);
 162	btrfs_set_file_extent_encryption(leaf, item, encryption);
 163	btrfs_set_file_extent_other_encoding(leaf, item, other_encoding);
 164
 165	btrfs_mark_buffer_dirty(leaf);
 166out:
 167	btrfs_free_path(path);
 168	return ret;
 169}
 170
 171static struct btrfs_csum_item *
 172btrfs_lookup_csum(struct btrfs_trans_handle *trans,
 173		  struct btrfs_root *root,
 174		  struct btrfs_path *path,
 175		  u64 bytenr, int cow)
 176{
 177	struct btrfs_fs_info *fs_info = root->fs_info;
 178	int ret;
 179	struct btrfs_key file_key;
 180	struct btrfs_key found_key;
 181	struct btrfs_csum_item *item;
 182	struct extent_buffer *leaf;
 183	u64 csum_offset = 0;
 184	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 185	int csums_in_item;
 186
 187	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 188	file_key.offset = bytenr;
 189	file_key.type = BTRFS_EXTENT_CSUM_KEY;
 190	ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
 191	if (ret < 0)
 192		goto fail;
 193	leaf = path->nodes[0];
 194	if (ret > 0) {
 195		ret = 1;
 196		if (path->slots[0] == 0)
 197			goto fail;
 198		path->slots[0]--;
 199		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
 200		if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
 201			goto fail;
 202
 203		csum_offset = (bytenr - found_key.offset) >>
 204				fs_info->sb->s_blocksize_bits;
 205		csums_in_item = btrfs_item_size_nr(leaf, path->slots[0]);
 206		csums_in_item /= csum_size;
 207
 208		if (csum_offset == csums_in_item) {
 209			ret = -EFBIG;
 210			goto fail;
 211		} else if (csum_offset > csums_in_item) {
 212			goto fail;
 213		}
 214	}
 215	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
 216	item = (struct btrfs_csum_item *)((unsigned char *)item +
 217					  csum_offset * csum_size);
 218	return item;
 219fail:
 220	if (ret > 0)
 221		ret = -ENOENT;
 222	return ERR_PTR(ret);
 223}
 224
 225int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
 226			     struct btrfs_root *root,
 227			     struct btrfs_path *path, u64 objectid,
 228			     u64 offset, int mod)
 229{
 230	int ret;
 231	struct btrfs_key file_key;
 232	int ins_len = mod < 0 ? -1 : 0;
 233	int cow = mod != 0;
 234
 235	file_key.objectid = objectid;
 236	file_key.offset = offset;
 237	file_key.type = BTRFS_EXTENT_DATA_KEY;
 238	ret = btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
 239	return ret;
 240}
 241
 242/**
 243 * btrfs_lookup_bio_sums - Look up checksums for a bio.
 244 * @inode: inode that the bio is for.
 245 * @bio: bio to look up.
 246 * @offset: Unless (u64)-1, look up checksums for this offset in the file.
 247 *          If (u64)-1, use the page offsets from the bio instead.
 248 * @dst: Buffer of size nblocks * btrfs_super_csum_size() used to return
 249 *       checksum (nblocks = bio->bi_iter.bi_size / fs_info->sectorsize). If
 250 *       NULL, the checksum buffer is allocated and returned in
 251 *       btrfs_io_bio(bio)->csum instead.
 252 *
 253 * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
 254 */
 255blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio,
 256				   u64 offset, u8 *dst)
 257{
 258	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 259	struct bio_vec bvec;
 260	struct bvec_iter iter;
 
 261	struct btrfs_csum_item *item = NULL;
 262	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 263	struct btrfs_path *path;
 264	const bool page_offsets = (offset == (u64)-1);
 265	u8 *csum;
 
 266	u64 item_start_offset = 0;
 267	u64 item_last_offset = 0;
 268	u64 disk_bytenr;
 269	u64 page_bytes_left;
 270	u32 diff;
 271	int nblocks;
 272	int count = 0;
 273	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 274
 275	path = btrfs_alloc_path();
 276	if (!path)
 277		return BLK_STS_RESOURCE;
 278
 279	nblocks = bio->bi_iter.bi_size >> inode->i_sb->s_blocksize_bits;
 280	if (!dst) {
 281		struct btrfs_io_bio *btrfs_bio = btrfs_io_bio(bio);
 282
 283		if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
 284			btrfs_bio->csum = kmalloc_array(nblocks, csum_size,
 285							GFP_NOFS);
 286			if (!btrfs_bio->csum) {
 287				btrfs_free_path(path);
 288				return BLK_STS_RESOURCE;
 289			}
 290		} else {
 291			btrfs_bio->csum = btrfs_bio->csum_inline;
 292		}
 293		csum = btrfs_bio->csum;
 294	} else {
 295		csum = dst;
 296	}
 297
 298	if (bio->bi_iter.bi_size > PAGE_SIZE * 8)
 299		path->reada = READA_FORWARD;
 300
 301	/*
 302	 * the free space stuff is only read when it hasn't been
 303	 * updated in the current transaction.  So, we can safely
 304	 * read from the commit root and sidestep a nasty deadlock
 305	 * between reading the free space cache and updating the csum tree.
 306	 */
 307	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
 308		path->search_commit_root = 1;
 309		path->skip_locking = 1;
 310	}
 311
 312	disk_bytenr = (u64)bio->bi_iter.bi_sector << 9;
 
 
 313
 314	bio_for_each_segment(bvec, bio, iter) {
 315		page_bytes_left = bvec.bv_len;
 316		if (count)
 317			goto next;
 318
 319		if (page_offsets)
 320			offset = page_offset(bvec.bv_page) + bvec.bv_offset;
 321		count = btrfs_find_ordered_sum(inode, offset, disk_bytenr,
 322					       csum, nblocks);
 323		if (count)
 324			goto found;
 325
 326		if (!item || disk_bytenr < item_start_offset ||
 327		    disk_bytenr >= item_last_offset) {
 328			struct btrfs_key found_key;
 329			u32 item_size;
 330
 331			if (item)
 332				btrfs_release_path(path);
 333			item = btrfs_lookup_csum(NULL, fs_info->csum_root,
 334						 path, disk_bytenr, 0);
 335			if (IS_ERR(item)) {
 336				count = 1;
 337				memset(csum, 0, csum_size);
 338				if (BTRFS_I(inode)->root->root_key.objectid ==
 339				    BTRFS_DATA_RELOC_TREE_OBJECTID) {
 340					set_extent_bits(io_tree, offset,
 341						offset + fs_info->sectorsize - 1,
 342						EXTENT_NODATASUM);
 343				} else {
 344					btrfs_info_rl(fs_info,
 345						   "no csum found for inode %llu start %llu",
 346					       btrfs_ino(BTRFS_I(inode)), offset);
 347				}
 348				item = NULL;
 349				btrfs_release_path(path);
 350				goto found;
 351			}
 352			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
 353					      path->slots[0]);
 354
 355			item_start_offset = found_key.offset;
 356			item_size = btrfs_item_size_nr(path->nodes[0],
 357						       path->slots[0]);
 358			item_last_offset = item_start_offset +
 359				(item_size / csum_size) *
 360				fs_info->sectorsize;
 361			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 362					      struct btrfs_csum_item);
 363		}
 364		/*
 365		 * this byte range must be able to fit inside
 366		 * a single leaf so it will also fit inside a u32
 367		 */
 368		diff = disk_bytenr - item_start_offset;
 369		diff = diff / fs_info->sectorsize;
 370		diff = diff * csum_size;
 371		count = min_t(int, nblocks, (item_last_offset - disk_bytenr) >>
 372					    inode->i_sb->s_blocksize_bits);
 373		read_extent_buffer(path->nodes[0], csum,
 374				   ((unsigned long)item) + diff,
 375				   csum_size * count);
 376found:
 377		csum += count * csum_size;
 378		nblocks -= count;
 379next:
 380		while (count > 0) {
 381			count--;
 382			disk_bytenr += fs_info->sectorsize;
 383			offset += fs_info->sectorsize;
 384			page_bytes_left -= fs_info->sectorsize;
 385			if (!page_bytes_left)
 386				break; /* move to next bio */
 387		}
 388	}
 389
 390	WARN_ON_ONCE(count);
 391	btrfs_free_path(path);
 392	return BLK_STS_OK;
 
 
 
 
 
 
 
 
 
 
 
 393}
 394
 395int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
 396			     struct list_head *list, int search_commit)
 397{
 398	struct btrfs_fs_info *fs_info = root->fs_info;
 399	struct btrfs_key key;
 400	struct btrfs_path *path;
 401	struct extent_buffer *leaf;
 402	struct btrfs_ordered_sum *sums;
 403	struct btrfs_csum_item *item;
 404	LIST_HEAD(tmplist);
 405	unsigned long offset;
 406	int ret;
 407	size_t size;
 408	u64 csum_end;
 409	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 410
 411	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
 412	       IS_ALIGNED(end + 1, fs_info->sectorsize));
 413
 414	path = btrfs_alloc_path();
 415	if (!path)
 416		return -ENOMEM;
 417
 418	if (search_commit) {
 419		path->skip_locking = 1;
 420		path->reada = READA_FORWARD;
 421		path->search_commit_root = 1;
 422	}
 423
 424	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 425	key.offset = start;
 426	key.type = BTRFS_EXTENT_CSUM_KEY;
 427
 428	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 429	if (ret < 0)
 430		goto fail;
 431	if (ret > 0 && path->slots[0] > 0) {
 432		leaf = path->nodes[0];
 433		btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 434		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
 435		    key.type == BTRFS_EXTENT_CSUM_KEY) {
 436			offset = (start - key.offset) >>
 437				 fs_info->sb->s_blocksize_bits;
 438			if (offset * csum_size <
 439			    btrfs_item_size_nr(leaf, path->slots[0] - 1))
 440				path->slots[0]--;
 441		}
 442	}
 443
 444	while (start <= end) {
 445		leaf = path->nodes[0];
 446		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 447			ret = btrfs_next_leaf(root, path);
 448			if (ret < 0)
 449				goto fail;
 450			if (ret > 0)
 451				break;
 452			leaf = path->nodes[0];
 453		}
 454
 455		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 456		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
 457		    key.type != BTRFS_EXTENT_CSUM_KEY ||
 458		    key.offset > end)
 459			break;
 460
 461		if (key.offset > start)
 462			start = key.offset;
 463
 464		size = btrfs_item_size_nr(leaf, path->slots[0]);
 465		csum_end = key.offset + (size / csum_size) * fs_info->sectorsize;
 466		if (csum_end <= start) {
 467			path->slots[0]++;
 468			continue;
 469		}
 470
 471		csum_end = min(csum_end, end + 1);
 472		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 473				      struct btrfs_csum_item);
 474		while (start < csum_end) {
 475			size = min_t(size_t, csum_end - start,
 476				     max_ordered_sum_bytes(fs_info, csum_size));
 477			sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
 478				       GFP_NOFS);
 479			if (!sums) {
 480				ret = -ENOMEM;
 481				goto fail;
 482			}
 483
 484			sums->bytenr = start;
 485			sums->len = (int)size;
 486
 487			offset = (start - key.offset) >>
 488				fs_info->sb->s_blocksize_bits;
 489			offset *= csum_size;
 490			size >>= fs_info->sb->s_blocksize_bits;
 491
 492			read_extent_buffer(path->nodes[0],
 493					   sums->sums,
 494					   ((unsigned long)item) + offset,
 495					   csum_size * size);
 496
 497			start += fs_info->sectorsize * size;
 498			list_add_tail(&sums->list, &tmplist);
 499		}
 500		path->slots[0]++;
 501	}
 502	ret = 0;
 503fail:
 504	while (ret < 0 && !list_empty(&tmplist)) {
 505		sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list);
 506		list_del(&sums->list);
 507		kfree(sums);
 508	}
 509	list_splice_tail(&tmplist, list);
 510
 511	btrfs_free_path(path);
 512	return ret;
 513}
 514
 515/*
 516 * btrfs_csum_one_bio - Calculates checksums of the data contained inside a bio
 517 * @inode:	 Owner of the data inside the bio
 518 * @bio:	 Contains the data to be checksummed
 519 * @file_start:  offset in file this bio begins to describe
 520 * @contig:	 Boolean. If true/1 means all bio vecs in this bio are
 521 *		 contiguous and they begin at @file_start in the file. False/0
 522 *		 means this bio can contains potentially discontigous bio vecs
 523 *		 so the logical offset of each should be calculated separately.
 524 */
 525blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio,
 526		       u64 file_start, int contig)
 527{
 528	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 529	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 530	struct btrfs_ordered_sum *sums;
 531	struct btrfs_ordered_extent *ordered = NULL;
 532	char *data;
 533	struct bvec_iter iter;
 534	struct bio_vec bvec;
 535	int index;
 536	int nr_sectors;
 537	unsigned long total_bytes = 0;
 538	unsigned long this_sum_bytes = 0;
 539	int i;
 540	u64 offset;
 541	unsigned nofs_flag;
 542	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 543
 544	nofs_flag = memalloc_nofs_save();
 545	sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
 546		       GFP_KERNEL);
 547	memalloc_nofs_restore(nofs_flag);
 548
 549	if (!sums)
 550		return BLK_STS_RESOURCE;
 551
 552	sums->len = bio->bi_iter.bi_size;
 553	INIT_LIST_HEAD(&sums->list);
 554
 555	if (contig)
 556		offset = file_start;
 557	else
 558		offset = 0; /* shut up gcc */
 559
 560	sums->bytenr = (u64)bio->bi_iter.bi_sector << 9;
 561	index = 0;
 562
 563	shash->tfm = fs_info->csum_shash;
 564
 565	bio_for_each_segment(bvec, bio, iter) {
 566		if (!contig)
 567			offset = page_offset(bvec.bv_page) + bvec.bv_offset;
 568
 569		if (!ordered) {
 570			ordered = btrfs_lookup_ordered_extent(inode, offset);
 571			BUG_ON(!ordered); /* Logic error */
 572		}
 573
 574		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info,
 575						 bvec.bv_len + fs_info->sectorsize
 576						 - 1);
 577
 578		for (i = 0; i < nr_sectors; i++) {
 579			if (offset >= ordered->file_offset + ordered->num_bytes ||
 580			    offset < ordered->file_offset) {
 581				unsigned long bytes_left;
 582
 583				sums->len = this_sum_bytes;
 584				this_sum_bytes = 0;
 585				btrfs_add_ordered_sum(ordered, sums);
 586				btrfs_put_ordered_extent(ordered);
 587
 588				bytes_left = bio->bi_iter.bi_size - total_bytes;
 589
 590				nofs_flag = memalloc_nofs_save();
 591				sums = kvzalloc(btrfs_ordered_sum_size(fs_info,
 592						      bytes_left), GFP_KERNEL);
 593				memalloc_nofs_restore(nofs_flag);
 594				BUG_ON(!sums); /* -ENOMEM */
 595				sums->len = bytes_left;
 596				ordered = btrfs_lookup_ordered_extent(inode,
 597								offset);
 598				ASSERT(ordered); /* Logic error */
 599				sums->bytenr = ((u64)bio->bi_iter.bi_sector << 9)
 600					+ total_bytes;
 601				index = 0;
 602			}
 603
 
 604			data = kmap_atomic(bvec.bv_page);
 605			crypto_shash_digest(shash, data + bvec.bv_offset
 606					    + (i * fs_info->sectorsize),
 607					    fs_info->sectorsize,
 608					    sums->sums + index);
 609			kunmap_atomic(data);
 
 610			index += csum_size;
 611			offset += fs_info->sectorsize;
 612			this_sum_bytes += fs_info->sectorsize;
 613			total_bytes += fs_info->sectorsize;
 614		}
 615
 616	}
 617	this_sum_bytes = 0;
 618	btrfs_add_ordered_sum(ordered, sums);
 619	btrfs_put_ordered_extent(ordered);
 620	return 0;
 621}
 622
 623/*
 624 * helper function for csum removal, this expects the
 625 * key to describe the csum pointed to by the path, and it expects
 626 * the csum to overlap the range [bytenr, len]
 627 *
 628 * The csum should not be entirely contained in the range and the
 629 * range should not be entirely contained in the csum.
 630 *
 631 * This calls btrfs_truncate_item with the correct args based on the
 632 * overlap, and fixes up the key as required.
 633 */
 634static noinline void truncate_one_csum(struct btrfs_fs_info *fs_info,
 635				       struct btrfs_path *path,
 636				       struct btrfs_key *key,
 637				       u64 bytenr, u64 len)
 638{
 639	struct extent_buffer *leaf;
 640	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 641	u64 csum_end;
 642	u64 end_byte = bytenr + len;
 643	u32 blocksize_bits = fs_info->sb->s_blocksize_bits;
 644
 645	leaf = path->nodes[0];
 646	csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size;
 647	csum_end <<= fs_info->sb->s_blocksize_bits;
 648	csum_end += key->offset;
 649
 650	if (key->offset < bytenr && csum_end <= end_byte) {
 651		/*
 652		 *         [ bytenr - len ]
 653		 *         [   ]
 654		 *   [csum     ]
 655		 *   A simple truncate off the end of the item
 656		 */
 657		u32 new_size = (bytenr - key->offset) >> blocksize_bits;
 658		new_size *= csum_size;
 659		btrfs_truncate_item(path, new_size, 1);
 660	} else if (key->offset >= bytenr && csum_end > end_byte &&
 661		   end_byte > key->offset) {
 662		/*
 663		 *         [ bytenr - len ]
 664		 *                 [ ]
 665		 *                 [csum     ]
 666		 * we need to truncate from the beginning of the csum
 667		 */
 668		u32 new_size = (csum_end - end_byte) >> blocksize_bits;
 669		new_size *= csum_size;
 670
 671		btrfs_truncate_item(path, new_size, 0);
 672
 673		key->offset = end_byte;
 674		btrfs_set_item_key_safe(fs_info, path, key);
 675	} else {
 676		BUG();
 677	}
 678}
 679
 680/*
 681 * deletes the csum items from the csum tree for a given
 682 * range of bytes.
 683 */
 684int btrfs_del_csums(struct btrfs_trans_handle *trans,
 685		    struct btrfs_root *root, u64 bytenr, u64 len)
 686{
 687	struct btrfs_fs_info *fs_info = trans->fs_info;
 688	struct btrfs_path *path;
 689	struct btrfs_key key;
 690	u64 end_byte = bytenr + len;
 691	u64 csum_end;
 692	struct extent_buffer *leaf;
 693	int ret;
 694	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 695	int blocksize_bits = fs_info->sb->s_blocksize_bits;
 696
 697	ASSERT(root == fs_info->csum_root ||
 698	       root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
 699
 700	path = btrfs_alloc_path();
 701	if (!path)
 702		return -ENOMEM;
 703
 704	while (1) {
 705		key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 706		key.offset = end_byte - 1;
 707		key.type = BTRFS_EXTENT_CSUM_KEY;
 708
 709		path->leave_spinning = 1;
 710		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 711		if (ret > 0) {
 712			if (path->slots[0] == 0)
 713				break;
 714			path->slots[0]--;
 715		} else if (ret < 0) {
 716			break;
 717		}
 718
 719		leaf = path->nodes[0];
 720		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 721
 722		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
 723		    key.type != BTRFS_EXTENT_CSUM_KEY) {
 724			break;
 725		}
 726
 727		if (key.offset >= end_byte)
 728			break;
 729
 730		csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size;
 731		csum_end <<= blocksize_bits;
 732		csum_end += key.offset;
 733
 734		/* this csum ends before we start, we're done */
 735		if (csum_end <= bytenr)
 736			break;
 737
 738		/* delete the entire item, it is inside our range */
 739		if (key.offset >= bytenr && csum_end <= end_byte) {
 740			int del_nr = 1;
 741
 742			/*
 743			 * Check how many csum items preceding this one in this
 744			 * leaf correspond to our range and then delete them all
 745			 * at once.
 746			 */
 747			if (key.offset > bytenr && path->slots[0] > 0) {
 748				int slot = path->slots[0] - 1;
 749
 750				while (slot >= 0) {
 751					struct btrfs_key pk;
 752
 753					btrfs_item_key_to_cpu(leaf, &pk, slot);
 754					if (pk.offset < bytenr ||
 755					    pk.type != BTRFS_EXTENT_CSUM_KEY ||
 756					    pk.objectid !=
 757					    BTRFS_EXTENT_CSUM_OBJECTID)
 758						break;
 759					path->slots[0] = slot;
 760					del_nr++;
 761					key.offset = pk.offset;
 762					slot--;
 763				}
 764			}
 765			ret = btrfs_del_items(trans, root, path,
 766					      path->slots[0], del_nr);
 767			if (ret)
 768				goto out;
 769			if (key.offset == bytenr)
 770				break;
 771		} else if (key.offset < bytenr && csum_end > end_byte) {
 772			unsigned long offset;
 773			unsigned long shift_len;
 774			unsigned long item_offset;
 775			/*
 776			 *        [ bytenr - len ]
 777			 *     [csum                ]
 778			 *
 779			 * Our bytes are in the middle of the csum,
 780			 * we need to split this item and insert a new one.
 781			 *
 782			 * But we can't drop the path because the
 783			 * csum could change, get removed, extended etc.
 784			 *
 785			 * The trick here is the max size of a csum item leaves
 786			 * enough room in the tree block for a single
 787			 * item header.  So, we split the item in place,
 788			 * adding a new header pointing to the existing
 789			 * bytes.  Then we loop around again and we have
 790			 * a nicely formed csum item that we can neatly
 791			 * truncate.
 792			 */
 793			offset = (bytenr - key.offset) >> blocksize_bits;
 794			offset *= csum_size;
 795
 796			shift_len = (len >> blocksize_bits) * csum_size;
 797
 798			item_offset = btrfs_item_ptr_offset(leaf,
 799							    path->slots[0]);
 800
 801			memzero_extent_buffer(leaf, item_offset + offset,
 802					     shift_len);
 803			key.offset = bytenr;
 804
 805			/*
 806			 * btrfs_split_item returns -EAGAIN when the
 807			 * item changed size or key
 808			 */
 809			ret = btrfs_split_item(trans, root, path, &key, offset);
 810			if (ret && ret != -EAGAIN) {
 811				btrfs_abort_transaction(trans, ret);
 812				goto out;
 813			}
 814
 815			key.offset = end_byte - 1;
 816		} else {
 817			truncate_one_csum(fs_info, path, &key, bytenr, len);
 818			if (key.offset < bytenr)
 819				break;
 820		}
 821		btrfs_release_path(path);
 822	}
 823	ret = 0;
 824out:
 825	btrfs_free_path(path);
 826	return ret;
 827}
 828
 829int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
 830			   struct btrfs_root *root,
 831			   struct btrfs_ordered_sum *sums)
 832{
 833	struct btrfs_fs_info *fs_info = root->fs_info;
 834	struct btrfs_key file_key;
 835	struct btrfs_key found_key;
 836	struct btrfs_path *path;
 837	struct btrfs_csum_item *item;
 838	struct btrfs_csum_item *item_end;
 839	struct extent_buffer *leaf = NULL;
 840	u64 next_offset;
 841	u64 total_bytes = 0;
 842	u64 csum_offset;
 843	u64 bytenr;
 844	u32 nritems;
 845	u32 ins_size;
 846	int index = 0;
 847	int found_next;
 848	int ret;
 849	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 850
 851	path = btrfs_alloc_path();
 852	if (!path)
 853		return -ENOMEM;
 854again:
 855	next_offset = (u64)-1;
 856	found_next = 0;
 857	bytenr = sums->bytenr + total_bytes;
 858	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 859	file_key.offset = bytenr;
 860	file_key.type = BTRFS_EXTENT_CSUM_KEY;
 861
 862	item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
 863	if (!IS_ERR(item)) {
 864		ret = 0;
 865		leaf = path->nodes[0];
 866		item_end = btrfs_item_ptr(leaf, path->slots[0],
 867					  struct btrfs_csum_item);
 868		item_end = (struct btrfs_csum_item *)((char *)item_end +
 869			   btrfs_item_size_nr(leaf, path->slots[0]));
 870		goto found;
 871	}
 872	ret = PTR_ERR(item);
 873	if (ret != -EFBIG && ret != -ENOENT)
 874		goto out;
 875
 876	if (ret == -EFBIG) {
 877		u32 item_size;
 878		/* we found one, but it isn't big enough yet */
 879		leaf = path->nodes[0];
 880		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 881		if ((item_size / csum_size) >=
 882		    MAX_CSUM_ITEMS(fs_info, csum_size)) {
 883			/* already at max size, make a new one */
 884			goto insert;
 885		}
 886	} else {
 887		int slot = path->slots[0] + 1;
 888		/* we didn't find a csum item, insert one */
 889		nritems = btrfs_header_nritems(path->nodes[0]);
 890		if (!nritems || (path->slots[0] >= nritems - 1)) {
 891			ret = btrfs_next_leaf(root, path);
 892			if (ret < 0) {
 893				goto out;
 894			} else if (ret > 0) {
 895				found_next = 1;
 
 896				goto insert;
 897			}
 898			slot = path->slots[0];
 899		}
 900		btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
 901		if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
 902		    found_key.type != BTRFS_EXTENT_CSUM_KEY) {
 903			found_next = 1;
 904			goto insert;
 905		}
 906		next_offset = found_key.offset;
 907		found_next = 1;
 908		goto insert;
 909	}
 910
 911	/*
 912	 * At this point, we know the tree has a checksum item that ends at an
 913	 * offset matching the start of the checksum range we want to insert.
 914	 * We try to extend that item as much as possible and then add as many
 915	 * checksums to it as they fit.
 916	 *
 917	 * First check if the leaf has enough free space for at least one
 918	 * checksum. If it has go directly to the item extension code, otherwise
 919	 * release the path and do a search for insertion before the extension.
 920	 */
 921	if (btrfs_leaf_free_space(leaf) >= csum_size) {
 922		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
 923		csum_offset = (bytenr - found_key.offset) >>
 924			fs_info->sb->s_blocksize_bits;
 925		goto extend_csum;
 926	}
 927
 928	btrfs_release_path(path);
 929	ret = btrfs_search_slot(trans, root, &file_key, path,
 930				csum_size, 1);
 931	if (ret < 0)
 932		goto out;
 933
 934	if (ret > 0) {
 935		if (path->slots[0] == 0)
 936			goto insert;
 937		path->slots[0]--;
 938	}
 939
 940	leaf = path->nodes[0];
 941	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
 942	csum_offset = (bytenr - found_key.offset) >>
 943			fs_info->sb->s_blocksize_bits;
 944
 945	if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
 946	    found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
 947	    csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
 948		goto insert;
 949	}
 950
 951extend_csum:
 952	if (csum_offset == btrfs_item_size_nr(leaf, path->slots[0]) /
 953	    csum_size) {
 954		int extend_nr;
 955		u64 tmp;
 956		u32 diff;
 
 957
 
 
 
 
 
 
 958		tmp = sums->len - total_bytes;
 959		tmp >>= fs_info->sb->s_blocksize_bits;
 960		WARN_ON(tmp < 1);
 961
 962		extend_nr = max_t(int, 1, (int)tmp);
 963		diff = (csum_offset + extend_nr) * csum_size;
 964		diff = min(diff,
 965			   MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
 966
 967		diff = diff - btrfs_item_size_nr(leaf, path->slots[0]);
 968		diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
 969		diff /= csum_size;
 970		diff *= csum_size;
 971
 972		btrfs_extend_item(path, diff);
 973		ret = 0;
 974		goto csum;
 975	}
 976
 977insert:
 978	btrfs_release_path(path);
 979	csum_offset = 0;
 980	if (found_next) {
 981		u64 tmp;
 982
 983		tmp = sums->len - total_bytes;
 984		tmp >>= fs_info->sb->s_blocksize_bits;
 985		tmp = min(tmp, (next_offset - file_key.offset) >>
 986					 fs_info->sb->s_blocksize_bits);
 987
 988		tmp = max_t(u64, 1, tmp);
 989		tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
 990		ins_size = csum_size * tmp;
 991	} else {
 992		ins_size = csum_size;
 993	}
 994	path->leave_spinning = 1;
 995	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
 996				      ins_size);
 997	path->leave_spinning = 0;
 998	if (ret < 0)
 999		goto out;
1000	if (WARN_ON(ret != 0))
1001		goto out;
1002	leaf = path->nodes[0];
1003csum:
1004	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
1005	item_end = (struct btrfs_csum_item *)((unsigned char *)item +
1006				      btrfs_item_size_nr(leaf, path->slots[0]));
1007	item = (struct btrfs_csum_item *)((unsigned char *)item +
1008					  csum_offset * csum_size);
1009found:
1010	ins_size = (u32)(sums->len - total_bytes) >>
1011		   fs_info->sb->s_blocksize_bits;
1012	ins_size *= csum_size;
1013	ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
1014			      ins_size);
1015	write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
1016			    ins_size);
1017
1018	index += ins_size;
1019	ins_size /= csum_size;
1020	total_bytes += ins_size * fs_info->sectorsize;
1021
1022	btrfs_mark_buffer_dirty(path->nodes[0]);
1023	if (total_bytes < sums->len) {
1024		btrfs_release_path(path);
1025		cond_resched();
1026		goto again;
1027	}
1028out:
1029	btrfs_free_path(path);
1030	return ret;
 
 
 
1031}
1032
1033void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
1034				     const struct btrfs_path *path,
1035				     struct btrfs_file_extent_item *fi,
1036				     const bool new_inline,
1037				     struct extent_map *em)
1038{
1039	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1040	struct btrfs_root *root = inode->root;
1041	struct extent_buffer *leaf = path->nodes[0];
1042	const int slot = path->slots[0];
1043	struct btrfs_key key;
1044	u64 extent_start, extent_end;
1045	u64 bytenr;
1046	u8 type = btrfs_file_extent_type(leaf, fi);
1047	int compress_type = btrfs_file_extent_compression(leaf, fi);
1048
 
1049	btrfs_item_key_to_cpu(leaf, &key, slot);
1050	extent_start = key.offset;
1051	extent_end = btrfs_file_extent_end(path);
 
 
 
 
 
 
 
 
 
 
 
1052	em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1053	if (type == BTRFS_FILE_EXTENT_REG ||
1054	    type == BTRFS_FILE_EXTENT_PREALLOC) {
1055		em->start = extent_start;
1056		em->len = extent_end - extent_start;
1057		em->orig_start = extent_start -
1058			btrfs_file_extent_offset(leaf, fi);
1059		em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
1060		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1061		if (bytenr == 0) {
1062			em->block_start = EXTENT_MAP_HOLE;
1063			return;
1064		}
1065		if (compress_type != BTRFS_COMPRESS_NONE) {
1066			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1067			em->compress_type = compress_type;
1068			em->block_start = bytenr;
1069			em->block_len = em->orig_block_len;
1070		} else {
1071			bytenr += btrfs_file_extent_offset(leaf, fi);
1072			em->block_start = bytenr;
1073			em->block_len = em->len;
1074			if (type == BTRFS_FILE_EXTENT_PREALLOC)
1075				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
1076		}
1077	} else if (type == BTRFS_FILE_EXTENT_INLINE) {
1078		em->block_start = EXTENT_MAP_INLINE;
1079		em->start = extent_start;
1080		em->len = extent_end - extent_start;
1081		/*
1082		 * Initialize orig_start and block_len with the same values
1083		 * as in inode.c:btrfs_get_extent().
1084		 */
1085		em->orig_start = EXTENT_MAP_HOLE;
1086		em->block_len = (u64)-1;
1087		if (!new_inline && compress_type != BTRFS_COMPRESS_NONE) {
1088			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1089			em->compress_type = compress_type;
1090		}
1091	} else {
1092		btrfs_err(fs_info,
1093			  "unknown file extent item type %d, inode %llu, offset %llu, "
1094			  "root %llu", type, btrfs_ino(inode), extent_start,
1095			  root->root_key.objectid);
1096	}
1097}
1098
1099/*
1100 * Returns the end offset (non inclusive) of the file extent item the given path
1101 * points to. If it points to an inline extent, the returned offset is rounded
1102 * up to the sector size.
1103 */
1104u64 btrfs_file_extent_end(const struct btrfs_path *path)
1105{
1106	const struct extent_buffer *leaf = path->nodes[0];
1107	const int slot = path->slots[0];
1108	struct btrfs_file_extent_item *fi;
1109	struct btrfs_key key;
1110	u64 end;
1111
1112	btrfs_item_key_to_cpu(leaf, &key, slot);
1113	ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
1114	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1115
1116	if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
1117		end = btrfs_file_extent_ram_bytes(leaf, fi);
1118		end = ALIGN(key.offset + end, leaf->fs_info->sectorsize);
1119	} else {
1120		end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1121	}
1122
1123	return end;
1124}