Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/bio.h>
   7#include <linux/slab.h>
   8#include <linux/pagemap.h>
   9#include <linux/highmem.h>
  10#include <linux/sched/mm.h>
  11#include <crypto/hash.h>
 
  12#include "ctree.h"
  13#include "disk-io.h"
  14#include "transaction.h"
  15#include "volumes.h"
  16#include "print-tree.h"
  17#include "compression.h"
  18
  19#define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
  20				   sizeof(struct btrfs_item) * 2) / \
  21				  size) - 1))
  22
  23#define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
  24				       PAGE_SIZE))
  25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  26static inline u32 max_ordered_sum_bytes(struct btrfs_fs_info *fs_info,
  27					u16 csum_size)
  28{
  29	u32 ncsums = (PAGE_SIZE - sizeof(struct btrfs_ordered_sum)) / csum_size;
  30
  31	return ncsums * fs_info->sectorsize;
  32}
  33
  34int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
  35			     struct btrfs_root *root,
  36			     u64 objectid, u64 pos,
  37			     u64 disk_offset, u64 disk_num_bytes,
  38			     u64 num_bytes, u64 offset, u64 ram_bytes,
  39			     u8 compression, u8 encryption, u16 other_encoding)
  40{
  41	int ret = 0;
  42	struct btrfs_file_extent_item *item;
  43	struct btrfs_key file_key;
  44	struct btrfs_path *path;
  45	struct extent_buffer *leaf;
  46
  47	path = btrfs_alloc_path();
  48	if (!path)
  49		return -ENOMEM;
  50	file_key.objectid = objectid;
  51	file_key.offset = pos;
  52	file_key.type = BTRFS_EXTENT_DATA_KEY;
  53
  54	path->leave_spinning = 1;
  55	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
  56				      sizeof(*item));
  57	if (ret < 0)
  58		goto out;
  59	BUG_ON(ret); /* Can't happen */
  60	leaf = path->nodes[0];
  61	item = btrfs_item_ptr(leaf, path->slots[0],
  62			      struct btrfs_file_extent_item);
  63	btrfs_set_file_extent_disk_bytenr(leaf, item, disk_offset);
  64	btrfs_set_file_extent_disk_num_bytes(leaf, item, disk_num_bytes);
  65	btrfs_set_file_extent_offset(leaf, item, offset);
  66	btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
  67	btrfs_set_file_extent_ram_bytes(leaf, item, ram_bytes);
  68	btrfs_set_file_extent_generation(leaf, item, trans->transid);
  69	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
  70	btrfs_set_file_extent_compression(leaf, item, compression);
  71	btrfs_set_file_extent_encryption(leaf, item, encryption);
  72	btrfs_set_file_extent_other_encoding(leaf, item, other_encoding);
  73
  74	btrfs_mark_buffer_dirty(leaf);
  75out:
  76	btrfs_free_path(path);
  77	return ret;
  78}
  79
  80static struct btrfs_csum_item *
  81btrfs_lookup_csum(struct btrfs_trans_handle *trans,
  82		  struct btrfs_root *root,
  83		  struct btrfs_path *path,
  84		  u64 bytenr, int cow)
  85{
  86	struct btrfs_fs_info *fs_info = root->fs_info;
  87	int ret;
  88	struct btrfs_key file_key;
  89	struct btrfs_key found_key;
  90	struct btrfs_csum_item *item;
  91	struct extent_buffer *leaf;
  92	u64 csum_offset = 0;
  93	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
  94	int csums_in_item;
  95
  96	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
  97	file_key.offset = bytenr;
  98	file_key.type = BTRFS_EXTENT_CSUM_KEY;
  99	ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
 100	if (ret < 0)
 101		goto fail;
 102	leaf = path->nodes[0];
 103	if (ret > 0) {
 104		ret = 1;
 105		if (path->slots[0] == 0)
 106			goto fail;
 107		path->slots[0]--;
 108		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
 109		if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
 110			goto fail;
 111
 112		csum_offset = (bytenr - found_key.offset) >>
 113				fs_info->sb->s_blocksize_bits;
 114		csums_in_item = btrfs_item_size_nr(leaf, path->slots[0]);
 115		csums_in_item /= csum_size;
 116
 117		if (csum_offset == csums_in_item) {
 118			ret = -EFBIG;
 119			goto fail;
 120		} else if (csum_offset > csums_in_item) {
 121			goto fail;
 122		}
 123	}
 124	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
 125	item = (struct btrfs_csum_item *)((unsigned char *)item +
 126					  csum_offset * csum_size);
 127	return item;
 128fail:
 129	if (ret > 0)
 130		ret = -ENOENT;
 131	return ERR_PTR(ret);
 132}
 133
 134int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
 135			     struct btrfs_root *root,
 136			     struct btrfs_path *path, u64 objectid,
 137			     u64 offset, int mod)
 138{
 139	int ret;
 140	struct btrfs_key file_key;
 141	int ins_len = mod < 0 ? -1 : 0;
 142	int cow = mod != 0;
 143
 144	file_key.objectid = objectid;
 145	file_key.offset = offset;
 146	file_key.type = BTRFS_EXTENT_DATA_KEY;
 147	ret = btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
 148	return ret;
 149}
 150
 151static blk_status_t __btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio,
 152				   u64 logical_offset, u8 *dst, int dio)
 
 
 
 
 
 
 
 
 
 
 153{
 154	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 155	struct bio_vec bvec;
 156	struct bvec_iter iter;
 157	struct btrfs_io_bio *btrfs_bio = btrfs_io_bio(bio);
 158	struct btrfs_csum_item *item = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 159	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 160	struct btrfs_path *path;
 
 
 
 
 
 161	u8 *csum;
 162	u64 offset = 0;
 163	u64 item_start_offset = 0;
 164	u64 item_last_offset = 0;
 165	u64 disk_bytenr;
 166	u64 page_bytes_left;
 167	u32 diff;
 168	int nblocks;
 169	int count = 0;
 170	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 171
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 172	path = btrfs_alloc_path();
 173	if (!path)
 174		return BLK_STS_RESOURCE;
 175
 176	nblocks = bio->bi_iter.bi_size >> inode->i_sb->s_blocksize_bits;
 177	if (!dst) {
 
 
 178		if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
 179			btrfs_bio->csum = kmalloc_array(nblocks, csum_size,
 180							GFP_NOFS);
 181			if (!btrfs_bio->csum) {
 182				btrfs_free_path(path);
 183				return BLK_STS_RESOURCE;
 184			}
 185		} else {
 186			btrfs_bio->csum = btrfs_bio->csum_inline;
 187		}
 188		csum = btrfs_bio->csum;
 189	} else {
 190		csum = dst;
 191	}
 192
 193	if (bio->bi_iter.bi_size > PAGE_SIZE * 8)
 
 
 
 
 194		path->reada = READA_FORWARD;
 195
 196	/*
 197	 * the free space stuff is only read when it hasn't been
 198	 * updated in the current transaction.  So, we can safely
 199	 * read from the commit root and sidestep a nasty deadlock
 200	 * between reading the free space cache and updating the csum tree.
 201	 */
 202	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
 203		path->search_commit_root = 1;
 204		path->skip_locking = 1;
 205	}
 206
 207	disk_bytenr = (u64)bio->bi_iter.bi_sector << 9;
 208	if (dio)
 209		offset = logical_offset;
 
 
 
 210
 211	bio_for_each_segment(bvec, bio, iter) {
 212		page_bytes_left = bvec.bv_len;
 213		if (count)
 214			goto next;
 215
 216		if (!dio)
 217			offset = page_offset(bvec.bv_page) + bvec.bv_offset;
 218		count = btrfs_find_ordered_sum(inode, offset, disk_bytenr,
 219					       csum, nblocks);
 220		if (count)
 221			goto found;
 
 
 
 
 
 
 
 
 
 
 
 
 
 222
 223		if (!item || disk_bytenr < item_start_offset ||
 224		    disk_bytenr >= item_last_offset) {
 225			struct btrfs_key found_key;
 226			u32 item_size;
 227
 228			if (item)
 229				btrfs_release_path(path);
 230			item = btrfs_lookup_csum(NULL, fs_info->csum_root,
 231						 path, disk_bytenr, 0);
 232			if (IS_ERR(item)) {
 233				count = 1;
 234				memset(csum, 0, csum_size);
 235				if (BTRFS_I(inode)->root->root_key.objectid ==
 236				    BTRFS_DATA_RELOC_TREE_OBJECTID) {
 237					set_extent_bits(io_tree, offset,
 238						offset + fs_info->sectorsize - 1,
 239						EXTENT_NODATASUM);
 240				} else {
 241					btrfs_info_rl(fs_info,
 242						   "no csum found for inode %llu start %llu",
 243					       btrfs_ino(BTRFS_I(inode)), offset);
 244				}
 245				item = NULL;
 246				btrfs_release_path(path);
 247				goto found;
 248			}
 249			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
 250					      path->slots[0]);
 251
 252			item_start_offset = found_key.offset;
 253			item_size = btrfs_item_size_nr(path->nodes[0],
 254						       path->slots[0]);
 255			item_last_offset = item_start_offset +
 256				(item_size / csum_size) *
 257				fs_info->sectorsize;
 258			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 259					      struct btrfs_csum_item);
 260		}
 261		/*
 262		 * this byte range must be able to fit inside
 263		 * a single leaf so it will also fit inside a u32
 264		 */
 265		diff = disk_bytenr - item_start_offset;
 266		diff = diff / fs_info->sectorsize;
 267		diff = diff * csum_size;
 268		count = min_t(int, nblocks, (item_last_offset - disk_bytenr) >>
 269					    inode->i_sb->s_blocksize_bits);
 270		read_extent_buffer(path->nodes[0], csum,
 271				   ((unsigned long)item) + diff,
 272				   csum_size * count);
 273found:
 274		csum += count * csum_size;
 275		nblocks -= count;
 276next:
 277		while (count--) {
 278			disk_bytenr += fs_info->sectorsize;
 279			offset += fs_info->sectorsize;
 280			page_bytes_left -= fs_info->sectorsize;
 281			if (!page_bytes_left)
 282				break; /* move to next bio */
 283		}
 284	}
 285
 286	WARN_ON_ONCE(count);
 287	btrfs_free_path(path);
 288	return 0;
 289}
 290
 291blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio,
 292				   u8 *dst)
 293{
 294	return __btrfs_lookup_bio_sums(inode, bio, 0, dst, 0);
 295}
 296
 297blk_status_t btrfs_lookup_bio_sums_dio(struct inode *inode, struct bio *bio, u64 offset)
 298{
 299	return __btrfs_lookup_bio_sums(inode, bio, offset, NULL, 1);
 300}
 301
 302int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
 303			     struct list_head *list, int search_commit)
 304{
 305	struct btrfs_fs_info *fs_info = root->fs_info;
 306	struct btrfs_key key;
 307	struct btrfs_path *path;
 308	struct extent_buffer *leaf;
 309	struct btrfs_ordered_sum *sums;
 310	struct btrfs_csum_item *item;
 311	LIST_HEAD(tmplist);
 312	unsigned long offset;
 313	int ret;
 314	size_t size;
 315	u64 csum_end;
 316	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 317
 318	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
 319	       IS_ALIGNED(end + 1, fs_info->sectorsize));
 320
 321	path = btrfs_alloc_path();
 322	if (!path)
 323		return -ENOMEM;
 324
 325	if (search_commit) {
 326		path->skip_locking = 1;
 327		path->reada = READA_FORWARD;
 328		path->search_commit_root = 1;
 329	}
 330
 331	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 332	key.offset = start;
 333	key.type = BTRFS_EXTENT_CSUM_KEY;
 334
 335	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 336	if (ret < 0)
 337		goto fail;
 338	if (ret > 0 && path->slots[0] > 0) {
 339		leaf = path->nodes[0];
 340		btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 341		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
 342		    key.type == BTRFS_EXTENT_CSUM_KEY) {
 343			offset = (start - key.offset) >>
 344				 fs_info->sb->s_blocksize_bits;
 345			if (offset * csum_size <
 346			    btrfs_item_size_nr(leaf, path->slots[0] - 1))
 347				path->slots[0]--;
 348		}
 349	}
 350
 351	while (start <= end) {
 352		leaf = path->nodes[0];
 353		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 354			ret = btrfs_next_leaf(root, path);
 355			if (ret < 0)
 356				goto fail;
 357			if (ret > 0)
 358				break;
 359			leaf = path->nodes[0];
 360		}
 361
 362		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 363		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
 364		    key.type != BTRFS_EXTENT_CSUM_KEY ||
 365		    key.offset > end)
 366			break;
 367
 368		if (key.offset > start)
 369			start = key.offset;
 370
 371		size = btrfs_item_size_nr(leaf, path->slots[0]);
 372		csum_end = key.offset + (size / csum_size) * fs_info->sectorsize;
 373		if (csum_end <= start) {
 374			path->slots[0]++;
 375			continue;
 376		}
 377
 378		csum_end = min(csum_end, end + 1);
 379		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 380				      struct btrfs_csum_item);
 381		while (start < csum_end) {
 382			size = min_t(size_t, csum_end - start,
 383				     max_ordered_sum_bytes(fs_info, csum_size));
 384			sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
 385				       GFP_NOFS);
 386			if (!sums) {
 387				ret = -ENOMEM;
 388				goto fail;
 389			}
 390
 391			sums->bytenr = start;
 392			sums->len = (int)size;
 393
 394			offset = (start - key.offset) >>
 395				fs_info->sb->s_blocksize_bits;
 396			offset *= csum_size;
 397			size >>= fs_info->sb->s_blocksize_bits;
 398
 399			read_extent_buffer(path->nodes[0],
 400					   sums->sums,
 401					   ((unsigned long)item) + offset,
 402					   csum_size * size);
 403
 404			start += fs_info->sectorsize * size;
 405			list_add_tail(&sums->list, &tmplist);
 406		}
 407		path->slots[0]++;
 408	}
 409	ret = 0;
 410fail:
 411	while (ret < 0 && !list_empty(&tmplist)) {
 412		sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list);
 413		list_del(&sums->list);
 414		kfree(sums);
 415	}
 416	list_splice_tail(&tmplist, list);
 417
 418	btrfs_free_path(path);
 419	return ret;
 420}
 421
 422/*
 423 * btrfs_csum_one_bio - Calculates checksums of the data contained inside a bio
 424 * @inode:	 Owner of the data inside the bio
 425 * @bio:	 Contains the data to be checksummed
 426 * @file_start:  offset in file this bio begins to describe
 427 * @contig:	 Boolean. If true/1 means all bio vecs in this bio are
 428 *		 contiguous and they begin at @file_start in the file. False/0
 429 *		 means this bio can contains potentially discontigous bio vecs
 430 *		 so the logical offset of each should be calculated separately.
 431 */
 432blk_status_t btrfs_csum_one_bio(struct inode *inode, struct bio *bio,
 433		       u64 file_start, int contig)
 434{
 435	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 436	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 437	struct btrfs_ordered_sum *sums;
 438	struct btrfs_ordered_extent *ordered = NULL;
 439	char *data;
 440	struct bvec_iter iter;
 441	struct bio_vec bvec;
 442	int index;
 443	int nr_sectors;
 444	unsigned long total_bytes = 0;
 445	unsigned long this_sum_bytes = 0;
 446	int i;
 447	u64 offset;
 448	unsigned nofs_flag;
 449	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 450
 451	nofs_flag = memalloc_nofs_save();
 452	sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
 453		       GFP_KERNEL);
 454	memalloc_nofs_restore(nofs_flag);
 455
 456	if (!sums)
 457		return BLK_STS_RESOURCE;
 458
 459	sums->len = bio->bi_iter.bi_size;
 460	INIT_LIST_HEAD(&sums->list);
 461
 462	if (contig)
 463		offset = file_start;
 464	else
 465		offset = 0; /* shut up gcc */
 466
 467	sums->bytenr = (u64)bio->bi_iter.bi_sector << 9;
 468	index = 0;
 469
 470	shash->tfm = fs_info->csum_shash;
 471
 472	bio_for_each_segment(bvec, bio, iter) {
 473		if (!contig)
 474			offset = page_offset(bvec.bv_page) + bvec.bv_offset;
 475
 476		if (!ordered) {
 477			ordered = btrfs_lookup_ordered_extent(inode, offset);
 478			BUG_ON(!ordered); /* Logic error */
 
 
 
 
 
 
 
 
 
 
 
 479		}
 480
 481		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info,
 482						 bvec.bv_len + fs_info->sectorsize
 483						 - 1);
 484
 485		for (i = 0; i < nr_sectors; i++) {
 486			if (offset >= ordered->file_offset + ordered->len ||
 487				offset < ordered->file_offset) {
 488				unsigned long bytes_left;
 489
 490				sums->len = this_sum_bytes;
 491				this_sum_bytes = 0;
 492				btrfs_add_ordered_sum(ordered, sums);
 493				btrfs_put_ordered_extent(ordered);
 494
 495				bytes_left = bio->bi_iter.bi_size - total_bytes;
 496
 497				nofs_flag = memalloc_nofs_save();
 498				sums = kvzalloc(btrfs_ordered_sum_size(fs_info,
 499						      bytes_left), GFP_KERNEL);
 500				memalloc_nofs_restore(nofs_flag);
 501				BUG_ON(!sums); /* -ENOMEM */
 502				sums->len = bytes_left;
 503				ordered = btrfs_lookup_ordered_extent(inode,
 504								offset);
 505				ASSERT(ordered); /* Logic error */
 506				sums->bytenr = ((u64)bio->bi_iter.bi_sector << 9)
 507					+ total_bytes;
 508				index = 0;
 509			}
 510
 511			crypto_shash_init(shash);
 512			data = kmap_atomic(bvec.bv_page);
 513			crypto_shash_update(shash, data + bvec.bv_offset
 514					    + (i * fs_info->sectorsize),
 515					    fs_info->sectorsize);
 
 516			kunmap_atomic(data);
 517			crypto_shash_final(shash, (char *)(sums->sums + index));
 518			index += csum_size;
 519			offset += fs_info->sectorsize;
 520			this_sum_bytes += fs_info->sectorsize;
 521			total_bytes += fs_info->sectorsize;
 522		}
 523
 524	}
 525	this_sum_bytes = 0;
 526	btrfs_add_ordered_sum(ordered, sums);
 527	btrfs_put_ordered_extent(ordered);
 528	return 0;
 529}
 530
 531/*
 532 * helper function for csum removal, this expects the
 533 * key to describe the csum pointed to by the path, and it expects
 534 * the csum to overlap the range [bytenr, len]
 535 *
 536 * The csum should not be entirely contained in the range and the
 537 * range should not be entirely contained in the csum.
 538 *
 539 * This calls btrfs_truncate_item with the correct args based on the
 540 * overlap, and fixes up the key as required.
 541 */
 542static noinline void truncate_one_csum(struct btrfs_fs_info *fs_info,
 543				       struct btrfs_path *path,
 544				       struct btrfs_key *key,
 545				       u64 bytenr, u64 len)
 546{
 547	struct extent_buffer *leaf;
 548	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 549	u64 csum_end;
 550	u64 end_byte = bytenr + len;
 551	u32 blocksize_bits = fs_info->sb->s_blocksize_bits;
 552
 553	leaf = path->nodes[0];
 554	csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size;
 555	csum_end <<= fs_info->sb->s_blocksize_bits;
 556	csum_end += key->offset;
 557
 558	if (key->offset < bytenr && csum_end <= end_byte) {
 559		/*
 560		 *         [ bytenr - len ]
 561		 *         [   ]
 562		 *   [csum     ]
 563		 *   A simple truncate off the end of the item
 564		 */
 565		u32 new_size = (bytenr - key->offset) >> blocksize_bits;
 566		new_size *= csum_size;
 567		btrfs_truncate_item(path, new_size, 1);
 568	} else if (key->offset >= bytenr && csum_end > end_byte &&
 569		   end_byte > key->offset) {
 570		/*
 571		 *         [ bytenr - len ]
 572		 *                 [ ]
 573		 *                 [csum     ]
 574		 * we need to truncate from the beginning of the csum
 575		 */
 576		u32 new_size = (csum_end - end_byte) >> blocksize_bits;
 577		new_size *= csum_size;
 578
 579		btrfs_truncate_item(path, new_size, 0);
 580
 581		key->offset = end_byte;
 582		btrfs_set_item_key_safe(fs_info, path, key);
 583	} else {
 584		BUG();
 585	}
 586}
 587
 588/*
 589 * deletes the csum items from the csum tree for a given
 590 * range of bytes.
 591 */
 592int btrfs_del_csums(struct btrfs_trans_handle *trans,
 593		    struct btrfs_fs_info *fs_info, u64 bytenr, u64 len)
 594{
 595	struct btrfs_root *root = fs_info->csum_root;
 596	struct btrfs_path *path;
 597	struct btrfs_key key;
 598	u64 end_byte = bytenr + len;
 599	u64 csum_end;
 600	struct extent_buffer *leaf;
 601	int ret;
 602	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 603	int blocksize_bits = fs_info->sb->s_blocksize_bits;
 
 
 
 604
 605	path = btrfs_alloc_path();
 606	if (!path)
 607		return -ENOMEM;
 608
 609	while (1) {
 610		key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 611		key.offset = end_byte - 1;
 612		key.type = BTRFS_EXTENT_CSUM_KEY;
 613
 614		path->leave_spinning = 1;
 615		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 616		if (ret > 0) {
 
 617			if (path->slots[0] == 0)
 618				break;
 619			path->slots[0]--;
 620		} else if (ret < 0) {
 621			break;
 622		}
 623
 624		leaf = path->nodes[0];
 625		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 626
 627		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
 628		    key.type != BTRFS_EXTENT_CSUM_KEY) {
 629			break;
 630		}
 631
 632		if (key.offset >= end_byte)
 633			break;
 634
 635		csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size;
 636		csum_end <<= blocksize_bits;
 637		csum_end += key.offset;
 638
 639		/* this csum ends before we start, we're done */
 640		if (csum_end <= bytenr)
 641			break;
 642
 643		/* delete the entire item, it is inside our range */
 644		if (key.offset >= bytenr && csum_end <= end_byte) {
 645			int del_nr = 1;
 646
 647			/*
 648			 * Check how many csum items preceding this one in this
 649			 * leaf correspond to our range and then delete them all
 650			 * at once.
 651			 */
 652			if (key.offset > bytenr && path->slots[0] > 0) {
 653				int slot = path->slots[0] - 1;
 654
 655				while (slot >= 0) {
 656					struct btrfs_key pk;
 657
 658					btrfs_item_key_to_cpu(leaf, &pk, slot);
 659					if (pk.offset < bytenr ||
 660					    pk.type != BTRFS_EXTENT_CSUM_KEY ||
 661					    pk.objectid !=
 662					    BTRFS_EXTENT_CSUM_OBJECTID)
 663						break;
 664					path->slots[0] = slot;
 665					del_nr++;
 666					key.offset = pk.offset;
 667					slot--;
 668				}
 669			}
 670			ret = btrfs_del_items(trans, root, path,
 671					      path->slots[0], del_nr);
 672			if (ret)
 673				goto out;
 674			if (key.offset == bytenr)
 675				break;
 676		} else if (key.offset < bytenr && csum_end > end_byte) {
 677			unsigned long offset;
 678			unsigned long shift_len;
 679			unsigned long item_offset;
 680			/*
 681			 *        [ bytenr - len ]
 682			 *     [csum                ]
 683			 *
 684			 * Our bytes are in the middle of the csum,
 685			 * we need to split this item and insert a new one.
 686			 *
 687			 * But we can't drop the path because the
 688			 * csum could change, get removed, extended etc.
 689			 *
 690			 * The trick here is the max size of a csum item leaves
 691			 * enough room in the tree block for a single
 692			 * item header.  So, we split the item in place,
 693			 * adding a new header pointing to the existing
 694			 * bytes.  Then we loop around again and we have
 695			 * a nicely formed csum item that we can neatly
 696			 * truncate.
 697			 */
 698			offset = (bytenr - key.offset) >> blocksize_bits;
 699			offset *= csum_size;
 700
 701			shift_len = (len >> blocksize_bits) * csum_size;
 702
 703			item_offset = btrfs_item_ptr_offset(leaf,
 704							    path->slots[0]);
 705
 706			memzero_extent_buffer(leaf, item_offset + offset,
 707					     shift_len);
 708			key.offset = bytenr;
 709
 710			/*
 711			 * btrfs_split_item returns -EAGAIN when the
 712			 * item changed size or key
 713			 */
 714			ret = btrfs_split_item(trans, root, path, &key, offset);
 715			if (ret && ret != -EAGAIN) {
 716				btrfs_abort_transaction(trans, ret);
 717				goto out;
 718			}
 
 719
 720			key.offset = end_byte - 1;
 721		} else {
 722			truncate_one_csum(fs_info, path, &key, bytenr, len);
 723			if (key.offset < bytenr)
 724				break;
 725		}
 726		btrfs_release_path(path);
 727	}
 728	ret = 0;
 729out:
 730	btrfs_free_path(path);
 731	return ret;
 732}
 733
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 734int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
 735			   struct btrfs_root *root,
 736			   struct btrfs_ordered_sum *sums)
 737{
 738	struct btrfs_fs_info *fs_info = root->fs_info;
 739	struct btrfs_key file_key;
 740	struct btrfs_key found_key;
 741	struct btrfs_path *path;
 742	struct btrfs_csum_item *item;
 743	struct btrfs_csum_item *item_end;
 744	struct extent_buffer *leaf = NULL;
 745	u64 next_offset;
 746	u64 total_bytes = 0;
 747	u64 csum_offset;
 748	u64 bytenr;
 749	u32 nritems;
 750	u32 ins_size;
 751	int index = 0;
 752	int found_next;
 753	int ret;
 754	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 755
 756	path = btrfs_alloc_path();
 757	if (!path)
 758		return -ENOMEM;
 759again:
 760	next_offset = (u64)-1;
 761	found_next = 0;
 762	bytenr = sums->bytenr + total_bytes;
 763	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 764	file_key.offset = bytenr;
 765	file_key.type = BTRFS_EXTENT_CSUM_KEY;
 766
 767	item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
 768	if (!IS_ERR(item)) {
 769		ret = 0;
 770		leaf = path->nodes[0];
 771		item_end = btrfs_item_ptr(leaf, path->slots[0],
 772					  struct btrfs_csum_item);
 773		item_end = (struct btrfs_csum_item *)((char *)item_end +
 774			   btrfs_item_size_nr(leaf, path->slots[0]));
 775		goto found;
 776	}
 777	ret = PTR_ERR(item);
 778	if (ret != -EFBIG && ret != -ENOENT)
 779		goto fail_unlock;
 780
 781	if (ret == -EFBIG) {
 782		u32 item_size;
 783		/* we found one, but it isn't big enough yet */
 784		leaf = path->nodes[0];
 785		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 786		if ((item_size / csum_size) >=
 787		    MAX_CSUM_ITEMS(fs_info, csum_size)) {
 788			/* already at max size, make a new one */
 789			goto insert;
 790		}
 791	} else {
 792		int slot = path->slots[0] + 1;
 793		/* we didn't find a csum item, insert one */
 794		nritems = btrfs_header_nritems(path->nodes[0]);
 795		if (!nritems || (path->slots[0] >= nritems - 1)) {
 796			ret = btrfs_next_leaf(root, path);
 797			if (ret == 1)
 798				found_next = 1;
 799			if (ret != 0)
 800				goto insert;
 801			slot = path->slots[0];
 802		}
 803		btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
 804		if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
 805		    found_key.type != BTRFS_EXTENT_CSUM_KEY) {
 806			found_next = 1;
 807			goto insert;
 808		}
 809		next_offset = found_key.offset;
 810		found_next = 1;
 811		goto insert;
 812	}
 813
 814	/*
 815	 * at this point, we know the tree has an item, but it isn't big
 816	 * enough yet to put our csum in.  Grow it
 
 
 
 
 
 
 817	 */
 
 
 
 
 
 
 
 818	btrfs_release_path(path);
 
 819	ret = btrfs_search_slot(trans, root, &file_key, path,
 820				csum_size, 1);
 
 821	if (ret < 0)
 822		goto fail_unlock;
 823
 824	if (ret > 0) {
 825		if (path->slots[0] == 0)
 826			goto insert;
 827		path->slots[0]--;
 828	}
 829
 830	leaf = path->nodes[0];
 831	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
 832	csum_offset = (bytenr - found_key.offset) >>
 833			fs_info->sb->s_blocksize_bits;
 834
 835	if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
 836	    found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
 837	    csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
 838		goto insert;
 839	}
 840
 
 841	if (csum_offset == btrfs_item_size_nr(leaf, path->slots[0]) /
 842	    csum_size) {
 843		int extend_nr;
 844		u64 tmp;
 845		u32 diff;
 846		u32 free_space;
 847
 848		if (btrfs_leaf_free_space(leaf) <
 849				 sizeof(struct btrfs_item) + csum_size * 2)
 850			goto insert;
 851
 852		free_space = btrfs_leaf_free_space(leaf) -
 853					 sizeof(struct btrfs_item) - csum_size;
 854		tmp = sums->len - total_bytes;
 855		tmp >>= fs_info->sb->s_blocksize_bits;
 856		WARN_ON(tmp < 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 857
 858		extend_nr = max_t(int, 1, (int)tmp);
 859		diff = (csum_offset + extend_nr) * csum_size;
 860		diff = min(diff,
 861			   MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
 862
 863		diff = diff - btrfs_item_size_nr(leaf, path->slots[0]);
 864		diff = min(free_space, diff);
 865		diff /= csum_size;
 866		diff *= csum_size;
 867
 868		btrfs_extend_item(path, diff);
 869		ret = 0;
 870		goto csum;
 871	}
 872
 873insert:
 874	btrfs_release_path(path);
 875	csum_offset = 0;
 876	if (found_next) {
 877		u64 tmp;
 878
 879		tmp = sums->len - total_bytes;
 880		tmp >>= fs_info->sb->s_blocksize_bits;
 881		tmp = min(tmp, (next_offset - file_key.offset) >>
 882					 fs_info->sb->s_blocksize_bits);
 883
 884		tmp = max_t(u64, 1, tmp);
 885		tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
 886		ins_size = csum_size * tmp;
 887	} else {
 888		ins_size = csum_size;
 889	}
 890	path->leave_spinning = 1;
 891	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
 892				      ins_size);
 893	path->leave_spinning = 0;
 894	if (ret < 0)
 895		goto fail_unlock;
 896	if (WARN_ON(ret != 0))
 897		goto fail_unlock;
 898	leaf = path->nodes[0];
 899csum:
 900	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
 901	item_end = (struct btrfs_csum_item *)((unsigned char *)item +
 902				      btrfs_item_size_nr(leaf, path->slots[0]));
 903	item = (struct btrfs_csum_item *)((unsigned char *)item +
 904					  csum_offset * csum_size);
 905found:
 906	ins_size = (u32)(sums->len - total_bytes) >>
 907		   fs_info->sb->s_blocksize_bits;
 908	ins_size *= csum_size;
 909	ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
 910			      ins_size);
 911	write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
 912			    ins_size);
 913
 914	index += ins_size;
 915	ins_size /= csum_size;
 916	total_bytes += ins_size * fs_info->sectorsize;
 917
 918	btrfs_mark_buffer_dirty(path->nodes[0]);
 919	if (total_bytes < sums->len) {
 920		btrfs_release_path(path);
 921		cond_resched();
 922		goto again;
 923	}
 924out:
 925	btrfs_free_path(path);
 926	return ret;
 927
 928fail_unlock:
 929	goto out;
 930}
 931
 932void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
 933				     const struct btrfs_path *path,
 934				     struct btrfs_file_extent_item *fi,
 935				     const bool new_inline,
 936				     struct extent_map *em)
 937{
 938	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 939	struct btrfs_root *root = inode->root;
 940	struct extent_buffer *leaf = path->nodes[0];
 941	const int slot = path->slots[0];
 942	struct btrfs_key key;
 943	u64 extent_start, extent_end;
 944	u64 bytenr;
 945	u8 type = btrfs_file_extent_type(leaf, fi);
 946	int compress_type = btrfs_file_extent_compression(leaf, fi);
 947
 948	em->bdev = fs_info->fs_devices->latest_bdev;
 949	btrfs_item_key_to_cpu(leaf, &key, slot);
 950	extent_start = key.offset;
 951
 952	if (type == BTRFS_FILE_EXTENT_REG ||
 953	    type == BTRFS_FILE_EXTENT_PREALLOC) {
 954		extent_end = extent_start +
 955			btrfs_file_extent_num_bytes(leaf, fi);
 956	} else if (type == BTRFS_FILE_EXTENT_INLINE) {
 957		size_t size;
 958		size = btrfs_file_extent_ram_bytes(leaf, fi);
 959		extent_end = ALIGN(extent_start + size,
 960				   fs_info->sectorsize);
 961	}
 962
 963	em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
 964	if (type == BTRFS_FILE_EXTENT_REG ||
 965	    type == BTRFS_FILE_EXTENT_PREALLOC) {
 966		em->start = extent_start;
 967		em->len = extent_end - extent_start;
 968		em->orig_start = extent_start -
 969			btrfs_file_extent_offset(leaf, fi);
 970		em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
 971		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 972		if (bytenr == 0) {
 973			em->block_start = EXTENT_MAP_HOLE;
 974			return;
 975		}
 976		if (compress_type != BTRFS_COMPRESS_NONE) {
 977			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
 978			em->compress_type = compress_type;
 979			em->block_start = bytenr;
 980			em->block_len = em->orig_block_len;
 981		} else {
 982			bytenr += btrfs_file_extent_offset(leaf, fi);
 983			em->block_start = bytenr;
 984			em->block_len = em->len;
 985			if (type == BTRFS_FILE_EXTENT_PREALLOC)
 986				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
 987		}
 988	} else if (type == BTRFS_FILE_EXTENT_INLINE) {
 989		em->block_start = EXTENT_MAP_INLINE;
 990		em->start = extent_start;
 991		em->len = extent_end - extent_start;
 992		/*
 993		 * Initialize orig_start and block_len with the same values
 994		 * as in inode.c:btrfs_get_extent().
 995		 */
 996		em->orig_start = EXTENT_MAP_HOLE;
 997		em->block_len = (u64)-1;
 998		if (!new_inline && compress_type != BTRFS_COMPRESS_NONE) {
 999			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1000			em->compress_type = compress_type;
1001		}
1002	} else {
1003		btrfs_err(fs_info,
1004			  "unknown file extent item type %d, inode %llu, offset %llu, "
1005			  "root %llu", type, btrfs_ino(inode), extent_start,
1006			  root->root_key.objectid);
1007	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1008}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/bio.h>
   7#include <linux/slab.h>
   8#include <linux/pagemap.h>
   9#include <linux/highmem.h>
  10#include <linux/sched/mm.h>
  11#include <crypto/hash.h>
  12#include "misc.h"
  13#include "ctree.h"
  14#include "disk-io.h"
  15#include "transaction.h"
  16#include "volumes.h"
  17#include "print-tree.h"
  18#include "compression.h"
  19
  20#define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
  21				   sizeof(struct btrfs_item) * 2) / \
  22				  size) - 1))
  23
  24#define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
  25				       PAGE_SIZE))
  26
  27/**
  28 * Set inode's size according to filesystem options
  29 *
  30 * @inode:      inode we want to update the disk_i_size for
  31 * @new_i_size: i_size we want to set to, 0 if we use i_size
  32 *
  33 * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
  34 * returns as it is perfectly fine with a file that has holes without hole file
  35 * extent items.
  36 *
  37 * However without NO_HOLES we need to only return the area that is contiguous
  38 * from the 0 offset of the file.  Otherwise we could end up adjust i_size up
  39 * to an extent that has a gap in between.
  40 *
  41 * Finally new_i_size should only be set in the case of truncate where we're not
  42 * ready to use i_size_read() as the limiter yet.
  43 */
  44void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size)
  45{
  46	struct btrfs_fs_info *fs_info = inode->root->fs_info;
  47	u64 start, end, i_size;
  48	int ret;
  49
  50	i_size = new_i_size ?: i_size_read(&inode->vfs_inode);
  51	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
  52		inode->disk_i_size = i_size;
  53		return;
  54	}
  55
  56	spin_lock(&inode->lock);
  57	ret = find_contiguous_extent_bit(&inode->file_extent_tree, 0, &start,
  58					 &end, EXTENT_DIRTY);
  59	if (!ret && start == 0)
  60		i_size = min(i_size, end + 1);
  61	else
  62		i_size = 0;
  63	inode->disk_i_size = i_size;
  64	spin_unlock(&inode->lock);
  65}
  66
  67/**
  68 * Mark range within a file as having a new extent inserted
  69 *
  70 * @inode: inode being modified
  71 * @start: start file offset of the file extent we've inserted
  72 * @len:   logical length of the file extent item
  73 *
  74 * Call when we are inserting a new file extent where there was none before.
  75 * Does not need to call this in the case where we're replacing an existing file
  76 * extent, however if not sure it's fine to call this multiple times.
  77 *
  78 * The start and len must match the file extent item, so thus must be sectorsize
  79 * aligned.
  80 */
  81int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
  82				      u64 len)
  83{
  84	if (len == 0)
  85		return 0;
  86
  87	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));
  88
  89	if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
  90		return 0;
  91	return set_extent_bits(&inode->file_extent_tree, start, start + len - 1,
  92			       EXTENT_DIRTY);
  93}
  94
  95/**
  96 * Marks an inode range as not having a backing extent
  97 *
  98 * @inode: inode being modified
  99 * @start: start file offset of the file extent we've inserted
 100 * @len:   logical length of the file extent item
 101 *
 102 * Called when we drop a file extent, for example when we truncate.  Doesn't
 103 * need to be called for cases where we're replacing a file extent, like when
 104 * we've COWed a file extent.
 105 *
 106 * The start and len must match the file extent item, so thus must be sectorsize
 107 * aligned.
 108 */
 109int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
 110					u64 len)
 111{
 112	if (len == 0)
 113		return 0;
 114
 115	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
 116	       len == (u64)-1);
 117
 118	if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
 119		return 0;
 120	return clear_extent_bit(&inode->file_extent_tree, start,
 121				start + len - 1, EXTENT_DIRTY, 0, 0, NULL);
 122}
 123
 124static inline u32 max_ordered_sum_bytes(struct btrfs_fs_info *fs_info,
 125					u16 csum_size)
 126{
 127	u32 ncsums = (PAGE_SIZE - sizeof(struct btrfs_ordered_sum)) / csum_size;
 128
 129	return ncsums * fs_info->sectorsize;
 130}
 131
 132int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
 133			     struct btrfs_root *root,
 134			     u64 objectid, u64 pos,
 135			     u64 disk_offset, u64 disk_num_bytes,
 136			     u64 num_bytes, u64 offset, u64 ram_bytes,
 137			     u8 compression, u8 encryption, u16 other_encoding)
 138{
 139	int ret = 0;
 140	struct btrfs_file_extent_item *item;
 141	struct btrfs_key file_key;
 142	struct btrfs_path *path;
 143	struct extent_buffer *leaf;
 144
 145	path = btrfs_alloc_path();
 146	if (!path)
 147		return -ENOMEM;
 148	file_key.objectid = objectid;
 149	file_key.offset = pos;
 150	file_key.type = BTRFS_EXTENT_DATA_KEY;
 151
 
 152	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
 153				      sizeof(*item));
 154	if (ret < 0)
 155		goto out;
 156	BUG_ON(ret); /* Can't happen */
 157	leaf = path->nodes[0];
 158	item = btrfs_item_ptr(leaf, path->slots[0],
 159			      struct btrfs_file_extent_item);
 160	btrfs_set_file_extent_disk_bytenr(leaf, item, disk_offset);
 161	btrfs_set_file_extent_disk_num_bytes(leaf, item, disk_num_bytes);
 162	btrfs_set_file_extent_offset(leaf, item, offset);
 163	btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
 164	btrfs_set_file_extent_ram_bytes(leaf, item, ram_bytes);
 165	btrfs_set_file_extent_generation(leaf, item, trans->transid);
 166	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
 167	btrfs_set_file_extent_compression(leaf, item, compression);
 168	btrfs_set_file_extent_encryption(leaf, item, encryption);
 169	btrfs_set_file_extent_other_encoding(leaf, item, other_encoding);
 170
 171	btrfs_mark_buffer_dirty(leaf);
 172out:
 173	btrfs_free_path(path);
 174	return ret;
 175}
 176
 177static struct btrfs_csum_item *
 178btrfs_lookup_csum(struct btrfs_trans_handle *trans,
 179		  struct btrfs_root *root,
 180		  struct btrfs_path *path,
 181		  u64 bytenr, int cow)
 182{
 183	struct btrfs_fs_info *fs_info = root->fs_info;
 184	int ret;
 185	struct btrfs_key file_key;
 186	struct btrfs_key found_key;
 187	struct btrfs_csum_item *item;
 188	struct extent_buffer *leaf;
 189	u64 csum_offset = 0;
 190	const u32 csum_size = fs_info->csum_size;
 191	int csums_in_item;
 192
 193	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 194	file_key.offset = bytenr;
 195	file_key.type = BTRFS_EXTENT_CSUM_KEY;
 196	ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
 197	if (ret < 0)
 198		goto fail;
 199	leaf = path->nodes[0];
 200	if (ret > 0) {
 201		ret = 1;
 202		if (path->slots[0] == 0)
 203			goto fail;
 204		path->slots[0]--;
 205		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
 206		if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
 207			goto fail;
 208
 209		csum_offset = (bytenr - found_key.offset) >>
 210				fs_info->sectorsize_bits;
 211		csums_in_item = btrfs_item_size_nr(leaf, path->slots[0]);
 212		csums_in_item /= csum_size;
 213
 214		if (csum_offset == csums_in_item) {
 215			ret = -EFBIG;
 216			goto fail;
 217		} else if (csum_offset > csums_in_item) {
 218			goto fail;
 219		}
 220	}
 221	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
 222	item = (struct btrfs_csum_item *)((unsigned char *)item +
 223					  csum_offset * csum_size);
 224	return item;
 225fail:
 226	if (ret > 0)
 227		ret = -ENOENT;
 228	return ERR_PTR(ret);
 229}
 230
 231int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
 232			     struct btrfs_root *root,
 233			     struct btrfs_path *path, u64 objectid,
 234			     u64 offset, int mod)
 235{
 236	int ret;
 237	struct btrfs_key file_key;
 238	int ins_len = mod < 0 ? -1 : 0;
 239	int cow = mod != 0;
 240
 241	file_key.objectid = objectid;
 242	file_key.offset = offset;
 243	file_key.type = BTRFS_EXTENT_DATA_KEY;
 244	ret = btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
 245	return ret;
 246}
 247
 248/*
 249 * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and
 250 * estore the result to @dst.
 251 *
 252 * Return >0 for the number of sectors we found.
 253 * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum
 254 * for it. Caller may want to try next sector until one range is hit.
 255 * Return <0 for fatal error.
 256 */
 257static int search_csum_tree(struct btrfs_fs_info *fs_info,
 258			    struct btrfs_path *path, u64 disk_bytenr,
 259			    u64 len, u8 *dst)
 260{
 
 
 
 
 261	struct btrfs_csum_item *item = NULL;
 262	struct btrfs_key key;
 263	const u32 sectorsize = fs_info->sectorsize;
 264	const u32 csum_size = fs_info->csum_size;
 265	u32 itemsize;
 266	int ret;
 267	u64 csum_start;
 268	u64 csum_len;
 269
 270	ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) &&
 271	       IS_ALIGNED(len, sectorsize));
 272
 273	/* Check if the current csum item covers disk_bytenr */
 274	if (path->nodes[0]) {
 275		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 276				      struct btrfs_csum_item);
 277		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 278		itemsize = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
 279
 280		csum_start = key.offset;
 281		csum_len = (itemsize / csum_size) * sectorsize;
 282
 283		if (in_range(disk_bytenr, csum_start, csum_len))
 284			goto found;
 285	}
 286
 287	/* Current item doesn't contain the desired range, search again */
 288	btrfs_release_path(path);
 289	item = btrfs_lookup_csum(NULL, fs_info->csum_root, path, disk_bytenr, 0);
 290	if (IS_ERR(item)) {
 291		ret = PTR_ERR(item);
 292		goto out;
 293	}
 294	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 295	itemsize = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
 296
 297	csum_start = key.offset;
 298	csum_len = (itemsize / csum_size) * sectorsize;
 299	ASSERT(in_range(disk_bytenr, csum_start, csum_len));
 300
 301found:
 302	ret = (min(csum_start + csum_len, disk_bytenr + len) -
 303		   disk_bytenr) >> fs_info->sectorsize_bits;
 304	read_extent_buffer(path->nodes[0], dst, (unsigned long)item,
 305			ret * csum_size);
 306out:
 307	if (ret == -ENOENT)
 308		ret = 0;
 309	return ret;
 310}
 311
 312/*
 313 * Locate the file_offset of @cur_disk_bytenr of a @bio.
 314 *
 315 * Bio of btrfs represents read range of
 316 * [bi_sector << 9, bi_sector << 9 + bi_size).
 317 * Knowing this, we can iterate through each bvec to locate the page belong to
 318 * @cur_disk_bytenr and get the file offset.
 319 *
 320 * @inode is used to determine if the bvec page really belongs to @inode.
 321 *
 322 * Return 0 if we can't find the file offset
 323 * Return >0 if we find the file offset and restore it to @file_offset_ret
 324 */
 325static int search_file_offset_in_bio(struct bio *bio, struct inode *inode,
 326				     u64 disk_bytenr, u64 *file_offset_ret)
 327{
 328	struct bvec_iter iter;
 329	struct bio_vec bvec;
 330	u64 cur = bio->bi_iter.bi_sector << SECTOR_SHIFT;
 331	int ret = 0;
 332
 333	bio_for_each_segment(bvec, bio, iter) {
 334		struct page *page = bvec.bv_page;
 335
 336		if (cur > disk_bytenr)
 337			break;
 338		if (cur + bvec.bv_len <= disk_bytenr) {
 339			cur += bvec.bv_len;
 340			continue;
 341		}
 342		ASSERT(in_range(disk_bytenr, cur, bvec.bv_len));
 343		if (page->mapping && page->mapping->host &&
 344		    page->mapping->host == inode) {
 345			ret = 1;
 346			*file_offset_ret = page_offset(page) + bvec.bv_offset +
 347					   disk_bytenr - cur;
 348			break;
 349		}
 350	}
 351	return ret;
 352}
 353
 354/**
 355 * Lookup the checksum for the read bio in csum tree.
 356 *
 357 * @inode: inode that the bio is for.
 358 * @bio: bio to look up.
 359 * @dst: Buffer of size nblocks * btrfs_super_csum_size() used to return
 360 *       checksum (nblocks = bio->bi_iter.bi_size / fs_info->sectorsize). If
 361 *       NULL, the checksum buffer is allocated and returned in
 362 *       btrfs_io_bio(bio)->csum instead.
 363 *
 364 * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
 365 */
 366blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst)
 367{
 368	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 369	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 370	struct btrfs_path *path;
 371	const u32 sectorsize = fs_info->sectorsize;
 372	const u32 csum_size = fs_info->csum_size;
 373	u32 orig_len = bio->bi_iter.bi_size;
 374	u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
 375	u64 cur_disk_bytenr;
 376	u8 *csum;
 377	const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits;
 
 
 
 
 
 
 378	int count = 0;
 
 379
 380	if (!fs_info->csum_root || (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
 381		return BLK_STS_OK;
 382
 383	/*
 384	 * This function is only called for read bio.
 385	 *
 386	 * This means two things:
 387	 * - All our csums should only be in csum tree
 388	 *   No ordered extents csums, as ordered extents are only for write
 389	 *   path.
 390	 * - No need to bother any other info from bvec
 391	 *   Since we're looking up csums, the only important info is the
 392	 *   disk_bytenr and the length, which can be extracted from bi_iter
 393	 *   directly.
 394	 */
 395	ASSERT(bio_op(bio) == REQ_OP_READ);
 396	path = btrfs_alloc_path();
 397	if (!path)
 398		return BLK_STS_RESOURCE;
 399
 
 400	if (!dst) {
 401		struct btrfs_io_bio *btrfs_bio = btrfs_io_bio(bio);
 402
 403		if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
 404			btrfs_bio->csum = kmalloc_array(nblocks, csum_size,
 405							GFP_NOFS);
 406			if (!btrfs_bio->csum) {
 407				btrfs_free_path(path);
 408				return BLK_STS_RESOURCE;
 409			}
 410		} else {
 411			btrfs_bio->csum = btrfs_bio->csum_inline;
 412		}
 413		csum = btrfs_bio->csum;
 414	} else {
 415		csum = dst;
 416	}
 417
 418	/*
 419	 * If requested number of sectors is larger than one leaf can contain,
 420	 * kick the readahead for csum tree.
 421	 */
 422	if (nblocks > fs_info->csums_per_leaf)
 423		path->reada = READA_FORWARD;
 424
 425	/*
 426	 * the free space stuff is only read when it hasn't been
 427	 * updated in the current transaction.  So, we can safely
 428	 * read from the commit root and sidestep a nasty deadlock
 429	 * between reading the free space cache and updating the csum tree.
 430	 */
 431	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
 432		path->search_commit_root = 1;
 433		path->skip_locking = 1;
 434	}
 435
 436	for (cur_disk_bytenr = orig_disk_bytenr;
 437	     cur_disk_bytenr < orig_disk_bytenr + orig_len;
 438	     cur_disk_bytenr += (count * sectorsize)) {
 439		u64 search_len = orig_disk_bytenr + orig_len - cur_disk_bytenr;
 440		unsigned int sector_offset;
 441		u8 *csum_dst;
 442
 443		/*
 444		 * Although both cur_disk_bytenr and orig_disk_bytenr is u64,
 445		 * we're calculating the offset to the bio start.
 446		 *
 447		 * Bio size is limited to UINT_MAX, thus unsigned int is large
 448		 * enough to contain the raw result, not to mention the right
 449		 * shifted result.
 450		 */
 451		ASSERT(cur_disk_bytenr - orig_disk_bytenr < UINT_MAX);
 452		sector_offset = (cur_disk_bytenr - orig_disk_bytenr) >>
 453				fs_info->sectorsize_bits;
 454		csum_dst = csum + sector_offset * csum_size;
 455
 456		count = search_csum_tree(fs_info, path, cur_disk_bytenr,
 457					 search_len, csum_dst);
 458		if (count <= 0) {
 459			/*
 460			 * Either we hit a critical error or we didn't find
 461			 * the csum.
 462			 * Either way, we put zero into the csums dst, and skip
 463			 * to the next sector.
 464			 */
 465			memset(csum_dst, 0, csum_size);
 466			count = 1;
 467
 468			/*
 469			 * For data reloc inode, we need to mark the range
 470			 * NODATASUM so that balance won't report false csum
 471			 * error.
 472			 */
 473			if (BTRFS_I(inode)->root->root_key.objectid ==
 474			    BTRFS_DATA_RELOC_TREE_OBJECTID) {
 475				u64 file_offset;
 476				int ret;
 477
 478				ret = search_file_offset_in_bio(bio, inode,
 479						cur_disk_bytenr, &file_offset);
 480				if (ret)
 481					set_extent_bits(io_tree, file_offset,
 482						file_offset + sectorsize - 1,
 
 483						EXTENT_NODATASUM);
 484			} else {
 485				btrfs_warn_rl(fs_info,
 486			"csum hole found for disk bytenr range [%llu, %llu)",
 487				cur_disk_bytenr, cur_disk_bytenr + sectorsize);
 
 
 
 
 488			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 489		}
 490	}
 491
 
 492	btrfs_free_path(path);
 493	return BLK_STS_OK;
 
 
 
 
 
 
 
 
 
 
 
 494}
 495
 496int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
 497			     struct list_head *list, int search_commit)
 498{
 499	struct btrfs_fs_info *fs_info = root->fs_info;
 500	struct btrfs_key key;
 501	struct btrfs_path *path;
 502	struct extent_buffer *leaf;
 503	struct btrfs_ordered_sum *sums;
 504	struct btrfs_csum_item *item;
 505	LIST_HEAD(tmplist);
 506	unsigned long offset;
 507	int ret;
 508	size_t size;
 509	u64 csum_end;
 510	const u32 csum_size = fs_info->csum_size;
 511
 512	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
 513	       IS_ALIGNED(end + 1, fs_info->sectorsize));
 514
 515	path = btrfs_alloc_path();
 516	if (!path)
 517		return -ENOMEM;
 518
 519	if (search_commit) {
 520		path->skip_locking = 1;
 521		path->reada = READA_FORWARD;
 522		path->search_commit_root = 1;
 523	}
 524
 525	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 526	key.offset = start;
 527	key.type = BTRFS_EXTENT_CSUM_KEY;
 528
 529	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 530	if (ret < 0)
 531		goto fail;
 532	if (ret > 0 && path->slots[0] > 0) {
 533		leaf = path->nodes[0];
 534		btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 535		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
 536		    key.type == BTRFS_EXTENT_CSUM_KEY) {
 537			offset = (start - key.offset) >> fs_info->sectorsize_bits;
 
 538			if (offset * csum_size <
 539			    btrfs_item_size_nr(leaf, path->slots[0] - 1))
 540				path->slots[0]--;
 541		}
 542	}
 543
 544	while (start <= end) {
 545		leaf = path->nodes[0];
 546		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 547			ret = btrfs_next_leaf(root, path);
 548			if (ret < 0)
 549				goto fail;
 550			if (ret > 0)
 551				break;
 552			leaf = path->nodes[0];
 553		}
 554
 555		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 556		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
 557		    key.type != BTRFS_EXTENT_CSUM_KEY ||
 558		    key.offset > end)
 559			break;
 560
 561		if (key.offset > start)
 562			start = key.offset;
 563
 564		size = btrfs_item_size_nr(leaf, path->slots[0]);
 565		csum_end = key.offset + (size / csum_size) * fs_info->sectorsize;
 566		if (csum_end <= start) {
 567			path->slots[0]++;
 568			continue;
 569		}
 570
 571		csum_end = min(csum_end, end + 1);
 572		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 573				      struct btrfs_csum_item);
 574		while (start < csum_end) {
 575			size = min_t(size_t, csum_end - start,
 576				     max_ordered_sum_bytes(fs_info, csum_size));
 577			sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
 578				       GFP_NOFS);
 579			if (!sums) {
 580				ret = -ENOMEM;
 581				goto fail;
 582			}
 583
 584			sums->bytenr = start;
 585			sums->len = (int)size;
 586
 587			offset = (start - key.offset) >> fs_info->sectorsize_bits;
 
 588			offset *= csum_size;
 589			size >>= fs_info->sectorsize_bits;
 590
 591			read_extent_buffer(path->nodes[0],
 592					   sums->sums,
 593					   ((unsigned long)item) + offset,
 594					   csum_size * size);
 595
 596			start += fs_info->sectorsize * size;
 597			list_add_tail(&sums->list, &tmplist);
 598		}
 599		path->slots[0]++;
 600	}
 601	ret = 0;
 602fail:
 603	while (ret < 0 && !list_empty(&tmplist)) {
 604		sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list);
 605		list_del(&sums->list);
 606		kfree(sums);
 607	}
 608	list_splice_tail(&tmplist, list);
 609
 610	btrfs_free_path(path);
 611	return ret;
 612}
 613
 614/*
 615 * btrfs_csum_one_bio - Calculates checksums of the data contained inside a bio
 616 * @inode:	 Owner of the data inside the bio
 617 * @bio:	 Contains the data to be checksummed
 618 * @file_start:  offset in file this bio begins to describe
 619 * @contig:	 Boolean. If true/1 means all bio vecs in this bio are
 620 *		 contiguous and they begin at @file_start in the file. False/0
 621 *		 means this bio can contain potentially discontiguous bio vecs
 622 *		 so the logical offset of each should be calculated separately.
 623 */
 624blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio,
 625		       u64 file_start, int contig)
 626{
 627	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 628	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 629	struct btrfs_ordered_sum *sums;
 630	struct btrfs_ordered_extent *ordered = NULL;
 631	char *data;
 632	struct bvec_iter iter;
 633	struct bio_vec bvec;
 634	int index;
 635	int nr_sectors;
 636	unsigned long total_bytes = 0;
 637	unsigned long this_sum_bytes = 0;
 638	int i;
 639	u64 offset;
 640	unsigned nofs_flag;
 
 641
 642	nofs_flag = memalloc_nofs_save();
 643	sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
 644		       GFP_KERNEL);
 645	memalloc_nofs_restore(nofs_flag);
 646
 647	if (!sums)
 648		return BLK_STS_RESOURCE;
 649
 650	sums->len = bio->bi_iter.bi_size;
 651	INIT_LIST_HEAD(&sums->list);
 652
 653	if (contig)
 654		offset = file_start;
 655	else
 656		offset = 0; /* shut up gcc */
 657
 658	sums->bytenr = bio->bi_iter.bi_sector << 9;
 659	index = 0;
 660
 661	shash->tfm = fs_info->csum_shash;
 662
 663	bio_for_each_segment(bvec, bio, iter) {
 664		if (!contig)
 665			offset = page_offset(bvec.bv_page) + bvec.bv_offset;
 666
 667		if (!ordered) {
 668			ordered = btrfs_lookup_ordered_extent(inode, offset);
 669			/*
 670			 * The bio range is not covered by any ordered extent,
 671			 * must be a code logic error.
 672			 */
 673			if (unlikely(!ordered)) {
 674				WARN(1, KERN_WARNING
 675			"no ordered extent for root %llu ino %llu offset %llu\n",
 676				     inode->root->root_key.objectid,
 677				     btrfs_ino(inode), offset);
 678				kvfree(sums);
 679				return BLK_STS_IOERR;
 680			}
 681		}
 682
 683		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info,
 684						 bvec.bv_len + fs_info->sectorsize
 685						 - 1);
 686
 687		for (i = 0; i < nr_sectors; i++) {
 688			if (offset >= ordered->file_offset + ordered->num_bytes ||
 689			    offset < ordered->file_offset) {
 690				unsigned long bytes_left;
 691
 692				sums->len = this_sum_bytes;
 693				this_sum_bytes = 0;
 694				btrfs_add_ordered_sum(ordered, sums);
 695				btrfs_put_ordered_extent(ordered);
 696
 697				bytes_left = bio->bi_iter.bi_size - total_bytes;
 698
 699				nofs_flag = memalloc_nofs_save();
 700				sums = kvzalloc(btrfs_ordered_sum_size(fs_info,
 701						      bytes_left), GFP_KERNEL);
 702				memalloc_nofs_restore(nofs_flag);
 703				BUG_ON(!sums); /* -ENOMEM */
 704				sums->len = bytes_left;
 705				ordered = btrfs_lookup_ordered_extent(inode,
 706								offset);
 707				ASSERT(ordered); /* Logic error */
 708				sums->bytenr = (bio->bi_iter.bi_sector << 9)
 709					+ total_bytes;
 710				index = 0;
 711			}
 712
 
 713			data = kmap_atomic(bvec.bv_page);
 714			crypto_shash_digest(shash, data + bvec.bv_offset
 715					    + (i * fs_info->sectorsize),
 716					    fs_info->sectorsize,
 717					    sums->sums + index);
 718			kunmap_atomic(data);
 719			index += fs_info->csum_size;
 
 720			offset += fs_info->sectorsize;
 721			this_sum_bytes += fs_info->sectorsize;
 722			total_bytes += fs_info->sectorsize;
 723		}
 724
 725	}
 726	this_sum_bytes = 0;
 727	btrfs_add_ordered_sum(ordered, sums);
 728	btrfs_put_ordered_extent(ordered);
 729	return 0;
 730}
 731
 732/*
 733 * helper function for csum removal, this expects the
 734 * key to describe the csum pointed to by the path, and it expects
 735 * the csum to overlap the range [bytenr, len]
 736 *
 737 * The csum should not be entirely contained in the range and the
 738 * range should not be entirely contained in the csum.
 739 *
 740 * This calls btrfs_truncate_item with the correct args based on the
 741 * overlap, and fixes up the key as required.
 742 */
 743static noinline void truncate_one_csum(struct btrfs_fs_info *fs_info,
 744				       struct btrfs_path *path,
 745				       struct btrfs_key *key,
 746				       u64 bytenr, u64 len)
 747{
 748	struct extent_buffer *leaf;
 749	const u32 csum_size = fs_info->csum_size;
 750	u64 csum_end;
 751	u64 end_byte = bytenr + len;
 752	u32 blocksize_bits = fs_info->sectorsize_bits;
 753
 754	leaf = path->nodes[0];
 755	csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size;
 756	csum_end <<= blocksize_bits;
 757	csum_end += key->offset;
 758
 759	if (key->offset < bytenr && csum_end <= end_byte) {
 760		/*
 761		 *         [ bytenr - len ]
 762		 *         [   ]
 763		 *   [csum     ]
 764		 *   A simple truncate off the end of the item
 765		 */
 766		u32 new_size = (bytenr - key->offset) >> blocksize_bits;
 767		new_size *= csum_size;
 768		btrfs_truncate_item(path, new_size, 1);
 769	} else if (key->offset >= bytenr && csum_end > end_byte &&
 770		   end_byte > key->offset) {
 771		/*
 772		 *         [ bytenr - len ]
 773		 *                 [ ]
 774		 *                 [csum     ]
 775		 * we need to truncate from the beginning of the csum
 776		 */
 777		u32 new_size = (csum_end - end_byte) >> blocksize_bits;
 778		new_size *= csum_size;
 779
 780		btrfs_truncate_item(path, new_size, 0);
 781
 782		key->offset = end_byte;
 783		btrfs_set_item_key_safe(fs_info, path, key);
 784	} else {
 785		BUG();
 786	}
 787}
 788
 789/*
 790 * deletes the csum items from the csum tree for a given
 791 * range of bytes.
 792 */
 793int btrfs_del_csums(struct btrfs_trans_handle *trans,
 794		    struct btrfs_root *root, u64 bytenr, u64 len)
 795{
 796	struct btrfs_fs_info *fs_info = trans->fs_info;
 797	struct btrfs_path *path;
 798	struct btrfs_key key;
 799	u64 end_byte = bytenr + len;
 800	u64 csum_end;
 801	struct extent_buffer *leaf;
 802	int ret = 0;
 803	const u32 csum_size = fs_info->csum_size;
 804	u32 blocksize_bits = fs_info->sectorsize_bits;
 805
 806	ASSERT(root == fs_info->csum_root ||
 807	       root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
 808
 809	path = btrfs_alloc_path();
 810	if (!path)
 811		return -ENOMEM;
 812
 813	while (1) {
 814		key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 815		key.offset = end_byte - 1;
 816		key.type = BTRFS_EXTENT_CSUM_KEY;
 817
 
 818		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 819		if (ret > 0) {
 820			ret = 0;
 821			if (path->slots[0] == 0)
 822				break;
 823			path->slots[0]--;
 824		} else if (ret < 0) {
 825			break;
 826		}
 827
 828		leaf = path->nodes[0];
 829		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 830
 831		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
 832		    key.type != BTRFS_EXTENT_CSUM_KEY) {
 833			break;
 834		}
 835
 836		if (key.offset >= end_byte)
 837			break;
 838
 839		csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size;
 840		csum_end <<= blocksize_bits;
 841		csum_end += key.offset;
 842
 843		/* this csum ends before we start, we're done */
 844		if (csum_end <= bytenr)
 845			break;
 846
 847		/* delete the entire item, it is inside our range */
 848		if (key.offset >= bytenr && csum_end <= end_byte) {
 849			int del_nr = 1;
 850
 851			/*
 852			 * Check how many csum items preceding this one in this
 853			 * leaf correspond to our range and then delete them all
 854			 * at once.
 855			 */
 856			if (key.offset > bytenr && path->slots[0] > 0) {
 857				int slot = path->slots[0] - 1;
 858
 859				while (slot >= 0) {
 860					struct btrfs_key pk;
 861
 862					btrfs_item_key_to_cpu(leaf, &pk, slot);
 863					if (pk.offset < bytenr ||
 864					    pk.type != BTRFS_EXTENT_CSUM_KEY ||
 865					    pk.objectid !=
 866					    BTRFS_EXTENT_CSUM_OBJECTID)
 867						break;
 868					path->slots[0] = slot;
 869					del_nr++;
 870					key.offset = pk.offset;
 871					slot--;
 872				}
 873			}
 874			ret = btrfs_del_items(trans, root, path,
 875					      path->slots[0], del_nr);
 876			if (ret)
 877				break;
 878			if (key.offset == bytenr)
 879				break;
 880		} else if (key.offset < bytenr && csum_end > end_byte) {
 881			unsigned long offset;
 882			unsigned long shift_len;
 883			unsigned long item_offset;
 884			/*
 885			 *        [ bytenr - len ]
 886			 *     [csum                ]
 887			 *
 888			 * Our bytes are in the middle of the csum,
 889			 * we need to split this item and insert a new one.
 890			 *
 891			 * But we can't drop the path because the
 892			 * csum could change, get removed, extended etc.
 893			 *
 894			 * The trick here is the max size of a csum item leaves
 895			 * enough room in the tree block for a single
 896			 * item header.  So, we split the item in place,
 897			 * adding a new header pointing to the existing
 898			 * bytes.  Then we loop around again and we have
 899			 * a nicely formed csum item that we can neatly
 900			 * truncate.
 901			 */
 902			offset = (bytenr - key.offset) >> blocksize_bits;
 903			offset *= csum_size;
 904
 905			shift_len = (len >> blocksize_bits) * csum_size;
 906
 907			item_offset = btrfs_item_ptr_offset(leaf,
 908							    path->slots[0]);
 909
 910			memzero_extent_buffer(leaf, item_offset + offset,
 911					     shift_len);
 912			key.offset = bytenr;
 913
 914			/*
 915			 * btrfs_split_item returns -EAGAIN when the
 916			 * item changed size or key
 917			 */
 918			ret = btrfs_split_item(trans, root, path, &key, offset);
 919			if (ret && ret != -EAGAIN) {
 920				btrfs_abort_transaction(trans, ret);
 921				break;
 922			}
 923			ret = 0;
 924
 925			key.offset = end_byte - 1;
 926		} else {
 927			truncate_one_csum(fs_info, path, &key, bytenr, len);
 928			if (key.offset < bytenr)
 929				break;
 930		}
 931		btrfs_release_path(path);
 932	}
 
 
 933	btrfs_free_path(path);
 934	return ret;
 935}
 936
 937static int find_next_csum_offset(struct btrfs_root *root,
 938				 struct btrfs_path *path,
 939				 u64 *next_offset)
 940{
 941	const u32 nritems = btrfs_header_nritems(path->nodes[0]);
 942	struct btrfs_key found_key;
 943	int slot = path->slots[0] + 1;
 944	int ret;
 945
 946	if (nritems == 0 || slot >= nritems) {
 947		ret = btrfs_next_leaf(root, path);
 948		if (ret < 0) {
 949			return ret;
 950		} else if (ret > 0) {
 951			*next_offset = (u64)-1;
 952			return 0;
 953		}
 954		slot = path->slots[0];
 955	}
 956
 957	btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
 958
 959	if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
 960	    found_key.type != BTRFS_EXTENT_CSUM_KEY)
 961		*next_offset = (u64)-1;
 962	else
 963		*next_offset = found_key.offset;
 964
 965	return 0;
 966}
 967
 968int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
 969			   struct btrfs_root *root,
 970			   struct btrfs_ordered_sum *sums)
 971{
 972	struct btrfs_fs_info *fs_info = root->fs_info;
 973	struct btrfs_key file_key;
 974	struct btrfs_key found_key;
 975	struct btrfs_path *path;
 976	struct btrfs_csum_item *item;
 977	struct btrfs_csum_item *item_end;
 978	struct extent_buffer *leaf = NULL;
 979	u64 next_offset;
 980	u64 total_bytes = 0;
 981	u64 csum_offset;
 982	u64 bytenr;
 
 983	u32 ins_size;
 984	int index = 0;
 985	int found_next;
 986	int ret;
 987	const u32 csum_size = fs_info->csum_size;
 988
 989	path = btrfs_alloc_path();
 990	if (!path)
 991		return -ENOMEM;
 992again:
 993	next_offset = (u64)-1;
 994	found_next = 0;
 995	bytenr = sums->bytenr + total_bytes;
 996	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 997	file_key.offset = bytenr;
 998	file_key.type = BTRFS_EXTENT_CSUM_KEY;
 999
1000	item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
1001	if (!IS_ERR(item)) {
1002		ret = 0;
1003		leaf = path->nodes[0];
1004		item_end = btrfs_item_ptr(leaf, path->slots[0],
1005					  struct btrfs_csum_item);
1006		item_end = (struct btrfs_csum_item *)((char *)item_end +
1007			   btrfs_item_size_nr(leaf, path->slots[0]));
1008		goto found;
1009	}
1010	ret = PTR_ERR(item);
1011	if (ret != -EFBIG && ret != -ENOENT)
1012		goto out;
1013
1014	if (ret == -EFBIG) {
1015		u32 item_size;
1016		/* we found one, but it isn't big enough yet */
1017		leaf = path->nodes[0];
1018		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1019		if ((item_size / csum_size) >=
1020		    MAX_CSUM_ITEMS(fs_info, csum_size)) {
1021			/* already at max size, make a new one */
1022			goto insert;
1023		}
1024	} else {
1025		/* We didn't find a csum item, insert one. */
1026		ret = find_next_csum_offset(root, path, &next_offset);
1027		if (ret < 0)
1028			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1029		found_next = 1;
1030		goto insert;
1031	}
1032
1033	/*
1034	 * At this point, we know the tree has a checksum item that ends at an
1035	 * offset matching the start of the checksum range we want to insert.
1036	 * We try to extend that item as much as possible and then add as many
1037	 * checksums to it as they fit.
1038	 *
1039	 * First check if the leaf has enough free space for at least one
1040	 * checksum. If it has go directly to the item extension code, otherwise
1041	 * release the path and do a search for insertion before the extension.
1042	 */
1043	if (btrfs_leaf_free_space(leaf) >= csum_size) {
1044		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1045		csum_offset = (bytenr - found_key.offset) >>
1046			fs_info->sectorsize_bits;
1047		goto extend_csum;
1048	}
1049
1050	btrfs_release_path(path);
1051	path->search_for_extension = 1;
1052	ret = btrfs_search_slot(trans, root, &file_key, path,
1053				csum_size, 1);
1054	path->search_for_extension = 0;
1055	if (ret < 0)
1056		goto out;
1057
1058	if (ret > 0) {
1059		if (path->slots[0] == 0)
1060			goto insert;
1061		path->slots[0]--;
1062	}
1063
1064	leaf = path->nodes[0];
1065	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1066	csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits;
 
1067
1068	if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
1069	    found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1070	    csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
1071		goto insert;
1072	}
1073
1074extend_csum:
1075	if (csum_offset == btrfs_item_size_nr(leaf, path->slots[0]) /
1076	    csum_size) {
1077		int extend_nr;
1078		u64 tmp;
1079		u32 diff;
 
1080
 
 
 
 
 
 
1081		tmp = sums->len - total_bytes;
1082		tmp >>= fs_info->sectorsize_bits;
1083		WARN_ON(tmp < 1);
1084		extend_nr = max_t(int, 1, tmp);
1085
1086		/*
1087		 * A log tree can already have checksum items with a subset of
1088		 * the checksums we are trying to log. This can happen after
1089		 * doing a sequence of partial writes into prealloc extents and
1090		 * fsyncs in between, with a full fsync logging a larger subrange
1091		 * of an extent for which a previous fast fsync logged a smaller
1092		 * subrange. And this happens in particular due to merging file
1093		 * extent items when we complete an ordered extent for a range
1094		 * covered by a prealloc extent - this is done at
1095		 * btrfs_mark_extent_written().
1096		 *
1097		 * So if we try to extend the previous checksum item, which has
1098		 * a range that ends at the start of the range we want to insert,
1099		 * make sure we don't extend beyond the start offset of the next
1100		 * checksum item. If we are at the last item in the leaf, then
1101		 * forget the optimization of extending and add a new checksum
1102		 * item - it is not worth the complexity of releasing the path,
1103		 * getting the first key for the next leaf, repeat the btree
1104		 * search, etc, because log trees are temporary anyway and it
1105		 * would only save a few bytes of leaf space.
1106		 */
1107		if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1108			if (path->slots[0] + 1 >=
1109			    btrfs_header_nritems(path->nodes[0])) {
1110				ret = find_next_csum_offset(root, path, &next_offset);
1111				if (ret < 0)
1112					goto out;
1113				found_next = 1;
1114				goto insert;
1115			}
1116
1117			ret = find_next_csum_offset(root, path, &next_offset);
1118			if (ret < 0)
1119				goto out;
1120
1121			tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits;
1122			if (tmp <= INT_MAX)
1123				extend_nr = min_t(int, extend_nr, tmp);
1124		}
1125
 
1126		diff = (csum_offset + extend_nr) * csum_size;
1127		diff = min(diff,
1128			   MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
1129
1130		diff = diff - btrfs_item_size_nr(leaf, path->slots[0]);
1131		diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
1132		diff /= csum_size;
1133		diff *= csum_size;
1134
1135		btrfs_extend_item(path, diff);
1136		ret = 0;
1137		goto csum;
1138	}
1139
1140insert:
1141	btrfs_release_path(path);
1142	csum_offset = 0;
1143	if (found_next) {
1144		u64 tmp;
1145
1146		tmp = sums->len - total_bytes;
1147		tmp >>= fs_info->sectorsize_bits;
1148		tmp = min(tmp, (next_offset - file_key.offset) >>
1149					 fs_info->sectorsize_bits);
1150
1151		tmp = max_t(u64, 1, tmp);
1152		tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
1153		ins_size = csum_size * tmp;
1154	} else {
1155		ins_size = csum_size;
1156	}
 
1157	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
1158				      ins_size);
 
1159	if (ret < 0)
1160		goto out;
1161	if (WARN_ON(ret != 0))
1162		goto out;
1163	leaf = path->nodes[0];
1164csum:
1165	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
1166	item_end = (struct btrfs_csum_item *)((unsigned char *)item +
1167				      btrfs_item_size_nr(leaf, path->slots[0]));
1168	item = (struct btrfs_csum_item *)((unsigned char *)item +
1169					  csum_offset * csum_size);
1170found:
1171	ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits;
 
1172	ins_size *= csum_size;
1173	ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
1174			      ins_size);
1175	write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
1176			    ins_size);
1177
1178	index += ins_size;
1179	ins_size /= csum_size;
1180	total_bytes += ins_size * fs_info->sectorsize;
1181
1182	btrfs_mark_buffer_dirty(path->nodes[0]);
1183	if (total_bytes < sums->len) {
1184		btrfs_release_path(path);
1185		cond_resched();
1186		goto again;
1187	}
1188out:
1189	btrfs_free_path(path);
1190	return ret;
 
 
 
1191}
1192
1193void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
1194				     const struct btrfs_path *path,
1195				     struct btrfs_file_extent_item *fi,
1196				     const bool new_inline,
1197				     struct extent_map *em)
1198{
1199	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1200	struct btrfs_root *root = inode->root;
1201	struct extent_buffer *leaf = path->nodes[0];
1202	const int slot = path->slots[0];
1203	struct btrfs_key key;
1204	u64 extent_start, extent_end;
1205	u64 bytenr;
1206	u8 type = btrfs_file_extent_type(leaf, fi);
1207	int compress_type = btrfs_file_extent_compression(leaf, fi);
1208
 
1209	btrfs_item_key_to_cpu(leaf, &key, slot);
1210	extent_start = key.offset;
1211	extent_end = btrfs_file_extent_end(path);
 
 
 
 
 
 
 
 
 
 
 
1212	em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1213	if (type == BTRFS_FILE_EXTENT_REG ||
1214	    type == BTRFS_FILE_EXTENT_PREALLOC) {
1215		em->start = extent_start;
1216		em->len = extent_end - extent_start;
1217		em->orig_start = extent_start -
1218			btrfs_file_extent_offset(leaf, fi);
1219		em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
1220		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1221		if (bytenr == 0) {
1222			em->block_start = EXTENT_MAP_HOLE;
1223			return;
1224		}
1225		if (compress_type != BTRFS_COMPRESS_NONE) {
1226			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1227			em->compress_type = compress_type;
1228			em->block_start = bytenr;
1229			em->block_len = em->orig_block_len;
1230		} else {
1231			bytenr += btrfs_file_extent_offset(leaf, fi);
1232			em->block_start = bytenr;
1233			em->block_len = em->len;
1234			if (type == BTRFS_FILE_EXTENT_PREALLOC)
1235				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
1236		}
1237	} else if (type == BTRFS_FILE_EXTENT_INLINE) {
1238		em->block_start = EXTENT_MAP_INLINE;
1239		em->start = extent_start;
1240		em->len = extent_end - extent_start;
1241		/*
1242		 * Initialize orig_start and block_len with the same values
1243		 * as in inode.c:btrfs_get_extent().
1244		 */
1245		em->orig_start = EXTENT_MAP_HOLE;
1246		em->block_len = (u64)-1;
1247		if (!new_inline && compress_type != BTRFS_COMPRESS_NONE) {
1248			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1249			em->compress_type = compress_type;
1250		}
1251	} else {
1252		btrfs_err(fs_info,
1253			  "unknown file extent item type %d, inode %llu, offset %llu, "
1254			  "root %llu", type, btrfs_ino(inode), extent_start,
1255			  root->root_key.objectid);
1256	}
1257}
1258
1259/*
1260 * Returns the end offset (non inclusive) of the file extent item the given path
1261 * points to. If it points to an inline extent, the returned offset is rounded
1262 * up to the sector size.
1263 */
1264u64 btrfs_file_extent_end(const struct btrfs_path *path)
1265{
1266	const struct extent_buffer *leaf = path->nodes[0];
1267	const int slot = path->slots[0];
1268	struct btrfs_file_extent_item *fi;
1269	struct btrfs_key key;
1270	u64 end;
1271
1272	btrfs_item_key_to_cpu(leaf, &key, slot);
1273	ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
1274	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1275
1276	if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
1277		end = btrfs_file_extent_ram_bytes(leaf, fi);
1278		end = ALIGN(key.offset + end, leaf->fs_info->sectorsize);
1279	} else {
1280		end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1281	}
1282
1283	return end;
1284}