Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Volume Management Device driver
  4 * Copyright (c) 2015, Intel Corporation.
  5 */
  6
  7#include <linux/device.h>
  8#include <linux/interrupt.h>
  9#include <linux/irq.h>
 10#include <linux/kernel.h>
 11#include <linux/module.h>
 12#include <linux/msi.h>
 13#include <linux/pci.h>
 14#include <linux/srcu.h>
 15#include <linux/rculist.h>
 16#include <linux/rcupdate.h>
 17
 18#include <asm/irqdomain.h>
 19#include <asm/device.h>
 20#include <asm/msi.h>
 21#include <asm/msidef.h>
 22
 23#define VMD_CFGBAR	0
 24#define VMD_MEMBAR1	2
 25#define VMD_MEMBAR2	4
 26
 27#define PCI_REG_VMCAP		0x40
 28#define BUS_RESTRICT_CAP(vmcap)	(vmcap & 0x1)
 29#define PCI_REG_VMCONFIG	0x44
 30#define BUS_RESTRICT_CFG(vmcfg)	((vmcfg >> 8) & 0x3)
 31#define PCI_REG_VMLOCK		0x70
 32#define MB2_SHADOW_EN(vmlock)	(vmlock & 0x2)
 33
 34#define MB2_SHADOW_OFFSET	0x2000
 35#define MB2_SHADOW_SIZE		16
 36
 37enum vmd_features {
 38	/*
 39	 * Device may contain registers which hint the physical location of the
 40	 * membars, in order to allow proper address translation during
 41	 * resource assignment to enable guest virtualization
 42	 */
 43	VMD_FEAT_HAS_MEMBAR_SHADOW	= (1 << 0),
 44
 45	/*
 46	 * Device may provide root port configuration information which limits
 47	 * bus numbering
 48	 */
 49	VMD_FEAT_HAS_BUS_RESTRICTIONS	= (1 << 1),
 
 
 
 
 
 
 50};
 51
 52/*
 53 * Lock for manipulating VMD IRQ lists.
 54 */
 55static DEFINE_RAW_SPINLOCK(list_lock);
 56
 57/**
 58 * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
 59 * @node:	list item for parent traversal.
 60 * @irq:	back pointer to parent.
 61 * @enabled:	true if driver enabled IRQ
 62 * @virq:	the virtual IRQ value provided to the requesting driver.
 63 *
 64 * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
 65 * a VMD IRQ using this structure.
 66 */
 67struct vmd_irq {
 68	struct list_head	node;
 69	struct vmd_irq_list	*irq;
 70	bool			enabled;
 71	unsigned int		virq;
 72};
 73
 74/**
 75 * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
 76 * @irq_list:	the list of irq's the VMD one demuxes to.
 77 * @srcu:	SRCU struct for local synchronization.
 78 * @count:	number of child IRQs assigned to this vector; used to track
 79 *		sharing.
 80 */
 81struct vmd_irq_list {
 82	struct list_head	irq_list;
 83	struct srcu_struct	srcu;
 84	unsigned int		count;
 85};
 86
 87struct vmd_dev {
 88	struct pci_dev		*dev;
 89
 90	spinlock_t		cfg_lock;
 91	char __iomem		*cfgbar;
 92
 93	int msix_count;
 94	struct vmd_irq_list	*irqs;
 95
 96	struct pci_sysdata	sysdata;
 97	struct resource		resources[3];
 98	struct irq_domain	*irq_domain;
 99	struct pci_bus		*bus;
100	u8			busn_start;
101
102	struct dma_map_ops	dma_ops;
103	struct dma_domain	dma_domain;
104};
105
106static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
107{
108	return container_of(bus->sysdata, struct vmd_dev, sysdata);
109}
110
111static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
112					   struct vmd_irq_list *irqs)
113{
114	return irqs - vmd->irqs;
115}
116
117/*
118 * Drivers managing a device in a VMD domain allocate their own IRQs as before,
119 * but the MSI entry for the hardware it's driving will be programmed with a
120 * destination ID for the VMD MSI-X table.  The VMD muxes interrupts in its
121 * domain into one of its own, and the VMD driver de-muxes these for the
122 * handlers sharing that VMD IRQ.  The vmd irq_domain provides the operations
123 * and irq_chip to set this up.
124 */
125static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
126{
127	struct vmd_irq *vmdirq = data->chip_data;
128	struct vmd_irq_list *irq = vmdirq->irq;
129	struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
130
131	msg->address_hi = MSI_ADDR_BASE_HI;
132	msg->address_lo = MSI_ADDR_BASE_LO |
133			  MSI_ADDR_DEST_ID(index_from_irqs(vmd, irq));
134	msg->data = 0;
135}
136
137/*
138 * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
139 */
140static void vmd_irq_enable(struct irq_data *data)
141{
142	struct vmd_irq *vmdirq = data->chip_data;
143	unsigned long flags;
144
145	raw_spin_lock_irqsave(&list_lock, flags);
146	WARN_ON(vmdirq->enabled);
147	list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
148	vmdirq->enabled = true;
149	raw_spin_unlock_irqrestore(&list_lock, flags);
150
151	data->chip->irq_unmask(data);
152}
153
154static void vmd_irq_disable(struct irq_data *data)
155{
156	struct vmd_irq *vmdirq = data->chip_data;
157	unsigned long flags;
158
159	data->chip->irq_mask(data);
160
161	raw_spin_lock_irqsave(&list_lock, flags);
162	if (vmdirq->enabled) {
163		list_del_rcu(&vmdirq->node);
164		vmdirq->enabled = false;
165	}
166	raw_spin_unlock_irqrestore(&list_lock, flags);
167}
168
169/*
170 * XXX: Stubbed until we develop acceptable way to not create conflicts with
171 * other devices sharing the same vector.
172 */
173static int vmd_irq_set_affinity(struct irq_data *data,
174				const struct cpumask *dest, bool force)
175{
176	return -EINVAL;
177}
178
179static struct irq_chip vmd_msi_controller = {
180	.name			= "VMD-MSI",
181	.irq_enable		= vmd_irq_enable,
182	.irq_disable		= vmd_irq_disable,
183	.irq_compose_msi_msg	= vmd_compose_msi_msg,
184	.irq_set_affinity	= vmd_irq_set_affinity,
185};
186
187static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
188				     msi_alloc_info_t *arg)
189{
190	return 0;
191}
192
193/*
194 * XXX: We can be even smarter selecting the best IRQ once we solve the
195 * affinity problem.
196 */
197static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
198{
199	int i, best = 1;
200	unsigned long flags;
201
202	if (vmd->msix_count == 1)
203		return &vmd->irqs[0];
204
205	/*
206	 * White list for fast-interrupt handlers. All others will share the
207	 * "slow" interrupt vector.
208	 */
209	switch (msi_desc_to_pci_dev(desc)->class) {
210	case PCI_CLASS_STORAGE_EXPRESS:
211		break;
212	default:
213		return &vmd->irqs[0];
214	}
215
216	raw_spin_lock_irqsave(&list_lock, flags);
217	for (i = 1; i < vmd->msix_count; i++)
218		if (vmd->irqs[i].count < vmd->irqs[best].count)
219			best = i;
220	vmd->irqs[best].count++;
221	raw_spin_unlock_irqrestore(&list_lock, flags);
222
223	return &vmd->irqs[best];
224}
225
226static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
227			unsigned int virq, irq_hw_number_t hwirq,
228			msi_alloc_info_t *arg)
229{
230	struct msi_desc *desc = arg->desc;
231	struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
232	struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
233	unsigned int index, vector;
234
235	if (!vmdirq)
236		return -ENOMEM;
237
238	INIT_LIST_HEAD(&vmdirq->node);
239	vmdirq->irq = vmd_next_irq(vmd, desc);
240	vmdirq->virq = virq;
241	index = index_from_irqs(vmd, vmdirq->irq);
242	vector = pci_irq_vector(vmd->dev, index);
243
244	irq_domain_set_info(domain, virq, vector, info->chip, vmdirq,
245			    handle_untracked_irq, vmd, NULL);
246	return 0;
247}
248
249static void vmd_msi_free(struct irq_domain *domain,
250			struct msi_domain_info *info, unsigned int virq)
251{
252	struct vmd_irq *vmdirq = irq_get_chip_data(virq);
253	unsigned long flags;
254
255	synchronize_srcu(&vmdirq->irq->srcu);
256
257	/* XXX: Potential optimization to rebalance */
258	raw_spin_lock_irqsave(&list_lock, flags);
259	vmdirq->irq->count--;
260	raw_spin_unlock_irqrestore(&list_lock, flags);
261
262	kfree(vmdirq);
263}
264
265static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
266			   int nvec, msi_alloc_info_t *arg)
267{
268	struct pci_dev *pdev = to_pci_dev(dev);
269	struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
270
271	if (nvec > vmd->msix_count)
272		return vmd->msix_count;
273
274	memset(arg, 0, sizeof(*arg));
275	return 0;
276}
277
278static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
279{
280	arg->desc = desc;
281}
282
283static struct msi_domain_ops vmd_msi_domain_ops = {
284	.get_hwirq	= vmd_get_hwirq,
285	.msi_init	= vmd_msi_init,
286	.msi_free	= vmd_msi_free,
287	.msi_prepare	= vmd_msi_prepare,
288	.set_desc	= vmd_set_desc,
289};
290
291static struct msi_domain_info vmd_msi_domain_info = {
292	.flags		= MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
293			  MSI_FLAG_PCI_MSIX,
294	.ops		= &vmd_msi_domain_ops,
295	.chip		= &vmd_msi_controller,
296};
297
298/*
299 * VMD replaces the requester ID with its own.  DMA mappings for devices in a
300 * VMD domain need to be mapped for the VMD, not the device requiring
301 * the mapping.
302 */
303static struct device *to_vmd_dev(struct device *dev)
304{
305	struct pci_dev *pdev = to_pci_dev(dev);
306	struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
307
308	return &vmd->dev->dev;
309}
310
311static void *vmd_alloc(struct device *dev, size_t size, dma_addr_t *addr,
312		       gfp_t flag, unsigned long attrs)
313{
314	return dma_alloc_attrs(to_vmd_dev(dev), size, addr, flag, attrs);
315}
316
317static void vmd_free(struct device *dev, size_t size, void *vaddr,
318		     dma_addr_t addr, unsigned long attrs)
319{
320	return dma_free_attrs(to_vmd_dev(dev), size, vaddr, addr, attrs);
321}
322
323static int vmd_mmap(struct device *dev, struct vm_area_struct *vma,
324		    void *cpu_addr, dma_addr_t addr, size_t size,
325		    unsigned long attrs)
326{
327	return dma_mmap_attrs(to_vmd_dev(dev), vma, cpu_addr, addr, size,
328			attrs);
329}
330
331static int vmd_get_sgtable(struct device *dev, struct sg_table *sgt,
332			   void *cpu_addr, dma_addr_t addr, size_t size,
333			   unsigned long attrs)
334{
335	return dma_get_sgtable_attrs(to_vmd_dev(dev), sgt, cpu_addr, addr, size,
336			attrs);
337}
338
339static dma_addr_t vmd_map_page(struct device *dev, struct page *page,
340			       unsigned long offset, size_t size,
341			       enum dma_data_direction dir,
342			       unsigned long attrs)
343{
344	return dma_map_page_attrs(to_vmd_dev(dev), page, offset, size, dir,
345			attrs);
346}
347
348static void vmd_unmap_page(struct device *dev, dma_addr_t addr, size_t size,
349			   enum dma_data_direction dir, unsigned long attrs)
350{
351	dma_unmap_page_attrs(to_vmd_dev(dev), addr, size, dir, attrs);
352}
353
354static int vmd_map_sg(struct device *dev, struct scatterlist *sg, int nents,
355		      enum dma_data_direction dir, unsigned long attrs)
356{
357	return dma_map_sg_attrs(to_vmd_dev(dev), sg, nents, dir, attrs);
358}
359
360static void vmd_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
361			 enum dma_data_direction dir, unsigned long attrs)
362{
363	dma_unmap_sg_attrs(to_vmd_dev(dev), sg, nents, dir, attrs);
364}
365
366static void vmd_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
367				    size_t size, enum dma_data_direction dir)
368{
369	dma_sync_single_for_cpu(to_vmd_dev(dev), addr, size, dir);
370}
371
372static void vmd_sync_single_for_device(struct device *dev, dma_addr_t addr,
373				       size_t size, enum dma_data_direction dir)
374{
375	dma_sync_single_for_device(to_vmd_dev(dev), addr, size, dir);
376}
377
378static void vmd_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
379				int nents, enum dma_data_direction dir)
380{
381	dma_sync_sg_for_cpu(to_vmd_dev(dev), sg, nents, dir);
382}
383
384static void vmd_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
385				   int nents, enum dma_data_direction dir)
386{
387	dma_sync_sg_for_device(to_vmd_dev(dev), sg, nents, dir);
388}
389
390static int vmd_dma_supported(struct device *dev, u64 mask)
391{
392	return dma_supported(to_vmd_dev(dev), mask);
393}
394
395static u64 vmd_get_required_mask(struct device *dev)
396{
397	return dma_get_required_mask(to_vmd_dev(dev));
398}
399
400static void vmd_teardown_dma_ops(struct vmd_dev *vmd)
401{
402	struct dma_domain *domain = &vmd->dma_domain;
403
404	if (get_dma_ops(&vmd->dev->dev))
405		del_dma_domain(domain);
406}
407
408#define ASSIGN_VMD_DMA_OPS(source, dest, fn)	\
409	do {					\
410		if (source->fn)			\
411			dest->fn = vmd_##fn;	\
412	} while (0)
413
414static void vmd_setup_dma_ops(struct vmd_dev *vmd)
415{
416	const struct dma_map_ops *source = get_dma_ops(&vmd->dev->dev);
417	struct dma_map_ops *dest = &vmd->dma_ops;
418	struct dma_domain *domain = &vmd->dma_domain;
419
420	domain->domain_nr = vmd->sysdata.domain;
421	domain->dma_ops = dest;
422
423	if (!source)
424		return;
425	ASSIGN_VMD_DMA_OPS(source, dest, alloc);
426	ASSIGN_VMD_DMA_OPS(source, dest, free);
427	ASSIGN_VMD_DMA_OPS(source, dest, mmap);
428	ASSIGN_VMD_DMA_OPS(source, dest, get_sgtable);
429	ASSIGN_VMD_DMA_OPS(source, dest, map_page);
430	ASSIGN_VMD_DMA_OPS(source, dest, unmap_page);
431	ASSIGN_VMD_DMA_OPS(source, dest, map_sg);
432	ASSIGN_VMD_DMA_OPS(source, dest, unmap_sg);
433	ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_cpu);
434	ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_device);
435	ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_cpu);
436	ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_device);
437	ASSIGN_VMD_DMA_OPS(source, dest, dma_supported);
438	ASSIGN_VMD_DMA_OPS(source, dest, get_required_mask);
439	add_dma_domain(domain);
440}
441#undef ASSIGN_VMD_DMA_OPS
442
443static char __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
444				  unsigned int devfn, int reg, int len)
445{
446	char __iomem *addr = vmd->cfgbar +
447			     ((bus->number - vmd->busn_start) << 20) +
448			     (devfn << 12) + reg;
449
450	if ((addr - vmd->cfgbar) + len >=
451	    resource_size(&vmd->dev->resource[VMD_CFGBAR]))
452		return NULL;
453
454	return addr;
455}
456
457/*
458 * CPU may deadlock if config space is not serialized on some versions of this
459 * hardware, so all config space access is done under a spinlock.
460 */
461static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
462			int len, u32 *value)
463{
464	struct vmd_dev *vmd = vmd_from_bus(bus);
465	char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
466	unsigned long flags;
467	int ret = 0;
468
469	if (!addr)
470		return -EFAULT;
471
472	spin_lock_irqsave(&vmd->cfg_lock, flags);
473	switch (len) {
474	case 1:
475		*value = readb(addr);
476		break;
477	case 2:
478		*value = readw(addr);
479		break;
480	case 4:
481		*value = readl(addr);
482		break;
483	default:
484		ret = -EINVAL;
485		break;
486	}
487	spin_unlock_irqrestore(&vmd->cfg_lock, flags);
488	return ret;
489}
490
491/*
492 * VMD h/w converts non-posted config writes to posted memory writes. The
493 * read-back in this function forces the completion so it returns only after
494 * the config space was written, as expected.
495 */
496static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
497			 int len, u32 value)
498{
499	struct vmd_dev *vmd = vmd_from_bus(bus);
500	char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
501	unsigned long flags;
502	int ret = 0;
503
504	if (!addr)
505		return -EFAULT;
506
507	spin_lock_irqsave(&vmd->cfg_lock, flags);
508	switch (len) {
509	case 1:
510		writeb(value, addr);
511		readb(addr);
512		break;
513	case 2:
514		writew(value, addr);
515		readw(addr);
516		break;
517	case 4:
518		writel(value, addr);
519		readl(addr);
520		break;
521	default:
522		ret = -EINVAL;
523		break;
524	}
525	spin_unlock_irqrestore(&vmd->cfg_lock, flags);
526	return ret;
527}
528
529static struct pci_ops vmd_ops = {
530	.read		= vmd_pci_read,
531	.write		= vmd_pci_write,
532};
533
534static void vmd_attach_resources(struct vmd_dev *vmd)
535{
536	vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
537	vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
538}
539
540static void vmd_detach_resources(struct vmd_dev *vmd)
541{
542	vmd->dev->resource[VMD_MEMBAR1].child = NULL;
543	vmd->dev->resource[VMD_MEMBAR2].child = NULL;
544}
545
546/*
547 * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
548 * Per ACPI r6.0, sec 6.5.6,  _SEG returns an integer, of which the lower
549 * 16 bits are the PCI Segment Group (domain) number.  Other bits are
550 * currently reserved.
551 */
552static int vmd_find_free_domain(void)
553{
554	int domain = 0xffff;
555	struct pci_bus *bus = NULL;
556
557	while ((bus = pci_find_next_bus(bus)) != NULL)
558		domain = max_t(int, domain, pci_domain_nr(bus));
559	return domain + 1;
560}
561
562static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
563{
564	struct pci_sysdata *sd = &vmd->sysdata;
565	struct fwnode_handle *fn;
566	struct resource *res;
567	u32 upper_bits;
568	unsigned long flags;
569	LIST_HEAD(resources);
570	resource_size_t offset[2] = {0};
571	resource_size_t membar2_offset = 0x2000;
572	struct pci_bus *child;
573
574	/*
575	 * Shadow registers may exist in certain VMD device ids which allow
576	 * guests to correctly assign host physical addresses to the root ports
577	 * and child devices. These registers will either return the host value
578	 * or 0, depending on an enable bit in the VMD device.
579	 */
580	if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
581		u32 vmlock;
582		int ret;
583
584		membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE;
585		ret = pci_read_config_dword(vmd->dev, PCI_REG_VMLOCK, &vmlock);
586		if (ret || vmlock == ~0)
587			return -ENODEV;
588
589		if (MB2_SHADOW_EN(vmlock)) {
590			void __iomem *membar2;
591
592			membar2 = pci_iomap(vmd->dev, VMD_MEMBAR2, 0);
593			if (!membar2)
594				return -ENOMEM;
595			offset[0] = vmd->dev->resource[VMD_MEMBAR1].start -
596					readq(membar2 + MB2_SHADOW_OFFSET);
 
597			offset[1] = vmd->dev->resource[VMD_MEMBAR2].start -
598					readq(membar2 + MB2_SHADOW_OFFSET + 8);
 
599			pci_iounmap(vmd->dev, membar2);
600		}
601	}
602
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
603	/*
604	 * Certain VMD devices may have a root port configuration option which
605	 * limits the bus range to between 0-127 or 128-255
606	 */
607	if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
608		u32 vmcap, vmconfig;
609
610		pci_read_config_dword(vmd->dev, PCI_REG_VMCAP, &vmcap);
611		pci_read_config_dword(vmd->dev, PCI_REG_VMCONFIG, &vmconfig);
612		if (BUS_RESTRICT_CAP(vmcap) &&
613		    (BUS_RESTRICT_CFG(vmconfig) == 0x1))
614			vmd->busn_start = 128;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
615	}
616
617	res = &vmd->dev->resource[VMD_CFGBAR];
618	vmd->resources[0] = (struct resource) {
619		.name  = "VMD CFGBAR",
620		.start = vmd->busn_start,
621		.end   = vmd->busn_start + (resource_size(res) >> 20) - 1,
622		.flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
623	};
624
625	/*
626	 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
627	 * put 32-bit resources in the window.
628	 *
629	 * There's no hardware reason why a 64-bit window *couldn't*
630	 * contain a 32-bit resource, but pbus_size_mem() computes the
631	 * bridge window size assuming a 64-bit window will contain no
632	 * 32-bit resources.  __pci_assign_resource() enforces that
633	 * artificial restriction to make sure everything will fit.
634	 *
635	 * The only way we could use a 64-bit non-prefetchable MEMBAR is
636	 * if its address is <4GB so that we can convert it to a 32-bit
637	 * resource.  To be visible to the host OS, all VMD endpoints must
638	 * be initially configured by platform BIOS, which includes setting
639	 * up these resources.  We can assume the device is configured
640	 * according to the platform needs.
641	 */
642	res = &vmd->dev->resource[VMD_MEMBAR1];
643	upper_bits = upper_32_bits(res->end);
644	flags = res->flags & ~IORESOURCE_SIZEALIGN;
645	if (!upper_bits)
646		flags &= ~IORESOURCE_MEM_64;
647	vmd->resources[1] = (struct resource) {
648		.name  = "VMD MEMBAR1",
649		.start = res->start,
650		.end   = res->end,
651		.flags = flags,
652		.parent = res,
653	};
654
655	res = &vmd->dev->resource[VMD_MEMBAR2];
656	upper_bits = upper_32_bits(res->end);
657	flags = res->flags & ~IORESOURCE_SIZEALIGN;
658	if (!upper_bits)
659		flags &= ~IORESOURCE_MEM_64;
660	vmd->resources[2] = (struct resource) {
661		.name  = "VMD MEMBAR2",
662		.start = res->start + membar2_offset,
663		.end   = res->end,
664		.flags = flags,
665		.parent = res,
666	};
667
668	sd->vmd_domain = true;
669	sd->domain = vmd_find_free_domain();
670	if (sd->domain < 0)
671		return sd->domain;
672
673	sd->node = pcibus_to_node(vmd->dev->bus);
674
675	fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain);
676	if (!fn)
677		return -ENODEV;
678
679	vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info,
680						    x86_vector_domain);
681	irq_domain_free_fwnode(fn);
682	if (!vmd->irq_domain)
683		return -ENODEV;
 
684
685	pci_add_resource(&resources, &vmd->resources[0]);
686	pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
687	pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
688
689	vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start,
690				       &vmd_ops, sd, &resources);
691	if (!vmd->bus) {
692		pci_free_resource_list(&resources);
693		irq_domain_remove(vmd->irq_domain);
 
694		return -ENODEV;
695	}
696
697	vmd_attach_resources(vmd);
698	vmd_setup_dma_ops(vmd);
699	dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
700
701	pci_scan_child_bus(vmd->bus);
702	pci_assign_unassigned_bus_resources(vmd->bus);
703
704	/*
705	 * VMD root buses are virtual and don't return true on pci_is_pcie()
706	 * and will fail pcie_bus_configure_settings() early. It can instead be
707	 * run on each of the real root ports.
708	 */
709	list_for_each_entry(child, &vmd->bus->children, node)
710		pcie_bus_configure_settings(child);
711
712	pci_bus_add_devices(vmd->bus);
713
714	WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
715			       "domain"), "Can't create symlink to domain\n");
716	return 0;
717}
718
719static irqreturn_t vmd_irq(int irq, void *data)
720{
721	struct vmd_irq_list *irqs = data;
722	struct vmd_irq *vmdirq;
723	int idx;
724
725	idx = srcu_read_lock(&irqs->srcu);
726	list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
727		generic_handle_irq(vmdirq->virq);
728	srcu_read_unlock(&irqs->srcu, idx);
729
730	return IRQ_HANDLED;
731}
732
733static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
734{
735	struct vmd_dev *vmd;
736	int i, err;
737
738	if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
739		return -ENOMEM;
740
741	vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
742	if (!vmd)
743		return -ENOMEM;
744
745	vmd->dev = dev;
746	err = pcim_enable_device(dev);
747	if (err < 0)
748		return err;
749
750	vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
751	if (!vmd->cfgbar)
752		return -ENOMEM;
753
754	pci_set_master(dev);
755	if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
756	    dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32)))
757		return -ENODEV;
758
759	vmd->msix_count = pci_msix_vec_count(dev);
760	if (vmd->msix_count < 0)
761		return -ENODEV;
762
763	vmd->msix_count = pci_alloc_irq_vectors(dev, 1, vmd->msix_count,
764					PCI_IRQ_MSIX);
765	if (vmd->msix_count < 0)
766		return vmd->msix_count;
767
768	vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
769				 GFP_KERNEL);
770	if (!vmd->irqs)
771		return -ENOMEM;
772
773	for (i = 0; i < vmd->msix_count; i++) {
774		err = init_srcu_struct(&vmd->irqs[i].srcu);
775		if (err)
776			return err;
777
778		INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
779		err = devm_request_irq(&dev->dev, pci_irq_vector(dev, i),
780				       vmd_irq, IRQF_NO_THREAD,
781				       "vmd", &vmd->irqs[i]);
782		if (err)
783			return err;
784	}
785
786	spin_lock_init(&vmd->cfg_lock);
787	pci_set_drvdata(dev, vmd);
788	err = vmd_enable_domain(vmd, (unsigned long) id->driver_data);
789	if (err)
790		return err;
791
792	dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
793		 vmd->sysdata.domain);
794	return 0;
795}
796
797static void vmd_cleanup_srcu(struct vmd_dev *vmd)
798{
799	int i;
800
801	for (i = 0; i < vmd->msix_count; i++)
802		cleanup_srcu_struct(&vmd->irqs[i].srcu);
803}
804
805static void vmd_remove(struct pci_dev *dev)
806{
807	struct vmd_dev *vmd = pci_get_drvdata(dev);
 
808
809	sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
810	pci_stop_root_bus(vmd->bus);
811	pci_remove_root_bus(vmd->bus);
812	vmd_cleanup_srcu(vmd);
813	vmd_teardown_dma_ops(vmd);
814	vmd_detach_resources(vmd);
815	irq_domain_remove(vmd->irq_domain);
 
816}
817
818#ifdef CONFIG_PM_SLEEP
819static int vmd_suspend(struct device *dev)
820{
821	struct pci_dev *pdev = to_pci_dev(dev);
822	struct vmd_dev *vmd = pci_get_drvdata(pdev);
823	int i;
824
825	for (i = 0; i < vmd->msix_count; i++)
826                devm_free_irq(dev, pci_irq_vector(pdev, i), &vmd->irqs[i]);
827
828	pci_save_state(pdev);
829	return 0;
830}
831
832static int vmd_resume(struct device *dev)
833{
834	struct pci_dev *pdev = to_pci_dev(dev);
835	struct vmd_dev *vmd = pci_get_drvdata(pdev);
836	int err, i;
837
838	for (i = 0; i < vmd->msix_count; i++) {
839		err = devm_request_irq(dev, pci_irq_vector(pdev, i),
840				       vmd_irq, IRQF_NO_THREAD,
841				       "vmd", &vmd->irqs[i]);
842		if (err)
843			return err;
844	}
845
846	pci_restore_state(pdev);
847	return 0;
848}
849#endif
850static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
851
852static const struct pci_device_id vmd_ids[] = {
853	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),},
 
854	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
855		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
 
 
 
 
 
 
 
 
 
856				VMD_FEAT_HAS_BUS_RESTRICTIONS,},
857	{0,}
858};
859MODULE_DEVICE_TABLE(pci, vmd_ids);
860
861static struct pci_driver vmd_drv = {
862	.name		= "vmd",
863	.id_table	= vmd_ids,
864	.probe		= vmd_probe,
865	.remove		= vmd_remove,
866	.driver		= {
867		.pm	= &vmd_dev_pm_ops,
868	},
869};
870module_pci_driver(vmd_drv);
871
872MODULE_AUTHOR("Intel Corporation");
873MODULE_LICENSE("GPL v2");
874MODULE_VERSION("0.6");
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Volume Management Device driver
  4 * Copyright (c) 2015, Intel Corporation.
  5 */
  6
  7#include <linux/device.h>
  8#include <linux/interrupt.h>
  9#include <linux/irq.h>
 10#include <linux/kernel.h>
 11#include <linux/module.h>
 12#include <linux/msi.h>
 13#include <linux/pci.h>
 14#include <linux/srcu.h>
 15#include <linux/rculist.h>
 16#include <linux/rcupdate.h>
 17
 18#include <asm/irqdomain.h>
 19#include <asm/device.h>
 20#include <asm/msi.h>
 21#include <asm/msidef.h>
 22
 23#define VMD_CFGBAR	0
 24#define VMD_MEMBAR1	2
 25#define VMD_MEMBAR2	4
 26
 27#define PCI_REG_VMCAP		0x40
 28#define BUS_RESTRICT_CAP(vmcap)	(vmcap & 0x1)
 29#define PCI_REG_VMCONFIG	0x44
 30#define BUS_RESTRICT_CFG(vmcfg)	((vmcfg >> 8) & 0x3)
 31#define PCI_REG_VMLOCK		0x70
 32#define MB2_SHADOW_EN(vmlock)	(vmlock & 0x2)
 33
 34#define MB2_SHADOW_OFFSET	0x2000
 35#define MB2_SHADOW_SIZE		16
 36
 37enum vmd_features {
 38	/*
 39	 * Device may contain registers which hint the physical location of the
 40	 * membars, in order to allow proper address translation during
 41	 * resource assignment to enable guest virtualization
 42	 */
 43	VMD_FEAT_HAS_MEMBAR_SHADOW		= (1 << 0),
 44
 45	/*
 46	 * Device may provide root port configuration information which limits
 47	 * bus numbering
 48	 */
 49	VMD_FEAT_HAS_BUS_RESTRICTIONS		= (1 << 1),
 50
 51	/*
 52	 * Device contains physical location shadow registers in
 53	 * vendor-specific capability space
 54	 */
 55	VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP	= (1 << 2),
 56};
 57
 58/*
 59 * Lock for manipulating VMD IRQ lists.
 60 */
 61static DEFINE_RAW_SPINLOCK(list_lock);
 62
 63/**
 64 * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
 65 * @node:	list item for parent traversal.
 66 * @irq:	back pointer to parent.
 67 * @enabled:	true if driver enabled IRQ
 68 * @virq:	the virtual IRQ value provided to the requesting driver.
 69 *
 70 * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
 71 * a VMD IRQ using this structure.
 72 */
 73struct vmd_irq {
 74	struct list_head	node;
 75	struct vmd_irq_list	*irq;
 76	bool			enabled;
 77	unsigned int		virq;
 78};
 79
 80/**
 81 * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
 82 * @irq_list:	the list of irq's the VMD one demuxes to.
 83 * @srcu:	SRCU struct for local synchronization.
 84 * @count:	number of child IRQs assigned to this vector; used to track
 85 *		sharing.
 86 */
 87struct vmd_irq_list {
 88	struct list_head	irq_list;
 89	struct srcu_struct	srcu;
 90	unsigned int		count;
 91};
 92
 93struct vmd_dev {
 94	struct pci_dev		*dev;
 95
 96	spinlock_t		cfg_lock;
 97	char __iomem		*cfgbar;
 98
 99	int msix_count;
100	struct vmd_irq_list	*irqs;
101
102	struct pci_sysdata	sysdata;
103	struct resource		resources[3];
104	struct irq_domain	*irq_domain;
105	struct pci_bus		*bus;
106	u8			busn_start;
 
 
 
107};
108
109static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
110{
111	return container_of(bus->sysdata, struct vmd_dev, sysdata);
112}
113
114static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
115					   struct vmd_irq_list *irqs)
116{
117	return irqs - vmd->irqs;
118}
119
120/*
121 * Drivers managing a device in a VMD domain allocate their own IRQs as before,
122 * but the MSI entry for the hardware it's driving will be programmed with a
123 * destination ID for the VMD MSI-X table.  The VMD muxes interrupts in its
124 * domain into one of its own, and the VMD driver de-muxes these for the
125 * handlers sharing that VMD IRQ.  The vmd irq_domain provides the operations
126 * and irq_chip to set this up.
127 */
128static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
129{
130	struct vmd_irq *vmdirq = data->chip_data;
131	struct vmd_irq_list *irq = vmdirq->irq;
132	struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
133
134	msg->address_hi = MSI_ADDR_BASE_HI;
135	msg->address_lo = MSI_ADDR_BASE_LO |
136			  MSI_ADDR_DEST_ID(index_from_irqs(vmd, irq));
137	msg->data = 0;
138}
139
140/*
141 * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
142 */
143static void vmd_irq_enable(struct irq_data *data)
144{
145	struct vmd_irq *vmdirq = data->chip_data;
146	unsigned long flags;
147
148	raw_spin_lock_irqsave(&list_lock, flags);
149	WARN_ON(vmdirq->enabled);
150	list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
151	vmdirq->enabled = true;
152	raw_spin_unlock_irqrestore(&list_lock, flags);
153
154	data->chip->irq_unmask(data);
155}
156
157static void vmd_irq_disable(struct irq_data *data)
158{
159	struct vmd_irq *vmdirq = data->chip_data;
160	unsigned long flags;
161
162	data->chip->irq_mask(data);
163
164	raw_spin_lock_irqsave(&list_lock, flags);
165	if (vmdirq->enabled) {
166		list_del_rcu(&vmdirq->node);
167		vmdirq->enabled = false;
168	}
169	raw_spin_unlock_irqrestore(&list_lock, flags);
170}
171
172/*
173 * XXX: Stubbed until we develop acceptable way to not create conflicts with
174 * other devices sharing the same vector.
175 */
176static int vmd_irq_set_affinity(struct irq_data *data,
177				const struct cpumask *dest, bool force)
178{
179	return -EINVAL;
180}
181
182static struct irq_chip vmd_msi_controller = {
183	.name			= "VMD-MSI",
184	.irq_enable		= vmd_irq_enable,
185	.irq_disable		= vmd_irq_disable,
186	.irq_compose_msi_msg	= vmd_compose_msi_msg,
187	.irq_set_affinity	= vmd_irq_set_affinity,
188};
189
190static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
191				     msi_alloc_info_t *arg)
192{
193	return 0;
194}
195
196/*
197 * XXX: We can be even smarter selecting the best IRQ once we solve the
198 * affinity problem.
199 */
200static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
201{
202	int i, best = 1;
203	unsigned long flags;
204
205	if (vmd->msix_count == 1)
206		return &vmd->irqs[0];
207
208	/*
209	 * White list for fast-interrupt handlers. All others will share the
210	 * "slow" interrupt vector.
211	 */
212	switch (msi_desc_to_pci_dev(desc)->class) {
213	case PCI_CLASS_STORAGE_EXPRESS:
214		break;
215	default:
216		return &vmd->irqs[0];
217	}
218
219	raw_spin_lock_irqsave(&list_lock, flags);
220	for (i = 1; i < vmd->msix_count; i++)
221		if (vmd->irqs[i].count < vmd->irqs[best].count)
222			best = i;
223	vmd->irqs[best].count++;
224	raw_spin_unlock_irqrestore(&list_lock, flags);
225
226	return &vmd->irqs[best];
227}
228
229static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
230			unsigned int virq, irq_hw_number_t hwirq,
231			msi_alloc_info_t *arg)
232{
233	struct msi_desc *desc = arg->desc;
234	struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
235	struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
236	unsigned int index, vector;
237
238	if (!vmdirq)
239		return -ENOMEM;
240
241	INIT_LIST_HEAD(&vmdirq->node);
242	vmdirq->irq = vmd_next_irq(vmd, desc);
243	vmdirq->virq = virq;
244	index = index_from_irqs(vmd, vmdirq->irq);
245	vector = pci_irq_vector(vmd->dev, index);
246
247	irq_domain_set_info(domain, virq, vector, info->chip, vmdirq,
248			    handle_untracked_irq, vmd, NULL);
249	return 0;
250}
251
252static void vmd_msi_free(struct irq_domain *domain,
253			struct msi_domain_info *info, unsigned int virq)
254{
255	struct vmd_irq *vmdirq = irq_get_chip_data(virq);
256	unsigned long flags;
257
258	synchronize_srcu(&vmdirq->irq->srcu);
259
260	/* XXX: Potential optimization to rebalance */
261	raw_spin_lock_irqsave(&list_lock, flags);
262	vmdirq->irq->count--;
263	raw_spin_unlock_irqrestore(&list_lock, flags);
264
265	kfree(vmdirq);
266}
267
268static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
269			   int nvec, msi_alloc_info_t *arg)
270{
271	struct pci_dev *pdev = to_pci_dev(dev);
272	struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
273
274	if (nvec > vmd->msix_count)
275		return vmd->msix_count;
276
277	memset(arg, 0, sizeof(*arg));
278	return 0;
279}
280
281static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
282{
283	arg->desc = desc;
284}
285
286static struct msi_domain_ops vmd_msi_domain_ops = {
287	.get_hwirq	= vmd_get_hwirq,
288	.msi_init	= vmd_msi_init,
289	.msi_free	= vmd_msi_free,
290	.msi_prepare	= vmd_msi_prepare,
291	.set_desc	= vmd_set_desc,
292};
293
294static struct msi_domain_info vmd_msi_domain_info = {
295	.flags		= MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
296			  MSI_FLAG_PCI_MSIX,
297	.ops		= &vmd_msi_domain_ops,
298	.chip		= &vmd_msi_controller,
299};
300
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
301static char __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
302				  unsigned int devfn, int reg, int len)
303{
304	char __iomem *addr = vmd->cfgbar +
305			     ((bus->number - vmd->busn_start) << 20) +
306			     (devfn << 12) + reg;
307
308	if ((addr - vmd->cfgbar) + len >=
309	    resource_size(&vmd->dev->resource[VMD_CFGBAR]))
310		return NULL;
311
312	return addr;
313}
314
315/*
316 * CPU may deadlock if config space is not serialized on some versions of this
317 * hardware, so all config space access is done under a spinlock.
318 */
319static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
320			int len, u32 *value)
321{
322	struct vmd_dev *vmd = vmd_from_bus(bus);
323	char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
324	unsigned long flags;
325	int ret = 0;
326
327	if (!addr)
328		return -EFAULT;
329
330	spin_lock_irqsave(&vmd->cfg_lock, flags);
331	switch (len) {
332	case 1:
333		*value = readb(addr);
334		break;
335	case 2:
336		*value = readw(addr);
337		break;
338	case 4:
339		*value = readl(addr);
340		break;
341	default:
342		ret = -EINVAL;
343		break;
344	}
345	spin_unlock_irqrestore(&vmd->cfg_lock, flags);
346	return ret;
347}
348
349/*
350 * VMD h/w converts non-posted config writes to posted memory writes. The
351 * read-back in this function forces the completion so it returns only after
352 * the config space was written, as expected.
353 */
354static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
355			 int len, u32 value)
356{
357	struct vmd_dev *vmd = vmd_from_bus(bus);
358	char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
359	unsigned long flags;
360	int ret = 0;
361
362	if (!addr)
363		return -EFAULT;
364
365	spin_lock_irqsave(&vmd->cfg_lock, flags);
366	switch (len) {
367	case 1:
368		writeb(value, addr);
369		readb(addr);
370		break;
371	case 2:
372		writew(value, addr);
373		readw(addr);
374		break;
375	case 4:
376		writel(value, addr);
377		readl(addr);
378		break;
379	default:
380		ret = -EINVAL;
381		break;
382	}
383	spin_unlock_irqrestore(&vmd->cfg_lock, flags);
384	return ret;
385}
386
387static struct pci_ops vmd_ops = {
388	.read		= vmd_pci_read,
389	.write		= vmd_pci_write,
390};
391
392static void vmd_attach_resources(struct vmd_dev *vmd)
393{
394	vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
395	vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
396}
397
398static void vmd_detach_resources(struct vmd_dev *vmd)
399{
400	vmd->dev->resource[VMD_MEMBAR1].child = NULL;
401	vmd->dev->resource[VMD_MEMBAR2].child = NULL;
402}
403
404/*
405 * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
406 * Per ACPI r6.0, sec 6.5.6,  _SEG returns an integer, of which the lower
407 * 16 bits are the PCI Segment Group (domain) number.  Other bits are
408 * currently reserved.
409 */
410static int vmd_find_free_domain(void)
411{
412	int domain = 0xffff;
413	struct pci_bus *bus = NULL;
414
415	while ((bus = pci_find_next_bus(bus)) != NULL)
416		domain = max_t(int, domain, pci_domain_nr(bus));
417	return domain + 1;
418}
419
420static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
421{
422	struct pci_sysdata *sd = &vmd->sysdata;
423	struct fwnode_handle *fn;
424	struct resource *res;
425	u32 upper_bits;
426	unsigned long flags;
427	LIST_HEAD(resources);
428	resource_size_t offset[2] = {0};
429	resource_size_t membar2_offset = 0x2000;
430	struct pci_bus *child;
431
432	/*
433	 * Shadow registers may exist in certain VMD device ids which allow
434	 * guests to correctly assign host physical addresses to the root ports
435	 * and child devices. These registers will either return the host value
436	 * or 0, depending on an enable bit in the VMD device.
437	 */
438	if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
439		u32 vmlock;
440		int ret;
441
442		membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE;
443		ret = pci_read_config_dword(vmd->dev, PCI_REG_VMLOCK, &vmlock);
444		if (ret || vmlock == ~0)
445			return -ENODEV;
446
447		if (MB2_SHADOW_EN(vmlock)) {
448			void __iomem *membar2;
449
450			membar2 = pci_iomap(vmd->dev, VMD_MEMBAR2, 0);
451			if (!membar2)
452				return -ENOMEM;
453			offset[0] = vmd->dev->resource[VMD_MEMBAR1].start -
454					(readq(membar2 + MB2_SHADOW_OFFSET) &
455					 PCI_BASE_ADDRESS_MEM_MASK);
456			offset[1] = vmd->dev->resource[VMD_MEMBAR2].start -
457					(readq(membar2 + MB2_SHADOW_OFFSET + 8) &
458					 PCI_BASE_ADDRESS_MEM_MASK);
459			pci_iounmap(vmd->dev, membar2);
460		}
461	}
462
463	if (features & VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP) {
464		int pos = pci_find_capability(vmd->dev, PCI_CAP_ID_VNDR);
465		u32 reg, regu;
466
467		pci_read_config_dword(vmd->dev, pos + 4, &reg);
468
469		/* "SHDW" */
470		if (pos && reg == 0x53484457) {
471			pci_read_config_dword(vmd->dev, pos + 8, &reg);
472			pci_read_config_dword(vmd->dev, pos + 12, &regu);
473			offset[0] = vmd->dev->resource[VMD_MEMBAR1].start -
474					(((u64) regu << 32 | reg) &
475					 PCI_BASE_ADDRESS_MEM_MASK);
476
477			pci_read_config_dword(vmd->dev, pos + 16, &reg);
478			pci_read_config_dword(vmd->dev, pos + 20, &regu);
479			offset[1] = vmd->dev->resource[VMD_MEMBAR2].start -
480					(((u64) regu << 32 | reg) &
481					 PCI_BASE_ADDRESS_MEM_MASK);
482		}
483	}
484
485	/*
486	 * Certain VMD devices may have a root port configuration option which
487	 * limits the bus range to between 0-127, 128-255, or 224-255
488	 */
489	if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
490		u16 reg16;
491
492		pci_read_config_word(vmd->dev, PCI_REG_VMCAP, &reg16);
493		if (BUS_RESTRICT_CAP(reg16)) {
494			pci_read_config_word(vmd->dev, PCI_REG_VMCONFIG,
495					     &reg16);
496
497			switch (BUS_RESTRICT_CFG(reg16)) {
498			case 1:
499				vmd->busn_start = 128;
500				break;
501			case 2:
502				vmd->busn_start = 224;
503				break;
504			case 3:
505				pci_err(vmd->dev, "Unknown Bus Offset Setting\n");
506				return -ENODEV;
507			default:
508				break;
509			}
510		}
511	}
512
513	res = &vmd->dev->resource[VMD_CFGBAR];
514	vmd->resources[0] = (struct resource) {
515		.name  = "VMD CFGBAR",
516		.start = vmd->busn_start,
517		.end   = vmd->busn_start + (resource_size(res) >> 20) - 1,
518		.flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
519	};
520
521	/*
522	 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
523	 * put 32-bit resources in the window.
524	 *
525	 * There's no hardware reason why a 64-bit window *couldn't*
526	 * contain a 32-bit resource, but pbus_size_mem() computes the
527	 * bridge window size assuming a 64-bit window will contain no
528	 * 32-bit resources.  __pci_assign_resource() enforces that
529	 * artificial restriction to make sure everything will fit.
530	 *
531	 * The only way we could use a 64-bit non-prefetchable MEMBAR is
532	 * if its address is <4GB so that we can convert it to a 32-bit
533	 * resource.  To be visible to the host OS, all VMD endpoints must
534	 * be initially configured by platform BIOS, which includes setting
535	 * up these resources.  We can assume the device is configured
536	 * according to the platform needs.
537	 */
538	res = &vmd->dev->resource[VMD_MEMBAR1];
539	upper_bits = upper_32_bits(res->end);
540	flags = res->flags & ~IORESOURCE_SIZEALIGN;
541	if (!upper_bits)
542		flags &= ~IORESOURCE_MEM_64;
543	vmd->resources[1] = (struct resource) {
544		.name  = "VMD MEMBAR1",
545		.start = res->start,
546		.end   = res->end,
547		.flags = flags,
548		.parent = res,
549	};
550
551	res = &vmd->dev->resource[VMD_MEMBAR2];
552	upper_bits = upper_32_bits(res->end);
553	flags = res->flags & ~IORESOURCE_SIZEALIGN;
554	if (!upper_bits)
555		flags &= ~IORESOURCE_MEM_64;
556	vmd->resources[2] = (struct resource) {
557		.name  = "VMD MEMBAR2",
558		.start = res->start + membar2_offset,
559		.end   = res->end,
560		.flags = flags,
561		.parent = res,
562	};
563
564	sd->vmd_dev = vmd->dev;
565	sd->domain = vmd_find_free_domain();
566	if (sd->domain < 0)
567		return sd->domain;
568
569	sd->node = pcibus_to_node(vmd->dev->bus);
570
571	fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain);
572	if (!fn)
573		return -ENODEV;
574
575	vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info,
576						    x86_vector_domain);
577	if (!vmd->irq_domain) {
578		irq_domain_free_fwnode(fn);
579		return -ENODEV;
580	}
581
582	pci_add_resource(&resources, &vmd->resources[0]);
583	pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
584	pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
585
586	vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start,
587				       &vmd_ops, sd, &resources);
588	if (!vmd->bus) {
589		pci_free_resource_list(&resources);
590		irq_domain_remove(vmd->irq_domain);
591		irq_domain_free_fwnode(fn);
592		return -ENODEV;
593	}
594
595	vmd_attach_resources(vmd);
 
596	dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
597
598	pci_scan_child_bus(vmd->bus);
599	pci_assign_unassigned_bus_resources(vmd->bus);
600
601	/*
602	 * VMD root buses are virtual and don't return true on pci_is_pcie()
603	 * and will fail pcie_bus_configure_settings() early. It can instead be
604	 * run on each of the real root ports.
605	 */
606	list_for_each_entry(child, &vmd->bus->children, node)
607		pcie_bus_configure_settings(child);
608
609	pci_bus_add_devices(vmd->bus);
610
611	WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
612			       "domain"), "Can't create symlink to domain\n");
613	return 0;
614}
615
616static irqreturn_t vmd_irq(int irq, void *data)
617{
618	struct vmd_irq_list *irqs = data;
619	struct vmd_irq *vmdirq;
620	int idx;
621
622	idx = srcu_read_lock(&irqs->srcu);
623	list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
624		generic_handle_irq(vmdirq->virq);
625	srcu_read_unlock(&irqs->srcu, idx);
626
627	return IRQ_HANDLED;
628}
629
630static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
631{
632	struct vmd_dev *vmd;
633	int i, err;
634
635	if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
636		return -ENOMEM;
637
638	vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
639	if (!vmd)
640		return -ENOMEM;
641
642	vmd->dev = dev;
643	err = pcim_enable_device(dev);
644	if (err < 0)
645		return err;
646
647	vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
648	if (!vmd->cfgbar)
649		return -ENOMEM;
650
651	pci_set_master(dev);
652	if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
653	    dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32)))
654		return -ENODEV;
655
656	vmd->msix_count = pci_msix_vec_count(dev);
657	if (vmd->msix_count < 0)
658		return -ENODEV;
659
660	vmd->msix_count = pci_alloc_irq_vectors(dev, 1, vmd->msix_count,
661					PCI_IRQ_MSIX);
662	if (vmd->msix_count < 0)
663		return vmd->msix_count;
664
665	vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
666				 GFP_KERNEL);
667	if (!vmd->irqs)
668		return -ENOMEM;
669
670	for (i = 0; i < vmd->msix_count; i++) {
671		err = init_srcu_struct(&vmd->irqs[i].srcu);
672		if (err)
673			return err;
674
675		INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
676		err = devm_request_irq(&dev->dev, pci_irq_vector(dev, i),
677				       vmd_irq, IRQF_NO_THREAD,
678				       "vmd", &vmd->irqs[i]);
679		if (err)
680			return err;
681	}
682
683	spin_lock_init(&vmd->cfg_lock);
684	pci_set_drvdata(dev, vmd);
685	err = vmd_enable_domain(vmd, (unsigned long) id->driver_data);
686	if (err)
687		return err;
688
689	dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
690		 vmd->sysdata.domain);
691	return 0;
692}
693
694static void vmd_cleanup_srcu(struct vmd_dev *vmd)
695{
696	int i;
697
698	for (i = 0; i < vmd->msix_count; i++)
699		cleanup_srcu_struct(&vmd->irqs[i].srcu);
700}
701
702static void vmd_remove(struct pci_dev *dev)
703{
704	struct vmd_dev *vmd = pci_get_drvdata(dev);
705	struct fwnode_handle *fn = vmd->irq_domain->fwnode;
706
707	sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
708	pci_stop_root_bus(vmd->bus);
709	pci_remove_root_bus(vmd->bus);
710	vmd_cleanup_srcu(vmd);
 
711	vmd_detach_resources(vmd);
712	irq_domain_remove(vmd->irq_domain);
713	irq_domain_free_fwnode(fn);
714}
715
716#ifdef CONFIG_PM_SLEEP
717static int vmd_suspend(struct device *dev)
718{
719	struct pci_dev *pdev = to_pci_dev(dev);
720	struct vmd_dev *vmd = pci_get_drvdata(pdev);
721	int i;
722
723	for (i = 0; i < vmd->msix_count; i++)
724		devm_free_irq(dev, pci_irq_vector(pdev, i), &vmd->irqs[i]);
725
726	pci_save_state(pdev);
727	return 0;
728}
729
730static int vmd_resume(struct device *dev)
731{
732	struct pci_dev *pdev = to_pci_dev(dev);
733	struct vmd_dev *vmd = pci_get_drvdata(pdev);
734	int err, i;
735
736	for (i = 0; i < vmd->msix_count; i++) {
737		err = devm_request_irq(dev, pci_irq_vector(pdev, i),
738				       vmd_irq, IRQF_NO_THREAD,
739				       "vmd", &vmd->irqs[i]);
740		if (err)
741			return err;
742	}
743
744	pci_restore_state(pdev);
745	return 0;
746}
747#endif
748static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
749
750static const struct pci_device_id vmd_ids[] = {
751	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),
752		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP,},
753	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
754		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
755				VMD_FEAT_HAS_BUS_RESTRICTIONS,},
756	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x467f),
757		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
758				VMD_FEAT_HAS_BUS_RESTRICTIONS,},
759	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x4c3d),
760		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
761				VMD_FEAT_HAS_BUS_RESTRICTIONS,},
762	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B),
763		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
764				VMD_FEAT_HAS_BUS_RESTRICTIONS,},
765	{0,}
766};
767MODULE_DEVICE_TABLE(pci, vmd_ids);
768
769static struct pci_driver vmd_drv = {
770	.name		= "vmd",
771	.id_table	= vmd_ids,
772	.probe		= vmd_probe,
773	.remove		= vmd_remove,
774	.driver		= {
775		.pm	= &vmd_dev_pm_ops,
776	},
777};
778module_pci_driver(vmd_drv);
779
780MODULE_AUTHOR("Intel Corporation");
781MODULE_LICENSE("GPL v2");
782MODULE_VERSION("0.6");