Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Volume Management Device driver
  4 * Copyright (c) 2015, Intel Corporation.
  5 */
  6
  7#include <linux/device.h>
  8#include <linux/interrupt.h>
  9#include <linux/irq.h>
 10#include <linux/kernel.h>
 11#include <linux/module.h>
 12#include <linux/msi.h>
 13#include <linux/pci.h>
 
 14#include <linux/srcu.h>
 15#include <linux/rculist.h>
 16#include <linux/rcupdate.h>
 17
 18#include <asm/irqdomain.h>
 19#include <asm/device.h>
 20#include <asm/msi.h>
 21#include <asm/msidef.h>
 22
 23#define VMD_CFGBAR	0
 24#define VMD_MEMBAR1	2
 25#define VMD_MEMBAR2	4
 26
 27#define PCI_REG_VMCAP		0x40
 28#define BUS_RESTRICT_CAP(vmcap)	(vmcap & 0x1)
 29#define PCI_REG_VMCONFIG	0x44
 30#define BUS_RESTRICT_CFG(vmcfg)	((vmcfg >> 8) & 0x3)
 
 31#define PCI_REG_VMLOCK		0x70
 32#define MB2_SHADOW_EN(vmlock)	(vmlock & 0x2)
 33
 34#define MB2_SHADOW_OFFSET	0x2000
 35#define MB2_SHADOW_SIZE		16
 36
 37enum vmd_features {
 38	/*
 39	 * Device may contain registers which hint the physical location of the
 40	 * membars, in order to allow proper address translation during
 41	 * resource assignment to enable guest virtualization
 42	 */
 43	VMD_FEAT_HAS_MEMBAR_SHADOW	= (1 << 0),
 44
 45	/*
 46	 * Device may provide root port configuration information which limits
 47	 * bus numbering
 48	 */
 49	VMD_FEAT_HAS_BUS_RESTRICTIONS	= (1 << 1),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 50};
 51
 52/*
 53 * Lock for manipulating VMD IRQ lists.
 54 */
 55static DEFINE_RAW_SPINLOCK(list_lock);
 56
 57/**
 58 * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
 59 * @node:	list item for parent traversal.
 60 * @irq:	back pointer to parent.
 61 * @enabled:	true if driver enabled IRQ
 62 * @virq:	the virtual IRQ value provided to the requesting driver.
 63 *
 64 * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
 65 * a VMD IRQ using this structure.
 66 */
 67struct vmd_irq {
 68	struct list_head	node;
 69	struct vmd_irq_list	*irq;
 70	bool			enabled;
 71	unsigned int		virq;
 72};
 73
 74/**
 75 * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
 76 * @irq_list:	the list of irq's the VMD one demuxes to.
 77 * @srcu:	SRCU struct for local synchronization.
 78 * @count:	number of child IRQs assigned to this vector; used to track
 79 *		sharing.
 80 */
 81struct vmd_irq_list {
 82	struct list_head	irq_list;
 83	struct srcu_struct	srcu;
 84	unsigned int		count;
 85};
 86
 87struct vmd_dev {
 88	struct pci_dev		*dev;
 89
 90	spinlock_t		cfg_lock;
 91	char __iomem		*cfgbar;
 92
 93	int msix_count;
 94	struct vmd_irq_list	*irqs;
 95
 96	struct pci_sysdata	sysdata;
 97	struct resource		resources[3];
 98	struct irq_domain	*irq_domain;
 99	struct pci_bus		*bus;
100	u8			busn_start;
101
102	struct dma_map_ops	dma_ops;
103	struct dma_domain	dma_domain;
104};
105
106static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
107{
108	return container_of(bus->sysdata, struct vmd_dev, sysdata);
109}
110
111static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
112					   struct vmd_irq_list *irqs)
113{
114	return irqs - vmd->irqs;
115}
116
117/*
118 * Drivers managing a device in a VMD domain allocate their own IRQs as before,
119 * but the MSI entry for the hardware it's driving will be programmed with a
120 * destination ID for the VMD MSI-X table.  The VMD muxes interrupts in its
121 * domain into one of its own, and the VMD driver de-muxes these for the
122 * handlers sharing that VMD IRQ.  The vmd irq_domain provides the operations
123 * and irq_chip to set this up.
124 */
125static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
126{
127	struct vmd_irq *vmdirq = data->chip_data;
128	struct vmd_irq_list *irq = vmdirq->irq;
129	struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
130
131	msg->address_hi = MSI_ADDR_BASE_HI;
132	msg->address_lo = MSI_ADDR_BASE_LO |
133			  MSI_ADDR_DEST_ID(index_from_irqs(vmd, irq));
134	msg->data = 0;
135}
136
137/*
138 * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
139 */
140static void vmd_irq_enable(struct irq_data *data)
141{
142	struct vmd_irq *vmdirq = data->chip_data;
143	unsigned long flags;
144
145	raw_spin_lock_irqsave(&list_lock, flags);
146	WARN_ON(vmdirq->enabled);
147	list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
148	vmdirq->enabled = true;
149	raw_spin_unlock_irqrestore(&list_lock, flags);
150
151	data->chip->irq_unmask(data);
152}
153
154static void vmd_irq_disable(struct irq_data *data)
155{
156	struct vmd_irq *vmdirq = data->chip_data;
157	unsigned long flags;
158
159	data->chip->irq_mask(data);
160
161	raw_spin_lock_irqsave(&list_lock, flags);
162	if (vmdirq->enabled) {
163		list_del_rcu(&vmdirq->node);
164		vmdirq->enabled = false;
165	}
166	raw_spin_unlock_irqrestore(&list_lock, flags);
167}
168
169/*
170 * XXX: Stubbed until we develop acceptable way to not create conflicts with
171 * other devices sharing the same vector.
172 */
173static int vmd_irq_set_affinity(struct irq_data *data,
174				const struct cpumask *dest, bool force)
175{
176	return -EINVAL;
177}
178
179static struct irq_chip vmd_msi_controller = {
180	.name			= "VMD-MSI",
181	.irq_enable		= vmd_irq_enable,
182	.irq_disable		= vmd_irq_disable,
183	.irq_compose_msi_msg	= vmd_compose_msi_msg,
184	.irq_set_affinity	= vmd_irq_set_affinity,
185};
186
187static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
188				     msi_alloc_info_t *arg)
189{
190	return 0;
191}
192
193/*
194 * XXX: We can be even smarter selecting the best IRQ once we solve the
195 * affinity problem.
196 */
197static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
198{
199	int i, best = 1;
200	unsigned long flags;
 
201
202	if (vmd->msix_count == 1)
203		return &vmd->irqs[0];
204
205	/*
206	 * White list for fast-interrupt handlers. All others will share the
207	 * "slow" interrupt vector.
208	 */
209	switch (msi_desc_to_pci_dev(desc)->class) {
210	case PCI_CLASS_STORAGE_EXPRESS:
211		break;
212	default:
213		return &vmd->irqs[0];
214	}
215
216	raw_spin_lock_irqsave(&list_lock, flags);
217	for (i = 1; i < vmd->msix_count; i++)
 
218		if (vmd->irqs[i].count < vmd->irqs[best].count)
219			best = i;
220	vmd->irqs[best].count++;
221	raw_spin_unlock_irqrestore(&list_lock, flags);
222
223	return &vmd->irqs[best];
224}
225
226static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
227			unsigned int virq, irq_hw_number_t hwirq,
228			msi_alloc_info_t *arg)
229{
230	struct msi_desc *desc = arg->desc;
231	struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
232	struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
233	unsigned int index, vector;
234
235	if (!vmdirq)
236		return -ENOMEM;
237
238	INIT_LIST_HEAD(&vmdirq->node);
239	vmdirq->irq = vmd_next_irq(vmd, desc);
240	vmdirq->virq = virq;
241	index = index_from_irqs(vmd, vmdirq->irq);
242	vector = pci_irq_vector(vmd->dev, index);
243
244	irq_domain_set_info(domain, virq, vector, info->chip, vmdirq,
245			    handle_untracked_irq, vmd, NULL);
246	return 0;
247}
248
249static void vmd_msi_free(struct irq_domain *domain,
250			struct msi_domain_info *info, unsigned int virq)
251{
252	struct vmd_irq *vmdirq = irq_get_chip_data(virq);
253	unsigned long flags;
254
255	synchronize_srcu(&vmdirq->irq->srcu);
256
257	/* XXX: Potential optimization to rebalance */
258	raw_spin_lock_irqsave(&list_lock, flags);
259	vmdirq->irq->count--;
260	raw_spin_unlock_irqrestore(&list_lock, flags);
261
262	kfree(vmdirq);
263}
264
265static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
266			   int nvec, msi_alloc_info_t *arg)
267{
268	struct pci_dev *pdev = to_pci_dev(dev);
269	struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
270
271	if (nvec > vmd->msix_count)
272		return vmd->msix_count;
273
274	memset(arg, 0, sizeof(*arg));
275	return 0;
276}
277
278static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
279{
280	arg->desc = desc;
281}
282
283static struct msi_domain_ops vmd_msi_domain_ops = {
284	.get_hwirq	= vmd_get_hwirq,
285	.msi_init	= vmd_msi_init,
286	.msi_free	= vmd_msi_free,
287	.msi_prepare	= vmd_msi_prepare,
288	.set_desc	= vmd_set_desc,
289};
290
291static struct msi_domain_info vmd_msi_domain_info = {
292	.flags		= MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
293			  MSI_FLAG_PCI_MSIX,
294	.ops		= &vmd_msi_domain_ops,
295	.chip		= &vmd_msi_controller,
296};
297
298/*
299 * VMD replaces the requester ID with its own.  DMA mappings for devices in a
300 * VMD domain need to be mapped for the VMD, not the device requiring
301 * the mapping.
302 */
303static struct device *to_vmd_dev(struct device *dev)
304{
305	struct pci_dev *pdev = to_pci_dev(dev);
306	struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
307
308	return &vmd->dev->dev;
309}
310
311static void *vmd_alloc(struct device *dev, size_t size, dma_addr_t *addr,
312		       gfp_t flag, unsigned long attrs)
313{
314	return dma_alloc_attrs(to_vmd_dev(dev), size, addr, flag, attrs);
315}
316
317static void vmd_free(struct device *dev, size_t size, void *vaddr,
318		     dma_addr_t addr, unsigned long attrs)
319{
320	return dma_free_attrs(to_vmd_dev(dev), size, vaddr, addr, attrs);
321}
322
323static int vmd_mmap(struct device *dev, struct vm_area_struct *vma,
324		    void *cpu_addr, dma_addr_t addr, size_t size,
325		    unsigned long attrs)
326{
327	return dma_mmap_attrs(to_vmd_dev(dev), vma, cpu_addr, addr, size,
328			attrs);
329}
330
331static int vmd_get_sgtable(struct device *dev, struct sg_table *sgt,
332			   void *cpu_addr, dma_addr_t addr, size_t size,
333			   unsigned long attrs)
334{
335	return dma_get_sgtable_attrs(to_vmd_dev(dev), sgt, cpu_addr, addr, size,
336			attrs);
337}
338
339static dma_addr_t vmd_map_page(struct device *dev, struct page *page,
340			       unsigned long offset, size_t size,
341			       enum dma_data_direction dir,
342			       unsigned long attrs)
343{
344	return dma_map_page_attrs(to_vmd_dev(dev), page, offset, size, dir,
345			attrs);
346}
347
348static void vmd_unmap_page(struct device *dev, dma_addr_t addr, size_t size,
349			   enum dma_data_direction dir, unsigned long attrs)
350{
351	dma_unmap_page_attrs(to_vmd_dev(dev), addr, size, dir, attrs);
352}
353
354static int vmd_map_sg(struct device *dev, struct scatterlist *sg, int nents,
355		      enum dma_data_direction dir, unsigned long attrs)
356{
357	return dma_map_sg_attrs(to_vmd_dev(dev), sg, nents, dir, attrs);
358}
359
360static void vmd_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
361			 enum dma_data_direction dir, unsigned long attrs)
362{
363	dma_unmap_sg_attrs(to_vmd_dev(dev), sg, nents, dir, attrs);
364}
365
366static void vmd_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
367				    size_t size, enum dma_data_direction dir)
368{
369	dma_sync_single_for_cpu(to_vmd_dev(dev), addr, size, dir);
370}
371
372static void vmd_sync_single_for_device(struct device *dev, dma_addr_t addr,
373				       size_t size, enum dma_data_direction dir)
374{
375	dma_sync_single_for_device(to_vmd_dev(dev), addr, size, dir);
376}
377
378static void vmd_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
379				int nents, enum dma_data_direction dir)
380{
381	dma_sync_sg_for_cpu(to_vmd_dev(dev), sg, nents, dir);
382}
383
384static void vmd_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
385				   int nents, enum dma_data_direction dir)
386{
387	dma_sync_sg_for_device(to_vmd_dev(dev), sg, nents, dir);
388}
389
390static int vmd_dma_supported(struct device *dev, u64 mask)
391{
392	return dma_supported(to_vmd_dev(dev), mask);
393}
394
395static u64 vmd_get_required_mask(struct device *dev)
396{
397	return dma_get_required_mask(to_vmd_dev(dev));
398}
399
400static void vmd_teardown_dma_ops(struct vmd_dev *vmd)
401{
402	struct dma_domain *domain = &vmd->dma_domain;
 
 
403
404	if (get_dma_ops(&vmd->dev->dev))
405		del_dma_domain(domain);
406}
407
408#define ASSIGN_VMD_DMA_OPS(source, dest, fn)	\
409	do {					\
410		if (source->fn)			\
411			dest->fn = vmd_##fn;	\
412	} while (0)
413
414static void vmd_setup_dma_ops(struct vmd_dev *vmd)
415{
416	const struct dma_map_ops *source = get_dma_ops(&vmd->dev->dev);
417	struct dma_map_ops *dest = &vmd->dma_ops;
418	struct dma_domain *domain = &vmd->dma_domain;
 
 
 
419
420	domain->domain_nr = vmd->sysdata.domain;
421	domain->dma_ops = dest;
422
423	if (!source)
424		return;
425	ASSIGN_VMD_DMA_OPS(source, dest, alloc);
426	ASSIGN_VMD_DMA_OPS(source, dest, free);
427	ASSIGN_VMD_DMA_OPS(source, dest, mmap);
428	ASSIGN_VMD_DMA_OPS(source, dest, get_sgtable);
429	ASSIGN_VMD_DMA_OPS(source, dest, map_page);
430	ASSIGN_VMD_DMA_OPS(source, dest, unmap_page);
431	ASSIGN_VMD_DMA_OPS(source, dest, map_sg);
432	ASSIGN_VMD_DMA_OPS(source, dest, unmap_sg);
433	ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_cpu);
434	ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_device);
435	ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_cpu);
436	ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_device);
437	ASSIGN_VMD_DMA_OPS(source, dest, dma_supported);
438	ASSIGN_VMD_DMA_OPS(source, dest, get_required_mask);
439	add_dma_domain(domain);
440}
441#undef ASSIGN_VMD_DMA_OPS
442
443static char __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
444				  unsigned int devfn, int reg, int len)
445{
446	char __iomem *addr = vmd->cfgbar +
447			     ((bus->number - vmd->busn_start) << 20) +
448			     (devfn << 12) + reg;
449
450	if ((addr - vmd->cfgbar) + len >=
451	    resource_size(&vmd->dev->resource[VMD_CFGBAR]))
452		return NULL;
453
454	return addr;
455}
456
457/*
458 * CPU may deadlock if config space is not serialized on some versions of this
459 * hardware, so all config space access is done under a spinlock.
460 */
461static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
462			int len, u32 *value)
463{
464	struct vmd_dev *vmd = vmd_from_bus(bus);
465	char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
466	unsigned long flags;
467	int ret = 0;
468
469	if (!addr)
470		return -EFAULT;
471
472	spin_lock_irqsave(&vmd->cfg_lock, flags);
473	switch (len) {
474	case 1:
475		*value = readb(addr);
476		break;
477	case 2:
478		*value = readw(addr);
479		break;
480	case 4:
481		*value = readl(addr);
482		break;
483	default:
484		ret = -EINVAL;
485		break;
486	}
487	spin_unlock_irqrestore(&vmd->cfg_lock, flags);
488	return ret;
489}
490
491/*
492 * VMD h/w converts non-posted config writes to posted memory writes. The
493 * read-back in this function forces the completion so it returns only after
494 * the config space was written, as expected.
495 */
496static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
497			 int len, u32 value)
498{
499	struct vmd_dev *vmd = vmd_from_bus(bus);
500	char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
501	unsigned long flags;
502	int ret = 0;
503
504	if (!addr)
505		return -EFAULT;
506
507	spin_lock_irqsave(&vmd->cfg_lock, flags);
508	switch (len) {
509	case 1:
510		writeb(value, addr);
511		readb(addr);
512		break;
513	case 2:
514		writew(value, addr);
515		readw(addr);
516		break;
517	case 4:
518		writel(value, addr);
519		readl(addr);
520		break;
521	default:
522		ret = -EINVAL;
523		break;
524	}
525	spin_unlock_irqrestore(&vmd->cfg_lock, flags);
526	return ret;
527}
528
529static struct pci_ops vmd_ops = {
530	.read		= vmd_pci_read,
531	.write		= vmd_pci_write,
532};
533
534static void vmd_attach_resources(struct vmd_dev *vmd)
535{
536	vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
537	vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
538}
539
540static void vmd_detach_resources(struct vmd_dev *vmd)
541{
542	vmd->dev->resource[VMD_MEMBAR1].child = NULL;
543	vmd->dev->resource[VMD_MEMBAR2].child = NULL;
544}
545
546/*
547 * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
548 * Per ACPI r6.0, sec 6.5.6,  _SEG returns an integer, of which the lower
549 * 16 bits are the PCI Segment Group (domain) number.  Other bits are
550 * currently reserved.
551 */
552static int vmd_find_free_domain(void)
553{
554	int domain = 0xffff;
555	struct pci_bus *bus = NULL;
556
557	while ((bus = pci_find_next_bus(bus)) != NULL)
558		domain = max_t(int, domain, pci_domain_nr(bus));
559	return domain + 1;
560}
561
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
562static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
563{
564	struct pci_sysdata *sd = &vmd->sysdata;
565	struct fwnode_handle *fn;
566	struct resource *res;
567	u32 upper_bits;
568	unsigned long flags;
569	LIST_HEAD(resources);
570	resource_size_t offset[2] = {0};
571	resource_size_t membar2_offset = 0x2000;
572	struct pci_bus *child;
 
573
574	/*
575	 * Shadow registers may exist in certain VMD device ids which allow
576	 * guests to correctly assign host physical addresses to the root ports
577	 * and child devices. These registers will either return the host value
578	 * or 0, depending on an enable bit in the VMD device.
579	 */
580	if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
581		u32 vmlock;
582		int ret;
583
584		membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE;
585		ret = pci_read_config_dword(vmd->dev, PCI_REG_VMLOCK, &vmlock);
586		if (ret || vmlock == ~0)
587			return -ENODEV;
588
589		if (MB2_SHADOW_EN(vmlock)) {
590			void __iomem *membar2;
591
592			membar2 = pci_iomap(vmd->dev, VMD_MEMBAR2, 0);
593			if (!membar2)
594				return -ENOMEM;
595			offset[0] = vmd->dev->resource[VMD_MEMBAR1].start -
596					readq(membar2 + MB2_SHADOW_OFFSET);
597			offset[1] = vmd->dev->resource[VMD_MEMBAR2].start -
598					readq(membar2 + MB2_SHADOW_OFFSET + 8);
599			pci_iounmap(vmd->dev, membar2);
600		}
601	}
602
603	/*
604	 * Certain VMD devices may have a root port configuration option which
605	 * limits the bus range to between 0-127 or 128-255
606	 */
607	if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
608		u32 vmcap, vmconfig;
609
610		pci_read_config_dword(vmd->dev, PCI_REG_VMCAP, &vmcap);
611		pci_read_config_dword(vmd->dev, PCI_REG_VMCONFIG, &vmconfig);
612		if (BUS_RESTRICT_CAP(vmcap) &&
613		    (BUS_RESTRICT_CFG(vmconfig) == 0x1))
614			vmd->busn_start = 128;
615	}
616
617	res = &vmd->dev->resource[VMD_CFGBAR];
618	vmd->resources[0] = (struct resource) {
619		.name  = "VMD CFGBAR",
620		.start = vmd->busn_start,
621		.end   = vmd->busn_start + (resource_size(res) >> 20) - 1,
622		.flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
623	};
624
625	/*
626	 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
627	 * put 32-bit resources in the window.
628	 *
629	 * There's no hardware reason why a 64-bit window *couldn't*
630	 * contain a 32-bit resource, but pbus_size_mem() computes the
631	 * bridge window size assuming a 64-bit window will contain no
632	 * 32-bit resources.  __pci_assign_resource() enforces that
633	 * artificial restriction to make sure everything will fit.
634	 *
635	 * The only way we could use a 64-bit non-prefetchable MEMBAR is
636	 * if its address is <4GB so that we can convert it to a 32-bit
637	 * resource.  To be visible to the host OS, all VMD endpoints must
638	 * be initially configured by platform BIOS, which includes setting
639	 * up these resources.  We can assume the device is configured
640	 * according to the platform needs.
641	 */
642	res = &vmd->dev->resource[VMD_MEMBAR1];
643	upper_bits = upper_32_bits(res->end);
644	flags = res->flags & ~IORESOURCE_SIZEALIGN;
645	if (!upper_bits)
646		flags &= ~IORESOURCE_MEM_64;
647	vmd->resources[1] = (struct resource) {
648		.name  = "VMD MEMBAR1",
649		.start = res->start,
650		.end   = res->end,
651		.flags = flags,
652		.parent = res,
653	};
654
655	res = &vmd->dev->resource[VMD_MEMBAR2];
656	upper_bits = upper_32_bits(res->end);
657	flags = res->flags & ~IORESOURCE_SIZEALIGN;
658	if (!upper_bits)
659		flags &= ~IORESOURCE_MEM_64;
660	vmd->resources[2] = (struct resource) {
661		.name  = "VMD MEMBAR2",
662		.start = res->start + membar2_offset,
663		.end   = res->end,
664		.flags = flags,
665		.parent = res,
666	};
667
668	sd->vmd_domain = true;
669	sd->domain = vmd_find_free_domain();
670	if (sd->domain < 0)
671		return sd->domain;
672
673	sd->node = pcibus_to_node(vmd->dev->bus);
674
675	fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain);
676	if (!fn)
677		return -ENODEV;
678
679	vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info,
680						    x86_vector_domain);
681	irq_domain_free_fwnode(fn);
682	if (!vmd->irq_domain)
683		return -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
684
685	pci_add_resource(&resources, &vmd->resources[0]);
686	pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
687	pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
688
689	vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start,
690				       &vmd_ops, sd, &resources);
691	if (!vmd->bus) {
692		pci_free_resource_list(&resources);
693		irq_domain_remove(vmd->irq_domain);
694		return -ENODEV;
695	}
696
697	vmd_attach_resources(vmd);
698	vmd_setup_dma_ops(vmd);
699	dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
700
701	pci_scan_child_bus(vmd->bus);
702	pci_assign_unassigned_bus_resources(vmd->bus);
703
704	/*
705	 * VMD root buses are virtual and don't return true on pci_is_pcie()
706	 * and will fail pcie_bus_configure_settings() early. It can instead be
707	 * run on each of the real root ports.
708	 */
709	list_for_each_entry(child, &vmd->bus->children, node)
710		pcie_bus_configure_settings(child);
711
712	pci_bus_add_devices(vmd->bus);
713
714	WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
715			       "domain"), "Can't create symlink to domain\n");
716	return 0;
717}
718
719static irqreturn_t vmd_irq(int irq, void *data)
720{
721	struct vmd_irq_list *irqs = data;
722	struct vmd_irq *vmdirq;
723	int idx;
724
725	idx = srcu_read_lock(&irqs->srcu);
726	list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
727		generic_handle_irq(vmdirq->virq);
728	srcu_read_unlock(&irqs->srcu, idx);
729
730	return IRQ_HANDLED;
731}
732
733static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
734{
 
735	struct vmd_dev *vmd;
736	int i, err;
737
738	if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
739		return -ENOMEM;
740
741	vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
742	if (!vmd)
743		return -ENOMEM;
744
745	vmd->dev = dev;
746	err = pcim_enable_device(dev);
747	if (err < 0)
748		return err;
749
750	vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
751	if (!vmd->cfgbar)
752		return -ENOMEM;
753
754	pci_set_master(dev);
755	if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
756	    dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32)))
757		return -ENODEV;
758
759	vmd->msix_count = pci_msix_vec_count(dev);
760	if (vmd->msix_count < 0)
761		return -ENODEV;
762
763	vmd->msix_count = pci_alloc_irq_vectors(dev, 1, vmd->msix_count,
764					PCI_IRQ_MSIX);
765	if (vmd->msix_count < 0)
766		return vmd->msix_count;
767
768	vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
769				 GFP_KERNEL);
770	if (!vmd->irqs)
771		return -ENOMEM;
772
773	for (i = 0; i < vmd->msix_count; i++) {
774		err = init_srcu_struct(&vmd->irqs[i].srcu);
775		if (err)
776			return err;
777
778		INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
779		err = devm_request_irq(&dev->dev, pci_irq_vector(dev, i),
780				       vmd_irq, IRQF_NO_THREAD,
781				       "vmd", &vmd->irqs[i]);
782		if (err)
783			return err;
784	}
785
786	spin_lock_init(&vmd->cfg_lock);
787	pci_set_drvdata(dev, vmd);
788	err = vmd_enable_domain(vmd, (unsigned long) id->driver_data);
789	if (err)
790		return err;
791
792	dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
793		 vmd->sysdata.domain);
794	return 0;
795}
796
797static void vmd_cleanup_srcu(struct vmd_dev *vmd)
798{
799	int i;
800
801	for (i = 0; i < vmd->msix_count; i++)
802		cleanup_srcu_struct(&vmd->irqs[i].srcu);
803}
804
805static void vmd_remove(struct pci_dev *dev)
806{
807	struct vmd_dev *vmd = pci_get_drvdata(dev);
808
809	sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
810	pci_stop_root_bus(vmd->bus);
811	pci_remove_root_bus(vmd->bus);
812	vmd_cleanup_srcu(vmd);
813	vmd_teardown_dma_ops(vmd);
814	vmd_detach_resources(vmd);
815	irq_domain_remove(vmd->irq_domain);
816}
817
818#ifdef CONFIG_PM_SLEEP
819static int vmd_suspend(struct device *dev)
820{
821	struct pci_dev *pdev = to_pci_dev(dev);
822	struct vmd_dev *vmd = pci_get_drvdata(pdev);
823	int i;
824
825	for (i = 0; i < vmd->msix_count; i++)
826                devm_free_irq(dev, pci_irq_vector(pdev, i), &vmd->irqs[i]);
827
828	pci_save_state(pdev);
829	return 0;
830}
831
832static int vmd_resume(struct device *dev)
833{
834	struct pci_dev *pdev = to_pci_dev(dev);
835	struct vmd_dev *vmd = pci_get_drvdata(pdev);
836	int err, i;
837
838	for (i = 0; i < vmd->msix_count; i++) {
839		err = devm_request_irq(dev, pci_irq_vector(pdev, i),
840				       vmd_irq, IRQF_NO_THREAD,
841				       "vmd", &vmd->irqs[i]);
842		if (err)
843			return err;
844	}
845
846	pci_restore_state(pdev);
847	return 0;
848}
849#endif
850static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
851
852static const struct pci_device_id vmd_ids[] = {
853	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),},
 
854	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
855		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
856				VMD_FEAT_HAS_BUS_RESTRICTIONS,},
 
 
 
 
 
 
 
 
 
 
 
 
 
857	{0,}
858};
859MODULE_DEVICE_TABLE(pci, vmd_ids);
860
861static struct pci_driver vmd_drv = {
862	.name		= "vmd",
863	.id_table	= vmd_ids,
864	.probe		= vmd_probe,
865	.remove		= vmd_remove,
866	.driver		= {
867		.pm	= &vmd_dev_pm_ops,
868	},
869};
870module_pci_driver(vmd_drv);
871
872MODULE_AUTHOR("Intel Corporation");
873MODULE_LICENSE("GPL v2");
874MODULE_VERSION("0.6");
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Volume Management Device driver
  4 * Copyright (c) 2015, Intel Corporation.
  5 */
  6
  7#include <linux/device.h>
  8#include <linux/interrupt.h>
  9#include <linux/irq.h>
 10#include <linux/kernel.h>
 11#include <linux/module.h>
 12#include <linux/msi.h>
 13#include <linux/pci.h>
 14#include <linux/pci-ecam.h>
 15#include <linux/srcu.h>
 16#include <linux/rculist.h>
 17#include <linux/rcupdate.h>
 18
 19#include <asm/irqdomain.h>
 20#include <asm/device.h>
 21#include <asm/msi.h>
 
 22
 23#define VMD_CFGBAR	0
 24#define VMD_MEMBAR1	2
 25#define VMD_MEMBAR2	4
 26
 27#define PCI_REG_VMCAP		0x40
 28#define BUS_RESTRICT_CAP(vmcap)	(vmcap & 0x1)
 29#define PCI_REG_VMCONFIG	0x44
 30#define BUS_RESTRICT_CFG(vmcfg)	((vmcfg >> 8) & 0x3)
 31#define VMCONFIG_MSI_REMAP	0x2
 32#define PCI_REG_VMLOCK		0x70
 33#define MB2_SHADOW_EN(vmlock)	(vmlock & 0x2)
 34
 35#define MB2_SHADOW_OFFSET	0x2000
 36#define MB2_SHADOW_SIZE		16
 37
 38enum vmd_features {
 39	/*
 40	 * Device may contain registers which hint the physical location of the
 41	 * membars, in order to allow proper address translation during
 42	 * resource assignment to enable guest virtualization
 43	 */
 44	VMD_FEAT_HAS_MEMBAR_SHADOW		= (1 << 0),
 45
 46	/*
 47	 * Device may provide root port configuration information which limits
 48	 * bus numbering
 49	 */
 50	VMD_FEAT_HAS_BUS_RESTRICTIONS		= (1 << 1),
 51
 52	/*
 53	 * Device contains physical location shadow registers in
 54	 * vendor-specific capability space
 55	 */
 56	VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP	= (1 << 2),
 57
 58	/*
 59	 * Device may use MSI-X vector 0 for software triggering and will not
 60	 * be used for MSI remapping
 61	 */
 62	VMD_FEAT_OFFSET_FIRST_VECTOR		= (1 << 3),
 63
 64	/*
 65	 * Device can bypass remapping MSI-X transactions into its MSI-X table,
 66	 * avoiding the requirement of a VMD MSI domain for child device
 67	 * interrupt handling.
 68	 */
 69	VMD_FEAT_CAN_BYPASS_MSI_REMAP		= (1 << 4),
 70};
 71
 72/*
 73 * Lock for manipulating VMD IRQ lists.
 74 */
 75static DEFINE_RAW_SPINLOCK(list_lock);
 76
 77/**
 78 * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
 79 * @node:	list item for parent traversal.
 80 * @irq:	back pointer to parent.
 81 * @enabled:	true if driver enabled IRQ
 82 * @virq:	the virtual IRQ value provided to the requesting driver.
 83 *
 84 * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
 85 * a VMD IRQ using this structure.
 86 */
 87struct vmd_irq {
 88	struct list_head	node;
 89	struct vmd_irq_list	*irq;
 90	bool			enabled;
 91	unsigned int		virq;
 92};
 93
 94/**
 95 * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
 96 * @irq_list:	the list of irq's the VMD one demuxes to.
 97 * @srcu:	SRCU struct for local synchronization.
 98 * @count:	number of child IRQs assigned to this vector; used to track
 99 *		sharing.
100 */
101struct vmd_irq_list {
102	struct list_head	irq_list;
103	struct srcu_struct	srcu;
104	unsigned int		count;
105};
106
107struct vmd_dev {
108	struct pci_dev		*dev;
109
110	spinlock_t		cfg_lock;
111	void __iomem		*cfgbar;
112
113	int msix_count;
114	struct vmd_irq_list	*irqs;
115
116	struct pci_sysdata	sysdata;
117	struct resource		resources[3];
118	struct irq_domain	*irq_domain;
119	struct pci_bus		*bus;
120	u8			busn_start;
121	u8			first_vec;
 
 
122};
123
124static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
125{
126	return container_of(bus->sysdata, struct vmd_dev, sysdata);
127}
128
129static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
130					   struct vmd_irq_list *irqs)
131{
132	return irqs - vmd->irqs;
133}
134
135/*
136 * Drivers managing a device in a VMD domain allocate their own IRQs as before,
137 * but the MSI entry for the hardware it's driving will be programmed with a
138 * destination ID for the VMD MSI-X table.  The VMD muxes interrupts in its
139 * domain into one of its own, and the VMD driver de-muxes these for the
140 * handlers sharing that VMD IRQ.  The vmd irq_domain provides the operations
141 * and irq_chip to set this up.
142 */
143static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
144{
145	struct vmd_irq *vmdirq = data->chip_data;
146	struct vmd_irq_list *irq = vmdirq->irq;
147	struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
148
149	memset(msg, 0, sizeof(*msg));
150	msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
151	msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
152	msg->arch_addr_lo.destid_0_7 = index_from_irqs(vmd, irq);
153}
154
155/*
156 * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
157 */
158static void vmd_irq_enable(struct irq_data *data)
159{
160	struct vmd_irq *vmdirq = data->chip_data;
161	unsigned long flags;
162
163	raw_spin_lock_irqsave(&list_lock, flags);
164	WARN_ON(vmdirq->enabled);
165	list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
166	vmdirq->enabled = true;
167	raw_spin_unlock_irqrestore(&list_lock, flags);
168
169	data->chip->irq_unmask(data);
170}
171
172static void vmd_irq_disable(struct irq_data *data)
173{
174	struct vmd_irq *vmdirq = data->chip_data;
175	unsigned long flags;
176
177	data->chip->irq_mask(data);
178
179	raw_spin_lock_irqsave(&list_lock, flags);
180	if (vmdirq->enabled) {
181		list_del_rcu(&vmdirq->node);
182		vmdirq->enabled = false;
183	}
184	raw_spin_unlock_irqrestore(&list_lock, flags);
185}
186
187/*
188 * XXX: Stubbed until we develop acceptable way to not create conflicts with
189 * other devices sharing the same vector.
190 */
191static int vmd_irq_set_affinity(struct irq_data *data,
192				const struct cpumask *dest, bool force)
193{
194	return -EINVAL;
195}
196
197static struct irq_chip vmd_msi_controller = {
198	.name			= "VMD-MSI",
199	.irq_enable		= vmd_irq_enable,
200	.irq_disable		= vmd_irq_disable,
201	.irq_compose_msi_msg	= vmd_compose_msi_msg,
202	.irq_set_affinity	= vmd_irq_set_affinity,
203};
204
205static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
206				     msi_alloc_info_t *arg)
207{
208	return 0;
209}
210
211/*
212 * XXX: We can be even smarter selecting the best IRQ once we solve the
213 * affinity problem.
214 */
215static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
216{
 
217	unsigned long flags;
218	int i, best;
219
220	if (vmd->msix_count == 1 + vmd->first_vec)
221		return &vmd->irqs[vmd->first_vec];
222
223	/*
224	 * White list for fast-interrupt handlers. All others will share the
225	 * "slow" interrupt vector.
226	 */
227	switch (msi_desc_to_pci_dev(desc)->class) {
228	case PCI_CLASS_STORAGE_EXPRESS:
229		break;
230	default:
231		return &vmd->irqs[vmd->first_vec];
232	}
233
234	raw_spin_lock_irqsave(&list_lock, flags);
235	best = vmd->first_vec + 1;
236	for (i = best; i < vmd->msix_count; i++)
237		if (vmd->irqs[i].count < vmd->irqs[best].count)
238			best = i;
239	vmd->irqs[best].count++;
240	raw_spin_unlock_irqrestore(&list_lock, flags);
241
242	return &vmd->irqs[best];
243}
244
245static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
246			unsigned int virq, irq_hw_number_t hwirq,
247			msi_alloc_info_t *arg)
248{
249	struct msi_desc *desc = arg->desc;
250	struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
251	struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
252	unsigned int index, vector;
253
254	if (!vmdirq)
255		return -ENOMEM;
256
257	INIT_LIST_HEAD(&vmdirq->node);
258	vmdirq->irq = vmd_next_irq(vmd, desc);
259	vmdirq->virq = virq;
260	index = index_from_irqs(vmd, vmdirq->irq);
261	vector = pci_irq_vector(vmd->dev, index);
262
263	irq_domain_set_info(domain, virq, vector, info->chip, vmdirq,
264			    handle_untracked_irq, vmd, NULL);
265	return 0;
266}
267
268static void vmd_msi_free(struct irq_domain *domain,
269			struct msi_domain_info *info, unsigned int virq)
270{
271	struct vmd_irq *vmdirq = irq_get_chip_data(virq);
272	unsigned long flags;
273
274	synchronize_srcu(&vmdirq->irq->srcu);
275
276	/* XXX: Potential optimization to rebalance */
277	raw_spin_lock_irqsave(&list_lock, flags);
278	vmdirq->irq->count--;
279	raw_spin_unlock_irqrestore(&list_lock, flags);
280
281	kfree(vmdirq);
282}
283
284static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
285			   int nvec, msi_alloc_info_t *arg)
286{
287	struct pci_dev *pdev = to_pci_dev(dev);
288	struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
289
290	if (nvec > vmd->msix_count)
291		return vmd->msix_count;
292
293	memset(arg, 0, sizeof(*arg));
294	return 0;
295}
296
297static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
298{
299	arg->desc = desc;
300}
301
302static struct msi_domain_ops vmd_msi_domain_ops = {
303	.get_hwirq	= vmd_get_hwirq,
304	.msi_init	= vmd_msi_init,
305	.msi_free	= vmd_msi_free,
306	.msi_prepare	= vmd_msi_prepare,
307	.set_desc	= vmd_set_desc,
308};
309
310static struct msi_domain_info vmd_msi_domain_info = {
311	.flags		= MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
312			  MSI_FLAG_PCI_MSIX,
313	.ops		= &vmd_msi_domain_ops,
314	.chip		= &vmd_msi_controller,
315};
316
317static void vmd_set_msi_remapping(struct vmd_dev *vmd, bool enable)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
318{
319	u16 reg;
 
320
321	pci_read_config_word(vmd->dev, PCI_REG_VMCONFIG, &reg);
322	reg = enable ? (reg & ~VMCONFIG_MSI_REMAP) :
323		       (reg | VMCONFIG_MSI_REMAP);
324	pci_write_config_word(vmd->dev, PCI_REG_VMCONFIG, reg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325}
326
327static int vmd_create_irq_domain(struct vmd_dev *vmd)
 
 
 
328{
329	struct fwnode_handle *fn;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
330
331	fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain);
332	if (!fn)
333		return -ENODEV;
 
334
335	vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info, NULL);
336	if (!vmd->irq_domain) {
337		irq_domain_free_fwnode(fn);
338		return -ENODEV;
339	}
340
341	return 0;
 
342}
343
344static void vmd_remove_irq_domain(struct vmd_dev *vmd)
 
 
 
 
 
 
345{
346	/*
347	 * Some production BIOS won't enable remapping between soft reboots.
348	 * Ensure remapping is restored before unloading the driver.
349	 */
350	if (!vmd->msix_count)
351		vmd_set_msi_remapping(vmd, true);
352
353	if (vmd->irq_domain) {
354		struct fwnode_handle *fn = vmd->irq_domain->fwnode;
355
356		irq_domain_remove(vmd->irq_domain);
357		irq_domain_free_fwnode(fn);
358	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
359}
 
360
361static void __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
362				  unsigned int devfn, int reg, int len)
363{
364	unsigned int busnr_ecam = bus->number - vmd->busn_start;
365	u32 offset = PCIE_ECAM_OFFSET(busnr_ecam, devfn, reg);
 
366
367	if (offset + len >= resource_size(&vmd->dev->resource[VMD_CFGBAR]))
 
368		return NULL;
369
370	return vmd->cfgbar + offset;
371}
372
373/*
374 * CPU may deadlock if config space is not serialized on some versions of this
375 * hardware, so all config space access is done under a spinlock.
376 */
377static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
378			int len, u32 *value)
379{
380	struct vmd_dev *vmd = vmd_from_bus(bus);
381	void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
382	unsigned long flags;
383	int ret = 0;
384
385	if (!addr)
386		return -EFAULT;
387
388	spin_lock_irqsave(&vmd->cfg_lock, flags);
389	switch (len) {
390	case 1:
391		*value = readb(addr);
392		break;
393	case 2:
394		*value = readw(addr);
395		break;
396	case 4:
397		*value = readl(addr);
398		break;
399	default:
400		ret = -EINVAL;
401		break;
402	}
403	spin_unlock_irqrestore(&vmd->cfg_lock, flags);
404	return ret;
405}
406
407/*
408 * VMD h/w converts non-posted config writes to posted memory writes. The
409 * read-back in this function forces the completion so it returns only after
410 * the config space was written, as expected.
411 */
412static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
413			 int len, u32 value)
414{
415	struct vmd_dev *vmd = vmd_from_bus(bus);
416	void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
417	unsigned long flags;
418	int ret = 0;
419
420	if (!addr)
421		return -EFAULT;
422
423	spin_lock_irqsave(&vmd->cfg_lock, flags);
424	switch (len) {
425	case 1:
426		writeb(value, addr);
427		readb(addr);
428		break;
429	case 2:
430		writew(value, addr);
431		readw(addr);
432		break;
433	case 4:
434		writel(value, addr);
435		readl(addr);
436		break;
437	default:
438		ret = -EINVAL;
439		break;
440	}
441	spin_unlock_irqrestore(&vmd->cfg_lock, flags);
442	return ret;
443}
444
445static struct pci_ops vmd_ops = {
446	.read		= vmd_pci_read,
447	.write		= vmd_pci_write,
448};
449
450static void vmd_attach_resources(struct vmd_dev *vmd)
451{
452	vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
453	vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
454}
455
456static void vmd_detach_resources(struct vmd_dev *vmd)
457{
458	vmd->dev->resource[VMD_MEMBAR1].child = NULL;
459	vmd->dev->resource[VMD_MEMBAR2].child = NULL;
460}
461
462/*
463 * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
464 * Per ACPI r6.0, sec 6.5.6,  _SEG returns an integer, of which the lower
465 * 16 bits are the PCI Segment Group (domain) number.  Other bits are
466 * currently reserved.
467 */
468static int vmd_find_free_domain(void)
469{
470	int domain = 0xffff;
471	struct pci_bus *bus = NULL;
472
473	while ((bus = pci_find_next_bus(bus)) != NULL)
474		domain = max_t(int, domain, pci_domain_nr(bus));
475	return domain + 1;
476}
477
478static int vmd_get_phys_offsets(struct vmd_dev *vmd, bool native_hint,
479				resource_size_t *offset1,
480				resource_size_t *offset2)
481{
482	struct pci_dev *dev = vmd->dev;
483	u64 phys1, phys2;
484
485	if (native_hint) {
486		u32 vmlock;
487		int ret;
488
489		ret = pci_read_config_dword(dev, PCI_REG_VMLOCK, &vmlock);
490		if (ret || vmlock == ~0)
491			return -ENODEV;
492
493		if (MB2_SHADOW_EN(vmlock)) {
494			void __iomem *membar2;
495
496			membar2 = pci_iomap(dev, VMD_MEMBAR2, 0);
497			if (!membar2)
498				return -ENOMEM;
499			phys1 = readq(membar2 + MB2_SHADOW_OFFSET);
500			phys2 = readq(membar2 + MB2_SHADOW_OFFSET + 8);
501			pci_iounmap(dev, membar2);
502		} else
503			return 0;
504	} else {
505		/* Hypervisor-Emulated Vendor-Specific Capability */
506		int pos = pci_find_capability(dev, PCI_CAP_ID_VNDR);
507		u32 reg, regu;
508
509		pci_read_config_dword(dev, pos + 4, &reg);
510
511		/* "SHDW" */
512		if (pos && reg == 0x53484457) {
513			pci_read_config_dword(dev, pos + 8, &reg);
514			pci_read_config_dword(dev, pos + 12, &regu);
515			phys1 = (u64) regu << 32 | reg;
516
517			pci_read_config_dword(dev, pos + 16, &reg);
518			pci_read_config_dword(dev, pos + 20, &regu);
519			phys2 = (u64) regu << 32 | reg;
520		} else
521			return 0;
522	}
523
524	*offset1 = dev->resource[VMD_MEMBAR1].start -
525			(phys1 & PCI_BASE_ADDRESS_MEM_MASK);
526	*offset2 = dev->resource[VMD_MEMBAR2].start -
527			(phys2 & PCI_BASE_ADDRESS_MEM_MASK);
528
529	return 0;
530}
531
532static int vmd_get_bus_number_start(struct vmd_dev *vmd)
533{
534	struct pci_dev *dev = vmd->dev;
535	u16 reg;
536
537	pci_read_config_word(dev, PCI_REG_VMCAP, &reg);
538	if (BUS_RESTRICT_CAP(reg)) {
539		pci_read_config_word(dev, PCI_REG_VMCONFIG, &reg);
540
541		switch (BUS_RESTRICT_CFG(reg)) {
542		case 0:
543			vmd->busn_start = 0;
544			break;
545		case 1:
546			vmd->busn_start = 128;
547			break;
548		case 2:
549			vmd->busn_start = 224;
550			break;
551		default:
552			pci_err(dev, "Unknown Bus Offset Setting (%d)\n",
553				BUS_RESTRICT_CFG(reg));
554			return -ENODEV;
555		}
556	}
557
558	return 0;
559}
560
561static irqreturn_t vmd_irq(int irq, void *data)
562{
563	struct vmd_irq_list *irqs = data;
564	struct vmd_irq *vmdirq;
565	int idx;
566
567	idx = srcu_read_lock(&irqs->srcu);
568	list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
569		generic_handle_irq(vmdirq->virq);
570	srcu_read_unlock(&irqs->srcu, idx);
571
572	return IRQ_HANDLED;
573}
574
575static int vmd_alloc_irqs(struct vmd_dev *vmd)
576{
577	struct pci_dev *dev = vmd->dev;
578	int i, err;
579
580	vmd->msix_count = pci_msix_vec_count(dev);
581	if (vmd->msix_count < 0)
582		return -ENODEV;
583
584	vmd->msix_count = pci_alloc_irq_vectors(dev, vmd->first_vec + 1,
585						vmd->msix_count, PCI_IRQ_MSIX);
586	if (vmd->msix_count < 0)
587		return vmd->msix_count;
588
589	vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
590				 GFP_KERNEL);
591	if (!vmd->irqs)
592		return -ENOMEM;
593
594	for (i = 0; i < vmd->msix_count; i++) {
595		err = init_srcu_struct(&vmd->irqs[i].srcu);
596		if (err)
597			return err;
598
599		INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
600		err = devm_request_irq(&dev->dev, pci_irq_vector(dev, i),
601				       vmd_irq, IRQF_NO_THREAD,
602				       "vmd", &vmd->irqs[i]);
603		if (err)
604			return err;
605	}
606
607	return 0;
608}
609
610static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
611{
612	struct pci_sysdata *sd = &vmd->sysdata;
 
613	struct resource *res;
614	u32 upper_bits;
615	unsigned long flags;
616	LIST_HEAD(resources);
617	resource_size_t offset[2] = {0};
618	resource_size_t membar2_offset = 0x2000;
619	struct pci_bus *child;
620	int ret;
621
622	/*
623	 * Shadow registers may exist in certain VMD device ids which allow
624	 * guests to correctly assign host physical addresses to the root ports
625	 * and child devices. These registers will either return the host value
626	 * or 0, depending on an enable bit in the VMD device.
627	 */
628	if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
 
 
 
629		membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE;
630		ret = vmd_get_phys_offsets(vmd, true, &offset[0], &offset[1]);
631		if (ret)
632			return ret;
633	} else if (features & VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP) {
634		ret = vmd_get_phys_offsets(vmd, false, &offset[0], &offset[1]);
635		if (ret)
636			return ret;
 
 
 
 
 
 
 
 
 
637	}
638
639	/*
640	 * Certain VMD devices may have a root port configuration option which
641	 * limits the bus range to between 0-127, 128-255, or 224-255
642	 */
643	if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
644		ret = vmd_get_bus_number_start(vmd);
645		if (ret)
646			return ret;
 
 
 
 
647	}
648
649	res = &vmd->dev->resource[VMD_CFGBAR];
650	vmd->resources[0] = (struct resource) {
651		.name  = "VMD CFGBAR",
652		.start = vmd->busn_start,
653		.end   = vmd->busn_start + (resource_size(res) >> 20) - 1,
654		.flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
655	};
656
657	/*
658	 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
659	 * put 32-bit resources in the window.
660	 *
661	 * There's no hardware reason why a 64-bit window *couldn't*
662	 * contain a 32-bit resource, but pbus_size_mem() computes the
663	 * bridge window size assuming a 64-bit window will contain no
664	 * 32-bit resources.  __pci_assign_resource() enforces that
665	 * artificial restriction to make sure everything will fit.
666	 *
667	 * The only way we could use a 64-bit non-prefetchable MEMBAR is
668	 * if its address is <4GB so that we can convert it to a 32-bit
669	 * resource.  To be visible to the host OS, all VMD endpoints must
670	 * be initially configured by platform BIOS, which includes setting
671	 * up these resources.  We can assume the device is configured
672	 * according to the platform needs.
673	 */
674	res = &vmd->dev->resource[VMD_MEMBAR1];
675	upper_bits = upper_32_bits(res->end);
676	flags = res->flags & ~IORESOURCE_SIZEALIGN;
677	if (!upper_bits)
678		flags &= ~IORESOURCE_MEM_64;
679	vmd->resources[1] = (struct resource) {
680		.name  = "VMD MEMBAR1",
681		.start = res->start,
682		.end   = res->end,
683		.flags = flags,
684		.parent = res,
685	};
686
687	res = &vmd->dev->resource[VMD_MEMBAR2];
688	upper_bits = upper_32_bits(res->end);
689	flags = res->flags & ~IORESOURCE_SIZEALIGN;
690	if (!upper_bits)
691		flags &= ~IORESOURCE_MEM_64;
692	vmd->resources[2] = (struct resource) {
693		.name  = "VMD MEMBAR2",
694		.start = res->start + membar2_offset,
695		.end   = res->end,
696		.flags = flags,
697		.parent = res,
698	};
699
700	sd->vmd_dev = vmd->dev;
701	sd->domain = vmd_find_free_domain();
702	if (sd->domain < 0)
703		return sd->domain;
704
705	sd->node = pcibus_to_node(vmd->dev->bus);
706
707	/*
708	 * Currently MSI remapping must be enabled in guest passthrough mode
709	 * due to some missing interrupt remapping plumbing. This is probably
710	 * acceptable because the guest is usually CPU-limited and MSI
711	 * remapping doesn't become a performance bottleneck.
712	 */
713	if (!(features & VMD_FEAT_CAN_BYPASS_MSI_REMAP) ||
714	    offset[0] || offset[1]) {
715		ret = vmd_alloc_irqs(vmd);
716		if (ret)
717			return ret;
718
719		vmd_set_msi_remapping(vmd, true);
720
721		ret = vmd_create_irq_domain(vmd);
722		if (ret)
723			return ret;
724
725		/*
726		 * Override the IRQ domain bus token so the domain can be
727		 * distinguished from a regular PCI/MSI domain.
728		 */
729		irq_domain_update_bus_token(vmd->irq_domain, DOMAIN_BUS_VMD_MSI);
730	} else {
731		vmd_set_msi_remapping(vmd, false);
732	}
733
734	pci_add_resource(&resources, &vmd->resources[0]);
735	pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
736	pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
737
738	vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start,
739				       &vmd_ops, sd, &resources);
740	if (!vmd->bus) {
741		pci_free_resource_list(&resources);
742		vmd_remove_irq_domain(vmd);
743		return -ENODEV;
744	}
745
746	vmd_attach_resources(vmd);
747	if (vmd->irq_domain)
748		dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
749
750	pci_scan_child_bus(vmd->bus);
751	pci_assign_unassigned_bus_resources(vmd->bus);
752
753	/*
754	 * VMD root buses are virtual and don't return true on pci_is_pcie()
755	 * and will fail pcie_bus_configure_settings() early. It can instead be
756	 * run on each of the real root ports.
757	 */
758	list_for_each_entry(child, &vmd->bus->children, node)
759		pcie_bus_configure_settings(child);
760
761	pci_bus_add_devices(vmd->bus);
762
763	WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
764			       "domain"), "Can't create symlink to domain\n");
765	return 0;
766}
767
 
 
 
 
 
 
 
 
 
 
 
 
 
 
768static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
769{
770	unsigned long features = (unsigned long) id->driver_data;
771	struct vmd_dev *vmd;
772	int err;
773
774	if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
775		return -ENOMEM;
776
777	vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
778	if (!vmd)
779		return -ENOMEM;
780
781	vmd->dev = dev;
782	err = pcim_enable_device(dev);
783	if (err < 0)
784		return err;
785
786	vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
787	if (!vmd->cfgbar)
788		return -ENOMEM;
789
790	pci_set_master(dev);
791	if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
792	    dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32)))
793		return -ENODEV;
794
795	if (features & VMD_FEAT_OFFSET_FIRST_VECTOR)
796		vmd->first_vec = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
797
798	spin_lock_init(&vmd->cfg_lock);
799	pci_set_drvdata(dev, vmd);
800	err = vmd_enable_domain(vmd, features);
801	if (err)
802		return err;
803
804	dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
805		 vmd->sysdata.domain);
806	return 0;
807}
808
809static void vmd_cleanup_srcu(struct vmd_dev *vmd)
810{
811	int i;
812
813	for (i = 0; i < vmd->msix_count; i++)
814		cleanup_srcu_struct(&vmd->irqs[i].srcu);
815}
816
817static void vmd_remove(struct pci_dev *dev)
818{
819	struct vmd_dev *vmd = pci_get_drvdata(dev);
820
821	sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
822	pci_stop_root_bus(vmd->bus);
823	pci_remove_root_bus(vmd->bus);
824	vmd_cleanup_srcu(vmd);
 
825	vmd_detach_resources(vmd);
826	vmd_remove_irq_domain(vmd);
827}
828
829#ifdef CONFIG_PM_SLEEP
830static int vmd_suspend(struct device *dev)
831{
832	struct pci_dev *pdev = to_pci_dev(dev);
833	struct vmd_dev *vmd = pci_get_drvdata(pdev);
834	int i;
835
836	for (i = 0; i < vmd->msix_count; i++)
837		devm_free_irq(dev, pci_irq_vector(pdev, i), &vmd->irqs[i]);
838
 
839	return 0;
840}
841
842static int vmd_resume(struct device *dev)
843{
844	struct pci_dev *pdev = to_pci_dev(dev);
845	struct vmd_dev *vmd = pci_get_drvdata(pdev);
846	int err, i;
847
848	for (i = 0; i < vmd->msix_count; i++) {
849		err = devm_request_irq(dev, pci_irq_vector(pdev, i),
850				       vmd_irq, IRQF_NO_THREAD,
851				       "vmd", &vmd->irqs[i]);
852		if (err)
853			return err;
854	}
855
 
856	return 0;
857}
858#endif
859static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
860
861static const struct pci_device_id vmd_ids[] = {
862	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),
863		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP,},
864	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
865		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
866				VMD_FEAT_HAS_BUS_RESTRICTIONS |
867				VMD_FEAT_CAN_BYPASS_MSI_REMAP,},
868	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x467f),
869		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
870				VMD_FEAT_HAS_BUS_RESTRICTIONS |
871				VMD_FEAT_OFFSET_FIRST_VECTOR,},
872	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x4c3d),
873		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
874				VMD_FEAT_HAS_BUS_RESTRICTIONS |
875				VMD_FEAT_OFFSET_FIRST_VECTOR,},
876	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B),
877		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
878				VMD_FEAT_HAS_BUS_RESTRICTIONS |
879				VMD_FEAT_OFFSET_FIRST_VECTOR,},
880	{0,}
881};
882MODULE_DEVICE_TABLE(pci, vmd_ids);
883
884static struct pci_driver vmd_drv = {
885	.name		= "vmd",
886	.id_table	= vmd_ids,
887	.probe		= vmd_probe,
888	.remove		= vmd_remove,
889	.driver		= {
890		.pm	= &vmd_dev_pm_ops,
891	},
892};
893module_pci_driver(vmd_drv);
894
895MODULE_AUTHOR("Intel Corporation");
896MODULE_LICENSE("GPL v2");
897MODULE_VERSION("0.6");