Loading...
1// SPDX-License-Identifier: GPL-2.0
2#include "callchain.h"
3#include "debug.h"
4#include "dso.h"
5#include "build-id.h"
6#include "hist.h"
7#include "map.h"
8#include "map_symbol.h"
9#include "branch.h"
10#include "mem-events.h"
11#include "session.h"
12#include "namespaces.h"
13#include "sort.h"
14#include "units.h"
15#include "evlist.h"
16#include "evsel.h"
17#include "annotate.h"
18#include "srcline.h"
19#include "symbol.h"
20#include "thread.h"
21#include "ui/progress.h"
22#include <errno.h>
23#include <math.h>
24#include <inttypes.h>
25#include <sys/param.h>
26#include <linux/rbtree.h>
27#include <linux/string.h>
28#include <linux/time64.h>
29#include <linux/zalloc.h>
30
31static bool hists__filter_entry_by_dso(struct hists *hists,
32 struct hist_entry *he);
33static bool hists__filter_entry_by_thread(struct hists *hists,
34 struct hist_entry *he);
35static bool hists__filter_entry_by_symbol(struct hists *hists,
36 struct hist_entry *he);
37static bool hists__filter_entry_by_socket(struct hists *hists,
38 struct hist_entry *he);
39
40u16 hists__col_len(struct hists *hists, enum hist_column col)
41{
42 return hists->col_len[col];
43}
44
45void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len)
46{
47 hists->col_len[col] = len;
48}
49
50bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len)
51{
52 if (len > hists__col_len(hists, col)) {
53 hists__set_col_len(hists, col, len);
54 return true;
55 }
56 return false;
57}
58
59void hists__reset_col_len(struct hists *hists)
60{
61 enum hist_column col;
62
63 for (col = 0; col < HISTC_NR_COLS; ++col)
64 hists__set_col_len(hists, col, 0);
65}
66
67static void hists__set_unres_dso_col_len(struct hists *hists, int dso)
68{
69 const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
70
71 if (hists__col_len(hists, dso) < unresolved_col_width &&
72 !symbol_conf.col_width_list_str && !symbol_conf.field_sep &&
73 !symbol_conf.dso_list)
74 hists__set_col_len(hists, dso, unresolved_col_width);
75}
76
77void hists__calc_col_len(struct hists *hists, struct hist_entry *h)
78{
79 const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
80 int symlen;
81 u16 len;
82
83 /*
84 * +4 accounts for '[x] ' priv level info
85 * +2 accounts for 0x prefix on raw addresses
86 * +3 accounts for ' y ' symtab origin info
87 */
88 if (h->ms.sym) {
89 symlen = h->ms.sym->namelen + 4;
90 if (verbose > 0)
91 symlen += BITS_PER_LONG / 4 + 2 + 3;
92 hists__new_col_len(hists, HISTC_SYMBOL, symlen);
93 } else {
94 symlen = unresolved_col_width + 4 + 2;
95 hists__new_col_len(hists, HISTC_SYMBOL, symlen);
96 hists__set_unres_dso_col_len(hists, HISTC_DSO);
97 }
98
99 len = thread__comm_len(h->thread);
100 if (hists__new_col_len(hists, HISTC_COMM, len))
101 hists__set_col_len(hists, HISTC_THREAD, len + 8);
102
103 if (h->ms.map) {
104 len = dso__name_len(h->ms.map->dso);
105 hists__new_col_len(hists, HISTC_DSO, len);
106 }
107
108 if (h->parent)
109 hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen);
110
111 if (h->branch_info) {
112 if (h->branch_info->from.sym) {
113 symlen = (int)h->branch_info->from.sym->namelen + 4;
114 if (verbose > 0)
115 symlen += BITS_PER_LONG / 4 + 2 + 3;
116 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
117
118 symlen = dso__name_len(h->branch_info->from.map->dso);
119 hists__new_col_len(hists, HISTC_DSO_FROM, symlen);
120 } else {
121 symlen = unresolved_col_width + 4 + 2;
122 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
123 hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM);
124 }
125
126 if (h->branch_info->to.sym) {
127 symlen = (int)h->branch_info->to.sym->namelen + 4;
128 if (verbose > 0)
129 symlen += BITS_PER_LONG / 4 + 2 + 3;
130 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
131
132 symlen = dso__name_len(h->branch_info->to.map->dso);
133 hists__new_col_len(hists, HISTC_DSO_TO, symlen);
134 } else {
135 symlen = unresolved_col_width + 4 + 2;
136 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
137 hists__set_unres_dso_col_len(hists, HISTC_DSO_TO);
138 }
139
140 if (h->branch_info->srcline_from)
141 hists__new_col_len(hists, HISTC_SRCLINE_FROM,
142 strlen(h->branch_info->srcline_from));
143 if (h->branch_info->srcline_to)
144 hists__new_col_len(hists, HISTC_SRCLINE_TO,
145 strlen(h->branch_info->srcline_to));
146 }
147
148 if (h->mem_info) {
149 if (h->mem_info->daddr.sym) {
150 symlen = (int)h->mem_info->daddr.sym->namelen + 4
151 + unresolved_col_width + 2;
152 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
153 symlen);
154 hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
155 symlen + 1);
156 } else {
157 symlen = unresolved_col_width + 4 + 2;
158 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
159 symlen);
160 hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
161 symlen);
162 }
163
164 if (h->mem_info->iaddr.sym) {
165 symlen = (int)h->mem_info->iaddr.sym->namelen + 4
166 + unresolved_col_width + 2;
167 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
168 symlen);
169 } else {
170 symlen = unresolved_col_width + 4 + 2;
171 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
172 symlen);
173 }
174
175 if (h->mem_info->daddr.map) {
176 symlen = dso__name_len(h->mem_info->daddr.map->dso);
177 hists__new_col_len(hists, HISTC_MEM_DADDR_DSO,
178 symlen);
179 } else {
180 symlen = unresolved_col_width + 4 + 2;
181 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
182 }
183
184 hists__new_col_len(hists, HISTC_MEM_PHYS_DADDR,
185 unresolved_col_width + 4 + 2);
186
187 } else {
188 symlen = unresolved_col_width + 4 + 2;
189 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen);
190 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen);
191 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
192 }
193
194 hists__new_col_len(hists, HISTC_CGROUP_ID, 20);
195 hists__new_col_len(hists, HISTC_CPU, 3);
196 hists__new_col_len(hists, HISTC_SOCKET, 6);
197 hists__new_col_len(hists, HISTC_MEM_LOCKED, 6);
198 hists__new_col_len(hists, HISTC_MEM_TLB, 22);
199 hists__new_col_len(hists, HISTC_MEM_SNOOP, 12);
200 hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3);
201 hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12);
202 hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12);
203 if (symbol_conf.nanosecs)
204 hists__new_col_len(hists, HISTC_TIME, 16);
205 else
206 hists__new_col_len(hists, HISTC_TIME, 12);
207
208 if (h->srcline) {
209 len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header));
210 hists__new_col_len(hists, HISTC_SRCLINE, len);
211 }
212
213 if (h->srcfile)
214 hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile));
215
216 if (h->transaction)
217 hists__new_col_len(hists, HISTC_TRANSACTION,
218 hist_entry__transaction_len());
219
220 if (h->trace_output)
221 hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output));
222}
223
224void hists__output_recalc_col_len(struct hists *hists, int max_rows)
225{
226 struct rb_node *next = rb_first_cached(&hists->entries);
227 struct hist_entry *n;
228 int row = 0;
229
230 hists__reset_col_len(hists);
231
232 while (next && row++ < max_rows) {
233 n = rb_entry(next, struct hist_entry, rb_node);
234 if (!n->filtered)
235 hists__calc_col_len(hists, n);
236 next = rb_next(&n->rb_node);
237 }
238}
239
240static void he_stat__add_cpumode_period(struct he_stat *he_stat,
241 unsigned int cpumode, u64 period)
242{
243 switch (cpumode) {
244 case PERF_RECORD_MISC_KERNEL:
245 he_stat->period_sys += period;
246 break;
247 case PERF_RECORD_MISC_USER:
248 he_stat->period_us += period;
249 break;
250 case PERF_RECORD_MISC_GUEST_KERNEL:
251 he_stat->period_guest_sys += period;
252 break;
253 case PERF_RECORD_MISC_GUEST_USER:
254 he_stat->period_guest_us += period;
255 break;
256 default:
257 break;
258 }
259}
260
261static long hist_time(unsigned long htime)
262{
263 unsigned long time_quantum = symbol_conf.time_quantum;
264 if (time_quantum)
265 return (htime / time_quantum) * time_quantum;
266 return htime;
267}
268
269static void he_stat__add_period(struct he_stat *he_stat, u64 period,
270 u64 weight)
271{
272
273 he_stat->period += period;
274 he_stat->weight += weight;
275 he_stat->nr_events += 1;
276}
277
278static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src)
279{
280 dest->period += src->period;
281 dest->period_sys += src->period_sys;
282 dest->period_us += src->period_us;
283 dest->period_guest_sys += src->period_guest_sys;
284 dest->period_guest_us += src->period_guest_us;
285 dest->nr_events += src->nr_events;
286 dest->weight += src->weight;
287}
288
289static void he_stat__decay(struct he_stat *he_stat)
290{
291 he_stat->period = (he_stat->period * 7) / 8;
292 he_stat->nr_events = (he_stat->nr_events * 7) / 8;
293 /* XXX need decay for weight too? */
294}
295
296static void hists__delete_entry(struct hists *hists, struct hist_entry *he);
297
298static bool hists__decay_entry(struct hists *hists, struct hist_entry *he)
299{
300 u64 prev_period = he->stat.period;
301 u64 diff;
302
303 if (prev_period == 0)
304 return true;
305
306 he_stat__decay(&he->stat);
307 if (symbol_conf.cumulate_callchain)
308 he_stat__decay(he->stat_acc);
309 decay_callchain(he->callchain);
310
311 diff = prev_period - he->stat.period;
312
313 if (!he->depth) {
314 hists->stats.total_period -= diff;
315 if (!he->filtered)
316 hists->stats.total_non_filtered_period -= diff;
317 }
318
319 if (!he->leaf) {
320 struct hist_entry *child;
321 struct rb_node *node = rb_first_cached(&he->hroot_out);
322 while (node) {
323 child = rb_entry(node, struct hist_entry, rb_node);
324 node = rb_next(node);
325
326 if (hists__decay_entry(hists, child))
327 hists__delete_entry(hists, child);
328 }
329 }
330
331 return he->stat.period == 0;
332}
333
334static void hists__delete_entry(struct hists *hists, struct hist_entry *he)
335{
336 struct rb_root_cached *root_in;
337 struct rb_root_cached *root_out;
338
339 if (he->parent_he) {
340 root_in = &he->parent_he->hroot_in;
341 root_out = &he->parent_he->hroot_out;
342 } else {
343 if (hists__has(hists, need_collapse))
344 root_in = &hists->entries_collapsed;
345 else
346 root_in = hists->entries_in;
347 root_out = &hists->entries;
348 }
349
350 rb_erase_cached(&he->rb_node_in, root_in);
351 rb_erase_cached(&he->rb_node, root_out);
352
353 --hists->nr_entries;
354 if (!he->filtered)
355 --hists->nr_non_filtered_entries;
356
357 hist_entry__delete(he);
358}
359
360void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel)
361{
362 struct rb_node *next = rb_first_cached(&hists->entries);
363 struct hist_entry *n;
364
365 while (next) {
366 n = rb_entry(next, struct hist_entry, rb_node);
367 next = rb_next(&n->rb_node);
368 if (((zap_user && n->level == '.') ||
369 (zap_kernel && n->level != '.') ||
370 hists__decay_entry(hists, n))) {
371 hists__delete_entry(hists, n);
372 }
373 }
374}
375
376void hists__delete_entries(struct hists *hists)
377{
378 struct rb_node *next = rb_first_cached(&hists->entries);
379 struct hist_entry *n;
380
381 while (next) {
382 n = rb_entry(next, struct hist_entry, rb_node);
383 next = rb_next(&n->rb_node);
384
385 hists__delete_entry(hists, n);
386 }
387}
388
389struct hist_entry *hists__get_entry(struct hists *hists, int idx)
390{
391 struct rb_node *next = rb_first_cached(&hists->entries);
392 struct hist_entry *n;
393 int i = 0;
394
395 while (next) {
396 n = rb_entry(next, struct hist_entry, rb_node);
397 if (i == idx)
398 return n;
399
400 next = rb_next(&n->rb_node);
401 i++;
402 }
403
404 return NULL;
405}
406
407/*
408 * histogram, sorted on item, collects periods
409 */
410
411static int hist_entry__init(struct hist_entry *he,
412 struct hist_entry *template,
413 bool sample_self,
414 size_t callchain_size)
415{
416 *he = *template;
417 he->callchain_size = callchain_size;
418
419 if (symbol_conf.cumulate_callchain) {
420 he->stat_acc = malloc(sizeof(he->stat));
421 if (he->stat_acc == NULL)
422 return -ENOMEM;
423 memcpy(he->stat_acc, &he->stat, sizeof(he->stat));
424 if (!sample_self)
425 memset(&he->stat, 0, sizeof(he->stat));
426 }
427
428 map__get(he->ms.map);
429
430 if (he->branch_info) {
431 /*
432 * This branch info is (a part of) allocated from
433 * sample__resolve_bstack() and will be freed after
434 * adding new entries. So we need to save a copy.
435 */
436 he->branch_info = malloc(sizeof(*he->branch_info));
437 if (he->branch_info == NULL)
438 goto err;
439
440 memcpy(he->branch_info, template->branch_info,
441 sizeof(*he->branch_info));
442
443 map__get(he->branch_info->from.map);
444 map__get(he->branch_info->to.map);
445 }
446
447 if (he->mem_info) {
448 map__get(he->mem_info->iaddr.map);
449 map__get(he->mem_info->daddr.map);
450 }
451
452 if (hist_entry__has_callchains(he) && symbol_conf.use_callchain)
453 callchain_init(he->callchain);
454
455 if (he->raw_data) {
456 he->raw_data = memdup(he->raw_data, he->raw_size);
457 if (he->raw_data == NULL)
458 goto err_infos;
459 }
460
461 if (he->srcline) {
462 he->srcline = strdup(he->srcline);
463 if (he->srcline == NULL)
464 goto err_rawdata;
465 }
466
467 if (symbol_conf.res_sample) {
468 he->res_samples = calloc(sizeof(struct res_sample),
469 symbol_conf.res_sample);
470 if (!he->res_samples)
471 goto err_srcline;
472 }
473
474 INIT_LIST_HEAD(&he->pairs.node);
475 thread__get(he->thread);
476 he->hroot_in = RB_ROOT_CACHED;
477 he->hroot_out = RB_ROOT_CACHED;
478
479 if (!symbol_conf.report_hierarchy)
480 he->leaf = true;
481
482 return 0;
483
484err_srcline:
485 zfree(&he->srcline);
486
487err_rawdata:
488 zfree(&he->raw_data);
489
490err_infos:
491 if (he->branch_info) {
492 map__put(he->branch_info->from.map);
493 map__put(he->branch_info->to.map);
494 zfree(&he->branch_info);
495 }
496 if (he->mem_info) {
497 map__put(he->mem_info->iaddr.map);
498 map__put(he->mem_info->daddr.map);
499 }
500err:
501 map__zput(he->ms.map);
502 zfree(&he->stat_acc);
503 return -ENOMEM;
504}
505
506static void *hist_entry__zalloc(size_t size)
507{
508 return zalloc(size + sizeof(struct hist_entry));
509}
510
511static void hist_entry__free(void *ptr)
512{
513 free(ptr);
514}
515
516static struct hist_entry_ops default_ops = {
517 .new = hist_entry__zalloc,
518 .free = hist_entry__free,
519};
520
521static struct hist_entry *hist_entry__new(struct hist_entry *template,
522 bool sample_self)
523{
524 struct hist_entry_ops *ops = template->ops;
525 size_t callchain_size = 0;
526 struct hist_entry *he;
527 int err = 0;
528
529 if (!ops)
530 ops = template->ops = &default_ops;
531
532 if (symbol_conf.use_callchain)
533 callchain_size = sizeof(struct callchain_root);
534
535 he = ops->new(callchain_size);
536 if (he) {
537 err = hist_entry__init(he, template, sample_self, callchain_size);
538 if (err) {
539 ops->free(he);
540 he = NULL;
541 }
542 }
543
544 return he;
545}
546
547static u8 symbol__parent_filter(const struct symbol *parent)
548{
549 if (symbol_conf.exclude_other && parent == NULL)
550 return 1 << HIST_FILTER__PARENT;
551 return 0;
552}
553
554static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period)
555{
556 if (!hist_entry__has_callchains(he) || !symbol_conf.use_callchain)
557 return;
558
559 he->hists->callchain_period += period;
560 if (!he->filtered)
561 he->hists->callchain_non_filtered_period += period;
562}
563
564static struct hist_entry *hists__findnew_entry(struct hists *hists,
565 struct hist_entry *entry,
566 struct addr_location *al,
567 bool sample_self)
568{
569 struct rb_node **p;
570 struct rb_node *parent = NULL;
571 struct hist_entry *he;
572 int64_t cmp;
573 u64 period = entry->stat.period;
574 u64 weight = entry->stat.weight;
575 bool leftmost = true;
576
577 p = &hists->entries_in->rb_root.rb_node;
578
579 while (*p != NULL) {
580 parent = *p;
581 he = rb_entry(parent, struct hist_entry, rb_node_in);
582
583 /*
584 * Make sure that it receives arguments in a same order as
585 * hist_entry__collapse() so that we can use an appropriate
586 * function when searching an entry regardless which sort
587 * keys were used.
588 */
589 cmp = hist_entry__cmp(he, entry);
590
591 if (!cmp) {
592 if (sample_self) {
593 he_stat__add_period(&he->stat, period, weight);
594 hist_entry__add_callchain_period(he, period);
595 }
596 if (symbol_conf.cumulate_callchain)
597 he_stat__add_period(he->stat_acc, period, weight);
598
599 /*
600 * This mem info was allocated from sample__resolve_mem
601 * and will not be used anymore.
602 */
603 mem_info__zput(entry->mem_info);
604
605 block_info__zput(entry->block_info);
606
607 /* If the map of an existing hist_entry has
608 * become out-of-date due to an exec() or
609 * similar, update it. Otherwise we will
610 * mis-adjust symbol addresses when computing
611 * the history counter to increment.
612 */
613 if (he->ms.map != entry->ms.map) {
614 map__put(he->ms.map);
615 he->ms.map = map__get(entry->ms.map);
616 }
617 goto out;
618 }
619
620 if (cmp < 0)
621 p = &(*p)->rb_left;
622 else {
623 p = &(*p)->rb_right;
624 leftmost = false;
625 }
626 }
627
628 he = hist_entry__new(entry, sample_self);
629 if (!he)
630 return NULL;
631
632 if (sample_self)
633 hist_entry__add_callchain_period(he, period);
634 hists->nr_entries++;
635
636 rb_link_node(&he->rb_node_in, parent, p);
637 rb_insert_color_cached(&he->rb_node_in, hists->entries_in, leftmost);
638out:
639 if (sample_self)
640 he_stat__add_cpumode_period(&he->stat, al->cpumode, period);
641 if (symbol_conf.cumulate_callchain)
642 he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period);
643 return he;
644}
645
646static unsigned random_max(unsigned high)
647{
648 unsigned thresh = -high % high;
649 for (;;) {
650 unsigned r = random();
651 if (r >= thresh)
652 return r % high;
653 }
654}
655
656static void hists__res_sample(struct hist_entry *he, struct perf_sample *sample)
657{
658 struct res_sample *r;
659 int j;
660
661 if (he->num_res < symbol_conf.res_sample) {
662 j = he->num_res++;
663 } else {
664 j = random_max(symbol_conf.res_sample);
665 }
666 r = &he->res_samples[j];
667 r->time = sample->time;
668 r->cpu = sample->cpu;
669 r->tid = sample->tid;
670}
671
672static struct hist_entry*
673__hists__add_entry(struct hists *hists,
674 struct addr_location *al,
675 struct symbol *sym_parent,
676 struct branch_info *bi,
677 struct mem_info *mi,
678 struct block_info *block_info,
679 struct perf_sample *sample,
680 bool sample_self,
681 struct hist_entry_ops *ops)
682{
683 struct namespaces *ns = thread__namespaces(al->thread);
684 struct hist_entry entry = {
685 .thread = al->thread,
686 .comm = thread__comm(al->thread),
687 .cgroup_id = {
688 .dev = ns ? ns->link_info[CGROUP_NS_INDEX].dev : 0,
689 .ino = ns ? ns->link_info[CGROUP_NS_INDEX].ino : 0,
690 },
691 .ms = {
692 .map = al->map,
693 .sym = al->sym,
694 },
695 .srcline = (char *) al->srcline,
696 .socket = al->socket,
697 .cpu = al->cpu,
698 .cpumode = al->cpumode,
699 .ip = al->addr,
700 .level = al->level,
701 .stat = {
702 .nr_events = 1,
703 .period = sample->period,
704 .weight = sample->weight,
705 },
706 .parent = sym_parent,
707 .filtered = symbol__parent_filter(sym_parent) | al->filtered,
708 .hists = hists,
709 .branch_info = bi,
710 .mem_info = mi,
711 .block_info = block_info,
712 .transaction = sample->transaction,
713 .raw_data = sample->raw_data,
714 .raw_size = sample->raw_size,
715 .ops = ops,
716 .time = hist_time(sample->time),
717 }, *he = hists__findnew_entry(hists, &entry, al, sample_self);
718
719 if (!hists->has_callchains && he && he->callchain_size != 0)
720 hists->has_callchains = true;
721 if (he && symbol_conf.res_sample)
722 hists__res_sample(he, sample);
723 return he;
724}
725
726struct hist_entry *hists__add_entry(struct hists *hists,
727 struct addr_location *al,
728 struct symbol *sym_parent,
729 struct branch_info *bi,
730 struct mem_info *mi,
731 struct perf_sample *sample,
732 bool sample_self)
733{
734 return __hists__add_entry(hists, al, sym_parent, bi, mi, NULL,
735 sample, sample_self, NULL);
736}
737
738struct hist_entry *hists__add_entry_ops(struct hists *hists,
739 struct hist_entry_ops *ops,
740 struct addr_location *al,
741 struct symbol *sym_parent,
742 struct branch_info *bi,
743 struct mem_info *mi,
744 struct perf_sample *sample,
745 bool sample_self)
746{
747 return __hists__add_entry(hists, al, sym_parent, bi, mi, NULL,
748 sample, sample_self, ops);
749}
750
751struct hist_entry *hists__add_entry_block(struct hists *hists,
752 struct addr_location *al,
753 struct block_info *block_info)
754{
755 struct hist_entry entry = {
756 .block_info = block_info,
757 .hists = hists,
758 }, *he = hists__findnew_entry(hists, &entry, al, false);
759
760 return he;
761}
762
763static int
764iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
765 struct addr_location *al __maybe_unused)
766{
767 return 0;
768}
769
770static int
771iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
772 struct addr_location *al __maybe_unused)
773{
774 return 0;
775}
776
777static int
778iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
779{
780 struct perf_sample *sample = iter->sample;
781 struct mem_info *mi;
782
783 mi = sample__resolve_mem(sample, al);
784 if (mi == NULL)
785 return -ENOMEM;
786
787 iter->priv = mi;
788 return 0;
789}
790
791static int
792iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
793{
794 u64 cost;
795 struct mem_info *mi = iter->priv;
796 struct hists *hists = evsel__hists(iter->evsel);
797 struct perf_sample *sample = iter->sample;
798 struct hist_entry *he;
799
800 if (mi == NULL)
801 return -EINVAL;
802
803 cost = sample->weight;
804 if (!cost)
805 cost = 1;
806
807 /*
808 * must pass period=weight in order to get the correct
809 * sorting from hists__collapse_resort() which is solely
810 * based on periods. We want sorting be done on nr_events * weight
811 * and this is indirectly achieved by passing period=weight here
812 * and the he_stat__add_period() function.
813 */
814 sample->period = cost;
815
816 he = hists__add_entry(hists, al, iter->parent, NULL, mi,
817 sample, true);
818 if (!he)
819 return -ENOMEM;
820
821 iter->he = he;
822 return 0;
823}
824
825static int
826iter_finish_mem_entry(struct hist_entry_iter *iter,
827 struct addr_location *al __maybe_unused)
828{
829 struct evsel *evsel = iter->evsel;
830 struct hists *hists = evsel__hists(evsel);
831 struct hist_entry *he = iter->he;
832 int err = -EINVAL;
833
834 if (he == NULL)
835 goto out;
836
837 hists__inc_nr_samples(hists, he->filtered);
838
839 err = hist_entry__append_callchain(he, iter->sample);
840
841out:
842 /*
843 * We don't need to free iter->priv (mem_info) here since the mem info
844 * was either already freed in hists__findnew_entry() or passed to a
845 * new hist entry by hist_entry__new().
846 */
847 iter->priv = NULL;
848
849 iter->he = NULL;
850 return err;
851}
852
853static int
854iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
855{
856 struct branch_info *bi;
857 struct perf_sample *sample = iter->sample;
858
859 bi = sample__resolve_bstack(sample, al);
860 if (!bi)
861 return -ENOMEM;
862
863 iter->curr = 0;
864 iter->total = sample->branch_stack->nr;
865
866 iter->priv = bi;
867 return 0;
868}
869
870static int
871iter_add_single_branch_entry(struct hist_entry_iter *iter __maybe_unused,
872 struct addr_location *al __maybe_unused)
873{
874 return 0;
875}
876
877static int
878iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
879{
880 struct branch_info *bi = iter->priv;
881 int i = iter->curr;
882
883 if (bi == NULL)
884 return 0;
885
886 if (iter->curr >= iter->total)
887 return 0;
888
889 al->map = bi[i].to.map;
890 al->sym = bi[i].to.sym;
891 al->addr = bi[i].to.addr;
892 return 1;
893}
894
895static int
896iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
897{
898 struct branch_info *bi;
899 struct evsel *evsel = iter->evsel;
900 struct hists *hists = evsel__hists(evsel);
901 struct perf_sample *sample = iter->sample;
902 struct hist_entry *he = NULL;
903 int i = iter->curr;
904 int err = 0;
905
906 bi = iter->priv;
907
908 if (iter->hide_unresolved && !(bi[i].from.sym && bi[i].to.sym))
909 goto out;
910
911 /*
912 * The report shows the percentage of total branches captured
913 * and not events sampled. Thus we use a pseudo period of 1.
914 */
915 sample->period = 1;
916 sample->weight = bi->flags.cycles ? bi->flags.cycles : 1;
917
918 he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL,
919 sample, true);
920 if (he == NULL)
921 return -ENOMEM;
922
923 hists__inc_nr_samples(hists, he->filtered);
924
925out:
926 iter->he = he;
927 iter->curr++;
928 return err;
929}
930
931static int
932iter_finish_branch_entry(struct hist_entry_iter *iter,
933 struct addr_location *al __maybe_unused)
934{
935 zfree(&iter->priv);
936 iter->he = NULL;
937
938 return iter->curr >= iter->total ? 0 : -1;
939}
940
941static int
942iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused,
943 struct addr_location *al __maybe_unused)
944{
945 return 0;
946}
947
948static int
949iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al)
950{
951 struct evsel *evsel = iter->evsel;
952 struct perf_sample *sample = iter->sample;
953 struct hist_entry *he;
954
955 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
956 sample, true);
957 if (he == NULL)
958 return -ENOMEM;
959
960 iter->he = he;
961 return 0;
962}
963
964static int
965iter_finish_normal_entry(struct hist_entry_iter *iter,
966 struct addr_location *al __maybe_unused)
967{
968 struct hist_entry *he = iter->he;
969 struct evsel *evsel = iter->evsel;
970 struct perf_sample *sample = iter->sample;
971
972 if (he == NULL)
973 return 0;
974
975 iter->he = NULL;
976
977 hists__inc_nr_samples(evsel__hists(evsel), he->filtered);
978
979 return hist_entry__append_callchain(he, sample);
980}
981
982static int
983iter_prepare_cumulative_entry(struct hist_entry_iter *iter,
984 struct addr_location *al __maybe_unused)
985{
986 struct hist_entry **he_cache;
987
988 callchain_cursor_commit(&callchain_cursor);
989
990 /*
991 * This is for detecting cycles or recursions so that they're
992 * cumulated only one time to prevent entries more than 100%
993 * overhead.
994 */
995 he_cache = malloc(sizeof(*he_cache) * (callchain_cursor.nr + 1));
996 if (he_cache == NULL)
997 return -ENOMEM;
998
999 iter->priv = he_cache;
1000 iter->curr = 0;
1001
1002 return 0;
1003}
1004
1005static int
1006iter_add_single_cumulative_entry(struct hist_entry_iter *iter,
1007 struct addr_location *al)
1008{
1009 struct evsel *evsel = iter->evsel;
1010 struct hists *hists = evsel__hists(evsel);
1011 struct perf_sample *sample = iter->sample;
1012 struct hist_entry **he_cache = iter->priv;
1013 struct hist_entry *he;
1014 int err = 0;
1015
1016 he = hists__add_entry(hists, al, iter->parent, NULL, NULL,
1017 sample, true);
1018 if (he == NULL)
1019 return -ENOMEM;
1020
1021 iter->he = he;
1022 he_cache[iter->curr++] = he;
1023
1024 hist_entry__append_callchain(he, sample);
1025
1026 /*
1027 * We need to re-initialize the cursor since callchain_append()
1028 * advanced the cursor to the end.
1029 */
1030 callchain_cursor_commit(&callchain_cursor);
1031
1032 hists__inc_nr_samples(hists, he->filtered);
1033
1034 return err;
1035}
1036
1037static int
1038iter_next_cumulative_entry(struct hist_entry_iter *iter,
1039 struct addr_location *al)
1040{
1041 struct callchain_cursor_node *node;
1042
1043 node = callchain_cursor_current(&callchain_cursor);
1044 if (node == NULL)
1045 return 0;
1046
1047 return fill_callchain_info(al, node, iter->hide_unresolved);
1048}
1049
1050static int
1051iter_add_next_cumulative_entry(struct hist_entry_iter *iter,
1052 struct addr_location *al)
1053{
1054 struct evsel *evsel = iter->evsel;
1055 struct perf_sample *sample = iter->sample;
1056 struct hist_entry **he_cache = iter->priv;
1057 struct hist_entry *he;
1058 struct hist_entry he_tmp = {
1059 .hists = evsel__hists(evsel),
1060 .cpu = al->cpu,
1061 .thread = al->thread,
1062 .comm = thread__comm(al->thread),
1063 .ip = al->addr,
1064 .ms = {
1065 .map = al->map,
1066 .sym = al->sym,
1067 },
1068 .srcline = (char *) al->srcline,
1069 .parent = iter->parent,
1070 .raw_data = sample->raw_data,
1071 .raw_size = sample->raw_size,
1072 };
1073 int i;
1074 struct callchain_cursor cursor;
1075
1076 callchain_cursor_snapshot(&cursor, &callchain_cursor);
1077
1078 callchain_cursor_advance(&callchain_cursor);
1079
1080 /*
1081 * Check if there's duplicate entries in the callchain.
1082 * It's possible that it has cycles or recursive calls.
1083 */
1084 for (i = 0; i < iter->curr; i++) {
1085 if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) {
1086 /* to avoid calling callback function */
1087 iter->he = NULL;
1088 return 0;
1089 }
1090 }
1091
1092 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
1093 sample, false);
1094 if (he == NULL)
1095 return -ENOMEM;
1096
1097 iter->he = he;
1098 he_cache[iter->curr++] = he;
1099
1100 if (hist_entry__has_callchains(he) && symbol_conf.use_callchain)
1101 callchain_append(he->callchain, &cursor, sample->period);
1102 return 0;
1103}
1104
1105static int
1106iter_finish_cumulative_entry(struct hist_entry_iter *iter,
1107 struct addr_location *al __maybe_unused)
1108{
1109 zfree(&iter->priv);
1110 iter->he = NULL;
1111
1112 return 0;
1113}
1114
1115const struct hist_iter_ops hist_iter_mem = {
1116 .prepare_entry = iter_prepare_mem_entry,
1117 .add_single_entry = iter_add_single_mem_entry,
1118 .next_entry = iter_next_nop_entry,
1119 .add_next_entry = iter_add_next_nop_entry,
1120 .finish_entry = iter_finish_mem_entry,
1121};
1122
1123const struct hist_iter_ops hist_iter_branch = {
1124 .prepare_entry = iter_prepare_branch_entry,
1125 .add_single_entry = iter_add_single_branch_entry,
1126 .next_entry = iter_next_branch_entry,
1127 .add_next_entry = iter_add_next_branch_entry,
1128 .finish_entry = iter_finish_branch_entry,
1129};
1130
1131const struct hist_iter_ops hist_iter_normal = {
1132 .prepare_entry = iter_prepare_normal_entry,
1133 .add_single_entry = iter_add_single_normal_entry,
1134 .next_entry = iter_next_nop_entry,
1135 .add_next_entry = iter_add_next_nop_entry,
1136 .finish_entry = iter_finish_normal_entry,
1137};
1138
1139const struct hist_iter_ops hist_iter_cumulative = {
1140 .prepare_entry = iter_prepare_cumulative_entry,
1141 .add_single_entry = iter_add_single_cumulative_entry,
1142 .next_entry = iter_next_cumulative_entry,
1143 .add_next_entry = iter_add_next_cumulative_entry,
1144 .finish_entry = iter_finish_cumulative_entry,
1145};
1146
1147int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al,
1148 int max_stack_depth, void *arg)
1149{
1150 int err, err2;
1151 struct map *alm = NULL;
1152
1153 if (al)
1154 alm = map__get(al->map);
1155
1156 err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent,
1157 iter->evsel, al, max_stack_depth);
1158 if (err) {
1159 map__put(alm);
1160 return err;
1161 }
1162
1163 err = iter->ops->prepare_entry(iter, al);
1164 if (err)
1165 goto out;
1166
1167 err = iter->ops->add_single_entry(iter, al);
1168 if (err)
1169 goto out;
1170
1171 if (iter->he && iter->add_entry_cb) {
1172 err = iter->add_entry_cb(iter, al, true, arg);
1173 if (err)
1174 goto out;
1175 }
1176
1177 while (iter->ops->next_entry(iter, al)) {
1178 err = iter->ops->add_next_entry(iter, al);
1179 if (err)
1180 break;
1181
1182 if (iter->he && iter->add_entry_cb) {
1183 err = iter->add_entry_cb(iter, al, false, arg);
1184 if (err)
1185 goto out;
1186 }
1187 }
1188
1189out:
1190 err2 = iter->ops->finish_entry(iter, al);
1191 if (!err)
1192 err = err2;
1193
1194 map__put(alm);
1195
1196 return err;
1197}
1198
1199int64_t
1200hist_entry__cmp(struct hist_entry *left, struct hist_entry *right)
1201{
1202 struct hists *hists = left->hists;
1203 struct perf_hpp_fmt *fmt;
1204 int64_t cmp = 0;
1205
1206 hists__for_each_sort_list(hists, fmt) {
1207 if (perf_hpp__is_dynamic_entry(fmt) &&
1208 !perf_hpp__defined_dynamic_entry(fmt, hists))
1209 continue;
1210
1211 cmp = fmt->cmp(fmt, left, right);
1212 if (cmp)
1213 break;
1214 }
1215
1216 return cmp;
1217}
1218
1219int64_t
1220hist_entry__collapse(struct hist_entry *left, struct hist_entry *right)
1221{
1222 struct hists *hists = left->hists;
1223 struct perf_hpp_fmt *fmt;
1224 int64_t cmp = 0;
1225
1226 hists__for_each_sort_list(hists, fmt) {
1227 if (perf_hpp__is_dynamic_entry(fmt) &&
1228 !perf_hpp__defined_dynamic_entry(fmt, hists))
1229 continue;
1230
1231 cmp = fmt->collapse(fmt, left, right);
1232 if (cmp)
1233 break;
1234 }
1235
1236 return cmp;
1237}
1238
1239void hist_entry__delete(struct hist_entry *he)
1240{
1241 struct hist_entry_ops *ops = he->ops;
1242
1243 thread__zput(he->thread);
1244 map__zput(he->ms.map);
1245
1246 if (he->branch_info) {
1247 map__zput(he->branch_info->from.map);
1248 map__zput(he->branch_info->to.map);
1249 free_srcline(he->branch_info->srcline_from);
1250 free_srcline(he->branch_info->srcline_to);
1251 zfree(&he->branch_info);
1252 }
1253
1254 if (he->mem_info) {
1255 map__zput(he->mem_info->iaddr.map);
1256 map__zput(he->mem_info->daddr.map);
1257 mem_info__zput(he->mem_info);
1258 }
1259
1260 if (he->block_info)
1261 block_info__zput(he->block_info);
1262
1263 zfree(&he->res_samples);
1264 zfree(&he->stat_acc);
1265 free_srcline(he->srcline);
1266 if (he->srcfile && he->srcfile[0])
1267 zfree(&he->srcfile);
1268 free_callchain(he->callchain);
1269 zfree(&he->trace_output);
1270 zfree(&he->raw_data);
1271 ops->free(he);
1272}
1273
1274/*
1275 * If this is not the last column, then we need to pad it according to the
1276 * pre-calculated max length for this column, otherwise don't bother adding
1277 * spaces because that would break viewing this with, for instance, 'less',
1278 * that would show tons of trailing spaces when a long C++ demangled method
1279 * names is sampled.
1280*/
1281int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp,
1282 struct perf_hpp_fmt *fmt, int printed)
1283{
1284 if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) {
1285 const int width = fmt->width(fmt, hpp, he->hists);
1286 if (printed < width) {
1287 advance_hpp(hpp, printed);
1288 printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " ");
1289 }
1290 }
1291
1292 return printed;
1293}
1294
1295/*
1296 * collapse the histogram
1297 */
1298
1299static void hists__apply_filters(struct hists *hists, struct hist_entry *he);
1300static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he,
1301 enum hist_filter type);
1302
1303typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt);
1304
1305static bool check_thread_entry(struct perf_hpp_fmt *fmt)
1306{
1307 return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt);
1308}
1309
1310static void hist_entry__check_and_remove_filter(struct hist_entry *he,
1311 enum hist_filter type,
1312 fmt_chk_fn check)
1313{
1314 struct perf_hpp_fmt *fmt;
1315 bool type_match = false;
1316 struct hist_entry *parent = he->parent_he;
1317
1318 switch (type) {
1319 case HIST_FILTER__THREAD:
1320 if (symbol_conf.comm_list == NULL &&
1321 symbol_conf.pid_list == NULL &&
1322 symbol_conf.tid_list == NULL)
1323 return;
1324 break;
1325 case HIST_FILTER__DSO:
1326 if (symbol_conf.dso_list == NULL)
1327 return;
1328 break;
1329 case HIST_FILTER__SYMBOL:
1330 if (symbol_conf.sym_list == NULL)
1331 return;
1332 break;
1333 case HIST_FILTER__PARENT:
1334 case HIST_FILTER__GUEST:
1335 case HIST_FILTER__HOST:
1336 case HIST_FILTER__SOCKET:
1337 case HIST_FILTER__C2C:
1338 default:
1339 return;
1340 }
1341
1342 /* if it's filtered by own fmt, it has to have filter bits */
1343 perf_hpp_list__for_each_format(he->hpp_list, fmt) {
1344 if (check(fmt)) {
1345 type_match = true;
1346 break;
1347 }
1348 }
1349
1350 if (type_match) {
1351 /*
1352 * If the filter is for current level entry, propagate
1353 * filter marker to parents. The marker bit was
1354 * already set by default so it only needs to clear
1355 * non-filtered entries.
1356 */
1357 if (!(he->filtered & (1 << type))) {
1358 while (parent) {
1359 parent->filtered &= ~(1 << type);
1360 parent = parent->parent_he;
1361 }
1362 }
1363 } else {
1364 /*
1365 * If current entry doesn't have matching formats, set
1366 * filter marker for upper level entries. it will be
1367 * cleared if its lower level entries is not filtered.
1368 *
1369 * For lower-level entries, it inherits parent's
1370 * filter bit so that lower level entries of a
1371 * non-filtered entry won't set the filter marker.
1372 */
1373 if (parent == NULL)
1374 he->filtered |= (1 << type);
1375 else
1376 he->filtered |= (parent->filtered & (1 << type));
1377 }
1378}
1379
1380static void hist_entry__apply_hierarchy_filters(struct hist_entry *he)
1381{
1382 hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD,
1383 check_thread_entry);
1384
1385 hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO,
1386 perf_hpp__is_dso_entry);
1387
1388 hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL,
1389 perf_hpp__is_sym_entry);
1390
1391 hists__apply_filters(he->hists, he);
1392}
1393
1394static struct hist_entry *hierarchy_insert_entry(struct hists *hists,
1395 struct rb_root_cached *root,
1396 struct hist_entry *he,
1397 struct hist_entry *parent_he,
1398 struct perf_hpp_list *hpp_list)
1399{
1400 struct rb_node **p = &root->rb_root.rb_node;
1401 struct rb_node *parent = NULL;
1402 struct hist_entry *iter, *new;
1403 struct perf_hpp_fmt *fmt;
1404 int64_t cmp;
1405 bool leftmost = true;
1406
1407 while (*p != NULL) {
1408 parent = *p;
1409 iter = rb_entry(parent, struct hist_entry, rb_node_in);
1410
1411 cmp = 0;
1412 perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1413 cmp = fmt->collapse(fmt, iter, he);
1414 if (cmp)
1415 break;
1416 }
1417
1418 if (!cmp) {
1419 he_stat__add_stat(&iter->stat, &he->stat);
1420 return iter;
1421 }
1422
1423 if (cmp < 0)
1424 p = &parent->rb_left;
1425 else {
1426 p = &parent->rb_right;
1427 leftmost = false;
1428 }
1429 }
1430
1431 new = hist_entry__new(he, true);
1432 if (new == NULL)
1433 return NULL;
1434
1435 hists->nr_entries++;
1436
1437 /* save related format list for output */
1438 new->hpp_list = hpp_list;
1439 new->parent_he = parent_he;
1440
1441 hist_entry__apply_hierarchy_filters(new);
1442
1443 /* some fields are now passed to 'new' */
1444 perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1445 if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt))
1446 he->trace_output = NULL;
1447 else
1448 new->trace_output = NULL;
1449
1450 if (perf_hpp__is_srcline_entry(fmt))
1451 he->srcline = NULL;
1452 else
1453 new->srcline = NULL;
1454
1455 if (perf_hpp__is_srcfile_entry(fmt))
1456 he->srcfile = NULL;
1457 else
1458 new->srcfile = NULL;
1459 }
1460
1461 rb_link_node(&new->rb_node_in, parent, p);
1462 rb_insert_color_cached(&new->rb_node_in, root, leftmost);
1463 return new;
1464}
1465
1466static int hists__hierarchy_insert_entry(struct hists *hists,
1467 struct rb_root_cached *root,
1468 struct hist_entry *he)
1469{
1470 struct perf_hpp_list_node *node;
1471 struct hist_entry *new_he = NULL;
1472 struct hist_entry *parent = NULL;
1473 int depth = 0;
1474 int ret = 0;
1475
1476 list_for_each_entry(node, &hists->hpp_formats, list) {
1477 /* skip period (overhead) and elided columns */
1478 if (node->level == 0 || node->skip)
1479 continue;
1480
1481 /* insert copy of 'he' for each fmt into the hierarchy */
1482 new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp);
1483 if (new_he == NULL) {
1484 ret = -1;
1485 break;
1486 }
1487
1488 root = &new_he->hroot_in;
1489 new_he->depth = depth++;
1490 parent = new_he;
1491 }
1492
1493 if (new_he) {
1494 new_he->leaf = true;
1495
1496 if (hist_entry__has_callchains(new_he) &&
1497 symbol_conf.use_callchain) {
1498 callchain_cursor_reset(&callchain_cursor);
1499 if (callchain_merge(&callchain_cursor,
1500 new_he->callchain,
1501 he->callchain) < 0)
1502 ret = -1;
1503 }
1504 }
1505
1506 /* 'he' is no longer used */
1507 hist_entry__delete(he);
1508
1509 /* return 0 (or -1) since it already applied filters */
1510 return ret;
1511}
1512
1513static int hists__collapse_insert_entry(struct hists *hists,
1514 struct rb_root_cached *root,
1515 struct hist_entry *he)
1516{
1517 struct rb_node **p = &root->rb_root.rb_node;
1518 struct rb_node *parent = NULL;
1519 struct hist_entry *iter;
1520 int64_t cmp;
1521 bool leftmost = true;
1522
1523 if (symbol_conf.report_hierarchy)
1524 return hists__hierarchy_insert_entry(hists, root, he);
1525
1526 while (*p != NULL) {
1527 parent = *p;
1528 iter = rb_entry(parent, struct hist_entry, rb_node_in);
1529
1530 cmp = hist_entry__collapse(iter, he);
1531
1532 if (!cmp) {
1533 int ret = 0;
1534
1535 he_stat__add_stat(&iter->stat, &he->stat);
1536 if (symbol_conf.cumulate_callchain)
1537 he_stat__add_stat(iter->stat_acc, he->stat_acc);
1538
1539 if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) {
1540 callchain_cursor_reset(&callchain_cursor);
1541 if (callchain_merge(&callchain_cursor,
1542 iter->callchain,
1543 he->callchain) < 0)
1544 ret = -1;
1545 }
1546 hist_entry__delete(he);
1547 return ret;
1548 }
1549
1550 if (cmp < 0)
1551 p = &(*p)->rb_left;
1552 else {
1553 p = &(*p)->rb_right;
1554 leftmost = false;
1555 }
1556 }
1557 hists->nr_entries++;
1558
1559 rb_link_node(&he->rb_node_in, parent, p);
1560 rb_insert_color_cached(&he->rb_node_in, root, leftmost);
1561 return 1;
1562}
1563
1564struct rb_root_cached *hists__get_rotate_entries_in(struct hists *hists)
1565{
1566 struct rb_root_cached *root;
1567
1568 pthread_mutex_lock(&hists->lock);
1569
1570 root = hists->entries_in;
1571 if (++hists->entries_in > &hists->entries_in_array[1])
1572 hists->entries_in = &hists->entries_in_array[0];
1573
1574 pthread_mutex_unlock(&hists->lock);
1575
1576 return root;
1577}
1578
1579static void hists__apply_filters(struct hists *hists, struct hist_entry *he)
1580{
1581 hists__filter_entry_by_dso(hists, he);
1582 hists__filter_entry_by_thread(hists, he);
1583 hists__filter_entry_by_symbol(hists, he);
1584 hists__filter_entry_by_socket(hists, he);
1585}
1586
1587int hists__collapse_resort(struct hists *hists, struct ui_progress *prog)
1588{
1589 struct rb_root_cached *root;
1590 struct rb_node *next;
1591 struct hist_entry *n;
1592 int ret;
1593
1594 if (!hists__has(hists, need_collapse))
1595 return 0;
1596
1597 hists->nr_entries = 0;
1598
1599 root = hists__get_rotate_entries_in(hists);
1600
1601 next = rb_first_cached(root);
1602
1603 while (next) {
1604 if (session_done())
1605 break;
1606 n = rb_entry(next, struct hist_entry, rb_node_in);
1607 next = rb_next(&n->rb_node_in);
1608
1609 rb_erase_cached(&n->rb_node_in, root);
1610 ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n);
1611 if (ret < 0)
1612 return -1;
1613
1614 if (ret) {
1615 /*
1616 * If it wasn't combined with one of the entries already
1617 * collapsed, we need to apply the filters that may have
1618 * been set by, say, the hist_browser.
1619 */
1620 hists__apply_filters(hists, n);
1621 }
1622 if (prog)
1623 ui_progress__update(prog, 1);
1624 }
1625 return 0;
1626}
1627
1628static int64_t hist_entry__sort(struct hist_entry *a, struct hist_entry *b)
1629{
1630 struct hists *hists = a->hists;
1631 struct perf_hpp_fmt *fmt;
1632 int64_t cmp = 0;
1633
1634 hists__for_each_sort_list(hists, fmt) {
1635 if (perf_hpp__should_skip(fmt, a->hists))
1636 continue;
1637
1638 cmp = fmt->sort(fmt, a, b);
1639 if (cmp)
1640 break;
1641 }
1642
1643 return cmp;
1644}
1645
1646static void hists__reset_filter_stats(struct hists *hists)
1647{
1648 hists->nr_non_filtered_entries = 0;
1649 hists->stats.total_non_filtered_period = 0;
1650}
1651
1652void hists__reset_stats(struct hists *hists)
1653{
1654 hists->nr_entries = 0;
1655 hists->stats.total_period = 0;
1656
1657 hists__reset_filter_stats(hists);
1658}
1659
1660static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h)
1661{
1662 hists->nr_non_filtered_entries++;
1663 hists->stats.total_non_filtered_period += h->stat.period;
1664}
1665
1666void hists__inc_stats(struct hists *hists, struct hist_entry *h)
1667{
1668 if (!h->filtered)
1669 hists__inc_filter_stats(hists, h);
1670
1671 hists->nr_entries++;
1672 hists->stats.total_period += h->stat.period;
1673}
1674
1675static void hierarchy_recalc_total_periods(struct hists *hists)
1676{
1677 struct rb_node *node;
1678 struct hist_entry *he;
1679
1680 node = rb_first_cached(&hists->entries);
1681
1682 hists->stats.total_period = 0;
1683 hists->stats.total_non_filtered_period = 0;
1684
1685 /*
1686 * recalculate total period using top-level entries only
1687 * since lower level entries only see non-filtered entries
1688 * but upper level entries have sum of both entries.
1689 */
1690 while (node) {
1691 he = rb_entry(node, struct hist_entry, rb_node);
1692 node = rb_next(node);
1693
1694 hists->stats.total_period += he->stat.period;
1695 if (!he->filtered)
1696 hists->stats.total_non_filtered_period += he->stat.period;
1697 }
1698}
1699
1700static void hierarchy_insert_output_entry(struct rb_root_cached *root,
1701 struct hist_entry *he)
1702{
1703 struct rb_node **p = &root->rb_root.rb_node;
1704 struct rb_node *parent = NULL;
1705 struct hist_entry *iter;
1706 struct perf_hpp_fmt *fmt;
1707 bool leftmost = true;
1708
1709 while (*p != NULL) {
1710 parent = *p;
1711 iter = rb_entry(parent, struct hist_entry, rb_node);
1712
1713 if (hist_entry__sort(he, iter) > 0)
1714 p = &parent->rb_left;
1715 else {
1716 p = &parent->rb_right;
1717 leftmost = false;
1718 }
1719 }
1720
1721 rb_link_node(&he->rb_node, parent, p);
1722 rb_insert_color_cached(&he->rb_node, root, leftmost);
1723
1724 /* update column width of dynamic entry */
1725 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
1726 if (perf_hpp__is_dynamic_entry(fmt))
1727 fmt->sort(fmt, he, NULL);
1728 }
1729}
1730
1731static void hists__hierarchy_output_resort(struct hists *hists,
1732 struct ui_progress *prog,
1733 struct rb_root_cached *root_in,
1734 struct rb_root_cached *root_out,
1735 u64 min_callchain_hits,
1736 bool use_callchain)
1737{
1738 struct rb_node *node;
1739 struct hist_entry *he;
1740
1741 *root_out = RB_ROOT_CACHED;
1742 node = rb_first_cached(root_in);
1743
1744 while (node) {
1745 he = rb_entry(node, struct hist_entry, rb_node_in);
1746 node = rb_next(node);
1747
1748 hierarchy_insert_output_entry(root_out, he);
1749
1750 if (prog)
1751 ui_progress__update(prog, 1);
1752
1753 hists->nr_entries++;
1754 if (!he->filtered) {
1755 hists->nr_non_filtered_entries++;
1756 hists__calc_col_len(hists, he);
1757 }
1758
1759 if (!he->leaf) {
1760 hists__hierarchy_output_resort(hists, prog,
1761 &he->hroot_in,
1762 &he->hroot_out,
1763 min_callchain_hits,
1764 use_callchain);
1765 continue;
1766 }
1767
1768 if (!use_callchain)
1769 continue;
1770
1771 if (callchain_param.mode == CHAIN_GRAPH_REL) {
1772 u64 total = he->stat.period;
1773
1774 if (symbol_conf.cumulate_callchain)
1775 total = he->stat_acc->period;
1776
1777 min_callchain_hits = total * (callchain_param.min_percent / 100);
1778 }
1779
1780 callchain_param.sort(&he->sorted_chain, he->callchain,
1781 min_callchain_hits, &callchain_param);
1782 }
1783}
1784
1785static void __hists__insert_output_entry(struct rb_root_cached *entries,
1786 struct hist_entry *he,
1787 u64 min_callchain_hits,
1788 bool use_callchain)
1789{
1790 struct rb_node **p = &entries->rb_root.rb_node;
1791 struct rb_node *parent = NULL;
1792 struct hist_entry *iter;
1793 struct perf_hpp_fmt *fmt;
1794 bool leftmost = true;
1795
1796 if (use_callchain) {
1797 if (callchain_param.mode == CHAIN_GRAPH_REL) {
1798 u64 total = he->stat.period;
1799
1800 if (symbol_conf.cumulate_callchain)
1801 total = he->stat_acc->period;
1802
1803 min_callchain_hits = total * (callchain_param.min_percent / 100);
1804 }
1805 callchain_param.sort(&he->sorted_chain, he->callchain,
1806 min_callchain_hits, &callchain_param);
1807 }
1808
1809 while (*p != NULL) {
1810 parent = *p;
1811 iter = rb_entry(parent, struct hist_entry, rb_node);
1812
1813 if (hist_entry__sort(he, iter) > 0)
1814 p = &(*p)->rb_left;
1815 else {
1816 p = &(*p)->rb_right;
1817 leftmost = false;
1818 }
1819 }
1820
1821 rb_link_node(&he->rb_node, parent, p);
1822 rb_insert_color_cached(&he->rb_node, entries, leftmost);
1823
1824 perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) {
1825 if (perf_hpp__is_dynamic_entry(fmt) &&
1826 perf_hpp__defined_dynamic_entry(fmt, he->hists))
1827 fmt->sort(fmt, he, NULL); /* update column width */
1828 }
1829}
1830
1831static void output_resort(struct hists *hists, struct ui_progress *prog,
1832 bool use_callchain, hists__resort_cb_t cb,
1833 void *cb_arg)
1834{
1835 struct rb_root_cached *root;
1836 struct rb_node *next;
1837 struct hist_entry *n;
1838 u64 callchain_total;
1839 u64 min_callchain_hits;
1840
1841 callchain_total = hists->callchain_period;
1842 if (symbol_conf.filter_relative)
1843 callchain_total = hists->callchain_non_filtered_period;
1844
1845 min_callchain_hits = callchain_total * (callchain_param.min_percent / 100);
1846
1847 hists__reset_stats(hists);
1848 hists__reset_col_len(hists);
1849
1850 if (symbol_conf.report_hierarchy) {
1851 hists__hierarchy_output_resort(hists, prog,
1852 &hists->entries_collapsed,
1853 &hists->entries,
1854 min_callchain_hits,
1855 use_callchain);
1856 hierarchy_recalc_total_periods(hists);
1857 return;
1858 }
1859
1860 if (hists__has(hists, need_collapse))
1861 root = &hists->entries_collapsed;
1862 else
1863 root = hists->entries_in;
1864
1865 next = rb_first_cached(root);
1866 hists->entries = RB_ROOT_CACHED;
1867
1868 while (next) {
1869 n = rb_entry(next, struct hist_entry, rb_node_in);
1870 next = rb_next(&n->rb_node_in);
1871
1872 if (cb && cb(n, cb_arg))
1873 continue;
1874
1875 __hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain);
1876 hists__inc_stats(hists, n);
1877
1878 if (!n->filtered)
1879 hists__calc_col_len(hists, n);
1880
1881 if (prog)
1882 ui_progress__update(prog, 1);
1883 }
1884}
1885
1886void perf_evsel__output_resort_cb(struct evsel *evsel, struct ui_progress *prog,
1887 hists__resort_cb_t cb, void *cb_arg)
1888{
1889 bool use_callchain;
1890
1891 if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph)
1892 use_callchain = evsel__has_callchain(evsel);
1893 else
1894 use_callchain = symbol_conf.use_callchain;
1895
1896 use_callchain |= symbol_conf.show_branchflag_count;
1897
1898 output_resort(evsel__hists(evsel), prog, use_callchain, cb, cb_arg);
1899}
1900
1901void perf_evsel__output_resort(struct evsel *evsel, struct ui_progress *prog)
1902{
1903 return perf_evsel__output_resort_cb(evsel, prog, NULL, NULL);
1904}
1905
1906void hists__output_resort(struct hists *hists, struct ui_progress *prog)
1907{
1908 output_resort(hists, prog, symbol_conf.use_callchain, NULL, NULL);
1909}
1910
1911void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog,
1912 hists__resort_cb_t cb)
1913{
1914 output_resort(hists, prog, symbol_conf.use_callchain, cb, NULL);
1915}
1916
1917static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd)
1918{
1919 if (he->leaf || hmd == HMD_FORCE_SIBLING)
1920 return false;
1921
1922 if (he->unfolded || hmd == HMD_FORCE_CHILD)
1923 return true;
1924
1925 return false;
1926}
1927
1928struct rb_node *rb_hierarchy_last(struct rb_node *node)
1929{
1930 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1931
1932 while (can_goto_child(he, HMD_NORMAL)) {
1933 node = rb_last(&he->hroot_out.rb_root);
1934 he = rb_entry(node, struct hist_entry, rb_node);
1935 }
1936 return node;
1937}
1938
1939struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd)
1940{
1941 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1942
1943 if (can_goto_child(he, hmd))
1944 node = rb_first_cached(&he->hroot_out);
1945 else
1946 node = rb_next(node);
1947
1948 while (node == NULL) {
1949 he = he->parent_he;
1950 if (he == NULL)
1951 break;
1952
1953 node = rb_next(&he->rb_node);
1954 }
1955 return node;
1956}
1957
1958struct rb_node *rb_hierarchy_prev(struct rb_node *node)
1959{
1960 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1961
1962 node = rb_prev(node);
1963 if (node)
1964 return rb_hierarchy_last(node);
1965
1966 he = he->parent_he;
1967 if (he == NULL)
1968 return NULL;
1969
1970 return &he->rb_node;
1971}
1972
1973bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit)
1974{
1975 struct rb_node *node;
1976 struct hist_entry *child;
1977 float percent;
1978
1979 if (he->leaf)
1980 return false;
1981
1982 node = rb_first_cached(&he->hroot_out);
1983 child = rb_entry(node, struct hist_entry, rb_node);
1984
1985 while (node && child->filtered) {
1986 node = rb_next(node);
1987 child = rb_entry(node, struct hist_entry, rb_node);
1988 }
1989
1990 if (node)
1991 percent = hist_entry__get_percent_limit(child);
1992 else
1993 percent = 0;
1994
1995 return node && percent >= limit;
1996}
1997
1998static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h,
1999 enum hist_filter filter)
2000{
2001 h->filtered &= ~(1 << filter);
2002
2003 if (symbol_conf.report_hierarchy) {
2004 struct hist_entry *parent = h->parent_he;
2005
2006 while (parent) {
2007 he_stat__add_stat(&parent->stat, &h->stat);
2008
2009 parent->filtered &= ~(1 << filter);
2010
2011 if (parent->filtered)
2012 goto next;
2013
2014 /* force fold unfiltered entry for simplicity */
2015 parent->unfolded = false;
2016 parent->has_no_entry = false;
2017 parent->row_offset = 0;
2018 parent->nr_rows = 0;
2019next:
2020 parent = parent->parent_he;
2021 }
2022 }
2023
2024 if (h->filtered)
2025 return;
2026
2027 /* force fold unfiltered entry for simplicity */
2028 h->unfolded = false;
2029 h->has_no_entry = false;
2030 h->row_offset = 0;
2031 h->nr_rows = 0;
2032
2033 hists->stats.nr_non_filtered_samples += h->stat.nr_events;
2034
2035 hists__inc_filter_stats(hists, h);
2036 hists__calc_col_len(hists, h);
2037}
2038
2039
2040static bool hists__filter_entry_by_dso(struct hists *hists,
2041 struct hist_entry *he)
2042{
2043 if (hists->dso_filter != NULL &&
2044 (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) {
2045 he->filtered |= (1 << HIST_FILTER__DSO);
2046 return true;
2047 }
2048
2049 return false;
2050}
2051
2052static bool hists__filter_entry_by_thread(struct hists *hists,
2053 struct hist_entry *he)
2054{
2055 if (hists->thread_filter != NULL &&
2056 he->thread != hists->thread_filter) {
2057 he->filtered |= (1 << HIST_FILTER__THREAD);
2058 return true;
2059 }
2060
2061 return false;
2062}
2063
2064static bool hists__filter_entry_by_symbol(struct hists *hists,
2065 struct hist_entry *he)
2066{
2067 if (hists->symbol_filter_str != NULL &&
2068 (!he->ms.sym || strstr(he->ms.sym->name,
2069 hists->symbol_filter_str) == NULL)) {
2070 he->filtered |= (1 << HIST_FILTER__SYMBOL);
2071 return true;
2072 }
2073
2074 return false;
2075}
2076
2077static bool hists__filter_entry_by_socket(struct hists *hists,
2078 struct hist_entry *he)
2079{
2080 if ((hists->socket_filter > -1) &&
2081 (he->socket != hists->socket_filter)) {
2082 he->filtered |= (1 << HIST_FILTER__SOCKET);
2083 return true;
2084 }
2085
2086 return false;
2087}
2088
2089typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he);
2090
2091static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter)
2092{
2093 struct rb_node *nd;
2094
2095 hists->stats.nr_non_filtered_samples = 0;
2096
2097 hists__reset_filter_stats(hists);
2098 hists__reset_col_len(hists);
2099
2100 for (nd = rb_first_cached(&hists->entries); nd; nd = rb_next(nd)) {
2101 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2102
2103 if (filter(hists, h))
2104 continue;
2105
2106 hists__remove_entry_filter(hists, h, type);
2107 }
2108}
2109
2110static void resort_filtered_entry(struct rb_root_cached *root,
2111 struct hist_entry *he)
2112{
2113 struct rb_node **p = &root->rb_root.rb_node;
2114 struct rb_node *parent = NULL;
2115 struct hist_entry *iter;
2116 struct rb_root_cached new_root = RB_ROOT_CACHED;
2117 struct rb_node *nd;
2118 bool leftmost = true;
2119
2120 while (*p != NULL) {
2121 parent = *p;
2122 iter = rb_entry(parent, struct hist_entry, rb_node);
2123
2124 if (hist_entry__sort(he, iter) > 0)
2125 p = &(*p)->rb_left;
2126 else {
2127 p = &(*p)->rb_right;
2128 leftmost = false;
2129 }
2130 }
2131
2132 rb_link_node(&he->rb_node, parent, p);
2133 rb_insert_color_cached(&he->rb_node, root, leftmost);
2134
2135 if (he->leaf || he->filtered)
2136 return;
2137
2138 nd = rb_first_cached(&he->hroot_out);
2139 while (nd) {
2140 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2141
2142 nd = rb_next(nd);
2143 rb_erase_cached(&h->rb_node, &he->hroot_out);
2144
2145 resort_filtered_entry(&new_root, h);
2146 }
2147
2148 he->hroot_out = new_root;
2149}
2150
2151static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg)
2152{
2153 struct rb_node *nd;
2154 struct rb_root_cached new_root = RB_ROOT_CACHED;
2155
2156 hists->stats.nr_non_filtered_samples = 0;
2157
2158 hists__reset_filter_stats(hists);
2159 hists__reset_col_len(hists);
2160
2161 nd = rb_first_cached(&hists->entries);
2162 while (nd) {
2163 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2164 int ret;
2165
2166 ret = hist_entry__filter(h, type, arg);
2167
2168 /*
2169 * case 1. non-matching type
2170 * zero out the period, set filter marker and move to child
2171 */
2172 if (ret < 0) {
2173 memset(&h->stat, 0, sizeof(h->stat));
2174 h->filtered |= (1 << type);
2175
2176 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD);
2177 }
2178 /*
2179 * case 2. matched type (filter out)
2180 * set filter marker and move to next
2181 */
2182 else if (ret == 1) {
2183 h->filtered |= (1 << type);
2184
2185 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2186 }
2187 /*
2188 * case 3. ok (not filtered)
2189 * add period to hists and parents, erase the filter marker
2190 * and move to next sibling
2191 */
2192 else {
2193 hists__remove_entry_filter(hists, h, type);
2194
2195 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2196 }
2197 }
2198
2199 hierarchy_recalc_total_periods(hists);
2200
2201 /*
2202 * resort output after applying a new filter since filter in a lower
2203 * hierarchy can change periods in a upper hierarchy.
2204 */
2205 nd = rb_first_cached(&hists->entries);
2206 while (nd) {
2207 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2208
2209 nd = rb_next(nd);
2210 rb_erase_cached(&h->rb_node, &hists->entries);
2211
2212 resort_filtered_entry(&new_root, h);
2213 }
2214
2215 hists->entries = new_root;
2216}
2217
2218void hists__filter_by_thread(struct hists *hists)
2219{
2220 if (symbol_conf.report_hierarchy)
2221 hists__filter_hierarchy(hists, HIST_FILTER__THREAD,
2222 hists->thread_filter);
2223 else
2224 hists__filter_by_type(hists, HIST_FILTER__THREAD,
2225 hists__filter_entry_by_thread);
2226}
2227
2228void hists__filter_by_dso(struct hists *hists)
2229{
2230 if (symbol_conf.report_hierarchy)
2231 hists__filter_hierarchy(hists, HIST_FILTER__DSO,
2232 hists->dso_filter);
2233 else
2234 hists__filter_by_type(hists, HIST_FILTER__DSO,
2235 hists__filter_entry_by_dso);
2236}
2237
2238void hists__filter_by_symbol(struct hists *hists)
2239{
2240 if (symbol_conf.report_hierarchy)
2241 hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL,
2242 hists->symbol_filter_str);
2243 else
2244 hists__filter_by_type(hists, HIST_FILTER__SYMBOL,
2245 hists__filter_entry_by_symbol);
2246}
2247
2248void hists__filter_by_socket(struct hists *hists)
2249{
2250 if (symbol_conf.report_hierarchy)
2251 hists__filter_hierarchy(hists, HIST_FILTER__SOCKET,
2252 &hists->socket_filter);
2253 else
2254 hists__filter_by_type(hists, HIST_FILTER__SOCKET,
2255 hists__filter_entry_by_socket);
2256}
2257
2258void events_stats__inc(struct events_stats *stats, u32 type)
2259{
2260 ++stats->nr_events[0];
2261 ++stats->nr_events[type];
2262}
2263
2264void hists__inc_nr_events(struct hists *hists, u32 type)
2265{
2266 events_stats__inc(&hists->stats, type);
2267}
2268
2269void hists__inc_nr_samples(struct hists *hists, bool filtered)
2270{
2271 events_stats__inc(&hists->stats, PERF_RECORD_SAMPLE);
2272 if (!filtered)
2273 hists->stats.nr_non_filtered_samples++;
2274}
2275
2276static struct hist_entry *hists__add_dummy_entry(struct hists *hists,
2277 struct hist_entry *pair)
2278{
2279 struct rb_root_cached *root;
2280 struct rb_node **p;
2281 struct rb_node *parent = NULL;
2282 struct hist_entry *he;
2283 int64_t cmp;
2284 bool leftmost = true;
2285
2286 if (hists__has(hists, need_collapse))
2287 root = &hists->entries_collapsed;
2288 else
2289 root = hists->entries_in;
2290
2291 p = &root->rb_root.rb_node;
2292
2293 while (*p != NULL) {
2294 parent = *p;
2295 he = rb_entry(parent, struct hist_entry, rb_node_in);
2296
2297 cmp = hist_entry__collapse(he, pair);
2298
2299 if (!cmp)
2300 goto out;
2301
2302 if (cmp < 0)
2303 p = &(*p)->rb_left;
2304 else {
2305 p = &(*p)->rb_right;
2306 leftmost = false;
2307 }
2308 }
2309
2310 he = hist_entry__new(pair, true);
2311 if (he) {
2312 memset(&he->stat, 0, sizeof(he->stat));
2313 he->hists = hists;
2314 if (symbol_conf.cumulate_callchain)
2315 memset(he->stat_acc, 0, sizeof(he->stat));
2316 rb_link_node(&he->rb_node_in, parent, p);
2317 rb_insert_color_cached(&he->rb_node_in, root, leftmost);
2318 hists__inc_stats(hists, he);
2319 he->dummy = true;
2320 }
2321out:
2322 return he;
2323}
2324
2325static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists,
2326 struct rb_root_cached *root,
2327 struct hist_entry *pair)
2328{
2329 struct rb_node **p;
2330 struct rb_node *parent = NULL;
2331 struct hist_entry *he;
2332 struct perf_hpp_fmt *fmt;
2333 bool leftmost = true;
2334
2335 p = &root->rb_root.rb_node;
2336 while (*p != NULL) {
2337 int64_t cmp = 0;
2338
2339 parent = *p;
2340 he = rb_entry(parent, struct hist_entry, rb_node_in);
2341
2342 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2343 cmp = fmt->collapse(fmt, he, pair);
2344 if (cmp)
2345 break;
2346 }
2347 if (!cmp)
2348 goto out;
2349
2350 if (cmp < 0)
2351 p = &parent->rb_left;
2352 else {
2353 p = &parent->rb_right;
2354 leftmost = false;
2355 }
2356 }
2357
2358 he = hist_entry__new(pair, true);
2359 if (he) {
2360 rb_link_node(&he->rb_node_in, parent, p);
2361 rb_insert_color_cached(&he->rb_node_in, root, leftmost);
2362
2363 he->dummy = true;
2364 he->hists = hists;
2365 memset(&he->stat, 0, sizeof(he->stat));
2366 hists__inc_stats(hists, he);
2367 }
2368out:
2369 return he;
2370}
2371
2372static struct hist_entry *hists__find_entry(struct hists *hists,
2373 struct hist_entry *he)
2374{
2375 struct rb_node *n;
2376
2377 if (hists__has(hists, need_collapse))
2378 n = hists->entries_collapsed.rb_root.rb_node;
2379 else
2380 n = hists->entries_in->rb_root.rb_node;
2381
2382 while (n) {
2383 struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in);
2384 int64_t cmp = hist_entry__collapse(iter, he);
2385
2386 if (cmp < 0)
2387 n = n->rb_left;
2388 else if (cmp > 0)
2389 n = n->rb_right;
2390 else
2391 return iter;
2392 }
2393
2394 return NULL;
2395}
2396
2397static struct hist_entry *hists__find_hierarchy_entry(struct rb_root_cached *root,
2398 struct hist_entry *he)
2399{
2400 struct rb_node *n = root->rb_root.rb_node;
2401
2402 while (n) {
2403 struct hist_entry *iter;
2404 struct perf_hpp_fmt *fmt;
2405 int64_t cmp = 0;
2406
2407 iter = rb_entry(n, struct hist_entry, rb_node_in);
2408 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2409 cmp = fmt->collapse(fmt, iter, he);
2410 if (cmp)
2411 break;
2412 }
2413
2414 if (cmp < 0)
2415 n = n->rb_left;
2416 else if (cmp > 0)
2417 n = n->rb_right;
2418 else
2419 return iter;
2420 }
2421
2422 return NULL;
2423}
2424
2425static void hists__match_hierarchy(struct rb_root_cached *leader_root,
2426 struct rb_root_cached *other_root)
2427{
2428 struct rb_node *nd;
2429 struct hist_entry *pos, *pair;
2430
2431 for (nd = rb_first_cached(leader_root); nd; nd = rb_next(nd)) {
2432 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2433 pair = hists__find_hierarchy_entry(other_root, pos);
2434
2435 if (pair) {
2436 hist_entry__add_pair(pair, pos);
2437 hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in);
2438 }
2439 }
2440}
2441
2442/*
2443 * Look for pairs to link to the leader buckets (hist_entries):
2444 */
2445void hists__match(struct hists *leader, struct hists *other)
2446{
2447 struct rb_root_cached *root;
2448 struct rb_node *nd;
2449 struct hist_entry *pos, *pair;
2450
2451 if (symbol_conf.report_hierarchy) {
2452 /* hierarchy report always collapses entries */
2453 return hists__match_hierarchy(&leader->entries_collapsed,
2454 &other->entries_collapsed);
2455 }
2456
2457 if (hists__has(leader, need_collapse))
2458 root = &leader->entries_collapsed;
2459 else
2460 root = leader->entries_in;
2461
2462 for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) {
2463 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2464 pair = hists__find_entry(other, pos);
2465
2466 if (pair)
2467 hist_entry__add_pair(pair, pos);
2468 }
2469}
2470
2471static int hists__link_hierarchy(struct hists *leader_hists,
2472 struct hist_entry *parent,
2473 struct rb_root_cached *leader_root,
2474 struct rb_root_cached *other_root)
2475{
2476 struct rb_node *nd;
2477 struct hist_entry *pos, *leader;
2478
2479 for (nd = rb_first_cached(other_root); nd; nd = rb_next(nd)) {
2480 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2481
2482 if (hist_entry__has_pairs(pos)) {
2483 bool found = false;
2484
2485 list_for_each_entry(leader, &pos->pairs.head, pairs.node) {
2486 if (leader->hists == leader_hists) {
2487 found = true;
2488 break;
2489 }
2490 }
2491 if (!found)
2492 return -1;
2493 } else {
2494 leader = add_dummy_hierarchy_entry(leader_hists,
2495 leader_root, pos);
2496 if (leader == NULL)
2497 return -1;
2498
2499 /* do not point parent in the pos */
2500 leader->parent_he = parent;
2501
2502 hist_entry__add_pair(pos, leader);
2503 }
2504
2505 if (!pos->leaf) {
2506 if (hists__link_hierarchy(leader_hists, leader,
2507 &leader->hroot_in,
2508 &pos->hroot_in) < 0)
2509 return -1;
2510 }
2511 }
2512 return 0;
2513}
2514
2515/*
2516 * Look for entries in the other hists that are not present in the leader, if
2517 * we find them, just add a dummy entry on the leader hists, with period=0,
2518 * nr_events=0, to serve as the list header.
2519 */
2520int hists__link(struct hists *leader, struct hists *other)
2521{
2522 struct rb_root_cached *root;
2523 struct rb_node *nd;
2524 struct hist_entry *pos, *pair;
2525
2526 if (symbol_conf.report_hierarchy) {
2527 /* hierarchy report always collapses entries */
2528 return hists__link_hierarchy(leader, NULL,
2529 &leader->entries_collapsed,
2530 &other->entries_collapsed);
2531 }
2532
2533 if (hists__has(other, need_collapse))
2534 root = &other->entries_collapsed;
2535 else
2536 root = other->entries_in;
2537
2538 for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) {
2539 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2540
2541 if (!hist_entry__has_pairs(pos)) {
2542 pair = hists__add_dummy_entry(leader, pos);
2543 if (pair == NULL)
2544 return -1;
2545 hist_entry__add_pair(pos, pair);
2546 }
2547 }
2548
2549 return 0;
2550}
2551
2552int hists__unlink(struct hists *hists)
2553{
2554 struct rb_root_cached *root;
2555 struct rb_node *nd;
2556 struct hist_entry *pos;
2557
2558 if (hists__has(hists, need_collapse))
2559 root = &hists->entries_collapsed;
2560 else
2561 root = hists->entries_in;
2562
2563 for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) {
2564 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2565 list_del_init(&pos->pairs.node);
2566 }
2567
2568 return 0;
2569}
2570
2571void hist__account_cycles(struct branch_stack *bs, struct addr_location *al,
2572 struct perf_sample *sample, bool nonany_branch_mode)
2573{
2574 struct branch_info *bi;
2575
2576 /* If we have branch cycles always annotate them. */
2577 if (bs && bs->nr && bs->entries[0].flags.cycles) {
2578 int i;
2579
2580 bi = sample__resolve_bstack(sample, al);
2581 if (bi) {
2582 struct addr_map_symbol *prev = NULL;
2583
2584 /*
2585 * Ignore errors, still want to process the
2586 * other entries.
2587 *
2588 * For non standard branch modes always
2589 * force no IPC (prev == NULL)
2590 *
2591 * Note that perf stores branches reversed from
2592 * program order!
2593 */
2594 for (i = bs->nr - 1; i >= 0; i--) {
2595 addr_map_symbol__account_cycles(&bi[i].from,
2596 nonany_branch_mode ? NULL : prev,
2597 bi[i].flags.cycles);
2598 prev = &bi[i].to;
2599 }
2600 free(bi);
2601 }
2602 }
2603}
2604
2605size_t perf_evlist__fprintf_nr_events(struct evlist *evlist, FILE *fp)
2606{
2607 struct evsel *pos;
2608 size_t ret = 0;
2609
2610 evlist__for_each_entry(evlist, pos) {
2611 ret += fprintf(fp, "%s stats:\n", perf_evsel__name(pos));
2612 ret += events_stats__fprintf(&evsel__hists(pos)->stats, fp);
2613 }
2614
2615 return ret;
2616}
2617
2618
2619u64 hists__total_period(struct hists *hists)
2620{
2621 return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period :
2622 hists->stats.total_period;
2623}
2624
2625int __hists__scnprintf_title(struct hists *hists, char *bf, size_t size, bool show_freq)
2626{
2627 char unit;
2628 int printed;
2629 const struct dso *dso = hists->dso_filter;
2630 struct thread *thread = hists->thread_filter;
2631 int socket_id = hists->socket_filter;
2632 unsigned long nr_samples = hists->stats.nr_events[PERF_RECORD_SAMPLE];
2633 u64 nr_events = hists->stats.total_period;
2634 struct evsel *evsel = hists_to_evsel(hists);
2635 const char *ev_name = perf_evsel__name(evsel);
2636 char buf[512], sample_freq_str[64] = "";
2637 size_t buflen = sizeof(buf);
2638 char ref[30] = " show reference callgraph, ";
2639 bool enable_ref = false;
2640
2641 if (symbol_conf.filter_relative) {
2642 nr_samples = hists->stats.nr_non_filtered_samples;
2643 nr_events = hists->stats.total_non_filtered_period;
2644 }
2645
2646 if (perf_evsel__is_group_event(evsel)) {
2647 struct evsel *pos;
2648
2649 perf_evsel__group_desc(evsel, buf, buflen);
2650 ev_name = buf;
2651
2652 for_each_group_member(pos, evsel) {
2653 struct hists *pos_hists = evsel__hists(pos);
2654
2655 if (symbol_conf.filter_relative) {
2656 nr_samples += pos_hists->stats.nr_non_filtered_samples;
2657 nr_events += pos_hists->stats.total_non_filtered_period;
2658 } else {
2659 nr_samples += pos_hists->stats.nr_events[PERF_RECORD_SAMPLE];
2660 nr_events += pos_hists->stats.total_period;
2661 }
2662 }
2663 }
2664
2665 if (symbol_conf.show_ref_callgraph &&
2666 strstr(ev_name, "call-graph=no"))
2667 enable_ref = true;
2668
2669 if (show_freq)
2670 scnprintf(sample_freq_str, sizeof(sample_freq_str), " %d Hz,", evsel->core.attr.sample_freq);
2671
2672 nr_samples = convert_unit(nr_samples, &unit);
2673 printed = scnprintf(bf, size,
2674 "Samples: %lu%c of event%s '%s',%s%sEvent count (approx.): %" PRIu64,
2675 nr_samples, unit, evsel->core.nr_members > 1 ? "s" : "",
2676 ev_name, sample_freq_str, enable_ref ? ref : " ", nr_events);
2677
2678
2679 if (hists->uid_filter_str)
2680 printed += snprintf(bf + printed, size - printed,
2681 ", UID: %s", hists->uid_filter_str);
2682 if (thread) {
2683 if (hists__has(hists, thread)) {
2684 printed += scnprintf(bf + printed, size - printed,
2685 ", Thread: %s(%d)",
2686 (thread->comm_set ? thread__comm_str(thread) : ""),
2687 thread->tid);
2688 } else {
2689 printed += scnprintf(bf + printed, size - printed,
2690 ", Thread: %s",
2691 (thread->comm_set ? thread__comm_str(thread) : ""));
2692 }
2693 }
2694 if (dso)
2695 printed += scnprintf(bf + printed, size - printed,
2696 ", DSO: %s", dso->short_name);
2697 if (socket_id > -1)
2698 printed += scnprintf(bf + printed, size - printed,
2699 ", Processor Socket: %d", socket_id);
2700
2701 return printed;
2702}
2703
2704int parse_filter_percentage(const struct option *opt __maybe_unused,
2705 const char *arg, int unset __maybe_unused)
2706{
2707 if (!strcmp(arg, "relative"))
2708 symbol_conf.filter_relative = true;
2709 else if (!strcmp(arg, "absolute"))
2710 symbol_conf.filter_relative = false;
2711 else {
2712 pr_debug("Invalid percentage: %s\n", arg);
2713 return -1;
2714 }
2715
2716 return 0;
2717}
2718
2719int perf_hist_config(const char *var, const char *value)
2720{
2721 if (!strcmp(var, "hist.percentage"))
2722 return parse_filter_percentage(NULL, value, 0);
2723
2724 return 0;
2725}
2726
2727int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list)
2728{
2729 memset(hists, 0, sizeof(*hists));
2730 hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT_CACHED;
2731 hists->entries_in = &hists->entries_in_array[0];
2732 hists->entries_collapsed = RB_ROOT_CACHED;
2733 hists->entries = RB_ROOT_CACHED;
2734 pthread_mutex_init(&hists->lock, NULL);
2735 hists->socket_filter = -1;
2736 hists->hpp_list = hpp_list;
2737 INIT_LIST_HEAD(&hists->hpp_formats);
2738 return 0;
2739}
2740
2741static void hists__delete_remaining_entries(struct rb_root_cached *root)
2742{
2743 struct rb_node *node;
2744 struct hist_entry *he;
2745
2746 while (!RB_EMPTY_ROOT(&root->rb_root)) {
2747 node = rb_first_cached(root);
2748 rb_erase_cached(node, root);
2749
2750 he = rb_entry(node, struct hist_entry, rb_node_in);
2751 hist_entry__delete(he);
2752 }
2753}
2754
2755static void hists__delete_all_entries(struct hists *hists)
2756{
2757 hists__delete_entries(hists);
2758 hists__delete_remaining_entries(&hists->entries_in_array[0]);
2759 hists__delete_remaining_entries(&hists->entries_in_array[1]);
2760 hists__delete_remaining_entries(&hists->entries_collapsed);
2761}
2762
2763static void hists_evsel__exit(struct evsel *evsel)
2764{
2765 struct hists *hists = evsel__hists(evsel);
2766 struct perf_hpp_fmt *fmt, *pos;
2767 struct perf_hpp_list_node *node, *tmp;
2768
2769 hists__delete_all_entries(hists);
2770
2771 list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) {
2772 perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) {
2773 list_del_init(&fmt->list);
2774 free(fmt);
2775 }
2776 list_del_init(&node->list);
2777 free(node);
2778 }
2779}
2780
2781static int hists_evsel__init(struct evsel *evsel)
2782{
2783 struct hists *hists = evsel__hists(evsel);
2784
2785 __hists__init(hists, &perf_hpp_list);
2786 return 0;
2787}
2788
2789/*
2790 * XXX We probably need a hists_evsel__exit() to free the hist_entries
2791 * stored in the rbtree...
2792 */
2793
2794int hists__init(void)
2795{
2796 int err = perf_evsel__object_config(sizeof(struct hists_evsel),
2797 hists_evsel__init,
2798 hists_evsel__exit);
2799 if (err)
2800 fputs("FATAL ERROR: Couldn't setup hists class\n", stderr);
2801
2802 return err;
2803}
2804
2805void perf_hpp_list__init(struct perf_hpp_list *list)
2806{
2807 INIT_LIST_HEAD(&list->fields);
2808 INIT_LIST_HEAD(&list->sorts);
2809}
1// SPDX-License-Identifier: GPL-2.0
2#include "callchain.h"
3#include "debug.h"
4#include "dso.h"
5#include "build-id.h"
6#include "hist.h"
7#include "map.h"
8#include "map_symbol.h"
9#include "branch.h"
10#include "mem-events.h"
11#include "session.h"
12#include "namespaces.h"
13#include "cgroup.h"
14#include "sort.h"
15#include "units.h"
16#include "evlist.h"
17#include "evsel.h"
18#include "annotate.h"
19#include "srcline.h"
20#include "symbol.h"
21#include "thread.h"
22#include "block-info.h"
23#include "ui/progress.h"
24#include <errno.h>
25#include <math.h>
26#include <inttypes.h>
27#include <sys/param.h>
28#include <linux/rbtree.h>
29#include <linux/string.h>
30#include <linux/time64.h>
31#include <linux/zalloc.h>
32
33static bool hists__filter_entry_by_dso(struct hists *hists,
34 struct hist_entry *he);
35static bool hists__filter_entry_by_thread(struct hists *hists,
36 struct hist_entry *he);
37static bool hists__filter_entry_by_symbol(struct hists *hists,
38 struct hist_entry *he);
39static bool hists__filter_entry_by_socket(struct hists *hists,
40 struct hist_entry *he);
41
42u16 hists__col_len(struct hists *hists, enum hist_column col)
43{
44 return hists->col_len[col];
45}
46
47void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len)
48{
49 hists->col_len[col] = len;
50}
51
52bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len)
53{
54 if (len > hists__col_len(hists, col)) {
55 hists__set_col_len(hists, col, len);
56 return true;
57 }
58 return false;
59}
60
61void hists__reset_col_len(struct hists *hists)
62{
63 enum hist_column col;
64
65 for (col = 0; col < HISTC_NR_COLS; ++col)
66 hists__set_col_len(hists, col, 0);
67}
68
69static void hists__set_unres_dso_col_len(struct hists *hists, int dso)
70{
71 const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
72
73 if (hists__col_len(hists, dso) < unresolved_col_width &&
74 !symbol_conf.col_width_list_str && !symbol_conf.field_sep &&
75 !symbol_conf.dso_list)
76 hists__set_col_len(hists, dso, unresolved_col_width);
77}
78
79void hists__calc_col_len(struct hists *hists, struct hist_entry *h)
80{
81 const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
82 int symlen;
83 u16 len;
84
85 if (h->block_info)
86 return;
87 /*
88 * +4 accounts for '[x] ' priv level info
89 * +2 accounts for 0x prefix on raw addresses
90 * +3 accounts for ' y ' symtab origin info
91 */
92 if (h->ms.sym) {
93 symlen = h->ms.sym->namelen + 4;
94 if (verbose > 0)
95 symlen += BITS_PER_LONG / 4 + 2 + 3;
96 hists__new_col_len(hists, HISTC_SYMBOL, symlen);
97 } else {
98 symlen = unresolved_col_width + 4 + 2;
99 hists__new_col_len(hists, HISTC_SYMBOL, symlen);
100 hists__set_unres_dso_col_len(hists, HISTC_DSO);
101 }
102
103 len = thread__comm_len(h->thread);
104 if (hists__new_col_len(hists, HISTC_COMM, len))
105 hists__set_col_len(hists, HISTC_THREAD, len + 8);
106
107 if (h->ms.map) {
108 len = dso__name_len(h->ms.map->dso);
109 hists__new_col_len(hists, HISTC_DSO, len);
110 }
111
112 if (h->parent)
113 hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen);
114
115 if (h->branch_info) {
116 if (h->branch_info->from.ms.sym) {
117 symlen = (int)h->branch_info->from.ms.sym->namelen + 4;
118 if (verbose > 0)
119 symlen += BITS_PER_LONG / 4 + 2 + 3;
120 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
121
122 symlen = dso__name_len(h->branch_info->from.ms.map->dso);
123 hists__new_col_len(hists, HISTC_DSO_FROM, symlen);
124 } else {
125 symlen = unresolved_col_width + 4 + 2;
126 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
127 hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM);
128 }
129
130 if (h->branch_info->to.ms.sym) {
131 symlen = (int)h->branch_info->to.ms.sym->namelen + 4;
132 if (verbose > 0)
133 symlen += BITS_PER_LONG / 4 + 2 + 3;
134 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
135
136 symlen = dso__name_len(h->branch_info->to.ms.map->dso);
137 hists__new_col_len(hists, HISTC_DSO_TO, symlen);
138 } else {
139 symlen = unresolved_col_width + 4 + 2;
140 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
141 hists__set_unres_dso_col_len(hists, HISTC_DSO_TO);
142 }
143
144 if (h->branch_info->srcline_from)
145 hists__new_col_len(hists, HISTC_SRCLINE_FROM,
146 strlen(h->branch_info->srcline_from));
147 if (h->branch_info->srcline_to)
148 hists__new_col_len(hists, HISTC_SRCLINE_TO,
149 strlen(h->branch_info->srcline_to));
150 }
151
152 if (h->mem_info) {
153 if (h->mem_info->daddr.ms.sym) {
154 symlen = (int)h->mem_info->daddr.ms.sym->namelen + 4
155 + unresolved_col_width + 2;
156 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
157 symlen);
158 hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
159 symlen + 1);
160 } else {
161 symlen = unresolved_col_width + 4 + 2;
162 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
163 symlen);
164 hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
165 symlen);
166 }
167
168 if (h->mem_info->iaddr.ms.sym) {
169 symlen = (int)h->mem_info->iaddr.ms.sym->namelen + 4
170 + unresolved_col_width + 2;
171 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
172 symlen);
173 } else {
174 symlen = unresolved_col_width + 4 + 2;
175 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
176 symlen);
177 }
178
179 if (h->mem_info->daddr.ms.map) {
180 symlen = dso__name_len(h->mem_info->daddr.ms.map->dso);
181 hists__new_col_len(hists, HISTC_MEM_DADDR_DSO,
182 symlen);
183 } else {
184 symlen = unresolved_col_width + 4 + 2;
185 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
186 }
187
188 hists__new_col_len(hists, HISTC_MEM_PHYS_DADDR,
189 unresolved_col_width + 4 + 2);
190
191 hists__new_col_len(hists, HISTC_MEM_DATA_PAGE_SIZE,
192 unresolved_col_width + 4 + 2);
193
194 } else {
195 symlen = unresolved_col_width + 4 + 2;
196 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen);
197 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen);
198 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
199 }
200
201 hists__new_col_len(hists, HISTC_CGROUP, 6);
202 hists__new_col_len(hists, HISTC_CGROUP_ID, 20);
203 hists__new_col_len(hists, HISTC_CPU, 3);
204 hists__new_col_len(hists, HISTC_SOCKET, 6);
205 hists__new_col_len(hists, HISTC_MEM_LOCKED, 6);
206 hists__new_col_len(hists, HISTC_MEM_TLB, 22);
207 hists__new_col_len(hists, HISTC_MEM_SNOOP, 12);
208 hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3);
209 hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12);
210 hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12);
211 hists__new_col_len(hists, HISTC_MEM_BLOCKED, 10);
212 hists__new_col_len(hists, HISTC_LOCAL_INS_LAT, 13);
213 hists__new_col_len(hists, HISTC_GLOBAL_INS_LAT, 13);
214 hists__new_col_len(hists, HISTC_P_STAGE_CYC, 13);
215 if (symbol_conf.nanosecs)
216 hists__new_col_len(hists, HISTC_TIME, 16);
217 else
218 hists__new_col_len(hists, HISTC_TIME, 12);
219 hists__new_col_len(hists, HISTC_CODE_PAGE_SIZE, 6);
220
221 if (h->srcline) {
222 len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header));
223 hists__new_col_len(hists, HISTC_SRCLINE, len);
224 }
225
226 if (h->srcfile)
227 hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile));
228
229 if (h->transaction)
230 hists__new_col_len(hists, HISTC_TRANSACTION,
231 hist_entry__transaction_len());
232
233 if (h->trace_output)
234 hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output));
235
236 if (h->cgroup) {
237 const char *cgrp_name = "unknown";
238 struct cgroup *cgrp = cgroup__find(h->ms.maps->machine->env,
239 h->cgroup);
240 if (cgrp != NULL)
241 cgrp_name = cgrp->name;
242
243 hists__new_col_len(hists, HISTC_CGROUP, strlen(cgrp_name));
244 }
245}
246
247void hists__output_recalc_col_len(struct hists *hists, int max_rows)
248{
249 struct rb_node *next = rb_first_cached(&hists->entries);
250 struct hist_entry *n;
251 int row = 0;
252
253 hists__reset_col_len(hists);
254
255 while (next && row++ < max_rows) {
256 n = rb_entry(next, struct hist_entry, rb_node);
257 if (!n->filtered)
258 hists__calc_col_len(hists, n);
259 next = rb_next(&n->rb_node);
260 }
261}
262
263static void he_stat__add_cpumode_period(struct he_stat *he_stat,
264 unsigned int cpumode, u64 period)
265{
266 switch (cpumode) {
267 case PERF_RECORD_MISC_KERNEL:
268 he_stat->period_sys += period;
269 break;
270 case PERF_RECORD_MISC_USER:
271 he_stat->period_us += period;
272 break;
273 case PERF_RECORD_MISC_GUEST_KERNEL:
274 he_stat->period_guest_sys += period;
275 break;
276 case PERF_RECORD_MISC_GUEST_USER:
277 he_stat->period_guest_us += period;
278 break;
279 default:
280 break;
281 }
282}
283
284static long hist_time(unsigned long htime)
285{
286 unsigned long time_quantum = symbol_conf.time_quantum;
287 if (time_quantum)
288 return (htime / time_quantum) * time_quantum;
289 return htime;
290}
291
292static void he_stat__add_period(struct he_stat *he_stat, u64 period,
293 u64 weight, u64 ins_lat, u64 p_stage_cyc)
294{
295
296 he_stat->period += period;
297 he_stat->weight += weight;
298 he_stat->nr_events += 1;
299 he_stat->ins_lat += ins_lat;
300 he_stat->p_stage_cyc += p_stage_cyc;
301}
302
303static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src)
304{
305 dest->period += src->period;
306 dest->period_sys += src->period_sys;
307 dest->period_us += src->period_us;
308 dest->period_guest_sys += src->period_guest_sys;
309 dest->period_guest_us += src->period_guest_us;
310 dest->nr_events += src->nr_events;
311 dest->weight += src->weight;
312 dest->ins_lat += src->ins_lat;
313 dest->p_stage_cyc += src->p_stage_cyc;
314}
315
316static void he_stat__decay(struct he_stat *he_stat)
317{
318 he_stat->period = (he_stat->period * 7) / 8;
319 he_stat->nr_events = (he_stat->nr_events * 7) / 8;
320 /* XXX need decay for weight too? */
321}
322
323static void hists__delete_entry(struct hists *hists, struct hist_entry *he);
324
325static bool hists__decay_entry(struct hists *hists, struct hist_entry *he)
326{
327 u64 prev_period = he->stat.period;
328 u64 diff;
329
330 if (prev_period == 0)
331 return true;
332
333 he_stat__decay(&he->stat);
334 if (symbol_conf.cumulate_callchain)
335 he_stat__decay(he->stat_acc);
336 decay_callchain(he->callchain);
337
338 diff = prev_period - he->stat.period;
339
340 if (!he->depth) {
341 hists->stats.total_period -= diff;
342 if (!he->filtered)
343 hists->stats.total_non_filtered_period -= diff;
344 }
345
346 if (!he->leaf) {
347 struct hist_entry *child;
348 struct rb_node *node = rb_first_cached(&he->hroot_out);
349 while (node) {
350 child = rb_entry(node, struct hist_entry, rb_node);
351 node = rb_next(node);
352
353 if (hists__decay_entry(hists, child))
354 hists__delete_entry(hists, child);
355 }
356 }
357
358 return he->stat.period == 0;
359}
360
361static void hists__delete_entry(struct hists *hists, struct hist_entry *he)
362{
363 struct rb_root_cached *root_in;
364 struct rb_root_cached *root_out;
365
366 if (he->parent_he) {
367 root_in = &he->parent_he->hroot_in;
368 root_out = &he->parent_he->hroot_out;
369 } else {
370 if (hists__has(hists, need_collapse))
371 root_in = &hists->entries_collapsed;
372 else
373 root_in = hists->entries_in;
374 root_out = &hists->entries;
375 }
376
377 rb_erase_cached(&he->rb_node_in, root_in);
378 rb_erase_cached(&he->rb_node, root_out);
379
380 --hists->nr_entries;
381 if (!he->filtered)
382 --hists->nr_non_filtered_entries;
383
384 hist_entry__delete(he);
385}
386
387void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel)
388{
389 struct rb_node *next = rb_first_cached(&hists->entries);
390 struct hist_entry *n;
391
392 while (next) {
393 n = rb_entry(next, struct hist_entry, rb_node);
394 next = rb_next(&n->rb_node);
395 if (((zap_user && n->level == '.') ||
396 (zap_kernel && n->level != '.') ||
397 hists__decay_entry(hists, n))) {
398 hists__delete_entry(hists, n);
399 }
400 }
401}
402
403void hists__delete_entries(struct hists *hists)
404{
405 struct rb_node *next = rb_first_cached(&hists->entries);
406 struct hist_entry *n;
407
408 while (next) {
409 n = rb_entry(next, struct hist_entry, rb_node);
410 next = rb_next(&n->rb_node);
411
412 hists__delete_entry(hists, n);
413 }
414}
415
416struct hist_entry *hists__get_entry(struct hists *hists, int idx)
417{
418 struct rb_node *next = rb_first_cached(&hists->entries);
419 struct hist_entry *n;
420 int i = 0;
421
422 while (next) {
423 n = rb_entry(next, struct hist_entry, rb_node);
424 if (i == idx)
425 return n;
426
427 next = rb_next(&n->rb_node);
428 i++;
429 }
430
431 return NULL;
432}
433
434/*
435 * histogram, sorted on item, collects periods
436 */
437
438static int hist_entry__init(struct hist_entry *he,
439 struct hist_entry *template,
440 bool sample_self,
441 size_t callchain_size)
442{
443 *he = *template;
444 he->callchain_size = callchain_size;
445
446 if (symbol_conf.cumulate_callchain) {
447 he->stat_acc = malloc(sizeof(he->stat));
448 if (he->stat_acc == NULL)
449 return -ENOMEM;
450 memcpy(he->stat_acc, &he->stat, sizeof(he->stat));
451 if (!sample_self)
452 memset(&he->stat, 0, sizeof(he->stat));
453 }
454
455 map__get(he->ms.map);
456
457 if (he->branch_info) {
458 /*
459 * This branch info is (a part of) allocated from
460 * sample__resolve_bstack() and will be freed after
461 * adding new entries. So we need to save a copy.
462 */
463 he->branch_info = malloc(sizeof(*he->branch_info));
464 if (he->branch_info == NULL)
465 goto err;
466
467 memcpy(he->branch_info, template->branch_info,
468 sizeof(*he->branch_info));
469
470 map__get(he->branch_info->from.ms.map);
471 map__get(he->branch_info->to.ms.map);
472 }
473
474 if (he->mem_info) {
475 map__get(he->mem_info->iaddr.ms.map);
476 map__get(he->mem_info->daddr.ms.map);
477 }
478
479 if (hist_entry__has_callchains(he) && symbol_conf.use_callchain)
480 callchain_init(he->callchain);
481
482 if (he->raw_data) {
483 he->raw_data = memdup(he->raw_data, he->raw_size);
484 if (he->raw_data == NULL)
485 goto err_infos;
486 }
487
488 if (he->srcline) {
489 he->srcline = strdup(he->srcline);
490 if (he->srcline == NULL)
491 goto err_rawdata;
492 }
493
494 if (symbol_conf.res_sample) {
495 he->res_samples = calloc(sizeof(struct res_sample),
496 symbol_conf.res_sample);
497 if (!he->res_samples)
498 goto err_srcline;
499 }
500
501 INIT_LIST_HEAD(&he->pairs.node);
502 thread__get(he->thread);
503 he->hroot_in = RB_ROOT_CACHED;
504 he->hroot_out = RB_ROOT_CACHED;
505
506 if (!symbol_conf.report_hierarchy)
507 he->leaf = true;
508
509 return 0;
510
511err_srcline:
512 zfree(&he->srcline);
513
514err_rawdata:
515 zfree(&he->raw_data);
516
517err_infos:
518 if (he->branch_info) {
519 map__put(he->branch_info->from.ms.map);
520 map__put(he->branch_info->to.ms.map);
521 zfree(&he->branch_info);
522 }
523 if (he->mem_info) {
524 map__put(he->mem_info->iaddr.ms.map);
525 map__put(he->mem_info->daddr.ms.map);
526 }
527err:
528 map__zput(he->ms.map);
529 zfree(&he->stat_acc);
530 return -ENOMEM;
531}
532
533static void *hist_entry__zalloc(size_t size)
534{
535 return zalloc(size + sizeof(struct hist_entry));
536}
537
538static void hist_entry__free(void *ptr)
539{
540 free(ptr);
541}
542
543static struct hist_entry_ops default_ops = {
544 .new = hist_entry__zalloc,
545 .free = hist_entry__free,
546};
547
548static struct hist_entry *hist_entry__new(struct hist_entry *template,
549 bool sample_self)
550{
551 struct hist_entry_ops *ops = template->ops;
552 size_t callchain_size = 0;
553 struct hist_entry *he;
554 int err = 0;
555
556 if (!ops)
557 ops = template->ops = &default_ops;
558
559 if (symbol_conf.use_callchain)
560 callchain_size = sizeof(struct callchain_root);
561
562 he = ops->new(callchain_size);
563 if (he) {
564 err = hist_entry__init(he, template, sample_self, callchain_size);
565 if (err) {
566 ops->free(he);
567 he = NULL;
568 }
569 }
570
571 return he;
572}
573
574static u8 symbol__parent_filter(const struct symbol *parent)
575{
576 if (symbol_conf.exclude_other && parent == NULL)
577 return 1 << HIST_FILTER__PARENT;
578 return 0;
579}
580
581static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period)
582{
583 if (!hist_entry__has_callchains(he) || !symbol_conf.use_callchain)
584 return;
585
586 he->hists->callchain_period += period;
587 if (!he->filtered)
588 he->hists->callchain_non_filtered_period += period;
589}
590
591static struct hist_entry *hists__findnew_entry(struct hists *hists,
592 struct hist_entry *entry,
593 struct addr_location *al,
594 bool sample_self)
595{
596 struct rb_node **p;
597 struct rb_node *parent = NULL;
598 struct hist_entry *he;
599 int64_t cmp;
600 u64 period = entry->stat.period;
601 u64 weight = entry->stat.weight;
602 u64 ins_lat = entry->stat.ins_lat;
603 u64 p_stage_cyc = entry->stat.p_stage_cyc;
604 bool leftmost = true;
605
606 p = &hists->entries_in->rb_root.rb_node;
607
608 while (*p != NULL) {
609 parent = *p;
610 he = rb_entry(parent, struct hist_entry, rb_node_in);
611
612 /*
613 * Make sure that it receives arguments in a same order as
614 * hist_entry__collapse() so that we can use an appropriate
615 * function when searching an entry regardless which sort
616 * keys were used.
617 */
618 cmp = hist_entry__cmp(he, entry);
619
620 if (!cmp) {
621 if (sample_self) {
622 he_stat__add_period(&he->stat, period, weight, ins_lat, p_stage_cyc);
623 hist_entry__add_callchain_period(he, period);
624 }
625 if (symbol_conf.cumulate_callchain)
626 he_stat__add_period(he->stat_acc, period, weight, ins_lat, p_stage_cyc);
627
628 /*
629 * This mem info was allocated from sample__resolve_mem
630 * and will not be used anymore.
631 */
632 mem_info__zput(entry->mem_info);
633
634 block_info__zput(entry->block_info);
635
636 /* If the map of an existing hist_entry has
637 * become out-of-date due to an exec() or
638 * similar, update it. Otherwise we will
639 * mis-adjust symbol addresses when computing
640 * the history counter to increment.
641 */
642 if (he->ms.map != entry->ms.map) {
643 map__put(he->ms.map);
644 he->ms.map = map__get(entry->ms.map);
645 }
646 goto out;
647 }
648
649 if (cmp < 0)
650 p = &(*p)->rb_left;
651 else {
652 p = &(*p)->rb_right;
653 leftmost = false;
654 }
655 }
656
657 he = hist_entry__new(entry, sample_self);
658 if (!he)
659 return NULL;
660
661 if (sample_self)
662 hist_entry__add_callchain_period(he, period);
663 hists->nr_entries++;
664
665 rb_link_node(&he->rb_node_in, parent, p);
666 rb_insert_color_cached(&he->rb_node_in, hists->entries_in, leftmost);
667out:
668 if (sample_self)
669 he_stat__add_cpumode_period(&he->stat, al->cpumode, period);
670 if (symbol_conf.cumulate_callchain)
671 he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period);
672 return he;
673}
674
675static unsigned random_max(unsigned high)
676{
677 unsigned thresh = -high % high;
678 for (;;) {
679 unsigned r = random();
680 if (r >= thresh)
681 return r % high;
682 }
683}
684
685static void hists__res_sample(struct hist_entry *he, struct perf_sample *sample)
686{
687 struct res_sample *r;
688 int j;
689
690 if (he->num_res < symbol_conf.res_sample) {
691 j = he->num_res++;
692 } else {
693 j = random_max(symbol_conf.res_sample);
694 }
695 r = &he->res_samples[j];
696 r->time = sample->time;
697 r->cpu = sample->cpu;
698 r->tid = sample->tid;
699}
700
701static struct hist_entry*
702__hists__add_entry(struct hists *hists,
703 struct addr_location *al,
704 struct symbol *sym_parent,
705 struct branch_info *bi,
706 struct mem_info *mi,
707 struct block_info *block_info,
708 struct perf_sample *sample,
709 bool sample_self,
710 struct hist_entry_ops *ops)
711{
712 struct namespaces *ns = thread__namespaces(al->thread);
713 struct hist_entry entry = {
714 .thread = al->thread,
715 .comm = thread__comm(al->thread),
716 .cgroup_id = {
717 .dev = ns ? ns->link_info[CGROUP_NS_INDEX].dev : 0,
718 .ino = ns ? ns->link_info[CGROUP_NS_INDEX].ino : 0,
719 },
720 .cgroup = sample->cgroup,
721 .ms = {
722 .maps = al->maps,
723 .map = al->map,
724 .sym = al->sym,
725 },
726 .srcline = (char *) al->srcline,
727 .socket = al->socket,
728 .cpu = al->cpu,
729 .cpumode = al->cpumode,
730 .ip = al->addr,
731 .level = al->level,
732 .code_page_size = sample->code_page_size,
733 .stat = {
734 .nr_events = 1,
735 .period = sample->period,
736 .weight = sample->weight,
737 .ins_lat = sample->ins_lat,
738 .p_stage_cyc = sample->p_stage_cyc,
739 },
740 .parent = sym_parent,
741 .filtered = symbol__parent_filter(sym_parent) | al->filtered,
742 .hists = hists,
743 .branch_info = bi,
744 .mem_info = mi,
745 .block_info = block_info,
746 .transaction = sample->transaction,
747 .raw_data = sample->raw_data,
748 .raw_size = sample->raw_size,
749 .ops = ops,
750 .time = hist_time(sample->time),
751 }, *he = hists__findnew_entry(hists, &entry, al, sample_self);
752
753 if (!hists->has_callchains && he && he->callchain_size != 0)
754 hists->has_callchains = true;
755 if (he && symbol_conf.res_sample)
756 hists__res_sample(he, sample);
757 return he;
758}
759
760struct hist_entry *hists__add_entry(struct hists *hists,
761 struct addr_location *al,
762 struct symbol *sym_parent,
763 struct branch_info *bi,
764 struct mem_info *mi,
765 struct perf_sample *sample,
766 bool sample_self)
767{
768 return __hists__add_entry(hists, al, sym_parent, bi, mi, NULL,
769 sample, sample_self, NULL);
770}
771
772struct hist_entry *hists__add_entry_ops(struct hists *hists,
773 struct hist_entry_ops *ops,
774 struct addr_location *al,
775 struct symbol *sym_parent,
776 struct branch_info *bi,
777 struct mem_info *mi,
778 struct perf_sample *sample,
779 bool sample_self)
780{
781 return __hists__add_entry(hists, al, sym_parent, bi, mi, NULL,
782 sample, sample_self, ops);
783}
784
785struct hist_entry *hists__add_entry_block(struct hists *hists,
786 struct addr_location *al,
787 struct block_info *block_info)
788{
789 struct hist_entry entry = {
790 .block_info = block_info,
791 .hists = hists,
792 .ms = {
793 .maps = al->maps,
794 .map = al->map,
795 .sym = al->sym,
796 },
797 }, *he = hists__findnew_entry(hists, &entry, al, false);
798
799 return he;
800}
801
802static int
803iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
804 struct addr_location *al __maybe_unused)
805{
806 return 0;
807}
808
809static int
810iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
811 struct addr_location *al __maybe_unused)
812{
813 return 0;
814}
815
816static int
817iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
818{
819 struct perf_sample *sample = iter->sample;
820 struct mem_info *mi;
821
822 mi = sample__resolve_mem(sample, al);
823 if (mi == NULL)
824 return -ENOMEM;
825
826 iter->priv = mi;
827 return 0;
828}
829
830static int
831iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
832{
833 u64 cost;
834 struct mem_info *mi = iter->priv;
835 struct hists *hists = evsel__hists(iter->evsel);
836 struct perf_sample *sample = iter->sample;
837 struct hist_entry *he;
838
839 if (mi == NULL)
840 return -EINVAL;
841
842 cost = sample->weight;
843 if (!cost)
844 cost = 1;
845
846 /*
847 * must pass period=weight in order to get the correct
848 * sorting from hists__collapse_resort() which is solely
849 * based on periods. We want sorting be done on nr_events * weight
850 * and this is indirectly achieved by passing period=weight here
851 * and the he_stat__add_period() function.
852 */
853 sample->period = cost;
854
855 he = hists__add_entry(hists, al, iter->parent, NULL, mi,
856 sample, true);
857 if (!he)
858 return -ENOMEM;
859
860 iter->he = he;
861 return 0;
862}
863
864static int
865iter_finish_mem_entry(struct hist_entry_iter *iter,
866 struct addr_location *al __maybe_unused)
867{
868 struct evsel *evsel = iter->evsel;
869 struct hists *hists = evsel__hists(evsel);
870 struct hist_entry *he = iter->he;
871 int err = -EINVAL;
872
873 if (he == NULL)
874 goto out;
875
876 hists__inc_nr_samples(hists, he->filtered);
877
878 err = hist_entry__append_callchain(he, iter->sample);
879
880out:
881 /*
882 * We don't need to free iter->priv (mem_info) here since the mem info
883 * was either already freed in hists__findnew_entry() or passed to a
884 * new hist entry by hist_entry__new().
885 */
886 iter->priv = NULL;
887
888 iter->he = NULL;
889 return err;
890}
891
892static int
893iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
894{
895 struct branch_info *bi;
896 struct perf_sample *sample = iter->sample;
897
898 bi = sample__resolve_bstack(sample, al);
899 if (!bi)
900 return -ENOMEM;
901
902 iter->curr = 0;
903 iter->total = sample->branch_stack->nr;
904
905 iter->priv = bi;
906 return 0;
907}
908
909static int
910iter_add_single_branch_entry(struct hist_entry_iter *iter __maybe_unused,
911 struct addr_location *al __maybe_unused)
912{
913 return 0;
914}
915
916static int
917iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
918{
919 struct branch_info *bi = iter->priv;
920 int i = iter->curr;
921
922 if (bi == NULL)
923 return 0;
924
925 if (iter->curr >= iter->total)
926 return 0;
927
928 al->maps = bi[i].to.ms.maps;
929 al->map = bi[i].to.ms.map;
930 al->sym = bi[i].to.ms.sym;
931 al->addr = bi[i].to.addr;
932 return 1;
933}
934
935static int
936iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
937{
938 struct branch_info *bi;
939 struct evsel *evsel = iter->evsel;
940 struct hists *hists = evsel__hists(evsel);
941 struct perf_sample *sample = iter->sample;
942 struct hist_entry *he = NULL;
943 int i = iter->curr;
944 int err = 0;
945
946 bi = iter->priv;
947
948 if (iter->hide_unresolved && !(bi[i].from.ms.sym && bi[i].to.ms.sym))
949 goto out;
950
951 /*
952 * The report shows the percentage of total branches captured
953 * and not events sampled. Thus we use a pseudo period of 1.
954 */
955 sample->period = 1;
956 sample->weight = bi->flags.cycles ? bi->flags.cycles : 1;
957
958 he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL,
959 sample, true);
960 if (he == NULL)
961 return -ENOMEM;
962
963 hists__inc_nr_samples(hists, he->filtered);
964
965out:
966 iter->he = he;
967 iter->curr++;
968 return err;
969}
970
971static int
972iter_finish_branch_entry(struct hist_entry_iter *iter,
973 struct addr_location *al __maybe_unused)
974{
975 zfree(&iter->priv);
976 iter->he = NULL;
977
978 return iter->curr >= iter->total ? 0 : -1;
979}
980
981static int
982iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused,
983 struct addr_location *al __maybe_unused)
984{
985 return 0;
986}
987
988static int
989iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al)
990{
991 struct evsel *evsel = iter->evsel;
992 struct perf_sample *sample = iter->sample;
993 struct hist_entry *he;
994
995 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
996 sample, true);
997 if (he == NULL)
998 return -ENOMEM;
999
1000 iter->he = he;
1001 return 0;
1002}
1003
1004static int
1005iter_finish_normal_entry(struct hist_entry_iter *iter,
1006 struct addr_location *al __maybe_unused)
1007{
1008 struct hist_entry *he = iter->he;
1009 struct evsel *evsel = iter->evsel;
1010 struct perf_sample *sample = iter->sample;
1011
1012 if (he == NULL)
1013 return 0;
1014
1015 iter->he = NULL;
1016
1017 hists__inc_nr_samples(evsel__hists(evsel), he->filtered);
1018
1019 return hist_entry__append_callchain(he, sample);
1020}
1021
1022static int
1023iter_prepare_cumulative_entry(struct hist_entry_iter *iter,
1024 struct addr_location *al __maybe_unused)
1025{
1026 struct hist_entry **he_cache;
1027
1028 callchain_cursor_commit(&callchain_cursor);
1029
1030 /*
1031 * This is for detecting cycles or recursions so that they're
1032 * cumulated only one time to prevent entries more than 100%
1033 * overhead.
1034 */
1035 he_cache = malloc(sizeof(*he_cache) * (callchain_cursor.nr + 1));
1036 if (he_cache == NULL)
1037 return -ENOMEM;
1038
1039 iter->priv = he_cache;
1040 iter->curr = 0;
1041
1042 return 0;
1043}
1044
1045static int
1046iter_add_single_cumulative_entry(struct hist_entry_iter *iter,
1047 struct addr_location *al)
1048{
1049 struct evsel *evsel = iter->evsel;
1050 struct hists *hists = evsel__hists(evsel);
1051 struct perf_sample *sample = iter->sample;
1052 struct hist_entry **he_cache = iter->priv;
1053 struct hist_entry *he;
1054 int err = 0;
1055
1056 he = hists__add_entry(hists, al, iter->parent, NULL, NULL,
1057 sample, true);
1058 if (he == NULL)
1059 return -ENOMEM;
1060
1061 iter->he = he;
1062 he_cache[iter->curr++] = he;
1063
1064 hist_entry__append_callchain(he, sample);
1065
1066 /*
1067 * We need to re-initialize the cursor since callchain_append()
1068 * advanced the cursor to the end.
1069 */
1070 callchain_cursor_commit(&callchain_cursor);
1071
1072 hists__inc_nr_samples(hists, he->filtered);
1073
1074 return err;
1075}
1076
1077static int
1078iter_next_cumulative_entry(struct hist_entry_iter *iter,
1079 struct addr_location *al)
1080{
1081 struct callchain_cursor_node *node;
1082
1083 node = callchain_cursor_current(&callchain_cursor);
1084 if (node == NULL)
1085 return 0;
1086
1087 return fill_callchain_info(al, node, iter->hide_unresolved);
1088}
1089
1090static bool
1091hist_entry__fast__sym_diff(struct hist_entry *left,
1092 struct hist_entry *right)
1093{
1094 struct symbol *sym_l = left->ms.sym;
1095 struct symbol *sym_r = right->ms.sym;
1096
1097 if (!sym_l && !sym_r)
1098 return left->ip != right->ip;
1099
1100 return !!_sort__sym_cmp(sym_l, sym_r);
1101}
1102
1103
1104static int
1105iter_add_next_cumulative_entry(struct hist_entry_iter *iter,
1106 struct addr_location *al)
1107{
1108 struct evsel *evsel = iter->evsel;
1109 struct perf_sample *sample = iter->sample;
1110 struct hist_entry **he_cache = iter->priv;
1111 struct hist_entry *he;
1112 struct hist_entry he_tmp = {
1113 .hists = evsel__hists(evsel),
1114 .cpu = al->cpu,
1115 .thread = al->thread,
1116 .comm = thread__comm(al->thread),
1117 .ip = al->addr,
1118 .ms = {
1119 .maps = al->maps,
1120 .map = al->map,
1121 .sym = al->sym,
1122 },
1123 .srcline = (char *) al->srcline,
1124 .parent = iter->parent,
1125 .raw_data = sample->raw_data,
1126 .raw_size = sample->raw_size,
1127 };
1128 int i;
1129 struct callchain_cursor cursor;
1130 bool fast = hists__has(he_tmp.hists, sym);
1131
1132 callchain_cursor_snapshot(&cursor, &callchain_cursor);
1133
1134 callchain_cursor_advance(&callchain_cursor);
1135
1136 /*
1137 * Check if there's duplicate entries in the callchain.
1138 * It's possible that it has cycles or recursive calls.
1139 */
1140 for (i = 0; i < iter->curr; i++) {
1141 /*
1142 * For most cases, there are no duplicate entries in callchain.
1143 * The symbols are usually different. Do a quick check for
1144 * symbols first.
1145 */
1146 if (fast && hist_entry__fast__sym_diff(he_cache[i], &he_tmp))
1147 continue;
1148
1149 if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) {
1150 /* to avoid calling callback function */
1151 iter->he = NULL;
1152 return 0;
1153 }
1154 }
1155
1156 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
1157 sample, false);
1158 if (he == NULL)
1159 return -ENOMEM;
1160
1161 iter->he = he;
1162 he_cache[iter->curr++] = he;
1163
1164 if (hist_entry__has_callchains(he) && symbol_conf.use_callchain)
1165 callchain_append(he->callchain, &cursor, sample->period);
1166 return 0;
1167}
1168
1169static int
1170iter_finish_cumulative_entry(struct hist_entry_iter *iter,
1171 struct addr_location *al __maybe_unused)
1172{
1173 zfree(&iter->priv);
1174 iter->he = NULL;
1175
1176 return 0;
1177}
1178
1179const struct hist_iter_ops hist_iter_mem = {
1180 .prepare_entry = iter_prepare_mem_entry,
1181 .add_single_entry = iter_add_single_mem_entry,
1182 .next_entry = iter_next_nop_entry,
1183 .add_next_entry = iter_add_next_nop_entry,
1184 .finish_entry = iter_finish_mem_entry,
1185};
1186
1187const struct hist_iter_ops hist_iter_branch = {
1188 .prepare_entry = iter_prepare_branch_entry,
1189 .add_single_entry = iter_add_single_branch_entry,
1190 .next_entry = iter_next_branch_entry,
1191 .add_next_entry = iter_add_next_branch_entry,
1192 .finish_entry = iter_finish_branch_entry,
1193};
1194
1195const struct hist_iter_ops hist_iter_normal = {
1196 .prepare_entry = iter_prepare_normal_entry,
1197 .add_single_entry = iter_add_single_normal_entry,
1198 .next_entry = iter_next_nop_entry,
1199 .add_next_entry = iter_add_next_nop_entry,
1200 .finish_entry = iter_finish_normal_entry,
1201};
1202
1203const struct hist_iter_ops hist_iter_cumulative = {
1204 .prepare_entry = iter_prepare_cumulative_entry,
1205 .add_single_entry = iter_add_single_cumulative_entry,
1206 .next_entry = iter_next_cumulative_entry,
1207 .add_next_entry = iter_add_next_cumulative_entry,
1208 .finish_entry = iter_finish_cumulative_entry,
1209};
1210
1211int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al,
1212 int max_stack_depth, void *arg)
1213{
1214 int err, err2;
1215 struct map *alm = NULL;
1216
1217 if (al)
1218 alm = map__get(al->map);
1219
1220 err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent,
1221 iter->evsel, al, max_stack_depth);
1222 if (err) {
1223 map__put(alm);
1224 return err;
1225 }
1226
1227 err = iter->ops->prepare_entry(iter, al);
1228 if (err)
1229 goto out;
1230
1231 err = iter->ops->add_single_entry(iter, al);
1232 if (err)
1233 goto out;
1234
1235 if (iter->he && iter->add_entry_cb) {
1236 err = iter->add_entry_cb(iter, al, true, arg);
1237 if (err)
1238 goto out;
1239 }
1240
1241 while (iter->ops->next_entry(iter, al)) {
1242 err = iter->ops->add_next_entry(iter, al);
1243 if (err)
1244 break;
1245
1246 if (iter->he && iter->add_entry_cb) {
1247 err = iter->add_entry_cb(iter, al, false, arg);
1248 if (err)
1249 goto out;
1250 }
1251 }
1252
1253out:
1254 err2 = iter->ops->finish_entry(iter, al);
1255 if (!err)
1256 err = err2;
1257
1258 map__put(alm);
1259
1260 return err;
1261}
1262
1263int64_t
1264hist_entry__cmp(struct hist_entry *left, struct hist_entry *right)
1265{
1266 struct hists *hists = left->hists;
1267 struct perf_hpp_fmt *fmt;
1268 int64_t cmp = 0;
1269
1270 hists__for_each_sort_list(hists, fmt) {
1271 if (perf_hpp__is_dynamic_entry(fmt) &&
1272 !perf_hpp__defined_dynamic_entry(fmt, hists))
1273 continue;
1274
1275 cmp = fmt->cmp(fmt, left, right);
1276 if (cmp)
1277 break;
1278 }
1279
1280 return cmp;
1281}
1282
1283int64_t
1284hist_entry__collapse(struct hist_entry *left, struct hist_entry *right)
1285{
1286 struct hists *hists = left->hists;
1287 struct perf_hpp_fmt *fmt;
1288 int64_t cmp = 0;
1289
1290 hists__for_each_sort_list(hists, fmt) {
1291 if (perf_hpp__is_dynamic_entry(fmt) &&
1292 !perf_hpp__defined_dynamic_entry(fmt, hists))
1293 continue;
1294
1295 cmp = fmt->collapse(fmt, left, right);
1296 if (cmp)
1297 break;
1298 }
1299
1300 return cmp;
1301}
1302
1303void hist_entry__delete(struct hist_entry *he)
1304{
1305 struct hist_entry_ops *ops = he->ops;
1306
1307 thread__zput(he->thread);
1308 map__zput(he->ms.map);
1309
1310 if (he->branch_info) {
1311 map__zput(he->branch_info->from.ms.map);
1312 map__zput(he->branch_info->to.ms.map);
1313 free_srcline(he->branch_info->srcline_from);
1314 free_srcline(he->branch_info->srcline_to);
1315 zfree(&he->branch_info);
1316 }
1317
1318 if (he->mem_info) {
1319 map__zput(he->mem_info->iaddr.ms.map);
1320 map__zput(he->mem_info->daddr.ms.map);
1321 mem_info__zput(he->mem_info);
1322 }
1323
1324 if (he->block_info)
1325 block_info__zput(he->block_info);
1326
1327 zfree(&he->res_samples);
1328 zfree(&he->stat_acc);
1329 free_srcline(he->srcline);
1330 if (he->srcfile && he->srcfile[0])
1331 zfree(&he->srcfile);
1332 free_callchain(he->callchain);
1333 zfree(&he->trace_output);
1334 zfree(&he->raw_data);
1335 ops->free(he);
1336}
1337
1338/*
1339 * If this is not the last column, then we need to pad it according to the
1340 * pre-calculated max length for this column, otherwise don't bother adding
1341 * spaces because that would break viewing this with, for instance, 'less',
1342 * that would show tons of trailing spaces when a long C++ demangled method
1343 * names is sampled.
1344*/
1345int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp,
1346 struct perf_hpp_fmt *fmt, int printed)
1347{
1348 if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) {
1349 const int width = fmt->width(fmt, hpp, he->hists);
1350 if (printed < width) {
1351 advance_hpp(hpp, printed);
1352 printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " ");
1353 }
1354 }
1355
1356 return printed;
1357}
1358
1359/*
1360 * collapse the histogram
1361 */
1362
1363static void hists__apply_filters(struct hists *hists, struct hist_entry *he);
1364static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he,
1365 enum hist_filter type);
1366
1367typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt);
1368
1369static bool check_thread_entry(struct perf_hpp_fmt *fmt)
1370{
1371 return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt);
1372}
1373
1374static void hist_entry__check_and_remove_filter(struct hist_entry *he,
1375 enum hist_filter type,
1376 fmt_chk_fn check)
1377{
1378 struct perf_hpp_fmt *fmt;
1379 bool type_match = false;
1380 struct hist_entry *parent = he->parent_he;
1381
1382 switch (type) {
1383 case HIST_FILTER__THREAD:
1384 if (symbol_conf.comm_list == NULL &&
1385 symbol_conf.pid_list == NULL &&
1386 symbol_conf.tid_list == NULL)
1387 return;
1388 break;
1389 case HIST_FILTER__DSO:
1390 if (symbol_conf.dso_list == NULL)
1391 return;
1392 break;
1393 case HIST_FILTER__SYMBOL:
1394 if (symbol_conf.sym_list == NULL)
1395 return;
1396 break;
1397 case HIST_FILTER__PARENT:
1398 case HIST_FILTER__GUEST:
1399 case HIST_FILTER__HOST:
1400 case HIST_FILTER__SOCKET:
1401 case HIST_FILTER__C2C:
1402 default:
1403 return;
1404 }
1405
1406 /* if it's filtered by own fmt, it has to have filter bits */
1407 perf_hpp_list__for_each_format(he->hpp_list, fmt) {
1408 if (check(fmt)) {
1409 type_match = true;
1410 break;
1411 }
1412 }
1413
1414 if (type_match) {
1415 /*
1416 * If the filter is for current level entry, propagate
1417 * filter marker to parents. The marker bit was
1418 * already set by default so it only needs to clear
1419 * non-filtered entries.
1420 */
1421 if (!(he->filtered & (1 << type))) {
1422 while (parent) {
1423 parent->filtered &= ~(1 << type);
1424 parent = parent->parent_he;
1425 }
1426 }
1427 } else {
1428 /*
1429 * If current entry doesn't have matching formats, set
1430 * filter marker for upper level entries. it will be
1431 * cleared if its lower level entries is not filtered.
1432 *
1433 * For lower-level entries, it inherits parent's
1434 * filter bit so that lower level entries of a
1435 * non-filtered entry won't set the filter marker.
1436 */
1437 if (parent == NULL)
1438 he->filtered |= (1 << type);
1439 else
1440 he->filtered |= (parent->filtered & (1 << type));
1441 }
1442}
1443
1444static void hist_entry__apply_hierarchy_filters(struct hist_entry *he)
1445{
1446 hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD,
1447 check_thread_entry);
1448
1449 hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO,
1450 perf_hpp__is_dso_entry);
1451
1452 hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL,
1453 perf_hpp__is_sym_entry);
1454
1455 hists__apply_filters(he->hists, he);
1456}
1457
1458static struct hist_entry *hierarchy_insert_entry(struct hists *hists,
1459 struct rb_root_cached *root,
1460 struct hist_entry *he,
1461 struct hist_entry *parent_he,
1462 struct perf_hpp_list *hpp_list)
1463{
1464 struct rb_node **p = &root->rb_root.rb_node;
1465 struct rb_node *parent = NULL;
1466 struct hist_entry *iter, *new;
1467 struct perf_hpp_fmt *fmt;
1468 int64_t cmp;
1469 bool leftmost = true;
1470
1471 while (*p != NULL) {
1472 parent = *p;
1473 iter = rb_entry(parent, struct hist_entry, rb_node_in);
1474
1475 cmp = 0;
1476 perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1477 cmp = fmt->collapse(fmt, iter, he);
1478 if (cmp)
1479 break;
1480 }
1481
1482 if (!cmp) {
1483 he_stat__add_stat(&iter->stat, &he->stat);
1484 return iter;
1485 }
1486
1487 if (cmp < 0)
1488 p = &parent->rb_left;
1489 else {
1490 p = &parent->rb_right;
1491 leftmost = false;
1492 }
1493 }
1494
1495 new = hist_entry__new(he, true);
1496 if (new == NULL)
1497 return NULL;
1498
1499 hists->nr_entries++;
1500
1501 /* save related format list for output */
1502 new->hpp_list = hpp_list;
1503 new->parent_he = parent_he;
1504
1505 hist_entry__apply_hierarchy_filters(new);
1506
1507 /* some fields are now passed to 'new' */
1508 perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1509 if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt))
1510 he->trace_output = NULL;
1511 else
1512 new->trace_output = NULL;
1513
1514 if (perf_hpp__is_srcline_entry(fmt))
1515 he->srcline = NULL;
1516 else
1517 new->srcline = NULL;
1518
1519 if (perf_hpp__is_srcfile_entry(fmt))
1520 he->srcfile = NULL;
1521 else
1522 new->srcfile = NULL;
1523 }
1524
1525 rb_link_node(&new->rb_node_in, parent, p);
1526 rb_insert_color_cached(&new->rb_node_in, root, leftmost);
1527 return new;
1528}
1529
1530static int hists__hierarchy_insert_entry(struct hists *hists,
1531 struct rb_root_cached *root,
1532 struct hist_entry *he)
1533{
1534 struct perf_hpp_list_node *node;
1535 struct hist_entry *new_he = NULL;
1536 struct hist_entry *parent = NULL;
1537 int depth = 0;
1538 int ret = 0;
1539
1540 list_for_each_entry(node, &hists->hpp_formats, list) {
1541 /* skip period (overhead) and elided columns */
1542 if (node->level == 0 || node->skip)
1543 continue;
1544
1545 /* insert copy of 'he' for each fmt into the hierarchy */
1546 new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp);
1547 if (new_he == NULL) {
1548 ret = -1;
1549 break;
1550 }
1551
1552 root = &new_he->hroot_in;
1553 new_he->depth = depth++;
1554 parent = new_he;
1555 }
1556
1557 if (new_he) {
1558 new_he->leaf = true;
1559
1560 if (hist_entry__has_callchains(new_he) &&
1561 symbol_conf.use_callchain) {
1562 callchain_cursor_reset(&callchain_cursor);
1563 if (callchain_merge(&callchain_cursor,
1564 new_he->callchain,
1565 he->callchain) < 0)
1566 ret = -1;
1567 }
1568 }
1569
1570 /* 'he' is no longer used */
1571 hist_entry__delete(he);
1572
1573 /* return 0 (or -1) since it already applied filters */
1574 return ret;
1575}
1576
1577static int hists__collapse_insert_entry(struct hists *hists,
1578 struct rb_root_cached *root,
1579 struct hist_entry *he)
1580{
1581 struct rb_node **p = &root->rb_root.rb_node;
1582 struct rb_node *parent = NULL;
1583 struct hist_entry *iter;
1584 int64_t cmp;
1585 bool leftmost = true;
1586
1587 if (symbol_conf.report_hierarchy)
1588 return hists__hierarchy_insert_entry(hists, root, he);
1589
1590 while (*p != NULL) {
1591 parent = *p;
1592 iter = rb_entry(parent, struct hist_entry, rb_node_in);
1593
1594 cmp = hist_entry__collapse(iter, he);
1595
1596 if (!cmp) {
1597 int ret = 0;
1598
1599 he_stat__add_stat(&iter->stat, &he->stat);
1600 if (symbol_conf.cumulate_callchain)
1601 he_stat__add_stat(iter->stat_acc, he->stat_acc);
1602
1603 if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) {
1604 callchain_cursor_reset(&callchain_cursor);
1605 if (callchain_merge(&callchain_cursor,
1606 iter->callchain,
1607 he->callchain) < 0)
1608 ret = -1;
1609 }
1610 hist_entry__delete(he);
1611 return ret;
1612 }
1613
1614 if (cmp < 0)
1615 p = &(*p)->rb_left;
1616 else {
1617 p = &(*p)->rb_right;
1618 leftmost = false;
1619 }
1620 }
1621 hists->nr_entries++;
1622
1623 rb_link_node(&he->rb_node_in, parent, p);
1624 rb_insert_color_cached(&he->rb_node_in, root, leftmost);
1625 return 1;
1626}
1627
1628struct rb_root_cached *hists__get_rotate_entries_in(struct hists *hists)
1629{
1630 struct rb_root_cached *root;
1631
1632 pthread_mutex_lock(&hists->lock);
1633
1634 root = hists->entries_in;
1635 if (++hists->entries_in > &hists->entries_in_array[1])
1636 hists->entries_in = &hists->entries_in_array[0];
1637
1638 pthread_mutex_unlock(&hists->lock);
1639
1640 return root;
1641}
1642
1643static void hists__apply_filters(struct hists *hists, struct hist_entry *he)
1644{
1645 hists__filter_entry_by_dso(hists, he);
1646 hists__filter_entry_by_thread(hists, he);
1647 hists__filter_entry_by_symbol(hists, he);
1648 hists__filter_entry_by_socket(hists, he);
1649}
1650
1651int hists__collapse_resort(struct hists *hists, struct ui_progress *prog)
1652{
1653 struct rb_root_cached *root;
1654 struct rb_node *next;
1655 struct hist_entry *n;
1656 int ret;
1657
1658 if (!hists__has(hists, need_collapse))
1659 return 0;
1660
1661 hists->nr_entries = 0;
1662
1663 root = hists__get_rotate_entries_in(hists);
1664
1665 next = rb_first_cached(root);
1666
1667 while (next) {
1668 if (session_done())
1669 break;
1670 n = rb_entry(next, struct hist_entry, rb_node_in);
1671 next = rb_next(&n->rb_node_in);
1672
1673 rb_erase_cached(&n->rb_node_in, root);
1674 ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n);
1675 if (ret < 0)
1676 return -1;
1677
1678 if (ret) {
1679 /*
1680 * If it wasn't combined with one of the entries already
1681 * collapsed, we need to apply the filters that may have
1682 * been set by, say, the hist_browser.
1683 */
1684 hists__apply_filters(hists, n);
1685 }
1686 if (prog)
1687 ui_progress__update(prog, 1);
1688 }
1689 return 0;
1690}
1691
1692static int64_t hist_entry__sort(struct hist_entry *a, struct hist_entry *b)
1693{
1694 struct hists *hists = a->hists;
1695 struct perf_hpp_fmt *fmt;
1696 int64_t cmp = 0;
1697
1698 hists__for_each_sort_list(hists, fmt) {
1699 if (perf_hpp__should_skip(fmt, a->hists))
1700 continue;
1701
1702 cmp = fmt->sort(fmt, a, b);
1703 if (cmp)
1704 break;
1705 }
1706
1707 return cmp;
1708}
1709
1710static void hists__reset_filter_stats(struct hists *hists)
1711{
1712 hists->nr_non_filtered_entries = 0;
1713 hists->stats.total_non_filtered_period = 0;
1714}
1715
1716void hists__reset_stats(struct hists *hists)
1717{
1718 hists->nr_entries = 0;
1719 hists->stats.total_period = 0;
1720
1721 hists__reset_filter_stats(hists);
1722}
1723
1724static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h)
1725{
1726 hists->nr_non_filtered_entries++;
1727 hists->stats.total_non_filtered_period += h->stat.period;
1728}
1729
1730void hists__inc_stats(struct hists *hists, struct hist_entry *h)
1731{
1732 if (!h->filtered)
1733 hists__inc_filter_stats(hists, h);
1734
1735 hists->nr_entries++;
1736 hists->stats.total_period += h->stat.period;
1737}
1738
1739static void hierarchy_recalc_total_periods(struct hists *hists)
1740{
1741 struct rb_node *node;
1742 struct hist_entry *he;
1743
1744 node = rb_first_cached(&hists->entries);
1745
1746 hists->stats.total_period = 0;
1747 hists->stats.total_non_filtered_period = 0;
1748
1749 /*
1750 * recalculate total period using top-level entries only
1751 * since lower level entries only see non-filtered entries
1752 * but upper level entries have sum of both entries.
1753 */
1754 while (node) {
1755 he = rb_entry(node, struct hist_entry, rb_node);
1756 node = rb_next(node);
1757
1758 hists->stats.total_period += he->stat.period;
1759 if (!he->filtered)
1760 hists->stats.total_non_filtered_period += he->stat.period;
1761 }
1762}
1763
1764static void hierarchy_insert_output_entry(struct rb_root_cached *root,
1765 struct hist_entry *he)
1766{
1767 struct rb_node **p = &root->rb_root.rb_node;
1768 struct rb_node *parent = NULL;
1769 struct hist_entry *iter;
1770 struct perf_hpp_fmt *fmt;
1771 bool leftmost = true;
1772
1773 while (*p != NULL) {
1774 parent = *p;
1775 iter = rb_entry(parent, struct hist_entry, rb_node);
1776
1777 if (hist_entry__sort(he, iter) > 0)
1778 p = &parent->rb_left;
1779 else {
1780 p = &parent->rb_right;
1781 leftmost = false;
1782 }
1783 }
1784
1785 rb_link_node(&he->rb_node, parent, p);
1786 rb_insert_color_cached(&he->rb_node, root, leftmost);
1787
1788 /* update column width of dynamic entry */
1789 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
1790 if (perf_hpp__is_dynamic_entry(fmt))
1791 fmt->sort(fmt, he, NULL);
1792 }
1793}
1794
1795static void hists__hierarchy_output_resort(struct hists *hists,
1796 struct ui_progress *prog,
1797 struct rb_root_cached *root_in,
1798 struct rb_root_cached *root_out,
1799 u64 min_callchain_hits,
1800 bool use_callchain)
1801{
1802 struct rb_node *node;
1803 struct hist_entry *he;
1804
1805 *root_out = RB_ROOT_CACHED;
1806 node = rb_first_cached(root_in);
1807
1808 while (node) {
1809 he = rb_entry(node, struct hist_entry, rb_node_in);
1810 node = rb_next(node);
1811
1812 hierarchy_insert_output_entry(root_out, he);
1813
1814 if (prog)
1815 ui_progress__update(prog, 1);
1816
1817 hists->nr_entries++;
1818 if (!he->filtered) {
1819 hists->nr_non_filtered_entries++;
1820 hists__calc_col_len(hists, he);
1821 }
1822
1823 if (!he->leaf) {
1824 hists__hierarchy_output_resort(hists, prog,
1825 &he->hroot_in,
1826 &he->hroot_out,
1827 min_callchain_hits,
1828 use_callchain);
1829 continue;
1830 }
1831
1832 if (!use_callchain)
1833 continue;
1834
1835 if (callchain_param.mode == CHAIN_GRAPH_REL) {
1836 u64 total = he->stat.period;
1837
1838 if (symbol_conf.cumulate_callchain)
1839 total = he->stat_acc->period;
1840
1841 min_callchain_hits = total * (callchain_param.min_percent / 100);
1842 }
1843
1844 callchain_param.sort(&he->sorted_chain, he->callchain,
1845 min_callchain_hits, &callchain_param);
1846 }
1847}
1848
1849static void __hists__insert_output_entry(struct rb_root_cached *entries,
1850 struct hist_entry *he,
1851 u64 min_callchain_hits,
1852 bool use_callchain)
1853{
1854 struct rb_node **p = &entries->rb_root.rb_node;
1855 struct rb_node *parent = NULL;
1856 struct hist_entry *iter;
1857 struct perf_hpp_fmt *fmt;
1858 bool leftmost = true;
1859
1860 if (use_callchain) {
1861 if (callchain_param.mode == CHAIN_GRAPH_REL) {
1862 u64 total = he->stat.period;
1863
1864 if (symbol_conf.cumulate_callchain)
1865 total = he->stat_acc->period;
1866
1867 min_callchain_hits = total * (callchain_param.min_percent / 100);
1868 }
1869 callchain_param.sort(&he->sorted_chain, he->callchain,
1870 min_callchain_hits, &callchain_param);
1871 }
1872
1873 while (*p != NULL) {
1874 parent = *p;
1875 iter = rb_entry(parent, struct hist_entry, rb_node);
1876
1877 if (hist_entry__sort(he, iter) > 0)
1878 p = &(*p)->rb_left;
1879 else {
1880 p = &(*p)->rb_right;
1881 leftmost = false;
1882 }
1883 }
1884
1885 rb_link_node(&he->rb_node, parent, p);
1886 rb_insert_color_cached(&he->rb_node, entries, leftmost);
1887
1888 perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) {
1889 if (perf_hpp__is_dynamic_entry(fmt) &&
1890 perf_hpp__defined_dynamic_entry(fmt, he->hists))
1891 fmt->sort(fmt, he, NULL); /* update column width */
1892 }
1893}
1894
1895static void output_resort(struct hists *hists, struct ui_progress *prog,
1896 bool use_callchain, hists__resort_cb_t cb,
1897 void *cb_arg)
1898{
1899 struct rb_root_cached *root;
1900 struct rb_node *next;
1901 struct hist_entry *n;
1902 u64 callchain_total;
1903 u64 min_callchain_hits;
1904
1905 callchain_total = hists->callchain_period;
1906 if (symbol_conf.filter_relative)
1907 callchain_total = hists->callchain_non_filtered_period;
1908
1909 min_callchain_hits = callchain_total * (callchain_param.min_percent / 100);
1910
1911 hists__reset_stats(hists);
1912 hists__reset_col_len(hists);
1913
1914 if (symbol_conf.report_hierarchy) {
1915 hists__hierarchy_output_resort(hists, prog,
1916 &hists->entries_collapsed,
1917 &hists->entries,
1918 min_callchain_hits,
1919 use_callchain);
1920 hierarchy_recalc_total_periods(hists);
1921 return;
1922 }
1923
1924 if (hists__has(hists, need_collapse))
1925 root = &hists->entries_collapsed;
1926 else
1927 root = hists->entries_in;
1928
1929 next = rb_first_cached(root);
1930 hists->entries = RB_ROOT_CACHED;
1931
1932 while (next) {
1933 n = rb_entry(next, struct hist_entry, rb_node_in);
1934 next = rb_next(&n->rb_node_in);
1935
1936 if (cb && cb(n, cb_arg))
1937 continue;
1938
1939 __hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain);
1940 hists__inc_stats(hists, n);
1941
1942 if (!n->filtered)
1943 hists__calc_col_len(hists, n);
1944
1945 if (prog)
1946 ui_progress__update(prog, 1);
1947 }
1948}
1949
1950void evsel__output_resort_cb(struct evsel *evsel, struct ui_progress *prog,
1951 hists__resort_cb_t cb, void *cb_arg)
1952{
1953 bool use_callchain;
1954
1955 if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph)
1956 use_callchain = evsel__has_callchain(evsel);
1957 else
1958 use_callchain = symbol_conf.use_callchain;
1959
1960 use_callchain |= symbol_conf.show_branchflag_count;
1961
1962 output_resort(evsel__hists(evsel), prog, use_callchain, cb, cb_arg);
1963}
1964
1965void evsel__output_resort(struct evsel *evsel, struct ui_progress *prog)
1966{
1967 return evsel__output_resort_cb(evsel, prog, NULL, NULL);
1968}
1969
1970void hists__output_resort(struct hists *hists, struct ui_progress *prog)
1971{
1972 output_resort(hists, prog, symbol_conf.use_callchain, NULL, NULL);
1973}
1974
1975void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog,
1976 hists__resort_cb_t cb)
1977{
1978 output_resort(hists, prog, symbol_conf.use_callchain, cb, NULL);
1979}
1980
1981static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd)
1982{
1983 if (he->leaf || hmd == HMD_FORCE_SIBLING)
1984 return false;
1985
1986 if (he->unfolded || hmd == HMD_FORCE_CHILD)
1987 return true;
1988
1989 return false;
1990}
1991
1992struct rb_node *rb_hierarchy_last(struct rb_node *node)
1993{
1994 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1995
1996 while (can_goto_child(he, HMD_NORMAL)) {
1997 node = rb_last(&he->hroot_out.rb_root);
1998 he = rb_entry(node, struct hist_entry, rb_node);
1999 }
2000 return node;
2001}
2002
2003struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd)
2004{
2005 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
2006
2007 if (can_goto_child(he, hmd))
2008 node = rb_first_cached(&he->hroot_out);
2009 else
2010 node = rb_next(node);
2011
2012 while (node == NULL) {
2013 he = he->parent_he;
2014 if (he == NULL)
2015 break;
2016
2017 node = rb_next(&he->rb_node);
2018 }
2019 return node;
2020}
2021
2022struct rb_node *rb_hierarchy_prev(struct rb_node *node)
2023{
2024 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
2025
2026 node = rb_prev(node);
2027 if (node)
2028 return rb_hierarchy_last(node);
2029
2030 he = he->parent_he;
2031 if (he == NULL)
2032 return NULL;
2033
2034 return &he->rb_node;
2035}
2036
2037bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit)
2038{
2039 struct rb_node *node;
2040 struct hist_entry *child;
2041 float percent;
2042
2043 if (he->leaf)
2044 return false;
2045
2046 node = rb_first_cached(&he->hroot_out);
2047 child = rb_entry(node, struct hist_entry, rb_node);
2048
2049 while (node && child->filtered) {
2050 node = rb_next(node);
2051 child = rb_entry(node, struct hist_entry, rb_node);
2052 }
2053
2054 if (node)
2055 percent = hist_entry__get_percent_limit(child);
2056 else
2057 percent = 0;
2058
2059 return node && percent >= limit;
2060}
2061
2062static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h,
2063 enum hist_filter filter)
2064{
2065 h->filtered &= ~(1 << filter);
2066
2067 if (symbol_conf.report_hierarchy) {
2068 struct hist_entry *parent = h->parent_he;
2069
2070 while (parent) {
2071 he_stat__add_stat(&parent->stat, &h->stat);
2072
2073 parent->filtered &= ~(1 << filter);
2074
2075 if (parent->filtered)
2076 goto next;
2077
2078 /* force fold unfiltered entry for simplicity */
2079 parent->unfolded = false;
2080 parent->has_no_entry = false;
2081 parent->row_offset = 0;
2082 parent->nr_rows = 0;
2083next:
2084 parent = parent->parent_he;
2085 }
2086 }
2087
2088 if (h->filtered)
2089 return;
2090
2091 /* force fold unfiltered entry for simplicity */
2092 h->unfolded = false;
2093 h->has_no_entry = false;
2094 h->row_offset = 0;
2095 h->nr_rows = 0;
2096
2097 hists->stats.nr_non_filtered_samples += h->stat.nr_events;
2098
2099 hists__inc_filter_stats(hists, h);
2100 hists__calc_col_len(hists, h);
2101}
2102
2103
2104static bool hists__filter_entry_by_dso(struct hists *hists,
2105 struct hist_entry *he)
2106{
2107 if (hists->dso_filter != NULL &&
2108 (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) {
2109 he->filtered |= (1 << HIST_FILTER__DSO);
2110 return true;
2111 }
2112
2113 return false;
2114}
2115
2116static bool hists__filter_entry_by_thread(struct hists *hists,
2117 struct hist_entry *he)
2118{
2119 if (hists->thread_filter != NULL &&
2120 he->thread != hists->thread_filter) {
2121 he->filtered |= (1 << HIST_FILTER__THREAD);
2122 return true;
2123 }
2124
2125 return false;
2126}
2127
2128static bool hists__filter_entry_by_symbol(struct hists *hists,
2129 struct hist_entry *he)
2130{
2131 if (hists->symbol_filter_str != NULL &&
2132 (!he->ms.sym || strstr(he->ms.sym->name,
2133 hists->symbol_filter_str) == NULL)) {
2134 he->filtered |= (1 << HIST_FILTER__SYMBOL);
2135 return true;
2136 }
2137
2138 return false;
2139}
2140
2141static bool hists__filter_entry_by_socket(struct hists *hists,
2142 struct hist_entry *he)
2143{
2144 if ((hists->socket_filter > -1) &&
2145 (he->socket != hists->socket_filter)) {
2146 he->filtered |= (1 << HIST_FILTER__SOCKET);
2147 return true;
2148 }
2149
2150 return false;
2151}
2152
2153typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he);
2154
2155static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter)
2156{
2157 struct rb_node *nd;
2158
2159 hists->stats.nr_non_filtered_samples = 0;
2160
2161 hists__reset_filter_stats(hists);
2162 hists__reset_col_len(hists);
2163
2164 for (nd = rb_first_cached(&hists->entries); nd; nd = rb_next(nd)) {
2165 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2166
2167 if (filter(hists, h))
2168 continue;
2169
2170 hists__remove_entry_filter(hists, h, type);
2171 }
2172}
2173
2174static void resort_filtered_entry(struct rb_root_cached *root,
2175 struct hist_entry *he)
2176{
2177 struct rb_node **p = &root->rb_root.rb_node;
2178 struct rb_node *parent = NULL;
2179 struct hist_entry *iter;
2180 struct rb_root_cached new_root = RB_ROOT_CACHED;
2181 struct rb_node *nd;
2182 bool leftmost = true;
2183
2184 while (*p != NULL) {
2185 parent = *p;
2186 iter = rb_entry(parent, struct hist_entry, rb_node);
2187
2188 if (hist_entry__sort(he, iter) > 0)
2189 p = &(*p)->rb_left;
2190 else {
2191 p = &(*p)->rb_right;
2192 leftmost = false;
2193 }
2194 }
2195
2196 rb_link_node(&he->rb_node, parent, p);
2197 rb_insert_color_cached(&he->rb_node, root, leftmost);
2198
2199 if (he->leaf || he->filtered)
2200 return;
2201
2202 nd = rb_first_cached(&he->hroot_out);
2203 while (nd) {
2204 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2205
2206 nd = rb_next(nd);
2207 rb_erase_cached(&h->rb_node, &he->hroot_out);
2208
2209 resort_filtered_entry(&new_root, h);
2210 }
2211
2212 he->hroot_out = new_root;
2213}
2214
2215static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg)
2216{
2217 struct rb_node *nd;
2218 struct rb_root_cached new_root = RB_ROOT_CACHED;
2219
2220 hists->stats.nr_non_filtered_samples = 0;
2221
2222 hists__reset_filter_stats(hists);
2223 hists__reset_col_len(hists);
2224
2225 nd = rb_first_cached(&hists->entries);
2226 while (nd) {
2227 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2228 int ret;
2229
2230 ret = hist_entry__filter(h, type, arg);
2231
2232 /*
2233 * case 1. non-matching type
2234 * zero out the period, set filter marker and move to child
2235 */
2236 if (ret < 0) {
2237 memset(&h->stat, 0, sizeof(h->stat));
2238 h->filtered |= (1 << type);
2239
2240 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD);
2241 }
2242 /*
2243 * case 2. matched type (filter out)
2244 * set filter marker and move to next
2245 */
2246 else if (ret == 1) {
2247 h->filtered |= (1 << type);
2248
2249 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2250 }
2251 /*
2252 * case 3. ok (not filtered)
2253 * add period to hists and parents, erase the filter marker
2254 * and move to next sibling
2255 */
2256 else {
2257 hists__remove_entry_filter(hists, h, type);
2258
2259 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2260 }
2261 }
2262
2263 hierarchy_recalc_total_periods(hists);
2264
2265 /*
2266 * resort output after applying a new filter since filter in a lower
2267 * hierarchy can change periods in a upper hierarchy.
2268 */
2269 nd = rb_first_cached(&hists->entries);
2270 while (nd) {
2271 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2272
2273 nd = rb_next(nd);
2274 rb_erase_cached(&h->rb_node, &hists->entries);
2275
2276 resort_filtered_entry(&new_root, h);
2277 }
2278
2279 hists->entries = new_root;
2280}
2281
2282void hists__filter_by_thread(struct hists *hists)
2283{
2284 if (symbol_conf.report_hierarchy)
2285 hists__filter_hierarchy(hists, HIST_FILTER__THREAD,
2286 hists->thread_filter);
2287 else
2288 hists__filter_by_type(hists, HIST_FILTER__THREAD,
2289 hists__filter_entry_by_thread);
2290}
2291
2292void hists__filter_by_dso(struct hists *hists)
2293{
2294 if (symbol_conf.report_hierarchy)
2295 hists__filter_hierarchy(hists, HIST_FILTER__DSO,
2296 hists->dso_filter);
2297 else
2298 hists__filter_by_type(hists, HIST_FILTER__DSO,
2299 hists__filter_entry_by_dso);
2300}
2301
2302void hists__filter_by_symbol(struct hists *hists)
2303{
2304 if (symbol_conf.report_hierarchy)
2305 hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL,
2306 hists->symbol_filter_str);
2307 else
2308 hists__filter_by_type(hists, HIST_FILTER__SYMBOL,
2309 hists__filter_entry_by_symbol);
2310}
2311
2312void hists__filter_by_socket(struct hists *hists)
2313{
2314 if (symbol_conf.report_hierarchy)
2315 hists__filter_hierarchy(hists, HIST_FILTER__SOCKET,
2316 &hists->socket_filter);
2317 else
2318 hists__filter_by_type(hists, HIST_FILTER__SOCKET,
2319 hists__filter_entry_by_socket);
2320}
2321
2322void events_stats__inc(struct events_stats *stats, u32 type)
2323{
2324 ++stats->nr_events[0];
2325 ++stats->nr_events[type];
2326}
2327
2328static void hists_stats__inc(struct hists_stats *stats)
2329{
2330 ++stats->nr_samples;
2331}
2332
2333void hists__inc_nr_events(struct hists *hists)
2334{
2335 hists_stats__inc(&hists->stats);
2336}
2337
2338void hists__inc_nr_samples(struct hists *hists, bool filtered)
2339{
2340 hists_stats__inc(&hists->stats);
2341 if (!filtered)
2342 hists->stats.nr_non_filtered_samples++;
2343}
2344
2345static struct hist_entry *hists__add_dummy_entry(struct hists *hists,
2346 struct hist_entry *pair)
2347{
2348 struct rb_root_cached *root;
2349 struct rb_node **p;
2350 struct rb_node *parent = NULL;
2351 struct hist_entry *he;
2352 int64_t cmp;
2353 bool leftmost = true;
2354
2355 if (hists__has(hists, need_collapse))
2356 root = &hists->entries_collapsed;
2357 else
2358 root = hists->entries_in;
2359
2360 p = &root->rb_root.rb_node;
2361
2362 while (*p != NULL) {
2363 parent = *p;
2364 he = rb_entry(parent, struct hist_entry, rb_node_in);
2365
2366 cmp = hist_entry__collapse(he, pair);
2367
2368 if (!cmp)
2369 goto out;
2370
2371 if (cmp < 0)
2372 p = &(*p)->rb_left;
2373 else {
2374 p = &(*p)->rb_right;
2375 leftmost = false;
2376 }
2377 }
2378
2379 he = hist_entry__new(pair, true);
2380 if (he) {
2381 memset(&he->stat, 0, sizeof(he->stat));
2382 he->hists = hists;
2383 if (symbol_conf.cumulate_callchain)
2384 memset(he->stat_acc, 0, sizeof(he->stat));
2385 rb_link_node(&he->rb_node_in, parent, p);
2386 rb_insert_color_cached(&he->rb_node_in, root, leftmost);
2387 hists__inc_stats(hists, he);
2388 he->dummy = true;
2389 }
2390out:
2391 return he;
2392}
2393
2394static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists,
2395 struct rb_root_cached *root,
2396 struct hist_entry *pair)
2397{
2398 struct rb_node **p;
2399 struct rb_node *parent = NULL;
2400 struct hist_entry *he;
2401 struct perf_hpp_fmt *fmt;
2402 bool leftmost = true;
2403
2404 p = &root->rb_root.rb_node;
2405 while (*p != NULL) {
2406 int64_t cmp = 0;
2407
2408 parent = *p;
2409 he = rb_entry(parent, struct hist_entry, rb_node_in);
2410
2411 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2412 cmp = fmt->collapse(fmt, he, pair);
2413 if (cmp)
2414 break;
2415 }
2416 if (!cmp)
2417 goto out;
2418
2419 if (cmp < 0)
2420 p = &parent->rb_left;
2421 else {
2422 p = &parent->rb_right;
2423 leftmost = false;
2424 }
2425 }
2426
2427 he = hist_entry__new(pair, true);
2428 if (he) {
2429 rb_link_node(&he->rb_node_in, parent, p);
2430 rb_insert_color_cached(&he->rb_node_in, root, leftmost);
2431
2432 he->dummy = true;
2433 he->hists = hists;
2434 memset(&he->stat, 0, sizeof(he->stat));
2435 hists__inc_stats(hists, he);
2436 }
2437out:
2438 return he;
2439}
2440
2441static struct hist_entry *hists__find_entry(struct hists *hists,
2442 struct hist_entry *he)
2443{
2444 struct rb_node *n;
2445
2446 if (hists__has(hists, need_collapse))
2447 n = hists->entries_collapsed.rb_root.rb_node;
2448 else
2449 n = hists->entries_in->rb_root.rb_node;
2450
2451 while (n) {
2452 struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in);
2453 int64_t cmp = hist_entry__collapse(iter, he);
2454
2455 if (cmp < 0)
2456 n = n->rb_left;
2457 else if (cmp > 0)
2458 n = n->rb_right;
2459 else
2460 return iter;
2461 }
2462
2463 return NULL;
2464}
2465
2466static struct hist_entry *hists__find_hierarchy_entry(struct rb_root_cached *root,
2467 struct hist_entry *he)
2468{
2469 struct rb_node *n = root->rb_root.rb_node;
2470
2471 while (n) {
2472 struct hist_entry *iter;
2473 struct perf_hpp_fmt *fmt;
2474 int64_t cmp = 0;
2475
2476 iter = rb_entry(n, struct hist_entry, rb_node_in);
2477 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2478 cmp = fmt->collapse(fmt, iter, he);
2479 if (cmp)
2480 break;
2481 }
2482
2483 if (cmp < 0)
2484 n = n->rb_left;
2485 else if (cmp > 0)
2486 n = n->rb_right;
2487 else
2488 return iter;
2489 }
2490
2491 return NULL;
2492}
2493
2494static void hists__match_hierarchy(struct rb_root_cached *leader_root,
2495 struct rb_root_cached *other_root)
2496{
2497 struct rb_node *nd;
2498 struct hist_entry *pos, *pair;
2499
2500 for (nd = rb_first_cached(leader_root); nd; nd = rb_next(nd)) {
2501 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2502 pair = hists__find_hierarchy_entry(other_root, pos);
2503
2504 if (pair) {
2505 hist_entry__add_pair(pair, pos);
2506 hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in);
2507 }
2508 }
2509}
2510
2511/*
2512 * Look for pairs to link to the leader buckets (hist_entries):
2513 */
2514void hists__match(struct hists *leader, struct hists *other)
2515{
2516 struct rb_root_cached *root;
2517 struct rb_node *nd;
2518 struct hist_entry *pos, *pair;
2519
2520 if (symbol_conf.report_hierarchy) {
2521 /* hierarchy report always collapses entries */
2522 return hists__match_hierarchy(&leader->entries_collapsed,
2523 &other->entries_collapsed);
2524 }
2525
2526 if (hists__has(leader, need_collapse))
2527 root = &leader->entries_collapsed;
2528 else
2529 root = leader->entries_in;
2530
2531 for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) {
2532 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2533 pair = hists__find_entry(other, pos);
2534
2535 if (pair)
2536 hist_entry__add_pair(pair, pos);
2537 }
2538}
2539
2540static int hists__link_hierarchy(struct hists *leader_hists,
2541 struct hist_entry *parent,
2542 struct rb_root_cached *leader_root,
2543 struct rb_root_cached *other_root)
2544{
2545 struct rb_node *nd;
2546 struct hist_entry *pos, *leader;
2547
2548 for (nd = rb_first_cached(other_root); nd; nd = rb_next(nd)) {
2549 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2550
2551 if (hist_entry__has_pairs(pos)) {
2552 bool found = false;
2553
2554 list_for_each_entry(leader, &pos->pairs.head, pairs.node) {
2555 if (leader->hists == leader_hists) {
2556 found = true;
2557 break;
2558 }
2559 }
2560 if (!found)
2561 return -1;
2562 } else {
2563 leader = add_dummy_hierarchy_entry(leader_hists,
2564 leader_root, pos);
2565 if (leader == NULL)
2566 return -1;
2567
2568 /* do not point parent in the pos */
2569 leader->parent_he = parent;
2570
2571 hist_entry__add_pair(pos, leader);
2572 }
2573
2574 if (!pos->leaf) {
2575 if (hists__link_hierarchy(leader_hists, leader,
2576 &leader->hroot_in,
2577 &pos->hroot_in) < 0)
2578 return -1;
2579 }
2580 }
2581 return 0;
2582}
2583
2584/*
2585 * Look for entries in the other hists that are not present in the leader, if
2586 * we find them, just add a dummy entry on the leader hists, with period=0,
2587 * nr_events=0, to serve as the list header.
2588 */
2589int hists__link(struct hists *leader, struct hists *other)
2590{
2591 struct rb_root_cached *root;
2592 struct rb_node *nd;
2593 struct hist_entry *pos, *pair;
2594
2595 if (symbol_conf.report_hierarchy) {
2596 /* hierarchy report always collapses entries */
2597 return hists__link_hierarchy(leader, NULL,
2598 &leader->entries_collapsed,
2599 &other->entries_collapsed);
2600 }
2601
2602 if (hists__has(other, need_collapse))
2603 root = &other->entries_collapsed;
2604 else
2605 root = other->entries_in;
2606
2607 for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) {
2608 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2609
2610 if (!hist_entry__has_pairs(pos)) {
2611 pair = hists__add_dummy_entry(leader, pos);
2612 if (pair == NULL)
2613 return -1;
2614 hist_entry__add_pair(pos, pair);
2615 }
2616 }
2617
2618 return 0;
2619}
2620
2621int hists__unlink(struct hists *hists)
2622{
2623 struct rb_root_cached *root;
2624 struct rb_node *nd;
2625 struct hist_entry *pos;
2626
2627 if (hists__has(hists, need_collapse))
2628 root = &hists->entries_collapsed;
2629 else
2630 root = hists->entries_in;
2631
2632 for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) {
2633 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2634 list_del_init(&pos->pairs.node);
2635 }
2636
2637 return 0;
2638}
2639
2640void hist__account_cycles(struct branch_stack *bs, struct addr_location *al,
2641 struct perf_sample *sample, bool nonany_branch_mode,
2642 u64 *total_cycles)
2643{
2644 struct branch_info *bi;
2645 struct branch_entry *entries = perf_sample__branch_entries(sample);
2646
2647 /* If we have branch cycles always annotate them. */
2648 if (bs && bs->nr && entries[0].flags.cycles) {
2649 int i;
2650
2651 bi = sample__resolve_bstack(sample, al);
2652 if (bi) {
2653 struct addr_map_symbol *prev = NULL;
2654
2655 /*
2656 * Ignore errors, still want to process the
2657 * other entries.
2658 *
2659 * For non standard branch modes always
2660 * force no IPC (prev == NULL)
2661 *
2662 * Note that perf stores branches reversed from
2663 * program order!
2664 */
2665 for (i = bs->nr - 1; i >= 0; i--) {
2666 addr_map_symbol__account_cycles(&bi[i].from,
2667 nonany_branch_mode ? NULL : prev,
2668 bi[i].flags.cycles);
2669 prev = &bi[i].to;
2670
2671 if (total_cycles)
2672 *total_cycles += bi[i].flags.cycles;
2673 }
2674 free(bi);
2675 }
2676 }
2677}
2678
2679size_t evlist__fprintf_nr_events(struct evlist *evlist, FILE *fp,
2680 bool skip_empty)
2681{
2682 struct evsel *pos;
2683 size_t ret = 0;
2684
2685 evlist__for_each_entry(evlist, pos) {
2686 struct hists *hists = evsel__hists(pos);
2687
2688 if (skip_empty && !hists->stats.nr_samples)
2689 continue;
2690
2691 ret += fprintf(fp, "%s stats:\n", evsel__name(pos));
2692 ret += fprintf(fp, "%16s events: %10d\n",
2693 "SAMPLE", hists->stats.nr_samples);
2694 }
2695
2696 return ret;
2697}
2698
2699
2700u64 hists__total_period(struct hists *hists)
2701{
2702 return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period :
2703 hists->stats.total_period;
2704}
2705
2706int __hists__scnprintf_title(struct hists *hists, char *bf, size_t size, bool show_freq)
2707{
2708 char unit;
2709 int printed;
2710 const struct dso *dso = hists->dso_filter;
2711 struct thread *thread = hists->thread_filter;
2712 int socket_id = hists->socket_filter;
2713 unsigned long nr_samples = hists->stats.nr_samples;
2714 u64 nr_events = hists->stats.total_period;
2715 struct evsel *evsel = hists_to_evsel(hists);
2716 const char *ev_name = evsel__name(evsel);
2717 char buf[512], sample_freq_str[64] = "";
2718 size_t buflen = sizeof(buf);
2719 char ref[30] = " show reference callgraph, ";
2720 bool enable_ref = false;
2721
2722 if (symbol_conf.filter_relative) {
2723 nr_samples = hists->stats.nr_non_filtered_samples;
2724 nr_events = hists->stats.total_non_filtered_period;
2725 }
2726
2727 if (evsel__is_group_event(evsel)) {
2728 struct evsel *pos;
2729
2730 evsel__group_desc(evsel, buf, buflen);
2731 ev_name = buf;
2732
2733 for_each_group_member(pos, evsel) {
2734 struct hists *pos_hists = evsel__hists(pos);
2735
2736 if (symbol_conf.filter_relative) {
2737 nr_samples += pos_hists->stats.nr_non_filtered_samples;
2738 nr_events += pos_hists->stats.total_non_filtered_period;
2739 } else {
2740 nr_samples += pos_hists->stats.nr_samples;
2741 nr_events += pos_hists->stats.total_period;
2742 }
2743 }
2744 }
2745
2746 if (symbol_conf.show_ref_callgraph &&
2747 strstr(ev_name, "call-graph=no"))
2748 enable_ref = true;
2749
2750 if (show_freq)
2751 scnprintf(sample_freq_str, sizeof(sample_freq_str), " %d Hz,", evsel->core.attr.sample_freq);
2752
2753 nr_samples = convert_unit(nr_samples, &unit);
2754 printed = scnprintf(bf, size,
2755 "Samples: %lu%c of event%s '%s',%s%sEvent count (approx.): %" PRIu64,
2756 nr_samples, unit, evsel->core.nr_members > 1 ? "s" : "",
2757 ev_name, sample_freq_str, enable_ref ? ref : " ", nr_events);
2758
2759
2760 if (hists->uid_filter_str)
2761 printed += snprintf(bf + printed, size - printed,
2762 ", UID: %s", hists->uid_filter_str);
2763 if (thread) {
2764 if (hists__has(hists, thread)) {
2765 printed += scnprintf(bf + printed, size - printed,
2766 ", Thread: %s(%d)",
2767 (thread->comm_set ? thread__comm_str(thread) : ""),
2768 thread->tid);
2769 } else {
2770 printed += scnprintf(bf + printed, size - printed,
2771 ", Thread: %s",
2772 (thread->comm_set ? thread__comm_str(thread) : ""));
2773 }
2774 }
2775 if (dso)
2776 printed += scnprintf(bf + printed, size - printed,
2777 ", DSO: %s", dso->short_name);
2778 if (socket_id > -1)
2779 printed += scnprintf(bf + printed, size - printed,
2780 ", Processor Socket: %d", socket_id);
2781
2782 return printed;
2783}
2784
2785int parse_filter_percentage(const struct option *opt __maybe_unused,
2786 const char *arg, int unset __maybe_unused)
2787{
2788 if (!strcmp(arg, "relative"))
2789 symbol_conf.filter_relative = true;
2790 else if (!strcmp(arg, "absolute"))
2791 symbol_conf.filter_relative = false;
2792 else {
2793 pr_debug("Invalid percentage: %s\n", arg);
2794 return -1;
2795 }
2796
2797 return 0;
2798}
2799
2800int perf_hist_config(const char *var, const char *value)
2801{
2802 if (!strcmp(var, "hist.percentage"))
2803 return parse_filter_percentage(NULL, value, 0);
2804
2805 return 0;
2806}
2807
2808int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list)
2809{
2810 memset(hists, 0, sizeof(*hists));
2811 hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT_CACHED;
2812 hists->entries_in = &hists->entries_in_array[0];
2813 hists->entries_collapsed = RB_ROOT_CACHED;
2814 hists->entries = RB_ROOT_CACHED;
2815 pthread_mutex_init(&hists->lock, NULL);
2816 hists->socket_filter = -1;
2817 hists->hpp_list = hpp_list;
2818 INIT_LIST_HEAD(&hists->hpp_formats);
2819 return 0;
2820}
2821
2822static void hists__delete_remaining_entries(struct rb_root_cached *root)
2823{
2824 struct rb_node *node;
2825 struct hist_entry *he;
2826
2827 while (!RB_EMPTY_ROOT(&root->rb_root)) {
2828 node = rb_first_cached(root);
2829 rb_erase_cached(node, root);
2830
2831 he = rb_entry(node, struct hist_entry, rb_node_in);
2832 hist_entry__delete(he);
2833 }
2834}
2835
2836static void hists__delete_all_entries(struct hists *hists)
2837{
2838 hists__delete_entries(hists);
2839 hists__delete_remaining_entries(&hists->entries_in_array[0]);
2840 hists__delete_remaining_entries(&hists->entries_in_array[1]);
2841 hists__delete_remaining_entries(&hists->entries_collapsed);
2842}
2843
2844static void hists_evsel__exit(struct evsel *evsel)
2845{
2846 struct hists *hists = evsel__hists(evsel);
2847 struct perf_hpp_fmt *fmt, *pos;
2848 struct perf_hpp_list_node *node, *tmp;
2849
2850 hists__delete_all_entries(hists);
2851
2852 list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) {
2853 perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) {
2854 list_del_init(&fmt->list);
2855 free(fmt);
2856 }
2857 list_del_init(&node->list);
2858 free(node);
2859 }
2860}
2861
2862static int hists_evsel__init(struct evsel *evsel)
2863{
2864 struct hists *hists = evsel__hists(evsel);
2865
2866 __hists__init(hists, &perf_hpp_list);
2867 return 0;
2868}
2869
2870/*
2871 * XXX We probably need a hists_evsel__exit() to free the hist_entries
2872 * stored in the rbtree...
2873 */
2874
2875int hists__init(void)
2876{
2877 int err = evsel__object_config(sizeof(struct hists_evsel),
2878 hists_evsel__init, hists_evsel__exit);
2879 if (err)
2880 fputs("FATAL ERROR: Couldn't setup hists class\n", stderr);
2881
2882 return err;
2883}
2884
2885void perf_hpp_list__init(struct perf_hpp_list *list)
2886{
2887 INIT_LIST_HEAD(&list->fields);
2888 INIT_LIST_HEAD(&list->sorts);
2889}