Loading...
1// SPDX-License-Identifier: GPL-2.0
2#include "callchain.h"
3#include "debug.h"
4#include "dso.h"
5#include "build-id.h"
6#include "hist.h"
7#include "map.h"
8#include "map_symbol.h"
9#include "branch.h"
10#include "mem-events.h"
11#include "session.h"
12#include "namespaces.h"
13#include "sort.h"
14#include "units.h"
15#include "evlist.h"
16#include "evsel.h"
17#include "annotate.h"
18#include "srcline.h"
19#include "symbol.h"
20#include "thread.h"
21#include "ui/progress.h"
22#include <errno.h>
23#include <math.h>
24#include <inttypes.h>
25#include <sys/param.h>
26#include <linux/rbtree.h>
27#include <linux/string.h>
28#include <linux/time64.h>
29#include <linux/zalloc.h>
30
31static bool hists__filter_entry_by_dso(struct hists *hists,
32 struct hist_entry *he);
33static bool hists__filter_entry_by_thread(struct hists *hists,
34 struct hist_entry *he);
35static bool hists__filter_entry_by_symbol(struct hists *hists,
36 struct hist_entry *he);
37static bool hists__filter_entry_by_socket(struct hists *hists,
38 struct hist_entry *he);
39
40u16 hists__col_len(struct hists *hists, enum hist_column col)
41{
42 return hists->col_len[col];
43}
44
45void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len)
46{
47 hists->col_len[col] = len;
48}
49
50bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len)
51{
52 if (len > hists__col_len(hists, col)) {
53 hists__set_col_len(hists, col, len);
54 return true;
55 }
56 return false;
57}
58
59void hists__reset_col_len(struct hists *hists)
60{
61 enum hist_column col;
62
63 for (col = 0; col < HISTC_NR_COLS; ++col)
64 hists__set_col_len(hists, col, 0);
65}
66
67static void hists__set_unres_dso_col_len(struct hists *hists, int dso)
68{
69 const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
70
71 if (hists__col_len(hists, dso) < unresolved_col_width &&
72 !symbol_conf.col_width_list_str && !symbol_conf.field_sep &&
73 !symbol_conf.dso_list)
74 hists__set_col_len(hists, dso, unresolved_col_width);
75}
76
77void hists__calc_col_len(struct hists *hists, struct hist_entry *h)
78{
79 const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
80 int symlen;
81 u16 len;
82
83 /*
84 * +4 accounts for '[x] ' priv level info
85 * +2 accounts for 0x prefix on raw addresses
86 * +3 accounts for ' y ' symtab origin info
87 */
88 if (h->ms.sym) {
89 symlen = h->ms.sym->namelen + 4;
90 if (verbose > 0)
91 symlen += BITS_PER_LONG / 4 + 2 + 3;
92 hists__new_col_len(hists, HISTC_SYMBOL, symlen);
93 } else {
94 symlen = unresolved_col_width + 4 + 2;
95 hists__new_col_len(hists, HISTC_SYMBOL, symlen);
96 hists__set_unres_dso_col_len(hists, HISTC_DSO);
97 }
98
99 len = thread__comm_len(h->thread);
100 if (hists__new_col_len(hists, HISTC_COMM, len))
101 hists__set_col_len(hists, HISTC_THREAD, len + 8);
102
103 if (h->ms.map) {
104 len = dso__name_len(h->ms.map->dso);
105 hists__new_col_len(hists, HISTC_DSO, len);
106 }
107
108 if (h->parent)
109 hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen);
110
111 if (h->branch_info) {
112 if (h->branch_info->from.sym) {
113 symlen = (int)h->branch_info->from.sym->namelen + 4;
114 if (verbose > 0)
115 symlen += BITS_PER_LONG / 4 + 2 + 3;
116 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
117
118 symlen = dso__name_len(h->branch_info->from.map->dso);
119 hists__new_col_len(hists, HISTC_DSO_FROM, symlen);
120 } else {
121 symlen = unresolved_col_width + 4 + 2;
122 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
123 hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM);
124 }
125
126 if (h->branch_info->to.sym) {
127 symlen = (int)h->branch_info->to.sym->namelen + 4;
128 if (verbose > 0)
129 symlen += BITS_PER_LONG / 4 + 2 + 3;
130 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
131
132 symlen = dso__name_len(h->branch_info->to.map->dso);
133 hists__new_col_len(hists, HISTC_DSO_TO, symlen);
134 } else {
135 symlen = unresolved_col_width + 4 + 2;
136 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
137 hists__set_unres_dso_col_len(hists, HISTC_DSO_TO);
138 }
139
140 if (h->branch_info->srcline_from)
141 hists__new_col_len(hists, HISTC_SRCLINE_FROM,
142 strlen(h->branch_info->srcline_from));
143 if (h->branch_info->srcline_to)
144 hists__new_col_len(hists, HISTC_SRCLINE_TO,
145 strlen(h->branch_info->srcline_to));
146 }
147
148 if (h->mem_info) {
149 if (h->mem_info->daddr.sym) {
150 symlen = (int)h->mem_info->daddr.sym->namelen + 4
151 + unresolved_col_width + 2;
152 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
153 symlen);
154 hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
155 symlen + 1);
156 } else {
157 symlen = unresolved_col_width + 4 + 2;
158 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
159 symlen);
160 hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
161 symlen);
162 }
163
164 if (h->mem_info->iaddr.sym) {
165 symlen = (int)h->mem_info->iaddr.sym->namelen + 4
166 + unresolved_col_width + 2;
167 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
168 symlen);
169 } else {
170 symlen = unresolved_col_width + 4 + 2;
171 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
172 symlen);
173 }
174
175 if (h->mem_info->daddr.map) {
176 symlen = dso__name_len(h->mem_info->daddr.map->dso);
177 hists__new_col_len(hists, HISTC_MEM_DADDR_DSO,
178 symlen);
179 } else {
180 symlen = unresolved_col_width + 4 + 2;
181 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
182 }
183
184 hists__new_col_len(hists, HISTC_MEM_PHYS_DADDR,
185 unresolved_col_width + 4 + 2);
186
187 } else {
188 symlen = unresolved_col_width + 4 + 2;
189 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen);
190 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen);
191 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
192 }
193
194 hists__new_col_len(hists, HISTC_CGROUP_ID, 20);
195 hists__new_col_len(hists, HISTC_CPU, 3);
196 hists__new_col_len(hists, HISTC_SOCKET, 6);
197 hists__new_col_len(hists, HISTC_MEM_LOCKED, 6);
198 hists__new_col_len(hists, HISTC_MEM_TLB, 22);
199 hists__new_col_len(hists, HISTC_MEM_SNOOP, 12);
200 hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3);
201 hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12);
202 hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12);
203 if (symbol_conf.nanosecs)
204 hists__new_col_len(hists, HISTC_TIME, 16);
205 else
206 hists__new_col_len(hists, HISTC_TIME, 12);
207
208 if (h->srcline) {
209 len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header));
210 hists__new_col_len(hists, HISTC_SRCLINE, len);
211 }
212
213 if (h->srcfile)
214 hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile));
215
216 if (h->transaction)
217 hists__new_col_len(hists, HISTC_TRANSACTION,
218 hist_entry__transaction_len());
219
220 if (h->trace_output)
221 hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output));
222}
223
224void hists__output_recalc_col_len(struct hists *hists, int max_rows)
225{
226 struct rb_node *next = rb_first_cached(&hists->entries);
227 struct hist_entry *n;
228 int row = 0;
229
230 hists__reset_col_len(hists);
231
232 while (next && row++ < max_rows) {
233 n = rb_entry(next, struct hist_entry, rb_node);
234 if (!n->filtered)
235 hists__calc_col_len(hists, n);
236 next = rb_next(&n->rb_node);
237 }
238}
239
240static void he_stat__add_cpumode_period(struct he_stat *he_stat,
241 unsigned int cpumode, u64 period)
242{
243 switch (cpumode) {
244 case PERF_RECORD_MISC_KERNEL:
245 he_stat->period_sys += period;
246 break;
247 case PERF_RECORD_MISC_USER:
248 he_stat->period_us += period;
249 break;
250 case PERF_RECORD_MISC_GUEST_KERNEL:
251 he_stat->period_guest_sys += period;
252 break;
253 case PERF_RECORD_MISC_GUEST_USER:
254 he_stat->period_guest_us += period;
255 break;
256 default:
257 break;
258 }
259}
260
261static long hist_time(unsigned long htime)
262{
263 unsigned long time_quantum = symbol_conf.time_quantum;
264 if (time_quantum)
265 return (htime / time_quantum) * time_quantum;
266 return htime;
267}
268
269static void he_stat__add_period(struct he_stat *he_stat, u64 period,
270 u64 weight)
271{
272
273 he_stat->period += period;
274 he_stat->weight += weight;
275 he_stat->nr_events += 1;
276}
277
278static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src)
279{
280 dest->period += src->period;
281 dest->period_sys += src->period_sys;
282 dest->period_us += src->period_us;
283 dest->period_guest_sys += src->period_guest_sys;
284 dest->period_guest_us += src->period_guest_us;
285 dest->nr_events += src->nr_events;
286 dest->weight += src->weight;
287}
288
289static void he_stat__decay(struct he_stat *he_stat)
290{
291 he_stat->period = (he_stat->period * 7) / 8;
292 he_stat->nr_events = (he_stat->nr_events * 7) / 8;
293 /* XXX need decay for weight too? */
294}
295
296static void hists__delete_entry(struct hists *hists, struct hist_entry *he);
297
298static bool hists__decay_entry(struct hists *hists, struct hist_entry *he)
299{
300 u64 prev_period = he->stat.period;
301 u64 diff;
302
303 if (prev_period == 0)
304 return true;
305
306 he_stat__decay(&he->stat);
307 if (symbol_conf.cumulate_callchain)
308 he_stat__decay(he->stat_acc);
309 decay_callchain(he->callchain);
310
311 diff = prev_period - he->stat.period;
312
313 if (!he->depth) {
314 hists->stats.total_period -= diff;
315 if (!he->filtered)
316 hists->stats.total_non_filtered_period -= diff;
317 }
318
319 if (!he->leaf) {
320 struct hist_entry *child;
321 struct rb_node *node = rb_first_cached(&he->hroot_out);
322 while (node) {
323 child = rb_entry(node, struct hist_entry, rb_node);
324 node = rb_next(node);
325
326 if (hists__decay_entry(hists, child))
327 hists__delete_entry(hists, child);
328 }
329 }
330
331 return he->stat.period == 0;
332}
333
334static void hists__delete_entry(struct hists *hists, struct hist_entry *he)
335{
336 struct rb_root_cached *root_in;
337 struct rb_root_cached *root_out;
338
339 if (he->parent_he) {
340 root_in = &he->parent_he->hroot_in;
341 root_out = &he->parent_he->hroot_out;
342 } else {
343 if (hists__has(hists, need_collapse))
344 root_in = &hists->entries_collapsed;
345 else
346 root_in = hists->entries_in;
347 root_out = &hists->entries;
348 }
349
350 rb_erase_cached(&he->rb_node_in, root_in);
351 rb_erase_cached(&he->rb_node, root_out);
352
353 --hists->nr_entries;
354 if (!he->filtered)
355 --hists->nr_non_filtered_entries;
356
357 hist_entry__delete(he);
358}
359
360void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel)
361{
362 struct rb_node *next = rb_first_cached(&hists->entries);
363 struct hist_entry *n;
364
365 while (next) {
366 n = rb_entry(next, struct hist_entry, rb_node);
367 next = rb_next(&n->rb_node);
368 if (((zap_user && n->level == '.') ||
369 (zap_kernel && n->level != '.') ||
370 hists__decay_entry(hists, n))) {
371 hists__delete_entry(hists, n);
372 }
373 }
374}
375
376void hists__delete_entries(struct hists *hists)
377{
378 struct rb_node *next = rb_first_cached(&hists->entries);
379 struct hist_entry *n;
380
381 while (next) {
382 n = rb_entry(next, struct hist_entry, rb_node);
383 next = rb_next(&n->rb_node);
384
385 hists__delete_entry(hists, n);
386 }
387}
388
389struct hist_entry *hists__get_entry(struct hists *hists, int idx)
390{
391 struct rb_node *next = rb_first_cached(&hists->entries);
392 struct hist_entry *n;
393 int i = 0;
394
395 while (next) {
396 n = rb_entry(next, struct hist_entry, rb_node);
397 if (i == idx)
398 return n;
399
400 next = rb_next(&n->rb_node);
401 i++;
402 }
403
404 return NULL;
405}
406
407/*
408 * histogram, sorted on item, collects periods
409 */
410
411static int hist_entry__init(struct hist_entry *he,
412 struct hist_entry *template,
413 bool sample_self,
414 size_t callchain_size)
415{
416 *he = *template;
417 he->callchain_size = callchain_size;
418
419 if (symbol_conf.cumulate_callchain) {
420 he->stat_acc = malloc(sizeof(he->stat));
421 if (he->stat_acc == NULL)
422 return -ENOMEM;
423 memcpy(he->stat_acc, &he->stat, sizeof(he->stat));
424 if (!sample_self)
425 memset(&he->stat, 0, sizeof(he->stat));
426 }
427
428 map__get(he->ms.map);
429
430 if (he->branch_info) {
431 /*
432 * This branch info is (a part of) allocated from
433 * sample__resolve_bstack() and will be freed after
434 * adding new entries. So we need to save a copy.
435 */
436 he->branch_info = malloc(sizeof(*he->branch_info));
437 if (he->branch_info == NULL)
438 goto err;
439
440 memcpy(he->branch_info, template->branch_info,
441 sizeof(*he->branch_info));
442
443 map__get(he->branch_info->from.map);
444 map__get(he->branch_info->to.map);
445 }
446
447 if (he->mem_info) {
448 map__get(he->mem_info->iaddr.map);
449 map__get(he->mem_info->daddr.map);
450 }
451
452 if (hist_entry__has_callchains(he) && symbol_conf.use_callchain)
453 callchain_init(he->callchain);
454
455 if (he->raw_data) {
456 he->raw_data = memdup(he->raw_data, he->raw_size);
457 if (he->raw_data == NULL)
458 goto err_infos;
459 }
460
461 if (he->srcline) {
462 he->srcline = strdup(he->srcline);
463 if (he->srcline == NULL)
464 goto err_rawdata;
465 }
466
467 if (symbol_conf.res_sample) {
468 he->res_samples = calloc(sizeof(struct res_sample),
469 symbol_conf.res_sample);
470 if (!he->res_samples)
471 goto err_srcline;
472 }
473
474 INIT_LIST_HEAD(&he->pairs.node);
475 thread__get(he->thread);
476 he->hroot_in = RB_ROOT_CACHED;
477 he->hroot_out = RB_ROOT_CACHED;
478
479 if (!symbol_conf.report_hierarchy)
480 he->leaf = true;
481
482 return 0;
483
484err_srcline:
485 zfree(&he->srcline);
486
487err_rawdata:
488 zfree(&he->raw_data);
489
490err_infos:
491 if (he->branch_info) {
492 map__put(he->branch_info->from.map);
493 map__put(he->branch_info->to.map);
494 zfree(&he->branch_info);
495 }
496 if (he->mem_info) {
497 map__put(he->mem_info->iaddr.map);
498 map__put(he->mem_info->daddr.map);
499 }
500err:
501 map__zput(he->ms.map);
502 zfree(&he->stat_acc);
503 return -ENOMEM;
504}
505
506static void *hist_entry__zalloc(size_t size)
507{
508 return zalloc(size + sizeof(struct hist_entry));
509}
510
511static void hist_entry__free(void *ptr)
512{
513 free(ptr);
514}
515
516static struct hist_entry_ops default_ops = {
517 .new = hist_entry__zalloc,
518 .free = hist_entry__free,
519};
520
521static struct hist_entry *hist_entry__new(struct hist_entry *template,
522 bool sample_self)
523{
524 struct hist_entry_ops *ops = template->ops;
525 size_t callchain_size = 0;
526 struct hist_entry *he;
527 int err = 0;
528
529 if (!ops)
530 ops = template->ops = &default_ops;
531
532 if (symbol_conf.use_callchain)
533 callchain_size = sizeof(struct callchain_root);
534
535 he = ops->new(callchain_size);
536 if (he) {
537 err = hist_entry__init(he, template, sample_self, callchain_size);
538 if (err) {
539 ops->free(he);
540 he = NULL;
541 }
542 }
543
544 return he;
545}
546
547static u8 symbol__parent_filter(const struct symbol *parent)
548{
549 if (symbol_conf.exclude_other && parent == NULL)
550 return 1 << HIST_FILTER__PARENT;
551 return 0;
552}
553
554static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period)
555{
556 if (!hist_entry__has_callchains(he) || !symbol_conf.use_callchain)
557 return;
558
559 he->hists->callchain_period += period;
560 if (!he->filtered)
561 he->hists->callchain_non_filtered_period += period;
562}
563
564static struct hist_entry *hists__findnew_entry(struct hists *hists,
565 struct hist_entry *entry,
566 struct addr_location *al,
567 bool sample_self)
568{
569 struct rb_node **p;
570 struct rb_node *parent = NULL;
571 struct hist_entry *he;
572 int64_t cmp;
573 u64 period = entry->stat.period;
574 u64 weight = entry->stat.weight;
575 bool leftmost = true;
576
577 p = &hists->entries_in->rb_root.rb_node;
578
579 while (*p != NULL) {
580 parent = *p;
581 he = rb_entry(parent, struct hist_entry, rb_node_in);
582
583 /*
584 * Make sure that it receives arguments in a same order as
585 * hist_entry__collapse() so that we can use an appropriate
586 * function when searching an entry regardless which sort
587 * keys were used.
588 */
589 cmp = hist_entry__cmp(he, entry);
590
591 if (!cmp) {
592 if (sample_self) {
593 he_stat__add_period(&he->stat, period, weight);
594 hist_entry__add_callchain_period(he, period);
595 }
596 if (symbol_conf.cumulate_callchain)
597 he_stat__add_period(he->stat_acc, period, weight);
598
599 /*
600 * This mem info was allocated from sample__resolve_mem
601 * and will not be used anymore.
602 */
603 mem_info__zput(entry->mem_info);
604
605 block_info__zput(entry->block_info);
606
607 /* If the map of an existing hist_entry has
608 * become out-of-date due to an exec() or
609 * similar, update it. Otherwise we will
610 * mis-adjust symbol addresses when computing
611 * the history counter to increment.
612 */
613 if (he->ms.map != entry->ms.map) {
614 map__put(he->ms.map);
615 he->ms.map = map__get(entry->ms.map);
616 }
617 goto out;
618 }
619
620 if (cmp < 0)
621 p = &(*p)->rb_left;
622 else {
623 p = &(*p)->rb_right;
624 leftmost = false;
625 }
626 }
627
628 he = hist_entry__new(entry, sample_self);
629 if (!he)
630 return NULL;
631
632 if (sample_self)
633 hist_entry__add_callchain_period(he, period);
634 hists->nr_entries++;
635
636 rb_link_node(&he->rb_node_in, parent, p);
637 rb_insert_color_cached(&he->rb_node_in, hists->entries_in, leftmost);
638out:
639 if (sample_self)
640 he_stat__add_cpumode_period(&he->stat, al->cpumode, period);
641 if (symbol_conf.cumulate_callchain)
642 he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period);
643 return he;
644}
645
646static unsigned random_max(unsigned high)
647{
648 unsigned thresh = -high % high;
649 for (;;) {
650 unsigned r = random();
651 if (r >= thresh)
652 return r % high;
653 }
654}
655
656static void hists__res_sample(struct hist_entry *he, struct perf_sample *sample)
657{
658 struct res_sample *r;
659 int j;
660
661 if (he->num_res < symbol_conf.res_sample) {
662 j = he->num_res++;
663 } else {
664 j = random_max(symbol_conf.res_sample);
665 }
666 r = &he->res_samples[j];
667 r->time = sample->time;
668 r->cpu = sample->cpu;
669 r->tid = sample->tid;
670}
671
672static struct hist_entry*
673__hists__add_entry(struct hists *hists,
674 struct addr_location *al,
675 struct symbol *sym_parent,
676 struct branch_info *bi,
677 struct mem_info *mi,
678 struct block_info *block_info,
679 struct perf_sample *sample,
680 bool sample_self,
681 struct hist_entry_ops *ops)
682{
683 struct namespaces *ns = thread__namespaces(al->thread);
684 struct hist_entry entry = {
685 .thread = al->thread,
686 .comm = thread__comm(al->thread),
687 .cgroup_id = {
688 .dev = ns ? ns->link_info[CGROUP_NS_INDEX].dev : 0,
689 .ino = ns ? ns->link_info[CGROUP_NS_INDEX].ino : 0,
690 },
691 .ms = {
692 .map = al->map,
693 .sym = al->sym,
694 },
695 .srcline = (char *) al->srcline,
696 .socket = al->socket,
697 .cpu = al->cpu,
698 .cpumode = al->cpumode,
699 .ip = al->addr,
700 .level = al->level,
701 .stat = {
702 .nr_events = 1,
703 .period = sample->period,
704 .weight = sample->weight,
705 },
706 .parent = sym_parent,
707 .filtered = symbol__parent_filter(sym_parent) | al->filtered,
708 .hists = hists,
709 .branch_info = bi,
710 .mem_info = mi,
711 .block_info = block_info,
712 .transaction = sample->transaction,
713 .raw_data = sample->raw_data,
714 .raw_size = sample->raw_size,
715 .ops = ops,
716 .time = hist_time(sample->time),
717 }, *he = hists__findnew_entry(hists, &entry, al, sample_self);
718
719 if (!hists->has_callchains && he && he->callchain_size != 0)
720 hists->has_callchains = true;
721 if (he && symbol_conf.res_sample)
722 hists__res_sample(he, sample);
723 return he;
724}
725
726struct hist_entry *hists__add_entry(struct hists *hists,
727 struct addr_location *al,
728 struct symbol *sym_parent,
729 struct branch_info *bi,
730 struct mem_info *mi,
731 struct perf_sample *sample,
732 bool sample_self)
733{
734 return __hists__add_entry(hists, al, sym_parent, bi, mi, NULL,
735 sample, sample_self, NULL);
736}
737
738struct hist_entry *hists__add_entry_ops(struct hists *hists,
739 struct hist_entry_ops *ops,
740 struct addr_location *al,
741 struct symbol *sym_parent,
742 struct branch_info *bi,
743 struct mem_info *mi,
744 struct perf_sample *sample,
745 bool sample_self)
746{
747 return __hists__add_entry(hists, al, sym_parent, bi, mi, NULL,
748 sample, sample_self, ops);
749}
750
751struct hist_entry *hists__add_entry_block(struct hists *hists,
752 struct addr_location *al,
753 struct block_info *block_info)
754{
755 struct hist_entry entry = {
756 .block_info = block_info,
757 .hists = hists,
758 }, *he = hists__findnew_entry(hists, &entry, al, false);
759
760 return he;
761}
762
763static int
764iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
765 struct addr_location *al __maybe_unused)
766{
767 return 0;
768}
769
770static int
771iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
772 struct addr_location *al __maybe_unused)
773{
774 return 0;
775}
776
777static int
778iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
779{
780 struct perf_sample *sample = iter->sample;
781 struct mem_info *mi;
782
783 mi = sample__resolve_mem(sample, al);
784 if (mi == NULL)
785 return -ENOMEM;
786
787 iter->priv = mi;
788 return 0;
789}
790
791static int
792iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
793{
794 u64 cost;
795 struct mem_info *mi = iter->priv;
796 struct hists *hists = evsel__hists(iter->evsel);
797 struct perf_sample *sample = iter->sample;
798 struct hist_entry *he;
799
800 if (mi == NULL)
801 return -EINVAL;
802
803 cost = sample->weight;
804 if (!cost)
805 cost = 1;
806
807 /*
808 * must pass period=weight in order to get the correct
809 * sorting from hists__collapse_resort() which is solely
810 * based on periods. We want sorting be done on nr_events * weight
811 * and this is indirectly achieved by passing period=weight here
812 * and the he_stat__add_period() function.
813 */
814 sample->period = cost;
815
816 he = hists__add_entry(hists, al, iter->parent, NULL, mi,
817 sample, true);
818 if (!he)
819 return -ENOMEM;
820
821 iter->he = he;
822 return 0;
823}
824
825static int
826iter_finish_mem_entry(struct hist_entry_iter *iter,
827 struct addr_location *al __maybe_unused)
828{
829 struct evsel *evsel = iter->evsel;
830 struct hists *hists = evsel__hists(evsel);
831 struct hist_entry *he = iter->he;
832 int err = -EINVAL;
833
834 if (he == NULL)
835 goto out;
836
837 hists__inc_nr_samples(hists, he->filtered);
838
839 err = hist_entry__append_callchain(he, iter->sample);
840
841out:
842 /*
843 * We don't need to free iter->priv (mem_info) here since the mem info
844 * was either already freed in hists__findnew_entry() or passed to a
845 * new hist entry by hist_entry__new().
846 */
847 iter->priv = NULL;
848
849 iter->he = NULL;
850 return err;
851}
852
853static int
854iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
855{
856 struct branch_info *bi;
857 struct perf_sample *sample = iter->sample;
858
859 bi = sample__resolve_bstack(sample, al);
860 if (!bi)
861 return -ENOMEM;
862
863 iter->curr = 0;
864 iter->total = sample->branch_stack->nr;
865
866 iter->priv = bi;
867 return 0;
868}
869
870static int
871iter_add_single_branch_entry(struct hist_entry_iter *iter __maybe_unused,
872 struct addr_location *al __maybe_unused)
873{
874 return 0;
875}
876
877static int
878iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
879{
880 struct branch_info *bi = iter->priv;
881 int i = iter->curr;
882
883 if (bi == NULL)
884 return 0;
885
886 if (iter->curr >= iter->total)
887 return 0;
888
889 al->map = bi[i].to.map;
890 al->sym = bi[i].to.sym;
891 al->addr = bi[i].to.addr;
892 return 1;
893}
894
895static int
896iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
897{
898 struct branch_info *bi;
899 struct evsel *evsel = iter->evsel;
900 struct hists *hists = evsel__hists(evsel);
901 struct perf_sample *sample = iter->sample;
902 struct hist_entry *he = NULL;
903 int i = iter->curr;
904 int err = 0;
905
906 bi = iter->priv;
907
908 if (iter->hide_unresolved && !(bi[i].from.sym && bi[i].to.sym))
909 goto out;
910
911 /*
912 * The report shows the percentage of total branches captured
913 * and not events sampled. Thus we use a pseudo period of 1.
914 */
915 sample->period = 1;
916 sample->weight = bi->flags.cycles ? bi->flags.cycles : 1;
917
918 he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL,
919 sample, true);
920 if (he == NULL)
921 return -ENOMEM;
922
923 hists__inc_nr_samples(hists, he->filtered);
924
925out:
926 iter->he = he;
927 iter->curr++;
928 return err;
929}
930
931static int
932iter_finish_branch_entry(struct hist_entry_iter *iter,
933 struct addr_location *al __maybe_unused)
934{
935 zfree(&iter->priv);
936 iter->he = NULL;
937
938 return iter->curr >= iter->total ? 0 : -1;
939}
940
941static int
942iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused,
943 struct addr_location *al __maybe_unused)
944{
945 return 0;
946}
947
948static int
949iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al)
950{
951 struct evsel *evsel = iter->evsel;
952 struct perf_sample *sample = iter->sample;
953 struct hist_entry *he;
954
955 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
956 sample, true);
957 if (he == NULL)
958 return -ENOMEM;
959
960 iter->he = he;
961 return 0;
962}
963
964static int
965iter_finish_normal_entry(struct hist_entry_iter *iter,
966 struct addr_location *al __maybe_unused)
967{
968 struct hist_entry *he = iter->he;
969 struct evsel *evsel = iter->evsel;
970 struct perf_sample *sample = iter->sample;
971
972 if (he == NULL)
973 return 0;
974
975 iter->he = NULL;
976
977 hists__inc_nr_samples(evsel__hists(evsel), he->filtered);
978
979 return hist_entry__append_callchain(he, sample);
980}
981
982static int
983iter_prepare_cumulative_entry(struct hist_entry_iter *iter,
984 struct addr_location *al __maybe_unused)
985{
986 struct hist_entry **he_cache;
987
988 callchain_cursor_commit(&callchain_cursor);
989
990 /*
991 * This is for detecting cycles or recursions so that they're
992 * cumulated only one time to prevent entries more than 100%
993 * overhead.
994 */
995 he_cache = malloc(sizeof(*he_cache) * (callchain_cursor.nr + 1));
996 if (he_cache == NULL)
997 return -ENOMEM;
998
999 iter->priv = he_cache;
1000 iter->curr = 0;
1001
1002 return 0;
1003}
1004
1005static int
1006iter_add_single_cumulative_entry(struct hist_entry_iter *iter,
1007 struct addr_location *al)
1008{
1009 struct evsel *evsel = iter->evsel;
1010 struct hists *hists = evsel__hists(evsel);
1011 struct perf_sample *sample = iter->sample;
1012 struct hist_entry **he_cache = iter->priv;
1013 struct hist_entry *he;
1014 int err = 0;
1015
1016 he = hists__add_entry(hists, al, iter->parent, NULL, NULL,
1017 sample, true);
1018 if (he == NULL)
1019 return -ENOMEM;
1020
1021 iter->he = he;
1022 he_cache[iter->curr++] = he;
1023
1024 hist_entry__append_callchain(he, sample);
1025
1026 /*
1027 * We need to re-initialize the cursor since callchain_append()
1028 * advanced the cursor to the end.
1029 */
1030 callchain_cursor_commit(&callchain_cursor);
1031
1032 hists__inc_nr_samples(hists, he->filtered);
1033
1034 return err;
1035}
1036
1037static int
1038iter_next_cumulative_entry(struct hist_entry_iter *iter,
1039 struct addr_location *al)
1040{
1041 struct callchain_cursor_node *node;
1042
1043 node = callchain_cursor_current(&callchain_cursor);
1044 if (node == NULL)
1045 return 0;
1046
1047 return fill_callchain_info(al, node, iter->hide_unresolved);
1048}
1049
1050static int
1051iter_add_next_cumulative_entry(struct hist_entry_iter *iter,
1052 struct addr_location *al)
1053{
1054 struct evsel *evsel = iter->evsel;
1055 struct perf_sample *sample = iter->sample;
1056 struct hist_entry **he_cache = iter->priv;
1057 struct hist_entry *he;
1058 struct hist_entry he_tmp = {
1059 .hists = evsel__hists(evsel),
1060 .cpu = al->cpu,
1061 .thread = al->thread,
1062 .comm = thread__comm(al->thread),
1063 .ip = al->addr,
1064 .ms = {
1065 .map = al->map,
1066 .sym = al->sym,
1067 },
1068 .srcline = (char *) al->srcline,
1069 .parent = iter->parent,
1070 .raw_data = sample->raw_data,
1071 .raw_size = sample->raw_size,
1072 };
1073 int i;
1074 struct callchain_cursor cursor;
1075
1076 callchain_cursor_snapshot(&cursor, &callchain_cursor);
1077
1078 callchain_cursor_advance(&callchain_cursor);
1079
1080 /*
1081 * Check if there's duplicate entries in the callchain.
1082 * It's possible that it has cycles or recursive calls.
1083 */
1084 for (i = 0; i < iter->curr; i++) {
1085 if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) {
1086 /* to avoid calling callback function */
1087 iter->he = NULL;
1088 return 0;
1089 }
1090 }
1091
1092 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
1093 sample, false);
1094 if (he == NULL)
1095 return -ENOMEM;
1096
1097 iter->he = he;
1098 he_cache[iter->curr++] = he;
1099
1100 if (hist_entry__has_callchains(he) && symbol_conf.use_callchain)
1101 callchain_append(he->callchain, &cursor, sample->period);
1102 return 0;
1103}
1104
1105static int
1106iter_finish_cumulative_entry(struct hist_entry_iter *iter,
1107 struct addr_location *al __maybe_unused)
1108{
1109 zfree(&iter->priv);
1110 iter->he = NULL;
1111
1112 return 0;
1113}
1114
1115const struct hist_iter_ops hist_iter_mem = {
1116 .prepare_entry = iter_prepare_mem_entry,
1117 .add_single_entry = iter_add_single_mem_entry,
1118 .next_entry = iter_next_nop_entry,
1119 .add_next_entry = iter_add_next_nop_entry,
1120 .finish_entry = iter_finish_mem_entry,
1121};
1122
1123const struct hist_iter_ops hist_iter_branch = {
1124 .prepare_entry = iter_prepare_branch_entry,
1125 .add_single_entry = iter_add_single_branch_entry,
1126 .next_entry = iter_next_branch_entry,
1127 .add_next_entry = iter_add_next_branch_entry,
1128 .finish_entry = iter_finish_branch_entry,
1129};
1130
1131const struct hist_iter_ops hist_iter_normal = {
1132 .prepare_entry = iter_prepare_normal_entry,
1133 .add_single_entry = iter_add_single_normal_entry,
1134 .next_entry = iter_next_nop_entry,
1135 .add_next_entry = iter_add_next_nop_entry,
1136 .finish_entry = iter_finish_normal_entry,
1137};
1138
1139const struct hist_iter_ops hist_iter_cumulative = {
1140 .prepare_entry = iter_prepare_cumulative_entry,
1141 .add_single_entry = iter_add_single_cumulative_entry,
1142 .next_entry = iter_next_cumulative_entry,
1143 .add_next_entry = iter_add_next_cumulative_entry,
1144 .finish_entry = iter_finish_cumulative_entry,
1145};
1146
1147int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al,
1148 int max_stack_depth, void *arg)
1149{
1150 int err, err2;
1151 struct map *alm = NULL;
1152
1153 if (al)
1154 alm = map__get(al->map);
1155
1156 err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent,
1157 iter->evsel, al, max_stack_depth);
1158 if (err) {
1159 map__put(alm);
1160 return err;
1161 }
1162
1163 err = iter->ops->prepare_entry(iter, al);
1164 if (err)
1165 goto out;
1166
1167 err = iter->ops->add_single_entry(iter, al);
1168 if (err)
1169 goto out;
1170
1171 if (iter->he && iter->add_entry_cb) {
1172 err = iter->add_entry_cb(iter, al, true, arg);
1173 if (err)
1174 goto out;
1175 }
1176
1177 while (iter->ops->next_entry(iter, al)) {
1178 err = iter->ops->add_next_entry(iter, al);
1179 if (err)
1180 break;
1181
1182 if (iter->he && iter->add_entry_cb) {
1183 err = iter->add_entry_cb(iter, al, false, arg);
1184 if (err)
1185 goto out;
1186 }
1187 }
1188
1189out:
1190 err2 = iter->ops->finish_entry(iter, al);
1191 if (!err)
1192 err = err2;
1193
1194 map__put(alm);
1195
1196 return err;
1197}
1198
1199int64_t
1200hist_entry__cmp(struct hist_entry *left, struct hist_entry *right)
1201{
1202 struct hists *hists = left->hists;
1203 struct perf_hpp_fmt *fmt;
1204 int64_t cmp = 0;
1205
1206 hists__for_each_sort_list(hists, fmt) {
1207 if (perf_hpp__is_dynamic_entry(fmt) &&
1208 !perf_hpp__defined_dynamic_entry(fmt, hists))
1209 continue;
1210
1211 cmp = fmt->cmp(fmt, left, right);
1212 if (cmp)
1213 break;
1214 }
1215
1216 return cmp;
1217}
1218
1219int64_t
1220hist_entry__collapse(struct hist_entry *left, struct hist_entry *right)
1221{
1222 struct hists *hists = left->hists;
1223 struct perf_hpp_fmt *fmt;
1224 int64_t cmp = 0;
1225
1226 hists__for_each_sort_list(hists, fmt) {
1227 if (perf_hpp__is_dynamic_entry(fmt) &&
1228 !perf_hpp__defined_dynamic_entry(fmt, hists))
1229 continue;
1230
1231 cmp = fmt->collapse(fmt, left, right);
1232 if (cmp)
1233 break;
1234 }
1235
1236 return cmp;
1237}
1238
1239void hist_entry__delete(struct hist_entry *he)
1240{
1241 struct hist_entry_ops *ops = he->ops;
1242
1243 thread__zput(he->thread);
1244 map__zput(he->ms.map);
1245
1246 if (he->branch_info) {
1247 map__zput(he->branch_info->from.map);
1248 map__zput(he->branch_info->to.map);
1249 free_srcline(he->branch_info->srcline_from);
1250 free_srcline(he->branch_info->srcline_to);
1251 zfree(&he->branch_info);
1252 }
1253
1254 if (he->mem_info) {
1255 map__zput(he->mem_info->iaddr.map);
1256 map__zput(he->mem_info->daddr.map);
1257 mem_info__zput(he->mem_info);
1258 }
1259
1260 if (he->block_info)
1261 block_info__zput(he->block_info);
1262
1263 zfree(&he->res_samples);
1264 zfree(&he->stat_acc);
1265 free_srcline(he->srcline);
1266 if (he->srcfile && he->srcfile[0])
1267 zfree(&he->srcfile);
1268 free_callchain(he->callchain);
1269 zfree(&he->trace_output);
1270 zfree(&he->raw_data);
1271 ops->free(he);
1272}
1273
1274/*
1275 * If this is not the last column, then we need to pad it according to the
1276 * pre-calculated max length for this column, otherwise don't bother adding
1277 * spaces because that would break viewing this with, for instance, 'less',
1278 * that would show tons of trailing spaces when a long C++ demangled method
1279 * names is sampled.
1280*/
1281int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp,
1282 struct perf_hpp_fmt *fmt, int printed)
1283{
1284 if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) {
1285 const int width = fmt->width(fmt, hpp, he->hists);
1286 if (printed < width) {
1287 advance_hpp(hpp, printed);
1288 printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " ");
1289 }
1290 }
1291
1292 return printed;
1293}
1294
1295/*
1296 * collapse the histogram
1297 */
1298
1299static void hists__apply_filters(struct hists *hists, struct hist_entry *he);
1300static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he,
1301 enum hist_filter type);
1302
1303typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt);
1304
1305static bool check_thread_entry(struct perf_hpp_fmt *fmt)
1306{
1307 return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt);
1308}
1309
1310static void hist_entry__check_and_remove_filter(struct hist_entry *he,
1311 enum hist_filter type,
1312 fmt_chk_fn check)
1313{
1314 struct perf_hpp_fmt *fmt;
1315 bool type_match = false;
1316 struct hist_entry *parent = he->parent_he;
1317
1318 switch (type) {
1319 case HIST_FILTER__THREAD:
1320 if (symbol_conf.comm_list == NULL &&
1321 symbol_conf.pid_list == NULL &&
1322 symbol_conf.tid_list == NULL)
1323 return;
1324 break;
1325 case HIST_FILTER__DSO:
1326 if (symbol_conf.dso_list == NULL)
1327 return;
1328 break;
1329 case HIST_FILTER__SYMBOL:
1330 if (symbol_conf.sym_list == NULL)
1331 return;
1332 break;
1333 case HIST_FILTER__PARENT:
1334 case HIST_FILTER__GUEST:
1335 case HIST_FILTER__HOST:
1336 case HIST_FILTER__SOCKET:
1337 case HIST_FILTER__C2C:
1338 default:
1339 return;
1340 }
1341
1342 /* if it's filtered by own fmt, it has to have filter bits */
1343 perf_hpp_list__for_each_format(he->hpp_list, fmt) {
1344 if (check(fmt)) {
1345 type_match = true;
1346 break;
1347 }
1348 }
1349
1350 if (type_match) {
1351 /*
1352 * If the filter is for current level entry, propagate
1353 * filter marker to parents. The marker bit was
1354 * already set by default so it only needs to clear
1355 * non-filtered entries.
1356 */
1357 if (!(he->filtered & (1 << type))) {
1358 while (parent) {
1359 parent->filtered &= ~(1 << type);
1360 parent = parent->parent_he;
1361 }
1362 }
1363 } else {
1364 /*
1365 * If current entry doesn't have matching formats, set
1366 * filter marker for upper level entries. it will be
1367 * cleared if its lower level entries is not filtered.
1368 *
1369 * For lower-level entries, it inherits parent's
1370 * filter bit so that lower level entries of a
1371 * non-filtered entry won't set the filter marker.
1372 */
1373 if (parent == NULL)
1374 he->filtered |= (1 << type);
1375 else
1376 he->filtered |= (parent->filtered & (1 << type));
1377 }
1378}
1379
1380static void hist_entry__apply_hierarchy_filters(struct hist_entry *he)
1381{
1382 hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD,
1383 check_thread_entry);
1384
1385 hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO,
1386 perf_hpp__is_dso_entry);
1387
1388 hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL,
1389 perf_hpp__is_sym_entry);
1390
1391 hists__apply_filters(he->hists, he);
1392}
1393
1394static struct hist_entry *hierarchy_insert_entry(struct hists *hists,
1395 struct rb_root_cached *root,
1396 struct hist_entry *he,
1397 struct hist_entry *parent_he,
1398 struct perf_hpp_list *hpp_list)
1399{
1400 struct rb_node **p = &root->rb_root.rb_node;
1401 struct rb_node *parent = NULL;
1402 struct hist_entry *iter, *new;
1403 struct perf_hpp_fmt *fmt;
1404 int64_t cmp;
1405 bool leftmost = true;
1406
1407 while (*p != NULL) {
1408 parent = *p;
1409 iter = rb_entry(parent, struct hist_entry, rb_node_in);
1410
1411 cmp = 0;
1412 perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1413 cmp = fmt->collapse(fmt, iter, he);
1414 if (cmp)
1415 break;
1416 }
1417
1418 if (!cmp) {
1419 he_stat__add_stat(&iter->stat, &he->stat);
1420 return iter;
1421 }
1422
1423 if (cmp < 0)
1424 p = &parent->rb_left;
1425 else {
1426 p = &parent->rb_right;
1427 leftmost = false;
1428 }
1429 }
1430
1431 new = hist_entry__new(he, true);
1432 if (new == NULL)
1433 return NULL;
1434
1435 hists->nr_entries++;
1436
1437 /* save related format list for output */
1438 new->hpp_list = hpp_list;
1439 new->parent_he = parent_he;
1440
1441 hist_entry__apply_hierarchy_filters(new);
1442
1443 /* some fields are now passed to 'new' */
1444 perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1445 if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt))
1446 he->trace_output = NULL;
1447 else
1448 new->trace_output = NULL;
1449
1450 if (perf_hpp__is_srcline_entry(fmt))
1451 he->srcline = NULL;
1452 else
1453 new->srcline = NULL;
1454
1455 if (perf_hpp__is_srcfile_entry(fmt))
1456 he->srcfile = NULL;
1457 else
1458 new->srcfile = NULL;
1459 }
1460
1461 rb_link_node(&new->rb_node_in, parent, p);
1462 rb_insert_color_cached(&new->rb_node_in, root, leftmost);
1463 return new;
1464}
1465
1466static int hists__hierarchy_insert_entry(struct hists *hists,
1467 struct rb_root_cached *root,
1468 struct hist_entry *he)
1469{
1470 struct perf_hpp_list_node *node;
1471 struct hist_entry *new_he = NULL;
1472 struct hist_entry *parent = NULL;
1473 int depth = 0;
1474 int ret = 0;
1475
1476 list_for_each_entry(node, &hists->hpp_formats, list) {
1477 /* skip period (overhead) and elided columns */
1478 if (node->level == 0 || node->skip)
1479 continue;
1480
1481 /* insert copy of 'he' for each fmt into the hierarchy */
1482 new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp);
1483 if (new_he == NULL) {
1484 ret = -1;
1485 break;
1486 }
1487
1488 root = &new_he->hroot_in;
1489 new_he->depth = depth++;
1490 parent = new_he;
1491 }
1492
1493 if (new_he) {
1494 new_he->leaf = true;
1495
1496 if (hist_entry__has_callchains(new_he) &&
1497 symbol_conf.use_callchain) {
1498 callchain_cursor_reset(&callchain_cursor);
1499 if (callchain_merge(&callchain_cursor,
1500 new_he->callchain,
1501 he->callchain) < 0)
1502 ret = -1;
1503 }
1504 }
1505
1506 /* 'he' is no longer used */
1507 hist_entry__delete(he);
1508
1509 /* return 0 (or -1) since it already applied filters */
1510 return ret;
1511}
1512
1513static int hists__collapse_insert_entry(struct hists *hists,
1514 struct rb_root_cached *root,
1515 struct hist_entry *he)
1516{
1517 struct rb_node **p = &root->rb_root.rb_node;
1518 struct rb_node *parent = NULL;
1519 struct hist_entry *iter;
1520 int64_t cmp;
1521 bool leftmost = true;
1522
1523 if (symbol_conf.report_hierarchy)
1524 return hists__hierarchy_insert_entry(hists, root, he);
1525
1526 while (*p != NULL) {
1527 parent = *p;
1528 iter = rb_entry(parent, struct hist_entry, rb_node_in);
1529
1530 cmp = hist_entry__collapse(iter, he);
1531
1532 if (!cmp) {
1533 int ret = 0;
1534
1535 he_stat__add_stat(&iter->stat, &he->stat);
1536 if (symbol_conf.cumulate_callchain)
1537 he_stat__add_stat(iter->stat_acc, he->stat_acc);
1538
1539 if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) {
1540 callchain_cursor_reset(&callchain_cursor);
1541 if (callchain_merge(&callchain_cursor,
1542 iter->callchain,
1543 he->callchain) < 0)
1544 ret = -1;
1545 }
1546 hist_entry__delete(he);
1547 return ret;
1548 }
1549
1550 if (cmp < 0)
1551 p = &(*p)->rb_left;
1552 else {
1553 p = &(*p)->rb_right;
1554 leftmost = false;
1555 }
1556 }
1557 hists->nr_entries++;
1558
1559 rb_link_node(&he->rb_node_in, parent, p);
1560 rb_insert_color_cached(&he->rb_node_in, root, leftmost);
1561 return 1;
1562}
1563
1564struct rb_root_cached *hists__get_rotate_entries_in(struct hists *hists)
1565{
1566 struct rb_root_cached *root;
1567
1568 pthread_mutex_lock(&hists->lock);
1569
1570 root = hists->entries_in;
1571 if (++hists->entries_in > &hists->entries_in_array[1])
1572 hists->entries_in = &hists->entries_in_array[0];
1573
1574 pthread_mutex_unlock(&hists->lock);
1575
1576 return root;
1577}
1578
1579static void hists__apply_filters(struct hists *hists, struct hist_entry *he)
1580{
1581 hists__filter_entry_by_dso(hists, he);
1582 hists__filter_entry_by_thread(hists, he);
1583 hists__filter_entry_by_symbol(hists, he);
1584 hists__filter_entry_by_socket(hists, he);
1585}
1586
1587int hists__collapse_resort(struct hists *hists, struct ui_progress *prog)
1588{
1589 struct rb_root_cached *root;
1590 struct rb_node *next;
1591 struct hist_entry *n;
1592 int ret;
1593
1594 if (!hists__has(hists, need_collapse))
1595 return 0;
1596
1597 hists->nr_entries = 0;
1598
1599 root = hists__get_rotate_entries_in(hists);
1600
1601 next = rb_first_cached(root);
1602
1603 while (next) {
1604 if (session_done())
1605 break;
1606 n = rb_entry(next, struct hist_entry, rb_node_in);
1607 next = rb_next(&n->rb_node_in);
1608
1609 rb_erase_cached(&n->rb_node_in, root);
1610 ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n);
1611 if (ret < 0)
1612 return -1;
1613
1614 if (ret) {
1615 /*
1616 * If it wasn't combined with one of the entries already
1617 * collapsed, we need to apply the filters that may have
1618 * been set by, say, the hist_browser.
1619 */
1620 hists__apply_filters(hists, n);
1621 }
1622 if (prog)
1623 ui_progress__update(prog, 1);
1624 }
1625 return 0;
1626}
1627
1628static int64_t hist_entry__sort(struct hist_entry *a, struct hist_entry *b)
1629{
1630 struct hists *hists = a->hists;
1631 struct perf_hpp_fmt *fmt;
1632 int64_t cmp = 0;
1633
1634 hists__for_each_sort_list(hists, fmt) {
1635 if (perf_hpp__should_skip(fmt, a->hists))
1636 continue;
1637
1638 cmp = fmt->sort(fmt, a, b);
1639 if (cmp)
1640 break;
1641 }
1642
1643 return cmp;
1644}
1645
1646static void hists__reset_filter_stats(struct hists *hists)
1647{
1648 hists->nr_non_filtered_entries = 0;
1649 hists->stats.total_non_filtered_period = 0;
1650}
1651
1652void hists__reset_stats(struct hists *hists)
1653{
1654 hists->nr_entries = 0;
1655 hists->stats.total_period = 0;
1656
1657 hists__reset_filter_stats(hists);
1658}
1659
1660static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h)
1661{
1662 hists->nr_non_filtered_entries++;
1663 hists->stats.total_non_filtered_period += h->stat.period;
1664}
1665
1666void hists__inc_stats(struct hists *hists, struct hist_entry *h)
1667{
1668 if (!h->filtered)
1669 hists__inc_filter_stats(hists, h);
1670
1671 hists->nr_entries++;
1672 hists->stats.total_period += h->stat.period;
1673}
1674
1675static void hierarchy_recalc_total_periods(struct hists *hists)
1676{
1677 struct rb_node *node;
1678 struct hist_entry *he;
1679
1680 node = rb_first_cached(&hists->entries);
1681
1682 hists->stats.total_period = 0;
1683 hists->stats.total_non_filtered_period = 0;
1684
1685 /*
1686 * recalculate total period using top-level entries only
1687 * since lower level entries only see non-filtered entries
1688 * but upper level entries have sum of both entries.
1689 */
1690 while (node) {
1691 he = rb_entry(node, struct hist_entry, rb_node);
1692 node = rb_next(node);
1693
1694 hists->stats.total_period += he->stat.period;
1695 if (!he->filtered)
1696 hists->stats.total_non_filtered_period += he->stat.period;
1697 }
1698}
1699
1700static void hierarchy_insert_output_entry(struct rb_root_cached *root,
1701 struct hist_entry *he)
1702{
1703 struct rb_node **p = &root->rb_root.rb_node;
1704 struct rb_node *parent = NULL;
1705 struct hist_entry *iter;
1706 struct perf_hpp_fmt *fmt;
1707 bool leftmost = true;
1708
1709 while (*p != NULL) {
1710 parent = *p;
1711 iter = rb_entry(parent, struct hist_entry, rb_node);
1712
1713 if (hist_entry__sort(he, iter) > 0)
1714 p = &parent->rb_left;
1715 else {
1716 p = &parent->rb_right;
1717 leftmost = false;
1718 }
1719 }
1720
1721 rb_link_node(&he->rb_node, parent, p);
1722 rb_insert_color_cached(&he->rb_node, root, leftmost);
1723
1724 /* update column width of dynamic entry */
1725 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
1726 if (perf_hpp__is_dynamic_entry(fmt))
1727 fmt->sort(fmt, he, NULL);
1728 }
1729}
1730
1731static void hists__hierarchy_output_resort(struct hists *hists,
1732 struct ui_progress *prog,
1733 struct rb_root_cached *root_in,
1734 struct rb_root_cached *root_out,
1735 u64 min_callchain_hits,
1736 bool use_callchain)
1737{
1738 struct rb_node *node;
1739 struct hist_entry *he;
1740
1741 *root_out = RB_ROOT_CACHED;
1742 node = rb_first_cached(root_in);
1743
1744 while (node) {
1745 he = rb_entry(node, struct hist_entry, rb_node_in);
1746 node = rb_next(node);
1747
1748 hierarchy_insert_output_entry(root_out, he);
1749
1750 if (prog)
1751 ui_progress__update(prog, 1);
1752
1753 hists->nr_entries++;
1754 if (!he->filtered) {
1755 hists->nr_non_filtered_entries++;
1756 hists__calc_col_len(hists, he);
1757 }
1758
1759 if (!he->leaf) {
1760 hists__hierarchy_output_resort(hists, prog,
1761 &he->hroot_in,
1762 &he->hroot_out,
1763 min_callchain_hits,
1764 use_callchain);
1765 continue;
1766 }
1767
1768 if (!use_callchain)
1769 continue;
1770
1771 if (callchain_param.mode == CHAIN_GRAPH_REL) {
1772 u64 total = he->stat.period;
1773
1774 if (symbol_conf.cumulate_callchain)
1775 total = he->stat_acc->period;
1776
1777 min_callchain_hits = total * (callchain_param.min_percent / 100);
1778 }
1779
1780 callchain_param.sort(&he->sorted_chain, he->callchain,
1781 min_callchain_hits, &callchain_param);
1782 }
1783}
1784
1785static void __hists__insert_output_entry(struct rb_root_cached *entries,
1786 struct hist_entry *he,
1787 u64 min_callchain_hits,
1788 bool use_callchain)
1789{
1790 struct rb_node **p = &entries->rb_root.rb_node;
1791 struct rb_node *parent = NULL;
1792 struct hist_entry *iter;
1793 struct perf_hpp_fmt *fmt;
1794 bool leftmost = true;
1795
1796 if (use_callchain) {
1797 if (callchain_param.mode == CHAIN_GRAPH_REL) {
1798 u64 total = he->stat.period;
1799
1800 if (symbol_conf.cumulate_callchain)
1801 total = he->stat_acc->period;
1802
1803 min_callchain_hits = total * (callchain_param.min_percent / 100);
1804 }
1805 callchain_param.sort(&he->sorted_chain, he->callchain,
1806 min_callchain_hits, &callchain_param);
1807 }
1808
1809 while (*p != NULL) {
1810 parent = *p;
1811 iter = rb_entry(parent, struct hist_entry, rb_node);
1812
1813 if (hist_entry__sort(he, iter) > 0)
1814 p = &(*p)->rb_left;
1815 else {
1816 p = &(*p)->rb_right;
1817 leftmost = false;
1818 }
1819 }
1820
1821 rb_link_node(&he->rb_node, parent, p);
1822 rb_insert_color_cached(&he->rb_node, entries, leftmost);
1823
1824 perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) {
1825 if (perf_hpp__is_dynamic_entry(fmt) &&
1826 perf_hpp__defined_dynamic_entry(fmt, he->hists))
1827 fmt->sort(fmt, he, NULL); /* update column width */
1828 }
1829}
1830
1831static void output_resort(struct hists *hists, struct ui_progress *prog,
1832 bool use_callchain, hists__resort_cb_t cb,
1833 void *cb_arg)
1834{
1835 struct rb_root_cached *root;
1836 struct rb_node *next;
1837 struct hist_entry *n;
1838 u64 callchain_total;
1839 u64 min_callchain_hits;
1840
1841 callchain_total = hists->callchain_period;
1842 if (symbol_conf.filter_relative)
1843 callchain_total = hists->callchain_non_filtered_period;
1844
1845 min_callchain_hits = callchain_total * (callchain_param.min_percent / 100);
1846
1847 hists__reset_stats(hists);
1848 hists__reset_col_len(hists);
1849
1850 if (symbol_conf.report_hierarchy) {
1851 hists__hierarchy_output_resort(hists, prog,
1852 &hists->entries_collapsed,
1853 &hists->entries,
1854 min_callchain_hits,
1855 use_callchain);
1856 hierarchy_recalc_total_periods(hists);
1857 return;
1858 }
1859
1860 if (hists__has(hists, need_collapse))
1861 root = &hists->entries_collapsed;
1862 else
1863 root = hists->entries_in;
1864
1865 next = rb_first_cached(root);
1866 hists->entries = RB_ROOT_CACHED;
1867
1868 while (next) {
1869 n = rb_entry(next, struct hist_entry, rb_node_in);
1870 next = rb_next(&n->rb_node_in);
1871
1872 if (cb && cb(n, cb_arg))
1873 continue;
1874
1875 __hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain);
1876 hists__inc_stats(hists, n);
1877
1878 if (!n->filtered)
1879 hists__calc_col_len(hists, n);
1880
1881 if (prog)
1882 ui_progress__update(prog, 1);
1883 }
1884}
1885
1886void perf_evsel__output_resort_cb(struct evsel *evsel, struct ui_progress *prog,
1887 hists__resort_cb_t cb, void *cb_arg)
1888{
1889 bool use_callchain;
1890
1891 if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph)
1892 use_callchain = evsel__has_callchain(evsel);
1893 else
1894 use_callchain = symbol_conf.use_callchain;
1895
1896 use_callchain |= symbol_conf.show_branchflag_count;
1897
1898 output_resort(evsel__hists(evsel), prog, use_callchain, cb, cb_arg);
1899}
1900
1901void perf_evsel__output_resort(struct evsel *evsel, struct ui_progress *prog)
1902{
1903 return perf_evsel__output_resort_cb(evsel, prog, NULL, NULL);
1904}
1905
1906void hists__output_resort(struct hists *hists, struct ui_progress *prog)
1907{
1908 output_resort(hists, prog, symbol_conf.use_callchain, NULL, NULL);
1909}
1910
1911void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog,
1912 hists__resort_cb_t cb)
1913{
1914 output_resort(hists, prog, symbol_conf.use_callchain, cb, NULL);
1915}
1916
1917static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd)
1918{
1919 if (he->leaf || hmd == HMD_FORCE_SIBLING)
1920 return false;
1921
1922 if (he->unfolded || hmd == HMD_FORCE_CHILD)
1923 return true;
1924
1925 return false;
1926}
1927
1928struct rb_node *rb_hierarchy_last(struct rb_node *node)
1929{
1930 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1931
1932 while (can_goto_child(he, HMD_NORMAL)) {
1933 node = rb_last(&he->hroot_out.rb_root);
1934 he = rb_entry(node, struct hist_entry, rb_node);
1935 }
1936 return node;
1937}
1938
1939struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd)
1940{
1941 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1942
1943 if (can_goto_child(he, hmd))
1944 node = rb_first_cached(&he->hroot_out);
1945 else
1946 node = rb_next(node);
1947
1948 while (node == NULL) {
1949 he = he->parent_he;
1950 if (he == NULL)
1951 break;
1952
1953 node = rb_next(&he->rb_node);
1954 }
1955 return node;
1956}
1957
1958struct rb_node *rb_hierarchy_prev(struct rb_node *node)
1959{
1960 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1961
1962 node = rb_prev(node);
1963 if (node)
1964 return rb_hierarchy_last(node);
1965
1966 he = he->parent_he;
1967 if (he == NULL)
1968 return NULL;
1969
1970 return &he->rb_node;
1971}
1972
1973bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit)
1974{
1975 struct rb_node *node;
1976 struct hist_entry *child;
1977 float percent;
1978
1979 if (he->leaf)
1980 return false;
1981
1982 node = rb_first_cached(&he->hroot_out);
1983 child = rb_entry(node, struct hist_entry, rb_node);
1984
1985 while (node && child->filtered) {
1986 node = rb_next(node);
1987 child = rb_entry(node, struct hist_entry, rb_node);
1988 }
1989
1990 if (node)
1991 percent = hist_entry__get_percent_limit(child);
1992 else
1993 percent = 0;
1994
1995 return node && percent >= limit;
1996}
1997
1998static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h,
1999 enum hist_filter filter)
2000{
2001 h->filtered &= ~(1 << filter);
2002
2003 if (symbol_conf.report_hierarchy) {
2004 struct hist_entry *parent = h->parent_he;
2005
2006 while (parent) {
2007 he_stat__add_stat(&parent->stat, &h->stat);
2008
2009 parent->filtered &= ~(1 << filter);
2010
2011 if (parent->filtered)
2012 goto next;
2013
2014 /* force fold unfiltered entry for simplicity */
2015 parent->unfolded = false;
2016 parent->has_no_entry = false;
2017 parent->row_offset = 0;
2018 parent->nr_rows = 0;
2019next:
2020 parent = parent->parent_he;
2021 }
2022 }
2023
2024 if (h->filtered)
2025 return;
2026
2027 /* force fold unfiltered entry for simplicity */
2028 h->unfolded = false;
2029 h->has_no_entry = false;
2030 h->row_offset = 0;
2031 h->nr_rows = 0;
2032
2033 hists->stats.nr_non_filtered_samples += h->stat.nr_events;
2034
2035 hists__inc_filter_stats(hists, h);
2036 hists__calc_col_len(hists, h);
2037}
2038
2039
2040static bool hists__filter_entry_by_dso(struct hists *hists,
2041 struct hist_entry *he)
2042{
2043 if (hists->dso_filter != NULL &&
2044 (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) {
2045 he->filtered |= (1 << HIST_FILTER__DSO);
2046 return true;
2047 }
2048
2049 return false;
2050}
2051
2052static bool hists__filter_entry_by_thread(struct hists *hists,
2053 struct hist_entry *he)
2054{
2055 if (hists->thread_filter != NULL &&
2056 he->thread != hists->thread_filter) {
2057 he->filtered |= (1 << HIST_FILTER__THREAD);
2058 return true;
2059 }
2060
2061 return false;
2062}
2063
2064static bool hists__filter_entry_by_symbol(struct hists *hists,
2065 struct hist_entry *he)
2066{
2067 if (hists->symbol_filter_str != NULL &&
2068 (!he->ms.sym || strstr(he->ms.sym->name,
2069 hists->symbol_filter_str) == NULL)) {
2070 he->filtered |= (1 << HIST_FILTER__SYMBOL);
2071 return true;
2072 }
2073
2074 return false;
2075}
2076
2077static bool hists__filter_entry_by_socket(struct hists *hists,
2078 struct hist_entry *he)
2079{
2080 if ((hists->socket_filter > -1) &&
2081 (he->socket != hists->socket_filter)) {
2082 he->filtered |= (1 << HIST_FILTER__SOCKET);
2083 return true;
2084 }
2085
2086 return false;
2087}
2088
2089typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he);
2090
2091static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter)
2092{
2093 struct rb_node *nd;
2094
2095 hists->stats.nr_non_filtered_samples = 0;
2096
2097 hists__reset_filter_stats(hists);
2098 hists__reset_col_len(hists);
2099
2100 for (nd = rb_first_cached(&hists->entries); nd; nd = rb_next(nd)) {
2101 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2102
2103 if (filter(hists, h))
2104 continue;
2105
2106 hists__remove_entry_filter(hists, h, type);
2107 }
2108}
2109
2110static void resort_filtered_entry(struct rb_root_cached *root,
2111 struct hist_entry *he)
2112{
2113 struct rb_node **p = &root->rb_root.rb_node;
2114 struct rb_node *parent = NULL;
2115 struct hist_entry *iter;
2116 struct rb_root_cached new_root = RB_ROOT_CACHED;
2117 struct rb_node *nd;
2118 bool leftmost = true;
2119
2120 while (*p != NULL) {
2121 parent = *p;
2122 iter = rb_entry(parent, struct hist_entry, rb_node);
2123
2124 if (hist_entry__sort(he, iter) > 0)
2125 p = &(*p)->rb_left;
2126 else {
2127 p = &(*p)->rb_right;
2128 leftmost = false;
2129 }
2130 }
2131
2132 rb_link_node(&he->rb_node, parent, p);
2133 rb_insert_color_cached(&he->rb_node, root, leftmost);
2134
2135 if (he->leaf || he->filtered)
2136 return;
2137
2138 nd = rb_first_cached(&he->hroot_out);
2139 while (nd) {
2140 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2141
2142 nd = rb_next(nd);
2143 rb_erase_cached(&h->rb_node, &he->hroot_out);
2144
2145 resort_filtered_entry(&new_root, h);
2146 }
2147
2148 he->hroot_out = new_root;
2149}
2150
2151static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg)
2152{
2153 struct rb_node *nd;
2154 struct rb_root_cached new_root = RB_ROOT_CACHED;
2155
2156 hists->stats.nr_non_filtered_samples = 0;
2157
2158 hists__reset_filter_stats(hists);
2159 hists__reset_col_len(hists);
2160
2161 nd = rb_first_cached(&hists->entries);
2162 while (nd) {
2163 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2164 int ret;
2165
2166 ret = hist_entry__filter(h, type, arg);
2167
2168 /*
2169 * case 1. non-matching type
2170 * zero out the period, set filter marker and move to child
2171 */
2172 if (ret < 0) {
2173 memset(&h->stat, 0, sizeof(h->stat));
2174 h->filtered |= (1 << type);
2175
2176 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD);
2177 }
2178 /*
2179 * case 2. matched type (filter out)
2180 * set filter marker and move to next
2181 */
2182 else if (ret == 1) {
2183 h->filtered |= (1 << type);
2184
2185 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2186 }
2187 /*
2188 * case 3. ok (not filtered)
2189 * add period to hists and parents, erase the filter marker
2190 * and move to next sibling
2191 */
2192 else {
2193 hists__remove_entry_filter(hists, h, type);
2194
2195 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2196 }
2197 }
2198
2199 hierarchy_recalc_total_periods(hists);
2200
2201 /*
2202 * resort output after applying a new filter since filter in a lower
2203 * hierarchy can change periods in a upper hierarchy.
2204 */
2205 nd = rb_first_cached(&hists->entries);
2206 while (nd) {
2207 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2208
2209 nd = rb_next(nd);
2210 rb_erase_cached(&h->rb_node, &hists->entries);
2211
2212 resort_filtered_entry(&new_root, h);
2213 }
2214
2215 hists->entries = new_root;
2216}
2217
2218void hists__filter_by_thread(struct hists *hists)
2219{
2220 if (symbol_conf.report_hierarchy)
2221 hists__filter_hierarchy(hists, HIST_FILTER__THREAD,
2222 hists->thread_filter);
2223 else
2224 hists__filter_by_type(hists, HIST_FILTER__THREAD,
2225 hists__filter_entry_by_thread);
2226}
2227
2228void hists__filter_by_dso(struct hists *hists)
2229{
2230 if (symbol_conf.report_hierarchy)
2231 hists__filter_hierarchy(hists, HIST_FILTER__DSO,
2232 hists->dso_filter);
2233 else
2234 hists__filter_by_type(hists, HIST_FILTER__DSO,
2235 hists__filter_entry_by_dso);
2236}
2237
2238void hists__filter_by_symbol(struct hists *hists)
2239{
2240 if (symbol_conf.report_hierarchy)
2241 hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL,
2242 hists->symbol_filter_str);
2243 else
2244 hists__filter_by_type(hists, HIST_FILTER__SYMBOL,
2245 hists__filter_entry_by_symbol);
2246}
2247
2248void hists__filter_by_socket(struct hists *hists)
2249{
2250 if (symbol_conf.report_hierarchy)
2251 hists__filter_hierarchy(hists, HIST_FILTER__SOCKET,
2252 &hists->socket_filter);
2253 else
2254 hists__filter_by_type(hists, HIST_FILTER__SOCKET,
2255 hists__filter_entry_by_socket);
2256}
2257
2258void events_stats__inc(struct events_stats *stats, u32 type)
2259{
2260 ++stats->nr_events[0];
2261 ++stats->nr_events[type];
2262}
2263
2264void hists__inc_nr_events(struct hists *hists, u32 type)
2265{
2266 events_stats__inc(&hists->stats, type);
2267}
2268
2269void hists__inc_nr_samples(struct hists *hists, bool filtered)
2270{
2271 events_stats__inc(&hists->stats, PERF_RECORD_SAMPLE);
2272 if (!filtered)
2273 hists->stats.nr_non_filtered_samples++;
2274}
2275
2276static struct hist_entry *hists__add_dummy_entry(struct hists *hists,
2277 struct hist_entry *pair)
2278{
2279 struct rb_root_cached *root;
2280 struct rb_node **p;
2281 struct rb_node *parent = NULL;
2282 struct hist_entry *he;
2283 int64_t cmp;
2284 bool leftmost = true;
2285
2286 if (hists__has(hists, need_collapse))
2287 root = &hists->entries_collapsed;
2288 else
2289 root = hists->entries_in;
2290
2291 p = &root->rb_root.rb_node;
2292
2293 while (*p != NULL) {
2294 parent = *p;
2295 he = rb_entry(parent, struct hist_entry, rb_node_in);
2296
2297 cmp = hist_entry__collapse(he, pair);
2298
2299 if (!cmp)
2300 goto out;
2301
2302 if (cmp < 0)
2303 p = &(*p)->rb_left;
2304 else {
2305 p = &(*p)->rb_right;
2306 leftmost = false;
2307 }
2308 }
2309
2310 he = hist_entry__new(pair, true);
2311 if (he) {
2312 memset(&he->stat, 0, sizeof(he->stat));
2313 he->hists = hists;
2314 if (symbol_conf.cumulate_callchain)
2315 memset(he->stat_acc, 0, sizeof(he->stat));
2316 rb_link_node(&he->rb_node_in, parent, p);
2317 rb_insert_color_cached(&he->rb_node_in, root, leftmost);
2318 hists__inc_stats(hists, he);
2319 he->dummy = true;
2320 }
2321out:
2322 return he;
2323}
2324
2325static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists,
2326 struct rb_root_cached *root,
2327 struct hist_entry *pair)
2328{
2329 struct rb_node **p;
2330 struct rb_node *parent = NULL;
2331 struct hist_entry *he;
2332 struct perf_hpp_fmt *fmt;
2333 bool leftmost = true;
2334
2335 p = &root->rb_root.rb_node;
2336 while (*p != NULL) {
2337 int64_t cmp = 0;
2338
2339 parent = *p;
2340 he = rb_entry(parent, struct hist_entry, rb_node_in);
2341
2342 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2343 cmp = fmt->collapse(fmt, he, pair);
2344 if (cmp)
2345 break;
2346 }
2347 if (!cmp)
2348 goto out;
2349
2350 if (cmp < 0)
2351 p = &parent->rb_left;
2352 else {
2353 p = &parent->rb_right;
2354 leftmost = false;
2355 }
2356 }
2357
2358 he = hist_entry__new(pair, true);
2359 if (he) {
2360 rb_link_node(&he->rb_node_in, parent, p);
2361 rb_insert_color_cached(&he->rb_node_in, root, leftmost);
2362
2363 he->dummy = true;
2364 he->hists = hists;
2365 memset(&he->stat, 0, sizeof(he->stat));
2366 hists__inc_stats(hists, he);
2367 }
2368out:
2369 return he;
2370}
2371
2372static struct hist_entry *hists__find_entry(struct hists *hists,
2373 struct hist_entry *he)
2374{
2375 struct rb_node *n;
2376
2377 if (hists__has(hists, need_collapse))
2378 n = hists->entries_collapsed.rb_root.rb_node;
2379 else
2380 n = hists->entries_in->rb_root.rb_node;
2381
2382 while (n) {
2383 struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in);
2384 int64_t cmp = hist_entry__collapse(iter, he);
2385
2386 if (cmp < 0)
2387 n = n->rb_left;
2388 else if (cmp > 0)
2389 n = n->rb_right;
2390 else
2391 return iter;
2392 }
2393
2394 return NULL;
2395}
2396
2397static struct hist_entry *hists__find_hierarchy_entry(struct rb_root_cached *root,
2398 struct hist_entry *he)
2399{
2400 struct rb_node *n = root->rb_root.rb_node;
2401
2402 while (n) {
2403 struct hist_entry *iter;
2404 struct perf_hpp_fmt *fmt;
2405 int64_t cmp = 0;
2406
2407 iter = rb_entry(n, struct hist_entry, rb_node_in);
2408 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2409 cmp = fmt->collapse(fmt, iter, he);
2410 if (cmp)
2411 break;
2412 }
2413
2414 if (cmp < 0)
2415 n = n->rb_left;
2416 else if (cmp > 0)
2417 n = n->rb_right;
2418 else
2419 return iter;
2420 }
2421
2422 return NULL;
2423}
2424
2425static void hists__match_hierarchy(struct rb_root_cached *leader_root,
2426 struct rb_root_cached *other_root)
2427{
2428 struct rb_node *nd;
2429 struct hist_entry *pos, *pair;
2430
2431 for (nd = rb_first_cached(leader_root); nd; nd = rb_next(nd)) {
2432 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2433 pair = hists__find_hierarchy_entry(other_root, pos);
2434
2435 if (pair) {
2436 hist_entry__add_pair(pair, pos);
2437 hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in);
2438 }
2439 }
2440}
2441
2442/*
2443 * Look for pairs to link to the leader buckets (hist_entries):
2444 */
2445void hists__match(struct hists *leader, struct hists *other)
2446{
2447 struct rb_root_cached *root;
2448 struct rb_node *nd;
2449 struct hist_entry *pos, *pair;
2450
2451 if (symbol_conf.report_hierarchy) {
2452 /* hierarchy report always collapses entries */
2453 return hists__match_hierarchy(&leader->entries_collapsed,
2454 &other->entries_collapsed);
2455 }
2456
2457 if (hists__has(leader, need_collapse))
2458 root = &leader->entries_collapsed;
2459 else
2460 root = leader->entries_in;
2461
2462 for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) {
2463 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2464 pair = hists__find_entry(other, pos);
2465
2466 if (pair)
2467 hist_entry__add_pair(pair, pos);
2468 }
2469}
2470
2471static int hists__link_hierarchy(struct hists *leader_hists,
2472 struct hist_entry *parent,
2473 struct rb_root_cached *leader_root,
2474 struct rb_root_cached *other_root)
2475{
2476 struct rb_node *nd;
2477 struct hist_entry *pos, *leader;
2478
2479 for (nd = rb_first_cached(other_root); nd; nd = rb_next(nd)) {
2480 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2481
2482 if (hist_entry__has_pairs(pos)) {
2483 bool found = false;
2484
2485 list_for_each_entry(leader, &pos->pairs.head, pairs.node) {
2486 if (leader->hists == leader_hists) {
2487 found = true;
2488 break;
2489 }
2490 }
2491 if (!found)
2492 return -1;
2493 } else {
2494 leader = add_dummy_hierarchy_entry(leader_hists,
2495 leader_root, pos);
2496 if (leader == NULL)
2497 return -1;
2498
2499 /* do not point parent in the pos */
2500 leader->parent_he = parent;
2501
2502 hist_entry__add_pair(pos, leader);
2503 }
2504
2505 if (!pos->leaf) {
2506 if (hists__link_hierarchy(leader_hists, leader,
2507 &leader->hroot_in,
2508 &pos->hroot_in) < 0)
2509 return -1;
2510 }
2511 }
2512 return 0;
2513}
2514
2515/*
2516 * Look for entries in the other hists that are not present in the leader, if
2517 * we find them, just add a dummy entry on the leader hists, with period=0,
2518 * nr_events=0, to serve as the list header.
2519 */
2520int hists__link(struct hists *leader, struct hists *other)
2521{
2522 struct rb_root_cached *root;
2523 struct rb_node *nd;
2524 struct hist_entry *pos, *pair;
2525
2526 if (symbol_conf.report_hierarchy) {
2527 /* hierarchy report always collapses entries */
2528 return hists__link_hierarchy(leader, NULL,
2529 &leader->entries_collapsed,
2530 &other->entries_collapsed);
2531 }
2532
2533 if (hists__has(other, need_collapse))
2534 root = &other->entries_collapsed;
2535 else
2536 root = other->entries_in;
2537
2538 for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) {
2539 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2540
2541 if (!hist_entry__has_pairs(pos)) {
2542 pair = hists__add_dummy_entry(leader, pos);
2543 if (pair == NULL)
2544 return -1;
2545 hist_entry__add_pair(pos, pair);
2546 }
2547 }
2548
2549 return 0;
2550}
2551
2552int hists__unlink(struct hists *hists)
2553{
2554 struct rb_root_cached *root;
2555 struct rb_node *nd;
2556 struct hist_entry *pos;
2557
2558 if (hists__has(hists, need_collapse))
2559 root = &hists->entries_collapsed;
2560 else
2561 root = hists->entries_in;
2562
2563 for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) {
2564 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2565 list_del_init(&pos->pairs.node);
2566 }
2567
2568 return 0;
2569}
2570
2571void hist__account_cycles(struct branch_stack *bs, struct addr_location *al,
2572 struct perf_sample *sample, bool nonany_branch_mode)
2573{
2574 struct branch_info *bi;
2575
2576 /* If we have branch cycles always annotate them. */
2577 if (bs && bs->nr && bs->entries[0].flags.cycles) {
2578 int i;
2579
2580 bi = sample__resolve_bstack(sample, al);
2581 if (bi) {
2582 struct addr_map_symbol *prev = NULL;
2583
2584 /*
2585 * Ignore errors, still want to process the
2586 * other entries.
2587 *
2588 * For non standard branch modes always
2589 * force no IPC (prev == NULL)
2590 *
2591 * Note that perf stores branches reversed from
2592 * program order!
2593 */
2594 for (i = bs->nr - 1; i >= 0; i--) {
2595 addr_map_symbol__account_cycles(&bi[i].from,
2596 nonany_branch_mode ? NULL : prev,
2597 bi[i].flags.cycles);
2598 prev = &bi[i].to;
2599 }
2600 free(bi);
2601 }
2602 }
2603}
2604
2605size_t perf_evlist__fprintf_nr_events(struct evlist *evlist, FILE *fp)
2606{
2607 struct evsel *pos;
2608 size_t ret = 0;
2609
2610 evlist__for_each_entry(evlist, pos) {
2611 ret += fprintf(fp, "%s stats:\n", perf_evsel__name(pos));
2612 ret += events_stats__fprintf(&evsel__hists(pos)->stats, fp);
2613 }
2614
2615 return ret;
2616}
2617
2618
2619u64 hists__total_period(struct hists *hists)
2620{
2621 return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period :
2622 hists->stats.total_period;
2623}
2624
2625int __hists__scnprintf_title(struct hists *hists, char *bf, size_t size, bool show_freq)
2626{
2627 char unit;
2628 int printed;
2629 const struct dso *dso = hists->dso_filter;
2630 struct thread *thread = hists->thread_filter;
2631 int socket_id = hists->socket_filter;
2632 unsigned long nr_samples = hists->stats.nr_events[PERF_RECORD_SAMPLE];
2633 u64 nr_events = hists->stats.total_period;
2634 struct evsel *evsel = hists_to_evsel(hists);
2635 const char *ev_name = perf_evsel__name(evsel);
2636 char buf[512], sample_freq_str[64] = "";
2637 size_t buflen = sizeof(buf);
2638 char ref[30] = " show reference callgraph, ";
2639 bool enable_ref = false;
2640
2641 if (symbol_conf.filter_relative) {
2642 nr_samples = hists->stats.nr_non_filtered_samples;
2643 nr_events = hists->stats.total_non_filtered_period;
2644 }
2645
2646 if (perf_evsel__is_group_event(evsel)) {
2647 struct evsel *pos;
2648
2649 perf_evsel__group_desc(evsel, buf, buflen);
2650 ev_name = buf;
2651
2652 for_each_group_member(pos, evsel) {
2653 struct hists *pos_hists = evsel__hists(pos);
2654
2655 if (symbol_conf.filter_relative) {
2656 nr_samples += pos_hists->stats.nr_non_filtered_samples;
2657 nr_events += pos_hists->stats.total_non_filtered_period;
2658 } else {
2659 nr_samples += pos_hists->stats.nr_events[PERF_RECORD_SAMPLE];
2660 nr_events += pos_hists->stats.total_period;
2661 }
2662 }
2663 }
2664
2665 if (symbol_conf.show_ref_callgraph &&
2666 strstr(ev_name, "call-graph=no"))
2667 enable_ref = true;
2668
2669 if (show_freq)
2670 scnprintf(sample_freq_str, sizeof(sample_freq_str), " %d Hz,", evsel->core.attr.sample_freq);
2671
2672 nr_samples = convert_unit(nr_samples, &unit);
2673 printed = scnprintf(bf, size,
2674 "Samples: %lu%c of event%s '%s',%s%sEvent count (approx.): %" PRIu64,
2675 nr_samples, unit, evsel->core.nr_members > 1 ? "s" : "",
2676 ev_name, sample_freq_str, enable_ref ? ref : " ", nr_events);
2677
2678
2679 if (hists->uid_filter_str)
2680 printed += snprintf(bf + printed, size - printed,
2681 ", UID: %s", hists->uid_filter_str);
2682 if (thread) {
2683 if (hists__has(hists, thread)) {
2684 printed += scnprintf(bf + printed, size - printed,
2685 ", Thread: %s(%d)",
2686 (thread->comm_set ? thread__comm_str(thread) : ""),
2687 thread->tid);
2688 } else {
2689 printed += scnprintf(bf + printed, size - printed,
2690 ", Thread: %s",
2691 (thread->comm_set ? thread__comm_str(thread) : ""));
2692 }
2693 }
2694 if (dso)
2695 printed += scnprintf(bf + printed, size - printed,
2696 ", DSO: %s", dso->short_name);
2697 if (socket_id > -1)
2698 printed += scnprintf(bf + printed, size - printed,
2699 ", Processor Socket: %d", socket_id);
2700
2701 return printed;
2702}
2703
2704int parse_filter_percentage(const struct option *opt __maybe_unused,
2705 const char *arg, int unset __maybe_unused)
2706{
2707 if (!strcmp(arg, "relative"))
2708 symbol_conf.filter_relative = true;
2709 else if (!strcmp(arg, "absolute"))
2710 symbol_conf.filter_relative = false;
2711 else {
2712 pr_debug("Invalid percentage: %s\n", arg);
2713 return -1;
2714 }
2715
2716 return 0;
2717}
2718
2719int perf_hist_config(const char *var, const char *value)
2720{
2721 if (!strcmp(var, "hist.percentage"))
2722 return parse_filter_percentage(NULL, value, 0);
2723
2724 return 0;
2725}
2726
2727int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list)
2728{
2729 memset(hists, 0, sizeof(*hists));
2730 hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT_CACHED;
2731 hists->entries_in = &hists->entries_in_array[0];
2732 hists->entries_collapsed = RB_ROOT_CACHED;
2733 hists->entries = RB_ROOT_CACHED;
2734 pthread_mutex_init(&hists->lock, NULL);
2735 hists->socket_filter = -1;
2736 hists->hpp_list = hpp_list;
2737 INIT_LIST_HEAD(&hists->hpp_formats);
2738 return 0;
2739}
2740
2741static void hists__delete_remaining_entries(struct rb_root_cached *root)
2742{
2743 struct rb_node *node;
2744 struct hist_entry *he;
2745
2746 while (!RB_EMPTY_ROOT(&root->rb_root)) {
2747 node = rb_first_cached(root);
2748 rb_erase_cached(node, root);
2749
2750 he = rb_entry(node, struct hist_entry, rb_node_in);
2751 hist_entry__delete(he);
2752 }
2753}
2754
2755static void hists__delete_all_entries(struct hists *hists)
2756{
2757 hists__delete_entries(hists);
2758 hists__delete_remaining_entries(&hists->entries_in_array[0]);
2759 hists__delete_remaining_entries(&hists->entries_in_array[1]);
2760 hists__delete_remaining_entries(&hists->entries_collapsed);
2761}
2762
2763static void hists_evsel__exit(struct evsel *evsel)
2764{
2765 struct hists *hists = evsel__hists(evsel);
2766 struct perf_hpp_fmt *fmt, *pos;
2767 struct perf_hpp_list_node *node, *tmp;
2768
2769 hists__delete_all_entries(hists);
2770
2771 list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) {
2772 perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) {
2773 list_del_init(&fmt->list);
2774 free(fmt);
2775 }
2776 list_del_init(&node->list);
2777 free(node);
2778 }
2779}
2780
2781static int hists_evsel__init(struct evsel *evsel)
2782{
2783 struct hists *hists = evsel__hists(evsel);
2784
2785 __hists__init(hists, &perf_hpp_list);
2786 return 0;
2787}
2788
2789/*
2790 * XXX We probably need a hists_evsel__exit() to free the hist_entries
2791 * stored in the rbtree...
2792 */
2793
2794int hists__init(void)
2795{
2796 int err = perf_evsel__object_config(sizeof(struct hists_evsel),
2797 hists_evsel__init,
2798 hists_evsel__exit);
2799 if (err)
2800 fputs("FATAL ERROR: Couldn't setup hists class\n", stderr);
2801
2802 return err;
2803}
2804
2805void perf_hpp_list__init(struct perf_hpp_list *list)
2806{
2807 INIT_LIST_HEAD(&list->fields);
2808 INIT_LIST_HEAD(&list->sorts);
2809}
1#include "util.h"
2#include "build-id.h"
3#include "hist.h"
4#include "session.h"
5#include "sort.h"
6#include "evlist.h"
7#include "evsel.h"
8#include "annotate.h"
9#include "ui/progress.h"
10#include <math.h>
11
12static bool hists__filter_entry_by_dso(struct hists *hists,
13 struct hist_entry *he);
14static bool hists__filter_entry_by_thread(struct hists *hists,
15 struct hist_entry *he);
16static bool hists__filter_entry_by_symbol(struct hists *hists,
17 struct hist_entry *he);
18static bool hists__filter_entry_by_socket(struct hists *hists,
19 struct hist_entry *he);
20
21u16 hists__col_len(struct hists *hists, enum hist_column col)
22{
23 return hists->col_len[col];
24}
25
26void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len)
27{
28 hists->col_len[col] = len;
29}
30
31bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len)
32{
33 if (len > hists__col_len(hists, col)) {
34 hists__set_col_len(hists, col, len);
35 return true;
36 }
37 return false;
38}
39
40void hists__reset_col_len(struct hists *hists)
41{
42 enum hist_column col;
43
44 for (col = 0; col < HISTC_NR_COLS; ++col)
45 hists__set_col_len(hists, col, 0);
46}
47
48static void hists__set_unres_dso_col_len(struct hists *hists, int dso)
49{
50 const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
51
52 if (hists__col_len(hists, dso) < unresolved_col_width &&
53 !symbol_conf.col_width_list_str && !symbol_conf.field_sep &&
54 !symbol_conf.dso_list)
55 hists__set_col_len(hists, dso, unresolved_col_width);
56}
57
58void hists__calc_col_len(struct hists *hists, struct hist_entry *h)
59{
60 const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
61 int symlen;
62 u16 len;
63
64 /*
65 * +4 accounts for '[x] ' priv level info
66 * +2 accounts for 0x prefix on raw addresses
67 * +3 accounts for ' y ' symtab origin info
68 */
69 if (h->ms.sym) {
70 symlen = h->ms.sym->namelen + 4;
71 if (verbose)
72 symlen += BITS_PER_LONG / 4 + 2 + 3;
73 hists__new_col_len(hists, HISTC_SYMBOL, symlen);
74 } else {
75 symlen = unresolved_col_width + 4 + 2;
76 hists__new_col_len(hists, HISTC_SYMBOL, symlen);
77 hists__set_unres_dso_col_len(hists, HISTC_DSO);
78 }
79
80 len = thread__comm_len(h->thread);
81 if (hists__new_col_len(hists, HISTC_COMM, len))
82 hists__set_col_len(hists, HISTC_THREAD, len + 6);
83
84 if (h->ms.map) {
85 len = dso__name_len(h->ms.map->dso);
86 hists__new_col_len(hists, HISTC_DSO, len);
87 }
88
89 if (h->parent)
90 hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen);
91
92 if (h->branch_info) {
93 if (h->branch_info->from.sym) {
94 symlen = (int)h->branch_info->from.sym->namelen + 4;
95 if (verbose)
96 symlen += BITS_PER_LONG / 4 + 2 + 3;
97 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
98
99 symlen = dso__name_len(h->branch_info->from.map->dso);
100 hists__new_col_len(hists, HISTC_DSO_FROM, symlen);
101 } else {
102 symlen = unresolved_col_width + 4 + 2;
103 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
104 hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM);
105 }
106
107 if (h->branch_info->to.sym) {
108 symlen = (int)h->branch_info->to.sym->namelen + 4;
109 if (verbose)
110 symlen += BITS_PER_LONG / 4 + 2 + 3;
111 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
112
113 symlen = dso__name_len(h->branch_info->to.map->dso);
114 hists__new_col_len(hists, HISTC_DSO_TO, symlen);
115 } else {
116 symlen = unresolved_col_width + 4 + 2;
117 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
118 hists__set_unres_dso_col_len(hists, HISTC_DSO_TO);
119 }
120 }
121
122 if (h->mem_info) {
123 if (h->mem_info->daddr.sym) {
124 symlen = (int)h->mem_info->daddr.sym->namelen + 4
125 + unresolved_col_width + 2;
126 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
127 symlen);
128 hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
129 symlen + 1);
130 } else {
131 symlen = unresolved_col_width + 4 + 2;
132 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
133 symlen);
134 hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
135 symlen);
136 }
137
138 if (h->mem_info->iaddr.sym) {
139 symlen = (int)h->mem_info->iaddr.sym->namelen + 4
140 + unresolved_col_width + 2;
141 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
142 symlen);
143 } else {
144 symlen = unresolved_col_width + 4 + 2;
145 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
146 symlen);
147 }
148
149 if (h->mem_info->daddr.map) {
150 symlen = dso__name_len(h->mem_info->daddr.map->dso);
151 hists__new_col_len(hists, HISTC_MEM_DADDR_DSO,
152 symlen);
153 } else {
154 symlen = unresolved_col_width + 4 + 2;
155 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
156 }
157 } else {
158 symlen = unresolved_col_width + 4 + 2;
159 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen);
160 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen);
161 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
162 }
163
164 hists__new_col_len(hists, HISTC_CPU, 3);
165 hists__new_col_len(hists, HISTC_SOCKET, 6);
166 hists__new_col_len(hists, HISTC_MEM_LOCKED, 6);
167 hists__new_col_len(hists, HISTC_MEM_TLB, 22);
168 hists__new_col_len(hists, HISTC_MEM_SNOOP, 12);
169 hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3);
170 hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12);
171 hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12);
172
173 if (h->srcline)
174 hists__new_col_len(hists, HISTC_SRCLINE, strlen(h->srcline));
175
176 if (h->srcfile)
177 hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile));
178
179 if (h->transaction)
180 hists__new_col_len(hists, HISTC_TRANSACTION,
181 hist_entry__transaction_len());
182
183 if (h->trace_output)
184 hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output));
185}
186
187void hists__output_recalc_col_len(struct hists *hists, int max_rows)
188{
189 struct rb_node *next = rb_first(&hists->entries);
190 struct hist_entry *n;
191 int row = 0;
192
193 hists__reset_col_len(hists);
194
195 while (next && row++ < max_rows) {
196 n = rb_entry(next, struct hist_entry, rb_node);
197 if (!n->filtered)
198 hists__calc_col_len(hists, n);
199 next = rb_next(&n->rb_node);
200 }
201}
202
203static void he_stat__add_cpumode_period(struct he_stat *he_stat,
204 unsigned int cpumode, u64 period)
205{
206 switch (cpumode) {
207 case PERF_RECORD_MISC_KERNEL:
208 he_stat->period_sys += period;
209 break;
210 case PERF_RECORD_MISC_USER:
211 he_stat->period_us += period;
212 break;
213 case PERF_RECORD_MISC_GUEST_KERNEL:
214 he_stat->period_guest_sys += period;
215 break;
216 case PERF_RECORD_MISC_GUEST_USER:
217 he_stat->period_guest_us += period;
218 break;
219 default:
220 break;
221 }
222}
223
224static void he_stat__add_period(struct he_stat *he_stat, u64 period,
225 u64 weight)
226{
227
228 he_stat->period += period;
229 he_stat->weight += weight;
230 he_stat->nr_events += 1;
231}
232
233static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src)
234{
235 dest->period += src->period;
236 dest->period_sys += src->period_sys;
237 dest->period_us += src->period_us;
238 dest->period_guest_sys += src->period_guest_sys;
239 dest->period_guest_us += src->period_guest_us;
240 dest->nr_events += src->nr_events;
241 dest->weight += src->weight;
242}
243
244static void he_stat__decay(struct he_stat *he_stat)
245{
246 he_stat->period = (he_stat->period * 7) / 8;
247 he_stat->nr_events = (he_stat->nr_events * 7) / 8;
248 /* XXX need decay for weight too? */
249}
250
251static void hists__delete_entry(struct hists *hists, struct hist_entry *he);
252
253static bool hists__decay_entry(struct hists *hists, struct hist_entry *he)
254{
255 u64 prev_period = he->stat.period;
256 u64 diff;
257
258 if (prev_period == 0)
259 return true;
260
261 he_stat__decay(&he->stat);
262 if (symbol_conf.cumulate_callchain)
263 he_stat__decay(he->stat_acc);
264 decay_callchain(he->callchain);
265
266 diff = prev_period - he->stat.period;
267
268 if (!he->depth) {
269 hists->stats.total_period -= diff;
270 if (!he->filtered)
271 hists->stats.total_non_filtered_period -= diff;
272 }
273
274 if (!he->leaf) {
275 struct hist_entry *child;
276 struct rb_node *node = rb_first(&he->hroot_out);
277 while (node) {
278 child = rb_entry(node, struct hist_entry, rb_node);
279 node = rb_next(node);
280
281 if (hists__decay_entry(hists, child))
282 hists__delete_entry(hists, child);
283 }
284 }
285
286 return he->stat.period == 0;
287}
288
289static void hists__delete_entry(struct hists *hists, struct hist_entry *he)
290{
291 struct rb_root *root_in;
292 struct rb_root *root_out;
293
294 if (he->parent_he) {
295 root_in = &he->parent_he->hroot_in;
296 root_out = &he->parent_he->hroot_out;
297 } else {
298 if (sort__need_collapse)
299 root_in = &hists->entries_collapsed;
300 else
301 root_in = hists->entries_in;
302 root_out = &hists->entries;
303 }
304
305 rb_erase(&he->rb_node_in, root_in);
306 rb_erase(&he->rb_node, root_out);
307
308 --hists->nr_entries;
309 if (!he->filtered)
310 --hists->nr_non_filtered_entries;
311
312 hist_entry__delete(he);
313}
314
315void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel)
316{
317 struct rb_node *next = rb_first(&hists->entries);
318 struct hist_entry *n;
319
320 while (next) {
321 n = rb_entry(next, struct hist_entry, rb_node);
322 next = rb_next(&n->rb_node);
323 if (((zap_user && n->level == '.') ||
324 (zap_kernel && n->level != '.') ||
325 hists__decay_entry(hists, n))) {
326 hists__delete_entry(hists, n);
327 }
328 }
329}
330
331void hists__delete_entries(struct hists *hists)
332{
333 struct rb_node *next = rb_first(&hists->entries);
334 struct hist_entry *n;
335
336 while (next) {
337 n = rb_entry(next, struct hist_entry, rb_node);
338 next = rb_next(&n->rb_node);
339
340 hists__delete_entry(hists, n);
341 }
342}
343
344/*
345 * histogram, sorted on item, collects periods
346 */
347
348static struct hist_entry *hist_entry__new(struct hist_entry *template,
349 bool sample_self)
350{
351 size_t callchain_size = 0;
352 struct hist_entry *he;
353
354 if (symbol_conf.use_callchain)
355 callchain_size = sizeof(struct callchain_root);
356
357 he = zalloc(sizeof(*he) + callchain_size);
358
359 if (he != NULL) {
360 *he = *template;
361
362 if (symbol_conf.cumulate_callchain) {
363 he->stat_acc = malloc(sizeof(he->stat));
364 if (he->stat_acc == NULL) {
365 free(he);
366 return NULL;
367 }
368 memcpy(he->stat_acc, &he->stat, sizeof(he->stat));
369 if (!sample_self)
370 memset(&he->stat, 0, sizeof(he->stat));
371 }
372
373 map__get(he->ms.map);
374
375 if (he->branch_info) {
376 /*
377 * This branch info is (a part of) allocated from
378 * sample__resolve_bstack() and will be freed after
379 * adding new entries. So we need to save a copy.
380 */
381 he->branch_info = malloc(sizeof(*he->branch_info));
382 if (he->branch_info == NULL) {
383 map__zput(he->ms.map);
384 free(he->stat_acc);
385 free(he);
386 return NULL;
387 }
388
389 memcpy(he->branch_info, template->branch_info,
390 sizeof(*he->branch_info));
391
392 map__get(he->branch_info->from.map);
393 map__get(he->branch_info->to.map);
394 }
395
396 if (he->mem_info) {
397 map__get(he->mem_info->iaddr.map);
398 map__get(he->mem_info->daddr.map);
399 }
400
401 if (symbol_conf.use_callchain)
402 callchain_init(he->callchain);
403
404 if (he->raw_data) {
405 he->raw_data = memdup(he->raw_data, he->raw_size);
406
407 if (he->raw_data == NULL) {
408 map__put(he->ms.map);
409 if (he->branch_info) {
410 map__put(he->branch_info->from.map);
411 map__put(he->branch_info->to.map);
412 free(he->branch_info);
413 }
414 if (he->mem_info) {
415 map__put(he->mem_info->iaddr.map);
416 map__put(he->mem_info->daddr.map);
417 }
418 free(he->stat_acc);
419 free(he);
420 return NULL;
421 }
422 }
423 INIT_LIST_HEAD(&he->pairs.node);
424 thread__get(he->thread);
425
426 if (!symbol_conf.report_hierarchy)
427 he->leaf = true;
428 }
429
430 return he;
431}
432
433static u8 symbol__parent_filter(const struct symbol *parent)
434{
435 if (symbol_conf.exclude_other && parent == NULL)
436 return 1 << HIST_FILTER__PARENT;
437 return 0;
438}
439
440static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period)
441{
442 if (!symbol_conf.use_callchain)
443 return;
444
445 he->hists->callchain_period += period;
446 if (!he->filtered)
447 he->hists->callchain_non_filtered_period += period;
448}
449
450static struct hist_entry *hists__findnew_entry(struct hists *hists,
451 struct hist_entry *entry,
452 struct addr_location *al,
453 bool sample_self)
454{
455 struct rb_node **p;
456 struct rb_node *parent = NULL;
457 struct hist_entry *he;
458 int64_t cmp;
459 u64 period = entry->stat.period;
460 u64 weight = entry->stat.weight;
461
462 p = &hists->entries_in->rb_node;
463
464 while (*p != NULL) {
465 parent = *p;
466 he = rb_entry(parent, struct hist_entry, rb_node_in);
467
468 /*
469 * Make sure that it receives arguments in a same order as
470 * hist_entry__collapse() so that we can use an appropriate
471 * function when searching an entry regardless which sort
472 * keys were used.
473 */
474 cmp = hist_entry__cmp(he, entry);
475
476 if (!cmp) {
477 if (sample_self) {
478 he_stat__add_period(&he->stat, period, weight);
479 hist_entry__add_callchain_period(he, period);
480 }
481 if (symbol_conf.cumulate_callchain)
482 he_stat__add_period(he->stat_acc, period, weight);
483
484 /*
485 * This mem info was allocated from sample__resolve_mem
486 * and will not be used anymore.
487 */
488 zfree(&entry->mem_info);
489
490 /* If the map of an existing hist_entry has
491 * become out-of-date due to an exec() or
492 * similar, update it. Otherwise we will
493 * mis-adjust symbol addresses when computing
494 * the history counter to increment.
495 */
496 if (he->ms.map != entry->ms.map) {
497 map__put(he->ms.map);
498 he->ms.map = map__get(entry->ms.map);
499 }
500 goto out;
501 }
502
503 if (cmp < 0)
504 p = &(*p)->rb_left;
505 else
506 p = &(*p)->rb_right;
507 }
508
509 he = hist_entry__new(entry, sample_self);
510 if (!he)
511 return NULL;
512
513 if (sample_self)
514 hist_entry__add_callchain_period(he, period);
515 hists->nr_entries++;
516
517 rb_link_node(&he->rb_node_in, parent, p);
518 rb_insert_color(&he->rb_node_in, hists->entries_in);
519out:
520 if (sample_self)
521 he_stat__add_cpumode_period(&he->stat, al->cpumode, period);
522 if (symbol_conf.cumulate_callchain)
523 he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period);
524 return he;
525}
526
527struct hist_entry *__hists__add_entry(struct hists *hists,
528 struct addr_location *al,
529 struct symbol *sym_parent,
530 struct branch_info *bi,
531 struct mem_info *mi,
532 struct perf_sample *sample,
533 bool sample_self)
534{
535 struct hist_entry entry = {
536 .thread = al->thread,
537 .comm = thread__comm(al->thread),
538 .ms = {
539 .map = al->map,
540 .sym = al->sym,
541 },
542 .socket = al->socket,
543 .cpu = al->cpu,
544 .cpumode = al->cpumode,
545 .ip = al->addr,
546 .level = al->level,
547 .stat = {
548 .nr_events = 1,
549 .period = sample->period,
550 .weight = sample->weight,
551 },
552 .parent = sym_parent,
553 .filtered = symbol__parent_filter(sym_parent) | al->filtered,
554 .hists = hists,
555 .branch_info = bi,
556 .mem_info = mi,
557 .transaction = sample->transaction,
558 .raw_data = sample->raw_data,
559 .raw_size = sample->raw_size,
560 };
561
562 return hists__findnew_entry(hists, &entry, al, sample_self);
563}
564
565static int
566iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
567 struct addr_location *al __maybe_unused)
568{
569 return 0;
570}
571
572static int
573iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
574 struct addr_location *al __maybe_unused)
575{
576 return 0;
577}
578
579static int
580iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
581{
582 struct perf_sample *sample = iter->sample;
583 struct mem_info *mi;
584
585 mi = sample__resolve_mem(sample, al);
586 if (mi == NULL)
587 return -ENOMEM;
588
589 iter->priv = mi;
590 return 0;
591}
592
593static int
594iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
595{
596 u64 cost;
597 struct mem_info *mi = iter->priv;
598 struct hists *hists = evsel__hists(iter->evsel);
599 struct perf_sample *sample = iter->sample;
600 struct hist_entry *he;
601
602 if (mi == NULL)
603 return -EINVAL;
604
605 cost = sample->weight;
606 if (!cost)
607 cost = 1;
608
609 /*
610 * must pass period=weight in order to get the correct
611 * sorting from hists__collapse_resort() which is solely
612 * based on periods. We want sorting be done on nr_events * weight
613 * and this is indirectly achieved by passing period=weight here
614 * and the he_stat__add_period() function.
615 */
616 sample->period = cost;
617
618 he = __hists__add_entry(hists, al, iter->parent, NULL, mi,
619 sample, true);
620 if (!he)
621 return -ENOMEM;
622
623 iter->he = he;
624 return 0;
625}
626
627static int
628iter_finish_mem_entry(struct hist_entry_iter *iter,
629 struct addr_location *al __maybe_unused)
630{
631 struct perf_evsel *evsel = iter->evsel;
632 struct hists *hists = evsel__hists(evsel);
633 struct hist_entry *he = iter->he;
634 int err = -EINVAL;
635
636 if (he == NULL)
637 goto out;
638
639 hists__inc_nr_samples(hists, he->filtered);
640
641 err = hist_entry__append_callchain(he, iter->sample);
642
643out:
644 /*
645 * We don't need to free iter->priv (mem_info) here since the mem info
646 * was either already freed in hists__findnew_entry() or passed to a
647 * new hist entry by hist_entry__new().
648 */
649 iter->priv = NULL;
650
651 iter->he = NULL;
652 return err;
653}
654
655static int
656iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
657{
658 struct branch_info *bi;
659 struct perf_sample *sample = iter->sample;
660
661 bi = sample__resolve_bstack(sample, al);
662 if (!bi)
663 return -ENOMEM;
664
665 iter->curr = 0;
666 iter->total = sample->branch_stack->nr;
667
668 iter->priv = bi;
669 return 0;
670}
671
672static int
673iter_add_single_branch_entry(struct hist_entry_iter *iter,
674 struct addr_location *al __maybe_unused)
675{
676 /* to avoid calling callback function */
677 iter->he = NULL;
678
679 return 0;
680}
681
682static int
683iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
684{
685 struct branch_info *bi = iter->priv;
686 int i = iter->curr;
687
688 if (bi == NULL)
689 return 0;
690
691 if (iter->curr >= iter->total)
692 return 0;
693
694 al->map = bi[i].to.map;
695 al->sym = bi[i].to.sym;
696 al->addr = bi[i].to.addr;
697 return 1;
698}
699
700static int
701iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
702{
703 struct branch_info *bi;
704 struct perf_evsel *evsel = iter->evsel;
705 struct hists *hists = evsel__hists(evsel);
706 struct perf_sample *sample = iter->sample;
707 struct hist_entry *he = NULL;
708 int i = iter->curr;
709 int err = 0;
710
711 bi = iter->priv;
712
713 if (iter->hide_unresolved && !(bi[i].from.sym && bi[i].to.sym))
714 goto out;
715
716 /*
717 * The report shows the percentage of total branches captured
718 * and not events sampled. Thus we use a pseudo period of 1.
719 */
720 sample->period = 1;
721 sample->weight = bi->flags.cycles ? bi->flags.cycles : 1;
722
723 he = __hists__add_entry(hists, al, iter->parent, &bi[i], NULL,
724 sample, true);
725 if (he == NULL)
726 return -ENOMEM;
727
728 hists__inc_nr_samples(hists, he->filtered);
729
730out:
731 iter->he = he;
732 iter->curr++;
733 return err;
734}
735
736static int
737iter_finish_branch_entry(struct hist_entry_iter *iter,
738 struct addr_location *al __maybe_unused)
739{
740 zfree(&iter->priv);
741 iter->he = NULL;
742
743 return iter->curr >= iter->total ? 0 : -1;
744}
745
746static int
747iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused,
748 struct addr_location *al __maybe_unused)
749{
750 return 0;
751}
752
753static int
754iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al)
755{
756 struct perf_evsel *evsel = iter->evsel;
757 struct perf_sample *sample = iter->sample;
758 struct hist_entry *he;
759
760 he = __hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
761 sample, true);
762 if (he == NULL)
763 return -ENOMEM;
764
765 iter->he = he;
766 return 0;
767}
768
769static int
770iter_finish_normal_entry(struct hist_entry_iter *iter,
771 struct addr_location *al __maybe_unused)
772{
773 struct hist_entry *he = iter->he;
774 struct perf_evsel *evsel = iter->evsel;
775 struct perf_sample *sample = iter->sample;
776
777 if (he == NULL)
778 return 0;
779
780 iter->he = NULL;
781
782 hists__inc_nr_samples(evsel__hists(evsel), he->filtered);
783
784 return hist_entry__append_callchain(he, sample);
785}
786
787static int
788iter_prepare_cumulative_entry(struct hist_entry_iter *iter,
789 struct addr_location *al __maybe_unused)
790{
791 struct hist_entry **he_cache;
792
793 callchain_cursor_commit(&callchain_cursor);
794
795 /*
796 * This is for detecting cycles or recursions so that they're
797 * cumulated only one time to prevent entries more than 100%
798 * overhead.
799 */
800 he_cache = malloc(sizeof(*he_cache) * (iter->max_stack + 1));
801 if (he_cache == NULL)
802 return -ENOMEM;
803
804 iter->priv = he_cache;
805 iter->curr = 0;
806
807 return 0;
808}
809
810static int
811iter_add_single_cumulative_entry(struct hist_entry_iter *iter,
812 struct addr_location *al)
813{
814 struct perf_evsel *evsel = iter->evsel;
815 struct hists *hists = evsel__hists(evsel);
816 struct perf_sample *sample = iter->sample;
817 struct hist_entry **he_cache = iter->priv;
818 struct hist_entry *he;
819 int err = 0;
820
821 he = __hists__add_entry(hists, al, iter->parent, NULL, NULL,
822 sample, true);
823 if (he == NULL)
824 return -ENOMEM;
825
826 iter->he = he;
827 he_cache[iter->curr++] = he;
828
829 hist_entry__append_callchain(he, sample);
830
831 /*
832 * We need to re-initialize the cursor since callchain_append()
833 * advanced the cursor to the end.
834 */
835 callchain_cursor_commit(&callchain_cursor);
836
837 hists__inc_nr_samples(hists, he->filtered);
838
839 return err;
840}
841
842static int
843iter_next_cumulative_entry(struct hist_entry_iter *iter,
844 struct addr_location *al)
845{
846 struct callchain_cursor_node *node;
847
848 node = callchain_cursor_current(&callchain_cursor);
849 if (node == NULL)
850 return 0;
851
852 return fill_callchain_info(al, node, iter->hide_unresolved);
853}
854
855static int
856iter_add_next_cumulative_entry(struct hist_entry_iter *iter,
857 struct addr_location *al)
858{
859 struct perf_evsel *evsel = iter->evsel;
860 struct perf_sample *sample = iter->sample;
861 struct hist_entry **he_cache = iter->priv;
862 struct hist_entry *he;
863 struct hist_entry he_tmp = {
864 .hists = evsel__hists(evsel),
865 .cpu = al->cpu,
866 .thread = al->thread,
867 .comm = thread__comm(al->thread),
868 .ip = al->addr,
869 .ms = {
870 .map = al->map,
871 .sym = al->sym,
872 },
873 .parent = iter->parent,
874 .raw_data = sample->raw_data,
875 .raw_size = sample->raw_size,
876 };
877 int i;
878 struct callchain_cursor cursor;
879
880 callchain_cursor_snapshot(&cursor, &callchain_cursor);
881
882 callchain_cursor_advance(&callchain_cursor);
883
884 /*
885 * Check if there's duplicate entries in the callchain.
886 * It's possible that it has cycles or recursive calls.
887 */
888 for (i = 0; i < iter->curr; i++) {
889 if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) {
890 /* to avoid calling callback function */
891 iter->he = NULL;
892 return 0;
893 }
894 }
895
896 he = __hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
897 sample, false);
898 if (he == NULL)
899 return -ENOMEM;
900
901 iter->he = he;
902 he_cache[iter->curr++] = he;
903
904 if (symbol_conf.use_callchain)
905 callchain_append(he->callchain, &cursor, sample->period);
906 return 0;
907}
908
909static int
910iter_finish_cumulative_entry(struct hist_entry_iter *iter,
911 struct addr_location *al __maybe_unused)
912{
913 zfree(&iter->priv);
914 iter->he = NULL;
915
916 return 0;
917}
918
919const struct hist_iter_ops hist_iter_mem = {
920 .prepare_entry = iter_prepare_mem_entry,
921 .add_single_entry = iter_add_single_mem_entry,
922 .next_entry = iter_next_nop_entry,
923 .add_next_entry = iter_add_next_nop_entry,
924 .finish_entry = iter_finish_mem_entry,
925};
926
927const struct hist_iter_ops hist_iter_branch = {
928 .prepare_entry = iter_prepare_branch_entry,
929 .add_single_entry = iter_add_single_branch_entry,
930 .next_entry = iter_next_branch_entry,
931 .add_next_entry = iter_add_next_branch_entry,
932 .finish_entry = iter_finish_branch_entry,
933};
934
935const struct hist_iter_ops hist_iter_normal = {
936 .prepare_entry = iter_prepare_normal_entry,
937 .add_single_entry = iter_add_single_normal_entry,
938 .next_entry = iter_next_nop_entry,
939 .add_next_entry = iter_add_next_nop_entry,
940 .finish_entry = iter_finish_normal_entry,
941};
942
943const struct hist_iter_ops hist_iter_cumulative = {
944 .prepare_entry = iter_prepare_cumulative_entry,
945 .add_single_entry = iter_add_single_cumulative_entry,
946 .next_entry = iter_next_cumulative_entry,
947 .add_next_entry = iter_add_next_cumulative_entry,
948 .finish_entry = iter_finish_cumulative_entry,
949};
950
951int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al,
952 int max_stack_depth, void *arg)
953{
954 int err, err2;
955
956 err = sample__resolve_callchain(iter->sample, &iter->parent,
957 iter->evsel, al, max_stack_depth);
958 if (err)
959 return err;
960
961 iter->max_stack = max_stack_depth;
962
963 err = iter->ops->prepare_entry(iter, al);
964 if (err)
965 goto out;
966
967 err = iter->ops->add_single_entry(iter, al);
968 if (err)
969 goto out;
970
971 if (iter->he && iter->add_entry_cb) {
972 err = iter->add_entry_cb(iter, al, true, arg);
973 if (err)
974 goto out;
975 }
976
977 while (iter->ops->next_entry(iter, al)) {
978 err = iter->ops->add_next_entry(iter, al);
979 if (err)
980 break;
981
982 if (iter->he && iter->add_entry_cb) {
983 err = iter->add_entry_cb(iter, al, false, arg);
984 if (err)
985 goto out;
986 }
987 }
988
989out:
990 err2 = iter->ops->finish_entry(iter, al);
991 if (!err)
992 err = err2;
993
994 return err;
995}
996
997int64_t
998hist_entry__cmp(struct hist_entry *left, struct hist_entry *right)
999{
1000 struct hists *hists = left->hists;
1001 struct perf_hpp_fmt *fmt;
1002 int64_t cmp = 0;
1003
1004 hists__for_each_sort_list(hists, fmt) {
1005 if (perf_hpp__is_dynamic_entry(fmt) &&
1006 !perf_hpp__defined_dynamic_entry(fmt, hists))
1007 continue;
1008
1009 cmp = fmt->cmp(fmt, left, right);
1010 if (cmp)
1011 break;
1012 }
1013
1014 return cmp;
1015}
1016
1017int64_t
1018hist_entry__collapse(struct hist_entry *left, struct hist_entry *right)
1019{
1020 struct hists *hists = left->hists;
1021 struct perf_hpp_fmt *fmt;
1022 int64_t cmp = 0;
1023
1024 hists__for_each_sort_list(hists, fmt) {
1025 if (perf_hpp__is_dynamic_entry(fmt) &&
1026 !perf_hpp__defined_dynamic_entry(fmt, hists))
1027 continue;
1028
1029 cmp = fmt->collapse(fmt, left, right);
1030 if (cmp)
1031 break;
1032 }
1033
1034 return cmp;
1035}
1036
1037void hist_entry__delete(struct hist_entry *he)
1038{
1039 thread__zput(he->thread);
1040 map__zput(he->ms.map);
1041
1042 if (he->branch_info) {
1043 map__zput(he->branch_info->from.map);
1044 map__zput(he->branch_info->to.map);
1045 zfree(&he->branch_info);
1046 }
1047
1048 if (he->mem_info) {
1049 map__zput(he->mem_info->iaddr.map);
1050 map__zput(he->mem_info->daddr.map);
1051 zfree(&he->mem_info);
1052 }
1053
1054 zfree(&he->stat_acc);
1055 free_srcline(he->srcline);
1056 if (he->srcfile && he->srcfile[0])
1057 free(he->srcfile);
1058 free_callchain(he->callchain);
1059 free(he->trace_output);
1060 free(he->raw_data);
1061 free(he);
1062}
1063
1064/*
1065 * If this is not the last column, then we need to pad it according to the
1066 * pre-calculated max lenght for this column, otherwise don't bother adding
1067 * spaces because that would break viewing this with, for instance, 'less',
1068 * that would show tons of trailing spaces when a long C++ demangled method
1069 * names is sampled.
1070*/
1071int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp,
1072 struct perf_hpp_fmt *fmt, int printed)
1073{
1074 if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) {
1075 const int width = fmt->width(fmt, hpp, hists_to_evsel(he->hists));
1076 if (printed < width) {
1077 advance_hpp(hpp, printed);
1078 printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " ");
1079 }
1080 }
1081
1082 return printed;
1083}
1084
1085/*
1086 * collapse the histogram
1087 */
1088
1089static void hists__apply_filters(struct hists *hists, struct hist_entry *he);
1090static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he,
1091 enum hist_filter type);
1092
1093typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt);
1094
1095static bool check_thread_entry(struct perf_hpp_fmt *fmt)
1096{
1097 return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt);
1098}
1099
1100static void hist_entry__check_and_remove_filter(struct hist_entry *he,
1101 enum hist_filter type,
1102 fmt_chk_fn check)
1103{
1104 struct perf_hpp_fmt *fmt;
1105 bool type_match = false;
1106 struct hist_entry *parent = he->parent_he;
1107
1108 switch (type) {
1109 case HIST_FILTER__THREAD:
1110 if (symbol_conf.comm_list == NULL &&
1111 symbol_conf.pid_list == NULL &&
1112 symbol_conf.tid_list == NULL)
1113 return;
1114 break;
1115 case HIST_FILTER__DSO:
1116 if (symbol_conf.dso_list == NULL)
1117 return;
1118 break;
1119 case HIST_FILTER__SYMBOL:
1120 if (symbol_conf.sym_list == NULL)
1121 return;
1122 break;
1123 case HIST_FILTER__PARENT:
1124 case HIST_FILTER__GUEST:
1125 case HIST_FILTER__HOST:
1126 case HIST_FILTER__SOCKET:
1127 default:
1128 return;
1129 }
1130
1131 /* if it's filtered by own fmt, it has to have filter bits */
1132 perf_hpp_list__for_each_format(he->hpp_list, fmt) {
1133 if (check(fmt)) {
1134 type_match = true;
1135 break;
1136 }
1137 }
1138
1139 if (type_match) {
1140 /*
1141 * If the filter is for current level entry, propagate
1142 * filter marker to parents. The marker bit was
1143 * already set by default so it only needs to clear
1144 * non-filtered entries.
1145 */
1146 if (!(he->filtered & (1 << type))) {
1147 while (parent) {
1148 parent->filtered &= ~(1 << type);
1149 parent = parent->parent_he;
1150 }
1151 }
1152 } else {
1153 /*
1154 * If current entry doesn't have matching formats, set
1155 * filter marker for upper level entries. it will be
1156 * cleared if its lower level entries is not filtered.
1157 *
1158 * For lower-level entries, it inherits parent's
1159 * filter bit so that lower level entries of a
1160 * non-filtered entry won't set the filter marker.
1161 */
1162 if (parent == NULL)
1163 he->filtered |= (1 << type);
1164 else
1165 he->filtered |= (parent->filtered & (1 << type));
1166 }
1167}
1168
1169static void hist_entry__apply_hierarchy_filters(struct hist_entry *he)
1170{
1171 hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD,
1172 check_thread_entry);
1173
1174 hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO,
1175 perf_hpp__is_dso_entry);
1176
1177 hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL,
1178 perf_hpp__is_sym_entry);
1179
1180 hists__apply_filters(he->hists, he);
1181}
1182
1183static struct hist_entry *hierarchy_insert_entry(struct hists *hists,
1184 struct rb_root *root,
1185 struct hist_entry *he,
1186 struct hist_entry *parent_he,
1187 struct perf_hpp_list *hpp_list)
1188{
1189 struct rb_node **p = &root->rb_node;
1190 struct rb_node *parent = NULL;
1191 struct hist_entry *iter, *new;
1192 struct perf_hpp_fmt *fmt;
1193 int64_t cmp;
1194
1195 while (*p != NULL) {
1196 parent = *p;
1197 iter = rb_entry(parent, struct hist_entry, rb_node_in);
1198
1199 cmp = 0;
1200 perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1201 cmp = fmt->collapse(fmt, iter, he);
1202 if (cmp)
1203 break;
1204 }
1205
1206 if (!cmp) {
1207 he_stat__add_stat(&iter->stat, &he->stat);
1208 return iter;
1209 }
1210
1211 if (cmp < 0)
1212 p = &parent->rb_left;
1213 else
1214 p = &parent->rb_right;
1215 }
1216
1217 new = hist_entry__new(he, true);
1218 if (new == NULL)
1219 return NULL;
1220
1221 hists->nr_entries++;
1222
1223 /* save related format list for output */
1224 new->hpp_list = hpp_list;
1225 new->parent_he = parent_he;
1226
1227 hist_entry__apply_hierarchy_filters(new);
1228
1229 /* some fields are now passed to 'new' */
1230 perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1231 if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt))
1232 he->trace_output = NULL;
1233 else
1234 new->trace_output = NULL;
1235
1236 if (perf_hpp__is_srcline_entry(fmt))
1237 he->srcline = NULL;
1238 else
1239 new->srcline = NULL;
1240
1241 if (perf_hpp__is_srcfile_entry(fmt))
1242 he->srcfile = NULL;
1243 else
1244 new->srcfile = NULL;
1245 }
1246
1247 rb_link_node(&new->rb_node_in, parent, p);
1248 rb_insert_color(&new->rb_node_in, root);
1249 return new;
1250}
1251
1252static int hists__hierarchy_insert_entry(struct hists *hists,
1253 struct rb_root *root,
1254 struct hist_entry *he)
1255{
1256 struct perf_hpp_list_node *node;
1257 struct hist_entry *new_he = NULL;
1258 struct hist_entry *parent = NULL;
1259 int depth = 0;
1260 int ret = 0;
1261
1262 list_for_each_entry(node, &hists->hpp_formats, list) {
1263 /* skip period (overhead) and elided columns */
1264 if (node->level == 0 || node->skip)
1265 continue;
1266
1267 /* insert copy of 'he' for each fmt into the hierarchy */
1268 new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp);
1269 if (new_he == NULL) {
1270 ret = -1;
1271 break;
1272 }
1273
1274 root = &new_he->hroot_in;
1275 new_he->depth = depth++;
1276 parent = new_he;
1277 }
1278
1279 if (new_he) {
1280 new_he->leaf = true;
1281
1282 if (symbol_conf.use_callchain) {
1283 callchain_cursor_reset(&callchain_cursor);
1284 if (callchain_merge(&callchain_cursor,
1285 new_he->callchain,
1286 he->callchain) < 0)
1287 ret = -1;
1288 }
1289 }
1290
1291 /* 'he' is no longer used */
1292 hist_entry__delete(he);
1293
1294 /* return 0 (or -1) since it already applied filters */
1295 return ret;
1296}
1297
1298int hists__collapse_insert_entry(struct hists *hists, struct rb_root *root,
1299 struct hist_entry *he)
1300{
1301 struct rb_node **p = &root->rb_node;
1302 struct rb_node *parent = NULL;
1303 struct hist_entry *iter;
1304 int64_t cmp;
1305
1306 if (symbol_conf.report_hierarchy)
1307 return hists__hierarchy_insert_entry(hists, root, he);
1308
1309 while (*p != NULL) {
1310 parent = *p;
1311 iter = rb_entry(parent, struct hist_entry, rb_node_in);
1312
1313 cmp = hist_entry__collapse(iter, he);
1314
1315 if (!cmp) {
1316 int ret = 0;
1317
1318 he_stat__add_stat(&iter->stat, &he->stat);
1319 if (symbol_conf.cumulate_callchain)
1320 he_stat__add_stat(iter->stat_acc, he->stat_acc);
1321
1322 if (symbol_conf.use_callchain) {
1323 callchain_cursor_reset(&callchain_cursor);
1324 if (callchain_merge(&callchain_cursor,
1325 iter->callchain,
1326 he->callchain) < 0)
1327 ret = -1;
1328 }
1329 hist_entry__delete(he);
1330 return ret;
1331 }
1332
1333 if (cmp < 0)
1334 p = &(*p)->rb_left;
1335 else
1336 p = &(*p)->rb_right;
1337 }
1338 hists->nr_entries++;
1339
1340 rb_link_node(&he->rb_node_in, parent, p);
1341 rb_insert_color(&he->rb_node_in, root);
1342 return 1;
1343}
1344
1345struct rb_root *hists__get_rotate_entries_in(struct hists *hists)
1346{
1347 struct rb_root *root;
1348
1349 pthread_mutex_lock(&hists->lock);
1350
1351 root = hists->entries_in;
1352 if (++hists->entries_in > &hists->entries_in_array[1])
1353 hists->entries_in = &hists->entries_in_array[0];
1354
1355 pthread_mutex_unlock(&hists->lock);
1356
1357 return root;
1358}
1359
1360static void hists__apply_filters(struct hists *hists, struct hist_entry *he)
1361{
1362 hists__filter_entry_by_dso(hists, he);
1363 hists__filter_entry_by_thread(hists, he);
1364 hists__filter_entry_by_symbol(hists, he);
1365 hists__filter_entry_by_socket(hists, he);
1366}
1367
1368int hists__collapse_resort(struct hists *hists, struct ui_progress *prog)
1369{
1370 struct rb_root *root;
1371 struct rb_node *next;
1372 struct hist_entry *n;
1373 int ret;
1374
1375 if (!sort__need_collapse)
1376 return 0;
1377
1378 hists->nr_entries = 0;
1379
1380 root = hists__get_rotate_entries_in(hists);
1381
1382 next = rb_first(root);
1383
1384 while (next) {
1385 if (session_done())
1386 break;
1387 n = rb_entry(next, struct hist_entry, rb_node_in);
1388 next = rb_next(&n->rb_node_in);
1389
1390 rb_erase(&n->rb_node_in, root);
1391 ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n);
1392 if (ret < 0)
1393 return -1;
1394
1395 if (ret) {
1396 /*
1397 * If it wasn't combined with one of the entries already
1398 * collapsed, we need to apply the filters that may have
1399 * been set by, say, the hist_browser.
1400 */
1401 hists__apply_filters(hists, n);
1402 }
1403 if (prog)
1404 ui_progress__update(prog, 1);
1405 }
1406 return 0;
1407}
1408
1409static int hist_entry__sort(struct hist_entry *a, struct hist_entry *b)
1410{
1411 struct hists *hists = a->hists;
1412 struct perf_hpp_fmt *fmt;
1413 int64_t cmp = 0;
1414
1415 hists__for_each_sort_list(hists, fmt) {
1416 if (perf_hpp__should_skip(fmt, a->hists))
1417 continue;
1418
1419 cmp = fmt->sort(fmt, a, b);
1420 if (cmp)
1421 break;
1422 }
1423
1424 return cmp;
1425}
1426
1427static void hists__reset_filter_stats(struct hists *hists)
1428{
1429 hists->nr_non_filtered_entries = 0;
1430 hists->stats.total_non_filtered_period = 0;
1431}
1432
1433void hists__reset_stats(struct hists *hists)
1434{
1435 hists->nr_entries = 0;
1436 hists->stats.total_period = 0;
1437
1438 hists__reset_filter_stats(hists);
1439}
1440
1441static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h)
1442{
1443 hists->nr_non_filtered_entries++;
1444 hists->stats.total_non_filtered_period += h->stat.period;
1445}
1446
1447void hists__inc_stats(struct hists *hists, struct hist_entry *h)
1448{
1449 if (!h->filtered)
1450 hists__inc_filter_stats(hists, h);
1451
1452 hists->nr_entries++;
1453 hists->stats.total_period += h->stat.period;
1454}
1455
1456static void hierarchy_recalc_total_periods(struct hists *hists)
1457{
1458 struct rb_node *node;
1459 struct hist_entry *he;
1460
1461 node = rb_first(&hists->entries);
1462
1463 hists->stats.total_period = 0;
1464 hists->stats.total_non_filtered_period = 0;
1465
1466 /*
1467 * recalculate total period using top-level entries only
1468 * since lower level entries only see non-filtered entries
1469 * but upper level entries have sum of both entries.
1470 */
1471 while (node) {
1472 he = rb_entry(node, struct hist_entry, rb_node);
1473 node = rb_next(node);
1474
1475 hists->stats.total_period += he->stat.period;
1476 if (!he->filtered)
1477 hists->stats.total_non_filtered_period += he->stat.period;
1478 }
1479}
1480
1481static void hierarchy_insert_output_entry(struct rb_root *root,
1482 struct hist_entry *he)
1483{
1484 struct rb_node **p = &root->rb_node;
1485 struct rb_node *parent = NULL;
1486 struct hist_entry *iter;
1487 struct perf_hpp_fmt *fmt;
1488
1489 while (*p != NULL) {
1490 parent = *p;
1491 iter = rb_entry(parent, struct hist_entry, rb_node);
1492
1493 if (hist_entry__sort(he, iter) > 0)
1494 p = &parent->rb_left;
1495 else
1496 p = &parent->rb_right;
1497 }
1498
1499 rb_link_node(&he->rb_node, parent, p);
1500 rb_insert_color(&he->rb_node, root);
1501
1502 /* update column width of dynamic entry */
1503 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
1504 if (perf_hpp__is_dynamic_entry(fmt))
1505 fmt->sort(fmt, he, NULL);
1506 }
1507}
1508
1509static void hists__hierarchy_output_resort(struct hists *hists,
1510 struct ui_progress *prog,
1511 struct rb_root *root_in,
1512 struct rb_root *root_out,
1513 u64 min_callchain_hits,
1514 bool use_callchain)
1515{
1516 struct rb_node *node;
1517 struct hist_entry *he;
1518
1519 *root_out = RB_ROOT;
1520 node = rb_first(root_in);
1521
1522 while (node) {
1523 he = rb_entry(node, struct hist_entry, rb_node_in);
1524 node = rb_next(node);
1525
1526 hierarchy_insert_output_entry(root_out, he);
1527
1528 if (prog)
1529 ui_progress__update(prog, 1);
1530
1531 if (!he->leaf) {
1532 hists__hierarchy_output_resort(hists, prog,
1533 &he->hroot_in,
1534 &he->hroot_out,
1535 min_callchain_hits,
1536 use_callchain);
1537 hists->nr_entries++;
1538 if (!he->filtered) {
1539 hists->nr_non_filtered_entries++;
1540 hists__calc_col_len(hists, he);
1541 }
1542
1543 continue;
1544 }
1545
1546 if (!use_callchain)
1547 continue;
1548
1549 if (callchain_param.mode == CHAIN_GRAPH_REL) {
1550 u64 total = he->stat.period;
1551
1552 if (symbol_conf.cumulate_callchain)
1553 total = he->stat_acc->period;
1554
1555 min_callchain_hits = total * (callchain_param.min_percent / 100);
1556 }
1557
1558 callchain_param.sort(&he->sorted_chain, he->callchain,
1559 min_callchain_hits, &callchain_param);
1560 }
1561}
1562
1563static void __hists__insert_output_entry(struct rb_root *entries,
1564 struct hist_entry *he,
1565 u64 min_callchain_hits,
1566 bool use_callchain)
1567{
1568 struct rb_node **p = &entries->rb_node;
1569 struct rb_node *parent = NULL;
1570 struct hist_entry *iter;
1571 struct perf_hpp_fmt *fmt;
1572
1573 if (use_callchain) {
1574 if (callchain_param.mode == CHAIN_GRAPH_REL) {
1575 u64 total = he->stat.period;
1576
1577 if (symbol_conf.cumulate_callchain)
1578 total = he->stat_acc->period;
1579
1580 min_callchain_hits = total * (callchain_param.min_percent / 100);
1581 }
1582 callchain_param.sort(&he->sorted_chain, he->callchain,
1583 min_callchain_hits, &callchain_param);
1584 }
1585
1586 while (*p != NULL) {
1587 parent = *p;
1588 iter = rb_entry(parent, struct hist_entry, rb_node);
1589
1590 if (hist_entry__sort(he, iter) > 0)
1591 p = &(*p)->rb_left;
1592 else
1593 p = &(*p)->rb_right;
1594 }
1595
1596 rb_link_node(&he->rb_node, parent, p);
1597 rb_insert_color(&he->rb_node, entries);
1598
1599 perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) {
1600 if (perf_hpp__is_dynamic_entry(fmt) &&
1601 perf_hpp__defined_dynamic_entry(fmt, he->hists))
1602 fmt->sort(fmt, he, NULL); /* update column width */
1603 }
1604}
1605
1606static void output_resort(struct hists *hists, struct ui_progress *prog,
1607 bool use_callchain)
1608{
1609 struct rb_root *root;
1610 struct rb_node *next;
1611 struct hist_entry *n;
1612 u64 callchain_total;
1613 u64 min_callchain_hits;
1614
1615 callchain_total = hists->callchain_period;
1616 if (symbol_conf.filter_relative)
1617 callchain_total = hists->callchain_non_filtered_period;
1618
1619 min_callchain_hits = callchain_total * (callchain_param.min_percent / 100);
1620
1621 hists__reset_stats(hists);
1622 hists__reset_col_len(hists);
1623
1624 if (symbol_conf.report_hierarchy) {
1625 hists__hierarchy_output_resort(hists, prog,
1626 &hists->entries_collapsed,
1627 &hists->entries,
1628 min_callchain_hits,
1629 use_callchain);
1630 hierarchy_recalc_total_periods(hists);
1631 return;
1632 }
1633
1634 if (sort__need_collapse)
1635 root = &hists->entries_collapsed;
1636 else
1637 root = hists->entries_in;
1638
1639 next = rb_first(root);
1640 hists->entries = RB_ROOT;
1641
1642 while (next) {
1643 n = rb_entry(next, struct hist_entry, rb_node_in);
1644 next = rb_next(&n->rb_node_in);
1645
1646 __hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain);
1647 hists__inc_stats(hists, n);
1648
1649 if (!n->filtered)
1650 hists__calc_col_len(hists, n);
1651
1652 if (prog)
1653 ui_progress__update(prog, 1);
1654 }
1655}
1656
1657void perf_evsel__output_resort(struct perf_evsel *evsel, struct ui_progress *prog)
1658{
1659 bool use_callchain;
1660
1661 if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph)
1662 use_callchain = evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN;
1663 else
1664 use_callchain = symbol_conf.use_callchain;
1665
1666 output_resort(evsel__hists(evsel), prog, use_callchain);
1667}
1668
1669void hists__output_resort(struct hists *hists, struct ui_progress *prog)
1670{
1671 output_resort(hists, prog, symbol_conf.use_callchain);
1672}
1673
1674static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd)
1675{
1676 if (he->leaf || hmd == HMD_FORCE_SIBLING)
1677 return false;
1678
1679 if (he->unfolded || hmd == HMD_FORCE_CHILD)
1680 return true;
1681
1682 return false;
1683}
1684
1685struct rb_node *rb_hierarchy_last(struct rb_node *node)
1686{
1687 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1688
1689 while (can_goto_child(he, HMD_NORMAL)) {
1690 node = rb_last(&he->hroot_out);
1691 he = rb_entry(node, struct hist_entry, rb_node);
1692 }
1693 return node;
1694}
1695
1696struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd)
1697{
1698 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1699
1700 if (can_goto_child(he, hmd))
1701 node = rb_first(&he->hroot_out);
1702 else
1703 node = rb_next(node);
1704
1705 while (node == NULL) {
1706 he = he->parent_he;
1707 if (he == NULL)
1708 break;
1709
1710 node = rb_next(&he->rb_node);
1711 }
1712 return node;
1713}
1714
1715struct rb_node *rb_hierarchy_prev(struct rb_node *node)
1716{
1717 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1718
1719 node = rb_prev(node);
1720 if (node)
1721 return rb_hierarchy_last(node);
1722
1723 he = he->parent_he;
1724 if (he == NULL)
1725 return NULL;
1726
1727 return &he->rb_node;
1728}
1729
1730bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit)
1731{
1732 struct rb_node *node;
1733 struct hist_entry *child;
1734 float percent;
1735
1736 if (he->leaf)
1737 return false;
1738
1739 node = rb_first(&he->hroot_out);
1740 child = rb_entry(node, struct hist_entry, rb_node);
1741
1742 while (node && child->filtered) {
1743 node = rb_next(node);
1744 child = rb_entry(node, struct hist_entry, rb_node);
1745 }
1746
1747 if (node)
1748 percent = hist_entry__get_percent_limit(child);
1749 else
1750 percent = 0;
1751
1752 return node && percent >= limit;
1753}
1754
1755static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h,
1756 enum hist_filter filter)
1757{
1758 h->filtered &= ~(1 << filter);
1759
1760 if (symbol_conf.report_hierarchy) {
1761 struct hist_entry *parent = h->parent_he;
1762
1763 while (parent) {
1764 he_stat__add_stat(&parent->stat, &h->stat);
1765
1766 parent->filtered &= ~(1 << filter);
1767
1768 if (parent->filtered)
1769 goto next;
1770
1771 /* force fold unfiltered entry for simplicity */
1772 parent->unfolded = false;
1773 parent->has_no_entry = false;
1774 parent->row_offset = 0;
1775 parent->nr_rows = 0;
1776next:
1777 parent = parent->parent_he;
1778 }
1779 }
1780
1781 if (h->filtered)
1782 return;
1783
1784 /* force fold unfiltered entry for simplicity */
1785 h->unfolded = false;
1786 h->has_no_entry = false;
1787 h->row_offset = 0;
1788 h->nr_rows = 0;
1789
1790 hists->stats.nr_non_filtered_samples += h->stat.nr_events;
1791
1792 hists__inc_filter_stats(hists, h);
1793 hists__calc_col_len(hists, h);
1794}
1795
1796
1797static bool hists__filter_entry_by_dso(struct hists *hists,
1798 struct hist_entry *he)
1799{
1800 if (hists->dso_filter != NULL &&
1801 (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) {
1802 he->filtered |= (1 << HIST_FILTER__DSO);
1803 return true;
1804 }
1805
1806 return false;
1807}
1808
1809static bool hists__filter_entry_by_thread(struct hists *hists,
1810 struct hist_entry *he)
1811{
1812 if (hists->thread_filter != NULL &&
1813 he->thread != hists->thread_filter) {
1814 he->filtered |= (1 << HIST_FILTER__THREAD);
1815 return true;
1816 }
1817
1818 return false;
1819}
1820
1821static bool hists__filter_entry_by_symbol(struct hists *hists,
1822 struct hist_entry *he)
1823{
1824 if (hists->symbol_filter_str != NULL &&
1825 (!he->ms.sym || strstr(he->ms.sym->name,
1826 hists->symbol_filter_str) == NULL)) {
1827 he->filtered |= (1 << HIST_FILTER__SYMBOL);
1828 return true;
1829 }
1830
1831 return false;
1832}
1833
1834static bool hists__filter_entry_by_socket(struct hists *hists,
1835 struct hist_entry *he)
1836{
1837 if ((hists->socket_filter > -1) &&
1838 (he->socket != hists->socket_filter)) {
1839 he->filtered |= (1 << HIST_FILTER__SOCKET);
1840 return true;
1841 }
1842
1843 return false;
1844}
1845
1846typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he);
1847
1848static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter)
1849{
1850 struct rb_node *nd;
1851
1852 hists->stats.nr_non_filtered_samples = 0;
1853
1854 hists__reset_filter_stats(hists);
1855 hists__reset_col_len(hists);
1856
1857 for (nd = rb_first(&hists->entries); nd; nd = rb_next(nd)) {
1858 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1859
1860 if (filter(hists, h))
1861 continue;
1862
1863 hists__remove_entry_filter(hists, h, type);
1864 }
1865}
1866
1867static void resort_filtered_entry(struct rb_root *root, struct hist_entry *he)
1868{
1869 struct rb_node **p = &root->rb_node;
1870 struct rb_node *parent = NULL;
1871 struct hist_entry *iter;
1872 struct rb_root new_root = RB_ROOT;
1873 struct rb_node *nd;
1874
1875 while (*p != NULL) {
1876 parent = *p;
1877 iter = rb_entry(parent, struct hist_entry, rb_node);
1878
1879 if (hist_entry__sort(he, iter) > 0)
1880 p = &(*p)->rb_left;
1881 else
1882 p = &(*p)->rb_right;
1883 }
1884
1885 rb_link_node(&he->rb_node, parent, p);
1886 rb_insert_color(&he->rb_node, root);
1887
1888 if (he->leaf || he->filtered)
1889 return;
1890
1891 nd = rb_first(&he->hroot_out);
1892 while (nd) {
1893 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1894
1895 nd = rb_next(nd);
1896 rb_erase(&h->rb_node, &he->hroot_out);
1897
1898 resort_filtered_entry(&new_root, h);
1899 }
1900
1901 he->hroot_out = new_root;
1902}
1903
1904static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg)
1905{
1906 struct rb_node *nd;
1907 struct rb_root new_root = RB_ROOT;
1908
1909 hists->stats.nr_non_filtered_samples = 0;
1910
1911 hists__reset_filter_stats(hists);
1912 hists__reset_col_len(hists);
1913
1914 nd = rb_first(&hists->entries);
1915 while (nd) {
1916 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1917 int ret;
1918
1919 ret = hist_entry__filter(h, type, arg);
1920
1921 /*
1922 * case 1. non-matching type
1923 * zero out the period, set filter marker and move to child
1924 */
1925 if (ret < 0) {
1926 memset(&h->stat, 0, sizeof(h->stat));
1927 h->filtered |= (1 << type);
1928
1929 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD);
1930 }
1931 /*
1932 * case 2. matched type (filter out)
1933 * set filter marker and move to next
1934 */
1935 else if (ret == 1) {
1936 h->filtered |= (1 << type);
1937
1938 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
1939 }
1940 /*
1941 * case 3. ok (not filtered)
1942 * add period to hists and parents, erase the filter marker
1943 * and move to next sibling
1944 */
1945 else {
1946 hists__remove_entry_filter(hists, h, type);
1947
1948 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
1949 }
1950 }
1951
1952 hierarchy_recalc_total_periods(hists);
1953
1954 /*
1955 * resort output after applying a new filter since filter in a lower
1956 * hierarchy can change periods in a upper hierarchy.
1957 */
1958 nd = rb_first(&hists->entries);
1959 while (nd) {
1960 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1961
1962 nd = rb_next(nd);
1963 rb_erase(&h->rb_node, &hists->entries);
1964
1965 resort_filtered_entry(&new_root, h);
1966 }
1967
1968 hists->entries = new_root;
1969}
1970
1971void hists__filter_by_thread(struct hists *hists)
1972{
1973 if (symbol_conf.report_hierarchy)
1974 hists__filter_hierarchy(hists, HIST_FILTER__THREAD,
1975 hists->thread_filter);
1976 else
1977 hists__filter_by_type(hists, HIST_FILTER__THREAD,
1978 hists__filter_entry_by_thread);
1979}
1980
1981void hists__filter_by_dso(struct hists *hists)
1982{
1983 if (symbol_conf.report_hierarchy)
1984 hists__filter_hierarchy(hists, HIST_FILTER__DSO,
1985 hists->dso_filter);
1986 else
1987 hists__filter_by_type(hists, HIST_FILTER__DSO,
1988 hists__filter_entry_by_dso);
1989}
1990
1991void hists__filter_by_symbol(struct hists *hists)
1992{
1993 if (symbol_conf.report_hierarchy)
1994 hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL,
1995 hists->symbol_filter_str);
1996 else
1997 hists__filter_by_type(hists, HIST_FILTER__SYMBOL,
1998 hists__filter_entry_by_symbol);
1999}
2000
2001void hists__filter_by_socket(struct hists *hists)
2002{
2003 if (symbol_conf.report_hierarchy)
2004 hists__filter_hierarchy(hists, HIST_FILTER__SOCKET,
2005 &hists->socket_filter);
2006 else
2007 hists__filter_by_type(hists, HIST_FILTER__SOCKET,
2008 hists__filter_entry_by_socket);
2009}
2010
2011void events_stats__inc(struct events_stats *stats, u32 type)
2012{
2013 ++stats->nr_events[0];
2014 ++stats->nr_events[type];
2015}
2016
2017void hists__inc_nr_events(struct hists *hists, u32 type)
2018{
2019 events_stats__inc(&hists->stats, type);
2020}
2021
2022void hists__inc_nr_samples(struct hists *hists, bool filtered)
2023{
2024 events_stats__inc(&hists->stats, PERF_RECORD_SAMPLE);
2025 if (!filtered)
2026 hists->stats.nr_non_filtered_samples++;
2027}
2028
2029static struct hist_entry *hists__add_dummy_entry(struct hists *hists,
2030 struct hist_entry *pair)
2031{
2032 struct rb_root *root;
2033 struct rb_node **p;
2034 struct rb_node *parent = NULL;
2035 struct hist_entry *he;
2036 int64_t cmp;
2037
2038 if (sort__need_collapse)
2039 root = &hists->entries_collapsed;
2040 else
2041 root = hists->entries_in;
2042
2043 p = &root->rb_node;
2044
2045 while (*p != NULL) {
2046 parent = *p;
2047 he = rb_entry(parent, struct hist_entry, rb_node_in);
2048
2049 cmp = hist_entry__collapse(he, pair);
2050
2051 if (!cmp)
2052 goto out;
2053
2054 if (cmp < 0)
2055 p = &(*p)->rb_left;
2056 else
2057 p = &(*p)->rb_right;
2058 }
2059
2060 he = hist_entry__new(pair, true);
2061 if (he) {
2062 memset(&he->stat, 0, sizeof(he->stat));
2063 he->hists = hists;
2064 rb_link_node(&he->rb_node_in, parent, p);
2065 rb_insert_color(&he->rb_node_in, root);
2066 hists__inc_stats(hists, he);
2067 he->dummy = true;
2068 }
2069out:
2070 return he;
2071}
2072
2073static struct hist_entry *hists__find_entry(struct hists *hists,
2074 struct hist_entry *he)
2075{
2076 struct rb_node *n;
2077
2078 if (sort__need_collapse)
2079 n = hists->entries_collapsed.rb_node;
2080 else
2081 n = hists->entries_in->rb_node;
2082
2083 while (n) {
2084 struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in);
2085 int64_t cmp = hist_entry__collapse(iter, he);
2086
2087 if (cmp < 0)
2088 n = n->rb_left;
2089 else if (cmp > 0)
2090 n = n->rb_right;
2091 else
2092 return iter;
2093 }
2094
2095 return NULL;
2096}
2097
2098/*
2099 * Look for pairs to link to the leader buckets (hist_entries):
2100 */
2101void hists__match(struct hists *leader, struct hists *other)
2102{
2103 struct rb_root *root;
2104 struct rb_node *nd;
2105 struct hist_entry *pos, *pair;
2106
2107 if (sort__need_collapse)
2108 root = &leader->entries_collapsed;
2109 else
2110 root = leader->entries_in;
2111
2112 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2113 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2114 pair = hists__find_entry(other, pos);
2115
2116 if (pair)
2117 hist_entry__add_pair(pair, pos);
2118 }
2119}
2120
2121/*
2122 * Look for entries in the other hists that are not present in the leader, if
2123 * we find them, just add a dummy entry on the leader hists, with period=0,
2124 * nr_events=0, to serve as the list header.
2125 */
2126int hists__link(struct hists *leader, struct hists *other)
2127{
2128 struct rb_root *root;
2129 struct rb_node *nd;
2130 struct hist_entry *pos, *pair;
2131
2132 if (sort__need_collapse)
2133 root = &other->entries_collapsed;
2134 else
2135 root = other->entries_in;
2136
2137 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2138 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2139
2140 if (!hist_entry__has_pairs(pos)) {
2141 pair = hists__add_dummy_entry(leader, pos);
2142 if (pair == NULL)
2143 return -1;
2144 hist_entry__add_pair(pos, pair);
2145 }
2146 }
2147
2148 return 0;
2149}
2150
2151void hist__account_cycles(struct branch_stack *bs, struct addr_location *al,
2152 struct perf_sample *sample, bool nonany_branch_mode)
2153{
2154 struct branch_info *bi;
2155
2156 /* If we have branch cycles always annotate them. */
2157 if (bs && bs->nr && bs->entries[0].flags.cycles) {
2158 int i;
2159
2160 bi = sample__resolve_bstack(sample, al);
2161 if (bi) {
2162 struct addr_map_symbol *prev = NULL;
2163
2164 /*
2165 * Ignore errors, still want to process the
2166 * other entries.
2167 *
2168 * For non standard branch modes always
2169 * force no IPC (prev == NULL)
2170 *
2171 * Note that perf stores branches reversed from
2172 * program order!
2173 */
2174 for (i = bs->nr - 1; i >= 0; i--) {
2175 addr_map_symbol__account_cycles(&bi[i].from,
2176 nonany_branch_mode ? NULL : prev,
2177 bi[i].flags.cycles);
2178 prev = &bi[i].to;
2179 }
2180 free(bi);
2181 }
2182 }
2183}
2184
2185size_t perf_evlist__fprintf_nr_events(struct perf_evlist *evlist, FILE *fp)
2186{
2187 struct perf_evsel *pos;
2188 size_t ret = 0;
2189
2190 evlist__for_each(evlist, pos) {
2191 ret += fprintf(fp, "%s stats:\n", perf_evsel__name(pos));
2192 ret += events_stats__fprintf(&evsel__hists(pos)->stats, fp);
2193 }
2194
2195 return ret;
2196}
2197
2198
2199u64 hists__total_period(struct hists *hists)
2200{
2201 return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period :
2202 hists->stats.total_period;
2203}
2204
2205int parse_filter_percentage(const struct option *opt __maybe_unused,
2206 const char *arg, int unset __maybe_unused)
2207{
2208 if (!strcmp(arg, "relative"))
2209 symbol_conf.filter_relative = true;
2210 else if (!strcmp(arg, "absolute"))
2211 symbol_conf.filter_relative = false;
2212 else
2213 return -1;
2214
2215 return 0;
2216}
2217
2218int perf_hist_config(const char *var, const char *value)
2219{
2220 if (!strcmp(var, "hist.percentage"))
2221 return parse_filter_percentage(NULL, value, 0);
2222
2223 return 0;
2224}
2225
2226int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list)
2227{
2228 memset(hists, 0, sizeof(*hists));
2229 hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT;
2230 hists->entries_in = &hists->entries_in_array[0];
2231 hists->entries_collapsed = RB_ROOT;
2232 hists->entries = RB_ROOT;
2233 pthread_mutex_init(&hists->lock, NULL);
2234 hists->socket_filter = -1;
2235 hists->hpp_list = hpp_list;
2236 INIT_LIST_HEAD(&hists->hpp_formats);
2237 return 0;
2238}
2239
2240static void hists__delete_remaining_entries(struct rb_root *root)
2241{
2242 struct rb_node *node;
2243 struct hist_entry *he;
2244
2245 while (!RB_EMPTY_ROOT(root)) {
2246 node = rb_first(root);
2247 rb_erase(node, root);
2248
2249 he = rb_entry(node, struct hist_entry, rb_node_in);
2250 hist_entry__delete(he);
2251 }
2252}
2253
2254static void hists__delete_all_entries(struct hists *hists)
2255{
2256 hists__delete_entries(hists);
2257 hists__delete_remaining_entries(&hists->entries_in_array[0]);
2258 hists__delete_remaining_entries(&hists->entries_in_array[1]);
2259 hists__delete_remaining_entries(&hists->entries_collapsed);
2260}
2261
2262static void hists_evsel__exit(struct perf_evsel *evsel)
2263{
2264 struct hists *hists = evsel__hists(evsel);
2265 struct perf_hpp_fmt *fmt, *pos;
2266 struct perf_hpp_list_node *node, *tmp;
2267
2268 hists__delete_all_entries(hists);
2269
2270 list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) {
2271 perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) {
2272 list_del(&fmt->list);
2273 free(fmt);
2274 }
2275 list_del(&node->list);
2276 free(node);
2277 }
2278}
2279
2280static int hists_evsel__init(struct perf_evsel *evsel)
2281{
2282 struct hists *hists = evsel__hists(evsel);
2283
2284 __hists__init(hists, &perf_hpp_list);
2285 return 0;
2286}
2287
2288/*
2289 * XXX We probably need a hists_evsel__exit() to free the hist_entries
2290 * stored in the rbtree...
2291 */
2292
2293int hists__init(void)
2294{
2295 int err = perf_evsel__object_config(sizeof(struct hists_evsel),
2296 hists_evsel__init,
2297 hists_evsel__exit);
2298 if (err)
2299 fputs("FATAL ERROR: Couldn't setup hists class\n", stderr);
2300
2301 return err;
2302}
2303
2304void perf_hpp_list__init(struct perf_hpp_list *list)
2305{
2306 INIT_LIST_HEAD(&list->fields);
2307 INIT_LIST_HEAD(&list->sorts);
2308}