Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2#include <linux/mm.h>
  3#include <linux/slab.h>
  4#include <linux/string.h>
  5#include <linux/compiler.h>
  6#include <linux/export.h>
  7#include <linux/err.h>
  8#include <linux/sched.h>
  9#include <linux/sched/mm.h>
 10#include <linux/sched/signal.h>
 11#include <linux/sched/task_stack.h>
 12#include <linux/security.h>
 13#include <linux/swap.h>
 14#include <linux/swapops.h>
 15#include <linux/mman.h>
 16#include <linux/hugetlb.h>
 17#include <linux/vmalloc.h>
 18#include <linux/userfaultfd_k.h>
 19#include <linux/elf.h>
 20#include <linux/elf-randomize.h>
 21#include <linux/personality.h>
 22#include <linux/random.h>
 23#include <linux/processor.h>
 24#include <linux/sizes.h>
 25#include <linux/compat.h>
 26
 27#include <linux/uaccess.h>
 28
 29#include "internal.h"
 30
 31/**
 32 * kfree_const - conditionally free memory
 33 * @x: pointer to the memory
 34 *
 35 * Function calls kfree only if @x is not in .rodata section.
 36 */
 37void kfree_const(const void *x)
 38{
 39	if (!is_kernel_rodata((unsigned long)x))
 40		kfree(x);
 41}
 42EXPORT_SYMBOL(kfree_const);
 43
 44/**
 45 * kstrdup - allocate space for and copy an existing string
 46 * @s: the string to duplicate
 47 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
 48 *
 49 * Return: newly allocated copy of @s or %NULL in case of error
 50 */
 51char *kstrdup(const char *s, gfp_t gfp)
 52{
 53	size_t len;
 54	char *buf;
 55
 56	if (!s)
 57		return NULL;
 58
 59	len = strlen(s) + 1;
 60	buf = kmalloc_track_caller(len, gfp);
 61	if (buf)
 62		memcpy(buf, s, len);
 63	return buf;
 64}
 65EXPORT_SYMBOL(kstrdup);
 66
 67/**
 68 * kstrdup_const - conditionally duplicate an existing const string
 69 * @s: the string to duplicate
 70 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
 71 *
 72 * Note: Strings allocated by kstrdup_const should be freed by kfree_const.
 
 73 *
 74 * Return: source string if it is in .rodata section otherwise
 75 * fallback to kstrdup.
 76 */
 77const char *kstrdup_const(const char *s, gfp_t gfp)
 78{
 79	if (is_kernel_rodata((unsigned long)s))
 80		return s;
 81
 82	return kstrdup(s, gfp);
 83}
 84EXPORT_SYMBOL(kstrdup_const);
 85
 86/**
 87 * kstrndup - allocate space for and copy an existing string
 88 * @s: the string to duplicate
 89 * @max: read at most @max chars from @s
 90 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
 91 *
 92 * Note: Use kmemdup_nul() instead if the size is known exactly.
 93 *
 94 * Return: newly allocated copy of @s or %NULL in case of error
 95 */
 96char *kstrndup(const char *s, size_t max, gfp_t gfp)
 97{
 98	size_t len;
 99	char *buf;
100
101	if (!s)
102		return NULL;
103
104	len = strnlen(s, max);
105	buf = kmalloc_track_caller(len+1, gfp);
106	if (buf) {
107		memcpy(buf, s, len);
108		buf[len] = '\0';
109	}
110	return buf;
111}
112EXPORT_SYMBOL(kstrndup);
113
114/**
115 * kmemdup - duplicate region of memory
116 *
117 * @src: memory region to duplicate
118 * @len: memory region length
119 * @gfp: GFP mask to use
120 *
121 * Return: newly allocated copy of @src or %NULL in case of error
122 */
123void *kmemdup(const void *src, size_t len, gfp_t gfp)
124{
125	void *p;
126
127	p = kmalloc_track_caller(len, gfp);
128	if (p)
129		memcpy(p, src, len);
130	return p;
131}
132EXPORT_SYMBOL(kmemdup);
133
134/**
135 * kmemdup_nul - Create a NUL-terminated string from unterminated data
136 * @s: The data to stringify
137 * @len: The size of the data
138 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
139 *
140 * Return: newly allocated copy of @s with NUL-termination or %NULL in
141 * case of error
142 */
143char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
144{
145	char *buf;
146
147	if (!s)
148		return NULL;
149
150	buf = kmalloc_track_caller(len + 1, gfp);
151	if (buf) {
152		memcpy(buf, s, len);
153		buf[len] = '\0';
154	}
155	return buf;
156}
157EXPORT_SYMBOL(kmemdup_nul);
158
159/**
160 * memdup_user - duplicate memory region from user space
161 *
162 * @src: source address in user space
163 * @len: number of bytes to copy
164 *
165 * Return: an ERR_PTR() on failure.  Result is physically
166 * contiguous, to be freed by kfree().
167 */
168void *memdup_user(const void __user *src, size_t len)
169{
170	void *p;
171
172	p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN);
173	if (!p)
174		return ERR_PTR(-ENOMEM);
175
176	if (copy_from_user(p, src, len)) {
177		kfree(p);
178		return ERR_PTR(-EFAULT);
179	}
180
181	return p;
182}
183EXPORT_SYMBOL(memdup_user);
184
185/**
186 * vmemdup_user - duplicate memory region from user space
187 *
188 * @src: source address in user space
189 * @len: number of bytes to copy
190 *
191 * Return: an ERR_PTR() on failure.  Result may be not
192 * physically contiguous.  Use kvfree() to free.
193 */
194void *vmemdup_user(const void __user *src, size_t len)
195{
196	void *p;
197
198	p = kvmalloc(len, GFP_USER);
199	if (!p)
200		return ERR_PTR(-ENOMEM);
201
202	if (copy_from_user(p, src, len)) {
203		kvfree(p);
204		return ERR_PTR(-EFAULT);
205	}
206
207	return p;
208}
209EXPORT_SYMBOL(vmemdup_user);
210
211/**
212 * strndup_user - duplicate an existing string from user space
213 * @s: The string to duplicate
214 * @n: Maximum number of bytes to copy, including the trailing NUL.
215 *
216 * Return: newly allocated copy of @s or an ERR_PTR() in case of error
217 */
218char *strndup_user(const char __user *s, long n)
219{
220	char *p;
221	long length;
222
223	length = strnlen_user(s, n);
224
225	if (!length)
226		return ERR_PTR(-EFAULT);
227
228	if (length > n)
229		return ERR_PTR(-EINVAL);
230
231	p = memdup_user(s, length);
232
233	if (IS_ERR(p))
234		return p;
235
236	p[length - 1] = '\0';
237
238	return p;
239}
240EXPORT_SYMBOL(strndup_user);
241
242/**
243 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
244 *
245 * @src: source address in user space
246 * @len: number of bytes to copy
247 *
248 * Return: an ERR_PTR() on failure.
249 */
250void *memdup_user_nul(const void __user *src, size_t len)
251{
252	char *p;
253
254	/*
255	 * Always use GFP_KERNEL, since copy_from_user() can sleep and
256	 * cause pagefault, which makes it pointless to use GFP_NOFS
257	 * or GFP_ATOMIC.
258	 */
259	p = kmalloc_track_caller(len + 1, GFP_KERNEL);
260	if (!p)
261		return ERR_PTR(-ENOMEM);
262
263	if (copy_from_user(p, src, len)) {
264		kfree(p);
265		return ERR_PTR(-EFAULT);
266	}
267	p[len] = '\0';
268
269	return p;
270}
271EXPORT_SYMBOL(memdup_user_nul);
272
273void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
274		struct vm_area_struct *prev, struct rb_node *rb_parent)
275{
276	struct vm_area_struct *next;
277
278	vma->vm_prev = prev;
279	if (prev) {
280		next = prev->vm_next;
281		prev->vm_next = vma;
282	} else {
 
283		mm->mmap = vma;
284		if (rb_parent)
285			next = rb_entry(rb_parent,
286					struct vm_area_struct, vm_rb);
287		else
288			next = NULL;
289	}
290	vma->vm_next = next;
291	if (next)
292		next->vm_prev = vma;
293}
294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
295/* Check if the vma is being used as a stack by this task */
296int vma_is_stack_for_current(struct vm_area_struct *vma)
297{
298	struct task_struct * __maybe_unused t = current;
299
300	return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
301}
302
 
 
 
 
 
 
 
 
 
 
 
 
303#ifndef STACK_RND_MASK
304#define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))     /* 8MB of VA */
305#endif
306
307unsigned long randomize_stack_top(unsigned long stack_top)
308{
309	unsigned long random_variable = 0;
310
311	if (current->flags & PF_RANDOMIZE) {
312		random_variable = get_random_long();
313		random_variable &= STACK_RND_MASK;
314		random_variable <<= PAGE_SHIFT;
315	}
316#ifdef CONFIG_STACK_GROWSUP
317	return PAGE_ALIGN(stack_top) + random_variable;
318#else
319	return PAGE_ALIGN(stack_top) - random_variable;
320#endif
321}
322
323#ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
324unsigned long arch_randomize_brk(struct mm_struct *mm)
325{
326	/* Is the current task 32bit ? */
327	if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
328		return randomize_page(mm->brk, SZ_32M);
329
330	return randomize_page(mm->brk, SZ_1G);
331}
332
333unsigned long arch_mmap_rnd(void)
334{
335	unsigned long rnd;
336
337#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
338	if (is_compat_task())
339		rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
340	else
341#endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
342		rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);
343
344	return rnd << PAGE_SHIFT;
345}
346
347static int mmap_is_legacy(struct rlimit *rlim_stack)
348{
349	if (current->personality & ADDR_COMPAT_LAYOUT)
350		return 1;
351
352	if (rlim_stack->rlim_cur == RLIM_INFINITY)
353		return 1;
354
355	return sysctl_legacy_va_layout;
356}
357
358/*
359 * Leave enough space between the mmap area and the stack to honour ulimit in
360 * the face of randomisation.
361 */
362#define MIN_GAP		(SZ_128M)
363#define MAX_GAP		(STACK_TOP / 6 * 5)
364
365static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack)
366{
367	unsigned long gap = rlim_stack->rlim_cur;
368	unsigned long pad = stack_guard_gap;
369
370	/* Account for stack randomization if necessary */
371	if (current->flags & PF_RANDOMIZE)
372		pad += (STACK_RND_MASK << PAGE_SHIFT);
373
374	/* Values close to RLIM_INFINITY can overflow. */
375	if (gap + pad > gap)
376		gap += pad;
377
378	if (gap < MIN_GAP)
379		gap = MIN_GAP;
380	else if (gap > MAX_GAP)
381		gap = MAX_GAP;
382
383	return PAGE_ALIGN(STACK_TOP - gap - rnd);
384}
385
386void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
387{
388	unsigned long random_factor = 0UL;
389
390	if (current->flags & PF_RANDOMIZE)
391		random_factor = arch_mmap_rnd();
392
393	if (mmap_is_legacy(rlim_stack)) {
394		mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
395		mm->get_unmapped_area = arch_get_unmapped_area;
396	} else {
397		mm->mmap_base = mmap_base(random_factor, rlim_stack);
398		mm->get_unmapped_area = arch_get_unmapped_area_topdown;
399	}
400}
401#elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
402void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
403{
404	mm->mmap_base = TASK_UNMAPPED_BASE;
405	mm->get_unmapped_area = arch_get_unmapped_area;
406}
407#endif
408
409/**
410 * __account_locked_vm - account locked pages to an mm's locked_vm
411 * @mm:          mm to account against
412 * @pages:       number of pages to account
413 * @inc:         %true if @pages should be considered positive, %false if not
414 * @task:        task used to check RLIMIT_MEMLOCK
415 * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
416 *
417 * Assumes @task and @mm are valid (i.e. at least one reference on each), and
418 * that mmap_sem is held as writer.
419 *
420 * Return:
421 * * 0       on success
422 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
423 */
424int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
425			struct task_struct *task, bool bypass_rlim)
426{
427	unsigned long locked_vm, limit;
428	int ret = 0;
429
430	lockdep_assert_held_write(&mm->mmap_sem);
431
432	locked_vm = mm->locked_vm;
433	if (inc) {
434		if (!bypass_rlim) {
435			limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
436			if (locked_vm + pages > limit)
437				ret = -ENOMEM;
438		}
439		if (!ret)
440			mm->locked_vm = locked_vm + pages;
441	} else {
442		WARN_ON_ONCE(pages > locked_vm);
443		mm->locked_vm = locked_vm - pages;
444	}
445
446	pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
447		 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
448		 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
449		 ret ? " - exceeded" : "");
450
451	return ret;
452}
453EXPORT_SYMBOL_GPL(__account_locked_vm);
454
455/**
456 * account_locked_vm - account locked pages to an mm's locked_vm
457 * @mm:          mm to account against, may be NULL
458 * @pages:       number of pages to account
459 * @inc:         %true if @pages should be considered positive, %false if not
460 *
461 * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
462 *
463 * Return:
464 * * 0       on success, or if mm is NULL
465 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
466 */
467int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
468{
469	int ret;
470
471	if (pages == 0 || !mm)
472		return 0;
473
474	down_write(&mm->mmap_sem);
475	ret = __account_locked_vm(mm, pages, inc, current,
476				  capable(CAP_IPC_LOCK));
477	up_write(&mm->mmap_sem);
478
479	return ret;
480}
481EXPORT_SYMBOL_GPL(account_locked_vm);
482
483unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
484	unsigned long len, unsigned long prot,
485	unsigned long flag, unsigned long pgoff)
486{
487	unsigned long ret;
488	struct mm_struct *mm = current->mm;
489	unsigned long populate;
490	LIST_HEAD(uf);
491
492	ret = security_mmap_file(file, prot, flag);
493	if (!ret) {
494		if (down_write_killable(&mm->mmap_sem))
495			return -EINTR;
496		ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
497				    &populate, &uf);
498		up_write(&mm->mmap_sem);
499		userfaultfd_unmap_complete(mm, &uf);
500		if (populate)
501			mm_populate(ret, populate);
502	}
503	return ret;
504}
505
506unsigned long vm_mmap(struct file *file, unsigned long addr,
507	unsigned long len, unsigned long prot,
508	unsigned long flag, unsigned long offset)
509{
510	if (unlikely(offset + PAGE_ALIGN(len) < offset))
511		return -EINVAL;
512	if (unlikely(offset_in_page(offset)))
513		return -EINVAL;
514
515	return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
516}
517EXPORT_SYMBOL(vm_mmap);
518
519/**
520 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
521 * failure, fall back to non-contiguous (vmalloc) allocation.
522 * @size: size of the request.
523 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
524 * @node: numa node to allocate from
525 *
526 * Uses kmalloc to get the memory but if the allocation fails then falls back
527 * to the vmalloc allocator. Use kvfree for freeing the memory.
528 *
529 * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported.
530 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
531 * preferable to the vmalloc fallback, due to visible performance drawbacks.
532 *
533 * Please note that any use of gfp flags outside of GFP_KERNEL is careful to not
534 * fall back to vmalloc.
535 *
536 * Return: pointer to the allocated memory of %NULL in case of failure
537 */
538void *kvmalloc_node(size_t size, gfp_t flags, int node)
539{
540	gfp_t kmalloc_flags = flags;
541	void *ret;
542
543	/*
544	 * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables)
545	 * so the given set of flags has to be compatible.
546	 */
547	if ((flags & GFP_KERNEL) != GFP_KERNEL)
548		return kmalloc_node(size, flags, node);
549
550	/*
551	 * We want to attempt a large physically contiguous block first because
552	 * it is less likely to fragment multiple larger blocks and therefore
553	 * contribute to a long term fragmentation less than vmalloc fallback.
554	 * However make sure that larger requests are not too disruptive - no
555	 * OOM killer and no allocation failure warnings as we have a fallback.
556	 */
557	if (size > PAGE_SIZE) {
558		kmalloc_flags |= __GFP_NOWARN;
559
560		if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
561			kmalloc_flags |= __GFP_NORETRY;
562	}
563
564	ret = kmalloc_node(size, kmalloc_flags, node);
565
566	/*
567	 * It doesn't really make sense to fallback to vmalloc for sub page
568	 * requests
569	 */
570	if (ret || size <= PAGE_SIZE)
571		return ret;
572
573	return __vmalloc_node_flags_caller(size, node, flags,
 
 
 
 
574			__builtin_return_address(0));
575}
576EXPORT_SYMBOL(kvmalloc_node);
577
578/**
579 * kvfree() - Free memory.
580 * @addr: Pointer to allocated memory.
581 *
582 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
583 * It is slightly more efficient to use kfree() or vfree() if you are certain
584 * that you know which one to use.
585 *
586 * Context: Either preemptible task context or not-NMI interrupt.
587 */
588void kvfree(const void *addr)
589{
590	if (is_vmalloc_addr(addr))
591		vfree(addr);
592	else
593		kfree(addr);
594}
595EXPORT_SYMBOL(kvfree);
596
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597static inline void *__page_rmapping(struct page *page)
598{
599	unsigned long mapping;
600
601	mapping = (unsigned long)page->mapping;
602	mapping &= ~PAGE_MAPPING_FLAGS;
603
604	return (void *)mapping;
605}
606
607/* Neutral page->mapping pointer to address_space or anon_vma or other */
608void *page_rmapping(struct page *page)
609{
610	page = compound_head(page);
611	return __page_rmapping(page);
612}
613
614/*
615 * Return true if this page is mapped into pagetables.
616 * For compound page it returns true if any subpage of compound page is mapped.
617 */
618bool page_mapped(struct page *page)
619{
620	int i;
621
622	if (likely(!PageCompound(page)))
623		return atomic_read(&page->_mapcount) >= 0;
624	page = compound_head(page);
625	if (atomic_read(compound_mapcount_ptr(page)) >= 0)
626		return true;
627	if (PageHuge(page))
628		return false;
629	for (i = 0; i < compound_nr(page); i++) {
630		if (atomic_read(&page[i]._mapcount) >= 0)
631			return true;
632	}
633	return false;
634}
635EXPORT_SYMBOL(page_mapped);
636
637struct anon_vma *page_anon_vma(struct page *page)
638{
639	unsigned long mapping;
640
641	page = compound_head(page);
642	mapping = (unsigned long)page->mapping;
643	if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
644		return NULL;
645	return __page_rmapping(page);
646}
647
648struct address_space *page_mapping(struct page *page)
649{
650	struct address_space *mapping;
651
652	page = compound_head(page);
653
654	/* This happens if someone calls flush_dcache_page on slab page */
655	if (unlikely(PageSlab(page)))
656		return NULL;
657
658	if (unlikely(PageSwapCache(page))) {
659		swp_entry_t entry;
660
661		entry.val = page_private(page);
662		return swap_address_space(entry);
663	}
664
665	mapping = page->mapping;
666	if ((unsigned long)mapping & PAGE_MAPPING_ANON)
667		return NULL;
668
669	return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
670}
671EXPORT_SYMBOL(page_mapping);
672
673/*
674 * For file cache pages, return the address_space, otherwise return NULL
675 */
676struct address_space *page_mapping_file(struct page *page)
677{
678	if (unlikely(PageSwapCache(page)))
679		return NULL;
680	return page_mapping(page);
681}
682
683/* Slow path of page_mapcount() for compound pages */
684int __page_mapcount(struct page *page)
685{
686	int ret;
687
688	ret = atomic_read(&page->_mapcount) + 1;
689	/*
690	 * For file THP page->_mapcount contains total number of mapping
691	 * of the page: no need to look into compound_mapcount.
692	 */
693	if (!PageAnon(page) && !PageHuge(page))
694		return ret;
695	page = compound_head(page);
696	ret += atomic_read(compound_mapcount_ptr(page)) + 1;
697	if (PageDoubleMap(page))
698		ret--;
699	return ret;
700}
701EXPORT_SYMBOL_GPL(__page_mapcount);
702
 
 
 
 
 
 
 
 
 
 
703int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
704int sysctl_overcommit_ratio __read_mostly = 50;
705unsigned long sysctl_overcommit_kbytes __read_mostly;
706int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
707unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
708unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
709
710int overcommit_ratio_handler(struct ctl_table *table, int write,
711			     void __user *buffer, size_t *lenp,
712			     loff_t *ppos)
713{
714	int ret;
715
716	ret = proc_dointvec(table, write, buffer, lenp, ppos);
717	if (ret == 0 && write)
718		sysctl_overcommit_kbytes = 0;
719	return ret;
720}
721
722int overcommit_kbytes_handler(struct ctl_table *table, int write,
723			     void __user *buffer, size_t *lenp,
724			     loff_t *ppos)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
725{
726	int ret;
727
728	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
729	if (ret == 0 && write)
730		sysctl_overcommit_ratio = 0;
731	return ret;
732}
733
734/*
735 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
736 */
737unsigned long vm_commit_limit(void)
738{
739	unsigned long allowed;
740
741	if (sysctl_overcommit_kbytes)
742		allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
743	else
744		allowed = ((totalram_pages() - hugetlb_total_pages())
745			   * sysctl_overcommit_ratio / 100);
746	allowed += total_swap_pages;
747
748	return allowed;
749}
750
751/*
752 * Make sure vm_committed_as in one cacheline and not cacheline shared with
753 * other variables. It can be updated by several CPUs frequently.
754 */
755struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
756
757/*
758 * The global memory commitment made in the system can be a metric
759 * that can be used to drive ballooning decisions when Linux is hosted
760 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
761 * balancing memory across competing virtual machines that are hosted.
762 * Several metrics drive this policy engine including the guest reported
763 * memory commitment.
 
 
 
 
 
764 */
765unsigned long vm_memory_committed(void)
766{
767	return percpu_counter_read_positive(&vm_committed_as);
768}
769EXPORT_SYMBOL_GPL(vm_memory_committed);
770
771/*
772 * Check that a process has enough memory to allocate a new virtual
773 * mapping. 0 means there is enough memory for the allocation to
774 * succeed and -ENOMEM implies there is not.
775 *
776 * We currently support three overcommit policies, which are set via the
777 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting.rst
778 *
779 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
780 * Additional code 2002 Jul 20 by Robert Love.
781 *
782 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
783 *
784 * Note this is a helper function intended to be used by LSMs which
785 * wish to use this logic.
786 */
787int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
788{
789	long allowed;
790
791	VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
792			-(s64)vm_committed_as_batch * num_online_cpus(),
793			"memory commitment underflow");
794
795	vm_acct_memory(pages);
796
797	/*
798	 * Sometimes we want to use more memory than we have
799	 */
800	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
801		return 0;
802
803	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
804		if (pages > totalram_pages() + total_swap_pages)
805			goto error;
806		return 0;
807	}
808
809	allowed = vm_commit_limit();
810	/*
811	 * Reserve some for root
812	 */
813	if (!cap_sys_admin)
814		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
815
816	/*
817	 * Don't let a single process grow so big a user can't recover
818	 */
819	if (mm) {
820		long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
821
822		allowed -= min_t(long, mm->total_vm / 32, reserve);
823	}
824
825	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
826		return 0;
827error:
828	vm_unacct_memory(pages);
829
830	return -ENOMEM;
831}
832
833/**
834 * get_cmdline() - copy the cmdline value to a buffer.
835 * @task:     the task whose cmdline value to copy.
836 * @buffer:   the buffer to copy to.
837 * @buflen:   the length of the buffer. Larger cmdline values are truncated
838 *            to this length.
839 *
840 * Return: the size of the cmdline field copied. Note that the copy does
841 * not guarantee an ending NULL byte.
842 */
843int get_cmdline(struct task_struct *task, char *buffer, int buflen)
844{
845	int res = 0;
846	unsigned int len;
847	struct mm_struct *mm = get_task_mm(task);
848	unsigned long arg_start, arg_end, env_start, env_end;
849	if (!mm)
850		goto out;
851	if (!mm->arg_end)
852		goto out_mm;	/* Shh! No looking before we're done */
853
854	spin_lock(&mm->arg_lock);
855	arg_start = mm->arg_start;
856	arg_end = mm->arg_end;
857	env_start = mm->env_start;
858	env_end = mm->env_end;
859	spin_unlock(&mm->arg_lock);
860
861	len = arg_end - arg_start;
862
863	if (len > buflen)
864		len = buflen;
865
866	res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
867
868	/*
869	 * If the nul at the end of args has been overwritten, then
870	 * assume application is using setproctitle(3).
871	 */
872	if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
873		len = strnlen(buffer, res);
874		if (len < res) {
875			res = len;
876		} else {
877			len = env_end - env_start;
878			if (len > buflen - res)
879				len = buflen - res;
880			res += access_process_vm(task, env_start,
881						 buffer+res, len,
882						 FOLL_FORCE);
883			res = strnlen(buffer, res);
884		}
885	}
886out_mm:
887	mmput(mm);
888out:
889	return res;
890}
891
892int memcmp_pages(struct page *page1, struct page *page2)
893{
894	char *addr1, *addr2;
895	int ret;
896
897	addr1 = kmap_atomic(page1);
898	addr2 = kmap_atomic(page2);
899	ret = memcmp(addr1, addr2, PAGE_SIZE);
900	kunmap_atomic(addr2);
901	kunmap_atomic(addr1);
902	return ret;
903}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2#include <linux/mm.h>
   3#include <linux/slab.h>
   4#include <linux/string.h>
   5#include <linux/compiler.h>
   6#include <linux/export.h>
   7#include <linux/err.h>
   8#include <linux/sched.h>
   9#include <linux/sched/mm.h>
  10#include <linux/sched/signal.h>
  11#include <linux/sched/task_stack.h>
  12#include <linux/security.h>
  13#include <linux/swap.h>
  14#include <linux/swapops.h>
  15#include <linux/mman.h>
  16#include <linux/hugetlb.h>
  17#include <linux/vmalloc.h>
  18#include <linux/userfaultfd_k.h>
  19#include <linux/elf.h>
  20#include <linux/elf-randomize.h>
  21#include <linux/personality.h>
  22#include <linux/random.h>
  23#include <linux/processor.h>
  24#include <linux/sizes.h>
  25#include <linux/compat.h>
  26
  27#include <linux/uaccess.h>
  28
  29#include "internal.h"
  30
  31/**
  32 * kfree_const - conditionally free memory
  33 * @x: pointer to the memory
  34 *
  35 * Function calls kfree only if @x is not in .rodata section.
  36 */
  37void kfree_const(const void *x)
  38{
  39	if (!is_kernel_rodata((unsigned long)x))
  40		kfree(x);
  41}
  42EXPORT_SYMBOL(kfree_const);
  43
  44/**
  45 * kstrdup - allocate space for and copy an existing string
  46 * @s: the string to duplicate
  47 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
  48 *
  49 * Return: newly allocated copy of @s or %NULL in case of error
  50 */
  51char *kstrdup(const char *s, gfp_t gfp)
  52{
  53	size_t len;
  54	char *buf;
  55
  56	if (!s)
  57		return NULL;
  58
  59	len = strlen(s) + 1;
  60	buf = kmalloc_track_caller(len, gfp);
  61	if (buf)
  62		memcpy(buf, s, len);
  63	return buf;
  64}
  65EXPORT_SYMBOL(kstrdup);
  66
  67/**
  68 * kstrdup_const - conditionally duplicate an existing const string
  69 * @s: the string to duplicate
  70 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
  71 *
  72 * Note: Strings allocated by kstrdup_const should be freed by kfree_const and
  73 * must not be passed to krealloc().
  74 *
  75 * Return: source string if it is in .rodata section otherwise
  76 * fallback to kstrdup.
  77 */
  78const char *kstrdup_const(const char *s, gfp_t gfp)
  79{
  80	if (is_kernel_rodata((unsigned long)s))
  81		return s;
  82
  83	return kstrdup(s, gfp);
  84}
  85EXPORT_SYMBOL(kstrdup_const);
  86
  87/**
  88 * kstrndup - allocate space for and copy an existing string
  89 * @s: the string to duplicate
  90 * @max: read at most @max chars from @s
  91 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
  92 *
  93 * Note: Use kmemdup_nul() instead if the size is known exactly.
  94 *
  95 * Return: newly allocated copy of @s or %NULL in case of error
  96 */
  97char *kstrndup(const char *s, size_t max, gfp_t gfp)
  98{
  99	size_t len;
 100	char *buf;
 101
 102	if (!s)
 103		return NULL;
 104
 105	len = strnlen(s, max);
 106	buf = kmalloc_track_caller(len+1, gfp);
 107	if (buf) {
 108		memcpy(buf, s, len);
 109		buf[len] = '\0';
 110	}
 111	return buf;
 112}
 113EXPORT_SYMBOL(kstrndup);
 114
 115/**
 116 * kmemdup - duplicate region of memory
 117 *
 118 * @src: memory region to duplicate
 119 * @len: memory region length
 120 * @gfp: GFP mask to use
 121 *
 122 * Return: newly allocated copy of @src or %NULL in case of error
 123 */
 124void *kmemdup(const void *src, size_t len, gfp_t gfp)
 125{
 126	void *p;
 127
 128	p = kmalloc_track_caller(len, gfp);
 129	if (p)
 130		memcpy(p, src, len);
 131	return p;
 132}
 133EXPORT_SYMBOL(kmemdup);
 134
 135/**
 136 * kmemdup_nul - Create a NUL-terminated string from unterminated data
 137 * @s: The data to stringify
 138 * @len: The size of the data
 139 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
 140 *
 141 * Return: newly allocated copy of @s with NUL-termination or %NULL in
 142 * case of error
 143 */
 144char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
 145{
 146	char *buf;
 147
 148	if (!s)
 149		return NULL;
 150
 151	buf = kmalloc_track_caller(len + 1, gfp);
 152	if (buf) {
 153		memcpy(buf, s, len);
 154		buf[len] = '\0';
 155	}
 156	return buf;
 157}
 158EXPORT_SYMBOL(kmemdup_nul);
 159
 160/**
 161 * memdup_user - duplicate memory region from user space
 162 *
 163 * @src: source address in user space
 164 * @len: number of bytes to copy
 165 *
 166 * Return: an ERR_PTR() on failure.  Result is physically
 167 * contiguous, to be freed by kfree().
 168 */
 169void *memdup_user(const void __user *src, size_t len)
 170{
 171	void *p;
 172
 173	p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN);
 174	if (!p)
 175		return ERR_PTR(-ENOMEM);
 176
 177	if (copy_from_user(p, src, len)) {
 178		kfree(p);
 179		return ERR_PTR(-EFAULT);
 180	}
 181
 182	return p;
 183}
 184EXPORT_SYMBOL(memdup_user);
 185
 186/**
 187 * vmemdup_user - duplicate memory region from user space
 188 *
 189 * @src: source address in user space
 190 * @len: number of bytes to copy
 191 *
 192 * Return: an ERR_PTR() on failure.  Result may be not
 193 * physically contiguous.  Use kvfree() to free.
 194 */
 195void *vmemdup_user(const void __user *src, size_t len)
 196{
 197	void *p;
 198
 199	p = kvmalloc(len, GFP_USER);
 200	if (!p)
 201		return ERR_PTR(-ENOMEM);
 202
 203	if (copy_from_user(p, src, len)) {
 204		kvfree(p);
 205		return ERR_PTR(-EFAULT);
 206	}
 207
 208	return p;
 209}
 210EXPORT_SYMBOL(vmemdup_user);
 211
 212/**
 213 * strndup_user - duplicate an existing string from user space
 214 * @s: The string to duplicate
 215 * @n: Maximum number of bytes to copy, including the trailing NUL.
 216 *
 217 * Return: newly allocated copy of @s or an ERR_PTR() in case of error
 218 */
 219char *strndup_user(const char __user *s, long n)
 220{
 221	char *p;
 222	long length;
 223
 224	length = strnlen_user(s, n);
 225
 226	if (!length)
 227		return ERR_PTR(-EFAULT);
 228
 229	if (length > n)
 230		return ERR_PTR(-EINVAL);
 231
 232	p = memdup_user(s, length);
 233
 234	if (IS_ERR(p))
 235		return p;
 236
 237	p[length - 1] = '\0';
 238
 239	return p;
 240}
 241EXPORT_SYMBOL(strndup_user);
 242
 243/**
 244 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
 245 *
 246 * @src: source address in user space
 247 * @len: number of bytes to copy
 248 *
 249 * Return: an ERR_PTR() on failure.
 250 */
 251void *memdup_user_nul(const void __user *src, size_t len)
 252{
 253	char *p;
 254
 255	/*
 256	 * Always use GFP_KERNEL, since copy_from_user() can sleep and
 257	 * cause pagefault, which makes it pointless to use GFP_NOFS
 258	 * or GFP_ATOMIC.
 259	 */
 260	p = kmalloc_track_caller(len + 1, GFP_KERNEL);
 261	if (!p)
 262		return ERR_PTR(-ENOMEM);
 263
 264	if (copy_from_user(p, src, len)) {
 265		kfree(p);
 266		return ERR_PTR(-EFAULT);
 267	}
 268	p[len] = '\0';
 269
 270	return p;
 271}
 272EXPORT_SYMBOL(memdup_user_nul);
 273
 274void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
 275		struct vm_area_struct *prev)
 276{
 277	struct vm_area_struct *next;
 278
 279	vma->vm_prev = prev;
 280	if (prev) {
 281		next = prev->vm_next;
 282		prev->vm_next = vma;
 283	} else {
 284		next = mm->mmap;
 285		mm->mmap = vma;
 
 
 
 
 
 286	}
 287	vma->vm_next = next;
 288	if (next)
 289		next->vm_prev = vma;
 290}
 291
 292void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma)
 293{
 294	struct vm_area_struct *prev, *next;
 295
 296	next = vma->vm_next;
 297	prev = vma->vm_prev;
 298	if (prev)
 299		prev->vm_next = next;
 300	else
 301		mm->mmap = next;
 302	if (next)
 303		next->vm_prev = prev;
 304}
 305
 306/* Check if the vma is being used as a stack by this task */
 307int vma_is_stack_for_current(struct vm_area_struct *vma)
 308{
 309	struct task_struct * __maybe_unused t = current;
 310
 311	return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
 312}
 313
 314/*
 315 * Change backing file, only valid to use during initial VMA setup.
 316 */
 317void vma_set_file(struct vm_area_struct *vma, struct file *file)
 318{
 319	/* Changing an anonymous vma with this is illegal */
 320	get_file(file);
 321	swap(vma->vm_file, file);
 322	fput(file);
 323}
 324EXPORT_SYMBOL(vma_set_file);
 325
 326#ifndef STACK_RND_MASK
 327#define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))     /* 8MB of VA */
 328#endif
 329
 330unsigned long randomize_stack_top(unsigned long stack_top)
 331{
 332	unsigned long random_variable = 0;
 333
 334	if (current->flags & PF_RANDOMIZE) {
 335		random_variable = get_random_long();
 336		random_variable &= STACK_RND_MASK;
 337		random_variable <<= PAGE_SHIFT;
 338	}
 339#ifdef CONFIG_STACK_GROWSUP
 340	return PAGE_ALIGN(stack_top) + random_variable;
 341#else
 342	return PAGE_ALIGN(stack_top) - random_variable;
 343#endif
 344}
 345
 346#ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
 347unsigned long arch_randomize_brk(struct mm_struct *mm)
 348{
 349	/* Is the current task 32bit ? */
 350	if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
 351		return randomize_page(mm->brk, SZ_32M);
 352
 353	return randomize_page(mm->brk, SZ_1G);
 354}
 355
 356unsigned long arch_mmap_rnd(void)
 357{
 358	unsigned long rnd;
 359
 360#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
 361	if (is_compat_task())
 362		rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
 363	else
 364#endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
 365		rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);
 366
 367	return rnd << PAGE_SHIFT;
 368}
 369
 370static int mmap_is_legacy(struct rlimit *rlim_stack)
 371{
 372	if (current->personality & ADDR_COMPAT_LAYOUT)
 373		return 1;
 374
 375	if (rlim_stack->rlim_cur == RLIM_INFINITY)
 376		return 1;
 377
 378	return sysctl_legacy_va_layout;
 379}
 380
 381/*
 382 * Leave enough space between the mmap area and the stack to honour ulimit in
 383 * the face of randomisation.
 384 */
 385#define MIN_GAP		(SZ_128M)
 386#define MAX_GAP		(STACK_TOP / 6 * 5)
 387
 388static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack)
 389{
 390	unsigned long gap = rlim_stack->rlim_cur;
 391	unsigned long pad = stack_guard_gap;
 392
 393	/* Account for stack randomization if necessary */
 394	if (current->flags & PF_RANDOMIZE)
 395		pad += (STACK_RND_MASK << PAGE_SHIFT);
 396
 397	/* Values close to RLIM_INFINITY can overflow. */
 398	if (gap + pad > gap)
 399		gap += pad;
 400
 401	if (gap < MIN_GAP)
 402		gap = MIN_GAP;
 403	else if (gap > MAX_GAP)
 404		gap = MAX_GAP;
 405
 406	return PAGE_ALIGN(STACK_TOP - gap - rnd);
 407}
 408
 409void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
 410{
 411	unsigned long random_factor = 0UL;
 412
 413	if (current->flags & PF_RANDOMIZE)
 414		random_factor = arch_mmap_rnd();
 415
 416	if (mmap_is_legacy(rlim_stack)) {
 417		mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
 418		mm->get_unmapped_area = arch_get_unmapped_area;
 419	} else {
 420		mm->mmap_base = mmap_base(random_factor, rlim_stack);
 421		mm->get_unmapped_area = arch_get_unmapped_area_topdown;
 422	}
 423}
 424#elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
 425void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
 426{
 427	mm->mmap_base = TASK_UNMAPPED_BASE;
 428	mm->get_unmapped_area = arch_get_unmapped_area;
 429}
 430#endif
 431
 432/**
 433 * __account_locked_vm - account locked pages to an mm's locked_vm
 434 * @mm:          mm to account against
 435 * @pages:       number of pages to account
 436 * @inc:         %true if @pages should be considered positive, %false if not
 437 * @task:        task used to check RLIMIT_MEMLOCK
 438 * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
 439 *
 440 * Assumes @task and @mm are valid (i.e. at least one reference on each), and
 441 * that mmap_lock is held as writer.
 442 *
 443 * Return:
 444 * * 0       on success
 445 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
 446 */
 447int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
 448			struct task_struct *task, bool bypass_rlim)
 449{
 450	unsigned long locked_vm, limit;
 451	int ret = 0;
 452
 453	mmap_assert_write_locked(mm);
 454
 455	locked_vm = mm->locked_vm;
 456	if (inc) {
 457		if (!bypass_rlim) {
 458			limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
 459			if (locked_vm + pages > limit)
 460				ret = -ENOMEM;
 461		}
 462		if (!ret)
 463			mm->locked_vm = locked_vm + pages;
 464	} else {
 465		WARN_ON_ONCE(pages > locked_vm);
 466		mm->locked_vm = locked_vm - pages;
 467	}
 468
 469	pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
 470		 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
 471		 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
 472		 ret ? " - exceeded" : "");
 473
 474	return ret;
 475}
 476EXPORT_SYMBOL_GPL(__account_locked_vm);
 477
 478/**
 479 * account_locked_vm - account locked pages to an mm's locked_vm
 480 * @mm:          mm to account against, may be NULL
 481 * @pages:       number of pages to account
 482 * @inc:         %true if @pages should be considered positive, %false if not
 483 *
 484 * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
 485 *
 486 * Return:
 487 * * 0       on success, or if mm is NULL
 488 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
 489 */
 490int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
 491{
 492	int ret;
 493
 494	if (pages == 0 || !mm)
 495		return 0;
 496
 497	mmap_write_lock(mm);
 498	ret = __account_locked_vm(mm, pages, inc, current,
 499				  capable(CAP_IPC_LOCK));
 500	mmap_write_unlock(mm);
 501
 502	return ret;
 503}
 504EXPORT_SYMBOL_GPL(account_locked_vm);
 505
 506unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
 507	unsigned long len, unsigned long prot,
 508	unsigned long flag, unsigned long pgoff)
 509{
 510	unsigned long ret;
 511	struct mm_struct *mm = current->mm;
 512	unsigned long populate;
 513	LIST_HEAD(uf);
 514
 515	ret = security_mmap_file(file, prot, flag);
 516	if (!ret) {
 517		if (mmap_write_lock_killable(mm))
 518			return -EINTR;
 519		ret = do_mmap(file, addr, len, prot, flag, pgoff, &populate,
 520			      &uf);
 521		mmap_write_unlock(mm);
 522		userfaultfd_unmap_complete(mm, &uf);
 523		if (populate)
 524			mm_populate(ret, populate);
 525	}
 526	return ret;
 527}
 528
 529unsigned long vm_mmap(struct file *file, unsigned long addr,
 530	unsigned long len, unsigned long prot,
 531	unsigned long flag, unsigned long offset)
 532{
 533	if (unlikely(offset + PAGE_ALIGN(len) < offset))
 534		return -EINVAL;
 535	if (unlikely(offset_in_page(offset)))
 536		return -EINVAL;
 537
 538	return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
 539}
 540EXPORT_SYMBOL(vm_mmap);
 541
 542/**
 543 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
 544 * failure, fall back to non-contiguous (vmalloc) allocation.
 545 * @size: size of the request.
 546 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
 547 * @node: numa node to allocate from
 548 *
 549 * Uses kmalloc to get the memory but if the allocation fails then falls back
 550 * to the vmalloc allocator. Use kvfree for freeing the memory.
 551 *
 552 * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported.
 553 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
 554 * preferable to the vmalloc fallback, due to visible performance drawbacks.
 555 *
 556 * Please note that any use of gfp flags outside of GFP_KERNEL is careful to not
 557 * fall back to vmalloc.
 558 *
 559 * Return: pointer to the allocated memory of %NULL in case of failure
 560 */
 561void *kvmalloc_node(size_t size, gfp_t flags, int node)
 562{
 563	gfp_t kmalloc_flags = flags;
 564	void *ret;
 565
 566	/*
 567	 * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables)
 568	 * so the given set of flags has to be compatible.
 569	 */
 570	if ((flags & GFP_KERNEL) != GFP_KERNEL)
 571		return kmalloc_node(size, flags, node);
 572
 573	/*
 574	 * We want to attempt a large physically contiguous block first because
 575	 * it is less likely to fragment multiple larger blocks and therefore
 576	 * contribute to a long term fragmentation less than vmalloc fallback.
 577	 * However make sure that larger requests are not too disruptive - no
 578	 * OOM killer and no allocation failure warnings as we have a fallback.
 579	 */
 580	if (size > PAGE_SIZE) {
 581		kmalloc_flags |= __GFP_NOWARN;
 582
 583		if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
 584			kmalloc_flags |= __GFP_NORETRY;
 585	}
 586
 587	ret = kmalloc_node(size, kmalloc_flags, node);
 588
 589	/*
 590	 * It doesn't really make sense to fallback to vmalloc for sub page
 591	 * requests
 592	 */
 593	if (ret || size <= PAGE_SIZE)
 594		return ret;
 595
 596	/* Don't even allow crazy sizes */
 597	if (WARN_ON_ONCE(size > INT_MAX))
 598		return NULL;
 599
 600	return __vmalloc_node(size, 1, flags, node,
 601			__builtin_return_address(0));
 602}
 603EXPORT_SYMBOL(kvmalloc_node);
 604
 605/**
 606 * kvfree() - Free memory.
 607 * @addr: Pointer to allocated memory.
 608 *
 609 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
 610 * It is slightly more efficient to use kfree() or vfree() if you are certain
 611 * that you know which one to use.
 612 *
 613 * Context: Either preemptible task context or not-NMI interrupt.
 614 */
 615void kvfree(const void *addr)
 616{
 617	if (is_vmalloc_addr(addr))
 618		vfree(addr);
 619	else
 620		kfree(addr);
 621}
 622EXPORT_SYMBOL(kvfree);
 623
 624/**
 625 * kvfree_sensitive - Free a data object containing sensitive information.
 626 * @addr: address of the data object to be freed.
 627 * @len: length of the data object.
 628 *
 629 * Use the special memzero_explicit() function to clear the content of a
 630 * kvmalloc'ed object containing sensitive data to make sure that the
 631 * compiler won't optimize out the data clearing.
 632 */
 633void kvfree_sensitive(const void *addr, size_t len)
 634{
 635	if (likely(!ZERO_OR_NULL_PTR(addr))) {
 636		memzero_explicit((void *)addr, len);
 637		kvfree(addr);
 638	}
 639}
 640EXPORT_SYMBOL(kvfree_sensitive);
 641
 642static inline void *__page_rmapping(struct page *page)
 643{
 644	unsigned long mapping;
 645
 646	mapping = (unsigned long)page->mapping;
 647	mapping &= ~PAGE_MAPPING_FLAGS;
 648
 649	return (void *)mapping;
 650}
 651
 652/* Neutral page->mapping pointer to address_space or anon_vma or other */
 653void *page_rmapping(struct page *page)
 654{
 655	page = compound_head(page);
 656	return __page_rmapping(page);
 657}
 658
 659/*
 660 * Return true if this page is mapped into pagetables.
 661 * For compound page it returns true if any subpage of compound page is mapped.
 662 */
 663bool page_mapped(struct page *page)
 664{
 665	int i;
 666
 667	if (likely(!PageCompound(page)))
 668		return atomic_read(&page->_mapcount) >= 0;
 669	page = compound_head(page);
 670	if (atomic_read(compound_mapcount_ptr(page)) >= 0)
 671		return true;
 672	if (PageHuge(page))
 673		return false;
 674	for (i = 0; i < compound_nr(page); i++) {
 675		if (atomic_read(&page[i]._mapcount) >= 0)
 676			return true;
 677	}
 678	return false;
 679}
 680EXPORT_SYMBOL(page_mapped);
 681
 682struct anon_vma *page_anon_vma(struct page *page)
 683{
 684	unsigned long mapping;
 685
 686	page = compound_head(page);
 687	mapping = (unsigned long)page->mapping;
 688	if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 689		return NULL;
 690	return __page_rmapping(page);
 691}
 692
 693struct address_space *page_mapping(struct page *page)
 694{
 695	struct address_space *mapping;
 696
 697	page = compound_head(page);
 698
 699	/* This happens if someone calls flush_dcache_page on slab page */
 700	if (unlikely(PageSlab(page)))
 701		return NULL;
 702
 703	if (unlikely(PageSwapCache(page))) {
 704		swp_entry_t entry;
 705
 706		entry.val = page_private(page);
 707		return swap_address_space(entry);
 708	}
 709
 710	mapping = page->mapping;
 711	if ((unsigned long)mapping & PAGE_MAPPING_ANON)
 712		return NULL;
 713
 714	return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
 715}
 716EXPORT_SYMBOL(page_mapping);
 717
 
 
 
 
 
 
 
 
 
 
 718/* Slow path of page_mapcount() for compound pages */
 719int __page_mapcount(struct page *page)
 720{
 721	int ret;
 722
 723	ret = atomic_read(&page->_mapcount) + 1;
 724	/*
 725	 * For file THP page->_mapcount contains total number of mapping
 726	 * of the page: no need to look into compound_mapcount.
 727	 */
 728	if (!PageAnon(page) && !PageHuge(page))
 729		return ret;
 730	page = compound_head(page);
 731	ret += atomic_read(compound_mapcount_ptr(page)) + 1;
 732	if (PageDoubleMap(page))
 733		ret--;
 734	return ret;
 735}
 736EXPORT_SYMBOL_GPL(__page_mapcount);
 737
 738void copy_huge_page(struct page *dst, struct page *src)
 739{
 740	unsigned i, nr = compound_nr(src);
 741
 742	for (i = 0; i < nr; i++) {
 743		cond_resched();
 744		copy_highpage(nth_page(dst, i), nth_page(src, i));
 745	}
 746}
 747
 748int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
 749int sysctl_overcommit_ratio __read_mostly = 50;
 750unsigned long sysctl_overcommit_kbytes __read_mostly;
 751int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
 752unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
 753unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
 754
 755int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer,
 756		size_t *lenp, loff_t *ppos)
 
 757{
 758	int ret;
 759
 760	ret = proc_dointvec(table, write, buffer, lenp, ppos);
 761	if (ret == 0 && write)
 762		sysctl_overcommit_kbytes = 0;
 763	return ret;
 764}
 765
 766static void sync_overcommit_as(struct work_struct *dummy)
 767{
 768	percpu_counter_sync(&vm_committed_as);
 769}
 770
 771int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer,
 772		size_t *lenp, loff_t *ppos)
 773{
 774	struct ctl_table t;
 775	int new_policy = -1;
 776	int ret;
 777
 778	/*
 779	 * The deviation of sync_overcommit_as could be big with loose policy
 780	 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to
 781	 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply
 782	 * with the strict "NEVER", and to avoid possible race condition (even
 783	 * though user usually won't too frequently do the switching to policy
 784	 * OVERCOMMIT_NEVER), the switch is done in the following order:
 785	 *	1. changing the batch
 786	 *	2. sync percpu count on each CPU
 787	 *	3. switch the policy
 788	 */
 789	if (write) {
 790		t = *table;
 791		t.data = &new_policy;
 792		ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
 793		if (ret || new_policy == -1)
 794			return ret;
 795
 796		mm_compute_batch(new_policy);
 797		if (new_policy == OVERCOMMIT_NEVER)
 798			schedule_on_each_cpu(sync_overcommit_as);
 799		sysctl_overcommit_memory = new_policy;
 800	} else {
 801		ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 802	}
 803
 804	return ret;
 805}
 806
 807int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer,
 808		size_t *lenp, loff_t *ppos)
 809{
 810	int ret;
 811
 812	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 813	if (ret == 0 && write)
 814		sysctl_overcommit_ratio = 0;
 815	return ret;
 816}
 817
 818/*
 819 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
 820 */
 821unsigned long vm_commit_limit(void)
 822{
 823	unsigned long allowed;
 824
 825	if (sysctl_overcommit_kbytes)
 826		allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
 827	else
 828		allowed = ((totalram_pages() - hugetlb_total_pages())
 829			   * sysctl_overcommit_ratio / 100);
 830	allowed += total_swap_pages;
 831
 832	return allowed;
 833}
 834
 835/*
 836 * Make sure vm_committed_as in one cacheline and not cacheline shared with
 837 * other variables. It can be updated by several CPUs frequently.
 838 */
 839struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
 840
 841/*
 842 * The global memory commitment made in the system can be a metric
 843 * that can be used to drive ballooning decisions when Linux is hosted
 844 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
 845 * balancing memory across competing virtual machines that are hosted.
 846 * Several metrics drive this policy engine including the guest reported
 847 * memory commitment.
 848 *
 849 * The time cost of this is very low for small platforms, and for big
 850 * platform like a 2S/36C/72T Skylake server, in worst case where
 851 * vm_committed_as's spinlock is under severe contention, the time cost
 852 * could be about 30~40 microseconds.
 853 */
 854unsigned long vm_memory_committed(void)
 855{
 856	return percpu_counter_sum_positive(&vm_committed_as);
 857}
 858EXPORT_SYMBOL_GPL(vm_memory_committed);
 859
 860/*
 861 * Check that a process has enough memory to allocate a new virtual
 862 * mapping. 0 means there is enough memory for the allocation to
 863 * succeed and -ENOMEM implies there is not.
 864 *
 865 * We currently support three overcommit policies, which are set via the
 866 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting.rst
 867 *
 868 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
 869 * Additional code 2002 Jul 20 by Robert Love.
 870 *
 871 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
 872 *
 873 * Note this is a helper function intended to be used by LSMs which
 874 * wish to use this logic.
 875 */
 876int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
 877{
 878	long allowed;
 879
 
 
 
 
 880	vm_acct_memory(pages);
 881
 882	/*
 883	 * Sometimes we want to use more memory than we have
 884	 */
 885	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
 886		return 0;
 887
 888	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
 889		if (pages > totalram_pages() + total_swap_pages)
 890			goto error;
 891		return 0;
 892	}
 893
 894	allowed = vm_commit_limit();
 895	/*
 896	 * Reserve some for root
 897	 */
 898	if (!cap_sys_admin)
 899		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
 900
 901	/*
 902	 * Don't let a single process grow so big a user can't recover
 903	 */
 904	if (mm) {
 905		long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
 906
 907		allowed -= min_t(long, mm->total_vm / 32, reserve);
 908	}
 909
 910	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
 911		return 0;
 912error:
 913	vm_unacct_memory(pages);
 914
 915	return -ENOMEM;
 916}
 917
 918/**
 919 * get_cmdline() - copy the cmdline value to a buffer.
 920 * @task:     the task whose cmdline value to copy.
 921 * @buffer:   the buffer to copy to.
 922 * @buflen:   the length of the buffer. Larger cmdline values are truncated
 923 *            to this length.
 924 *
 925 * Return: the size of the cmdline field copied. Note that the copy does
 926 * not guarantee an ending NULL byte.
 927 */
 928int get_cmdline(struct task_struct *task, char *buffer, int buflen)
 929{
 930	int res = 0;
 931	unsigned int len;
 932	struct mm_struct *mm = get_task_mm(task);
 933	unsigned long arg_start, arg_end, env_start, env_end;
 934	if (!mm)
 935		goto out;
 936	if (!mm->arg_end)
 937		goto out_mm;	/* Shh! No looking before we're done */
 938
 939	spin_lock(&mm->arg_lock);
 940	arg_start = mm->arg_start;
 941	arg_end = mm->arg_end;
 942	env_start = mm->env_start;
 943	env_end = mm->env_end;
 944	spin_unlock(&mm->arg_lock);
 945
 946	len = arg_end - arg_start;
 947
 948	if (len > buflen)
 949		len = buflen;
 950
 951	res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
 952
 953	/*
 954	 * If the nul at the end of args has been overwritten, then
 955	 * assume application is using setproctitle(3).
 956	 */
 957	if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
 958		len = strnlen(buffer, res);
 959		if (len < res) {
 960			res = len;
 961		} else {
 962			len = env_end - env_start;
 963			if (len > buflen - res)
 964				len = buflen - res;
 965			res += access_process_vm(task, env_start,
 966						 buffer+res, len,
 967						 FOLL_FORCE);
 968			res = strnlen(buffer, res);
 969		}
 970	}
 971out_mm:
 972	mmput(mm);
 973out:
 974	return res;
 975}
 976
 977int __weak memcmp_pages(struct page *page1, struct page *page2)
 978{
 979	char *addr1, *addr2;
 980	int ret;
 981
 982	addr1 = kmap_atomic(page1);
 983	addr2 = kmap_atomic(page2);
 984	ret = memcmp(addr1, addr2, PAGE_SIZE);
 985	kunmap_atomic(addr2);
 986	kunmap_atomic(addr1);
 987	return ret;
 988}
 989
 990#ifdef CONFIG_PRINTK
 991/**
 992 * mem_dump_obj - Print available provenance information
 993 * @object: object for which to find provenance information.
 994 *
 995 * This function uses pr_cont(), so that the caller is expected to have
 996 * printed out whatever preamble is appropriate.  The provenance information
 997 * depends on the type of object and on how much debugging is enabled.
 998 * For example, for a slab-cache object, the slab name is printed, and,
 999 * if available, the return address and stack trace from the allocation
1000 * and last free path of that object.
1001 */
1002void mem_dump_obj(void *object)
1003{
1004	const char *type;
1005
1006	if (kmem_valid_obj(object)) {
1007		kmem_dump_obj(object);
1008		return;
1009	}
1010
1011	if (vmalloc_dump_obj(object))
1012		return;
1013
1014	if (virt_addr_valid(object))
1015		type = "non-slab/vmalloc memory";
1016	else if (object == NULL)
1017		type = "NULL pointer";
1018	else if (object == ZERO_SIZE_PTR)
1019		type = "zero-size pointer";
1020	else
1021		type = "non-paged memory";
1022
1023	pr_cont(" %s\n", type);
1024}
1025EXPORT_SYMBOL_GPL(mem_dump_obj);
1026#endif
1027
1028/*
1029 * A driver might set a page logically offline -- PageOffline() -- and
1030 * turn the page inaccessible in the hypervisor; after that, access to page
1031 * content can be fatal.
1032 *
1033 * Some special PFN walkers -- i.e., /proc/kcore -- read content of random
1034 * pages after checking PageOffline(); however, these PFN walkers can race
1035 * with drivers that set PageOffline().
1036 *
1037 * page_offline_freeze()/page_offline_thaw() allows for a subsystem to
1038 * synchronize with such drivers, achieving that a page cannot be set
1039 * PageOffline() while frozen.
1040 *
1041 * page_offline_begin()/page_offline_end() is used by drivers that care about
1042 * such races when setting a page PageOffline().
1043 */
1044static DECLARE_RWSEM(page_offline_rwsem);
1045
1046void page_offline_freeze(void)
1047{
1048	down_read(&page_offline_rwsem);
1049}
1050
1051void page_offline_thaw(void)
1052{
1053	up_read(&page_offline_rwsem);
1054}
1055
1056void page_offline_begin(void)
1057{
1058	down_write(&page_offline_rwsem);
1059}
1060EXPORT_SYMBOL(page_offline_begin);
1061
1062void page_offline_end(void)
1063{
1064	up_write(&page_offline_rwsem);
1065}
1066EXPORT_SYMBOL(page_offline_end);