Loading...
1/* SPDX-License-Identifier: GPL-2.0 OR MIT */
2/**************************************************************************
3 *
4 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25 * USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28/*
29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
30 */
31
32#define pr_fmt(fmt) "[TTM] " fmt
33
34#include <drm/ttm/ttm_module.h>
35#include <drm/ttm/ttm_bo_driver.h>
36#include <drm/ttm/ttm_placement.h>
37#include <linux/jiffies.h>
38#include <linux/slab.h>
39#include <linux/sched.h>
40#include <linux/mm.h>
41#include <linux/file.h>
42#include <linux/module.h>
43#include <linux/atomic.h>
44#include <linux/dma-resv.h>
45
46static void ttm_bo_global_kobj_release(struct kobject *kobj);
47
48/**
49 * ttm_global_mutex - protecting the global BO state
50 */
51DEFINE_MUTEX(ttm_global_mutex);
52unsigned ttm_bo_glob_use_count;
53struct ttm_bo_global ttm_bo_glob;
54
55static struct attribute ttm_bo_count = {
56 .name = "bo_count",
57 .mode = S_IRUGO
58};
59
60/* default destructor */
61static void ttm_bo_default_destroy(struct ttm_buffer_object *bo)
62{
63 kfree(bo);
64}
65
66static inline int ttm_mem_type_from_place(const struct ttm_place *place,
67 uint32_t *mem_type)
68{
69 int pos;
70
71 pos = ffs(place->flags & TTM_PL_MASK_MEM);
72 if (unlikely(!pos))
73 return -EINVAL;
74
75 *mem_type = pos - 1;
76 return 0;
77}
78
79static void ttm_mem_type_debug(struct ttm_bo_device *bdev, struct drm_printer *p,
80 int mem_type)
81{
82 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
83
84 drm_printf(p, " has_type: %d\n", man->has_type);
85 drm_printf(p, " use_type: %d\n", man->use_type);
86 drm_printf(p, " flags: 0x%08X\n", man->flags);
87 drm_printf(p, " gpu_offset: 0x%08llX\n", man->gpu_offset);
88 drm_printf(p, " size: %llu\n", man->size);
89 drm_printf(p, " available_caching: 0x%08X\n", man->available_caching);
90 drm_printf(p, " default_caching: 0x%08X\n", man->default_caching);
91 if (mem_type != TTM_PL_SYSTEM)
92 (*man->func->debug)(man, p);
93}
94
95static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
96 struct ttm_placement *placement)
97{
98 struct drm_printer p = drm_debug_printer(TTM_PFX);
99 int i, ret, mem_type;
100
101 drm_printf(&p, "No space for %p (%lu pages, %luK, %luM)\n",
102 bo, bo->mem.num_pages, bo->mem.size >> 10,
103 bo->mem.size >> 20);
104 for (i = 0; i < placement->num_placement; i++) {
105 ret = ttm_mem_type_from_place(&placement->placement[i],
106 &mem_type);
107 if (ret)
108 return;
109 drm_printf(&p, " placement[%d]=0x%08X (%d)\n",
110 i, placement->placement[i].flags, mem_type);
111 ttm_mem_type_debug(bo->bdev, &p, mem_type);
112 }
113}
114
115static ssize_t ttm_bo_global_show(struct kobject *kobj,
116 struct attribute *attr,
117 char *buffer)
118{
119 struct ttm_bo_global *glob =
120 container_of(kobj, struct ttm_bo_global, kobj);
121
122 return snprintf(buffer, PAGE_SIZE, "%d\n",
123 atomic_read(&glob->bo_count));
124}
125
126static struct attribute *ttm_bo_global_attrs[] = {
127 &ttm_bo_count,
128 NULL
129};
130
131static const struct sysfs_ops ttm_bo_global_ops = {
132 .show = &ttm_bo_global_show
133};
134
135static struct kobj_type ttm_bo_glob_kobj_type = {
136 .release = &ttm_bo_global_kobj_release,
137 .sysfs_ops = &ttm_bo_global_ops,
138 .default_attrs = ttm_bo_global_attrs
139};
140
141
142static inline uint32_t ttm_bo_type_flags(unsigned type)
143{
144 return 1 << (type);
145}
146
147static void ttm_bo_release_list(struct kref *list_kref)
148{
149 struct ttm_buffer_object *bo =
150 container_of(list_kref, struct ttm_buffer_object, list_kref);
151 struct ttm_bo_device *bdev = bo->bdev;
152 size_t acc_size = bo->acc_size;
153
154 BUG_ON(kref_read(&bo->list_kref));
155 BUG_ON(kref_read(&bo->kref));
156 BUG_ON(atomic_read(&bo->cpu_writers));
157 BUG_ON(bo->mem.mm_node != NULL);
158 BUG_ON(!list_empty(&bo->lru));
159 BUG_ON(!list_empty(&bo->ddestroy));
160 ttm_tt_destroy(bo->ttm);
161 atomic_dec(&bo->bdev->glob->bo_count);
162 dma_fence_put(bo->moving);
163 if (!ttm_bo_uses_embedded_gem_object(bo))
164 dma_resv_fini(&bo->base._resv);
165 mutex_destroy(&bo->wu_mutex);
166 bo->destroy(bo);
167 ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
168}
169
170static void ttm_bo_add_mem_to_lru(struct ttm_buffer_object *bo,
171 struct ttm_mem_reg *mem)
172{
173 struct ttm_bo_device *bdev = bo->bdev;
174 struct ttm_mem_type_manager *man;
175
176 dma_resv_assert_held(bo->base.resv);
177
178 if (!list_empty(&bo->lru))
179 return;
180
181 if (mem->placement & TTM_PL_FLAG_NO_EVICT)
182 return;
183
184 man = &bdev->man[mem->mem_type];
185 list_add_tail(&bo->lru, &man->lru[bo->priority]);
186 kref_get(&bo->list_kref);
187
188 if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm &&
189 !(bo->ttm->page_flags & (TTM_PAGE_FLAG_SG |
190 TTM_PAGE_FLAG_SWAPPED))) {
191 list_add_tail(&bo->swap, &bdev->glob->swap_lru[bo->priority]);
192 kref_get(&bo->list_kref);
193 }
194}
195
196void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
197{
198 ttm_bo_add_mem_to_lru(bo, &bo->mem);
199}
200EXPORT_SYMBOL(ttm_bo_add_to_lru);
201
202static void ttm_bo_ref_bug(struct kref *list_kref)
203{
204 BUG();
205}
206
207void ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
208{
209 struct ttm_bo_device *bdev = bo->bdev;
210 bool notify = false;
211
212 if (!list_empty(&bo->swap)) {
213 list_del_init(&bo->swap);
214 kref_put(&bo->list_kref, ttm_bo_ref_bug);
215 notify = true;
216 }
217 if (!list_empty(&bo->lru)) {
218 list_del_init(&bo->lru);
219 kref_put(&bo->list_kref, ttm_bo_ref_bug);
220 notify = true;
221 }
222
223 if (notify && bdev->driver->del_from_lru_notify)
224 bdev->driver->del_from_lru_notify(bo);
225}
226
227void ttm_bo_del_sub_from_lru(struct ttm_buffer_object *bo)
228{
229 struct ttm_bo_global *glob = bo->bdev->glob;
230
231 spin_lock(&glob->lru_lock);
232 ttm_bo_del_from_lru(bo);
233 spin_unlock(&glob->lru_lock);
234}
235EXPORT_SYMBOL(ttm_bo_del_sub_from_lru);
236
237static void ttm_bo_bulk_move_set_pos(struct ttm_lru_bulk_move_pos *pos,
238 struct ttm_buffer_object *bo)
239{
240 if (!pos->first)
241 pos->first = bo;
242 pos->last = bo;
243}
244
245void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo,
246 struct ttm_lru_bulk_move *bulk)
247{
248 dma_resv_assert_held(bo->base.resv);
249
250 ttm_bo_del_from_lru(bo);
251 ttm_bo_add_to_lru(bo);
252
253 if (bulk && !(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
254 switch (bo->mem.mem_type) {
255 case TTM_PL_TT:
256 ttm_bo_bulk_move_set_pos(&bulk->tt[bo->priority], bo);
257 break;
258
259 case TTM_PL_VRAM:
260 ttm_bo_bulk_move_set_pos(&bulk->vram[bo->priority], bo);
261 break;
262 }
263 if (bo->ttm && !(bo->ttm->page_flags &
264 (TTM_PAGE_FLAG_SG | TTM_PAGE_FLAG_SWAPPED)))
265 ttm_bo_bulk_move_set_pos(&bulk->swap[bo->priority], bo);
266 }
267}
268EXPORT_SYMBOL(ttm_bo_move_to_lru_tail);
269
270void ttm_bo_bulk_move_lru_tail(struct ttm_lru_bulk_move *bulk)
271{
272 unsigned i;
273
274 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
275 struct ttm_lru_bulk_move_pos *pos = &bulk->tt[i];
276 struct ttm_mem_type_manager *man;
277
278 if (!pos->first)
279 continue;
280
281 dma_resv_assert_held(pos->first->base.resv);
282 dma_resv_assert_held(pos->last->base.resv);
283
284 man = &pos->first->bdev->man[TTM_PL_TT];
285 list_bulk_move_tail(&man->lru[i], &pos->first->lru,
286 &pos->last->lru);
287 }
288
289 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
290 struct ttm_lru_bulk_move_pos *pos = &bulk->vram[i];
291 struct ttm_mem_type_manager *man;
292
293 if (!pos->first)
294 continue;
295
296 dma_resv_assert_held(pos->first->base.resv);
297 dma_resv_assert_held(pos->last->base.resv);
298
299 man = &pos->first->bdev->man[TTM_PL_VRAM];
300 list_bulk_move_tail(&man->lru[i], &pos->first->lru,
301 &pos->last->lru);
302 }
303
304 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
305 struct ttm_lru_bulk_move_pos *pos = &bulk->swap[i];
306 struct list_head *lru;
307
308 if (!pos->first)
309 continue;
310
311 dma_resv_assert_held(pos->first->base.resv);
312 dma_resv_assert_held(pos->last->base.resv);
313
314 lru = &pos->first->bdev->glob->swap_lru[i];
315 list_bulk_move_tail(lru, &pos->first->swap, &pos->last->swap);
316 }
317}
318EXPORT_SYMBOL(ttm_bo_bulk_move_lru_tail);
319
320static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
321 struct ttm_mem_reg *mem, bool evict,
322 struct ttm_operation_ctx *ctx)
323{
324 struct ttm_bo_device *bdev = bo->bdev;
325 bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
326 bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
327 struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
328 struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
329 int ret = 0;
330
331 if (old_is_pci || new_is_pci ||
332 ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
333 ret = ttm_mem_io_lock(old_man, true);
334 if (unlikely(ret != 0))
335 goto out_err;
336 ttm_bo_unmap_virtual_locked(bo);
337 ttm_mem_io_unlock(old_man);
338 }
339
340 /*
341 * Create and bind a ttm if required.
342 */
343
344 if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
345 if (bo->ttm == NULL) {
346 bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
347 ret = ttm_tt_create(bo, zero);
348 if (ret)
349 goto out_err;
350 }
351
352 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
353 if (ret)
354 goto out_err;
355
356 if (mem->mem_type != TTM_PL_SYSTEM) {
357 ret = ttm_tt_bind(bo->ttm, mem, ctx);
358 if (ret)
359 goto out_err;
360 }
361
362 if (bo->mem.mem_type == TTM_PL_SYSTEM) {
363 if (bdev->driver->move_notify)
364 bdev->driver->move_notify(bo, evict, mem);
365 bo->mem = *mem;
366 mem->mm_node = NULL;
367 goto moved;
368 }
369 }
370
371 if (bdev->driver->move_notify)
372 bdev->driver->move_notify(bo, evict, mem);
373
374 if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
375 !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
376 ret = ttm_bo_move_ttm(bo, ctx, mem);
377 else if (bdev->driver->move)
378 ret = bdev->driver->move(bo, evict, ctx, mem);
379 else
380 ret = ttm_bo_move_memcpy(bo, ctx, mem);
381
382 if (ret) {
383 if (bdev->driver->move_notify) {
384 swap(*mem, bo->mem);
385 bdev->driver->move_notify(bo, false, mem);
386 swap(*mem, bo->mem);
387 }
388
389 goto out_err;
390 }
391
392moved:
393 if (bo->evicted) {
394 if (bdev->driver->invalidate_caches) {
395 ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
396 if (ret)
397 pr_err("Can not flush read caches\n");
398 }
399 bo->evicted = false;
400 }
401
402 if (bo->mem.mm_node)
403 bo->offset = (bo->mem.start << PAGE_SHIFT) +
404 bdev->man[bo->mem.mem_type].gpu_offset;
405 else
406 bo->offset = 0;
407
408 ctx->bytes_moved += bo->num_pages << PAGE_SHIFT;
409 return 0;
410
411out_err:
412 new_man = &bdev->man[bo->mem.mem_type];
413 if (new_man->flags & TTM_MEMTYPE_FLAG_FIXED) {
414 ttm_tt_destroy(bo->ttm);
415 bo->ttm = NULL;
416 }
417
418 return ret;
419}
420
421/**
422 * Call bo::reserved.
423 * Will release GPU memory type usage on destruction.
424 * This is the place to put in driver specific hooks to release
425 * driver private resources.
426 * Will release the bo::reserved lock.
427 */
428
429static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
430{
431 if (bo->bdev->driver->move_notify)
432 bo->bdev->driver->move_notify(bo, false, NULL);
433
434 ttm_tt_destroy(bo->ttm);
435 bo->ttm = NULL;
436 ttm_bo_mem_put(bo, &bo->mem);
437}
438
439static int ttm_bo_individualize_resv(struct ttm_buffer_object *bo)
440{
441 int r;
442
443 if (bo->base.resv == &bo->base._resv)
444 return 0;
445
446 BUG_ON(!dma_resv_trylock(&bo->base._resv));
447
448 r = dma_resv_copy_fences(&bo->base._resv, bo->base.resv);
449 if (r)
450 dma_resv_unlock(&bo->base._resv);
451
452 return r;
453}
454
455static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo)
456{
457 struct dma_resv_list *fobj;
458 struct dma_fence *fence;
459 int i;
460
461 fobj = dma_resv_get_list(&bo->base._resv);
462 fence = dma_resv_get_excl(&bo->base._resv);
463 if (fence && !fence->ops->signaled)
464 dma_fence_enable_sw_signaling(fence);
465
466 for (i = 0; fobj && i < fobj->shared_count; ++i) {
467 fence = rcu_dereference_protected(fobj->shared[i],
468 dma_resv_held(bo->base.resv));
469
470 if (!fence->ops->signaled)
471 dma_fence_enable_sw_signaling(fence);
472 }
473}
474
475static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
476{
477 struct ttm_bo_device *bdev = bo->bdev;
478 struct ttm_bo_global *glob = bdev->glob;
479 int ret;
480
481 ret = ttm_bo_individualize_resv(bo);
482 if (ret) {
483 /* Last resort, if we fail to allocate memory for the
484 * fences block for the BO to become idle
485 */
486 dma_resv_wait_timeout_rcu(bo->base.resv, true, false,
487 30 * HZ);
488 spin_lock(&glob->lru_lock);
489 goto error;
490 }
491
492 spin_lock(&glob->lru_lock);
493 ret = dma_resv_trylock(bo->base.resv) ? 0 : -EBUSY;
494 if (!ret) {
495 if (dma_resv_test_signaled_rcu(&bo->base._resv, true)) {
496 ttm_bo_del_from_lru(bo);
497 spin_unlock(&glob->lru_lock);
498 if (bo->base.resv != &bo->base._resv)
499 dma_resv_unlock(&bo->base._resv);
500
501 ttm_bo_cleanup_memtype_use(bo);
502 dma_resv_unlock(bo->base.resv);
503 return;
504 }
505
506 ttm_bo_flush_all_fences(bo);
507
508 /*
509 * Make NO_EVICT bos immediately available to
510 * shrinkers, now that they are queued for
511 * destruction.
512 */
513 if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) {
514 bo->mem.placement &= ~TTM_PL_FLAG_NO_EVICT;
515 ttm_bo_add_to_lru(bo);
516 }
517
518 dma_resv_unlock(bo->base.resv);
519 }
520 if (bo->base.resv != &bo->base._resv)
521 dma_resv_unlock(&bo->base._resv);
522
523error:
524 kref_get(&bo->list_kref);
525 list_add_tail(&bo->ddestroy, &bdev->ddestroy);
526 spin_unlock(&glob->lru_lock);
527
528 schedule_delayed_work(&bdev->wq,
529 ((HZ / 100) < 1) ? 1 : HZ / 100);
530}
531
532/**
533 * function ttm_bo_cleanup_refs
534 * If bo idle, remove from delayed- and lru lists, and unref.
535 * If not idle, do nothing.
536 *
537 * Must be called with lru_lock and reservation held, this function
538 * will drop the lru lock and optionally the reservation lock before returning.
539 *
540 * @interruptible Any sleeps should occur interruptibly.
541 * @no_wait_gpu Never wait for gpu. Return -EBUSY instead.
542 * @unlock_resv Unlock the reservation lock as well.
543 */
544
545static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
546 bool interruptible, bool no_wait_gpu,
547 bool unlock_resv)
548{
549 struct ttm_bo_global *glob = bo->bdev->glob;
550 struct dma_resv *resv;
551 int ret;
552
553 if (unlikely(list_empty(&bo->ddestroy)))
554 resv = bo->base.resv;
555 else
556 resv = &bo->base._resv;
557
558 if (dma_resv_test_signaled_rcu(resv, true))
559 ret = 0;
560 else
561 ret = -EBUSY;
562
563 if (ret && !no_wait_gpu) {
564 long lret;
565
566 if (unlock_resv)
567 dma_resv_unlock(bo->base.resv);
568 spin_unlock(&glob->lru_lock);
569
570 lret = dma_resv_wait_timeout_rcu(resv, true,
571 interruptible,
572 30 * HZ);
573
574 if (lret < 0)
575 return lret;
576 else if (lret == 0)
577 return -EBUSY;
578
579 spin_lock(&glob->lru_lock);
580 if (unlock_resv && !dma_resv_trylock(bo->base.resv)) {
581 /*
582 * We raced, and lost, someone else holds the reservation now,
583 * and is probably busy in ttm_bo_cleanup_memtype_use.
584 *
585 * Even if it's not the case, because we finished waiting any
586 * delayed destruction would succeed, so just return success
587 * here.
588 */
589 spin_unlock(&glob->lru_lock);
590 return 0;
591 }
592 ret = 0;
593 }
594
595 if (ret || unlikely(list_empty(&bo->ddestroy))) {
596 if (unlock_resv)
597 dma_resv_unlock(bo->base.resv);
598 spin_unlock(&glob->lru_lock);
599 return ret;
600 }
601
602 ttm_bo_del_from_lru(bo);
603 list_del_init(&bo->ddestroy);
604 kref_put(&bo->list_kref, ttm_bo_ref_bug);
605
606 spin_unlock(&glob->lru_lock);
607 ttm_bo_cleanup_memtype_use(bo);
608
609 if (unlock_resv)
610 dma_resv_unlock(bo->base.resv);
611
612 return 0;
613}
614
615/**
616 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
617 * encountered buffers.
618 */
619static bool ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
620{
621 struct ttm_bo_global *glob = bdev->glob;
622 struct list_head removed;
623 bool empty;
624
625 INIT_LIST_HEAD(&removed);
626
627 spin_lock(&glob->lru_lock);
628 while (!list_empty(&bdev->ddestroy)) {
629 struct ttm_buffer_object *bo;
630
631 bo = list_first_entry(&bdev->ddestroy, struct ttm_buffer_object,
632 ddestroy);
633 kref_get(&bo->list_kref);
634 list_move_tail(&bo->ddestroy, &removed);
635
636 if (remove_all || bo->base.resv != &bo->base._resv) {
637 spin_unlock(&glob->lru_lock);
638 dma_resv_lock(bo->base.resv, NULL);
639
640 spin_lock(&glob->lru_lock);
641 ttm_bo_cleanup_refs(bo, false, !remove_all, true);
642
643 } else if (dma_resv_trylock(bo->base.resv)) {
644 ttm_bo_cleanup_refs(bo, false, !remove_all, true);
645 } else {
646 spin_unlock(&glob->lru_lock);
647 }
648
649 kref_put(&bo->list_kref, ttm_bo_release_list);
650 spin_lock(&glob->lru_lock);
651 }
652 list_splice_tail(&removed, &bdev->ddestroy);
653 empty = list_empty(&bdev->ddestroy);
654 spin_unlock(&glob->lru_lock);
655
656 return empty;
657}
658
659static void ttm_bo_delayed_workqueue(struct work_struct *work)
660{
661 struct ttm_bo_device *bdev =
662 container_of(work, struct ttm_bo_device, wq.work);
663
664 if (!ttm_bo_delayed_delete(bdev, false))
665 schedule_delayed_work(&bdev->wq,
666 ((HZ / 100) < 1) ? 1 : HZ / 100);
667}
668
669static void ttm_bo_release(struct kref *kref)
670{
671 struct ttm_buffer_object *bo =
672 container_of(kref, struct ttm_buffer_object, kref);
673 struct ttm_bo_device *bdev = bo->bdev;
674 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
675
676 if (bo->bdev->driver->release_notify)
677 bo->bdev->driver->release_notify(bo);
678
679 drm_vma_offset_remove(&bdev->vma_manager, &bo->base.vma_node);
680 ttm_mem_io_lock(man, false);
681 ttm_mem_io_free_vm(bo);
682 ttm_mem_io_unlock(man);
683 ttm_bo_cleanup_refs_or_queue(bo);
684 kref_put(&bo->list_kref, ttm_bo_release_list);
685}
686
687void ttm_bo_put(struct ttm_buffer_object *bo)
688{
689 kref_put(&bo->kref, ttm_bo_release);
690}
691EXPORT_SYMBOL(ttm_bo_put);
692
693int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
694{
695 return cancel_delayed_work_sync(&bdev->wq);
696}
697EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
698
699void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
700{
701 if (resched)
702 schedule_delayed_work(&bdev->wq,
703 ((HZ / 100) < 1) ? 1 : HZ / 100);
704}
705EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
706
707static int ttm_bo_evict(struct ttm_buffer_object *bo,
708 struct ttm_operation_ctx *ctx)
709{
710 struct ttm_bo_device *bdev = bo->bdev;
711 struct ttm_mem_reg evict_mem;
712 struct ttm_placement placement;
713 int ret = 0;
714
715 dma_resv_assert_held(bo->base.resv);
716
717 placement.num_placement = 0;
718 placement.num_busy_placement = 0;
719 bdev->driver->evict_flags(bo, &placement);
720
721 if (!placement.num_placement && !placement.num_busy_placement) {
722 ret = ttm_bo_pipeline_gutting(bo);
723 if (ret)
724 return ret;
725
726 return ttm_tt_create(bo, false);
727 }
728
729 evict_mem = bo->mem;
730 evict_mem.mm_node = NULL;
731 evict_mem.bus.io_reserved_vm = false;
732 evict_mem.bus.io_reserved_count = 0;
733
734 ret = ttm_bo_mem_space(bo, &placement, &evict_mem, ctx);
735 if (ret) {
736 if (ret != -ERESTARTSYS) {
737 pr_err("Failed to find memory space for buffer 0x%p eviction\n",
738 bo);
739 ttm_bo_mem_space_debug(bo, &placement);
740 }
741 goto out;
742 }
743
744 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, ctx);
745 if (unlikely(ret)) {
746 if (ret != -ERESTARTSYS)
747 pr_err("Buffer eviction failed\n");
748 ttm_bo_mem_put(bo, &evict_mem);
749 goto out;
750 }
751 bo->evicted = true;
752out:
753 return ret;
754}
755
756bool ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
757 const struct ttm_place *place)
758{
759 /* Don't evict this BO if it's outside of the
760 * requested placement range
761 */
762 if (place->fpfn >= (bo->mem.start + bo->mem.size) ||
763 (place->lpfn && place->lpfn <= bo->mem.start))
764 return false;
765
766 return true;
767}
768EXPORT_SYMBOL(ttm_bo_eviction_valuable);
769
770/**
771 * Check the target bo is allowable to be evicted or swapout, including cases:
772 *
773 * a. if share same reservation object with ctx->resv, have assumption
774 * reservation objects should already be locked, so not lock again and
775 * return true directly when either the opreation allow_reserved_eviction
776 * or the target bo already is in delayed free list;
777 *
778 * b. Otherwise, trylock it.
779 */
780static bool ttm_bo_evict_swapout_allowable(struct ttm_buffer_object *bo,
781 struct ttm_operation_ctx *ctx, bool *locked, bool *busy)
782{
783 bool ret = false;
784
785 if (bo->base.resv == ctx->resv) {
786 dma_resv_assert_held(bo->base.resv);
787 if (ctx->flags & TTM_OPT_FLAG_ALLOW_RES_EVICT
788 || !list_empty(&bo->ddestroy))
789 ret = true;
790 *locked = false;
791 if (busy)
792 *busy = false;
793 } else {
794 ret = dma_resv_trylock(bo->base.resv);
795 *locked = ret;
796 if (busy)
797 *busy = !ret;
798 }
799
800 return ret;
801}
802
803/**
804 * ttm_mem_evict_wait_busy - wait for a busy BO to become available
805 *
806 * @busy_bo: BO which couldn't be locked with trylock
807 * @ctx: operation context
808 * @ticket: acquire ticket
809 *
810 * Try to lock a busy buffer object to avoid failing eviction.
811 */
812static int ttm_mem_evict_wait_busy(struct ttm_buffer_object *busy_bo,
813 struct ttm_operation_ctx *ctx,
814 struct ww_acquire_ctx *ticket)
815{
816 int r;
817
818 if (!busy_bo || !ticket)
819 return -EBUSY;
820
821 if (ctx->interruptible)
822 r = dma_resv_lock_interruptible(busy_bo->base.resv,
823 ticket);
824 else
825 r = dma_resv_lock(busy_bo->base.resv, ticket);
826
827 /*
828 * TODO: It would be better to keep the BO locked until allocation is at
829 * least tried one more time, but that would mean a much larger rework
830 * of TTM.
831 */
832 if (!r)
833 dma_resv_unlock(busy_bo->base.resv);
834
835 return r == -EDEADLK ? -EBUSY : r;
836}
837
838static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
839 uint32_t mem_type,
840 const struct ttm_place *place,
841 struct ttm_operation_ctx *ctx,
842 struct ww_acquire_ctx *ticket)
843{
844 struct ttm_buffer_object *bo = NULL, *busy_bo = NULL;
845 struct ttm_bo_global *glob = bdev->glob;
846 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
847 bool locked = false;
848 unsigned i;
849 int ret;
850
851 spin_lock(&glob->lru_lock);
852 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
853 list_for_each_entry(bo, &man->lru[i], lru) {
854 bool busy;
855
856 if (!ttm_bo_evict_swapout_allowable(bo, ctx, &locked,
857 &busy)) {
858 if (busy && !busy_bo && ticket !=
859 dma_resv_locking_ctx(bo->base.resv))
860 busy_bo = bo;
861 continue;
862 }
863
864 if (place && !bdev->driver->eviction_valuable(bo,
865 place)) {
866 if (locked)
867 dma_resv_unlock(bo->base.resv);
868 continue;
869 }
870 break;
871 }
872
873 /* If the inner loop terminated early, we have our candidate */
874 if (&bo->lru != &man->lru[i])
875 break;
876
877 bo = NULL;
878 }
879
880 if (!bo) {
881 if (busy_bo)
882 kref_get(&busy_bo->list_kref);
883 spin_unlock(&glob->lru_lock);
884 ret = ttm_mem_evict_wait_busy(busy_bo, ctx, ticket);
885 if (busy_bo)
886 kref_put(&busy_bo->list_kref, ttm_bo_release_list);
887 return ret;
888 }
889
890 kref_get(&bo->list_kref);
891
892 if (!list_empty(&bo->ddestroy)) {
893 ret = ttm_bo_cleanup_refs(bo, ctx->interruptible,
894 ctx->no_wait_gpu, locked);
895 kref_put(&bo->list_kref, ttm_bo_release_list);
896 return ret;
897 }
898
899 ttm_bo_del_from_lru(bo);
900 spin_unlock(&glob->lru_lock);
901
902 ret = ttm_bo_evict(bo, ctx);
903 if (locked) {
904 ttm_bo_unreserve(bo);
905 } else {
906 spin_lock(&glob->lru_lock);
907 ttm_bo_add_to_lru(bo);
908 spin_unlock(&glob->lru_lock);
909 }
910
911 kref_put(&bo->list_kref, ttm_bo_release_list);
912 return ret;
913}
914
915void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
916{
917 struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
918
919 if (mem->mm_node)
920 (*man->func->put_node)(man, mem);
921}
922EXPORT_SYMBOL(ttm_bo_mem_put);
923
924/**
925 * Add the last move fence to the BO and reserve a new shared slot.
926 */
927static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo,
928 struct ttm_mem_type_manager *man,
929 struct ttm_mem_reg *mem)
930{
931 struct dma_fence *fence;
932 int ret;
933
934 spin_lock(&man->move_lock);
935 fence = dma_fence_get(man->move);
936 spin_unlock(&man->move_lock);
937
938 if (fence) {
939 dma_resv_add_shared_fence(bo->base.resv, fence);
940
941 ret = dma_resv_reserve_shared(bo->base.resv, 1);
942 if (unlikely(ret)) {
943 dma_fence_put(fence);
944 return ret;
945 }
946
947 dma_fence_put(bo->moving);
948 bo->moving = fence;
949 }
950
951 return 0;
952}
953
954/**
955 * Repeatedly evict memory from the LRU for @mem_type until we create enough
956 * space, or we've evicted everything and there isn't enough space.
957 */
958static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
959 const struct ttm_place *place,
960 struct ttm_mem_reg *mem,
961 struct ttm_operation_ctx *ctx)
962{
963 struct ttm_bo_device *bdev = bo->bdev;
964 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
965 struct ww_acquire_ctx *ticket;
966 int ret;
967
968 ticket = dma_resv_locking_ctx(bo->base.resv);
969 do {
970 ret = (*man->func->get_node)(man, bo, place, mem);
971 if (unlikely(ret != 0))
972 return ret;
973 if (mem->mm_node)
974 break;
975 ret = ttm_mem_evict_first(bdev, mem->mem_type, place, ctx,
976 ticket);
977 if (unlikely(ret != 0))
978 return ret;
979 } while (1);
980
981 return ttm_bo_add_move_fence(bo, man, mem);
982}
983
984static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
985 uint32_t cur_placement,
986 uint32_t proposed_placement)
987{
988 uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
989 uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
990
991 /**
992 * Keep current caching if possible.
993 */
994
995 if ((cur_placement & caching) != 0)
996 result |= (cur_placement & caching);
997 else if ((man->default_caching & caching) != 0)
998 result |= man->default_caching;
999 else if ((TTM_PL_FLAG_CACHED & caching) != 0)
1000 result |= TTM_PL_FLAG_CACHED;
1001 else if ((TTM_PL_FLAG_WC & caching) != 0)
1002 result |= TTM_PL_FLAG_WC;
1003 else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
1004 result |= TTM_PL_FLAG_UNCACHED;
1005
1006 return result;
1007}
1008
1009static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
1010 uint32_t mem_type,
1011 const struct ttm_place *place,
1012 uint32_t *masked_placement)
1013{
1014 uint32_t cur_flags = ttm_bo_type_flags(mem_type);
1015
1016 if ((cur_flags & place->flags & TTM_PL_MASK_MEM) == 0)
1017 return false;
1018
1019 if ((place->flags & man->available_caching) == 0)
1020 return false;
1021
1022 cur_flags |= (place->flags & man->available_caching);
1023
1024 *masked_placement = cur_flags;
1025 return true;
1026}
1027
1028/**
1029 * ttm_bo_mem_placement - check if placement is compatible
1030 * @bo: BO to find memory for
1031 * @place: where to search
1032 * @mem: the memory object to fill in
1033 * @ctx: operation context
1034 *
1035 * Check if placement is compatible and fill in mem structure.
1036 * Returns -EBUSY if placement won't work or negative error code.
1037 * 0 when placement can be used.
1038 */
1039static int ttm_bo_mem_placement(struct ttm_buffer_object *bo,
1040 const struct ttm_place *place,
1041 struct ttm_mem_reg *mem,
1042 struct ttm_operation_ctx *ctx)
1043{
1044 struct ttm_bo_device *bdev = bo->bdev;
1045 uint32_t mem_type = TTM_PL_SYSTEM;
1046 struct ttm_mem_type_manager *man;
1047 uint32_t cur_flags = 0;
1048 int ret;
1049
1050 ret = ttm_mem_type_from_place(place, &mem_type);
1051 if (ret)
1052 return ret;
1053
1054 man = &bdev->man[mem_type];
1055 if (!man->has_type || !man->use_type)
1056 return -EBUSY;
1057
1058 if (!ttm_bo_mt_compatible(man, mem_type, place, &cur_flags))
1059 return -EBUSY;
1060
1061 cur_flags = ttm_bo_select_caching(man, bo->mem.placement, cur_flags);
1062 /*
1063 * Use the access and other non-mapping-related flag bits from
1064 * the memory placement flags to the current flags
1065 */
1066 ttm_flag_masked(&cur_flags, place->flags, ~TTM_PL_MASK_MEMTYPE);
1067
1068 mem->mem_type = mem_type;
1069 mem->placement = cur_flags;
1070
1071 if (bo->mem.mem_type < mem_type && !list_empty(&bo->lru)) {
1072 spin_lock(&bo->bdev->glob->lru_lock);
1073 ttm_bo_del_from_lru(bo);
1074 ttm_bo_add_mem_to_lru(bo, mem);
1075 spin_unlock(&bo->bdev->glob->lru_lock);
1076 }
1077
1078 return 0;
1079}
1080
1081/**
1082 * Creates space for memory region @mem according to its type.
1083 *
1084 * This function first searches for free space in compatible memory types in
1085 * the priority order defined by the driver. If free space isn't found, then
1086 * ttm_bo_mem_force_space is attempted in priority order to evict and find
1087 * space.
1088 */
1089int ttm_bo_mem_space(struct ttm_buffer_object *bo,
1090 struct ttm_placement *placement,
1091 struct ttm_mem_reg *mem,
1092 struct ttm_operation_ctx *ctx)
1093{
1094 struct ttm_bo_device *bdev = bo->bdev;
1095 bool type_found = false;
1096 int i, ret;
1097
1098 ret = dma_resv_reserve_shared(bo->base.resv, 1);
1099 if (unlikely(ret))
1100 return ret;
1101
1102 mem->mm_node = NULL;
1103 for (i = 0; i < placement->num_placement; ++i) {
1104 const struct ttm_place *place = &placement->placement[i];
1105 struct ttm_mem_type_manager *man;
1106
1107 ret = ttm_bo_mem_placement(bo, place, mem, ctx);
1108 if (ret == -EBUSY)
1109 continue;
1110 if (ret)
1111 goto error;
1112
1113 type_found = true;
1114 mem->mm_node = NULL;
1115 if (mem->mem_type == TTM_PL_SYSTEM)
1116 return 0;
1117
1118 man = &bdev->man[mem->mem_type];
1119 ret = (*man->func->get_node)(man, bo, place, mem);
1120 if (unlikely(ret))
1121 goto error;
1122
1123 if (mem->mm_node) {
1124 ret = ttm_bo_add_move_fence(bo, man, mem);
1125 if (unlikely(ret)) {
1126 (*man->func->put_node)(man, mem);
1127 goto error;
1128 }
1129 return 0;
1130 }
1131 }
1132
1133 for (i = 0; i < placement->num_busy_placement; ++i) {
1134 const struct ttm_place *place = &placement->busy_placement[i];
1135
1136 ret = ttm_bo_mem_placement(bo, place, mem, ctx);
1137 if (ret == -EBUSY)
1138 continue;
1139 if (ret)
1140 goto error;
1141
1142 type_found = true;
1143 mem->mm_node = NULL;
1144 if (mem->mem_type == TTM_PL_SYSTEM)
1145 return 0;
1146
1147 ret = ttm_bo_mem_force_space(bo, place, mem, ctx);
1148 if (ret == 0 && mem->mm_node)
1149 return 0;
1150
1151 if (ret && ret != -EBUSY)
1152 goto error;
1153 }
1154
1155 ret = -ENOMEM;
1156 if (!type_found) {
1157 pr_err(TTM_PFX "No compatible memory type found\n");
1158 ret = -EINVAL;
1159 }
1160
1161error:
1162 if (bo->mem.mem_type == TTM_PL_SYSTEM && !list_empty(&bo->lru)) {
1163 spin_lock(&bo->bdev->glob->lru_lock);
1164 ttm_bo_move_to_lru_tail(bo, NULL);
1165 spin_unlock(&bo->bdev->glob->lru_lock);
1166 }
1167
1168 return ret;
1169}
1170EXPORT_SYMBOL(ttm_bo_mem_space);
1171
1172static int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1173 struct ttm_placement *placement,
1174 struct ttm_operation_ctx *ctx)
1175{
1176 int ret = 0;
1177 struct ttm_mem_reg mem;
1178
1179 dma_resv_assert_held(bo->base.resv);
1180
1181 mem.num_pages = bo->num_pages;
1182 mem.size = mem.num_pages << PAGE_SHIFT;
1183 mem.page_alignment = bo->mem.page_alignment;
1184 mem.bus.io_reserved_vm = false;
1185 mem.bus.io_reserved_count = 0;
1186 /*
1187 * Determine where to move the buffer.
1188 */
1189 ret = ttm_bo_mem_space(bo, placement, &mem, ctx);
1190 if (ret)
1191 goto out_unlock;
1192 ret = ttm_bo_handle_move_mem(bo, &mem, false, ctx);
1193out_unlock:
1194 if (ret && mem.mm_node)
1195 ttm_bo_mem_put(bo, &mem);
1196 return ret;
1197}
1198
1199static bool ttm_bo_places_compat(const struct ttm_place *places,
1200 unsigned num_placement,
1201 struct ttm_mem_reg *mem,
1202 uint32_t *new_flags)
1203{
1204 unsigned i;
1205
1206 for (i = 0; i < num_placement; i++) {
1207 const struct ttm_place *heap = &places[i];
1208
1209 if (mem->mm_node && (mem->start < heap->fpfn ||
1210 (heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn)))
1211 continue;
1212
1213 *new_flags = heap->flags;
1214 if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) &&
1215 (*new_flags & mem->placement & TTM_PL_MASK_MEM) &&
1216 (!(*new_flags & TTM_PL_FLAG_CONTIGUOUS) ||
1217 (mem->placement & TTM_PL_FLAG_CONTIGUOUS)))
1218 return true;
1219 }
1220 return false;
1221}
1222
1223bool ttm_bo_mem_compat(struct ttm_placement *placement,
1224 struct ttm_mem_reg *mem,
1225 uint32_t *new_flags)
1226{
1227 if (ttm_bo_places_compat(placement->placement, placement->num_placement,
1228 mem, new_flags))
1229 return true;
1230
1231 if ((placement->busy_placement != placement->placement ||
1232 placement->num_busy_placement > placement->num_placement) &&
1233 ttm_bo_places_compat(placement->busy_placement,
1234 placement->num_busy_placement,
1235 mem, new_flags))
1236 return true;
1237
1238 return false;
1239}
1240EXPORT_SYMBOL(ttm_bo_mem_compat);
1241
1242int ttm_bo_validate(struct ttm_buffer_object *bo,
1243 struct ttm_placement *placement,
1244 struct ttm_operation_ctx *ctx)
1245{
1246 int ret;
1247 uint32_t new_flags;
1248
1249 dma_resv_assert_held(bo->base.resv);
1250 /*
1251 * Check whether we need to move buffer.
1252 */
1253 if (!ttm_bo_mem_compat(placement, &bo->mem, &new_flags)) {
1254 ret = ttm_bo_move_buffer(bo, placement, ctx);
1255 if (ret)
1256 return ret;
1257 } else {
1258 /*
1259 * Use the access and other non-mapping-related flag bits from
1260 * the compatible memory placement flags to the active flags
1261 */
1262 ttm_flag_masked(&bo->mem.placement, new_flags,
1263 ~TTM_PL_MASK_MEMTYPE);
1264 }
1265 /*
1266 * We might need to add a TTM.
1267 */
1268 if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1269 ret = ttm_tt_create(bo, true);
1270 if (ret)
1271 return ret;
1272 }
1273 return 0;
1274}
1275EXPORT_SYMBOL(ttm_bo_validate);
1276
1277int ttm_bo_init_reserved(struct ttm_bo_device *bdev,
1278 struct ttm_buffer_object *bo,
1279 unsigned long size,
1280 enum ttm_bo_type type,
1281 struct ttm_placement *placement,
1282 uint32_t page_alignment,
1283 struct ttm_operation_ctx *ctx,
1284 size_t acc_size,
1285 struct sg_table *sg,
1286 struct dma_resv *resv,
1287 void (*destroy) (struct ttm_buffer_object *))
1288{
1289 int ret = 0;
1290 unsigned long num_pages;
1291 struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1292 bool locked;
1293
1294 ret = ttm_mem_global_alloc(mem_glob, acc_size, ctx);
1295 if (ret) {
1296 pr_err("Out of kernel memory\n");
1297 if (destroy)
1298 (*destroy)(bo);
1299 else
1300 kfree(bo);
1301 return -ENOMEM;
1302 }
1303
1304 num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1305 if (num_pages == 0) {
1306 pr_err("Illegal buffer object size\n");
1307 if (destroy)
1308 (*destroy)(bo);
1309 else
1310 kfree(bo);
1311 ttm_mem_global_free(mem_glob, acc_size);
1312 return -EINVAL;
1313 }
1314 bo->destroy = destroy ? destroy : ttm_bo_default_destroy;
1315
1316 kref_init(&bo->kref);
1317 kref_init(&bo->list_kref);
1318 atomic_set(&bo->cpu_writers, 0);
1319 INIT_LIST_HEAD(&bo->lru);
1320 INIT_LIST_HEAD(&bo->ddestroy);
1321 INIT_LIST_HEAD(&bo->swap);
1322 INIT_LIST_HEAD(&bo->io_reserve_lru);
1323 mutex_init(&bo->wu_mutex);
1324 bo->bdev = bdev;
1325 bo->type = type;
1326 bo->num_pages = num_pages;
1327 bo->mem.size = num_pages << PAGE_SHIFT;
1328 bo->mem.mem_type = TTM_PL_SYSTEM;
1329 bo->mem.num_pages = bo->num_pages;
1330 bo->mem.mm_node = NULL;
1331 bo->mem.page_alignment = page_alignment;
1332 bo->mem.bus.io_reserved_vm = false;
1333 bo->mem.bus.io_reserved_count = 0;
1334 bo->moving = NULL;
1335 bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1336 bo->acc_size = acc_size;
1337 bo->sg = sg;
1338 if (resv) {
1339 bo->base.resv = resv;
1340 dma_resv_assert_held(bo->base.resv);
1341 } else {
1342 bo->base.resv = &bo->base._resv;
1343 }
1344 if (!ttm_bo_uses_embedded_gem_object(bo)) {
1345 /*
1346 * bo.gem is not initialized, so we have to setup the
1347 * struct elements we want use regardless.
1348 */
1349 dma_resv_init(&bo->base._resv);
1350 drm_vma_node_reset(&bo->base.vma_node);
1351 }
1352 atomic_inc(&bo->bdev->glob->bo_count);
1353
1354 /*
1355 * For ttm_bo_type_device buffers, allocate
1356 * address space from the device.
1357 */
1358 if (bo->type == ttm_bo_type_device ||
1359 bo->type == ttm_bo_type_sg)
1360 ret = drm_vma_offset_add(&bdev->vma_manager, &bo->base.vma_node,
1361 bo->mem.num_pages);
1362
1363 /* passed reservation objects should already be locked,
1364 * since otherwise lockdep will be angered in radeon.
1365 */
1366 if (!resv) {
1367 locked = dma_resv_trylock(bo->base.resv);
1368 WARN_ON(!locked);
1369 }
1370
1371 if (likely(!ret))
1372 ret = ttm_bo_validate(bo, placement, ctx);
1373
1374 if (unlikely(ret)) {
1375 if (!resv)
1376 ttm_bo_unreserve(bo);
1377
1378 ttm_bo_put(bo);
1379 return ret;
1380 }
1381
1382 if (resv && !(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
1383 spin_lock(&bdev->glob->lru_lock);
1384 ttm_bo_add_to_lru(bo);
1385 spin_unlock(&bdev->glob->lru_lock);
1386 }
1387
1388 return ret;
1389}
1390EXPORT_SYMBOL(ttm_bo_init_reserved);
1391
1392int ttm_bo_init(struct ttm_bo_device *bdev,
1393 struct ttm_buffer_object *bo,
1394 unsigned long size,
1395 enum ttm_bo_type type,
1396 struct ttm_placement *placement,
1397 uint32_t page_alignment,
1398 bool interruptible,
1399 size_t acc_size,
1400 struct sg_table *sg,
1401 struct dma_resv *resv,
1402 void (*destroy) (struct ttm_buffer_object *))
1403{
1404 struct ttm_operation_ctx ctx = { interruptible, false };
1405 int ret;
1406
1407 ret = ttm_bo_init_reserved(bdev, bo, size, type, placement,
1408 page_alignment, &ctx, acc_size,
1409 sg, resv, destroy);
1410 if (ret)
1411 return ret;
1412
1413 if (!resv)
1414 ttm_bo_unreserve(bo);
1415
1416 return 0;
1417}
1418EXPORT_SYMBOL(ttm_bo_init);
1419
1420size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1421 unsigned long bo_size,
1422 unsigned struct_size)
1423{
1424 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1425 size_t size = 0;
1426
1427 size += ttm_round_pot(struct_size);
1428 size += ttm_round_pot(npages * sizeof(void *));
1429 size += ttm_round_pot(sizeof(struct ttm_tt));
1430 return size;
1431}
1432EXPORT_SYMBOL(ttm_bo_acc_size);
1433
1434size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1435 unsigned long bo_size,
1436 unsigned struct_size)
1437{
1438 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1439 size_t size = 0;
1440
1441 size += ttm_round_pot(struct_size);
1442 size += ttm_round_pot(npages * (2*sizeof(void *) + sizeof(dma_addr_t)));
1443 size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1444 return size;
1445}
1446EXPORT_SYMBOL(ttm_bo_dma_acc_size);
1447
1448int ttm_bo_create(struct ttm_bo_device *bdev,
1449 unsigned long size,
1450 enum ttm_bo_type type,
1451 struct ttm_placement *placement,
1452 uint32_t page_alignment,
1453 bool interruptible,
1454 struct ttm_buffer_object **p_bo)
1455{
1456 struct ttm_buffer_object *bo;
1457 size_t acc_size;
1458 int ret;
1459
1460 bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1461 if (unlikely(bo == NULL))
1462 return -ENOMEM;
1463
1464 acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1465 ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1466 interruptible, acc_size,
1467 NULL, NULL, NULL);
1468 if (likely(ret == 0))
1469 *p_bo = bo;
1470
1471 return ret;
1472}
1473EXPORT_SYMBOL(ttm_bo_create);
1474
1475static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1476 unsigned mem_type)
1477{
1478 struct ttm_operation_ctx ctx = {
1479 .interruptible = false,
1480 .no_wait_gpu = false,
1481 .flags = TTM_OPT_FLAG_FORCE_ALLOC
1482 };
1483 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1484 struct ttm_bo_global *glob = bdev->glob;
1485 struct dma_fence *fence;
1486 int ret;
1487 unsigned i;
1488
1489 /*
1490 * Can't use standard list traversal since we're unlocking.
1491 */
1492
1493 spin_lock(&glob->lru_lock);
1494 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
1495 while (!list_empty(&man->lru[i])) {
1496 spin_unlock(&glob->lru_lock);
1497 ret = ttm_mem_evict_first(bdev, mem_type, NULL, &ctx,
1498 NULL);
1499 if (ret)
1500 return ret;
1501 spin_lock(&glob->lru_lock);
1502 }
1503 }
1504 spin_unlock(&glob->lru_lock);
1505
1506 spin_lock(&man->move_lock);
1507 fence = dma_fence_get(man->move);
1508 spin_unlock(&man->move_lock);
1509
1510 if (fence) {
1511 ret = dma_fence_wait(fence, false);
1512 dma_fence_put(fence);
1513 if (ret)
1514 return ret;
1515 }
1516
1517 return 0;
1518}
1519
1520int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1521{
1522 struct ttm_mem_type_manager *man;
1523 int ret = -EINVAL;
1524
1525 if (mem_type >= TTM_NUM_MEM_TYPES) {
1526 pr_err("Illegal memory type %d\n", mem_type);
1527 return ret;
1528 }
1529 man = &bdev->man[mem_type];
1530
1531 if (!man->has_type) {
1532 pr_err("Trying to take down uninitialized memory manager type %u\n",
1533 mem_type);
1534 return ret;
1535 }
1536
1537 man->use_type = false;
1538 man->has_type = false;
1539
1540 ret = 0;
1541 if (mem_type > 0) {
1542 ret = ttm_bo_force_list_clean(bdev, mem_type);
1543 if (ret) {
1544 pr_err("Cleanup eviction failed\n");
1545 return ret;
1546 }
1547
1548 ret = (*man->func->takedown)(man);
1549 }
1550
1551 dma_fence_put(man->move);
1552 man->move = NULL;
1553
1554 return ret;
1555}
1556EXPORT_SYMBOL(ttm_bo_clean_mm);
1557
1558int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1559{
1560 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1561
1562 if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1563 pr_err("Illegal memory manager memory type %u\n", mem_type);
1564 return -EINVAL;
1565 }
1566
1567 if (!man->has_type) {
1568 pr_err("Memory type %u has not been initialized\n", mem_type);
1569 return 0;
1570 }
1571
1572 return ttm_bo_force_list_clean(bdev, mem_type);
1573}
1574EXPORT_SYMBOL(ttm_bo_evict_mm);
1575
1576int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1577 unsigned long p_size)
1578{
1579 int ret;
1580 struct ttm_mem_type_manager *man;
1581 unsigned i;
1582
1583 BUG_ON(type >= TTM_NUM_MEM_TYPES);
1584 man = &bdev->man[type];
1585 BUG_ON(man->has_type);
1586 man->io_reserve_fastpath = true;
1587 man->use_io_reserve_lru = false;
1588 mutex_init(&man->io_reserve_mutex);
1589 spin_lock_init(&man->move_lock);
1590 INIT_LIST_HEAD(&man->io_reserve_lru);
1591
1592 ret = bdev->driver->init_mem_type(bdev, type, man);
1593 if (ret)
1594 return ret;
1595 man->bdev = bdev;
1596
1597 if (type != TTM_PL_SYSTEM) {
1598 ret = (*man->func->init)(man, p_size);
1599 if (ret)
1600 return ret;
1601 }
1602 man->has_type = true;
1603 man->use_type = true;
1604 man->size = p_size;
1605
1606 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i)
1607 INIT_LIST_HEAD(&man->lru[i]);
1608 man->move = NULL;
1609
1610 return 0;
1611}
1612EXPORT_SYMBOL(ttm_bo_init_mm);
1613
1614static void ttm_bo_global_kobj_release(struct kobject *kobj)
1615{
1616 struct ttm_bo_global *glob =
1617 container_of(kobj, struct ttm_bo_global, kobj);
1618
1619 __free_page(glob->dummy_read_page);
1620}
1621
1622static void ttm_bo_global_release(void)
1623{
1624 struct ttm_bo_global *glob = &ttm_bo_glob;
1625
1626 mutex_lock(&ttm_global_mutex);
1627 if (--ttm_bo_glob_use_count > 0)
1628 goto out;
1629
1630 kobject_del(&glob->kobj);
1631 kobject_put(&glob->kobj);
1632 ttm_mem_global_release(&ttm_mem_glob);
1633 memset(glob, 0, sizeof(*glob));
1634out:
1635 mutex_unlock(&ttm_global_mutex);
1636}
1637
1638static int ttm_bo_global_init(void)
1639{
1640 struct ttm_bo_global *glob = &ttm_bo_glob;
1641 int ret = 0;
1642 unsigned i;
1643
1644 mutex_lock(&ttm_global_mutex);
1645 if (++ttm_bo_glob_use_count > 1)
1646 goto out;
1647
1648 ret = ttm_mem_global_init(&ttm_mem_glob);
1649 if (ret)
1650 goto out;
1651
1652 spin_lock_init(&glob->lru_lock);
1653 glob->mem_glob = &ttm_mem_glob;
1654 glob->mem_glob->bo_glob = glob;
1655 glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1656
1657 if (unlikely(glob->dummy_read_page == NULL)) {
1658 ret = -ENOMEM;
1659 goto out;
1660 }
1661
1662 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i)
1663 INIT_LIST_HEAD(&glob->swap_lru[i]);
1664 INIT_LIST_HEAD(&glob->device_list);
1665 atomic_set(&glob->bo_count, 0);
1666
1667 ret = kobject_init_and_add(
1668 &glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1669 if (unlikely(ret != 0))
1670 kobject_put(&glob->kobj);
1671out:
1672 mutex_unlock(&ttm_global_mutex);
1673 return ret;
1674}
1675
1676int ttm_bo_device_release(struct ttm_bo_device *bdev)
1677{
1678 int ret = 0;
1679 unsigned i = TTM_NUM_MEM_TYPES;
1680 struct ttm_mem_type_manager *man;
1681 struct ttm_bo_global *glob = bdev->glob;
1682
1683 while (i--) {
1684 man = &bdev->man[i];
1685 if (man->has_type) {
1686 man->use_type = false;
1687 if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1688 ret = -EBUSY;
1689 pr_err("DRM memory manager type %d is not clean\n",
1690 i);
1691 }
1692 man->has_type = false;
1693 }
1694 }
1695
1696 mutex_lock(&ttm_global_mutex);
1697 list_del(&bdev->device_list);
1698 mutex_unlock(&ttm_global_mutex);
1699
1700 cancel_delayed_work_sync(&bdev->wq);
1701
1702 if (ttm_bo_delayed_delete(bdev, true))
1703 pr_debug("Delayed destroy list was clean\n");
1704
1705 spin_lock(&glob->lru_lock);
1706 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i)
1707 if (list_empty(&bdev->man[0].lru[0]))
1708 pr_debug("Swap list %d was clean\n", i);
1709 spin_unlock(&glob->lru_lock);
1710
1711 drm_vma_offset_manager_destroy(&bdev->vma_manager);
1712
1713 if (!ret)
1714 ttm_bo_global_release();
1715
1716 return ret;
1717}
1718EXPORT_SYMBOL(ttm_bo_device_release);
1719
1720int ttm_bo_device_init(struct ttm_bo_device *bdev,
1721 struct ttm_bo_driver *driver,
1722 struct address_space *mapping,
1723 bool need_dma32)
1724{
1725 struct ttm_bo_global *glob = &ttm_bo_glob;
1726 int ret;
1727
1728 ret = ttm_bo_global_init();
1729 if (ret)
1730 return ret;
1731
1732 bdev->driver = driver;
1733
1734 memset(bdev->man, 0, sizeof(bdev->man));
1735
1736 /*
1737 * Initialize the system memory buffer type.
1738 * Other types need to be driver / IOCTL initialized.
1739 */
1740 ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1741 if (unlikely(ret != 0))
1742 goto out_no_sys;
1743
1744 drm_vma_offset_manager_init(&bdev->vma_manager,
1745 DRM_FILE_PAGE_OFFSET_START,
1746 DRM_FILE_PAGE_OFFSET_SIZE);
1747 INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1748 INIT_LIST_HEAD(&bdev->ddestroy);
1749 bdev->dev_mapping = mapping;
1750 bdev->glob = glob;
1751 bdev->need_dma32 = need_dma32;
1752 mutex_lock(&ttm_global_mutex);
1753 list_add_tail(&bdev->device_list, &glob->device_list);
1754 mutex_unlock(&ttm_global_mutex);
1755
1756 return 0;
1757out_no_sys:
1758 ttm_bo_global_release();
1759 return ret;
1760}
1761EXPORT_SYMBOL(ttm_bo_device_init);
1762
1763/*
1764 * buffer object vm functions.
1765 */
1766
1767bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1768{
1769 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1770
1771 if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1772 if (mem->mem_type == TTM_PL_SYSTEM)
1773 return false;
1774
1775 if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1776 return false;
1777
1778 if (mem->placement & TTM_PL_FLAG_CACHED)
1779 return false;
1780 }
1781 return true;
1782}
1783
1784void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1785{
1786 struct ttm_bo_device *bdev = bo->bdev;
1787
1788 drm_vma_node_unmap(&bo->base.vma_node, bdev->dev_mapping);
1789 ttm_mem_io_free_vm(bo);
1790}
1791
1792void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1793{
1794 struct ttm_bo_device *bdev = bo->bdev;
1795 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1796
1797 ttm_mem_io_lock(man, false);
1798 ttm_bo_unmap_virtual_locked(bo);
1799 ttm_mem_io_unlock(man);
1800}
1801
1802
1803EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1804
1805int ttm_bo_wait(struct ttm_buffer_object *bo,
1806 bool interruptible, bool no_wait)
1807{
1808 long timeout = 15 * HZ;
1809
1810 if (no_wait) {
1811 if (dma_resv_test_signaled_rcu(bo->base.resv, true))
1812 return 0;
1813 else
1814 return -EBUSY;
1815 }
1816
1817 timeout = dma_resv_wait_timeout_rcu(bo->base.resv, true,
1818 interruptible, timeout);
1819 if (timeout < 0)
1820 return timeout;
1821
1822 if (timeout == 0)
1823 return -EBUSY;
1824
1825 dma_resv_add_excl_fence(bo->base.resv, NULL);
1826 return 0;
1827}
1828EXPORT_SYMBOL(ttm_bo_wait);
1829
1830int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1831{
1832 int ret = 0;
1833
1834 /*
1835 * Using ttm_bo_reserve makes sure the lru lists are updated.
1836 */
1837
1838 ret = ttm_bo_reserve(bo, true, no_wait, NULL);
1839 if (unlikely(ret != 0))
1840 return ret;
1841 ret = ttm_bo_wait(bo, true, no_wait);
1842 if (likely(ret == 0))
1843 atomic_inc(&bo->cpu_writers);
1844 ttm_bo_unreserve(bo);
1845 return ret;
1846}
1847EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1848
1849void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1850{
1851 atomic_dec(&bo->cpu_writers);
1852}
1853EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1854
1855/**
1856 * A buffer object shrink method that tries to swap out the first
1857 * buffer object on the bo_global::swap_lru list.
1858 */
1859int ttm_bo_swapout(struct ttm_bo_global *glob, struct ttm_operation_ctx *ctx)
1860{
1861 struct ttm_buffer_object *bo;
1862 int ret = -EBUSY;
1863 bool locked;
1864 unsigned i;
1865
1866 spin_lock(&glob->lru_lock);
1867 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
1868 list_for_each_entry(bo, &glob->swap_lru[i], swap) {
1869 if (ttm_bo_evict_swapout_allowable(bo, ctx, &locked,
1870 NULL)) {
1871 ret = 0;
1872 break;
1873 }
1874 }
1875 if (!ret)
1876 break;
1877 }
1878
1879 if (ret) {
1880 spin_unlock(&glob->lru_lock);
1881 return ret;
1882 }
1883
1884 kref_get(&bo->list_kref);
1885
1886 if (!list_empty(&bo->ddestroy)) {
1887 ret = ttm_bo_cleanup_refs(bo, false, false, locked);
1888 kref_put(&bo->list_kref, ttm_bo_release_list);
1889 return ret;
1890 }
1891
1892 ttm_bo_del_from_lru(bo);
1893 spin_unlock(&glob->lru_lock);
1894
1895 /**
1896 * Move to system cached
1897 */
1898
1899 if (bo->mem.mem_type != TTM_PL_SYSTEM ||
1900 bo->ttm->caching_state != tt_cached) {
1901 struct ttm_operation_ctx ctx = { false, false };
1902 struct ttm_mem_reg evict_mem;
1903
1904 evict_mem = bo->mem;
1905 evict_mem.mm_node = NULL;
1906 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1907 evict_mem.mem_type = TTM_PL_SYSTEM;
1908
1909 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, &ctx);
1910 if (unlikely(ret != 0))
1911 goto out;
1912 }
1913
1914 /**
1915 * Make sure BO is idle.
1916 */
1917
1918 ret = ttm_bo_wait(bo, false, false);
1919 if (unlikely(ret != 0))
1920 goto out;
1921
1922 ttm_bo_unmap_virtual(bo);
1923
1924 /**
1925 * Swap out. Buffer will be swapped in again as soon as
1926 * anyone tries to access a ttm page.
1927 */
1928
1929 if (bo->bdev->driver->swap_notify)
1930 bo->bdev->driver->swap_notify(bo);
1931
1932 ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1933out:
1934
1935 /**
1936 *
1937 * Unreserve without putting on LRU to avoid swapping out an
1938 * already swapped buffer.
1939 */
1940 if (locked)
1941 dma_resv_unlock(bo->base.resv);
1942 kref_put(&bo->list_kref, ttm_bo_release_list);
1943 return ret;
1944}
1945EXPORT_SYMBOL(ttm_bo_swapout);
1946
1947void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1948{
1949 struct ttm_operation_ctx ctx = {
1950 .interruptible = false,
1951 .no_wait_gpu = false
1952 };
1953
1954 while (ttm_bo_swapout(bdev->glob, &ctx) == 0)
1955 ;
1956}
1957EXPORT_SYMBOL(ttm_bo_swapout_all);
1958
1959/**
1960 * ttm_bo_wait_unreserved - interruptible wait for a buffer object to become
1961 * unreserved
1962 *
1963 * @bo: Pointer to buffer
1964 */
1965int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo)
1966{
1967 int ret;
1968
1969 /*
1970 * In the absense of a wait_unlocked API,
1971 * Use the bo::wu_mutex to avoid triggering livelocks due to
1972 * concurrent use of this function. Note that this use of
1973 * bo::wu_mutex can go away if we change locking order to
1974 * mmap_sem -> bo::reserve.
1975 */
1976 ret = mutex_lock_interruptible(&bo->wu_mutex);
1977 if (unlikely(ret != 0))
1978 return -ERESTARTSYS;
1979 if (!dma_resv_is_locked(bo->base.resv))
1980 goto out_unlock;
1981 ret = dma_resv_lock_interruptible(bo->base.resv, NULL);
1982 if (ret == -EINTR)
1983 ret = -ERESTARTSYS;
1984 if (unlikely(ret != 0))
1985 goto out_unlock;
1986 dma_resv_unlock(bo->base.resv);
1987
1988out_unlock:
1989 mutex_unlock(&bo->wu_mutex);
1990 return ret;
1991}
1/* SPDX-License-Identifier: GPL-2.0 OR MIT */
2/**************************************************************************
3 *
4 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25 * USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28/*
29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
30 */
31
32#define pr_fmt(fmt) "[TTM] " fmt
33
34#include <drm/ttm/ttm_bo_driver.h>
35#include <drm/ttm/ttm_placement.h>
36#include <linux/jiffies.h>
37#include <linux/slab.h>
38#include <linux/sched.h>
39#include <linux/mm.h>
40#include <linux/file.h>
41#include <linux/module.h>
42#include <linux/atomic.h>
43#include <linux/dma-resv.h>
44
45#include "ttm_module.h"
46
47/* default destructor */
48static void ttm_bo_default_destroy(struct ttm_buffer_object *bo)
49{
50 kfree(bo);
51}
52
53static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
54 struct ttm_placement *placement)
55{
56 struct drm_printer p = drm_debug_printer(TTM_PFX);
57 struct ttm_resource_manager *man;
58 int i, mem_type;
59
60 drm_printf(&p, "No space for %p (%lu pages, %zuK, %zuM)\n",
61 bo, bo->resource->num_pages, bo->base.size >> 10,
62 bo->base.size >> 20);
63 for (i = 0; i < placement->num_placement; i++) {
64 mem_type = placement->placement[i].mem_type;
65 drm_printf(&p, " placement[%d]=0x%08X (%d)\n",
66 i, placement->placement[i].flags, mem_type);
67 man = ttm_manager_type(bo->bdev, mem_type);
68 ttm_resource_manager_debug(man, &p);
69 }
70}
71
72static void ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
73{
74 struct ttm_device *bdev = bo->bdev;
75
76 list_del_init(&bo->lru);
77
78 if (bdev->funcs->del_from_lru_notify)
79 bdev->funcs->del_from_lru_notify(bo);
80}
81
82static void ttm_bo_bulk_move_set_pos(struct ttm_lru_bulk_move_pos *pos,
83 struct ttm_buffer_object *bo)
84{
85 if (!pos->first)
86 pos->first = bo;
87 pos->last = bo;
88}
89
90void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo,
91 struct ttm_resource *mem,
92 struct ttm_lru_bulk_move *bulk)
93{
94 struct ttm_device *bdev = bo->bdev;
95 struct ttm_resource_manager *man;
96
97 if (!bo->deleted)
98 dma_resv_assert_held(bo->base.resv);
99
100 if (bo->pin_count) {
101 ttm_bo_del_from_lru(bo);
102 return;
103 }
104
105 if (!mem)
106 return;
107
108 man = ttm_manager_type(bdev, mem->mem_type);
109 list_move_tail(&bo->lru, &man->lru[bo->priority]);
110
111 if (bdev->funcs->del_from_lru_notify)
112 bdev->funcs->del_from_lru_notify(bo);
113
114 if (bulk && !bo->pin_count) {
115 switch (bo->resource->mem_type) {
116 case TTM_PL_TT:
117 ttm_bo_bulk_move_set_pos(&bulk->tt[bo->priority], bo);
118 break;
119
120 case TTM_PL_VRAM:
121 ttm_bo_bulk_move_set_pos(&bulk->vram[bo->priority], bo);
122 break;
123 }
124 }
125}
126EXPORT_SYMBOL(ttm_bo_move_to_lru_tail);
127
128void ttm_bo_bulk_move_lru_tail(struct ttm_lru_bulk_move *bulk)
129{
130 unsigned i;
131
132 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
133 struct ttm_lru_bulk_move_pos *pos = &bulk->tt[i];
134 struct ttm_resource_manager *man;
135
136 if (!pos->first)
137 continue;
138
139 dma_resv_assert_held(pos->first->base.resv);
140 dma_resv_assert_held(pos->last->base.resv);
141
142 man = ttm_manager_type(pos->first->bdev, TTM_PL_TT);
143 list_bulk_move_tail(&man->lru[i], &pos->first->lru,
144 &pos->last->lru);
145 }
146
147 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
148 struct ttm_lru_bulk_move_pos *pos = &bulk->vram[i];
149 struct ttm_resource_manager *man;
150
151 if (!pos->first)
152 continue;
153
154 dma_resv_assert_held(pos->first->base.resv);
155 dma_resv_assert_held(pos->last->base.resv);
156
157 man = ttm_manager_type(pos->first->bdev, TTM_PL_VRAM);
158 list_bulk_move_tail(&man->lru[i], &pos->first->lru,
159 &pos->last->lru);
160 }
161}
162EXPORT_SYMBOL(ttm_bo_bulk_move_lru_tail);
163
164static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
165 struct ttm_resource *mem, bool evict,
166 struct ttm_operation_ctx *ctx,
167 struct ttm_place *hop)
168{
169 struct ttm_resource_manager *old_man, *new_man;
170 struct ttm_device *bdev = bo->bdev;
171 int ret;
172
173 old_man = ttm_manager_type(bdev, bo->resource->mem_type);
174 new_man = ttm_manager_type(bdev, mem->mem_type);
175
176 ttm_bo_unmap_virtual(bo);
177
178 /*
179 * Create and bind a ttm if required.
180 */
181
182 if (new_man->use_tt) {
183 /* Zero init the new TTM structure if the old location should
184 * have used one as well.
185 */
186 ret = ttm_tt_create(bo, old_man->use_tt);
187 if (ret)
188 goto out_err;
189
190 if (mem->mem_type != TTM_PL_SYSTEM) {
191 ret = ttm_tt_populate(bo->bdev, bo->ttm, ctx);
192 if (ret)
193 goto out_err;
194 }
195 }
196
197 ret = bdev->funcs->move(bo, evict, ctx, mem, hop);
198 if (ret) {
199 if (ret == -EMULTIHOP)
200 return ret;
201 goto out_err;
202 }
203
204 ctx->bytes_moved += bo->base.size;
205 return 0;
206
207out_err:
208 new_man = ttm_manager_type(bdev, bo->resource->mem_type);
209 if (!new_man->use_tt)
210 ttm_bo_tt_destroy(bo);
211
212 return ret;
213}
214
215/*
216 * Call bo::reserved.
217 * Will release GPU memory type usage on destruction.
218 * This is the place to put in driver specific hooks to release
219 * driver private resources.
220 * Will release the bo::reserved lock.
221 */
222
223static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
224{
225 if (bo->bdev->funcs->delete_mem_notify)
226 bo->bdev->funcs->delete_mem_notify(bo);
227
228 ttm_bo_tt_destroy(bo);
229 ttm_resource_free(bo, &bo->resource);
230}
231
232static int ttm_bo_individualize_resv(struct ttm_buffer_object *bo)
233{
234 int r;
235
236 if (bo->base.resv == &bo->base._resv)
237 return 0;
238
239 BUG_ON(!dma_resv_trylock(&bo->base._resv));
240
241 r = dma_resv_copy_fences(&bo->base._resv, bo->base.resv);
242 dma_resv_unlock(&bo->base._resv);
243 if (r)
244 return r;
245
246 if (bo->type != ttm_bo_type_sg) {
247 /* This works because the BO is about to be destroyed and nobody
248 * reference it any more. The only tricky case is the trylock on
249 * the resv object while holding the lru_lock.
250 */
251 spin_lock(&bo->bdev->lru_lock);
252 bo->base.resv = &bo->base._resv;
253 spin_unlock(&bo->bdev->lru_lock);
254 }
255
256 return r;
257}
258
259static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo)
260{
261 struct dma_resv *resv = &bo->base._resv;
262 struct dma_resv_list *fobj;
263 struct dma_fence *fence;
264 int i;
265
266 rcu_read_lock();
267 fobj = dma_resv_shared_list(resv);
268 fence = dma_resv_excl_fence(resv);
269 if (fence && !fence->ops->signaled)
270 dma_fence_enable_sw_signaling(fence);
271
272 for (i = 0; fobj && i < fobj->shared_count; ++i) {
273 fence = rcu_dereference(fobj->shared[i]);
274
275 if (!fence->ops->signaled)
276 dma_fence_enable_sw_signaling(fence);
277 }
278 rcu_read_unlock();
279}
280
281/**
282 * ttm_bo_cleanup_refs
283 * If bo idle, remove from lru lists, and unref.
284 * If not idle, block if possible.
285 *
286 * Must be called with lru_lock and reservation held, this function
287 * will drop the lru lock and optionally the reservation lock before returning.
288 *
289 * @bo: The buffer object to clean-up
290 * @interruptible: Any sleeps should occur interruptibly.
291 * @no_wait_gpu: Never wait for gpu. Return -EBUSY instead.
292 * @unlock_resv: Unlock the reservation lock as well.
293 */
294
295static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
296 bool interruptible, bool no_wait_gpu,
297 bool unlock_resv)
298{
299 struct dma_resv *resv = &bo->base._resv;
300 int ret;
301
302 if (dma_resv_test_signaled(resv, true))
303 ret = 0;
304 else
305 ret = -EBUSY;
306
307 if (ret && !no_wait_gpu) {
308 long lret;
309
310 if (unlock_resv)
311 dma_resv_unlock(bo->base.resv);
312 spin_unlock(&bo->bdev->lru_lock);
313
314 lret = dma_resv_wait_timeout(resv, true, interruptible,
315 30 * HZ);
316
317 if (lret < 0)
318 return lret;
319 else if (lret == 0)
320 return -EBUSY;
321
322 spin_lock(&bo->bdev->lru_lock);
323 if (unlock_resv && !dma_resv_trylock(bo->base.resv)) {
324 /*
325 * We raced, and lost, someone else holds the reservation now,
326 * and is probably busy in ttm_bo_cleanup_memtype_use.
327 *
328 * Even if it's not the case, because we finished waiting any
329 * delayed destruction would succeed, so just return success
330 * here.
331 */
332 spin_unlock(&bo->bdev->lru_lock);
333 return 0;
334 }
335 ret = 0;
336 }
337
338 if (ret || unlikely(list_empty(&bo->ddestroy))) {
339 if (unlock_resv)
340 dma_resv_unlock(bo->base.resv);
341 spin_unlock(&bo->bdev->lru_lock);
342 return ret;
343 }
344
345 ttm_bo_del_from_lru(bo);
346 list_del_init(&bo->ddestroy);
347 spin_unlock(&bo->bdev->lru_lock);
348 ttm_bo_cleanup_memtype_use(bo);
349
350 if (unlock_resv)
351 dma_resv_unlock(bo->base.resv);
352
353 ttm_bo_put(bo);
354
355 return 0;
356}
357
358/*
359 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
360 * encountered buffers.
361 */
362bool ttm_bo_delayed_delete(struct ttm_device *bdev, bool remove_all)
363{
364 struct list_head removed;
365 bool empty;
366
367 INIT_LIST_HEAD(&removed);
368
369 spin_lock(&bdev->lru_lock);
370 while (!list_empty(&bdev->ddestroy)) {
371 struct ttm_buffer_object *bo;
372
373 bo = list_first_entry(&bdev->ddestroy, struct ttm_buffer_object,
374 ddestroy);
375 list_move_tail(&bo->ddestroy, &removed);
376 if (!ttm_bo_get_unless_zero(bo))
377 continue;
378
379 if (remove_all || bo->base.resv != &bo->base._resv) {
380 spin_unlock(&bdev->lru_lock);
381 dma_resv_lock(bo->base.resv, NULL);
382
383 spin_lock(&bdev->lru_lock);
384 ttm_bo_cleanup_refs(bo, false, !remove_all, true);
385
386 } else if (dma_resv_trylock(bo->base.resv)) {
387 ttm_bo_cleanup_refs(bo, false, !remove_all, true);
388 } else {
389 spin_unlock(&bdev->lru_lock);
390 }
391
392 ttm_bo_put(bo);
393 spin_lock(&bdev->lru_lock);
394 }
395 list_splice_tail(&removed, &bdev->ddestroy);
396 empty = list_empty(&bdev->ddestroy);
397 spin_unlock(&bdev->lru_lock);
398
399 return empty;
400}
401
402static void ttm_bo_release(struct kref *kref)
403{
404 struct ttm_buffer_object *bo =
405 container_of(kref, struct ttm_buffer_object, kref);
406 struct ttm_device *bdev = bo->bdev;
407 int ret;
408
409 WARN_ON_ONCE(bo->pin_count);
410
411 if (!bo->deleted) {
412 ret = ttm_bo_individualize_resv(bo);
413 if (ret) {
414 /* Last resort, if we fail to allocate memory for the
415 * fences block for the BO to become idle
416 */
417 dma_resv_wait_timeout(bo->base.resv, true, false,
418 30 * HZ);
419 }
420
421 if (bo->bdev->funcs->release_notify)
422 bo->bdev->funcs->release_notify(bo);
423
424 drm_vma_offset_remove(bdev->vma_manager, &bo->base.vma_node);
425 ttm_mem_io_free(bdev, bo->resource);
426 }
427
428 if (!dma_resv_test_signaled(bo->base.resv, true) ||
429 !dma_resv_trylock(bo->base.resv)) {
430 /* The BO is not idle, resurrect it for delayed destroy */
431 ttm_bo_flush_all_fences(bo);
432 bo->deleted = true;
433
434 spin_lock(&bo->bdev->lru_lock);
435
436 /*
437 * Make pinned bos immediately available to
438 * shrinkers, now that they are queued for
439 * destruction.
440 *
441 * FIXME: QXL is triggering this. Can be removed when the
442 * driver is fixed.
443 */
444 if (bo->pin_count) {
445 bo->pin_count = 0;
446 ttm_bo_move_to_lru_tail(bo, bo->resource, NULL);
447 }
448
449 kref_init(&bo->kref);
450 list_add_tail(&bo->ddestroy, &bdev->ddestroy);
451 spin_unlock(&bo->bdev->lru_lock);
452
453 schedule_delayed_work(&bdev->wq,
454 ((HZ / 100) < 1) ? 1 : HZ / 100);
455 return;
456 }
457
458 spin_lock(&bo->bdev->lru_lock);
459 ttm_bo_del_from_lru(bo);
460 list_del(&bo->ddestroy);
461 spin_unlock(&bo->bdev->lru_lock);
462
463 ttm_bo_cleanup_memtype_use(bo);
464 dma_resv_unlock(bo->base.resv);
465
466 atomic_dec(&ttm_glob.bo_count);
467 dma_fence_put(bo->moving);
468 bo->destroy(bo);
469}
470
471void ttm_bo_put(struct ttm_buffer_object *bo)
472{
473 kref_put(&bo->kref, ttm_bo_release);
474}
475EXPORT_SYMBOL(ttm_bo_put);
476
477int ttm_bo_lock_delayed_workqueue(struct ttm_device *bdev)
478{
479 return cancel_delayed_work_sync(&bdev->wq);
480}
481EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
482
483void ttm_bo_unlock_delayed_workqueue(struct ttm_device *bdev, int resched)
484{
485 if (resched)
486 schedule_delayed_work(&bdev->wq,
487 ((HZ / 100) < 1) ? 1 : HZ / 100);
488}
489EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
490
491static int ttm_bo_bounce_temp_buffer(struct ttm_buffer_object *bo,
492 struct ttm_resource **mem,
493 struct ttm_operation_ctx *ctx,
494 struct ttm_place *hop)
495{
496 struct ttm_placement hop_placement;
497 struct ttm_resource *hop_mem;
498 int ret;
499
500 hop_placement.num_placement = hop_placement.num_busy_placement = 1;
501 hop_placement.placement = hop_placement.busy_placement = hop;
502
503 /* find space in the bounce domain */
504 ret = ttm_bo_mem_space(bo, &hop_placement, &hop_mem, ctx);
505 if (ret)
506 return ret;
507 /* move to the bounce domain */
508 ret = ttm_bo_handle_move_mem(bo, hop_mem, false, ctx, NULL);
509 if (ret) {
510 ttm_resource_free(bo, &hop_mem);
511 return ret;
512 }
513 return 0;
514}
515
516static int ttm_bo_evict(struct ttm_buffer_object *bo,
517 struct ttm_operation_ctx *ctx)
518{
519 struct ttm_device *bdev = bo->bdev;
520 struct ttm_resource *evict_mem;
521 struct ttm_placement placement;
522 struct ttm_place hop;
523 int ret = 0;
524
525 memset(&hop, 0, sizeof(hop));
526
527 dma_resv_assert_held(bo->base.resv);
528
529 placement.num_placement = 0;
530 placement.num_busy_placement = 0;
531 bdev->funcs->evict_flags(bo, &placement);
532
533 if (!placement.num_placement && !placement.num_busy_placement) {
534 ret = ttm_bo_wait(bo, true, false);
535 if (ret)
536 return ret;
537
538 /*
539 * Since we've already synced, this frees backing store
540 * immediately.
541 */
542 return ttm_bo_pipeline_gutting(bo);
543 }
544
545 ret = ttm_bo_mem_space(bo, &placement, &evict_mem, ctx);
546 if (ret) {
547 if (ret != -ERESTARTSYS) {
548 pr_err("Failed to find memory space for buffer 0x%p eviction\n",
549 bo);
550 ttm_bo_mem_space_debug(bo, &placement);
551 }
552 goto out;
553 }
554
555bounce:
556 ret = ttm_bo_handle_move_mem(bo, evict_mem, true, ctx, &hop);
557 if (ret == -EMULTIHOP) {
558 ret = ttm_bo_bounce_temp_buffer(bo, &evict_mem, ctx, &hop);
559 if (ret) {
560 pr_err("Buffer eviction failed\n");
561 ttm_resource_free(bo, &evict_mem);
562 goto out;
563 }
564 /* try and move to final place now. */
565 goto bounce;
566 }
567out:
568 return ret;
569}
570
571bool ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
572 const struct ttm_place *place)
573{
574 dma_resv_assert_held(bo->base.resv);
575 if (bo->resource->mem_type == TTM_PL_SYSTEM)
576 return true;
577
578 /* Don't evict this BO if it's outside of the
579 * requested placement range
580 */
581 if (place->fpfn >= (bo->resource->start + bo->resource->num_pages) ||
582 (place->lpfn && place->lpfn <= bo->resource->start))
583 return false;
584
585 return true;
586}
587EXPORT_SYMBOL(ttm_bo_eviction_valuable);
588
589/*
590 * Check the target bo is allowable to be evicted or swapout, including cases:
591 *
592 * a. if share same reservation object with ctx->resv, have assumption
593 * reservation objects should already be locked, so not lock again and
594 * return true directly when either the opreation allow_reserved_eviction
595 * or the target bo already is in delayed free list;
596 *
597 * b. Otherwise, trylock it.
598 */
599static bool ttm_bo_evict_swapout_allowable(struct ttm_buffer_object *bo,
600 struct ttm_operation_ctx *ctx,
601 const struct ttm_place *place,
602 bool *locked, bool *busy)
603{
604 bool ret = false;
605
606 if (bo->base.resv == ctx->resv) {
607 dma_resv_assert_held(bo->base.resv);
608 if (ctx->allow_res_evict)
609 ret = true;
610 *locked = false;
611 if (busy)
612 *busy = false;
613 } else {
614 ret = dma_resv_trylock(bo->base.resv);
615 *locked = ret;
616 if (busy)
617 *busy = !ret;
618 }
619
620 if (ret && place && !bo->bdev->funcs->eviction_valuable(bo, place)) {
621 ret = false;
622 if (*locked) {
623 dma_resv_unlock(bo->base.resv);
624 *locked = false;
625 }
626 }
627
628 return ret;
629}
630
631/**
632 * ttm_mem_evict_wait_busy - wait for a busy BO to become available
633 *
634 * @busy_bo: BO which couldn't be locked with trylock
635 * @ctx: operation context
636 * @ticket: acquire ticket
637 *
638 * Try to lock a busy buffer object to avoid failing eviction.
639 */
640static int ttm_mem_evict_wait_busy(struct ttm_buffer_object *busy_bo,
641 struct ttm_operation_ctx *ctx,
642 struct ww_acquire_ctx *ticket)
643{
644 int r;
645
646 if (!busy_bo || !ticket)
647 return -EBUSY;
648
649 if (ctx->interruptible)
650 r = dma_resv_lock_interruptible(busy_bo->base.resv,
651 ticket);
652 else
653 r = dma_resv_lock(busy_bo->base.resv, ticket);
654
655 /*
656 * TODO: It would be better to keep the BO locked until allocation is at
657 * least tried one more time, but that would mean a much larger rework
658 * of TTM.
659 */
660 if (!r)
661 dma_resv_unlock(busy_bo->base.resv);
662
663 return r == -EDEADLK ? -EBUSY : r;
664}
665
666int ttm_mem_evict_first(struct ttm_device *bdev,
667 struct ttm_resource_manager *man,
668 const struct ttm_place *place,
669 struct ttm_operation_ctx *ctx,
670 struct ww_acquire_ctx *ticket)
671{
672 struct ttm_buffer_object *bo = NULL, *busy_bo = NULL;
673 bool locked = false;
674 unsigned i;
675 int ret;
676
677 spin_lock(&bdev->lru_lock);
678 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
679 list_for_each_entry(bo, &man->lru[i], lru) {
680 bool busy;
681
682 if (!ttm_bo_evict_swapout_allowable(bo, ctx, place,
683 &locked, &busy)) {
684 if (busy && !busy_bo && ticket !=
685 dma_resv_locking_ctx(bo->base.resv))
686 busy_bo = bo;
687 continue;
688 }
689
690 if (!ttm_bo_get_unless_zero(bo)) {
691 if (locked)
692 dma_resv_unlock(bo->base.resv);
693 continue;
694 }
695 break;
696 }
697
698 /* If the inner loop terminated early, we have our candidate */
699 if (&bo->lru != &man->lru[i])
700 break;
701
702 bo = NULL;
703 }
704
705 if (!bo) {
706 if (busy_bo && !ttm_bo_get_unless_zero(busy_bo))
707 busy_bo = NULL;
708 spin_unlock(&bdev->lru_lock);
709 ret = ttm_mem_evict_wait_busy(busy_bo, ctx, ticket);
710 if (busy_bo)
711 ttm_bo_put(busy_bo);
712 return ret;
713 }
714
715 if (bo->deleted) {
716 ret = ttm_bo_cleanup_refs(bo, ctx->interruptible,
717 ctx->no_wait_gpu, locked);
718 ttm_bo_put(bo);
719 return ret;
720 }
721
722 spin_unlock(&bdev->lru_lock);
723
724 ret = ttm_bo_evict(bo, ctx);
725 if (locked)
726 ttm_bo_unreserve(bo);
727
728 ttm_bo_put(bo);
729 return ret;
730}
731
732/*
733 * Add the last move fence to the BO and reserve a new shared slot. We only use
734 * a shared slot to avoid unecessary sync and rely on the subsequent bo move to
735 * either stall or use an exclusive fence respectively set bo->moving.
736 */
737static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo,
738 struct ttm_resource_manager *man,
739 struct ttm_resource *mem,
740 bool no_wait_gpu)
741{
742 struct dma_fence *fence;
743 int ret;
744
745 spin_lock(&man->move_lock);
746 fence = dma_fence_get(man->move);
747 spin_unlock(&man->move_lock);
748
749 if (!fence)
750 return 0;
751
752 if (no_wait_gpu) {
753 ret = dma_fence_is_signaled(fence) ? 0 : -EBUSY;
754 dma_fence_put(fence);
755 return ret;
756 }
757
758 dma_resv_add_shared_fence(bo->base.resv, fence);
759
760 ret = dma_resv_reserve_shared(bo->base.resv, 1);
761 if (unlikely(ret)) {
762 dma_fence_put(fence);
763 return ret;
764 }
765
766 dma_fence_put(bo->moving);
767 bo->moving = fence;
768 return 0;
769}
770
771/*
772 * Repeatedly evict memory from the LRU for @mem_type until we create enough
773 * space, or we've evicted everything and there isn't enough space.
774 */
775static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
776 const struct ttm_place *place,
777 struct ttm_resource **mem,
778 struct ttm_operation_ctx *ctx)
779{
780 struct ttm_device *bdev = bo->bdev;
781 struct ttm_resource_manager *man;
782 struct ww_acquire_ctx *ticket;
783 int ret;
784
785 man = ttm_manager_type(bdev, place->mem_type);
786 ticket = dma_resv_locking_ctx(bo->base.resv);
787 do {
788 ret = ttm_resource_alloc(bo, place, mem);
789 if (likely(!ret))
790 break;
791 if (unlikely(ret != -ENOSPC))
792 return ret;
793 ret = ttm_mem_evict_first(bdev, man, place, ctx,
794 ticket);
795 if (unlikely(ret != 0))
796 return ret;
797 } while (1);
798
799 return ttm_bo_add_move_fence(bo, man, *mem, ctx->no_wait_gpu);
800}
801
802/*
803 * Creates space for memory region @mem according to its type.
804 *
805 * This function first searches for free space in compatible memory types in
806 * the priority order defined by the driver. If free space isn't found, then
807 * ttm_bo_mem_force_space is attempted in priority order to evict and find
808 * space.
809 */
810int ttm_bo_mem_space(struct ttm_buffer_object *bo,
811 struct ttm_placement *placement,
812 struct ttm_resource **mem,
813 struct ttm_operation_ctx *ctx)
814{
815 struct ttm_device *bdev = bo->bdev;
816 bool type_found = false;
817 int i, ret;
818
819 ret = dma_resv_reserve_shared(bo->base.resv, 1);
820 if (unlikely(ret))
821 return ret;
822
823 for (i = 0; i < placement->num_placement; ++i) {
824 const struct ttm_place *place = &placement->placement[i];
825 struct ttm_resource_manager *man;
826
827 man = ttm_manager_type(bdev, place->mem_type);
828 if (!man || !ttm_resource_manager_used(man))
829 continue;
830
831 type_found = true;
832 ret = ttm_resource_alloc(bo, place, mem);
833 if (ret == -ENOSPC)
834 continue;
835 if (unlikely(ret))
836 goto error;
837
838 ret = ttm_bo_add_move_fence(bo, man, *mem, ctx->no_wait_gpu);
839 if (unlikely(ret)) {
840 ttm_resource_free(bo, mem);
841 if (ret == -EBUSY)
842 continue;
843
844 goto error;
845 }
846 return 0;
847 }
848
849 for (i = 0; i < placement->num_busy_placement; ++i) {
850 const struct ttm_place *place = &placement->busy_placement[i];
851 struct ttm_resource_manager *man;
852
853 man = ttm_manager_type(bdev, place->mem_type);
854 if (!man || !ttm_resource_manager_used(man))
855 continue;
856
857 type_found = true;
858 ret = ttm_bo_mem_force_space(bo, place, mem, ctx);
859 if (likely(!ret))
860 return 0;
861
862 if (ret && ret != -EBUSY)
863 goto error;
864 }
865
866 ret = -ENOMEM;
867 if (!type_found) {
868 pr_err(TTM_PFX "No compatible memory type found\n");
869 ret = -EINVAL;
870 }
871
872error:
873 if (bo->resource->mem_type == TTM_PL_SYSTEM && !bo->pin_count)
874 ttm_bo_move_to_lru_tail_unlocked(bo);
875
876 return ret;
877}
878EXPORT_SYMBOL(ttm_bo_mem_space);
879
880static int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
881 struct ttm_placement *placement,
882 struct ttm_operation_ctx *ctx)
883{
884 struct ttm_resource *mem;
885 struct ttm_place hop;
886 int ret;
887
888 dma_resv_assert_held(bo->base.resv);
889
890 /*
891 * Determine where to move the buffer.
892 *
893 * If driver determines move is going to need
894 * an extra step then it will return -EMULTIHOP
895 * and the buffer will be moved to the temporary
896 * stop and the driver will be called to make
897 * the second hop.
898 */
899 ret = ttm_bo_mem_space(bo, placement, &mem, ctx);
900 if (ret)
901 return ret;
902bounce:
903 ret = ttm_bo_handle_move_mem(bo, mem, false, ctx, &hop);
904 if (ret == -EMULTIHOP) {
905 ret = ttm_bo_bounce_temp_buffer(bo, &mem, ctx, &hop);
906 if (ret)
907 goto out;
908 /* try and move to final place now. */
909 goto bounce;
910 }
911out:
912 if (ret)
913 ttm_resource_free(bo, &mem);
914 return ret;
915}
916
917static bool ttm_bo_places_compat(const struct ttm_place *places,
918 unsigned num_placement,
919 struct ttm_resource *mem,
920 uint32_t *new_flags)
921{
922 unsigned i;
923
924 for (i = 0; i < num_placement; i++) {
925 const struct ttm_place *heap = &places[i];
926
927 if ((mem->start < heap->fpfn ||
928 (heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn)))
929 continue;
930
931 *new_flags = heap->flags;
932 if ((mem->mem_type == heap->mem_type) &&
933 (!(*new_flags & TTM_PL_FLAG_CONTIGUOUS) ||
934 (mem->placement & TTM_PL_FLAG_CONTIGUOUS)))
935 return true;
936 }
937 return false;
938}
939
940bool ttm_bo_mem_compat(struct ttm_placement *placement,
941 struct ttm_resource *mem,
942 uint32_t *new_flags)
943{
944 if (ttm_bo_places_compat(placement->placement, placement->num_placement,
945 mem, new_flags))
946 return true;
947
948 if ((placement->busy_placement != placement->placement ||
949 placement->num_busy_placement > placement->num_placement) &&
950 ttm_bo_places_compat(placement->busy_placement,
951 placement->num_busy_placement,
952 mem, new_flags))
953 return true;
954
955 return false;
956}
957EXPORT_SYMBOL(ttm_bo_mem_compat);
958
959int ttm_bo_validate(struct ttm_buffer_object *bo,
960 struct ttm_placement *placement,
961 struct ttm_operation_ctx *ctx)
962{
963 int ret;
964 uint32_t new_flags;
965
966 dma_resv_assert_held(bo->base.resv);
967
968 /*
969 * Remove the backing store if no placement is given.
970 */
971 if (!placement->num_placement && !placement->num_busy_placement)
972 return ttm_bo_pipeline_gutting(bo);
973
974 /*
975 * Check whether we need to move buffer.
976 */
977 if (!ttm_bo_mem_compat(placement, bo->resource, &new_flags)) {
978 ret = ttm_bo_move_buffer(bo, placement, ctx);
979 if (ret)
980 return ret;
981 }
982 /*
983 * We might need to add a TTM.
984 */
985 if (bo->resource->mem_type == TTM_PL_SYSTEM) {
986 ret = ttm_tt_create(bo, true);
987 if (ret)
988 return ret;
989 }
990 return 0;
991}
992EXPORT_SYMBOL(ttm_bo_validate);
993
994int ttm_bo_init_reserved(struct ttm_device *bdev,
995 struct ttm_buffer_object *bo,
996 size_t size,
997 enum ttm_bo_type type,
998 struct ttm_placement *placement,
999 uint32_t page_alignment,
1000 struct ttm_operation_ctx *ctx,
1001 struct sg_table *sg,
1002 struct dma_resv *resv,
1003 void (*destroy) (struct ttm_buffer_object *))
1004{
1005 static const struct ttm_place sys_mem = { .mem_type = TTM_PL_SYSTEM };
1006 bool locked;
1007 int ret;
1008
1009 bo->destroy = destroy ? destroy : ttm_bo_default_destroy;
1010
1011 kref_init(&bo->kref);
1012 INIT_LIST_HEAD(&bo->lru);
1013 INIT_LIST_HEAD(&bo->ddestroy);
1014 bo->bdev = bdev;
1015 bo->type = type;
1016 bo->page_alignment = page_alignment;
1017 bo->moving = NULL;
1018 bo->pin_count = 0;
1019 bo->sg = sg;
1020 if (resv) {
1021 bo->base.resv = resv;
1022 dma_resv_assert_held(bo->base.resv);
1023 } else {
1024 bo->base.resv = &bo->base._resv;
1025 }
1026 atomic_inc(&ttm_glob.bo_count);
1027
1028 ret = ttm_resource_alloc(bo, &sys_mem, &bo->resource);
1029 if (unlikely(ret)) {
1030 ttm_bo_put(bo);
1031 return ret;
1032 }
1033
1034 /*
1035 * For ttm_bo_type_device buffers, allocate
1036 * address space from the device.
1037 */
1038 if (bo->type == ttm_bo_type_device ||
1039 bo->type == ttm_bo_type_sg)
1040 ret = drm_vma_offset_add(bdev->vma_manager, &bo->base.vma_node,
1041 bo->resource->num_pages);
1042
1043 /* passed reservation objects should already be locked,
1044 * since otherwise lockdep will be angered in radeon.
1045 */
1046 if (!resv) {
1047 locked = dma_resv_trylock(bo->base.resv);
1048 WARN_ON(!locked);
1049 }
1050
1051 if (likely(!ret))
1052 ret = ttm_bo_validate(bo, placement, ctx);
1053
1054 if (unlikely(ret)) {
1055 if (!resv)
1056 ttm_bo_unreserve(bo);
1057
1058 ttm_bo_put(bo);
1059 return ret;
1060 }
1061
1062 ttm_bo_move_to_lru_tail_unlocked(bo);
1063
1064 return ret;
1065}
1066EXPORT_SYMBOL(ttm_bo_init_reserved);
1067
1068int ttm_bo_init(struct ttm_device *bdev,
1069 struct ttm_buffer_object *bo,
1070 size_t size,
1071 enum ttm_bo_type type,
1072 struct ttm_placement *placement,
1073 uint32_t page_alignment,
1074 bool interruptible,
1075 struct sg_table *sg,
1076 struct dma_resv *resv,
1077 void (*destroy) (struct ttm_buffer_object *))
1078{
1079 struct ttm_operation_ctx ctx = { interruptible, false };
1080 int ret;
1081
1082 ret = ttm_bo_init_reserved(bdev, bo, size, type, placement,
1083 page_alignment, &ctx, sg, resv, destroy);
1084 if (ret)
1085 return ret;
1086
1087 if (!resv)
1088 ttm_bo_unreserve(bo);
1089
1090 return 0;
1091}
1092EXPORT_SYMBOL(ttm_bo_init);
1093
1094/*
1095 * buffer object vm functions.
1096 */
1097
1098void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1099{
1100 struct ttm_device *bdev = bo->bdev;
1101
1102 drm_vma_node_unmap(&bo->base.vma_node, bdev->dev_mapping);
1103 ttm_mem_io_free(bdev, bo->resource);
1104}
1105EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1106
1107int ttm_bo_wait(struct ttm_buffer_object *bo,
1108 bool interruptible, bool no_wait)
1109{
1110 long timeout = 15 * HZ;
1111
1112 if (no_wait) {
1113 if (dma_resv_test_signaled(bo->base.resv, true))
1114 return 0;
1115 else
1116 return -EBUSY;
1117 }
1118
1119 timeout = dma_resv_wait_timeout(bo->base.resv, true, interruptible,
1120 timeout);
1121 if (timeout < 0)
1122 return timeout;
1123
1124 if (timeout == 0)
1125 return -EBUSY;
1126
1127 dma_resv_add_excl_fence(bo->base.resv, NULL);
1128 return 0;
1129}
1130EXPORT_SYMBOL(ttm_bo_wait);
1131
1132int ttm_bo_swapout(struct ttm_buffer_object *bo, struct ttm_operation_ctx *ctx,
1133 gfp_t gfp_flags)
1134{
1135 struct ttm_place place;
1136 bool locked;
1137 int ret;
1138
1139 /*
1140 * While the bo may already reside in SYSTEM placement, set
1141 * SYSTEM as new placement to cover also the move further below.
1142 * The driver may use the fact that we're moving from SYSTEM
1143 * as an indication that we're about to swap out.
1144 */
1145 memset(&place, 0, sizeof(place));
1146 place.mem_type = TTM_PL_SYSTEM;
1147 if (!ttm_bo_evict_swapout_allowable(bo, ctx, &place, &locked, NULL))
1148 return -EBUSY;
1149
1150 if (!bo->ttm || !ttm_tt_is_populated(bo->ttm) ||
1151 bo->ttm->page_flags & TTM_PAGE_FLAG_SG ||
1152 bo->ttm->page_flags & TTM_PAGE_FLAG_SWAPPED ||
1153 !ttm_bo_get_unless_zero(bo)) {
1154 if (locked)
1155 dma_resv_unlock(bo->base.resv);
1156 return -EBUSY;
1157 }
1158
1159 if (bo->deleted) {
1160 ret = ttm_bo_cleanup_refs(bo, false, false, locked);
1161 ttm_bo_put(bo);
1162 return ret == -EBUSY ? -ENOSPC : ret;
1163 }
1164
1165 ttm_bo_del_from_lru(bo);
1166 /* TODO: Cleanup the locking */
1167 spin_unlock(&bo->bdev->lru_lock);
1168
1169 /*
1170 * Move to system cached
1171 */
1172 if (bo->resource->mem_type != TTM_PL_SYSTEM) {
1173 struct ttm_operation_ctx ctx = { false, false };
1174 struct ttm_resource *evict_mem;
1175 struct ttm_place hop;
1176
1177 memset(&hop, 0, sizeof(hop));
1178 ret = ttm_resource_alloc(bo, &place, &evict_mem);
1179 if (unlikely(ret))
1180 goto out;
1181
1182 ret = ttm_bo_handle_move_mem(bo, evict_mem, true, &ctx, &hop);
1183 if (unlikely(ret != 0)) {
1184 WARN(ret == -EMULTIHOP, "Unexpected multihop in swaput - likely driver bug.\n");
1185 goto out;
1186 }
1187 }
1188
1189 /*
1190 * Make sure BO is idle.
1191 */
1192 ret = ttm_bo_wait(bo, false, false);
1193 if (unlikely(ret != 0))
1194 goto out;
1195
1196 ttm_bo_unmap_virtual(bo);
1197
1198 /*
1199 * Swap out. Buffer will be swapped in again as soon as
1200 * anyone tries to access a ttm page.
1201 */
1202 if (bo->bdev->funcs->swap_notify)
1203 bo->bdev->funcs->swap_notify(bo);
1204
1205 if (ttm_tt_is_populated(bo->ttm))
1206 ret = ttm_tt_swapout(bo->bdev, bo->ttm, gfp_flags);
1207out:
1208
1209 /*
1210 * Unreserve without putting on LRU to avoid swapping out an
1211 * already swapped buffer.
1212 */
1213 if (locked)
1214 dma_resv_unlock(bo->base.resv);
1215 ttm_bo_put(bo);
1216 return ret == -EBUSY ? -ENOSPC : ret;
1217}
1218
1219void ttm_bo_tt_destroy(struct ttm_buffer_object *bo)
1220{
1221 if (bo->ttm == NULL)
1222 return;
1223
1224 ttm_tt_destroy(bo->bdev, bo->ttm);
1225 bo->ttm = NULL;
1226}