Linux Audio

Check our new training course

Loading...
v5.4
   1/*
   2 * Copyright 2016 Advanced Micro Devices, Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 *
  22 */
  23
  24#include <linux/delay.h>
  25#include <linux/firmware.h>
  26#include <linux/module.h>
  27#include <linux/pci.h>
  28
  29#include "amdgpu.h"
  30#include "amdgpu_ucode.h"
  31#include "amdgpu_trace.h"
  32
  33#include "sdma0/sdma0_4_2_offset.h"
  34#include "sdma0/sdma0_4_2_sh_mask.h"
  35#include "sdma1/sdma1_4_2_offset.h"
  36#include "sdma1/sdma1_4_2_sh_mask.h"
  37#include "sdma2/sdma2_4_2_2_offset.h"
  38#include "sdma2/sdma2_4_2_2_sh_mask.h"
  39#include "sdma3/sdma3_4_2_2_offset.h"
  40#include "sdma3/sdma3_4_2_2_sh_mask.h"
  41#include "sdma4/sdma4_4_2_2_offset.h"
  42#include "sdma4/sdma4_4_2_2_sh_mask.h"
  43#include "sdma5/sdma5_4_2_2_offset.h"
  44#include "sdma5/sdma5_4_2_2_sh_mask.h"
  45#include "sdma6/sdma6_4_2_2_offset.h"
  46#include "sdma6/sdma6_4_2_2_sh_mask.h"
  47#include "sdma7/sdma7_4_2_2_offset.h"
  48#include "sdma7/sdma7_4_2_2_sh_mask.h"
  49#include "hdp/hdp_4_0_offset.h"
  50#include "sdma0/sdma0_4_1_default.h"
  51
  52#include "soc15_common.h"
  53#include "soc15.h"
  54#include "vega10_sdma_pkt_open.h"
  55
  56#include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
  57#include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
  58
  59#include "amdgpu_ras.h"
 
  60
  61MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
  62MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
  63MODULE_FIRMWARE("amdgpu/vega12_sdma.bin");
  64MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin");
  65MODULE_FIRMWARE("amdgpu/vega20_sdma.bin");
  66MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin");
  67MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
  68MODULE_FIRMWARE("amdgpu/picasso_sdma.bin");
  69MODULE_FIRMWARE("amdgpu/raven2_sdma.bin");
  70MODULE_FIRMWARE("amdgpu/arcturus_sdma.bin");
  71MODULE_FIRMWARE("amdgpu/renoir_sdma.bin");
 
 
  72
  73#define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK  0x000000F8L
  74#define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
  75
  76#define WREG32_SDMA(instance, offset, value) \
  77	WREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)), value)
  78#define RREG32_SDMA(instance, offset) \
  79	RREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)))
  80
  81static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
  82static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
  83static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
  84static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
 
  85
  86static const struct soc15_reg_golden golden_settings_sdma_4[] = {
  87	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
  88	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
  89	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
  90	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
  91	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
  92	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  93	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
  94	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
  95	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  96	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
  97	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  98	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
  99	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000),
 100	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
 101	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
 102	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
 103	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
 104	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
 105	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
 106	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
 107	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
 108	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
 109	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
 110	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
 111	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000)
 112};
 113
 114static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
 115	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
 116	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
 
 117	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
 118	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
 119	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002)
 
 120};
 121
 122static const struct soc15_reg_golden golden_settings_sdma_vg12[] = {
 123	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
 124	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
 
 125	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
 126	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
 127	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001)
 
 128};
 129
 130static const struct soc15_reg_golden golden_settings_sdma_4_1[] = {
 131	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
 132	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
 133	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
 134	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 135	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
 136	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
 137	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 138	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
 139	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 140	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
 141	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000)
 142};
 143
 144static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = {
 145	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
 146};
 147
 148static const struct soc15_reg_golden golden_settings_sdma0_4_2[] =
 149{
 150	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 151	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
 152	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 153	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 154	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 155	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 156	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 157	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 158	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003),
 159	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 160	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
 161	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 162	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 163	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 164	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 165	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 166	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 167	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 168	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 169	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 170	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 171	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 172	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 173	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 174	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 175	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
 
 176};
 177
 178static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = {
 179	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 180	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
 181	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 182	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 183	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 184	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 185	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 186	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 187	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003),
 188	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 189	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
 190	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 191	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 192	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 193	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 194	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 195	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 196	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 197	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 198	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 199	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 200	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 201	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 202	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 203	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 204	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
 
 205};
 206
 207static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
 208{
 209	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
 210	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
 211};
 212
 213static const struct soc15_reg_golden golden_settings_sdma_rv2[] =
 214{
 215	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001),
 216	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001)
 217};
 218
 219static const struct soc15_reg_golden golden_settings_sdma_arct[] =
 220{
 221	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 222	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 223	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 
 224	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 225	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 226	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 
 227	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 228	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 229	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 
 230	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 231	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 232	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 
 233	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 234	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 235	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 
 236	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 237	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 238	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 
 239	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 240	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 241	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 
 242	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 243	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 244	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 245};
 246
 247static const struct soc15_reg_golden golden_settings_sdma_4_3[] = {
 248	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 249	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
 250	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
 251	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002),
 252	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 253	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003fff07, 0x40000051),
 254	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 255	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 256	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
 257	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 258};
 259
 260static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
 261		u32 instance, u32 offset)
 262{
 263	switch (instance) {
 264	case 0:
 265		return (adev->reg_offset[SDMA0_HWIP][0][0] + offset);
 266	case 1:
 267		return (adev->reg_offset[SDMA1_HWIP][0][0] + offset);
 268	case 2:
 269		return (adev->reg_offset[SDMA2_HWIP][0][1] + offset);
 270	case 3:
 271		return (adev->reg_offset[SDMA3_HWIP][0][1] + offset);
 272	case 4:
 273		return (adev->reg_offset[SDMA4_HWIP][0][1] + offset);
 274	case 5:
 275		return (adev->reg_offset[SDMA5_HWIP][0][1] + offset);
 276	case 6:
 277		return (adev->reg_offset[SDMA6_HWIP][0][1] + offset);
 278	case 7:
 279		return (adev->reg_offset[SDMA7_HWIP][0][1] + offset);
 280	default:
 281		break;
 282	}
 283	return 0;
 284}
 285
 286static unsigned sdma_v4_0_seq_to_irq_id(int seq_num)
 287{
 288	switch (seq_num) {
 289	case 0:
 290		return SOC15_IH_CLIENTID_SDMA0;
 291	case 1:
 292		return SOC15_IH_CLIENTID_SDMA1;
 293	case 2:
 294		return SOC15_IH_CLIENTID_SDMA2;
 295	case 3:
 296		return SOC15_IH_CLIENTID_SDMA3;
 297	case 4:
 298		return SOC15_IH_CLIENTID_SDMA4;
 299	case 5:
 300		return SOC15_IH_CLIENTID_SDMA5;
 301	case 6:
 302		return SOC15_IH_CLIENTID_SDMA6;
 303	case 7:
 304		return SOC15_IH_CLIENTID_SDMA7;
 305	default:
 306		break;
 307	}
 308	return -EINVAL;
 309}
 310
 311static int sdma_v4_0_irq_id_to_seq(unsigned client_id)
 312{
 313	switch (client_id) {
 314	case SOC15_IH_CLIENTID_SDMA0:
 315		return 0;
 316	case SOC15_IH_CLIENTID_SDMA1:
 317		return 1;
 318	case SOC15_IH_CLIENTID_SDMA2:
 319		return 2;
 320	case SOC15_IH_CLIENTID_SDMA3:
 321		return 3;
 322	case SOC15_IH_CLIENTID_SDMA4:
 323		return 4;
 324	case SOC15_IH_CLIENTID_SDMA5:
 325		return 5;
 326	case SOC15_IH_CLIENTID_SDMA6:
 327		return 6;
 328	case SOC15_IH_CLIENTID_SDMA7:
 329		return 7;
 330	default:
 331		break;
 332	}
 333	return -EINVAL;
 334}
 335
 336static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
 337{
 338	switch (adev->asic_type) {
 339	case CHIP_VEGA10:
 340		soc15_program_register_sequence(adev,
 341						golden_settings_sdma_4,
 342						ARRAY_SIZE(golden_settings_sdma_4));
 343		soc15_program_register_sequence(adev,
 344						golden_settings_sdma_vg10,
 345						ARRAY_SIZE(golden_settings_sdma_vg10));
 346		break;
 347	case CHIP_VEGA12:
 348		soc15_program_register_sequence(adev,
 349						golden_settings_sdma_4,
 350						ARRAY_SIZE(golden_settings_sdma_4));
 351		soc15_program_register_sequence(adev,
 352						golden_settings_sdma_vg12,
 353						ARRAY_SIZE(golden_settings_sdma_vg12));
 354		break;
 355	case CHIP_VEGA20:
 356		soc15_program_register_sequence(adev,
 357						golden_settings_sdma0_4_2_init,
 358						ARRAY_SIZE(golden_settings_sdma0_4_2_init));
 359		soc15_program_register_sequence(adev,
 360						golden_settings_sdma0_4_2,
 361						ARRAY_SIZE(golden_settings_sdma0_4_2));
 362		soc15_program_register_sequence(adev,
 363						golden_settings_sdma1_4_2,
 364						ARRAY_SIZE(golden_settings_sdma1_4_2));
 365		break;
 366	case CHIP_ARCTURUS:
 367		soc15_program_register_sequence(adev,
 368						golden_settings_sdma_arct,
 369						ARRAY_SIZE(golden_settings_sdma_arct));
 370		break;
 
 
 
 
 
 371	case CHIP_RAVEN:
 372		soc15_program_register_sequence(adev,
 373						golden_settings_sdma_4_1,
 374						ARRAY_SIZE(golden_settings_sdma_4_1));
 375		if (adev->rev_id >= 8)
 376			soc15_program_register_sequence(adev,
 377							golden_settings_sdma_rv2,
 378							ARRAY_SIZE(golden_settings_sdma_rv2));
 379		else
 380			soc15_program_register_sequence(adev,
 381							golden_settings_sdma_rv1,
 382							ARRAY_SIZE(golden_settings_sdma_rv1));
 383		break;
 384	case CHIP_RENOIR:
 385		soc15_program_register_sequence(adev,
 386						golden_settings_sdma_4_3,
 387						ARRAY_SIZE(golden_settings_sdma_4_3));
 388		break;
 389	default:
 390		break;
 391	}
 392}
 393
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 394static int sdma_v4_0_init_inst_ctx(struct amdgpu_sdma_instance *sdma_inst)
 395{
 396	int err = 0;
 397	const struct sdma_firmware_header_v1_0 *hdr;
 398
 399	err = amdgpu_ucode_validate(sdma_inst->fw);
 400	if (err)
 401		return err;
 402
 403	hdr = (const struct sdma_firmware_header_v1_0 *)sdma_inst->fw->data;
 404	sdma_inst->fw_version = le32_to_cpu(hdr->header.ucode_version);
 405	sdma_inst->feature_version = le32_to_cpu(hdr->ucode_feature_version);
 406
 407	if (sdma_inst->feature_version >= 20)
 408		sdma_inst->burst_nop = true;
 409
 410	return 0;
 411}
 412
 413static void sdma_v4_0_destroy_inst_ctx(struct amdgpu_device *adev)
 414{
 415	int i;
 416
 417	for (i = 0; i < adev->sdma.num_instances; i++) {
 418		if (adev->sdma.instance[i].fw != NULL)
 419			release_firmware(adev->sdma.instance[i].fw);
 420
 421		/* arcturus shares the same FW memory across
 422		   all SDMA isntances */
 423		if (adev->asic_type == CHIP_ARCTURUS)
 
 424			break;
 425	}
 426
 427	memset((void*)adev->sdma.instance, 0,
 428		sizeof(struct amdgpu_sdma_instance) * AMDGPU_MAX_SDMA_INSTANCES);
 429}
 430
 431/**
 432 * sdma_v4_0_init_microcode - load ucode images from disk
 433 *
 434 * @adev: amdgpu_device pointer
 435 *
 436 * Use the firmware interface to load the ucode images into
 437 * the driver (not loaded into hw).
 438 * Returns 0 on success, error on failure.
 439 */
 440
 441// emulation only, won't work on real chip
 442// vega10 real chip need to use PSP to load firmware
 443static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
 444{
 445	const char *chip_name;
 446	char fw_name[30];
 447	int err = 0, i;
 448	struct amdgpu_firmware_info *info = NULL;
 449	const struct common_firmware_header *header = NULL;
 450
 451	DRM_DEBUG("\n");
 452
 453	switch (adev->asic_type) {
 454	case CHIP_VEGA10:
 455		chip_name = "vega10";
 456		break;
 457	case CHIP_VEGA12:
 458		chip_name = "vega12";
 459		break;
 460	case CHIP_VEGA20:
 461		chip_name = "vega20";
 462		break;
 463	case CHIP_RAVEN:
 464		if (adev->rev_id >= 8)
 465			chip_name = "raven2";
 466		else if (adev->pdev->device == 0x15d8)
 467			chip_name = "picasso";
 468		else
 469			chip_name = "raven";
 470		break;
 471	case CHIP_ARCTURUS:
 472		chip_name = "arcturus";
 473		break;
 474	case CHIP_RENOIR:
 475		chip_name = "renoir";
 
 
 
 
 
 
 476		break;
 477	default:
 478		BUG();
 479	}
 480
 481	snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
 482
 483	err = request_firmware(&adev->sdma.instance[0].fw, fw_name, adev->dev);
 484	if (err)
 485		goto out;
 486
 487	err = sdma_v4_0_init_inst_ctx(&adev->sdma.instance[0]);
 488	if (err)
 489		goto out;
 490
 491	for (i = 1; i < adev->sdma.num_instances; i++) {
 492		if (adev->asic_type == CHIP_ARCTURUS) {
 493			/* Acturus will leverage the same FW memory
 
 494			   for every SDMA instance */
 495			memcpy((void*)&adev->sdma.instance[i],
 496			       (void*)&adev->sdma.instance[0],
 497			       sizeof(struct amdgpu_sdma_instance));
 498		}
 499		else {
 500			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma%d.bin", chip_name, i);
 501
 502			err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
 503			if (err)
 504				goto out;
 505
 506			err = sdma_v4_0_init_inst_ctx(&adev->sdma.instance[i]);
 507			if (err)
 508				goto out;
 509		}
 510	}
 511
 512	DRM_DEBUG("psp_load == '%s'\n",
 513		adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
 514
 515	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
 516		for (i = 0; i < adev->sdma.num_instances; i++) {
 517			info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
 518			info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
 519			info->fw = adev->sdma.instance[i].fw;
 520			header = (const struct common_firmware_header *)info->fw->data;
 521			adev->firmware.fw_size +=
 522				ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
 523		}
 524	}
 525
 526out:
 527	if (err) {
 528		DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name);
 529		sdma_v4_0_destroy_inst_ctx(adev);
 530	}
 531	return err;
 532}
 533
 534/**
 535 * sdma_v4_0_ring_get_rptr - get the current read pointer
 536 *
 537 * @ring: amdgpu ring pointer
 538 *
 539 * Get the current rptr from the hardware (VEGA10+).
 540 */
 541static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
 542{
 543	u64 *rptr;
 544
 545	/* XXX check if swapping is necessary on BE */
 546	rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
 547
 548	DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
 549	return ((*rptr) >> 2);
 550}
 551
 552/**
 553 * sdma_v4_0_ring_get_wptr - get the current write pointer
 554 *
 555 * @ring: amdgpu ring pointer
 556 *
 557 * Get the current wptr from the hardware (VEGA10+).
 558 */
 559static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
 560{
 561	struct amdgpu_device *adev = ring->adev;
 562	u64 wptr;
 563
 564	if (ring->use_doorbell) {
 565		/* XXX check if swapping is necessary on BE */
 566		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
 567		DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
 568	} else {
 569		wptr = RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI);
 570		wptr = wptr << 32;
 571		wptr |= RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR);
 572		DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n",
 573				ring->me, wptr);
 574	}
 575
 576	return wptr >> 2;
 577}
 578
 579/**
 580 * sdma_v4_0_ring_set_wptr - commit the write pointer
 581 *
 582 * @ring: amdgpu ring pointer
 583 *
 584 * Write the wptr back to the hardware (VEGA10+).
 585 */
 586static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
 587{
 588	struct amdgpu_device *adev = ring->adev;
 589
 590	DRM_DEBUG("Setting write pointer\n");
 591	if (ring->use_doorbell) {
 592		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
 593
 594		DRM_DEBUG("Using doorbell -- "
 595				"wptr_offs == 0x%08x "
 596				"lower_32_bits(ring->wptr) << 2 == 0x%08x "
 597				"upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
 598				ring->wptr_offs,
 599				lower_32_bits(ring->wptr << 2),
 600				upper_32_bits(ring->wptr << 2));
 601		/* XXX check if swapping is necessary on BE */
 602		WRITE_ONCE(*wb, (ring->wptr << 2));
 603		DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
 604				ring->doorbell_index, ring->wptr << 2);
 605		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
 606	} else {
 607		DRM_DEBUG("Not using doorbell -- "
 608				"mmSDMA%i_GFX_RB_WPTR == 0x%08x "
 609				"mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
 610				ring->me,
 611				lower_32_bits(ring->wptr << 2),
 612				ring->me,
 613				upper_32_bits(ring->wptr << 2));
 614		WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR,
 615			    lower_32_bits(ring->wptr << 2));
 616		WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI,
 617			    upper_32_bits(ring->wptr << 2));
 618	}
 619}
 620
 621/**
 622 * sdma_v4_0_page_ring_get_wptr - get the current write pointer
 623 *
 624 * @ring: amdgpu ring pointer
 625 *
 626 * Get the current wptr from the hardware (VEGA10+).
 627 */
 628static uint64_t sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring *ring)
 629{
 630	struct amdgpu_device *adev = ring->adev;
 631	u64 wptr;
 632
 633	if (ring->use_doorbell) {
 634		/* XXX check if swapping is necessary on BE */
 635		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
 636	} else {
 637		wptr = RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI);
 638		wptr = wptr << 32;
 639		wptr |= RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR);
 640	}
 641
 642	return wptr >> 2;
 643}
 644
 645/**
 646 * sdma_v4_0_ring_set_wptr - commit the write pointer
 647 *
 648 * @ring: amdgpu ring pointer
 649 *
 650 * Write the wptr back to the hardware (VEGA10+).
 651 */
 652static void sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring *ring)
 653{
 654	struct amdgpu_device *adev = ring->adev;
 655
 656	if (ring->use_doorbell) {
 657		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
 658
 659		/* XXX check if swapping is necessary on BE */
 660		WRITE_ONCE(*wb, (ring->wptr << 2));
 661		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
 662	} else {
 663		uint64_t wptr = ring->wptr << 2;
 664
 665		WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR,
 666			    lower_32_bits(wptr));
 667		WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI,
 668			    upper_32_bits(wptr));
 669	}
 670}
 671
 672static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
 673{
 674	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
 675	int i;
 676
 677	for (i = 0; i < count; i++)
 678		if (sdma && sdma->burst_nop && (i == 0))
 679			amdgpu_ring_write(ring, ring->funcs->nop |
 680				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
 681		else
 682			amdgpu_ring_write(ring, ring->funcs->nop);
 683}
 684
 685/**
 686 * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
 687 *
 688 * @ring: amdgpu ring pointer
 
 689 * @ib: IB object to schedule
 
 690 *
 691 * Schedule an IB in the DMA ring (VEGA10).
 692 */
 693static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
 694				   struct amdgpu_job *job,
 695				   struct amdgpu_ib *ib,
 696				   uint32_t flags)
 697{
 698	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
 699
 700	/* IB packet must end on a 8 DW boundary */
 701	sdma_v4_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
 702
 703	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
 704			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
 705	/* base must be 32 byte aligned */
 706	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
 707	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
 708	amdgpu_ring_write(ring, ib->length_dw);
 709	amdgpu_ring_write(ring, 0);
 710	amdgpu_ring_write(ring, 0);
 711
 712}
 713
 714static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring,
 715				   int mem_space, int hdp,
 716				   uint32_t addr0, uint32_t addr1,
 717				   uint32_t ref, uint32_t mask,
 718				   uint32_t inv)
 719{
 720	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
 721			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
 722			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
 723			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
 724	if (mem_space) {
 725		/* memory */
 726		amdgpu_ring_write(ring, addr0);
 727		amdgpu_ring_write(ring, addr1);
 728	} else {
 729		/* registers */
 730		amdgpu_ring_write(ring, addr0 << 2);
 731		amdgpu_ring_write(ring, addr1 << 2);
 732	}
 733	amdgpu_ring_write(ring, ref); /* reference */
 734	amdgpu_ring_write(ring, mask); /* mask */
 735	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
 736			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
 737}
 738
 739/**
 740 * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
 741 *
 742 * @ring: amdgpu ring pointer
 743 *
 744 * Emit an hdp flush packet on the requested DMA ring.
 745 */
 746static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
 747{
 748	struct amdgpu_device *adev = ring->adev;
 749	u32 ref_and_mask = 0;
 750	const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio_funcs->hdp_flush_reg;
 751
 752	ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me;
 753
 754	sdma_v4_0_wait_reg_mem(ring, 0, 1,
 755			       adev->nbio_funcs->get_hdp_flush_done_offset(adev),
 756			       adev->nbio_funcs->get_hdp_flush_req_offset(adev),
 757			       ref_and_mask, ref_and_mask, 10);
 758}
 759
 760/**
 761 * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
 762 *
 763 * @ring: amdgpu ring pointer
 764 * @fence: amdgpu fence object
 
 
 765 *
 766 * Add a DMA fence packet to the ring to write
 767 * the fence seq number and DMA trap packet to generate
 768 * an interrupt if needed (VEGA10).
 769 */
 770static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
 771				      unsigned flags)
 772{
 773	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
 774	/* write the fence */
 775	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
 776	/* zero in first two bits */
 777	BUG_ON(addr & 0x3);
 778	amdgpu_ring_write(ring, lower_32_bits(addr));
 779	amdgpu_ring_write(ring, upper_32_bits(addr));
 780	amdgpu_ring_write(ring, lower_32_bits(seq));
 781
 782	/* optionally write high bits as well */
 783	if (write64bit) {
 784		addr += 4;
 785		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
 786		/* zero in first two bits */
 787		BUG_ON(addr & 0x3);
 788		amdgpu_ring_write(ring, lower_32_bits(addr));
 789		amdgpu_ring_write(ring, upper_32_bits(addr));
 790		amdgpu_ring_write(ring, upper_32_bits(seq));
 791	}
 792
 793	/* generate an interrupt */
 794	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
 795	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
 796}
 797
 798
 799/**
 800 * sdma_v4_0_gfx_stop - stop the gfx async dma engines
 801 *
 802 * @adev: amdgpu_device pointer
 803 *
 804 * Stop the gfx async dma ring buffers (VEGA10).
 805 */
 806static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
 807{
 808	struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
 809	u32 rb_cntl, ib_cntl;
 810	int i, unset = 0;
 811
 812	for (i = 0; i < adev->sdma.num_instances; i++) {
 813		sdma[i] = &adev->sdma.instance[i].ring;
 814
 815		if ((adev->mman.buffer_funcs_ring == sdma[i]) && unset != 1) {
 816			amdgpu_ttm_set_buffer_funcs_status(adev, false);
 817			unset = 1;
 818		}
 819
 820		rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
 821		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
 822		WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
 823		ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
 824		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
 825		WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
 826
 827		sdma[i]->sched.ready = false;
 828	}
 829}
 830
 831/**
 832 * sdma_v4_0_rlc_stop - stop the compute async dma engines
 833 *
 834 * @adev: amdgpu_device pointer
 835 *
 836 * Stop the compute async dma queues (VEGA10).
 837 */
 838static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
 839{
 840	/* XXX todo */
 841}
 842
 843/**
 844 * sdma_v4_0_page_stop - stop the page async dma engines
 845 *
 846 * @adev: amdgpu_device pointer
 847 *
 848 * Stop the page async dma ring buffers (VEGA10).
 849 */
 850static void sdma_v4_0_page_stop(struct amdgpu_device *adev)
 851{
 852	struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
 853	u32 rb_cntl, ib_cntl;
 854	int i;
 855	bool unset = false;
 856
 857	for (i = 0; i < adev->sdma.num_instances; i++) {
 858		sdma[i] = &adev->sdma.instance[i].page;
 859
 860		if ((adev->mman.buffer_funcs_ring == sdma[i]) &&
 861			(unset == false)) {
 862			amdgpu_ttm_set_buffer_funcs_status(adev, false);
 863			unset = true;
 864		}
 865
 866		rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
 867		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
 868					RB_ENABLE, 0);
 869		WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
 870		ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
 871		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL,
 872					IB_ENABLE, 0);
 873		WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
 874
 875		sdma[i]->sched.ready = false;
 876	}
 877}
 878
 879/**
 880 * sdma_v_0_ctx_switch_enable - stop the async dma engines context switch
 881 *
 882 * @adev: amdgpu_device pointer
 883 * @enable: enable/disable the DMA MEs context switch.
 884 *
 885 * Halt or unhalt the async dma engines context switch (VEGA10).
 886 */
 887static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
 888{
 889	u32 f32_cntl, phase_quantum = 0;
 890	int i;
 891
 892	if (amdgpu_sdma_phase_quantum) {
 893		unsigned value = amdgpu_sdma_phase_quantum;
 894		unsigned unit = 0;
 895
 896		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
 897				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
 898			value = (value + 1) >> 1;
 899			unit++;
 900		}
 901		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
 902			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
 903			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
 904				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
 905			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
 906				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
 907			WARN_ONCE(1,
 908			"clamping sdma_phase_quantum to %uK clock cycles\n",
 909				  value << unit);
 910		}
 911		phase_quantum =
 912			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
 913			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
 914	}
 915
 916	for (i = 0; i < adev->sdma.num_instances; i++) {
 917		f32_cntl = RREG32_SDMA(i, mmSDMA0_CNTL);
 918		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
 919				AUTO_CTXSW_ENABLE, enable ? 1 : 0);
 920		if (enable && amdgpu_sdma_phase_quantum) {
 921			WREG32_SDMA(i, mmSDMA0_PHASE0_QUANTUM, phase_quantum);
 922			WREG32_SDMA(i, mmSDMA0_PHASE1_QUANTUM, phase_quantum);
 923			WREG32_SDMA(i, mmSDMA0_PHASE2_QUANTUM, phase_quantum);
 924		}
 925		WREG32_SDMA(i, mmSDMA0_CNTL, f32_cntl);
 
 
 
 
 
 
 
 
 
 
 
 926	}
 927
 928}
 929
 930/**
 931 * sdma_v4_0_enable - stop the async dma engines
 932 *
 933 * @adev: amdgpu_device pointer
 934 * @enable: enable/disable the DMA MEs.
 935 *
 936 * Halt or unhalt the async dma engines (VEGA10).
 937 */
 938static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
 939{
 940	u32 f32_cntl;
 941	int i;
 942
 943	if (enable == false) {
 944		sdma_v4_0_gfx_stop(adev);
 945		sdma_v4_0_rlc_stop(adev);
 946		if (adev->sdma.has_page_queue)
 947			sdma_v4_0_page_stop(adev);
 948	}
 949
 950	for (i = 0; i < adev->sdma.num_instances; i++) {
 951		f32_cntl = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
 952		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
 953		WREG32_SDMA(i, mmSDMA0_F32_CNTL, f32_cntl);
 954	}
 955}
 956
 957/**
 958 * sdma_v4_0_rb_cntl - get parameters for rb_cntl
 959 */
 960static uint32_t sdma_v4_0_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
 961{
 962	/* Set ring buffer size in dwords */
 963	uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);
 964
 965	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
 966#ifdef __BIG_ENDIAN
 967	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
 968	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
 969				RPTR_WRITEBACK_SWAP_ENABLE, 1);
 970#endif
 971	return rb_cntl;
 972}
 973
 974/**
 975 * sdma_v4_0_gfx_resume - setup and start the async dma engines
 976 *
 977 * @adev: amdgpu_device pointer
 978 * @i: instance to resume
 979 *
 980 * Set up the gfx DMA ring buffers and enable them (VEGA10).
 981 * Returns 0 for success, error for failure.
 982 */
 983static void sdma_v4_0_gfx_resume(struct amdgpu_device *adev, unsigned int i)
 984{
 985	struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
 986	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
 987	u32 wb_offset;
 988	u32 doorbell;
 989	u32 doorbell_offset;
 990	u64 wptr_gpu_addr;
 991
 992	wb_offset = (ring->rptr_offs * 4);
 993
 994	rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
 995	rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
 996	WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
 997
 998	/* Initialize the ring buffer's read and write pointers */
 999	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR, 0);
1000	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_HI, 0);
1001	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR, 0);
1002	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_HI, 0);
1003
1004	/* set the wb address whether it's enabled or not */
1005	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI,
1006	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
1007	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO,
1008	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
1009
1010	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1011				RPTR_WRITEBACK_ENABLE, 1);
1012
1013	WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE, ring->gpu_addr >> 8);
1014	WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
1015
1016	ring->wptr = 0;
1017
1018	/* before programing wptr to a less value, need set minor_ptr_update first */
1019	WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 1);
1020
1021	doorbell = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL);
1022	doorbell_offset = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET);
1023
1024	doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE,
1025				 ring->use_doorbell);
1026	doorbell_offset = REG_SET_FIELD(doorbell_offset,
1027					SDMA0_GFX_DOORBELL_OFFSET,
1028					OFFSET, ring->doorbell_index);
1029	WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL, doorbell);
1030	WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET, doorbell_offset);
1031
1032	sdma_v4_0_ring_set_wptr(ring);
1033
1034	/* set minor_ptr_update to 0 after wptr programed */
1035	WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 0);
1036
1037	/* setup the wptr shadow polling */
1038	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
1039	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO,
1040		    lower_32_bits(wptr_gpu_addr));
1041	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI,
1042		    upper_32_bits(wptr_gpu_addr));
1043	wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL);
1044	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1045				       SDMA0_GFX_RB_WPTR_POLL_CNTL,
1046				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1047	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1048
1049	/* enable DMA RB */
1050	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
1051	WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1052
1053	ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
1054	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
1055#ifdef __BIG_ENDIAN
1056	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
1057#endif
1058	/* enable DMA IBs */
1059	WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
1060
1061	ring->sched.ready = true;
1062}
1063
1064/**
1065 * sdma_v4_0_page_resume - setup and start the async dma engines
1066 *
1067 * @adev: amdgpu_device pointer
1068 * @i: instance to resume
1069 *
1070 * Set up the page DMA ring buffers and enable them (VEGA10).
1071 * Returns 0 for success, error for failure.
1072 */
1073static void sdma_v4_0_page_resume(struct amdgpu_device *adev, unsigned int i)
1074{
1075	struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
1076	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1077	u32 wb_offset;
1078	u32 doorbell;
1079	u32 doorbell_offset;
1080	u64 wptr_gpu_addr;
1081
1082	wb_offset = (ring->rptr_offs * 4);
1083
1084	rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
1085	rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1086	WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1087
1088	/* Initialize the ring buffer's read and write pointers */
1089	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR, 0);
1090	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_HI, 0);
1091	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR, 0);
1092	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_HI, 0);
1093
1094	/* set the wb address whether it's enabled or not */
1095	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_HI,
1096	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
1097	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_LO,
1098	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
1099
1100	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
1101				RPTR_WRITEBACK_ENABLE, 1);
1102
1103	WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE, ring->gpu_addr >> 8);
1104	WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);
1105
1106	ring->wptr = 0;
1107
1108	/* before programing wptr to a less value, need set minor_ptr_update first */
1109	WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 1);
1110
1111	doorbell = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL);
1112	doorbell_offset = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET);
1113
1114	doorbell = REG_SET_FIELD(doorbell, SDMA0_PAGE_DOORBELL, ENABLE,
1115				 ring->use_doorbell);
1116	doorbell_offset = REG_SET_FIELD(doorbell_offset,
1117					SDMA0_PAGE_DOORBELL_OFFSET,
1118					OFFSET, ring->doorbell_index);
1119	WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL, doorbell);
1120	WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET, doorbell_offset);
1121
1122	/* paging queue doorbell range is setup at sdma_v4_0_gfx_resume */
1123	sdma_v4_0_page_ring_set_wptr(ring);
1124
1125	/* set minor_ptr_update to 0 after wptr programed */
1126	WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 0);
1127
1128	/* setup the wptr shadow polling */
1129	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
1130	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_LO,
1131		    lower_32_bits(wptr_gpu_addr));
1132	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_HI,
1133		    upper_32_bits(wptr_gpu_addr));
1134	wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL);
1135	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1136				       SDMA0_PAGE_RB_WPTR_POLL_CNTL,
1137				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1138	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1139
1140	/* enable DMA RB */
1141	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RB_ENABLE, 1);
1142	WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1143
1144	ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
1145	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_ENABLE, 1);
1146#ifdef __BIG_ENDIAN
1147	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
1148#endif
1149	/* enable DMA IBs */
1150	WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
1151
1152	ring->sched.ready = true;
1153}
1154
1155static void
1156sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
1157{
1158	uint32_t def, data;
1159
1160	if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
1161		/* enable idle interrupt */
1162		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1163		data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1164
1165		if (data != def)
1166			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1167	} else {
1168		/* disable idle interrupt */
1169		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1170		data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1171		if (data != def)
1172			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1173	}
1174}
1175
1176static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
1177{
1178	uint32_t def, data;
1179
1180	/* Enable HW based PG. */
1181	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1182	data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
1183	if (data != def)
1184		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1185
1186	/* enable interrupt */
1187	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1188	data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1189	if (data != def)
1190		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1191
1192	/* Configure hold time to filter in-valid power on/off request. Use default right now */
1193	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1194	data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
1195	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
1196	/* Configure switch time for hysteresis purpose. Use default right now */
1197	data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
1198	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
1199	if(data != def)
1200		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1201}
1202
1203static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
1204{
1205	if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
1206		return;
1207
1208	switch (adev->asic_type) {
1209	case CHIP_RAVEN:
1210	case CHIP_RENOIR:
1211		sdma_v4_1_init_power_gating(adev);
1212		sdma_v4_1_update_power_gating(adev, true);
1213		break;
1214	default:
1215		break;
1216	}
1217}
1218
1219/**
1220 * sdma_v4_0_rlc_resume - setup and start the async dma engines
1221 *
1222 * @adev: amdgpu_device pointer
1223 *
1224 * Set up the compute DMA queues and enable them (VEGA10).
1225 * Returns 0 for success, error for failure.
1226 */
1227static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
1228{
1229	sdma_v4_0_init_pg(adev);
1230
1231	return 0;
1232}
1233
1234/**
1235 * sdma_v4_0_load_microcode - load the sDMA ME ucode
1236 *
1237 * @adev: amdgpu_device pointer
1238 *
1239 * Loads the sDMA0/1 ucode.
1240 * Returns 0 for success, -EINVAL if the ucode is not available.
1241 */
1242static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
1243{
1244	const struct sdma_firmware_header_v1_0 *hdr;
1245	const __le32 *fw_data;
1246	u32 fw_size;
1247	int i, j;
1248
1249	/* halt the MEs */
1250	sdma_v4_0_enable(adev, false);
1251
1252	for (i = 0; i < adev->sdma.num_instances; i++) {
1253		if (!adev->sdma.instance[i].fw)
1254			return -EINVAL;
1255
1256		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
1257		amdgpu_ucode_print_sdma_hdr(&hdr->header);
1258		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
1259
1260		fw_data = (const __le32 *)
1261			(adev->sdma.instance[i].fw->data +
1262				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
1263
1264		WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 0);
1265
1266		for (j = 0; j < fw_size; j++)
1267			WREG32_SDMA(i, mmSDMA0_UCODE_DATA,
1268				    le32_to_cpup(fw_data++));
1269
1270		WREG32_SDMA(i, mmSDMA0_UCODE_ADDR,
1271			    adev->sdma.instance[i].fw_version);
1272	}
1273
1274	return 0;
1275}
1276
1277/**
1278 * sdma_v4_0_start - setup and start the async dma engines
1279 *
1280 * @adev: amdgpu_device pointer
1281 *
1282 * Set up the DMA engines and enable them (VEGA10).
1283 * Returns 0 for success, error for failure.
1284 */
1285static int sdma_v4_0_start(struct amdgpu_device *adev)
1286{
1287	struct amdgpu_ring *ring;
1288	int i, r = 0;
1289
1290	if (amdgpu_sriov_vf(adev)) {
1291		sdma_v4_0_ctx_switch_enable(adev, false);
1292		sdma_v4_0_enable(adev, false);
1293	} else {
1294
1295		if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
1296			r = sdma_v4_0_load_microcode(adev);
1297			if (r)
1298				return r;
1299		}
1300
1301		/* unhalt the MEs */
1302		sdma_v4_0_enable(adev, true);
1303		/* enable sdma ring preemption */
1304		sdma_v4_0_ctx_switch_enable(adev, true);
1305	}
1306
1307	/* start the gfx rings and rlc compute queues */
1308	for (i = 0; i < adev->sdma.num_instances; i++) {
1309		uint32_t temp;
1310
1311		WREG32_SDMA(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL, 0);
1312		sdma_v4_0_gfx_resume(adev, i);
1313		if (adev->sdma.has_page_queue)
1314			sdma_v4_0_page_resume(adev, i);
1315
1316		/* set utc l1 enable flag always to 1 */
1317		temp = RREG32_SDMA(i, mmSDMA0_CNTL);
1318		temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
1319		WREG32_SDMA(i, mmSDMA0_CNTL, temp);
1320
1321		if (!amdgpu_sriov_vf(adev)) {
1322			/* unhalt engine */
1323			temp = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1324			temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
1325			WREG32_SDMA(i, mmSDMA0_F32_CNTL, temp);
1326		}
1327	}
1328
1329	if (amdgpu_sriov_vf(adev)) {
1330		sdma_v4_0_ctx_switch_enable(adev, true);
1331		sdma_v4_0_enable(adev, true);
1332	} else {
1333		r = sdma_v4_0_rlc_resume(adev);
1334		if (r)
1335			return r;
1336	}
1337
1338	for (i = 0; i < adev->sdma.num_instances; i++) {
1339		ring = &adev->sdma.instance[i].ring;
1340
1341		r = amdgpu_ring_test_helper(ring);
1342		if (r)
1343			return r;
1344
1345		if (adev->sdma.has_page_queue) {
1346			struct amdgpu_ring *page = &adev->sdma.instance[i].page;
1347
1348			r = amdgpu_ring_test_helper(page);
1349			if (r)
1350				return r;
1351
1352			if (adev->mman.buffer_funcs_ring == page)
1353				amdgpu_ttm_set_buffer_funcs_status(adev, true);
1354		}
1355
1356		if (adev->mman.buffer_funcs_ring == ring)
1357			amdgpu_ttm_set_buffer_funcs_status(adev, true);
1358	}
1359
1360	return r;
1361}
1362
1363/**
1364 * sdma_v4_0_ring_test_ring - simple async dma engine test
1365 *
1366 * @ring: amdgpu_ring structure holding ring information
1367 *
1368 * Test the DMA engine by writing using it to write an
1369 * value to memory. (VEGA10).
1370 * Returns 0 for success, error for failure.
1371 */
1372static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
1373{
1374	struct amdgpu_device *adev = ring->adev;
1375	unsigned i;
1376	unsigned index;
1377	int r;
1378	u32 tmp;
1379	u64 gpu_addr;
1380
1381	r = amdgpu_device_wb_get(adev, &index);
1382	if (r)
1383		return r;
1384
1385	gpu_addr = adev->wb.gpu_addr + (index * 4);
1386	tmp = 0xCAFEDEAD;
1387	adev->wb.wb[index] = cpu_to_le32(tmp);
1388
1389	r = amdgpu_ring_alloc(ring, 5);
1390	if (r)
1391		goto error_free_wb;
1392
1393	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1394			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
1395	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
1396	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
1397	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
1398	amdgpu_ring_write(ring, 0xDEADBEEF);
1399	amdgpu_ring_commit(ring);
1400
1401	for (i = 0; i < adev->usec_timeout; i++) {
1402		tmp = le32_to_cpu(adev->wb.wb[index]);
1403		if (tmp == 0xDEADBEEF)
1404			break;
1405		udelay(1);
1406	}
1407
1408	if (i >= adev->usec_timeout)
1409		r = -ETIMEDOUT;
1410
1411error_free_wb:
1412	amdgpu_device_wb_free(adev, index);
1413	return r;
1414}
1415
1416/**
1417 * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
1418 *
1419 * @ring: amdgpu_ring structure holding ring information
 
1420 *
1421 * Test a simple IB in the DMA ring (VEGA10).
1422 * Returns 0 on success, error on failure.
1423 */
1424static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1425{
1426	struct amdgpu_device *adev = ring->adev;
1427	struct amdgpu_ib ib;
1428	struct dma_fence *f = NULL;
1429	unsigned index;
1430	long r;
1431	u32 tmp = 0;
1432	u64 gpu_addr;
1433
1434	r = amdgpu_device_wb_get(adev, &index);
1435	if (r)
1436		return r;
1437
1438	gpu_addr = adev->wb.gpu_addr + (index * 4);
1439	tmp = 0xCAFEDEAD;
1440	adev->wb.wb[index] = cpu_to_le32(tmp);
1441	memset(&ib, 0, sizeof(ib));
1442	r = amdgpu_ib_get(adev, NULL, 256, &ib);
 
1443	if (r)
1444		goto err0;
1445
1446	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1447		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1448	ib.ptr[1] = lower_32_bits(gpu_addr);
1449	ib.ptr[2] = upper_32_bits(gpu_addr);
1450	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1451	ib.ptr[4] = 0xDEADBEEF;
1452	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1453	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1454	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1455	ib.length_dw = 8;
1456
1457	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1458	if (r)
1459		goto err1;
1460
1461	r = dma_fence_wait_timeout(f, false, timeout);
1462	if (r == 0) {
1463		r = -ETIMEDOUT;
1464		goto err1;
1465	} else if (r < 0) {
1466		goto err1;
1467	}
1468	tmp = le32_to_cpu(adev->wb.wb[index]);
1469	if (tmp == 0xDEADBEEF)
1470		r = 0;
1471	else
1472		r = -EINVAL;
1473
1474err1:
1475	amdgpu_ib_free(adev, &ib, NULL);
1476	dma_fence_put(f);
1477err0:
1478	amdgpu_device_wb_free(adev, index);
1479	return r;
1480}
1481
1482
1483/**
1484 * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
1485 *
1486 * @ib: indirect buffer to fill with commands
1487 * @pe: addr of the page entry
1488 * @src: src addr to copy from
1489 * @count: number of page entries to update
1490 *
1491 * Update PTEs by copying them from the GART using sDMA (VEGA10).
1492 */
1493static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
1494				  uint64_t pe, uint64_t src,
1495				  unsigned count)
1496{
1497	unsigned bytes = count * 8;
1498
1499	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1500		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1501	ib->ptr[ib->length_dw++] = bytes - 1;
1502	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1503	ib->ptr[ib->length_dw++] = lower_32_bits(src);
1504	ib->ptr[ib->length_dw++] = upper_32_bits(src);
1505	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1506	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1507
1508}
1509
1510/**
1511 * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
1512 *
1513 * @ib: indirect buffer to fill with commands
1514 * @pe: addr of the page entry
1515 * @addr: dst addr to write into pe
1516 * @count: number of page entries to update
1517 * @incr: increase next addr by incr bytes
1518 * @flags: access flags
1519 *
1520 * Update PTEs by writing them manually using sDMA (VEGA10).
1521 */
1522static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1523				   uint64_t value, unsigned count,
1524				   uint32_t incr)
1525{
1526	unsigned ndw = count * 2;
1527
1528	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1529		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1530	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1531	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1532	ib->ptr[ib->length_dw++] = ndw - 1;
1533	for (; ndw > 0; ndw -= 2) {
1534		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1535		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1536		value += incr;
1537	}
1538}
1539
1540/**
1541 * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
1542 *
1543 * @ib: indirect buffer to fill with commands
1544 * @pe: addr of the page entry
1545 * @addr: dst addr to write into pe
1546 * @count: number of page entries to update
1547 * @incr: increase next addr by incr bytes
1548 * @flags: access flags
1549 *
1550 * Update the page tables using sDMA (VEGA10).
1551 */
1552static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1553				     uint64_t pe,
1554				     uint64_t addr, unsigned count,
1555				     uint32_t incr, uint64_t flags)
1556{
1557	/* for physically contiguous pages (vram) */
1558	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1559	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1560	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1561	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1562	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1563	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1564	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1565	ib->ptr[ib->length_dw++] = incr; /* increment size */
1566	ib->ptr[ib->length_dw++] = 0;
1567	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1568}
1569
1570/**
1571 * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
1572 *
 
1573 * @ib: indirect buffer to fill with padding
1574 *
1575 */
1576static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1577{
1578	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1579	u32 pad_count;
1580	int i;
1581
1582	pad_count = (8 - (ib->length_dw & 0x7)) % 8;
1583	for (i = 0; i < pad_count; i++)
1584		if (sdma && sdma->burst_nop && (i == 0))
1585			ib->ptr[ib->length_dw++] =
1586				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1587				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1588		else
1589			ib->ptr[ib->length_dw++] =
1590				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1591}
1592
1593
1594/**
1595 * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
1596 *
1597 * @ring: amdgpu_ring pointer
1598 *
1599 * Make sure all previous operations are completed (CIK).
1600 */
1601static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1602{
1603	uint32_t seq = ring->fence_drv.sync_seq;
1604	uint64_t addr = ring->fence_drv.gpu_addr;
1605
1606	/* wait for idle */
1607	sdma_v4_0_wait_reg_mem(ring, 1, 0,
1608			       addr & 0xfffffffc,
1609			       upper_32_bits(addr) & 0xffffffff,
1610			       seq, 0xffffffff, 4);
1611}
1612
1613
1614/**
1615 * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
1616 *
1617 * @ring: amdgpu_ring pointer
1618 * @vm: amdgpu_vm pointer
 
1619 *
1620 * Update the page table base and flush the VM TLB
1621 * using sDMA (VEGA10).
1622 */
1623static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1624					 unsigned vmid, uint64_t pd_addr)
1625{
1626	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1627}
1628
1629static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring,
1630				     uint32_t reg, uint32_t val)
1631{
1632	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1633			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1634	amdgpu_ring_write(ring, reg);
1635	amdgpu_ring_write(ring, val);
1636}
1637
1638static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1639					 uint32_t val, uint32_t mask)
1640{
1641	sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1642}
1643
1644static bool sdma_v4_0_fw_support_paging_queue(struct amdgpu_device *adev)
1645{
1646	uint fw_version = adev->sdma.instance[0].fw_version;
1647
1648	switch (adev->asic_type) {
1649	case CHIP_VEGA10:
1650		return fw_version >= 430;
1651	case CHIP_VEGA12:
1652		/*return fw_version >= 31;*/
1653		return false;
1654	case CHIP_VEGA20:
1655		return fw_version >= 123;
1656	default:
1657		return false;
1658	}
1659}
1660
1661static int sdma_v4_0_early_init(void *handle)
1662{
1663	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1664	int r;
1665
1666	if (adev->asic_type == CHIP_RAVEN || adev->asic_type == CHIP_RENOIR)
1667		adev->sdma.num_instances = 1;
1668	else if (adev->asic_type == CHIP_ARCTURUS)
1669		adev->sdma.num_instances = 8;
 
 
1670	else
1671		adev->sdma.num_instances = 2;
1672
1673	r = sdma_v4_0_init_microcode(adev);
1674	if (r) {
1675		DRM_ERROR("Failed to load sdma firmware!\n");
1676		return r;
1677	}
1678
1679	/* TODO: Page queue breaks driver reload under SRIOV */
1680	if ((adev->asic_type == CHIP_VEGA10) && amdgpu_sriov_vf((adev)))
1681		adev->sdma.has_page_queue = false;
1682	else if (sdma_v4_0_fw_support_paging_queue(adev))
1683		adev->sdma.has_page_queue = true;
1684
1685	sdma_v4_0_set_ring_funcs(adev);
1686	sdma_v4_0_set_buffer_funcs(adev);
1687	sdma_v4_0_set_vm_pte_funcs(adev);
1688	sdma_v4_0_set_irq_funcs(adev);
 
1689
1690	return 0;
1691}
1692
1693static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
1694		struct ras_err_data *err_data,
1695		struct amdgpu_iv_entry *entry);
1696
1697static int sdma_v4_0_late_init(void *handle)
1698{
1699	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1700	struct ras_common_if **ras_if = &adev->sdma.ras_if;
1701	struct ras_ih_if ih_info = {
1702		.cb = sdma_v4_0_process_ras_data_cb,
1703	};
1704	struct ras_fs_if fs_info = {
1705		.sysfs_name = "sdma_err_count",
1706		.debugfs_name = "sdma_err_inject",
1707	};
1708	struct ras_common_if ras_block = {
1709		.block = AMDGPU_RAS_BLOCK__SDMA,
1710		.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE,
1711		.sub_block_index = 0,
1712		.name = "sdma",
1713	};
1714	int r, i;
1715
1716	if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
1717		amdgpu_ras_feature_enable_on_boot(adev, &ras_block, 0);
1718		return 0;
1719	}
1720
1721	/* handle resume path. */
1722	if (*ras_if) {
1723		/* resend ras TA enable cmd during resume.
1724		 * prepare to handle failure.
1725		 */
1726		ih_info.head = **ras_if;
1727		r = amdgpu_ras_feature_enable_on_boot(adev, *ras_if, 1);
1728		if (r) {
1729			if (r == -EAGAIN) {
1730				/* request a gpu reset. will run again. */
1731				amdgpu_ras_request_reset_on_boot(adev,
1732						AMDGPU_RAS_BLOCK__SDMA);
1733				return 0;
1734			}
1735			/* fail to enable ras, cleanup all. */
1736			goto irq;
1737		}
1738		/* enable successfully. continue. */
1739		goto resume;
1740	}
1741
1742	*ras_if = kmalloc(sizeof(**ras_if), GFP_KERNEL);
1743	if (!*ras_if)
1744		return -ENOMEM;
1745
1746	**ras_if = ras_block;
1747
1748	r = amdgpu_ras_feature_enable_on_boot(adev, *ras_if, 1);
1749	if (r) {
1750		if (r == -EAGAIN) {
1751			amdgpu_ras_request_reset_on_boot(adev,
1752					AMDGPU_RAS_BLOCK__SDMA);
1753			r = 0;
1754		}
1755		goto feature;
1756	}
1757
1758	ih_info.head = **ras_if;
1759	fs_info.head = **ras_if;
1760
1761	r = amdgpu_ras_interrupt_add_handler(adev, &ih_info);
1762	if (r)
1763		goto interrupt;
1764
1765	amdgpu_ras_debugfs_create(adev, &fs_info);
1766
1767	r = amdgpu_ras_sysfs_create(adev, &fs_info);
1768	if (r)
1769		goto sysfs;
1770resume:
1771	for (i = 0; i < adev->sdma.num_instances; i++) {
1772		r = amdgpu_irq_get(adev, &adev->sdma.ecc_irq,
1773				   AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1774		if (r)
1775			goto irq;
1776	}
1777
1778	return 0;
1779irq:
1780	amdgpu_ras_sysfs_remove(adev, *ras_if);
1781sysfs:
1782	amdgpu_ras_debugfs_remove(adev, *ras_if);
1783	amdgpu_ras_interrupt_remove_handler(adev, &ih_info);
1784interrupt:
1785	amdgpu_ras_feature_enable(adev, *ras_if, 0);
1786feature:
1787	kfree(*ras_if);
1788	*ras_if = NULL;
1789	return r;
1790}
1791
1792static int sdma_v4_0_sw_init(void *handle)
1793{
1794	struct amdgpu_ring *ring;
1795	int r, i;
1796	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1797
1798	/* SDMA trap event */
1799	for (i = 0; i < adev->sdma.num_instances; i++) {
1800		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1801				      SDMA0_4_0__SRCID__SDMA_TRAP,
1802				      &adev->sdma.trap_irq);
1803		if (r)
1804			return r;
1805	}
1806
1807	/* SDMA SRAM ECC event */
1808	for (i = 0; i < adev->sdma.num_instances; i++) {
1809		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1810				      SDMA0_4_0__SRCID__SDMA_SRAM_ECC,
1811				      &adev->sdma.ecc_irq);
1812		if (r)
1813			return r;
1814	}
1815
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1816	for (i = 0; i < adev->sdma.num_instances; i++) {
1817		ring = &adev->sdma.instance[i].ring;
1818		ring->ring_obj = NULL;
1819		ring->use_doorbell = true;
1820
1821		DRM_INFO("use_doorbell being set to: [%s]\n",
1822				ring->use_doorbell?"true":"false");
1823
1824		/* doorbell size is 2 dwords, get DWORD offset */
1825		ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1826
1827		sprintf(ring->name, "sdma%d", i);
1828		r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1829				     AMDGPU_SDMA_IRQ_INSTANCE0 + i);
 
1830		if (r)
1831			return r;
1832
1833		if (adev->sdma.has_page_queue) {
1834			ring = &adev->sdma.instance[i].page;
1835			ring->ring_obj = NULL;
1836			ring->use_doorbell = true;
1837
1838			/* paging queue use same doorbell index/routing as gfx queue
1839			 * with 0x400 (4096 dwords) offset on second doorbell page
1840			 */
1841			ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1842			ring->doorbell_index += 0x400;
1843
1844			sprintf(ring->name, "page%d", i);
1845			r = amdgpu_ring_init(adev, ring, 1024,
1846					     &adev->sdma.trap_irq,
1847					     AMDGPU_SDMA_IRQ_INSTANCE0 + i);
 
1848			if (r)
1849				return r;
1850		}
1851	}
1852
1853	return r;
1854}
1855
1856static int sdma_v4_0_sw_fini(void *handle)
1857{
1858	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1859	int i;
1860
1861	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA) &&
1862			adev->sdma.ras_if) {
1863		struct ras_common_if *ras_if = adev->sdma.ras_if;
1864		struct ras_ih_if ih_info = {
1865			.head = *ras_if,
1866		};
1867
1868		/*remove fs first*/
1869		amdgpu_ras_debugfs_remove(adev, ras_if);
1870		amdgpu_ras_sysfs_remove(adev, ras_if);
1871		/*remove the IH*/
1872		amdgpu_ras_interrupt_remove_handler(adev, &ih_info);
1873		amdgpu_ras_feature_enable(adev, ras_if, 0);
1874		kfree(ras_if);
1875	}
1876
1877	for (i = 0; i < adev->sdma.num_instances; i++) {
1878		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1879		if (adev->sdma.has_page_queue)
1880			amdgpu_ring_fini(&adev->sdma.instance[i].page);
1881	}
1882
1883	sdma_v4_0_destroy_inst_ctx(adev);
1884
1885	return 0;
1886}
1887
1888static int sdma_v4_0_hw_init(void *handle)
1889{
1890	int r;
1891	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1892
1893	if ((adev->asic_type == CHIP_RAVEN && adev->powerplay.pp_funcs &&
1894			adev->powerplay.pp_funcs->set_powergating_by_smu) ||
1895			adev->asic_type == CHIP_RENOIR)
1896		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, false);
1897
1898	if (!amdgpu_sriov_vf(adev))
1899		sdma_v4_0_init_golden_registers(adev);
1900
1901	r = sdma_v4_0_start(adev);
1902
1903	return r;
1904}
1905
1906static int sdma_v4_0_hw_fini(void *handle)
1907{
1908	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1909	int i;
1910
1911	if (amdgpu_sriov_vf(adev))
1912		return 0;
1913
1914	for (i = 0; i < adev->sdma.num_instances; i++) {
1915		amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
1916			       AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1917	}
1918
1919	sdma_v4_0_ctx_switch_enable(adev, false);
1920	sdma_v4_0_enable(adev, false);
1921
1922	if ((adev->asic_type == CHIP_RAVEN && adev->powerplay.pp_funcs
1923			&& adev->powerplay.pp_funcs->set_powergating_by_smu) ||
1924			adev->asic_type == CHIP_RENOIR)
1925		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, true);
1926
1927	return 0;
1928}
1929
1930static int sdma_v4_0_suspend(void *handle)
1931{
1932	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1933
1934	return sdma_v4_0_hw_fini(adev);
1935}
1936
1937static int sdma_v4_0_resume(void *handle)
1938{
1939	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1940
1941	return sdma_v4_0_hw_init(adev);
1942}
1943
1944static bool sdma_v4_0_is_idle(void *handle)
1945{
1946	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1947	u32 i;
1948
1949	for (i = 0; i < adev->sdma.num_instances; i++) {
1950		u32 tmp = RREG32_SDMA(i, mmSDMA0_STATUS_REG);
1951
1952		if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
1953			return false;
1954	}
1955
1956	return true;
1957}
1958
1959static int sdma_v4_0_wait_for_idle(void *handle)
1960{
1961	unsigned i, j;
1962	u32 sdma[AMDGPU_MAX_SDMA_INSTANCES];
1963	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1964
1965	for (i = 0; i < adev->usec_timeout; i++) {
1966		for (j = 0; j < adev->sdma.num_instances; j++) {
1967			sdma[j] = RREG32_SDMA(j, mmSDMA0_STATUS_REG);
1968			if (!(sdma[j] & SDMA0_STATUS_REG__IDLE_MASK))
1969				break;
1970		}
1971		if (j == adev->sdma.num_instances)
1972			return 0;
1973		udelay(1);
1974	}
1975	return -ETIMEDOUT;
1976}
1977
1978static int sdma_v4_0_soft_reset(void *handle)
1979{
1980	/* todo */
1981
1982	return 0;
1983}
1984
1985static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
1986					struct amdgpu_irq_src *source,
1987					unsigned type,
1988					enum amdgpu_interrupt_state state)
1989{
1990	u32 sdma_cntl;
1991
1992	sdma_cntl = RREG32_SDMA(type, mmSDMA0_CNTL);
1993	sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
1994		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1995	WREG32_SDMA(type, mmSDMA0_CNTL, sdma_cntl);
1996
1997	return 0;
1998}
1999
2000static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
2001				      struct amdgpu_irq_src *source,
2002				      struct amdgpu_iv_entry *entry)
2003{
2004	uint32_t instance;
2005
2006	DRM_DEBUG("IH: SDMA trap\n");
2007	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2008	switch (entry->ring_id) {
2009	case 0:
2010		amdgpu_fence_process(&adev->sdma.instance[instance].ring);
2011		break;
2012	case 1:
2013		if (adev->asic_type == CHIP_VEGA20)
2014			amdgpu_fence_process(&adev->sdma.instance[instance].page);
2015		break;
2016	case 2:
2017		/* XXX compute */
2018		break;
2019	case 3:
2020		if (adev->asic_type != CHIP_VEGA20)
2021			amdgpu_fence_process(&adev->sdma.instance[instance].page);
2022		break;
2023	}
2024	return 0;
2025}
2026
2027static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
2028		struct ras_err_data *err_data,
2029		struct amdgpu_iv_entry *entry)
2030{
2031	uint32_t err_source;
2032	int instance;
2033
 
 
 
 
 
 
 
2034	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2035	if (instance < 0)
2036		return 0;
2037
2038	switch (entry->src_id) {
2039	case SDMA0_4_0__SRCID__SDMA_SRAM_ECC:
2040		err_source = 0;
2041		break;
2042	case SDMA0_4_0__SRCID__SDMA_ECC:
2043		err_source = 1;
2044		break;
2045	default:
2046		return 0;
2047	}
2048
2049	kgd2kfd_set_sram_ecc_flag(adev->kfd.dev);
2050
2051	amdgpu_ras_reset_gpu(adev, 0);
2052
 
2053	return AMDGPU_RAS_SUCCESS;
2054}
2055
2056static int sdma_v4_0_process_ecc_irq(struct amdgpu_device *adev,
2057				      struct amdgpu_irq_src *source,
2058				      struct amdgpu_iv_entry *entry)
2059{
2060	struct ras_common_if *ras_if = adev->sdma.ras_if;
2061	struct ras_dispatch_if ih_data = {
2062		.entry = entry,
2063	};
2064
2065	if (!ras_if)
2066		return 0;
2067
2068	ih_data.head = *ras_if;
2069
2070	amdgpu_ras_interrupt_dispatch(adev, &ih_data);
2071	return 0;
2072}
2073
2074static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
2075					      struct amdgpu_irq_src *source,
2076					      struct amdgpu_iv_entry *entry)
2077{
2078	int instance;
2079
2080	DRM_ERROR("Illegal instruction in SDMA command stream\n");
2081
2082	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2083	if (instance < 0)
2084		return 0;
2085
2086	switch (entry->ring_id) {
2087	case 0:
2088		drm_sched_fault(&adev->sdma.instance[instance].ring.sched);
2089		break;
2090	}
2091	return 0;
2092}
2093
2094static int sdma_v4_0_set_ecc_irq_state(struct amdgpu_device *adev,
2095					struct amdgpu_irq_src *source,
2096					unsigned type,
2097					enum amdgpu_interrupt_state state)
2098{
2099	u32 sdma_edc_config;
2100
2101	sdma_edc_config = RREG32_SDMA(type, mmSDMA0_EDC_CONFIG);
2102	sdma_edc_config = REG_SET_FIELD(sdma_edc_config, SDMA0_EDC_CONFIG, ECC_INT_ENABLE,
2103		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2104	WREG32_SDMA(type, mmSDMA0_EDC_CONFIG, sdma_edc_config);
2105
2106	return 0;
2107}
2108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2109static void sdma_v4_0_update_medium_grain_clock_gating(
2110		struct amdgpu_device *adev,
2111		bool enable)
2112{
2113	uint32_t data, def;
2114	int i;
2115
2116	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
2117		for (i = 0; i < adev->sdma.num_instances; i++) {
2118			def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2119			data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2120				  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2121				  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2122				  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2123				  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2124				  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2125				  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2126				  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2127			if (def != data)
2128				WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2129		}
2130	} else {
2131		for (i = 0; i < adev->sdma.num_instances; i++) {
2132			def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2133			data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2134				 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2135				 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2136				 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2137				 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2138				 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2139				 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2140				 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2141			if (def != data)
2142				WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2143		}
2144	}
2145}
2146
2147
2148static void sdma_v4_0_update_medium_grain_light_sleep(
2149		struct amdgpu_device *adev,
2150		bool enable)
2151{
2152	uint32_t data, def;
2153	int i;
2154
2155	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
2156		for (i = 0; i < adev->sdma.num_instances; i++) {
2157			/* 1-not override: enable sdma mem light sleep */
2158			def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2159			data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2160			if (def != data)
2161				WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2162		}
2163	} else {
2164		for (i = 0; i < adev->sdma.num_instances; i++) {
2165		/* 0-override:disable sdma mem light sleep */
2166			def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2167			data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2168			if (def != data)
2169				WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2170		}
2171	}
2172}
2173
2174static int sdma_v4_0_set_clockgating_state(void *handle,
2175					  enum amd_clockgating_state state)
2176{
2177	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2178
2179	if (amdgpu_sriov_vf(adev))
2180		return 0;
2181
2182	switch (adev->asic_type) {
2183	case CHIP_VEGA10:
2184	case CHIP_VEGA12:
2185	case CHIP_VEGA20:
2186	case CHIP_RAVEN:
2187	case CHIP_ARCTURUS:
2188	case CHIP_RENOIR:
2189		sdma_v4_0_update_medium_grain_clock_gating(adev,
2190				state == AMD_CG_STATE_GATE ? true : false);
2191		sdma_v4_0_update_medium_grain_light_sleep(adev,
2192				state == AMD_CG_STATE_GATE ? true : false);
2193		break;
2194	default:
2195		break;
2196	}
2197	return 0;
2198}
2199
2200static int sdma_v4_0_set_powergating_state(void *handle,
2201					  enum amd_powergating_state state)
2202{
2203	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2204
2205	switch (adev->asic_type) {
2206	case CHIP_RAVEN:
 
2207		sdma_v4_1_update_power_gating(adev,
2208				state == AMD_PG_STATE_GATE ? true : false);
2209		break;
2210	default:
2211		break;
2212	}
2213
2214	return 0;
2215}
2216
2217static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags)
2218{
2219	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2220	int data;
2221
2222	if (amdgpu_sriov_vf(adev))
2223		*flags = 0;
2224
2225	/* AMD_CG_SUPPORT_SDMA_MGCG */
2226	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
2227	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
2228		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
2229
2230	/* AMD_CG_SUPPORT_SDMA_LS */
2231	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
2232	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
2233		*flags |= AMD_CG_SUPPORT_SDMA_LS;
2234}
2235
2236const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
2237	.name = "sdma_v4_0",
2238	.early_init = sdma_v4_0_early_init,
2239	.late_init = sdma_v4_0_late_init,
2240	.sw_init = sdma_v4_0_sw_init,
2241	.sw_fini = sdma_v4_0_sw_fini,
2242	.hw_init = sdma_v4_0_hw_init,
2243	.hw_fini = sdma_v4_0_hw_fini,
2244	.suspend = sdma_v4_0_suspend,
2245	.resume = sdma_v4_0_resume,
2246	.is_idle = sdma_v4_0_is_idle,
2247	.wait_for_idle = sdma_v4_0_wait_for_idle,
2248	.soft_reset = sdma_v4_0_soft_reset,
2249	.set_clockgating_state = sdma_v4_0_set_clockgating_state,
2250	.set_powergating_state = sdma_v4_0_set_powergating_state,
2251	.get_clockgating_state = sdma_v4_0_get_clockgating_state,
2252};
2253
2254static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
2255	.type = AMDGPU_RING_TYPE_SDMA,
2256	.align_mask = 0xf,
2257	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2258	.support_64bit_ptrs = true,
2259	.vmhub = AMDGPU_MMHUB_0,
2260	.get_rptr = sdma_v4_0_ring_get_rptr,
2261	.get_wptr = sdma_v4_0_ring_get_wptr,
2262	.set_wptr = sdma_v4_0_ring_set_wptr,
2263	.emit_frame_size =
2264		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2265		3 + /* hdp invalidate */
2266		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2267		/* sdma_v4_0_ring_emit_vm_flush */
2268		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2269		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2270		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2271	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2272	.emit_ib = sdma_v4_0_ring_emit_ib,
2273	.emit_fence = sdma_v4_0_ring_emit_fence,
2274	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2275	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2276	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2277	.test_ring = sdma_v4_0_ring_test_ring,
2278	.test_ib = sdma_v4_0_ring_test_ib,
2279	.insert_nop = sdma_v4_0_ring_insert_nop,
2280	.pad_ib = sdma_v4_0_ring_pad_ib,
2281	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2282	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2283	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2284};
2285
2286/*
2287 * On Arcturus, SDMA instance 5~7 has a different vmhub type(AMDGPU_MMHUB_1).
2288 * So create a individual constant ring_funcs for those instances.
2289 */
2290static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs_2nd_mmhub = {
2291	.type = AMDGPU_RING_TYPE_SDMA,
2292	.align_mask = 0xf,
2293	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2294	.support_64bit_ptrs = true,
2295	.vmhub = AMDGPU_MMHUB_1,
2296	.get_rptr = sdma_v4_0_ring_get_rptr,
2297	.get_wptr = sdma_v4_0_ring_get_wptr,
2298	.set_wptr = sdma_v4_0_ring_set_wptr,
2299	.emit_frame_size =
2300		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2301		3 + /* hdp invalidate */
2302		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2303		/* sdma_v4_0_ring_emit_vm_flush */
2304		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2305		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2306		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2307	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2308	.emit_ib = sdma_v4_0_ring_emit_ib,
2309	.emit_fence = sdma_v4_0_ring_emit_fence,
2310	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2311	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2312	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2313	.test_ring = sdma_v4_0_ring_test_ring,
2314	.test_ib = sdma_v4_0_ring_test_ib,
2315	.insert_nop = sdma_v4_0_ring_insert_nop,
2316	.pad_ib = sdma_v4_0_ring_pad_ib,
2317	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2318	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2319	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2320};
2321
2322static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs = {
2323	.type = AMDGPU_RING_TYPE_SDMA,
2324	.align_mask = 0xf,
2325	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2326	.support_64bit_ptrs = true,
2327	.vmhub = AMDGPU_MMHUB_0,
2328	.get_rptr = sdma_v4_0_ring_get_rptr,
2329	.get_wptr = sdma_v4_0_page_ring_get_wptr,
2330	.set_wptr = sdma_v4_0_page_ring_set_wptr,
2331	.emit_frame_size =
2332		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2333		3 + /* hdp invalidate */
2334		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2335		/* sdma_v4_0_ring_emit_vm_flush */
2336		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2337		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2338		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2339	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2340	.emit_ib = sdma_v4_0_ring_emit_ib,
2341	.emit_fence = sdma_v4_0_ring_emit_fence,
2342	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2343	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2344	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2345	.test_ring = sdma_v4_0_ring_test_ring,
2346	.test_ib = sdma_v4_0_ring_test_ib,
2347	.insert_nop = sdma_v4_0_ring_insert_nop,
2348	.pad_ib = sdma_v4_0_ring_pad_ib,
2349	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2350	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2351	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2352};
2353
2354static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs_2nd_mmhub = {
2355	.type = AMDGPU_RING_TYPE_SDMA,
2356	.align_mask = 0xf,
2357	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2358	.support_64bit_ptrs = true,
2359	.vmhub = AMDGPU_MMHUB_1,
2360	.get_rptr = sdma_v4_0_ring_get_rptr,
2361	.get_wptr = sdma_v4_0_page_ring_get_wptr,
2362	.set_wptr = sdma_v4_0_page_ring_set_wptr,
2363	.emit_frame_size =
2364		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2365		3 + /* hdp invalidate */
2366		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2367		/* sdma_v4_0_ring_emit_vm_flush */
2368		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2369		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2370		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2371	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2372	.emit_ib = sdma_v4_0_ring_emit_ib,
2373	.emit_fence = sdma_v4_0_ring_emit_fence,
2374	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2375	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2376	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2377	.test_ring = sdma_v4_0_ring_test_ring,
2378	.test_ib = sdma_v4_0_ring_test_ib,
2379	.insert_nop = sdma_v4_0_ring_insert_nop,
2380	.pad_ib = sdma_v4_0_ring_pad_ib,
2381	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2382	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2383	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2384};
2385
2386static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
2387{
2388	int i;
2389
2390	for (i = 0; i < adev->sdma.num_instances; i++) {
2391		if (adev->asic_type == CHIP_ARCTURUS && i >= 5)
2392			adev->sdma.instance[i].ring.funcs =
2393					&sdma_v4_0_ring_funcs_2nd_mmhub;
2394		else
2395			adev->sdma.instance[i].ring.funcs =
2396					&sdma_v4_0_ring_funcs;
2397		adev->sdma.instance[i].ring.me = i;
2398		if (adev->sdma.has_page_queue) {
2399			if (adev->asic_type == CHIP_ARCTURUS && i >= 5)
2400				adev->sdma.instance[i].page.funcs =
2401					&sdma_v4_0_page_ring_funcs_2nd_mmhub;
2402			else
2403				adev->sdma.instance[i].page.funcs =
2404					&sdma_v4_0_page_ring_funcs;
2405			adev->sdma.instance[i].page.me = i;
2406		}
2407	}
2408}
2409
2410static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
2411	.set = sdma_v4_0_set_trap_irq_state,
2412	.process = sdma_v4_0_process_trap_irq,
2413};
2414
2415static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
2416	.process = sdma_v4_0_process_illegal_inst_irq,
2417};
2418
2419static const struct amdgpu_irq_src_funcs sdma_v4_0_ecc_irq_funcs = {
2420	.set = sdma_v4_0_set_ecc_irq_state,
2421	.process = sdma_v4_0_process_ecc_irq,
2422};
2423
 
 
 
 
 
 
 
2424
 
 
 
 
 
 
 
2425
2426static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
2427{
 
 
 
2428	switch (adev->sdma.num_instances) {
2429	case 1:
2430		adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE1;
2431		adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE1;
2432		break;
2433	case 8:
2434		adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
2435		adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
 
 
2436		break;
2437	case 2:
2438	default:
2439		adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE2;
2440		adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE2;
2441		break;
2442	}
2443	adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
2444	adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
2445	adev->sdma.ecc_irq.funcs = &sdma_v4_0_ecc_irq_funcs;
 
 
 
 
2446}
2447
2448/**
2449 * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
2450 *
2451 * @ring: amdgpu_ring structure holding ring information
2452 * @src_offset: src GPU address
2453 * @dst_offset: dst GPU address
2454 * @byte_count: number of bytes to xfer
 
2455 *
2456 * Copy GPU buffers using the DMA engine (VEGA10/12).
2457 * Used by the amdgpu ttm implementation to move pages if
2458 * registered as the asic copy callback.
2459 */
2460static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
2461				       uint64_t src_offset,
2462				       uint64_t dst_offset,
2463				       uint32_t byte_count)
 
2464{
2465	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
2466		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
 
2467	ib->ptr[ib->length_dw++] = byte_count - 1;
2468	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
2469	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
2470	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
2471	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2472	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2473}
2474
2475/**
2476 * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
2477 *
2478 * @ring: amdgpu_ring structure holding ring information
2479 * @src_data: value to write to buffer
2480 * @dst_offset: dst GPU address
2481 * @byte_count: number of bytes to xfer
2482 *
2483 * Fill GPU buffers using the DMA engine (VEGA10/12).
2484 */
2485static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
2486				       uint32_t src_data,
2487				       uint64_t dst_offset,
2488				       uint32_t byte_count)
2489{
2490	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
2491	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2492	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2493	ib->ptr[ib->length_dw++] = src_data;
2494	ib->ptr[ib->length_dw++] = byte_count - 1;
2495}
2496
2497static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
2498	.copy_max_bytes = 0x400000,
2499	.copy_num_dw = 7,
2500	.emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
2501
2502	.fill_max_bytes = 0x400000,
2503	.fill_num_dw = 5,
2504	.emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
2505};
2506
2507static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
2508{
2509	adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
2510	if (adev->sdma.has_page_queue)
2511		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page;
2512	else
2513		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
2514}
2515
2516static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
2517	.copy_pte_num_dw = 7,
2518	.copy_pte = sdma_v4_0_vm_copy_pte,
2519
2520	.write_pte = sdma_v4_0_vm_write_pte,
2521	.set_pte_pde = sdma_v4_0_vm_set_pte_pde,
2522};
2523
2524static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
2525{
2526	struct drm_gpu_scheduler *sched;
2527	unsigned i;
2528
2529	adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
2530	for (i = 0; i < adev->sdma.num_instances; i++) {
2531		if (adev->sdma.has_page_queue)
2532			sched = &adev->sdma.instance[i].page.sched;
2533		else
2534			sched = &adev->sdma.instance[i].ring.sched;
2535		adev->vm_manager.vm_pte_rqs[i] =
2536			&sched->sched_rq[DRM_SCHED_PRIORITY_KERNEL];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2537	}
2538	adev->vm_manager.vm_pte_num_rqs = adev->sdma.num_instances;
2539}
2540
2541const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
2542	.type = AMD_IP_BLOCK_TYPE_SDMA,
2543	.major = 4,
2544	.minor = 0,
2545	.rev = 0,
2546	.funcs = &sdma_v4_0_ip_funcs,
2547};
v5.14.15
   1/*
   2 * Copyright 2016 Advanced Micro Devices, Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 *
  22 */
  23
  24#include <linux/delay.h>
  25#include <linux/firmware.h>
  26#include <linux/module.h>
  27#include <linux/pci.h>
  28
  29#include "amdgpu.h"
  30#include "amdgpu_ucode.h"
  31#include "amdgpu_trace.h"
  32
  33#include "sdma0/sdma0_4_2_offset.h"
  34#include "sdma0/sdma0_4_2_sh_mask.h"
  35#include "sdma1/sdma1_4_2_offset.h"
  36#include "sdma1/sdma1_4_2_sh_mask.h"
  37#include "sdma2/sdma2_4_2_2_offset.h"
  38#include "sdma2/sdma2_4_2_2_sh_mask.h"
  39#include "sdma3/sdma3_4_2_2_offset.h"
  40#include "sdma3/sdma3_4_2_2_sh_mask.h"
  41#include "sdma4/sdma4_4_2_2_offset.h"
  42#include "sdma4/sdma4_4_2_2_sh_mask.h"
  43#include "sdma5/sdma5_4_2_2_offset.h"
  44#include "sdma5/sdma5_4_2_2_sh_mask.h"
  45#include "sdma6/sdma6_4_2_2_offset.h"
  46#include "sdma6/sdma6_4_2_2_sh_mask.h"
  47#include "sdma7/sdma7_4_2_2_offset.h"
  48#include "sdma7/sdma7_4_2_2_sh_mask.h"
 
  49#include "sdma0/sdma0_4_1_default.h"
  50
  51#include "soc15_common.h"
  52#include "soc15.h"
  53#include "vega10_sdma_pkt_open.h"
  54
  55#include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
  56#include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
  57
  58#include "amdgpu_ras.h"
  59#include "sdma_v4_4.h"
  60
  61MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
  62MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
  63MODULE_FIRMWARE("amdgpu/vega12_sdma.bin");
  64MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin");
  65MODULE_FIRMWARE("amdgpu/vega20_sdma.bin");
  66MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin");
  67MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
  68MODULE_FIRMWARE("amdgpu/picasso_sdma.bin");
  69MODULE_FIRMWARE("amdgpu/raven2_sdma.bin");
  70MODULE_FIRMWARE("amdgpu/arcturus_sdma.bin");
  71MODULE_FIRMWARE("amdgpu/renoir_sdma.bin");
  72MODULE_FIRMWARE("amdgpu/green_sardine_sdma.bin");
  73MODULE_FIRMWARE("amdgpu/aldebaran_sdma.bin");
  74
  75#define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK  0x000000F8L
  76#define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
  77
  78#define WREG32_SDMA(instance, offset, value) \
  79	WREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)), value)
  80#define RREG32_SDMA(instance, offset) \
  81	RREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)))
  82
  83static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
  84static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
  85static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
  86static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
  87static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev);
  88
  89static const struct soc15_reg_golden golden_settings_sdma_4[] = {
  90	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
  91	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
  92	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
  93	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
  94	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
  95	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  96	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
  97	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
  98	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  99	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
 100	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
 101	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
 102	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000),
 103	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
 104	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
 105	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
 106	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
 107	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
 108	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
 109	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
 110	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
 111	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
 112	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
 113	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
 114	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000)
 115};
 116
 117static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
 118	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
 119	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
 120	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 121	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
 122	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
 123	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
 124	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 125};
 126
 127static const struct soc15_reg_golden golden_settings_sdma_vg12[] = {
 128	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
 129	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
 130	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 131	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
 132	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
 133	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
 134	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 135};
 136
 137static const struct soc15_reg_golden golden_settings_sdma_4_1[] = {
 138	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
 139	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
 140	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
 141	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 142	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
 143	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
 144	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 145	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
 146	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 147	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003e0),
 148	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000)
 149};
 150
 151static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = {
 152	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
 153};
 154
 155static const struct soc15_reg_golden golden_settings_sdma0_4_2[] =
 156{
 157	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 158	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
 159	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 160	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 161	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 162	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 163	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 164	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 165	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003),
 166	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 167	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
 168	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 169	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 170	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 171	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 172	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 173	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 174	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 175	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 176	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 177	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 178	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 179	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 180	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 181	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 182	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
 183	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 184};
 185
 186static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = {
 187	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 188	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
 189	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 190	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 191	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 192	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 193	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 194	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 195	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003),
 196	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 197	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
 198	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 199	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 200	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 201	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 202	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 203	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 204	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 205	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 206	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 207	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 208	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 209	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 210	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 211	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 212	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
 213	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 214};
 215
 216static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
 217{
 218	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
 219	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
 220};
 221
 222static const struct soc15_reg_golden golden_settings_sdma_rv2[] =
 223{
 224	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001),
 225	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001)
 226};
 227
 228static const struct soc15_reg_golden golden_settings_sdma_arct[] =
 229{
 230	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 231	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 232	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 233	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 234	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 235	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 236	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 237	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 238	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 239	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 240	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 241	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 242	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 243	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 244	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 245	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 246	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 247	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 248	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 249	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 250	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 251	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 252	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 253	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 254	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 255	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 256	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 257	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 258	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 259	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 260	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 261	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_UTCL1_TIMEOUT, 0xffffffff, 0x00010001)
 262};
 263
 264static const struct soc15_reg_golden golden_settings_sdma_aldebaran[] = {
 265	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
 266	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
 267	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 268	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
 269	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
 270	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 271	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
 272	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
 273	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA2_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 274	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
 275	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
 276	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 277	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
 278	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
 279	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 280};
 281
 282static const struct soc15_reg_golden golden_settings_sdma_4_3[] = {
 283	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 284	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
 285	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
 286	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002),
 287	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 288	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003fff07, 0x40000051),
 289	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 290	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 291	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003e0),
 292	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x03fbe1fe)
 293};
 294
 295static const struct soc15_ras_field_entry sdma_v4_0_ras_fields[] = {
 296	{ "SDMA_UCODE_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 297	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UCODE_BUF_SED),
 298	0, 0,
 299	},
 300	{ "SDMA_RB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 301	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_RB_CMD_BUF_SED),
 302	0, 0,
 303	},
 304	{ "SDMA_IB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 305	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_IB_CMD_BUF_SED),
 306	0, 0,
 307	},
 308	{ "SDMA_UTCL1_RD_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 309	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RD_FIFO_SED),
 310	0, 0,
 311	},
 312	{ "SDMA_UTCL1_RDBST_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 313	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RDBST_FIFO_SED),
 314	0, 0,
 315	},
 316	{ "SDMA_DATA_LUT_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 317	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_DATA_LUT_FIFO_SED),
 318	0, 0,
 319	},
 320	{ "SDMA_MBANK_DATA_BUF0_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 321	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF0_SED),
 322	0, 0,
 323	},
 324	{ "SDMA_MBANK_DATA_BUF1_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 325	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF1_SED),
 326	0, 0,
 327	},
 328	{ "SDMA_MBANK_DATA_BUF2_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 329	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF2_SED),
 330	0, 0,
 331	},
 332	{ "SDMA_MBANK_DATA_BUF3_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 333	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF3_SED),
 334	0, 0,
 335	},
 336	{ "SDMA_MBANK_DATA_BUF4_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 337	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF4_SED),
 338	0, 0,
 339	},
 340	{ "SDMA_MBANK_DATA_BUF5_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 341	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF5_SED),
 342	0, 0,
 343	},
 344	{ "SDMA_MBANK_DATA_BUF6_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 345	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF6_SED),
 346	0, 0,
 347	},
 348	{ "SDMA_MBANK_DATA_BUF7_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 349	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF7_SED),
 350	0, 0,
 351	},
 352	{ "SDMA_MBANK_DATA_BUF8_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 353	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF8_SED),
 354	0, 0,
 355	},
 356	{ "SDMA_MBANK_DATA_BUF9_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 357	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF9_SED),
 358	0, 0,
 359	},
 360	{ "SDMA_MBANK_DATA_BUF10_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 361	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF10_SED),
 362	0, 0,
 363	},
 364	{ "SDMA_MBANK_DATA_BUF11_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 365	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF11_SED),
 366	0, 0,
 367	},
 368	{ "SDMA_MBANK_DATA_BUF12_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 369	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF12_SED),
 370	0, 0,
 371	},
 372	{ "SDMA_MBANK_DATA_BUF13_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 373	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF13_SED),
 374	0, 0,
 375	},
 376	{ "SDMA_MBANK_DATA_BUF14_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 377	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF14_SED),
 378	0, 0,
 379	},
 380	{ "SDMA_MBANK_DATA_BUF15_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 381	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF15_SED),
 382	0, 0,
 383	},
 384	{ "SDMA_SPLIT_DAT_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 385	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_SPLIT_DAT_BUF_SED),
 386	0, 0,
 387	},
 388	{ "SDMA_MC_WR_ADDR_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 389	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MC_WR_ADDR_FIFO_SED),
 390	0, 0,
 391	},
 392};
 393
 394static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
 395		u32 instance, u32 offset)
 396{
 397	switch (instance) {
 398	case 0:
 399		return (adev->reg_offset[SDMA0_HWIP][0][0] + offset);
 400	case 1:
 401		return (adev->reg_offset[SDMA1_HWIP][0][0] + offset);
 402	case 2:
 403		return (adev->reg_offset[SDMA2_HWIP][0][1] + offset);
 404	case 3:
 405		return (adev->reg_offset[SDMA3_HWIP][0][1] + offset);
 406	case 4:
 407		return (adev->reg_offset[SDMA4_HWIP][0][1] + offset);
 408	case 5:
 409		return (adev->reg_offset[SDMA5_HWIP][0][1] + offset);
 410	case 6:
 411		return (adev->reg_offset[SDMA6_HWIP][0][1] + offset);
 412	case 7:
 413		return (adev->reg_offset[SDMA7_HWIP][0][1] + offset);
 414	default:
 415		break;
 416	}
 417	return 0;
 418}
 419
 420static unsigned sdma_v4_0_seq_to_irq_id(int seq_num)
 421{
 422	switch (seq_num) {
 423	case 0:
 424		return SOC15_IH_CLIENTID_SDMA0;
 425	case 1:
 426		return SOC15_IH_CLIENTID_SDMA1;
 427	case 2:
 428		return SOC15_IH_CLIENTID_SDMA2;
 429	case 3:
 430		return SOC15_IH_CLIENTID_SDMA3;
 431	case 4:
 432		return SOC15_IH_CLIENTID_SDMA4;
 433	case 5:
 434		return SOC15_IH_CLIENTID_SDMA5;
 435	case 6:
 436		return SOC15_IH_CLIENTID_SDMA6;
 437	case 7:
 438		return SOC15_IH_CLIENTID_SDMA7;
 439	default:
 440		break;
 441	}
 442	return -EINVAL;
 443}
 444
 445static int sdma_v4_0_irq_id_to_seq(unsigned client_id)
 446{
 447	switch (client_id) {
 448	case SOC15_IH_CLIENTID_SDMA0:
 449		return 0;
 450	case SOC15_IH_CLIENTID_SDMA1:
 451		return 1;
 452	case SOC15_IH_CLIENTID_SDMA2:
 453		return 2;
 454	case SOC15_IH_CLIENTID_SDMA3:
 455		return 3;
 456	case SOC15_IH_CLIENTID_SDMA4:
 457		return 4;
 458	case SOC15_IH_CLIENTID_SDMA5:
 459		return 5;
 460	case SOC15_IH_CLIENTID_SDMA6:
 461		return 6;
 462	case SOC15_IH_CLIENTID_SDMA7:
 463		return 7;
 464	default:
 465		break;
 466	}
 467	return -EINVAL;
 468}
 469
 470static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
 471{
 472	switch (adev->asic_type) {
 473	case CHIP_VEGA10:
 474		soc15_program_register_sequence(adev,
 475						golden_settings_sdma_4,
 476						ARRAY_SIZE(golden_settings_sdma_4));
 477		soc15_program_register_sequence(adev,
 478						golden_settings_sdma_vg10,
 479						ARRAY_SIZE(golden_settings_sdma_vg10));
 480		break;
 481	case CHIP_VEGA12:
 482		soc15_program_register_sequence(adev,
 483						golden_settings_sdma_4,
 484						ARRAY_SIZE(golden_settings_sdma_4));
 485		soc15_program_register_sequence(adev,
 486						golden_settings_sdma_vg12,
 487						ARRAY_SIZE(golden_settings_sdma_vg12));
 488		break;
 489	case CHIP_VEGA20:
 490		soc15_program_register_sequence(adev,
 491						golden_settings_sdma0_4_2_init,
 492						ARRAY_SIZE(golden_settings_sdma0_4_2_init));
 493		soc15_program_register_sequence(adev,
 494						golden_settings_sdma0_4_2,
 495						ARRAY_SIZE(golden_settings_sdma0_4_2));
 496		soc15_program_register_sequence(adev,
 497						golden_settings_sdma1_4_2,
 498						ARRAY_SIZE(golden_settings_sdma1_4_2));
 499		break;
 500	case CHIP_ARCTURUS:
 501		soc15_program_register_sequence(adev,
 502						golden_settings_sdma_arct,
 503						ARRAY_SIZE(golden_settings_sdma_arct));
 504		break;
 505	case CHIP_ALDEBARAN:
 506		soc15_program_register_sequence(adev,
 507						golden_settings_sdma_aldebaran,
 508						ARRAY_SIZE(golden_settings_sdma_aldebaran));
 509		break;
 510	case CHIP_RAVEN:
 511		soc15_program_register_sequence(adev,
 512						golden_settings_sdma_4_1,
 513						ARRAY_SIZE(golden_settings_sdma_4_1));
 514		if (adev->apu_flags & AMD_APU_IS_RAVEN2)
 515			soc15_program_register_sequence(adev,
 516							golden_settings_sdma_rv2,
 517							ARRAY_SIZE(golden_settings_sdma_rv2));
 518		else
 519			soc15_program_register_sequence(adev,
 520							golden_settings_sdma_rv1,
 521							ARRAY_SIZE(golden_settings_sdma_rv1));
 522		break;
 523	case CHIP_RENOIR:
 524		soc15_program_register_sequence(adev,
 525						golden_settings_sdma_4_3,
 526						ARRAY_SIZE(golden_settings_sdma_4_3));
 527		break;
 528	default:
 529		break;
 530	}
 531}
 532
 533static void sdma_v4_0_setup_ulv(struct amdgpu_device *adev)
 534{
 535	int i;
 536
 537	/*
 538	 * The only chips with SDMAv4 and ULV are VG10 and VG20.
 539	 * Server SKUs take a different hysteresis setting from other SKUs.
 540	 */
 541	switch (adev->asic_type) {
 542	case CHIP_VEGA10:
 543		if (adev->pdev->device == 0x6860)
 544			break;
 545		return;
 546	case CHIP_VEGA20:
 547		if (adev->pdev->device == 0x66a1)
 548			break;
 549		return;
 550	default:
 551		return;
 552	}
 553
 554	for (i = 0; i < adev->sdma.num_instances; i++) {
 555		uint32_t temp;
 556
 557		temp = RREG32_SDMA(i, mmSDMA0_ULV_CNTL);
 558		temp = REG_SET_FIELD(temp, SDMA0_ULV_CNTL, HYSTERESIS, 0x0);
 559		WREG32_SDMA(i, mmSDMA0_ULV_CNTL, temp);
 560	}
 561}
 562
 563static int sdma_v4_0_init_inst_ctx(struct amdgpu_sdma_instance *sdma_inst)
 564{
 565	int err = 0;
 566	const struct sdma_firmware_header_v1_0 *hdr;
 567
 568	err = amdgpu_ucode_validate(sdma_inst->fw);
 569	if (err)
 570		return err;
 571
 572	hdr = (const struct sdma_firmware_header_v1_0 *)sdma_inst->fw->data;
 573	sdma_inst->fw_version = le32_to_cpu(hdr->header.ucode_version);
 574	sdma_inst->feature_version = le32_to_cpu(hdr->ucode_feature_version);
 575
 576	if (sdma_inst->feature_version >= 20)
 577		sdma_inst->burst_nop = true;
 578
 579	return 0;
 580}
 581
 582static void sdma_v4_0_destroy_inst_ctx(struct amdgpu_device *adev)
 583{
 584	int i;
 585
 586	for (i = 0; i < adev->sdma.num_instances; i++) {
 587		release_firmware(adev->sdma.instance[i].fw);
 588		adev->sdma.instance[i].fw = NULL;
 589
 590		/* arcturus shares the same FW memory across
 591		   all SDMA isntances */
 592		if (adev->asic_type == CHIP_ARCTURUS ||
 593		    adev->asic_type == CHIP_ALDEBARAN)
 594			break;
 595	}
 596
 597	memset((void *)adev->sdma.instance, 0,
 598		sizeof(struct amdgpu_sdma_instance) * AMDGPU_MAX_SDMA_INSTANCES);
 599}
 600
 601/**
 602 * sdma_v4_0_init_microcode - load ucode images from disk
 603 *
 604 * @adev: amdgpu_device pointer
 605 *
 606 * Use the firmware interface to load the ucode images into
 607 * the driver (not loaded into hw).
 608 * Returns 0 on success, error on failure.
 609 */
 610
 611// emulation only, won't work on real chip
 612// vega10 real chip need to use PSP to load firmware
 613static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
 614{
 615	const char *chip_name;
 616	char fw_name[30];
 617	int err = 0, i;
 618	struct amdgpu_firmware_info *info = NULL;
 619	const struct common_firmware_header *header = NULL;
 620
 621	DRM_DEBUG("\n");
 622
 623	switch (adev->asic_type) {
 624	case CHIP_VEGA10:
 625		chip_name = "vega10";
 626		break;
 627	case CHIP_VEGA12:
 628		chip_name = "vega12";
 629		break;
 630	case CHIP_VEGA20:
 631		chip_name = "vega20";
 632		break;
 633	case CHIP_RAVEN:
 634		if (adev->apu_flags & AMD_APU_IS_RAVEN2)
 635			chip_name = "raven2";
 636		else if (adev->apu_flags & AMD_APU_IS_PICASSO)
 637			chip_name = "picasso";
 638		else
 639			chip_name = "raven";
 640		break;
 641	case CHIP_ARCTURUS:
 642		chip_name = "arcturus";
 643		break;
 644	case CHIP_RENOIR:
 645		if (adev->apu_flags & AMD_APU_IS_RENOIR)
 646			chip_name = "renoir";
 647		else
 648			chip_name = "green_sardine";
 649		break;
 650	case CHIP_ALDEBARAN:
 651		chip_name = "aldebaran";
 652		break;
 653	default:
 654		BUG();
 655	}
 656
 657	snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
 658
 659	err = request_firmware(&adev->sdma.instance[0].fw, fw_name, adev->dev);
 660	if (err)
 661		goto out;
 662
 663	err = sdma_v4_0_init_inst_ctx(&adev->sdma.instance[0]);
 664	if (err)
 665		goto out;
 666
 667	for (i = 1; i < adev->sdma.num_instances; i++) {
 668		if (adev->asic_type == CHIP_ARCTURUS ||
 669		    adev->asic_type == CHIP_ALDEBARAN) {
 670			/* Acturus & Aldebaran will leverage the same FW memory
 671			   for every SDMA instance */
 672			memcpy((void *)&adev->sdma.instance[i],
 673			       (void *)&adev->sdma.instance[0],
 674			       sizeof(struct amdgpu_sdma_instance));
 675		}
 676		else {
 677			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma%d.bin", chip_name, i);
 678
 679			err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
 680			if (err)
 681				goto out;
 682
 683			err = sdma_v4_0_init_inst_ctx(&adev->sdma.instance[i]);
 684			if (err)
 685				goto out;
 686		}
 687	}
 688
 689	DRM_DEBUG("psp_load == '%s'\n",
 690		adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
 691
 692	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
 693		for (i = 0; i < adev->sdma.num_instances; i++) {
 694			info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
 695			info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
 696			info->fw = adev->sdma.instance[i].fw;
 697			header = (const struct common_firmware_header *)info->fw->data;
 698			adev->firmware.fw_size +=
 699				ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
 700		}
 701	}
 702
 703out:
 704	if (err) {
 705		DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name);
 706		sdma_v4_0_destroy_inst_ctx(adev);
 707	}
 708	return err;
 709}
 710
 711/**
 712 * sdma_v4_0_ring_get_rptr - get the current read pointer
 713 *
 714 * @ring: amdgpu ring pointer
 715 *
 716 * Get the current rptr from the hardware (VEGA10+).
 717 */
 718static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
 719{
 720	u64 *rptr;
 721
 722	/* XXX check if swapping is necessary on BE */
 723	rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
 724
 725	DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
 726	return ((*rptr) >> 2);
 727}
 728
 729/**
 730 * sdma_v4_0_ring_get_wptr - get the current write pointer
 731 *
 732 * @ring: amdgpu ring pointer
 733 *
 734 * Get the current wptr from the hardware (VEGA10+).
 735 */
 736static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
 737{
 738	struct amdgpu_device *adev = ring->adev;
 739	u64 wptr;
 740
 741	if (ring->use_doorbell) {
 742		/* XXX check if swapping is necessary on BE */
 743		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
 744		DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
 745	} else {
 746		wptr = RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI);
 747		wptr = wptr << 32;
 748		wptr |= RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR);
 749		DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n",
 750				ring->me, wptr);
 751	}
 752
 753	return wptr >> 2;
 754}
 755
 756/**
 757 * sdma_v4_0_ring_set_wptr - commit the write pointer
 758 *
 759 * @ring: amdgpu ring pointer
 760 *
 761 * Write the wptr back to the hardware (VEGA10+).
 762 */
 763static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
 764{
 765	struct amdgpu_device *adev = ring->adev;
 766
 767	DRM_DEBUG("Setting write pointer\n");
 768	if (ring->use_doorbell) {
 769		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
 770
 771		DRM_DEBUG("Using doorbell -- "
 772				"wptr_offs == 0x%08x "
 773				"lower_32_bits(ring->wptr) << 2 == 0x%08x "
 774				"upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
 775				ring->wptr_offs,
 776				lower_32_bits(ring->wptr << 2),
 777				upper_32_bits(ring->wptr << 2));
 778		/* XXX check if swapping is necessary on BE */
 779		WRITE_ONCE(*wb, (ring->wptr << 2));
 780		DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
 781				ring->doorbell_index, ring->wptr << 2);
 782		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
 783	} else {
 784		DRM_DEBUG("Not using doorbell -- "
 785				"mmSDMA%i_GFX_RB_WPTR == 0x%08x "
 786				"mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
 787				ring->me,
 788				lower_32_bits(ring->wptr << 2),
 789				ring->me,
 790				upper_32_bits(ring->wptr << 2));
 791		WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR,
 792			    lower_32_bits(ring->wptr << 2));
 793		WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI,
 794			    upper_32_bits(ring->wptr << 2));
 795	}
 796}
 797
 798/**
 799 * sdma_v4_0_page_ring_get_wptr - get the current write pointer
 800 *
 801 * @ring: amdgpu ring pointer
 802 *
 803 * Get the current wptr from the hardware (VEGA10+).
 804 */
 805static uint64_t sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring *ring)
 806{
 807	struct amdgpu_device *adev = ring->adev;
 808	u64 wptr;
 809
 810	if (ring->use_doorbell) {
 811		/* XXX check if swapping is necessary on BE */
 812		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
 813	} else {
 814		wptr = RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI);
 815		wptr = wptr << 32;
 816		wptr |= RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR);
 817	}
 818
 819	return wptr >> 2;
 820}
 821
 822/**
 823 * sdma_v4_0_page_ring_set_wptr - commit the write pointer
 824 *
 825 * @ring: amdgpu ring pointer
 826 *
 827 * Write the wptr back to the hardware (VEGA10+).
 828 */
 829static void sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring *ring)
 830{
 831	struct amdgpu_device *adev = ring->adev;
 832
 833	if (ring->use_doorbell) {
 834		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
 835
 836		/* XXX check if swapping is necessary on BE */
 837		WRITE_ONCE(*wb, (ring->wptr << 2));
 838		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
 839	} else {
 840		uint64_t wptr = ring->wptr << 2;
 841
 842		WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR,
 843			    lower_32_bits(wptr));
 844		WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI,
 845			    upper_32_bits(wptr));
 846	}
 847}
 848
 849static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
 850{
 851	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
 852	int i;
 853
 854	for (i = 0; i < count; i++)
 855		if (sdma && sdma->burst_nop && (i == 0))
 856			amdgpu_ring_write(ring, ring->funcs->nop |
 857				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
 858		else
 859			amdgpu_ring_write(ring, ring->funcs->nop);
 860}
 861
 862/**
 863 * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
 864 *
 865 * @ring: amdgpu ring pointer
 866 * @job: job to retrieve vmid from
 867 * @ib: IB object to schedule
 868 * @flags: unused
 869 *
 870 * Schedule an IB in the DMA ring (VEGA10).
 871 */
 872static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
 873				   struct amdgpu_job *job,
 874				   struct amdgpu_ib *ib,
 875				   uint32_t flags)
 876{
 877	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
 878
 879	/* IB packet must end on a 8 DW boundary */
 880	sdma_v4_0_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
 881
 882	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
 883			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
 884	/* base must be 32 byte aligned */
 885	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
 886	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
 887	amdgpu_ring_write(ring, ib->length_dw);
 888	amdgpu_ring_write(ring, 0);
 889	amdgpu_ring_write(ring, 0);
 890
 891}
 892
 893static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring,
 894				   int mem_space, int hdp,
 895				   uint32_t addr0, uint32_t addr1,
 896				   uint32_t ref, uint32_t mask,
 897				   uint32_t inv)
 898{
 899	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
 900			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
 901			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
 902			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
 903	if (mem_space) {
 904		/* memory */
 905		amdgpu_ring_write(ring, addr0);
 906		amdgpu_ring_write(ring, addr1);
 907	} else {
 908		/* registers */
 909		amdgpu_ring_write(ring, addr0 << 2);
 910		amdgpu_ring_write(ring, addr1 << 2);
 911	}
 912	amdgpu_ring_write(ring, ref); /* reference */
 913	amdgpu_ring_write(ring, mask); /* mask */
 914	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
 915			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
 916}
 917
 918/**
 919 * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
 920 *
 921 * @ring: amdgpu ring pointer
 922 *
 923 * Emit an hdp flush packet on the requested DMA ring.
 924 */
 925static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
 926{
 927	struct amdgpu_device *adev = ring->adev;
 928	u32 ref_and_mask = 0;
 929	const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;
 930
 931	ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me;
 932
 933	sdma_v4_0_wait_reg_mem(ring, 0, 1,
 934			       adev->nbio.funcs->get_hdp_flush_done_offset(adev),
 935			       adev->nbio.funcs->get_hdp_flush_req_offset(adev),
 936			       ref_and_mask, ref_and_mask, 10);
 937}
 938
 939/**
 940 * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
 941 *
 942 * @ring: amdgpu ring pointer
 943 * @addr: address
 944 * @seq: sequence number
 945 * @flags: fence related flags
 946 *
 947 * Add a DMA fence packet to the ring to write
 948 * the fence seq number and DMA trap packet to generate
 949 * an interrupt if needed (VEGA10).
 950 */
 951static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
 952				      unsigned flags)
 953{
 954	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
 955	/* write the fence */
 956	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
 957	/* zero in first two bits */
 958	BUG_ON(addr & 0x3);
 959	amdgpu_ring_write(ring, lower_32_bits(addr));
 960	amdgpu_ring_write(ring, upper_32_bits(addr));
 961	amdgpu_ring_write(ring, lower_32_bits(seq));
 962
 963	/* optionally write high bits as well */
 964	if (write64bit) {
 965		addr += 4;
 966		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
 967		/* zero in first two bits */
 968		BUG_ON(addr & 0x3);
 969		amdgpu_ring_write(ring, lower_32_bits(addr));
 970		amdgpu_ring_write(ring, upper_32_bits(addr));
 971		amdgpu_ring_write(ring, upper_32_bits(seq));
 972	}
 973
 974	/* generate an interrupt */
 975	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
 976	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
 977}
 978
 979
 980/**
 981 * sdma_v4_0_gfx_stop - stop the gfx async dma engines
 982 *
 983 * @adev: amdgpu_device pointer
 984 *
 985 * Stop the gfx async dma ring buffers (VEGA10).
 986 */
 987static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
 988{
 989	struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
 990	u32 rb_cntl, ib_cntl;
 991	int i, unset = 0;
 992
 993	for (i = 0; i < adev->sdma.num_instances; i++) {
 994		sdma[i] = &adev->sdma.instance[i].ring;
 995
 996		if ((adev->mman.buffer_funcs_ring == sdma[i]) && unset != 1) {
 997			amdgpu_ttm_set_buffer_funcs_status(adev, false);
 998			unset = 1;
 999		}
1000
1001		rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
1002		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
1003		WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1004		ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
1005		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
1006		WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
 
 
1007	}
1008}
1009
1010/**
1011 * sdma_v4_0_rlc_stop - stop the compute async dma engines
1012 *
1013 * @adev: amdgpu_device pointer
1014 *
1015 * Stop the compute async dma queues (VEGA10).
1016 */
1017static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
1018{
1019	/* XXX todo */
1020}
1021
1022/**
1023 * sdma_v4_0_page_stop - stop the page async dma engines
1024 *
1025 * @adev: amdgpu_device pointer
1026 *
1027 * Stop the page async dma ring buffers (VEGA10).
1028 */
1029static void sdma_v4_0_page_stop(struct amdgpu_device *adev)
1030{
1031	struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
1032	u32 rb_cntl, ib_cntl;
1033	int i;
1034	bool unset = false;
1035
1036	for (i = 0; i < adev->sdma.num_instances; i++) {
1037		sdma[i] = &adev->sdma.instance[i].page;
1038
1039		if ((adev->mman.buffer_funcs_ring == sdma[i]) &&
1040			(!unset)) {
1041			amdgpu_ttm_set_buffer_funcs_status(adev, false);
1042			unset = true;
1043		}
1044
1045		rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
1046		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
1047					RB_ENABLE, 0);
1048		WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1049		ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
1050		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL,
1051					IB_ENABLE, 0);
1052		WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
 
 
1053	}
1054}
1055
1056/**
1057 * sdma_v4_0_ctx_switch_enable - stop the async dma engines context switch
1058 *
1059 * @adev: amdgpu_device pointer
1060 * @enable: enable/disable the DMA MEs context switch.
1061 *
1062 * Halt or unhalt the async dma engines context switch (VEGA10).
1063 */
1064static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
1065{
1066	u32 f32_cntl, phase_quantum = 0;
1067	int i;
1068
1069	if (amdgpu_sdma_phase_quantum) {
1070		unsigned value = amdgpu_sdma_phase_quantum;
1071		unsigned unit = 0;
1072
1073		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
1074				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
1075			value = (value + 1) >> 1;
1076			unit++;
1077		}
1078		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
1079			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
1080			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
1081				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
1082			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
1083				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
1084			WARN_ONCE(1,
1085			"clamping sdma_phase_quantum to %uK clock cycles\n",
1086				  value << unit);
1087		}
1088		phase_quantum =
1089			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
1090			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
1091	}
1092
1093	for (i = 0; i < adev->sdma.num_instances; i++) {
1094		f32_cntl = RREG32_SDMA(i, mmSDMA0_CNTL);
1095		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
1096				AUTO_CTXSW_ENABLE, enable ? 1 : 0);
1097		if (enable && amdgpu_sdma_phase_quantum) {
1098			WREG32_SDMA(i, mmSDMA0_PHASE0_QUANTUM, phase_quantum);
1099			WREG32_SDMA(i, mmSDMA0_PHASE1_QUANTUM, phase_quantum);
1100			WREG32_SDMA(i, mmSDMA0_PHASE2_QUANTUM, phase_quantum);
1101		}
1102		WREG32_SDMA(i, mmSDMA0_CNTL, f32_cntl);
1103
1104		/*
1105		 * Enable SDMA utilization. Its only supported on
1106		 * Arcturus for the moment and firmware version 14
1107		 * and above.
1108		 */
1109		if (adev->asic_type == CHIP_ARCTURUS &&
1110		    adev->sdma.instance[i].fw_version >= 14)
1111			WREG32_SDMA(i, mmSDMA0_PUB_DUMMY_REG2, enable);
1112		/* Extend page fault timeout to avoid interrupt storm */
1113		WREG32_SDMA(i, mmSDMA0_UTCL1_TIMEOUT, 0x00800080);
1114	}
1115
1116}
1117
1118/**
1119 * sdma_v4_0_enable - stop the async dma engines
1120 *
1121 * @adev: amdgpu_device pointer
1122 * @enable: enable/disable the DMA MEs.
1123 *
1124 * Halt or unhalt the async dma engines (VEGA10).
1125 */
1126static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
1127{
1128	u32 f32_cntl;
1129	int i;
1130
1131	if (!enable) {
1132		sdma_v4_0_gfx_stop(adev);
1133		sdma_v4_0_rlc_stop(adev);
1134		if (adev->sdma.has_page_queue)
1135			sdma_v4_0_page_stop(adev);
1136	}
1137
1138	for (i = 0; i < adev->sdma.num_instances; i++) {
1139		f32_cntl = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1140		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
1141		WREG32_SDMA(i, mmSDMA0_F32_CNTL, f32_cntl);
1142	}
1143}
1144
1145/*
1146 * sdma_v4_0_rb_cntl - get parameters for rb_cntl
1147 */
1148static uint32_t sdma_v4_0_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
1149{
1150	/* Set ring buffer size in dwords */
1151	uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);
1152
1153	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
1154#ifdef __BIG_ENDIAN
1155	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
1156	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1157				RPTR_WRITEBACK_SWAP_ENABLE, 1);
1158#endif
1159	return rb_cntl;
1160}
1161
1162/**
1163 * sdma_v4_0_gfx_resume - setup and start the async dma engines
1164 *
1165 * @adev: amdgpu_device pointer
1166 * @i: instance to resume
1167 *
1168 * Set up the gfx DMA ring buffers and enable them (VEGA10).
1169 * Returns 0 for success, error for failure.
1170 */
1171static void sdma_v4_0_gfx_resume(struct amdgpu_device *adev, unsigned int i)
1172{
1173	struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
1174	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1175	u32 wb_offset;
1176	u32 doorbell;
1177	u32 doorbell_offset;
1178	u64 wptr_gpu_addr;
1179
1180	wb_offset = (ring->rptr_offs * 4);
1181
1182	rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
1183	rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1184	WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1185
1186	/* Initialize the ring buffer's read and write pointers */
1187	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR, 0);
1188	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_HI, 0);
1189	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR, 0);
1190	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_HI, 0);
1191
1192	/* set the wb address whether it's enabled or not */
1193	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI,
1194	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
1195	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO,
1196	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
1197
1198	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1199				RPTR_WRITEBACK_ENABLE, 1);
1200
1201	WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE, ring->gpu_addr >> 8);
1202	WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
1203
1204	ring->wptr = 0;
1205
1206	/* before programing wptr to a less value, need set minor_ptr_update first */
1207	WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 1);
1208
1209	doorbell = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL);
1210	doorbell_offset = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET);
1211
1212	doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE,
1213				 ring->use_doorbell);
1214	doorbell_offset = REG_SET_FIELD(doorbell_offset,
1215					SDMA0_GFX_DOORBELL_OFFSET,
1216					OFFSET, ring->doorbell_index);
1217	WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL, doorbell);
1218	WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET, doorbell_offset);
1219
1220	sdma_v4_0_ring_set_wptr(ring);
1221
1222	/* set minor_ptr_update to 0 after wptr programed */
1223	WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 0);
1224
1225	/* setup the wptr shadow polling */
1226	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
1227	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO,
1228		    lower_32_bits(wptr_gpu_addr));
1229	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI,
1230		    upper_32_bits(wptr_gpu_addr));
1231	wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL);
1232	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1233				       SDMA0_GFX_RB_WPTR_POLL_CNTL,
1234				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1235	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1236
1237	/* enable DMA RB */
1238	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
1239	WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1240
1241	ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
1242	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
1243#ifdef __BIG_ENDIAN
1244	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
1245#endif
1246	/* enable DMA IBs */
1247	WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
1248
1249	ring->sched.ready = true;
1250}
1251
1252/**
1253 * sdma_v4_0_page_resume - setup and start the async dma engines
1254 *
1255 * @adev: amdgpu_device pointer
1256 * @i: instance to resume
1257 *
1258 * Set up the page DMA ring buffers and enable them (VEGA10).
1259 * Returns 0 for success, error for failure.
1260 */
1261static void sdma_v4_0_page_resume(struct amdgpu_device *adev, unsigned int i)
1262{
1263	struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
1264	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1265	u32 wb_offset;
1266	u32 doorbell;
1267	u32 doorbell_offset;
1268	u64 wptr_gpu_addr;
1269
1270	wb_offset = (ring->rptr_offs * 4);
1271
1272	rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
1273	rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1274	WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1275
1276	/* Initialize the ring buffer's read and write pointers */
1277	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR, 0);
1278	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_HI, 0);
1279	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR, 0);
1280	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_HI, 0);
1281
1282	/* set the wb address whether it's enabled or not */
1283	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_HI,
1284	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
1285	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_LO,
1286	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
1287
1288	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
1289				RPTR_WRITEBACK_ENABLE, 1);
1290
1291	WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE, ring->gpu_addr >> 8);
1292	WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);
1293
1294	ring->wptr = 0;
1295
1296	/* before programing wptr to a less value, need set minor_ptr_update first */
1297	WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 1);
1298
1299	doorbell = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL);
1300	doorbell_offset = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET);
1301
1302	doorbell = REG_SET_FIELD(doorbell, SDMA0_PAGE_DOORBELL, ENABLE,
1303				 ring->use_doorbell);
1304	doorbell_offset = REG_SET_FIELD(doorbell_offset,
1305					SDMA0_PAGE_DOORBELL_OFFSET,
1306					OFFSET, ring->doorbell_index);
1307	WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL, doorbell);
1308	WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET, doorbell_offset);
1309
1310	/* paging queue doorbell range is setup at sdma_v4_0_gfx_resume */
1311	sdma_v4_0_page_ring_set_wptr(ring);
1312
1313	/* set minor_ptr_update to 0 after wptr programed */
1314	WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 0);
1315
1316	/* setup the wptr shadow polling */
1317	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
1318	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_LO,
1319		    lower_32_bits(wptr_gpu_addr));
1320	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_HI,
1321		    upper_32_bits(wptr_gpu_addr));
1322	wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL);
1323	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1324				       SDMA0_PAGE_RB_WPTR_POLL_CNTL,
1325				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1326	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1327
1328	/* enable DMA RB */
1329	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RB_ENABLE, 1);
1330	WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1331
1332	ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
1333	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_ENABLE, 1);
1334#ifdef __BIG_ENDIAN
1335	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
1336#endif
1337	/* enable DMA IBs */
1338	WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
1339
1340	ring->sched.ready = true;
1341}
1342
1343static void
1344sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
1345{
1346	uint32_t def, data;
1347
1348	if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
1349		/* enable idle interrupt */
1350		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1351		data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1352
1353		if (data != def)
1354			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1355	} else {
1356		/* disable idle interrupt */
1357		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1358		data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1359		if (data != def)
1360			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1361	}
1362}
1363
1364static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
1365{
1366	uint32_t def, data;
1367
1368	/* Enable HW based PG. */
1369	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1370	data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
1371	if (data != def)
1372		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1373
1374	/* enable interrupt */
1375	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1376	data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1377	if (data != def)
1378		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1379
1380	/* Configure hold time to filter in-valid power on/off request. Use default right now */
1381	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1382	data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
1383	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
1384	/* Configure switch time for hysteresis purpose. Use default right now */
1385	data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
1386	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
1387	if(data != def)
1388		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1389}
1390
1391static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
1392{
1393	if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
1394		return;
1395
1396	switch (adev->asic_type) {
1397	case CHIP_RAVEN:
1398	case CHIP_RENOIR:
1399		sdma_v4_1_init_power_gating(adev);
1400		sdma_v4_1_update_power_gating(adev, true);
1401		break;
1402	default:
1403		break;
1404	}
1405}
1406
1407/**
1408 * sdma_v4_0_rlc_resume - setup and start the async dma engines
1409 *
1410 * @adev: amdgpu_device pointer
1411 *
1412 * Set up the compute DMA queues and enable them (VEGA10).
1413 * Returns 0 for success, error for failure.
1414 */
1415static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
1416{
1417	sdma_v4_0_init_pg(adev);
1418
1419	return 0;
1420}
1421
1422/**
1423 * sdma_v4_0_load_microcode - load the sDMA ME ucode
1424 *
1425 * @adev: amdgpu_device pointer
1426 *
1427 * Loads the sDMA0/1 ucode.
1428 * Returns 0 for success, -EINVAL if the ucode is not available.
1429 */
1430static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
1431{
1432	const struct sdma_firmware_header_v1_0 *hdr;
1433	const __le32 *fw_data;
1434	u32 fw_size;
1435	int i, j;
1436
1437	/* halt the MEs */
1438	sdma_v4_0_enable(adev, false);
1439
1440	for (i = 0; i < adev->sdma.num_instances; i++) {
1441		if (!adev->sdma.instance[i].fw)
1442			return -EINVAL;
1443
1444		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
1445		amdgpu_ucode_print_sdma_hdr(&hdr->header);
1446		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
1447
1448		fw_data = (const __le32 *)
1449			(adev->sdma.instance[i].fw->data +
1450				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
1451
1452		WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 0);
1453
1454		for (j = 0; j < fw_size; j++)
1455			WREG32_SDMA(i, mmSDMA0_UCODE_DATA,
1456				    le32_to_cpup(fw_data++));
1457
1458		WREG32_SDMA(i, mmSDMA0_UCODE_ADDR,
1459			    adev->sdma.instance[i].fw_version);
1460	}
1461
1462	return 0;
1463}
1464
1465/**
1466 * sdma_v4_0_start - setup and start the async dma engines
1467 *
1468 * @adev: amdgpu_device pointer
1469 *
1470 * Set up the DMA engines and enable them (VEGA10).
1471 * Returns 0 for success, error for failure.
1472 */
1473static int sdma_v4_0_start(struct amdgpu_device *adev)
1474{
1475	struct amdgpu_ring *ring;
1476	int i, r = 0;
1477
1478	if (amdgpu_sriov_vf(adev)) {
1479		sdma_v4_0_ctx_switch_enable(adev, false);
1480		sdma_v4_0_enable(adev, false);
1481	} else {
1482
1483		if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
1484			r = sdma_v4_0_load_microcode(adev);
1485			if (r)
1486				return r;
1487		}
1488
1489		/* unhalt the MEs */
1490		sdma_v4_0_enable(adev, true);
1491		/* enable sdma ring preemption */
1492		sdma_v4_0_ctx_switch_enable(adev, true);
1493	}
1494
1495	/* start the gfx rings and rlc compute queues */
1496	for (i = 0; i < adev->sdma.num_instances; i++) {
1497		uint32_t temp;
1498
1499		WREG32_SDMA(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL, 0);
1500		sdma_v4_0_gfx_resume(adev, i);
1501		if (adev->sdma.has_page_queue)
1502			sdma_v4_0_page_resume(adev, i);
1503
1504		/* set utc l1 enable flag always to 1 */
1505		temp = RREG32_SDMA(i, mmSDMA0_CNTL);
1506		temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
1507		WREG32_SDMA(i, mmSDMA0_CNTL, temp);
1508
1509		if (!amdgpu_sriov_vf(adev)) {
1510			/* unhalt engine */
1511			temp = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1512			temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
1513			WREG32_SDMA(i, mmSDMA0_F32_CNTL, temp);
1514		}
1515	}
1516
1517	if (amdgpu_sriov_vf(adev)) {
1518		sdma_v4_0_ctx_switch_enable(adev, true);
1519		sdma_v4_0_enable(adev, true);
1520	} else {
1521		r = sdma_v4_0_rlc_resume(adev);
1522		if (r)
1523			return r;
1524	}
1525
1526	for (i = 0; i < adev->sdma.num_instances; i++) {
1527		ring = &adev->sdma.instance[i].ring;
1528
1529		r = amdgpu_ring_test_helper(ring);
1530		if (r)
1531			return r;
1532
1533		if (adev->sdma.has_page_queue) {
1534			struct amdgpu_ring *page = &adev->sdma.instance[i].page;
1535
1536			r = amdgpu_ring_test_helper(page);
1537			if (r)
1538				return r;
1539
1540			if (adev->mman.buffer_funcs_ring == page)
1541				amdgpu_ttm_set_buffer_funcs_status(adev, true);
1542		}
1543
1544		if (adev->mman.buffer_funcs_ring == ring)
1545			amdgpu_ttm_set_buffer_funcs_status(adev, true);
1546	}
1547
1548	return r;
1549}
1550
1551/**
1552 * sdma_v4_0_ring_test_ring - simple async dma engine test
1553 *
1554 * @ring: amdgpu_ring structure holding ring information
1555 *
1556 * Test the DMA engine by writing using it to write an
1557 * value to memory. (VEGA10).
1558 * Returns 0 for success, error for failure.
1559 */
1560static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
1561{
1562	struct amdgpu_device *adev = ring->adev;
1563	unsigned i;
1564	unsigned index;
1565	int r;
1566	u32 tmp;
1567	u64 gpu_addr;
1568
1569	r = amdgpu_device_wb_get(adev, &index);
1570	if (r)
1571		return r;
1572
1573	gpu_addr = adev->wb.gpu_addr + (index * 4);
1574	tmp = 0xCAFEDEAD;
1575	adev->wb.wb[index] = cpu_to_le32(tmp);
1576
1577	r = amdgpu_ring_alloc(ring, 5);
1578	if (r)
1579		goto error_free_wb;
1580
1581	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1582			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
1583	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
1584	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
1585	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
1586	amdgpu_ring_write(ring, 0xDEADBEEF);
1587	amdgpu_ring_commit(ring);
1588
1589	for (i = 0; i < adev->usec_timeout; i++) {
1590		tmp = le32_to_cpu(adev->wb.wb[index]);
1591		if (tmp == 0xDEADBEEF)
1592			break;
1593		udelay(1);
1594	}
1595
1596	if (i >= adev->usec_timeout)
1597		r = -ETIMEDOUT;
1598
1599error_free_wb:
1600	amdgpu_device_wb_free(adev, index);
1601	return r;
1602}
1603
1604/**
1605 * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
1606 *
1607 * @ring: amdgpu_ring structure holding ring information
1608 * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
1609 *
1610 * Test a simple IB in the DMA ring (VEGA10).
1611 * Returns 0 on success, error on failure.
1612 */
1613static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1614{
1615	struct amdgpu_device *adev = ring->adev;
1616	struct amdgpu_ib ib;
1617	struct dma_fence *f = NULL;
1618	unsigned index;
1619	long r;
1620	u32 tmp = 0;
1621	u64 gpu_addr;
1622
1623	r = amdgpu_device_wb_get(adev, &index);
1624	if (r)
1625		return r;
1626
1627	gpu_addr = adev->wb.gpu_addr + (index * 4);
1628	tmp = 0xCAFEDEAD;
1629	adev->wb.wb[index] = cpu_to_le32(tmp);
1630	memset(&ib, 0, sizeof(ib));
1631	r = amdgpu_ib_get(adev, NULL, 256,
1632					AMDGPU_IB_POOL_DIRECT, &ib);
1633	if (r)
1634		goto err0;
1635
1636	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1637		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1638	ib.ptr[1] = lower_32_bits(gpu_addr);
1639	ib.ptr[2] = upper_32_bits(gpu_addr);
1640	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1641	ib.ptr[4] = 0xDEADBEEF;
1642	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1643	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1644	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1645	ib.length_dw = 8;
1646
1647	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1648	if (r)
1649		goto err1;
1650
1651	r = dma_fence_wait_timeout(f, false, timeout);
1652	if (r == 0) {
1653		r = -ETIMEDOUT;
1654		goto err1;
1655	} else if (r < 0) {
1656		goto err1;
1657	}
1658	tmp = le32_to_cpu(adev->wb.wb[index]);
1659	if (tmp == 0xDEADBEEF)
1660		r = 0;
1661	else
1662		r = -EINVAL;
1663
1664err1:
1665	amdgpu_ib_free(adev, &ib, NULL);
1666	dma_fence_put(f);
1667err0:
1668	amdgpu_device_wb_free(adev, index);
1669	return r;
1670}
1671
1672
1673/**
1674 * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
1675 *
1676 * @ib: indirect buffer to fill with commands
1677 * @pe: addr of the page entry
1678 * @src: src addr to copy from
1679 * @count: number of page entries to update
1680 *
1681 * Update PTEs by copying them from the GART using sDMA (VEGA10).
1682 */
1683static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
1684				  uint64_t pe, uint64_t src,
1685				  unsigned count)
1686{
1687	unsigned bytes = count * 8;
1688
1689	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1690		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1691	ib->ptr[ib->length_dw++] = bytes - 1;
1692	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1693	ib->ptr[ib->length_dw++] = lower_32_bits(src);
1694	ib->ptr[ib->length_dw++] = upper_32_bits(src);
1695	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1696	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1697
1698}
1699
1700/**
1701 * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
1702 *
1703 * @ib: indirect buffer to fill with commands
1704 * @pe: addr of the page entry
1705 * @value: dst addr to write into pe
1706 * @count: number of page entries to update
1707 * @incr: increase next addr by incr bytes
 
1708 *
1709 * Update PTEs by writing them manually using sDMA (VEGA10).
1710 */
1711static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1712				   uint64_t value, unsigned count,
1713				   uint32_t incr)
1714{
1715	unsigned ndw = count * 2;
1716
1717	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1718		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1719	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1720	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1721	ib->ptr[ib->length_dw++] = ndw - 1;
1722	for (; ndw > 0; ndw -= 2) {
1723		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1724		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1725		value += incr;
1726	}
1727}
1728
1729/**
1730 * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
1731 *
1732 * @ib: indirect buffer to fill with commands
1733 * @pe: addr of the page entry
1734 * @addr: dst addr to write into pe
1735 * @count: number of page entries to update
1736 * @incr: increase next addr by incr bytes
1737 * @flags: access flags
1738 *
1739 * Update the page tables using sDMA (VEGA10).
1740 */
1741static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1742				     uint64_t pe,
1743				     uint64_t addr, unsigned count,
1744				     uint32_t incr, uint64_t flags)
1745{
1746	/* for physically contiguous pages (vram) */
1747	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1748	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1749	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1750	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1751	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1752	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1753	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1754	ib->ptr[ib->length_dw++] = incr; /* increment size */
1755	ib->ptr[ib->length_dw++] = 0;
1756	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1757}
1758
1759/**
1760 * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
1761 *
1762 * @ring: amdgpu_ring structure holding ring information
1763 * @ib: indirect buffer to fill with padding
 
1764 */
1765static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1766{
1767	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1768	u32 pad_count;
1769	int i;
1770
1771	pad_count = (-ib->length_dw) & 7;
1772	for (i = 0; i < pad_count; i++)
1773		if (sdma && sdma->burst_nop && (i == 0))
1774			ib->ptr[ib->length_dw++] =
1775				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1776				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1777		else
1778			ib->ptr[ib->length_dw++] =
1779				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1780}
1781
1782
1783/**
1784 * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
1785 *
1786 * @ring: amdgpu_ring pointer
1787 *
1788 * Make sure all previous operations are completed (CIK).
1789 */
1790static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1791{
1792	uint32_t seq = ring->fence_drv.sync_seq;
1793	uint64_t addr = ring->fence_drv.gpu_addr;
1794
1795	/* wait for idle */
1796	sdma_v4_0_wait_reg_mem(ring, 1, 0,
1797			       addr & 0xfffffffc,
1798			       upper_32_bits(addr) & 0xffffffff,
1799			       seq, 0xffffffff, 4);
1800}
1801
1802
1803/**
1804 * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
1805 *
1806 * @ring: amdgpu_ring pointer
1807 * @vmid: vmid number to use
1808 * @pd_addr: address
1809 *
1810 * Update the page table base and flush the VM TLB
1811 * using sDMA (VEGA10).
1812 */
1813static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1814					 unsigned vmid, uint64_t pd_addr)
1815{
1816	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1817}
1818
1819static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring,
1820				     uint32_t reg, uint32_t val)
1821{
1822	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1823			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1824	amdgpu_ring_write(ring, reg);
1825	amdgpu_ring_write(ring, val);
1826}
1827
1828static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1829					 uint32_t val, uint32_t mask)
1830{
1831	sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1832}
1833
1834static bool sdma_v4_0_fw_support_paging_queue(struct amdgpu_device *adev)
1835{
1836	uint fw_version = adev->sdma.instance[0].fw_version;
1837
1838	switch (adev->asic_type) {
1839	case CHIP_VEGA10:
1840		return fw_version >= 430;
1841	case CHIP_VEGA12:
1842		/*return fw_version >= 31;*/
1843		return false;
1844	case CHIP_VEGA20:
1845		return fw_version >= 123;
1846	default:
1847		return false;
1848	}
1849}
1850
1851static int sdma_v4_0_early_init(void *handle)
1852{
1853	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1854	int r;
1855
1856	if (adev->flags & AMD_IS_APU)
1857		adev->sdma.num_instances = 1;
1858	else if (adev->asic_type == CHIP_ARCTURUS)
1859		adev->sdma.num_instances = 8;
1860	else if (adev->asic_type == CHIP_ALDEBARAN)
1861		adev->sdma.num_instances = 5;
1862	else
1863		adev->sdma.num_instances = 2;
1864
1865	r = sdma_v4_0_init_microcode(adev);
1866	if (r) {
1867		DRM_ERROR("Failed to load sdma firmware!\n");
1868		return r;
1869	}
1870
1871	/* TODO: Page queue breaks driver reload under SRIOV */
1872	if ((adev->asic_type == CHIP_VEGA10) && amdgpu_sriov_vf((adev)))
1873		adev->sdma.has_page_queue = false;
1874	else if (sdma_v4_0_fw_support_paging_queue(adev))
1875		adev->sdma.has_page_queue = true;
1876
1877	sdma_v4_0_set_ring_funcs(adev);
1878	sdma_v4_0_set_buffer_funcs(adev);
1879	sdma_v4_0_set_vm_pte_funcs(adev);
1880	sdma_v4_0_set_irq_funcs(adev);
1881	sdma_v4_0_set_ras_funcs(adev);
1882
1883	return 0;
1884}
1885
1886static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
1887		void *err_data,
1888		struct amdgpu_iv_entry *entry);
1889
1890static int sdma_v4_0_late_init(void *handle)
1891{
1892	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
 
1893	struct ras_ih_if ih_info = {
1894		.cb = sdma_v4_0_process_ras_data_cb,
1895	};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1896
1897	sdma_v4_0_setup_ulv(adev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1898
1899	if (!amdgpu_persistent_edc_harvesting_supported(adev)) {
1900		if (adev->sdma.funcs &&
1901		    adev->sdma.funcs->reset_ras_error_count)
1902			adev->sdma.funcs->reset_ras_error_count(adev);
 
 
 
 
 
 
 
 
 
 
1903	}
1904
1905	if (adev->sdma.funcs && adev->sdma.funcs->ras_late_init)
1906		return adev->sdma.funcs->ras_late_init(adev, &ih_info);
1907	else
1908		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1909}
1910
1911static int sdma_v4_0_sw_init(void *handle)
1912{
1913	struct amdgpu_ring *ring;
1914	int r, i;
1915	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1916
1917	/* SDMA trap event */
1918	for (i = 0; i < adev->sdma.num_instances; i++) {
1919		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1920				      SDMA0_4_0__SRCID__SDMA_TRAP,
1921				      &adev->sdma.trap_irq);
1922		if (r)
1923			return r;
1924	}
1925
1926	/* SDMA SRAM ECC event */
1927	for (i = 0; i < adev->sdma.num_instances; i++) {
1928		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1929				      SDMA0_4_0__SRCID__SDMA_SRAM_ECC,
1930				      &adev->sdma.ecc_irq);
1931		if (r)
1932			return r;
1933	}
1934
1935	/* SDMA VM_HOLE/DOORBELL_INV/POLL_TIMEOUT/SRBM_WRITE_PROTECTION event*/
1936	for (i = 0; i < adev->sdma.num_instances; i++) {
1937		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1938				      SDMA0_4_0__SRCID__SDMA_VM_HOLE,
1939				      &adev->sdma.vm_hole_irq);
1940		if (r)
1941			return r;
1942
1943		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1944				      SDMA0_4_0__SRCID__SDMA_DOORBELL_INVALID,
1945				      &adev->sdma.doorbell_invalid_irq);
1946		if (r)
1947			return r;
1948
1949		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1950				      SDMA0_4_0__SRCID__SDMA_POLL_TIMEOUT,
1951				      &adev->sdma.pool_timeout_irq);
1952		if (r)
1953			return r;
1954
1955		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1956				      SDMA0_4_0__SRCID__SDMA_SRBMWRITE,
1957				      &adev->sdma.srbm_write_irq);
1958		if (r)
1959			return r;
1960	}
1961
1962	for (i = 0; i < adev->sdma.num_instances; i++) {
1963		ring = &adev->sdma.instance[i].ring;
1964		ring->ring_obj = NULL;
1965		ring->use_doorbell = true;
1966
1967		DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i,
1968				ring->use_doorbell?"true":"false");
1969
1970		/* doorbell size is 2 dwords, get DWORD offset */
1971		ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1972
1973		sprintf(ring->name, "sdma%d", i);
1974		r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1975				     AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1976				     AMDGPU_RING_PRIO_DEFAULT, NULL);
1977		if (r)
1978			return r;
1979
1980		if (adev->sdma.has_page_queue) {
1981			ring = &adev->sdma.instance[i].page;
1982			ring->ring_obj = NULL;
1983			ring->use_doorbell = true;
1984
1985			/* paging queue use same doorbell index/routing as gfx queue
1986			 * with 0x400 (4096 dwords) offset on second doorbell page
1987			 */
1988			ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1989			ring->doorbell_index += 0x400;
1990
1991			sprintf(ring->name, "page%d", i);
1992			r = amdgpu_ring_init(adev, ring, 1024,
1993					     &adev->sdma.trap_irq,
1994					     AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1995					     AMDGPU_RING_PRIO_DEFAULT, NULL);
1996			if (r)
1997				return r;
1998		}
1999	}
2000
2001	return r;
2002}
2003
2004static int sdma_v4_0_sw_fini(void *handle)
2005{
2006	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2007	int i;
2008
2009	if (adev->sdma.funcs && adev->sdma.funcs->ras_fini)
2010		adev->sdma.funcs->ras_fini(adev);
 
 
 
 
 
 
 
 
 
 
 
 
 
2011
2012	for (i = 0; i < adev->sdma.num_instances; i++) {
2013		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
2014		if (adev->sdma.has_page_queue)
2015			amdgpu_ring_fini(&adev->sdma.instance[i].page);
2016	}
2017
2018	sdma_v4_0_destroy_inst_ctx(adev);
2019
2020	return 0;
2021}
2022
2023static int sdma_v4_0_hw_init(void *handle)
2024{
2025	int r;
2026	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2027
2028	if (adev->flags & AMD_IS_APU)
 
 
2029		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, false);
2030
2031	if (!amdgpu_sriov_vf(adev))
2032		sdma_v4_0_init_golden_registers(adev);
2033
2034	r = sdma_v4_0_start(adev);
2035
2036	return r;
2037}
2038
2039static int sdma_v4_0_hw_fini(void *handle)
2040{
2041	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2042	int i;
2043
2044	if (amdgpu_sriov_vf(adev))
2045		return 0;
2046
2047	for (i = 0; i < adev->sdma.num_instances; i++) {
2048		amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
2049			       AMDGPU_SDMA_IRQ_INSTANCE0 + i);
2050	}
2051
2052	sdma_v4_0_ctx_switch_enable(adev, false);
2053	sdma_v4_0_enable(adev, false);
2054
2055	if (adev->flags & AMD_IS_APU)
 
 
2056		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, true);
2057
2058	return 0;
2059}
2060
2061static int sdma_v4_0_suspend(void *handle)
2062{
2063	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2064
2065	return sdma_v4_0_hw_fini(adev);
2066}
2067
2068static int sdma_v4_0_resume(void *handle)
2069{
2070	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2071
2072	return sdma_v4_0_hw_init(adev);
2073}
2074
2075static bool sdma_v4_0_is_idle(void *handle)
2076{
2077	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2078	u32 i;
2079
2080	for (i = 0; i < adev->sdma.num_instances; i++) {
2081		u32 tmp = RREG32_SDMA(i, mmSDMA0_STATUS_REG);
2082
2083		if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
2084			return false;
2085	}
2086
2087	return true;
2088}
2089
2090static int sdma_v4_0_wait_for_idle(void *handle)
2091{
2092	unsigned i, j;
2093	u32 sdma[AMDGPU_MAX_SDMA_INSTANCES];
2094	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2095
2096	for (i = 0; i < adev->usec_timeout; i++) {
2097		for (j = 0; j < adev->sdma.num_instances; j++) {
2098			sdma[j] = RREG32_SDMA(j, mmSDMA0_STATUS_REG);
2099			if (!(sdma[j] & SDMA0_STATUS_REG__IDLE_MASK))
2100				break;
2101		}
2102		if (j == adev->sdma.num_instances)
2103			return 0;
2104		udelay(1);
2105	}
2106	return -ETIMEDOUT;
2107}
2108
2109static int sdma_v4_0_soft_reset(void *handle)
2110{
2111	/* todo */
2112
2113	return 0;
2114}
2115
2116static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
2117					struct amdgpu_irq_src *source,
2118					unsigned type,
2119					enum amdgpu_interrupt_state state)
2120{
2121	u32 sdma_cntl;
2122
2123	sdma_cntl = RREG32_SDMA(type, mmSDMA0_CNTL);
2124	sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
2125		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2126	WREG32_SDMA(type, mmSDMA0_CNTL, sdma_cntl);
2127
2128	return 0;
2129}
2130
2131static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
2132				      struct amdgpu_irq_src *source,
2133				      struct amdgpu_iv_entry *entry)
2134{
2135	uint32_t instance;
2136
2137	DRM_DEBUG("IH: SDMA trap\n");
2138	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2139	switch (entry->ring_id) {
2140	case 0:
2141		amdgpu_fence_process(&adev->sdma.instance[instance].ring);
2142		break;
2143	case 1:
2144		if (adev->asic_type == CHIP_VEGA20)
2145			amdgpu_fence_process(&adev->sdma.instance[instance].page);
2146		break;
2147	case 2:
2148		/* XXX compute */
2149		break;
2150	case 3:
2151		if (adev->asic_type != CHIP_VEGA20)
2152			amdgpu_fence_process(&adev->sdma.instance[instance].page);
2153		break;
2154	}
2155	return 0;
2156}
2157
2158static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
2159		void *err_data,
2160		struct amdgpu_iv_entry *entry)
2161{
 
2162	int instance;
2163
2164	/* When “Full RAS” is enabled, the per-IP interrupt sources should
2165	 * be disabled and the driver should only look for the aggregated
2166	 * interrupt via sync flood
2167	 */
2168	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX))
2169		goto out;
2170
2171	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2172	if (instance < 0)
2173		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
2174
2175	amdgpu_sdma_process_ras_data_cb(adev, err_data, entry);
2176
2177out:
2178	return AMDGPU_RAS_SUCCESS;
2179}
2180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2181static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
2182					      struct amdgpu_irq_src *source,
2183					      struct amdgpu_iv_entry *entry)
2184{
2185	int instance;
2186
2187	DRM_ERROR("Illegal instruction in SDMA command stream\n");
2188
2189	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2190	if (instance < 0)
2191		return 0;
2192
2193	switch (entry->ring_id) {
2194	case 0:
2195		drm_sched_fault(&adev->sdma.instance[instance].ring.sched);
2196		break;
2197	}
2198	return 0;
2199}
2200
2201static int sdma_v4_0_set_ecc_irq_state(struct amdgpu_device *adev,
2202					struct amdgpu_irq_src *source,
2203					unsigned type,
2204					enum amdgpu_interrupt_state state)
2205{
2206	u32 sdma_edc_config;
2207
2208	sdma_edc_config = RREG32_SDMA(type, mmSDMA0_EDC_CONFIG);
2209	sdma_edc_config = REG_SET_FIELD(sdma_edc_config, SDMA0_EDC_CONFIG, ECC_INT_ENABLE,
2210		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2211	WREG32_SDMA(type, mmSDMA0_EDC_CONFIG, sdma_edc_config);
2212
2213	return 0;
2214}
2215
2216static int sdma_v4_0_print_iv_entry(struct amdgpu_device *adev,
2217					      struct amdgpu_iv_entry *entry)
2218{
2219	int instance;
2220	struct amdgpu_task_info task_info;
2221	u64 addr;
2222
2223	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2224	if (instance < 0 || instance >= adev->sdma.num_instances) {
2225		dev_err(adev->dev, "sdma instance invalid %d\n", instance);
2226		return -EINVAL;
2227	}
2228
2229	addr = (u64)entry->src_data[0] << 12;
2230	addr |= ((u64)entry->src_data[1] & 0xf) << 44;
2231
2232	memset(&task_info, 0, sizeof(struct amdgpu_task_info));
2233	amdgpu_vm_get_task_info(adev, entry->pasid, &task_info);
2234
2235	dev_dbg_ratelimited(adev->dev,
2236		   "[sdma%d] address:0x%016llx src_id:%u ring:%u vmid:%u "
2237		   "pasid:%u, for process %s pid %d thread %s pid %d\n",
2238		   instance, addr, entry->src_id, entry->ring_id, entry->vmid,
2239		   entry->pasid, task_info.process_name, task_info.tgid,
2240		   task_info.task_name, task_info.pid);
2241	return 0;
2242}
2243
2244static int sdma_v4_0_process_vm_hole_irq(struct amdgpu_device *adev,
2245					      struct amdgpu_irq_src *source,
2246					      struct amdgpu_iv_entry *entry)
2247{
2248	dev_dbg_ratelimited(adev->dev, "MC or SEM address in VM hole\n");
2249	sdma_v4_0_print_iv_entry(adev, entry);
2250	return 0;
2251}
2252
2253static int sdma_v4_0_process_doorbell_invalid_irq(struct amdgpu_device *adev,
2254					      struct amdgpu_irq_src *source,
2255					      struct amdgpu_iv_entry *entry)
2256{
2257	dev_dbg_ratelimited(adev->dev, "SDMA received a doorbell from BIF with byte_enable !=0xff\n");
2258	sdma_v4_0_print_iv_entry(adev, entry);
2259	return 0;
2260}
2261
2262static int sdma_v4_0_process_pool_timeout_irq(struct amdgpu_device *adev,
2263					      struct amdgpu_irq_src *source,
2264					      struct amdgpu_iv_entry *entry)
2265{
2266	dev_dbg_ratelimited(adev->dev,
2267		"Polling register/memory timeout executing POLL_REG/MEM with finite timer\n");
2268	sdma_v4_0_print_iv_entry(adev, entry);
2269	return 0;
2270}
2271
2272static int sdma_v4_0_process_srbm_write_irq(struct amdgpu_device *adev,
2273					      struct amdgpu_irq_src *source,
2274					      struct amdgpu_iv_entry *entry)
2275{
2276	dev_dbg_ratelimited(adev->dev,
2277		"SDMA gets an Register Write SRBM_WRITE command in non-privilege command buffer\n");
2278	sdma_v4_0_print_iv_entry(adev, entry);
2279	return 0;
2280}
2281
2282static void sdma_v4_0_update_medium_grain_clock_gating(
2283		struct amdgpu_device *adev,
2284		bool enable)
2285{
2286	uint32_t data, def;
2287	int i;
2288
2289	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
2290		for (i = 0; i < adev->sdma.num_instances; i++) {
2291			def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2292			data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2293				  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2294				  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2295				  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2296				  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2297				  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2298				  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2299				  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2300			if (def != data)
2301				WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2302		}
2303	} else {
2304		for (i = 0; i < adev->sdma.num_instances; i++) {
2305			def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2306			data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2307				 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2308				 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2309				 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2310				 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2311				 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2312				 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2313				 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2314			if (def != data)
2315				WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2316		}
2317	}
2318}
2319
2320
2321static void sdma_v4_0_update_medium_grain_light_sleep(
2322		struct amdgpu_device *adev,
2323		bool enable)
2324{
2325	uint32_t data, def;
2326	int i;
2327
2328	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
2329		for (i = 0; i < adev->sdma.num_instances; i++) {
2330			/* 1-not override: enable sdma mem light sleep */
2331			def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2332			data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2333			if (def != data)
2334				WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2335		}
2336	} else {
2337		for (i = 0; i < adev->sdma.num_instances; i++) {
2338		/* 0-override:disable sdma mem light sleep */
2339			def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2340			data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2341			if (def != data)
2342				WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2343		}
2344	}
2345}
2346
2347static int sdma_v4_0_set_clockgating_state(void *handle,
2348					  enum amd_clockgating_state state)
2349{
2350	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2351
2352	if (amdgpu_sriov_vf(adev))
2353		return 0;
2354
2355	sdma_v4_0_update_medium_grain_clock_gating(adev,
2356			state == AMD_CG_STATE_GATE);
2357	sdma_v4_0_update_medium_grain_light_sleep(adev,
2358			state == AMD_CG_STATE_GATE);
 
 
 
 
 
 
 
 
 
 
 
2359	return 0;
2360}
2361
2362static int sdma_v4_0_set_powergating_state(void *handle,
2363					  enum amd_powergating_state state)
2364{
2365	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2366
2367	switch (adev->asic_type) {
2368	case CHIP_RAVEN:
2369	case CHIP_RENOIR:
2370		sdma_v4_1_update_power_gating(adev,
2371				state == AMD_PG_STATE_GATE);
2372		break;
2373	default:
2374		break;
2375	}
2376
2377	return 0;
2378}
2379
2380static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags)
2381{
2382	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2383	int data;
2384
2385	if (amdgpu_sriov_vf(adev))
2386		*flags = 0;
2387
2388	/* AMD_CG_SUPPORT_SDMA_MGCG */
2389	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
2390	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
2391		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
2392
2393	/* AMD_CG_SUPPORT_SDMA_LS */
2394	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
2395	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
2396		*flags |= AMD_CG_SUPPORT_SDMA_LS;
2397}
2398
2399const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
2400	.name = "sdma_v4_0",
2401	.early_init = sdma_v4_0_early_init,
2402	.late_init = sdma_v4_0_late_init,
2403	.sw_init = sdma_v4_0_sw_init,
2404	.sw_fini = sdma_v4_0_sw_fini,
2405	.hw_init = sdma_v4_0_hw_init,
2406	.hw_fini = sdma_v4_0_hw_fini,
2407	.suspend = sdma_v4_0_suspend,
2408	.resume = sdma_v4_0_resume,
2409	.is_idle = sdma_v4_0_is_idle,
2410	.wait_for_idle = sdma_v4_0_wait_for_idle,
2411	.soft_reset = sdma_v4_0_soft_reset,
2412	.set_clockgating_state = sdma_v4_0_set_clockgating_state,
2413	.set_powergating_state = sdma_v4_0_set_powergating_state,
2414	.get_clockgating_state = sdma_v4_0_get_clockgating_state,
2415};
2416
2417static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
2418	.type = AMDGPU_RING_TYPE_SDMA,
2419	.align_mask = 0xf,
2420	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2421	.support_64bit_ptrs = true,
2422	.vmhub = AMDGPU_MMHUB_0,
2423	.get_rptr = sdma_v4_0_ring_get_rptr,
2424	.get_wptr = sdma_v4_0_ring_get_wptr,
2425	.set_wptr = sdma_v4_0_ring_set_wptr,
2426	.emit_frame_size =
2427		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2428		3 + /* hdp invalidate */
2429		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2430		/* sdma_v4_0_ring_emit_vm_flush */
2431		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2432		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2433		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2434	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2435	.emit_ib = sdma_v4_0_ring_emit_ib,
2436	.emit_fence = sdma_v4_0_ring_emit_fence,
2437	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2438	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2439	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2440	.test_ring = sdma_v4_0_ring_test_ring,
2441	.test_ib = sdma_v4_0_ring_test_ib,
2442	.insert_nop = sdma_v4_0_ring_insert_nop,
2443	.pad_ib = sdma_v4_0_ring_pad_ib,
2444	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2445	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2446	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2447};
2448
2449/*
2450 * On Arcturus, SDMA instance 5~7 has a different vmhub type(AMDGPU_MMHUB_1).
2451 * So create a individual constant ring_funcs for those instances.
2452 */
2453static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs_2nd_mmhub = {
2454	.type = AMDGPU_RING_TYPE_SDMA,
2455	.align_mask = 0xf,
2456	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2457	.support_64bit_ptrs = true,
2458	.vmhub = AMDGPU_MMHUB_1,
2459	.get_rptr = sdma_v4_0_ring_get_rptr,
2460	.get_wptr = sdma_v4_0_ring_get_wptr,
2461	.set_wptr = sdma_v4_0_ring_set_wptr,
2462	.emit_frame_size =
2463		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2464		3 + /* hdp invalidate */
2465		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2466		/* sdma_v4_0_ring_emit_vm_flush */
2467		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2468		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2469		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2470	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2471	.emit_ib = sdma_v4_0_ring_emit_ib,
2472	.emit_fence = sdma_v4_0_ring_emit_fence,
2473	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2474	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2475	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2476	.test_ring = sdma_v4_0_ring_test_ring,
2477	.test_ib = sdma_v4_0_ring_test_ib,
2478	.insert_nop = sdma_v4_0_ring_insert_nop,
2479	.pad_ib = sdma_v4_0_ring_pad_ib,
2480	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2481	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2482	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2483};
2484
2485static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs = {
2486	.type = AMDGPU_RING_TYPE_SDMA,
2487	.align_mask = 0xf,
2488	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2489	.support_64bit_ptrs = true,
2490	.vmhub = AMDGPU_MMHUB_0,
2491	.get_rptr = sdma_v4_0_ring_get_rptr,
2492	.get_wptr = sdma_v4_0_page_ring_get_wptr,
2493	.set_wptr = sdma_v4_0_page_ring_set_wptr,
2494	.emit_frame_size =
2495		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2496		3 + /* hdp invalidate */
2497		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2498		/* sdma_v4_0_ring_emit_vm_flush */
2499		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2500		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2501		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2502	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2503	.emit_ib = sdma_v4_0_ring_emit_ib,
2504	.emit_fence = sdma_v4_0_ring_emit_fence,
2505	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2506	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2507	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2508	.test_ring = sdma_v4_0_ring_test_ring,
2509	.test_ib = sdma_v4_0_ring_test_ib,
2510	.insert_nop = sdma_v4_0_ring_insert_nop,
2511	.pad_ib = sdma_v4_0_ring_pad_ib,
2512	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2513	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2514	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2515};
2516
2517static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs_2nd_mmhub = {
2518	.type = AMDGPU_RING_TYPE_SDMA,
2519	.align_mask = 0xf,
2520	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2521	.support_64bit_ptrs = true,
2522	.vmhub = AMDGPU_MMHUB_1,
2523	.get_rptr = sdma_v4_0_ring_get_rptr,
2524	.get_wptr = sdma_v4_0_page_ring_get_wptr,
2525	.set_wptr = sdma_v4_0_page_ring_set_wptr,
2526	.emit_frame_size =
2527		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2528		3 + /* hdp invalidate */
2529		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2530		/* sdma_v4_0_ring_emit_vm_flush */
2531		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2532		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2533		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2534	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2535	.emit_ib = sdma_v4_0_ring_emit_ib,
2536	.emit_fence = sdma_v4_0_ring_emit_fence,
2537	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2538	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2539	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2540	.test_ring = sdma_v4_0_ring_test_ring,
2541	.test_ib = sdma_v4_0_ring_test_ib,
2542	.insert_nop = sdma_v4_0_ring_insert_nop,
2543	.pad_ib = sdma_v4_0_ring_pad_ib,
2544	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2545	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2546	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2547};
2548
2549static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
2550{
2551	int i;
2552
2553	for (i = 0; i < adev->sdma.num_instances; i++) {
2554		if (adev->asic_type == CHIP_ARCTURUS && i >= 5)
2555			adev->sdma.instance[i].ring.funcs =
2556					&sdma_v4_0_ring_funcs_2nd_mmhub;
2557		else
2558			adev->sdma.instance[i].ring.funcs =
2559					&sdma_v4_0_ring_funcs;
2560		adev->sdma.instance[i].ring.me = i;
2561		if (adev->sdma.has_page_queue) {
2562			if (adev->asic_type == CHIP_ARCTURUS && i >= 5)
2563				adev->sdma.instance[i].page.funcs =
2564					&sdma_v4_0_page_ring_funcs_2nd_mmhub;
2565			else
2566				adev->sdma.instance[i].page.funcs =
2567					&sdma_v4_0_page_ring_funcs;
2568			adev->sdma.instance[i].page.me = i;
2569		}
2570	}
2571}
2572
2573static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
2574	.set = sdma_v4_0_set_trap_irq_state,
2575	.process = sdma_v4_0_process_trap_irq,
2576};
2577
2578static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
2579	.process = sdma_v4_0_process_illegal_inst_irq,
2580};
2581
2582static const struct amdgpu_irq_src_funcs sdma_v4_0_ecc_irq_funcs = {
2583	.set = sdma_v4_0_set_ecc_irq_state,
2584	.process = amdgpu_sdma_process_ecc_irq,
2585};
2586
2587static const struct amdgpu_irq_src_funcs sdma_v4_0_vm_hole_irq_funcs = {
2588	.process = sdma_v4_0_process_vm_hole_irq,
2589};
2590
2591static const struct amdgpu_irq_src_funcs sdma_v4_0_doorbell_invalid_irq_funcs = {
2592	.process = sdma_v4_0_process_doorbell_invalid_irq,
2593};
2594
2595static const struct amdgpu_irq_src_funcs sdma_v4_0_pool_timeout_irq_funcs = {
2596	.process = sdma_v4_0_process_pool_timeout_irq,
2597};
2598
2599static const struct amdgpu_irq_src_funcs sdma_v4_0_srbm_write_irq_funcs = {
2600	.process = sdma_v4_0_process_srbm_write_irq,
2601};
2602
2603static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
2604{
2605	adev->sdma.trap_irq.num_types = adev->sdma.num_instances;
2606	adev->sdma.ecc_irq.num_types = adev->sdma.num_instances;
2607	/*For Arcturus and Aldebaran, add another 4 irq handler*/
2608	switch (adev->sdma.num_instances) {
2609	case 5:
 
 
 
2610	case 8:
2611		adev->sdma.vm_hole_irq.num_types = adev->sdma.num_instances;
2612		adev->sdma.doorbell_invalid_irq.num_types = adev->sdma.num_instances;
2613		adev->sdma.pool_timeout_irq.num_types = adev->sdma.num_instances;
2614		adev->sdma.srbm_write_irq.num_types = adev->sdma.num_instances;
2615		break;
 
2616	default:
 
 
2617		break;
2618	}
2619	adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
2620	adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
2621	adev->sdma.ecc_irq.funcs = &sdma_v4_0_ecc_irq_funcs;
2622	adev->sdma.vm_hole_irq.funcs = &sdma_v4_0_vm_hole_irq_funcs;
2623	adev->sdma.doorbell_invalid_irq.funcs = &sdma_v4_0_doorbell_invalid_irq_funcs;
2624	adev->sdma.pool_timeout_irq.funcs = &sdma_v4_0_pool_timeout_irq_funcs;
2625	adev->sdma.srbm_write_irq.funcs = &sdma_v4_0_srbm_write_irq_funcs;
2626}
2627
2628/**
2629 * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
2630 *
2631 * @ib: indirect buffer to copy to
2632 * @src_offset: src GPU address
2633 * @dst_offset: dst GPU address
2634 * @byte_count: number of bytes to xfer
2635 * @tmz: if a secure copy should be used
2636 *
2637 * Copy GPU buffers using the DMA engine (VEGA10/12).
2638 * Used by the amdgpu ttm implementation to move pages if
2639 * registered as the asic copy callback.
2640 */
2641static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
2642				       uint64_t src_offset,
2643				       uint64_t dst_offset,
2644				       uint32_t byte_count,
2645				       bool tmz)
2646{
2647	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
2648		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) |
2649		SDMA_PKT_COPY_LINEAR_HEADER_TMZ(tmz ? 1 : 0);
2650	ib->ptr[ib->length_dw++] = byte_count - 1;
2651	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
2652	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
2653	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
2654	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2655	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2656}
2657
2658/**
2659 * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
2660 *
2661 * @ib: indirect buffer to copy to
2662 * @src_data: value to write to buffer
2663 * @dst_offset: dst GPU address
2664 * @byte_count: number of bytes to xfer
2665 *
2666 * Fill GPU buffers using the DMA engine (VEGA10/12).
2667 */
2668static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
2669				       uint32_t src_data,
2670				       uint64_t dst_offset,
2671				       uint32_t byte_count)
2672{
2673	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
2674	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2675	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2676	ib->ptr[ib->length_dw++] = src_data;
2677	ib->ptr[ib->length_dw++] = byte_count - 1;
2678}
2679
2680static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
2681	.copy_max_bytes = 0x400000,
2682	.copy_num_dw = 7,
2683	.emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
2684
2685	.fill_max_bytes = 0x400000,
2686	.fill_num_dw = 5,
2687	.emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
2688};
2689
2690static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
2691{
2692	adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
2693	if (adev->sdma.has_page_queue)
2694		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page;
2695	else
2696		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
2697}
2698
2699static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
2700	.copy_pte_num_dw = 7,
2701	.copy_pte = sdma_v4_0_vm_copy_pte,
2702
2703	.write_pte = sdma_v4_0_vm_write_pte,
2704	.set_pte_pde = sdma_v4_0_vm_set_pte_pde,
2705};
2706
2707static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
2708{
2709	struct drm_gpu_scheduler *sched;
2710	unsigned i;
2711
2712	adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
2713	for (i = 0; i < adev->sdma.num_instances; i++) {
2714		if (adev->sdma.has_page_queue)
2715			sched = &adev->sdma.instance[i].page.sched;
2716		else
2717			sched = &adev->sdma.instance[i].ring.sched;
2718		adev->vm_manager.vm_pte_scheds[i] = sched;
2719	}
2720	adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
2721}
2722
2723static void sdma_v4_0_get_ras_error_count(uint32_t value,
2724					uint32_t instance,
2725					uint32_t *sec_count)
2726{
2727	uint32_t i;
2728	uint32_t sec_cnt;
2729
2730	/* double bits error (multiple bits) error detection is not supported */
2731	for (i = 0; i < ARRAY_SIZE(sdma_v4_0_ras_fields); i++) {
2732		/* the SDMA_EDC_COUNTER register in each sdma instance
2733		 * shares the same sed shift_mask
2734		 * */
2735		sec_cnt = (value &
2736			sdma_v4_0_ras_fields[i].sec_count_mask) >>
2737			sdma_v4_0_ras_fields[i].sec_count_shift;
2738		if (sec_cnt) {
2739			DRM_INFO("Detected %s in SDMA%d, SED %d\n",
2740				sdma_v4_0_ras_fields[i].name,
2741				instance, sec_cnt);
2742			*sec_count += sec_cnt;
2743		}
2744	}
2745}
2746
2747static int sdma_v4_0_query_ras_error_count(struct amdgpu_device *adev,
2748			uint32_t instance, void *ras_error_status)
2749{
2750	struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
2751	uint32_t sec_count = 0;
2752	uint32_t reg_value = 0;
2753
2754	reg_value = RREG32_SDMA(instance, mmSDMA0_EDC_COUNTER);
2755	/* double bit error is not supported */
2756	if (reg_value)
2757		sdma_v4_0_get_ras_error_count(reg_value,
2758				instance, &sec_count);
2759	/* err_data->ce_count should be initialized to 0
2760	 * before calling into this function */
2761	err_data->ce_count += sec_count;
2762	/* double bit error is not supported
2763	 * set ue count to 0 */
2764	err_data->ue_count = 0;
2765
2766	return 0;
2767};
2768
2769static void sdma_v4_0_reset_ras_error_count(struct amdgpu_device *adev)
2770{
2771	int i;
2772
2773	/* read back edc counter registers to clear the counters */
2774	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
2775		for (i = 0; i < adev->sdma.num_instances; i++)
2776			RREG32_SDMA(i, mmSDMA0_EDC_COUNTER);
2777	}
2778}
2779
2780static const struct amdgpu_sdma_ras_funcs sdma_v4_0_ras_funcs = {
2781	.ras_late_init = amdgpu_sdma_ras_late_init,
2782	.ras_fini = amdgpu_sdma_ras_fini,
2783	.query_ras_error_count = sdma_v4_0_query_ras_error_count,
2784	.reset_ras_error_count = sdma_v4_0_reset_ras_error_count,
2785};
2786
2787static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev)
2788{
2789	switch (adev->asic_type) {
2790	case CHIP_VEGA20:
2791	case CHIP_ARCTURUS:
2792		adev->sdma.funcs = &sdma_v4_0_ras_funcs;
2793		break;
2794	case CHIP_ALDEBARAN:
2795		adev->sdma.funcs = &sdma_v4_4_ras_funcs;
2796		break;
2797	default:
2798		break;
2799	}
 
2800}
2801
2802const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
2803	.type = AMD_IP_BLOCK_TYPE_SDMA,
2804	.major = 4,
2805	.minor = 0,
2806	.rev = 0,
2807	.funcs = &sdma_v4_0_ip_funcs,
2808};