Linux Audio

Check our new training course

Loading...
v5.4
   1/*
   2 * Copyright 2016 Advanced Micro Devices, Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 *
  22 */
  23
  24#include <linux/delay.h>
  25#include <linux/firmware.h>
  26#include <linux/module.h>
  27#include <linux/pci.h>
  28
  29#include "amdgpu.h"
  30#include "amdgpu_ucode.h"
  31#include "amdgpu_trace.h"
  32
  33#include "sdma0/sdma0_4_2_offset.h"
  34#include "sdma0/sdma0_4_2_sh_mask.h"
  35#include "sdma1/sdma1_4_2_offset.h"
  36#include "sdma1/sdma1_4_2_sh_mask.h"
  37#include "sdma2/sdma2_4_2_2_offset.h"
  38#include "sdma2/sdma2_4_2_2_sh_mask.h"
  39#include "sdma3/sdma3_4_2_2_offset.h"
  40#include "sdma3/sdma3_4_2_2_sh_mask.h"
  41#include "sdma4/sdma4_4_2_2_offset.h"
  42#include "sdma4/sdma4_4_2_2_sh_mask.h"
  43#include "sdma5/sdma5_4_2_2_offset.h"
  44#include "sdma5/sdma5_4_2_2_sh_mask.h"
  45#include "sdma6/sdma6_4_2_2_offset.h"
  46#include "sdma6/sdma6_4_2_2_sh_mask.h"
  47#include "sdma7/sdma7_4_2_2_offset.h"
  48#include "sdma7/sdma7_4_2_2_sh_mask.h"
  49#include "hdp/hdp_4_0_offset.h"
  50#include "sdma0/sdma0_4_1_default.h"
  51
  52#include "soc15_common.h"
  53#include "soc15.h"
  54#include "vega10_sdma_pkt_open.h"
  55
  56#include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
  57#include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
  58
  59#include "amdgpu_ras.h"
  60
  61MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
  62MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
  63MODULE_FIRMWARE("amdgpu/vega12_sdma.bin");
  64MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin");
  65MODULE_FIRMWARE("amdgpu/vega20_sdma.bin");
  66MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin");
  67MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
  68MODULE_FIRMWARE("amdgpu/picasso_sdma.bin");
  69MODULE_FIRMWARE("amdgpu/raven2_sdma.bin");
  70MODULE_FIRMWARE("amdgpu/arcturus_sdma.bin");
  71MODULE_FIRMWARE("amdgpu/renoir_sdma.bin");
  72
  73#define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK  0x000000F8L
  74#define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
  75
  76#define WREG32_SDMA(instance, offset, value) \
  77	WREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)), value)
  78#define RREG32_SDMA(instance, offset) \
  79	RREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)))
  80
  81static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
  82static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
  83static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
  84static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
 
  85
  86static const struct soc15_reg_golden golden_settings_sdma_4[] = {
  87	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
  88	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
  89	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
  90	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
  91	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
  92	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  93	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
  94	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
  95	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  96	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
  97	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  98	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
  99	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000),
 100	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
 101	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
 102	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
 103	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
 104	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
 105	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
 106	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
 107	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
 108	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
 109	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
 110	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
 111	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000)
 112};
 113
 114static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
 115	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
 116	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
 
 117	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
 118	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
 119	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002)
 
 120};
 121
 122static const struct soc15_reg_golden golden_settings_sdma_vg12[] = {
 123	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
 124	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
 
 125	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
 126	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
 127	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001)
 
 128};
 129
 130static const struct soc15_reg_golden golden_settings_sdma_4_1[] = {
 131	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
 132	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
 133	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
 134	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 135	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
 136	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
 137	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 138	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
 139	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 140	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
 141	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000)
 142};
 143
 144static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = {
 145	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
 146};
 147
 148static const struct soc15_reg_golden golden_settings_sdma0_4_2[] =
 149{
 150	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 151	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
 152	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 153	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 154	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 155	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 156	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 157	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 158	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003),
 159	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 160	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
 161	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 162	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 163	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 164	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 165	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 166	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 167	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 168	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 169	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 170	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 171	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 172	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 173	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 174	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 175	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
 
 176};
 177
 178static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = {
 179	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 180	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
 181	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 182	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 183	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 184	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 185	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 186	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 187	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003),
 188	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 189	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
 190	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 191	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 192	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 193	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 194	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 195	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 196	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 197	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 198	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 199	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 200	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 201	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 202	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 203	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 204	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
 
 205};
 206
 207static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
 208{
 209	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
 210	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
 211};
 212
 213static const struct soc15_reg_golden golden_settings_sdma_rv2[] =
 214{
 215	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001),
 216	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001)
 217};
 218
 219static const struct soc15_reg_golden golden_settings_sdma_arct[] =
 220{
 221	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 222	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 223	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 
 224	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 225	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 226	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 
 227	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 228	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 229	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 
 230	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 231	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 232	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 
 233	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 234	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 235	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 
 236	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 237	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 238	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 
 239	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 240	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 241	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 
 242	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 243	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 244	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002)
 
 245};
 246
 247static const struct soc15_reg_golden golden_settings_sdma_4_3[] = {
 248	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 249	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
 250	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
 251	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002),
 252	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 253	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003fff07, 0x40000051),
 254	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 255	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 256	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
 257	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 258};
 259
 260static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
 261		u32 instance, u32 offset)
 262{
 263	switch (instance) {
 264	case 0:
 265		return (adev->reg_offset[SDMA0_HWIP][0][0] + offset);
 266	case 1:
 267		return (adev->reg_offset[SDMA1_HWIP][0][0] + offset);
 268	case 2:
 269		return (adev->reg_offset[SDMA2_HWIP][0][1] + offset);
 270	case 3:
 271		return (adev->reg_offset[SDMA3_HWIP][0][1] + offset);
 272	case 4:
 273		return (adev->reg_offset[SDMA4_HWIP][0][1] + offset);
 274	case 5:
 275		return (adev->reg_offset[SDMA5_HWIP][0][1] + offset);
 276	case 6:
 277		return (adev->reg_offset[SDMA6_HWIP][0][1] + offset);
 278	case 7:
 279		return (adev->reg_offset[SDMA7_HWIP][0][1] + offset);
 280	default:
 281		break;
 282	}
 283	return 0;
 284}
 285
 286static unsigned sdma_v4_0_seq_to_irq_id(int seq_num)
 287{
 288	switch (seq_num) {
 289	case 0:
 290		return SOC15_IH_CLIENTID_SDMA0;
 291	case 1:
 292		return SOC15_IH_CLIENTID_SDMA1;
 293	case 2:
 294		return SOC15_IH_CLIENTID_SDMA2;
 295	case 3:
 296		return SOC15_IH_CLIENTID_SDMA3;
 297	case 4:
 298		return SOC15_IH_CLIENTID_SDMA4;
 299	case 5:
 300		return SOC15_IH_CLIENTID_SDMA5;
 301	case 6:
 302		return SOC15_IH_CLIENTID_SDMA6;
 303	case 7:
 304		return SOC15_IH_CLIENTID_SDMA7;
 305	default:
 306		break;
 307	}
 308	return -EINVAL;
 309}
 310
 311static int sdma_v4_0_irq_id_to_seq(unsigned client_id)
 312{
 313	switch (client_id) {
 314	case SOC15_IH_CLIENTID_SDMA0:
 315		return 0;
 316	case SOC15_IH_CLIENTID_SDMA1:
 317		return 1;
 318	case SOC15_IH_CLIENTID_SDMA2:
 319		return 2;
 320	case SOC15_IH_CLIENTID_SDMA3:
 321		return 3;
 322	case SOC15_IH_CLIENTID_SDMA4:
 323		return 4;
 324	case SOC15_IH_CLIENTID_SDMA5:
 325		return 5;
 326	case SOC15_IH_CLIENTID_SDMA6:
 327		return 6;
 328	case SOC15_IH_CLIENTID_SDMA7:
 329		return 7;
 330	default:
 331		break;
 332	}
 333	return -EINVAL;
 334}
 335
 336static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
 337{
 338	switch (adev->asic_type) {
 339	case CHIP_VEGA10:
 340		soc15_program_register_sequence(adev,
 341						golden_settings_sdma_4,
 342						ARRAY_SIZE(golden_settings_sdma_4));
 343		soc15_program_register_sequence(adev,
 344						golden_settings_sdma_vg10,
 345						ARRAY_SIZE(golden_settings_sdma_vg10));
 346		break;
 347	case CHIP_VEGA12:
 348		soc15_program_register_sequence(adev,
 349						golden_settings_sdma_4,
 350						ARRAY_SIZE(golden_settings_sdma_4));
 351		soc15_program_register_sequence(adev,
 352						golden_settings_sdma_vg12,
 353						ARRAY_SIZE(golden_settings_sdma_vg12));
 354		break;
 355	case CHIP_VEGA20:
 356		soc15_program_register_sequence(adev,
 357						golden_settings_sdma0_4_2_init,
 358						ARRAY_SIZE(golden_settings_sdma0_4_2_init));
 359		soc15_program_register_sequence(adev,
 360						golden_settings_sdma0_4_2,
 361						ARRAY_SIZE(golden_settings_sdma0_4_2));
 362		soc15_program_register_sequence(adev,
 363						golden_settings_sdma1_4_2,
 364						ARRAY_SIZE(golden_settings_sdma1_4_2));
 365		break;
 366	case CHIP_ARCTURUS:
 367		soc15_program_register_sequence(adev,
 368						golden_settings_sdma_arct,
 369						ARRAY_SIZE(golden_settings_sdma_arct));
 370		break;
 371	case CHIP_RAVEN:
 372		soc15_program_register_sequence(adev,
 373						golden_settings_sdma_4_1,
 374						ARRAY_SIZE(golden_settings_sdma_4_1));
 375		if (adev->rev_id >= 8)
 376			soc15_program_register_sequence(adev,
 377							golden_settings_sdma_rv2,
 378							ARRAY_SIZE(golden_settings_sdma_rv2));
 379		else
 380			soc15_program_register_sequence(adev,
 381							golden_settings_sdma_rv1,
 382							ARRAY_SIZE(golden_settings_sdma_rv1));
 383		break;
 384	case CHIP_RENOIR:
 385		soc15_program_register_sequence(adev,
 386						golden_settings_sdma_4_3,
 387						ARRAY_SIZE(golden_settings_sdma_4_3));
 388		break;
 389	default:
 390		break;
 391	}
 392}
 393
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 394static int sdma_v4_0_init_inst_ctx(struct amdgpu_sdma_instance *sdma_inst)
 395{
 396	int err = 0;
 397	const struct sdma_firmware_header_v1_0 *hdr;
 398
 399	err = amdgpu_ucode_validate(sdma_inst->fw);
 400	if (err)
 401		return err;
 402
 403	hdr = (const struct sdma_firmware_header_v1_0 *)sdma_inst->fw->data;
 404	sdma_inst->fw_version = le32_to_cpu(hdr->header.ucode_version);
 405	sdma_inst->feature_version = le32_to_cpu(hdr->ucode_feature_version);
 406
 407	if (sdma_inst->feature_version >= 20)
 408		sdma_inst->burst_nop = true;
 409
 410	return 0;
 411}
 412
 413static void sdma_v4_0_destroy_inst_ctx(struct amdgpu_device *adev)
 414{
 415	int i;
 416
 417	for (i = 0; i < adev->sdma.num_instances; i++) {
 418		if (adev->sdma.instance[i].fw != NULL)
 419			release_firmware(adev->sdma.instance[i].fw);
 420
 421		/* arcturus shares the same FW memory across
 422		   all SDMA isntances */
 423		if (adev->asic_type == CHIP_ARCTURUS)
 424			break;
 425	}
 426
 427	memset((void*)adev->sdma.instance, 0,
 428		sizeof(struct amdgpu_sdma_instance) * AMDGPU_MAX_SDMA_INSTANCES);
 429}
 430
 431/**
 432 * sdma_v4_0_init_microcode - load ucode images from disk
 433 *
 434 * @adev: amdgpu_device pointer
 435 *
 436 * Use the firmware interface to load the ucode images into
 437 * the driver (not loaded into hw).
 438 * Returns 0 on success, error on failure.
 439 */
 440
 441// emulation only, won't work on real chip
 442// vega10 real chip need to use PSP to load firmware
 443static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
 444{
 445	const char *chip_name;
 446	char fw_name[30];
 447	int err = 0, i;
 448	struct amdgpu_firmware_info *info = NULL;
 449	const struct common_firmware_header *header = NULL;
 450
 451	DRM_DEBUG("\n");
 452
 453	switch (adev->asic_type) {
 454	case CHIP_VEGA10:
 455		chip_name = "vega10";
 456		break;
 457	case CHIP_VEGA12:
 458		chip_name = "vega12";
 459		break;
 460	case CHIP_VEGA20:
 461		chip_name = "vega20";
 462		break;
 463	case CHIP_RAVEN:
 464		if (adev->rev_id >= 8)
 465			chip_name = "raven2";
 466		else if (adev->pdev->device == 0x15d8)
 467			chip_name = "picasso";
 468		else
 469			chip_name = "raven";
 470		break;
 471	case CHIP_ARCTURUS:
 472		chip_name = "arcturus";
 473		break;
 474	case CHIP_RENOIR:
 475		chip_name = "renoir";
 476		break;
 477	default:
 478		BUG();
 479	}
 480
 481	snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
 482
 483	err = request_firmware(&adev->sdma.instance[0].fw, fw_name, adev->dev);
 484	if (err)
 485		goto out;
 486
 487	err = sdma_v4_0_init_inst_ctx(&adev->sdma.instance[0]);
 488	if (err)
 489		goto out;
 490
 491	for (i = 1; i < adev->sdma.num_instances; i++) {
 492		if (adev->asic_type == CHIP_ARCTURUS) {
 493			/* Acturus will leverage the same FW memory
 494			   for every SDMA instance */
 495			memcpy((void*)&adev->sdma.instance[i],
 496			       (void*)&adev->sdma.instance[0],
 497			       sizeof(struct amdgpu_sdma_instance));
 498		}
 499		else {
 500			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma%d.bin", chip_name, i);
 501
 502			err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
 503			if (err)
 504				goto out;
 505
 506			err = sdma_v4_0_init_inst_ctx(&adev->sdma.instance[i]);
 507			if (err)
 508				goto out;
 509		}
 510	}
 511
 512	DRM_DEBUG("psp_load == '%s'\n",
 513		adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
 514
 515	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
 516		for (i = 0; i < adev->sdma.num_instances; i++) {
 517			info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
 518			info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
 519			info->fw = adev->sdma.instance[i].fw;
 520			header = (const struct common_firmware_header *)info->fw->data;
 521			adev->firmware.fw_size +=
 522				ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
 523		}
 524	}
 525
 526out:
 527	if (err) {
 528		DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name);
 529		sdma_v4_0_destroy_inst_ctx(adev);
 530	}
 531	return err;
 532}
 533
 534/**
 535 * sdma_v4_0_ring_get_rptr - get the current read pointer
 536 *
 537 * @ring: amdgpu ring pointer
 538 *
 539 * Get the current rptr from the hardware (VEGA10+).
 540 */
 541static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
 542{
 543	u64 *rptr;
 544
 545	/* XXX check if swapping is necessary on BE */
 546	rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
 547
 548	DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
 549	return ((*rptr) >> 2);
 550}
 551
 552/**
 553 * sdma_v4_0_ring_get_wptr - get the current write pointer
 554 *
 555 * @ring: amdgpu ring pointer
 556 *
 557 * Get the current wptr from the hardware (VEGA10+).
 558 */
 559static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
 560{
 561	struct amdgpu_device *adev = ring->adev;
 562	u64 wptr;
 563
 564	if (ring->use_doorbell) {
 565		/* XXX check if swapping is necessary on BE */
 566		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
 567		DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
 568	} else {
 569		wptr = RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI);
 570		wptr = wptr << 32;
 571		wptr |= RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR);
 572		DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n",
 573				ring->me, wptr);
 574	}
 575
 576	return wptr >> 2;
 577}
 578
 579/**
 580 * sdma_v4_0_ring_set_wptr - commit the write pointer
 581 *
 582 * @ring: amdgpu ring pointer
 583 *
 584 * Write the wptr back to the hardware (VEGA10+).
 585 */
 586static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
 587{
 588	struct amdgpu_device *adev = ring->adev;
 589
 590	DRM_DEBUG("Setting write pointer\n");
 591	if (ring->use_doorbell) {
 592		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
 593
 594		DRM_DEBUG("Using doorbell -- "
 595				"wptr_offs == 0x%08x "
 596				"lower_32_bits(ring->wptr) << 2 == 0x%08x "
 597				"upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
 598				ring->wptr_offs,
 599				lower_32_bits(ring->wptr << 2),
 600				upper_32_bits(ring->wptr << 2));
 601		/* XXX check if swapping is necessary on BE */
 602		WRITE_ONCE(*wb, (ring->wptr << 2));
 603		DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
 604				ring->doorbell_index, ring->wptr << 2);
 605		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
 606	} else {
 607		DRM_DEBUG("Not using doorbell -- "
 608				"mmSDMA%i_GFX_RB_WPTR == 0x%08x "
 609				"mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
 610				ring->me,
 611				lower_32_bits(ring->wptr << 2),
 612				ring->me,
 613				upper_32_bits(ring->wptr << 2));
 614		WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR,
 615			    lower_32_bits(ring->wptr << 2));
 616		WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI,
 617			    upper_32_bits(ring->wptr << 2));
 618	}
 619}
 620
 621/**
 622 * sdma_v4_0_page_ring_get_wptr - get the current write pointer
 623 *
 624 * @ring: amdgpu ring pointer
 625 *
 626 * Get the current wptr from the hardware (VEGA10+).
 627 */
 628static uint64_t sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring *ring)
 629{
 630	struct amdgpu_device *adev = ring->adev;
 631	u64 wptr;
 632
 633	if (ring->use_doorbell) {
 634		/* XXX check if swapping is necessary on BE */
 635		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
 636	} else {
 637		wptr = RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI);
 638		wptr = wptr << 32;
 639		wptr |= RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR);
 640	}
 641
 642	return wptr >> 2;
 643}
 644
 645/**
 646 * sdma_v4_0_ring_set_wptr - commit the write pointer
 647 *
 648 * @ring: amdgpu ring pointer
 649 *
 650 * Write the wptr back to the hardware (VEGA10+).
 651 */
 652static void sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring *ring)
 653{
 654	struct amdgpu_device *adev = ring->adev;
 655
 656	if (ring->use_doorbell) {
 657		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
 658
 659		/* XXX check if swapping is necessary on BE */
 660		WRITE_ONCE(*wb, (ring->wptr << 2));
 661		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
 662	} else {
 663		uint64_t wptr = ring->wptr << 2;
 664
 665		WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR,
 666			    lower_32_bits(wptr));
 667		WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI,
 668			    upper_32_bits(wptr));
 669	}
 670}
 671
 672static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
 673{
 674	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
 675	int i;
 676
 677	for (i = 0; i < count; i++)
 678		if (sdma && sdma->burst_nop && (i == 0))
 679			amdgpu_ring_write(ring, ring->funcs->nop |
 680				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
 681		else
 682			amdgpu_ring_write(ring, ring->funcs->nop);
 683}
 684
 685/**
 686 * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
 687 *
 688 * @ring: amdgpu ring pointer
 689 * @ib: IB object to schedule
 690 *
 691 * Schedule an IB in the DMA ring (VEGA10).
 692 */
 693static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
 694				   struct amdgpu_job *job,
 695				   struct amdgpu_ib *ib,
 696				   uint32_t flags)
 697{
 698	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
 699
 700	/* IB packet must end on a 8 DW boundary */
 701	sdma_v4_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
 702
 703	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
 704			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
 705	/* base must be 32 byte aligned */
 706	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
 707	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
 708	amdgpu_ring_write(ring, ib->length_dw);
 709	amdgpu_ring_write(ring, 0);
 710	amdgpu_ring_write(ring, 0);
 711
 712}
 713
 714static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring,
 715				   int mem_space, int hdp,
 716				   uint32_t addr0, uint32_t addr1,
 717				   uint32_t ref, uint32_t mask,
 718				   uint32_t inv)
 719{
 720	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
 721			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
 722			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
 723			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
 724	if (mem_space) {
 725		/* memory */
 726		amdgpu_ring_write(ring, addr0);
 727		amdgpu_ring_write(ring, addr1);
 728	} else {
 729		/* registers */
 730		amdgpu_ring_write(ring, addr0 << 2);
 731		amdgpu_ring_write(ring, addr1 << 2);
 732	}
 733	amdgpu_ring_write(ring, ref); /* reference */
 734	amdgpu_ring_write(ring, mask); /* mask */
 735	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
 736			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
 737}
 738
 739/**
 740 * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
 741 *
 742 * @ring: amdgpu ring pointer
 743 *
 744 * Emit an hdp flush packet on the requested DMA ring.
 745 */
 746static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
 747{
 748	struct amdgpu_device *adev = ring->adev;
 749	u32 ref_and_mask = 0;
 750	const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio_funcs->hdp_flush_reg;
 751
 752	ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me;
 753
 754	sdma_v4_0_wait_reg_mem(ring, 0, 1,
 755			       adev->nbio_funcs->get_hdp_flush_done_offset(adev),
 756			       adev->nbio_funcs->get_hdp_flush_req_offset(adev),
 757			       ref_and_mask, ref_and_mask, 10);
 758}
 759
 760/**
 761 * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
 762 *
 763 * @ring: amdgpu ring pointer
 764 * @fence: amdgpu fence object
 765 *
 766 * Add a DMA fence packet to the ring to write
 767 * the fence seq number and DMA trap packet to generate
 768 * an interrupt if needed (VEGA10).
 769 */
 770static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
 771				      unsigned flags)
 772{
 773	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
 774	/* write the fence */
 775	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
 776	/* zero in first two bits */
 777	BUG_ON(addr & 0x3);
 778	amdgpu_ring_write(ring, lower_32_bits(addr));
 779	amdgpu_ring_write(ring, upper_32_bits(addr));
 780	amdgpu_ring_write(ring, lower_32_bits(seq));
 781
 782	/* optionally write high bits as well */
 783	if (write64bit) {
 784		addr += 4;
 785		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
 786		/* zero in first two bits */
 787		BUG_ON(addr & 0x3);
 788		amdgpu_ring_write(ring, lower_32_bits(addr));
 789		amdgpu_ring_write(ring, upper_32_bits(addr));
 790		amdgpu_ring_write(ring, upper_32_bits(seq));
 791	}
 792
 793	/* generate an interrupt */
 794	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
 795	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
 796}
 797
 798
 799/**
 800 * sdma_v4_0_gfx_stop - stop the gfx async dma engines
 801 *
 802 * @adev: amdgpu_device pointer
 803 *
 804 * Stop the gfx async dma ring buffers (VEGA10).
 805 */
 806static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
 807{
 808	struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
 809	u32 rb_cntl, ib_cntl;
 810	int i, unset = 0;
 811
 812	for (i = 0; i < adev->sdma.num_instances; i++) {
 813		sdma[i] = &adev->sdma.instance[i].ring;
 814
 815		if ((adev->mman.buffer_funcs_ring == sdma[i]) && unset != 1) {
 816			amdgpu_ttm_set_buffer_funcs_status(adev, false);
 817			unset = 1;
 818		}
 819
 820		rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
 821		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
 822		WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
 823		ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
 824		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
 825		WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
 826
 827		sdma[i]->sched.ready = false;
 828	}
 829}
 830
 831/**
 832 * sdma_v4_0_rlc_stop - stop the compute async dma engines
 833 *
 834 * @adev: amdgpu_device pointer
 835 *
 836 * Stop the compute async dma queues (VEGA10).
 837 */
 838static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
 839{
 840	/* XXX todo */
 841}
 842
 843/**
 844 * sdma_v4_0_page_stop - stop the page async dma engines
 845 *
 846 * @adev: amdgpu_device pointer
 847 *
 848 * Stop the page async dma ring buffers (VEGA10).
 849 */
 850static void sdma_v4_0_page_stop(struct amdgpu_device *adev)
 851{
 852	struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
 853	u32 rb_cntl, ib_cntl;
 854	int i;
 855	bool unset = false;
 856
 857	for (i = 0; i < adev->sdma.num_instances; i++) {
 858		sdma[i] = &adev->sdma.instance[i].page;
 859
 860		if ((adev->mman.buffer_funcs_ring == sdma[i]) &&
 861			(unset == false)) {
 862			amdgpu_ttm_set_buffer_funcs_status(adev, false);
 863			unset = true;
 864		}
 865
 866		rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
 867		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
 868					RB_ENABLE, 0);
 869		WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
 870		ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
 871		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL,
 872					IB_ENABLE, 0);
 873		WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
 874
 875		sdma[i]->sched.ready = false;
 876	}
 877}
 878
 879/**
 880 * sdma_v_0_ctx_switch_enable - stop the async dma engines context switch
 881 *
 882 * @adev: amdgpu_device pointer
 883 * @enable: enable/disable the DMA MEs context switch.
 884 *
 885 * Halt or unhalt the async dma engines context switch (VEGA10).
 886 */
 887static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
 888{
 889	u32 f32_cntl, phase_quantum = 0;
 890	int i;
 891
 892	if (amdgpu_sdma_phase_quantum) {
 893		unsigned value = amdgpu_sdma_phase_quantum;
 894		unsigned unit = 0;
 895
 896		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
 897				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
 898			value = (value + 1) >> 1;
 899			unit++;
 900		}
 901		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
 902			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
 903			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
 904				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
 905			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
 906				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
 907			WARN_ONCE(1,
 908			"clamping sdma_phase_quantum to %uK clock cycles\n",
 909				  value << unit);
 910		}
 911		phase_quantum =
 912			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
 913			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
 914	}
 915
 916	for (i = 0; i < adev->sdma.num_instances; i++) {
 917		f32_cntl = RREG32_SDMA(i, mmSDMA0_CNTL);
 918		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
 919				AUTO_CTXSW_ENABLE, enable ? 1 : 0);
 920		if (enable && amdgpu_sdma_phase_quantum) {
 921			WREG32_SDMA(i, mmSDMA0_PHASE0_QUANTUM, phase_quantum);
 922			WREG32_SDMA(i, mmSDMA0_PHASE1_QUANTUM, phase_quantum);
 923			WREG32_SDMA(i, mmSDMA0_PHASE2_QUANTUM, phase_quantum);
 924		}
 925		WREG32_SDMA(i, mmSDMA0_CNTL, f32_cntl);
 926	}
 927
 928}
 929
 930/**
 931 * sdma_v4_0_enable - stop the async dma engines
 932 *
 933 * @adev: amdgpu_device pointer
 934 * @enable: enable/disable the DMA MEs.
 935 *
 936 * Halt or unhalt the async dma engines (VEGA10).
 937 */
 938static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
 939{
 940	u32 f32_cntl;
 941	int i;
 942
 943	if (enable == false) {
 944		sdma_v4_0_gfx_stop(adev);
 945		sdma_v4_0_rlc_stop(adev);
 946		if (adev->sdma.has_page_queue)
 947			sdma_v4_0_page_stop(adev);
 948	}
 949
 950	for (i = 0; i < adev->sdma.num_instances; i++) {
 951		f32_cntl = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
 952		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
 953		WREG32_SDMA(i, mmSDMA0_F32_CNTL, f32_cntl);
 954	}
 955}
 956
 957/**
 958 * sdma_v4_0_rb_cntl - get parameters for rb_cntl
 959 */
 960static uint32_t sdma_v4_0_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
 961{
 962	/* Set ring buffer size in dwords */
 963	uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);
 964
 965	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
 966#ifdef __BIG_ENDIAN
 967	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
 968	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
 969				RPTR_WRITEBACK_SWAP_ENABLE, 1);
 970#endif
 971	return rb_cntl;
 972}
 973
 974/**
 975 * sdma_v4_0_gfx_resume - setup and start the async dma engines
 976 *
 977 * @adev: amdgpu_device pointer
 978 * @i: instance to resume
 979 *
 980 * Set up the gfx DMA ring buffers and enable them (VEGA10).
 981 * Returns 0 for success, error for failure.
 982 */
 983static void sdma_v4_0_gfx_resume(struct amdgpu_device *adev, unsigned int i)
 984{
 985	struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
 986	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
 987	u32 wb_offset;
 988	u32 doorbell;
 989	u32 doorbell_offset;
 990	u64 wptr_gpu_addr;
 991
 992	wb_offset = (ring->rptr_offs * 4);
 993
 994	rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
 995	rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
 996	WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
 997
 998	/* Initialize the ring buffer's read and write pointers */
 999	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR, 0);
1000	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_HI, 0);
1001	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR, 0);
1002	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_HI, 0);
1003
1004	/* set the wb address whether it's enabled or not */
1005	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI,
1006	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
1007	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO,
1008	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
1009
1010	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1011				RPTR_WRITEBACK_ENABLE, 1);
1012
1013	WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE, ring->gpu_addr >> 8);
1014	WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
1015
1016	ring->wptr = 0;
1017
1018	/* before programing wptr to a less value, need set minor_ptr_update first */
1019	WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 1);
1020
1021	doorbell = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL);
1022	doorbell_offset = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET);
1023
1024	doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE,
1025				 ring->use_doorbell);
1026	doorbell_offset = REG_SET_FIELD(doorbell_offset,
1027					SDMA0_GFX_DOORBELL_OFFSET,
1028					OFFSET, ring->doorbell_index);
1029	WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL, doorbell);
1030	WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET, doorbell_offset);
1031
1032	sdma_v4_0_ring_set_wptr(ring);
1033
1034	/* set minor_ptr_update to 0 after wptr programed */
1035	WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 0);
1036
1037	/* setup the wptr shadow polling */
1038	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
1039	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO,
1040		    lower_32_bits(wptr_gpu_addr));
1041	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI,
1042		    upper_32_bits(wptr_gpu_addr));
1043	wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL);
1044	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1045				       SDMA0_GFX_RB_WPTR_POLL_CNTL,
1046				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1047	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1048
1049	/* enable DMA RB */
1050	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
1051	WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1052
1053	ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
1054	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
1055#ifdef __BIG_ENDIAN
1056	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
1057#endif
1058	/* enable DMA IBs */
1059	WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
1060
1061	ring->sched.ready = true;
1062}
1063
1064/**
1065 * sdma_v4_0_page_resume - setup and start the async dma engines
1066 *
1067 * @adev: amdgpu_device pointer
1068 * @i: instance to resume
1069 *
1070 * Set up the page DMA ring buffers and enable them (VEGA10).
1071 * Returns 0 for success, error for failure.
1072 */
1073static void sdma_v4_0_page_resume(struct amdgpu_device *adev, unsigned int i)
1074{
1075	struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
1076	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1077	u32 wb_offset;
1078	u32 doorbell;
1079	u32 doorbell_offset;
1080	u64 wptr_gpu_addr;
1081
1082	wb_offset = (ring->rptr_offs * 4);
1083
1084	rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
1085	rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1086	WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1087
1088	/* Initialize the ring buffer's read and write pointers */
1089	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR, 0);
1090	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_HI, 0);
1091	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR, 0);
1092	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_HI, 0);
1093
1094	/* set the wb address whether it's enabled or not */
1095	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_HI,
1096	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
1097	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_LO,
1098	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
1099
1100	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
1101				RPTR_WRITEBACK_ENABLE, 1);
1102
1103	WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE, ring->gpu_addr >> 8);
1104	WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);
1105
1106	ring->wptr = 0;
1107
1108	/* before programing wptr to a less value, need set minor_ptr_update first */
1109	WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 1);
1110
1111	doorbell = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL);
1112	doorbell_offset = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET);
1113
1114	doorbell = REG_SET_FIELD(doorbell, SDMA0_PAGE_DOORBELL, ENABLE,
1115				 ring->use_doorbell);
1116	doorbell_offset = REG_SET_FIELD(doorbell_offset,
1117					SDMA0_PAGE_DOORBELL_OFFSET,
1118					OFFSET, ring->doorbell_index);
1119	WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL, doorbell);
1120	WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET, doorbell_offset);
1121
1122	/* paging queue doorbell range is setup at sdma_v4_0_gfx_resume */
1123	sdma_v4_0_page_ring_set_wptr(ring);
1124
1125	/* set minor_ptr_update to 0 after wptr programed */
1126	WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 0);
1127
1128	/* setup the wptr shadow polling */
1129	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
1130	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_LO,
1131		    lower_32_bits(wptr_gpu_addr));
1132	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_HI,
1133		    upper_32_bits(wptr_gpu_addr));
1134	wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL);
1135	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1136				       SDMA0_PAGE_RB_WPTR_POLL_CNTL,
1137				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1138	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1139
1140	/* enable DMA RB */
1141	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RB_ENABLE, 1);
1142	WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1143
1144	ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
1145	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_ENABLE, 1);
1146#ifdef __BIG_ENDIAN
1147	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
1148#endif
1149	/* enable DMA IBs */
1150	WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
1151
1152	ring->sched.ready = true;
1153}
1154
1155static void
1156sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
1157{
1158	uint32_t def, data;
1159
1160	if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
1161		/* enable idle interrupt */
1162		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1163		data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1164
1165		if (data != def)
1166			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1167	} else {
1168		/* disable idle interrupt */
1169		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1170		data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1171		if (data != def)
1172			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1173	}
1174}
1175
1176static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
1177{
1178	uint32_t def, data;
1179
1180	/* Enable HW based PG. */
1181	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1182	data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
1183	if (data != def)
1184		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1185
1186	/* enable interrupt */
1187	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1188	data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1189	if (data != def)
1190		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1191
1192	/* Configure hold time to filter in-valid power on/off request. Use default right now */
1193	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1194	data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
1195	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
1196	/* Configure switch time for hysteresis purpose. Use default right now */
1197	data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
1198	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
1199	if(data != def)
1200		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1201}
1202
1203static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
1204{
1205	if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
1206		return;
1207
1208	switch (adev->asic_type) {
1209	case CHIP_RAVEN:
1210	case CHIP_RENOIR:
1211		sdma_v4_1_init_power_gating(adev);
1212		sdma_v4_1_update_power_gating(adev, true);
1213		break;
1214	default:
1215		break;
1216	}
1217}
1218
1219/**
1220 * sdma_v4_0_rlc_resume - setup and start the async dma engines
1221 *
1222 * @adev: amdgpu_device pointer
1223 *
1224 * Set up the compute DMA queues and enable them (VEGA10).
1225 * Returns 0 for success, error for failure.
1226 */
1227static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
1228{
1229	sdma_v4_0_init_pg(adev);
1230
1231	return 0;
1232}
1233
1234/**
1235 * sdma_v4_0_load_microcode - load the sDMA ME ucode
1236 *
1237 * @adev: amdgpu_device pointer
1238 *
1239 * Loads the sDMA0/1 ucode.
1240 * Returns 0 for success, -EINVAL if the ucode is not available.
1241 */
1242static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
1243{
1244	const struct sdma_firmware_header_v1_0 *hdr;
1245	const __le32 *fw_data;
1246	u32 fw_size;
1247	int i, j;
1248
1249	/* halt the MEs */
1250	sdma_v4_0_enable(adev, false);
1251
1252	for (i = 0; i < adev->sdma.num_instances; i++) {
1253		if (!adev->sdma.instance[i].fw)
1254			return -EINVAL;
1255
1256		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
1257		amdgpu_ucode_print_sdma_hdr(&hdr->header);
1258		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
1259
1260		fw_data = (const __le32 *)
1261			(adev->sdma.instance[i].fw->data +
1262				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
1263
1264		WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 0);
1265
1266		for (j = 0; j < fw_size; j++)
1267			WREG32_SDMA(i, mmSDMA0_UCODE_DATA,
1268				    le32_to_cpup(fw_data++));
1269
1270		WREG32_SDMA(i, mmSDMA0_UCODE_ADDR,
1271			    adev->sdma.instance[i].fw_version);
1272	}
1273
1274	return 0;
1275}
1276
1277/**
1278 * sdma_v4_0_start - setup and start the async dma engines
1279 *
1280 * @adev: amdgpu_device pointer
1281 *
1282 * Set up the DMA engines and enable them (VEGA10).
1283 * Returns 0 for success, error for failure.
1284 */
1285static int sdma_v4_0_start(struct amdgpu_device *adev)
1286{
1287	struct amdgpu_ring *ring;
1288	int i, r = 0;
1289
1290	if (amdgpu_sriov_vf(adev)) {
1291		sdma_v4_0_ctx_switch_enable(adev, false);
1292		sdma_v4_0_enable(adev, false);
1293	} else {
1294
1295		if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
1296			r = sdma_v4_0_load_microcode(adev);
1297			if (r)
1298				return r;
1299		}
1300
1301		/* unhalt the MEs */
1302		sdma_v4_0_enable(adev, true);
1303		/* enable sdma ring preemption */
1304		sdma_v4_0_ctx_switch_enable(adev, true);
1305	}
1306
1307	/* start the gfx rings and rlc compute queues */
1308	for (i = 0; i < adev->sdma.num_instances; i++) {
1309		uint32_t temp;
1310
1311		WREG32_SDMA(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL, 0);
1312		sdma_v4_0_gfx_resume(adev, i);
1313		if (adev->sdma.has_page_queue)
1314			sdma_v4_0_page_resume(adev, i);
1315
1316		/* set utc l1 enable flag always to 1 */
1317		temp = RREG32_SDMA(i, mmSDMA0_CNTL);
1318		temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
1319		WREG32_SDMA(i, mmSDMA0_CNTL, temp);
1320
1321		if (!amdgpu_sriov_vf(adev)) {
1322			/* unhalt engine */
1323			temp = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1324			temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
1325			WREG32_SDMA(i, mmSDMA0_F32_CNTL, temp);
1326		}
1327	}
1328
1329	if (amdgpu_sriov_vf(adev)) {
1330		sdma_v4_0_ctx_switch_enable(adev, true);
1331		sdma_v4_0_enable(adev, true);
1332	} else {
1333		r = sdma_v4_0_rlc_resume(adev);
1334		if (r)
1335			return r;
1336	}
1337
1338	for (i = 0; i < adev->sdma.num_instances; i++) {
1339		ring = &adev->sdma.instance[i].ring;
1340
1341		r = amdgpu_ring_test_helper(ring);
1342		if (r)
1343			return r;
1344
1345		if (adev->sdma.has_page_queue) {
1346			struct amdgpu_ring *page = &adev->sdma.instance[i].page;
1347
1348			r = amdgpu_ring_test_helper(page);
1349			if (r)
1350				return r;
1351
1352			if (adev->mman.buffer_funcs_ring == page)
1353				amdgpu_ttm_set_buffer_funcs_status(adev, true);
1354		}
1355
1356		if (adev->mman.buffer_funcs_ring == ring)
1357			amdgpu_ttm_set_buffer_funcs_status(adev, true);
1358	}
1359
1360	return r;
1361}
1362
1363/**
1364 * sdma_v4_0_ring_test_ring - simple async dma engine test
1365 *
1366 * @ring: amdgpu_ring structure holding ring information
1367 *
1368 * Test the DMA engine by writing using it to write an
1369 * value to memory. (VEGA10).
1370 * Returns 0 for success, error for failure.
1371 */
1372static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
1373{
1374	struct amdgpu_device *adev = ring->adev;
1375	unsigned i;
1376	unsigned index;
1377	int r;
1378	u32 tmp;
1379	u64 gpu_addr;
1380
1381	r = amdgpu_device_wb_get(adev, &index);
1382	if (r)
1383		return r;
1384
1385	gpu_addr = adev->wb.gpu_addr + (index * 4);
1386	tmp = 0xCAFEDEAD;
1387	adev->wb.wb[index] = cpu_to_le32(tmp);
1388
1389	r = amdgpu_ring_alloc(ring, 5);
1390	if (r)
1391		goto error_free_wb;
1392
1393	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1394			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
1395	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
1396	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
1397	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
1398	amdgpu_ring_write(ring, 0xDEADBEEF);
1399	amdgpu_ring_commit(ring);
1400
1401	for (i = 0; i < adev->usec_timeout; i++) {
1402		tmp = le32_to_cpu(adev->wb.wb[index]);
1403		if (tmp == 0xDEADBEEF)
1404			break;
1405		udelay(1);
1406	}
1407
1408	if (i >= adev->usec_timeout)
1409		r = -ETIMEDOUT;
1410
1411error_free_wb:
1412	amdgpu_device_wb_free(adev, index);
1413	return r;
1414}
1415
1416/**
1417 * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
1418 *
1419 * @ring: amdgpu_ring structure holding ring information
1420 *
1421 * Test a simple IB in the DMA ring (VEGA10).
1422 * Returns 0 on success, error on failure.
1423 */
1424static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1425{
1426	struct amdgpu_device *adev = ring->adev;
1427	struct amdgpu_ib ib;
1428	struct dma_fence *f = NULL;
1429	unsigned index;
1430	long r;
1431	u32 tmp = 0;
1432	u64 gpu_addr;
1433
1434	r = amdgpu_device_wb_get(adev, &index);
1435	if (r)
1436		return r;
1437
1438	gpu_addr = adev->wb.gpu_addr + (index * 4);
1439	tmp = 0xCAFEDEAD;
1440	adev->wb.wb[index] = cpu_to_le32(tmp);
1441	memset(&ib, 0, sizeof(ib));
1442	r = amdgpu_ib_get(adev, NULL, 256, &ib);
 
1443	if (r)
1444		goto err0;
1445
1446	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1447		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1448	ib.ptr[1] = lower_32_bits(gpu_addr);
1449	ib.ptr[2] = upper_32_bits(gpu_addr);
1450	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1451	ib.ptr[4] = 0xDEADBEEF;
1452	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1453	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1454	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1455	ib.length_dw = 8;
1456
1457	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1458	if (r)
1459		goto err1;
1460
1461	r = dma_fence_wait_timeout(f, false, timeout);
1462	if (r == 0) {
1463		r = -ETIMEDOUT;
1464		goto err1;
1465	} else if (r < 0) {
1466		goto err1;
1467	}
1468	tmp = le32_to_cpu(adev->wb.wb[index]);
1469	if (tmp == 0xDEADBEEF)
1470		r = 0;
1471	else
1472		r = -EINVAL;
1473
1474err1:
1475	amdgpu_ib_free(adev, &ib, NULL);
1476	dma_fence_put(f);
1477err0:
1478	amdgpu_device_wb_free(adev, index);
1479	return r;
1480}
1481
1482
1483/**
1484 * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
1485 *
1486 * @ib: indirect buffer to fill with commands
1487 * @pe: addr of the page entry
1488 * @src: src addr to copy from
1489 * @count: number of page entries to update
1490 *
1491 * Update PTEs by copying them from the GART using sDMA (VEGA10).
1492 */
1493static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
1494				  uint64_t pe, uint64_t src,
1495				  unsigned count)
1496{
1497	unsigned bytes = count * 8;
1498
1499	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1500		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1501	ib->ptr[ib->length_dw++] = bytes - 1;
1502	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1503	ib->ptr[ib->length_dw++] = lower_32_bits(src);
1504	ib->ptr[ib->length_dw++] = upper_32_bits(src);
1505	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1506	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1507
1508}
1509
1510/**
1511 * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
1512 *
1513 * @ib: indirect buffer to fill with commands
1514 * @pe: addr of the page entry
1515 * @addr: dst addr to write into pe
1516 * @count: number of page entries to update
1517 * @incr: increase next addr by incr bytes
1518 * @flags: access flags
1519 *
1520 * Update PTEs by writing them manually using sDMA (VEGA10).
1521 */
1522static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1523				   uint64_t value, unsigned count,
1524				   uint32_t incr)
1525{
1526	unsigned ndw = count * 2;
1527
1528	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1529		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1530	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1531	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1532	ib->ptr[ib->length_dw++] = ndw - 1;
1533	for (; ndw > 0; ndw -= 2) {
1534		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1535		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1536		value += incr;
1537	}
1538}
1539
1540/**
1541 * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
1542 *
1543 * @ib: indirect buffer to fill with commands
1544 * @pe: addr of the page entry
1545 * @addr: dst addr to write into pe
1546 * @count: number of page entries to update
1547 * @incr: increase next addr by incr bytes
1548 * @flags: access flags
1549 *
1550 * Update the page tables using sDMA (VEGA10).
1551 */
1552static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1553				     uint64_t pe,
1554				     uint64_t addr, unsigned count,
1555				     uint32_t incr, uint64_t flags)
1556{
1557	/* for physically contiguous pages (vram) */
1558	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1559	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1560	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1561	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1562	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1563	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1564	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1565	ib->ptr[ib->length_dw++] = incr; /* increment size */
1566	ib->ptr[ib->length_dw++] = 0;
1567	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1568}
1569
1570/**
1571 * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
1572 *
1573 * @ib: indirect buffer to fill with padding
1574 *
1575 */
1576static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1577{
1578	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1579	u32 pad_count;
1580	int i;
1581
1582	pad_count = (8 - (ib->length_dw & 0x7)) % 8;
1583	for (i = 0; i < pad_count; i++)
1584		if (sdma && sdma->burst_nop && (i == 0))
1585			ib->ptr[ib->length_dw++] =
1586				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1587				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1588		else
1589			ib->ptr[ib->length_dw++] =
1590				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1591}
1592
1593
1594/**
1595 * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
1596 *
1597 * @ring: amdgpu_ring pointer
1598 *
1599 * Make sure all previous operations are completed (CIK).
1600 */
1601static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1602{
1603	uint32_t seq = ring->fence_drv.sync_seq;
1604	uint64_t addr = ring->fence_drv.gpu_addr;
1605
1606	/* wait for idle */
1607	sdma_v4_0_wait_reg_mem(ring, 1, 0,
1608			       addr & 0xfffffffc,
1609			       upper_32_bits(addr) & 0xffffffff,
1610			       seq, 0xffffffff, 4);
1611}
1612
1613
1614/**
1615 * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
1616 *
1617 * @ring: amdgpu_ring pointer
1618 * @vm: amdgpu_vm pointer
1619 *
1620 * Update the page table base and flush the VM TLB
1621 * using sDMA (VEGA10).
1622 */
1623static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1624					 unsigned vmid, uint64_t pd_addr)
1625{
1626	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1627}
1628
1629static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring,
1630				     uint32_t reg, uint32_t val)
1631{
1632	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1633			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1634	amdgpu_ring_write(ring, reg);
1635	amdgpu_ring_write(ring, val);
1636}
1637
1638static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1639					 uint32_t val, uint32_t mask)
1640{
1641	sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1642}
1643
1644static bool sdma_v4_0_fw_support_paging_queue(struct amdgpu_device *adev)
1645{
1646	uint fw_version = adev->sdma.instance[0].fw_version;
1647
1648	switch (adev->asic_type) {
1649	case CHIP_VEGA10:
1650		return fw_version >= 430;
1651	case CHIP_VEGA12:
1652		/*return fw_version >= 31;*/
1653		return false;
1654	case CHIP_VEGA20:
1655		return fw_version >= 123;
1656	default:
1657		return false;
1658	}
1659}
1660
1661static int sdma_v4_0_early_init(void *handle)
1662{
1663	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1664	int r;
1665
1666	if (adev->asic_type == CHIP_RAVEN || adev->asic_type == CHIP_RENOIR)
1667		adev->sdma.num_instances = 1;
1668	else if (adev->asic_type == CHIP_ARCTURUS)
1669		adev->sdma.num_instances = 8;
1670	else
1671		adev->sdma.num_instances = 2;
1672
1673	r = sdma_v4_0_init_microcode(adev);
1674	if (r) {
1675		DRM_ERROR("Failed to load sdma firmware!\n");
1676		return r;
1677	}
1678
1679	/* TODO: Page queue breaks driver reload under SRIOV */
1680	if ((adev->asic_type == CHIP_VEGA10) && amdgpu_sriov_vf((adev)))
1681		adev->sdma.has_page_queue = false;
1682	else if (sdma_v4_0_fw_support_paging_queue(adev))
1683		adev->sdma.has_page_queue = true;
1684
1685	sdma_v4_0_set_ring_funcs(adev);
1686	sdma_v4_0_set_buffer_funcs(adev);
1687	sdma_v4_0_set_vm_pte_funcs(adev);
1688	sdma_v4_0_set_irq_funcs(adev);
 
1689
1690	return 0;
1691}
1692
1693static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
1694		struct ras_err_data *err_data,
1695		struct amdgpu_iv_entry *entry);
1696
1697static int sdma_v4_0_late_init(void *handle)
1698{
1699	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1700	struct ras_common_if **ras_if = &adev->sdma.ras_if;
1701	struct ras_ih_if ih_info = {
1702		.cb = sdma_v4_0_process_ras_data_cb,
1703	};
1704	struct ras_fs_if fs_info = {
1705		.sysfs_name = "sdma_err_count",
1706		.debugfs_name = "sdma_err_inject",
1707	};
1708	struct ras_common_if ras_block = {
1709		.block = AMDGPU_RAS_BLOCK__SDMA,
1710		.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE,
1711		.sub_block_index = 0,
1712		.name = "sdma",
1713	};
1714	int r, i;
1715
1716	if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
1717		amdgpu_ras_feature_enable_on_boot(adev, &ras_block, 0);
1718		return 0;
1719	}
1720
1721	/* handle resume path. */
1722	if (*ras_if) {
1723		/* resend ras TA enable cmd during resume.
1724		 * prepare to handle failure.
1725		 */
1726		ih_info.head = **ras_if;
1727		r = amdgpu_ras_feature_enable_on_boot(adev, *ras_if, 1);
1728		if (r) {
1729			if (r == -EAGAIN) {
1730				/* request a gpu reset. will run again. */
1731				amdgpu_ras_request_reset_on_boot(adev,
1732						AMDGPU_RAS_BLOCK__SDMA);
1733				return 0;
1734			}
1735			/* fail to enable ras, cleanup all. */
1736			goto irq;
1737		}
1738		/* enable successfully. continue. */
1739		goto resume;
1740	}
1741
1742	*ras_if = kmalloc(sizeof(**ras_if), GFP_KERNEL);
1743	if (!*ras_if)
1744		return -ENOMEM;
1745
1746	**ras_if = ras_block;
1747
1748	r = amdgpu_ras_feature_enable_on_boot(adev, *ras_if, 1);
1749	if (r) {
1750		if (r == -EAGAIN) {
1751			amdgpu_ras_request_reset_on_boot(adev,
1752					AMDGPU_RAS_BLOCK__SDMA);
1753			r = 0;
1754		}
1755		goto feature;
1756	}
1757
1758	ih_info.head = **ras_if;
1759	fs_info.head = **ras_if;
1760
1761	r = amdgpu_ras_interrupt_add_handler(adev, &ih_info);
1762	if (r)
1763		goto interrupt;
1764
1765	amdgpu_ras_debugfs_create(adev, &fs_info);
 
1766
1767	r = amdgpu_ras_sysfs_create(adev, &fs_info);
1768	if (r)
1769		goto sysfs;
1770resume:
1771	for (i = 0; i < adev->sdma.num_instances; i++) {
1772		r = amdgpu_irq_get(adev, &adev->sdma.ecc_irq,
1773				   AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1774		if (r)
1775			goto irq;
1776	}
1777
1778	return 0;
1779irq:
1780	amdgpu_ras_sysfs_remove(adev, *ras_if);
1781sysfs:
1782	amdgpu_ras_debugfs_remove(adev, *ras_if);
1783	amdgpu_ras_interrupt_remove_handler(adev, &ih_info);
1784interrupt:
1785	amdgpu_ras_feature_enable(adev, *ras_if, 0);
1786feature:
1787	kfree(*ras_if);
1788	*ras_if = NULL;
1789	return r;
1790}
1791
1792static int sdma_v4_0_sw_init(void *handle)
1793{
1794	struct amdgpu_ring *ring;
1795	int r, i;
1796	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1797
1798	/* SDMA trap event */
1799	for (i = 0; i < adev->sdma.num_instances; i++) {
1800		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1801				      SDMA0_4_0__SRCID__SDMA_TRAP,
1802				      &adev->sdma.trap_irq);
1803		if (r)
1804			return r;
1805	}
1806
1807	/* SDMA SRAM ECC event */
1808	for (i = 0; i < adev->sdma.num_instances; i++) {
1809		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1810				      SDMA0_4_0__SRCID__SDMA_SRAM_ECC,
1811				      &adev->sdma.ecc_irq);
1812		if (r)
1813			return r;
1814	}
1815
1816	for (i = 0; i < adev->sdma.num_instances; i++) {
1817		ring = &adev->sdma.instance[i].ring;
1818		ring->ring_obj = NULL;
1819		ring->use_doorbell = true;
1820
1821		DRM_INFO("use_doorbell being set to: [%s]\n",
1822				ring->use_doorbell?"true":"false");
1823
1824		/* doorbell size is 2 dwords, get DWORD offset */
1825		ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1826
1827		sprintf(ring->name, "sdma%d", i);
1828		r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1829				     AMDGPU_SDMA_IRQ_INSTANCE0 + i);
 
1830		if (r)
1831			return r;
1832
1833		if (adev->sdma.has_page_queue) {
1834			ring = &adev->sdma.instance[i].page;
1835			ring->ring_obj = NULL;
1836			ring->use_doorbell = true;
1837
1838			/* paging queue use same doorbell index/routing as gfx queue
1839			 * with 0x400 (4096 dwords) offset on second doorbell page
1840			 */
1841			ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1842			ring->doorbell_index += 0x400;
1843
1844			sprintf(ring->name, "page%d", i);
1845			r = amdgpu_ring_init(adev, ring, 1024,
1846					     &adev->sdma.trap_irq,
1847					     AMDGPU_SDMA_IRQ_INSTANCE0 + i);
 
1848			if (r)
1849				return r;
1850		}
1851	}
1852
1853	return r;
1854}
1855
1856static int sdma_v4_0_sw_fini(void *handle)
1857{
1858	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1859	int i;
1860
1861	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA) &&
1862			adev->sdma.ras_if) {
1863		struct ras_common_if *ras_if = adev->sdma.ras_if;
1864		struct ras_ih_if ih_info = {
1865			.head = *ras_if,
1866		};
1867
1868		/*remove fs first*/
1869		amdgpu_ras_debugfs_remove(adev, ras_if);
1870		amdgpu_ras_sysfs_remove(adev, ras_if);
1871		/*remove the IH*/
1872		amdgpu_ras_interrupt_remove_handler(adev, &ih_info);
1873		amdgpu_ras_feature_enable(adev, ras_if, 0);
1874		kfree(ras_if);
1875	}
1876
1877	for (i = 0; i < adev->sdma.num_instances; i++) {
1878		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1879		if (adev->sdma.has_page_queue)
1880			amdgpu_ring_fini(&adev->sdma.instance[i].page);
1881	}
1882
1883	sdma_v4_0_destroy_inst_ctx(adev);
1884
1885	return 0;
1886}
1887
1888static int sdma_v4_0_hw_init(void *handle)
1889{
1890	int r;
1891	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1892
1893	if ((adev->asic_type == CHIP_RAVEN && adev->powerplay.pp_funcs &&
1894			adev->powerplay.pp_funcs->set_powergating_by_smu) ||
1895			adev->asic_type == CHIP_RENOIR)
1896		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, false);
1897
1898	if (!amdgpu_sriov_vf(adev))
1899		sdma_v4_0_init_golden_registers(adev);
1900
1901	r = sdma_v4_0_start(adev);
1902
1903	return r;
1904}
1905
1906static int sdma_v4_0_hw_fini(void *handle)
1907{
1908	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1909	int i;
1910
1911	if (amdgpu_sriov_vf(adev))
1912		return 0;
1913
1914	for (i = 0; i < adev->sdma.num_instances; i++) {
1915		amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
1916			       AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1917	}
1918
1919	sdma_v4_0_ctx_switch_enable(adev, false);
1920	sdma_v4_0_enable(adev, false);
1921
1922	if ((adev->asic_type == CHIP_RAVEN && adev->powerplay.pp_funcs
1923			&& adev->powerplay.pp_funcs->set_powergating_by_smu) ||
1924			adev->asic_type == CHIP_RENOIR)
1925		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, true);
1926
1927	return 0;
1928}
1929
1930static int sdma_v4_0_suspend(void *handle)
1931{
1932	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1933
1934	return sdma_v4_0_hw_fini(adev);
1935}
1936
1937static int sdma_v4_0_resume(void *handle)
1938{
1939	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1940
1941	return sdma_v4_0_hw_init(adev);
1942}
1943
1944static bool sdma_v4_0_is_idle(void *handle)
1945{
1946	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1947	u32 i;
1948
1949	for (i = 0; i < adev->sdma.num_instances; i++) {
1950		u32 tmp = RREG32_SDMA(i, mmSDMA0_STATUS_REG);
1951
1952		if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
1953			return false;
1954	}
1955
1956	return true;
1957}
1958
1959static int sdma_v4_0_wait_for_idle(void *handle)
1960{
1961	unsigned i, j;
1962	u32 sdma[AMDGPU_MAX_SDMA_INSTANCES];
1963	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1964
1965	for (i = 0; i < adev->usec_timeout; i++) {
1966		for (j = 0; j < adev->sdma.num_instances; j++) {
1967			sdma[j] = RREG32_SDMA(j, mmSDMA0_STATUS_REG);
1968			if (!(sdma[j] & SDMA0_STATUS_REG__IDLE_MASK))
1969				break;
1970		}
1971		if (j == adev->sdma.num_instances)
1972			return 0;
1973		udelay(1);
1974	}
1975	return -ETIMEDOUT;
1976}
1977
1978static int sdma_v4_0_soft_reset(void *handle)
1979{
1980	/* todo */
1981
1982	return 0;
1983}
1984
1985static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
1986					struct amdgpu_irq_src *source,
1987					unsigned type,
1988					enum amdgpu_interrupt_state state)
1989{
1990	u32 sdma_cntl;
1991
1992	sdma_cntl = RREG32_SDMA(type, mmSDMA0_CNTL);
1993	sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
1994		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1995	WREG32_SDMA(type, mmSDMA0_CNTL, sdma_cntl);
1996
1997	return 0;
1998}
1999
2000static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
2001				      struct amdgpu_irq_src *source,
2002				      struct amdgpu_iv_entry *entry)
2003{
2004	uint32_t instance;
2005
2006	DRM_DEBUG("IH: SDMA trap\n");
2007	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2008	switch (entry->ring_id) {
2009	case 0:
2010		amdgpu_fence_process(&adev->sdma.instance[instance].ring);
2011		break;
2012	case 1:
2013		if (adev->asic_type == CHIP_VEGA20)
2014			amdgpu_fence_process(&adev->sdma.instance[instance].page);
2015		break;
2016	case 2:
2017		/* XXX compute */
2018		break;
2019	case 3:
2020		if (adev->asic_type != CHIP_VEGA20)
2021			amdgpu_fence_process(&adev->sdma.instance[instance].page);
2022		break;
2023	}
2024	return 0;
2025}
2026
2027static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
2028		struct ras_err_data *err_data,
2029		struct amdgpu_iv_entry *entry)
2030{
2031	uint32_t err_source;
2032	int instance;
2033
 
 
 
 
 
 
 
2034	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2035	if (instance < 0)
2036		return 0;
2037
2038	switch (entry->src_id) {
2039	case SDMA0_4_0__SRCID__SDMA_SRAM_ECC:
2040		err_source = 0;
2041		break;
2042	case SDMA0_4_0__SRCID__SDMA_ECC:
2043		err_source = 1;
2044		break;
2045	default:
2046		return 0;
2047	}
2048
2049	kgd2kfd_set_sram_ecc_flag(adev->kfd.dev);
2050
2051	amdgpu_ras_reset_gpu(adev, 0);
2052
 
2053	return AMDGPU_RAS_SUCCESS;
2054}
2055
2056static int sdma_v4_0_process_ecc_irq(struct amdgpu_device *adev,
2057				      struct amdgpu_irq_src *source,
2058				      struct amdgpu_iv_entry *entry)
2059{
2060	struct ras_common_if *ras_if = adev->sdma.ras_if;
2061	struct ras_dispatch_if ih_data = {
2062		.entry = entry,
2063	};
2064
2065	if (!ras_if)
2066		return 0;
2067
2068	ih_data.head = *ras_if;
2069
2070	amdgpu_ras_interrupt_dispatch(adev, &ih_data);
2071	return 0;
2072}
2073
2074static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
2075					      struct amdgpu_irq_src *source,
2076					      struct amdgpu_iv_entry *entry)
2077{
2078	int instance;
2079
2080	DRM_ERROR("Illegal instruction in SDMA command stream\n");
2081
2082	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2083	if (instance < 0)
2084		return 0;
2085
2086	switch (entry->ring_id) {
2087	case 0:
2088		drm_sched_fault(&adev->sdma.instance[instance].ring.sched);
2089		break;
2090	}
2091	return 0;
2092}
2093
2094static int sdma_v4_0_set_ecc_irq_state(struct amdgpu_device *adev,
2095					struct amdgpu_irq_src *source,
2096					unsigned type,
2097					enum amdgpu_interrupt_state state)
2098{
2099	u32 sdma_edc_config;
2100
2101	sdma_edc_config = RREG32_SDMA(type, mmSDMA0_EDC_CONFIG);
2102	sdma_edc_config = REG_SET_FIELD(sdma_edc_config, SDMA0_EDC_CONFIG, ECC_INT_ENABLE,
2103		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2104	WREG32_SDMA(type, mmSDMA0_EDC_CONFIG, sdma_edc_config);
2105
2106	return 0;
2107}
2108
2109static void sdma_v4_0_update_medium_grain_clock_gating(
2110		struct amdgpu_device *adev,
2111		bool enable)
2112{
2113	uint32_t data, def;
2114	int i;
2115
2116	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
2117		for (i = 0; i < adev->sdma.num_instances; i++) {
2118			def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2119			data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2120				  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2121				  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2122				  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2123				  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2124				  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2125				  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2126				  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2127			if (def != data)
2128				WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2129		}
2130	} else {
2131		for (i = 0; i < adev->sdma.num_instances; i++) {
2132			def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2133			data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2134				 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2135				 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2136				 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2137				 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2138				 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2139				 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2140				 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2141			if (def != data)
2142				WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2143		}
2144	}
2145}
2146
2147
2148static void sdma_v4_0_update_medium_grain_light_sleep(
2149		struct amdgpu_device *adev,
2150		bool enable)
2151{
2152	uint32_t data, def;
2153	int i;
2154
2155	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
2156		for (i = 0; i < adev->sdma.num_instances; i++) {
2157			/* 1-not override: enable sdma mem light sleep */
2158			def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2159			data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2160			if (def != data)
2161				WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2162		}
2163	} else {
2164		for (i = 0; i < adev->sdma.num_instances; i++) {
2165		/* 0-override:disable sdma mem light sleep */
2166			def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2167			data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2168			if (def != data)
2169				WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2170		}
2171	}
2172}
2173
2174static int sdma_v4_0_set_clockgating_state(void *handle,
2175					  enum amd_clockgating_state state)
2176{
2177	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2178
2179	if (amdgpu_sriov_vf(adev))
2180		return 0;
2181
2182	switch (adev->asic_type) {
2183	case CHIP_VEGA10:
2184	case CHIP_VEGA12:
2185	case CHIP_VEGA20:
2186	case CHIP_RAVEN:
2187	case CHIP_ARCTURUS:
2188	case CHIP_RENOIR:
2189		sdma_v4_0_update_medium_grain_clock_gating(adev,
2190				state == AMD_CG_STATE_GATE ? true : false);
2191		sdma_v4_0_update_medium_grain_light_sleep(adev,
2192				state == AMD_CG_STATE_GATE ? true : false);
2193		break;
2194	default:
2195		break;
2196	}
2197	return 0;
2198}
2199
2200static int sdma_v4_0_set_powergating_state(void *handle,
2201					  enum amd_powergating_state state)
2202{
2203	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2204
2205	switch (adev->asic_type) {
2206	case CHIP_RAVEN:
 
2207		sdma_v4_1_update_power_gating(adev,
2208				state == AMD_PG_STATE_GATE ? true : false);
2209		break;
2210	default:
2211		break;
2212	}
2213
2214	return 0;
2215}
2216
2217static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags)
2218{
2219	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2220	int data;
2221
2222	if (amdgpu_sriov_vf(adev))
2223		*flags = 0;
2224
2225	/* AMD_CG_SUPPORT_SDMA_MGCG */
2226	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
2227	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
2228		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
2229
2230	/* AMD_CG_SUPPORT_SDMA_LS */
2231	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
2232	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
2233		*flags |= AMD_CG_SUPPORT_SDMA_LS;
2234}
2235
2236const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
2237	.name = "sdma_v4_0",
2238	.early_init = sdma_v4_0_early_init,
2239	.late_init = sdma_v4_0_late_init,
2240	.sw_init = sdma_v4_0_sw_init,
2241	.sw_fini = sdma_v4_0_sw_fini,
2242	.hw_init = sdma_v4_0_hw_init,
2243	.hw_fini = sdma_v4_0_hw_fini,
2244	.suspend = sdma_v4_0_suspend,
2245	.resume = sdma_v4_0_resume,
2246	.is_idle = sdma_v4_0_is_idle,
2247	.wait_for_idle = sdma_v4_0_wait_for_idle,
2248	.soft_reset = sdma_v4_0_soft_reset,
2249	.set_clockgating_state = sdma_v4_0_set_clockgating_state,
2250	.set_powergating_state = sdma_v4_0_set_powergating_state,
2251	.get_clockgating_state = sdma_v4_0_get_clockgating_state,
2252};
2253
2254static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
2255	.type = AMDGPU_RING_TYPE_SDMA,
2256	.align_mask = 0xf,
2257	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2258	.support_64bit_ptrs = true,
2259	.vmhub = AMDGPU_MMHUB_0,
2260	.get_rptr = sdma_v4_0_ring_get_rptr,
2261	.get_wptr = sdma_v4_0_ring_get_wptr,
2262	.set_wptr = sdma_v4_0_ring_set_wptr,
2263	.emit_frame_size =
2264		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2265		3 + /* hdp invalidate */
2266		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2267		/* sdma_v4_0_ring_emit_vm_flush */
2268		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2269		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2270		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2271	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2272	.emit_ib = sdma_v4_0_ring_emit_ib,
2273	.emit_fence = sdma_v4_0_ring_emit_fence,
2274	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2275	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2276	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2277	.test_ring = sdma_v4_0_ring_test_ring,
2278	.test_ib = sdma_v4_0_ring_test_ib,
2279	.insert_nop = sdma_v4_0_ring_insert_nop,
2280	.pad_ib = sdma_v4_0_ring_pad_ib,
2281	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2282	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2283	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2284};
2285
2286/*
2287 * On Arcturus, SDMA instance 5~7 has a different vmhub type(AMDGPU_MMHUB_1).
2288 * So create a individual constant ring_funcs for those instances.
2289 */
2290static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs_2nd_mmhub = {
2291	.type = AMDGPU_RING_TYPE_SDMA,
2292	.align_mask = 0xf,
2293	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2294	.support_64bit_ptrs = true,
2295	.vmhub = AMDGPU_MMHUB_1,
2296	.get_rptr = sdma_v4_0_ring_get_rptr,
2297	.get_wptr = sdma_v4_0_ring_get_wptr,
2298	.set_wptr = sdma_v4_0_ring_set_wptr,
2299	.emit_frame_size =
2300		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2301		3 + /* hdp invalidate */
2302		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2303		/* sdma_v4_0_ring_emit_vm_flush */
2304		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2305		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2306		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2307	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2308	.emit_ib = sdma_v4_0_ring_emit_ib,
2309	.emit_fence = sdma_v4_0_ring_emit_fence,
2310	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2311	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2312	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2313	.test_ring = sdma_v4_0_ring_test_ring,
2314	.test_ib = sdma_v4_0_ring_test_ib,
2315	.insert_nop = sdma_v4_0_ring_insert_nop,
2316	.pad_ib = sdma_v4_0_ring_pad_ib,
2317	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2318	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2319	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2320};
2321
2322static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs = {
2323	.type = AMDGPU_RING_TYPE_SDMA,
2324	.align_mask = 0xf,
2325	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2326	.support_64bit_ptrs = true,
2327	.vmhub = AMDGPU_MMHUB_0,
2328	.get_rptr = sdma_v4_0_ring_get_rptr,
2329	.get_wptr = sdma_v4_0_page_ring_get_wptr,
2330	.set_wptr = sdma_v4_0_page_ring_set_wptr,
2331	.emit_frame_size =
2332		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2333		3 + /* hdp invalidate */
2334		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2335		/* sdma_v4_0_ring_emit_vm_flush */
2336		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2337		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2338		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2339	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2340	.emit_ib = sdma_v4_0_ring_emit_ib,
2341	.emit_fence = sdma_v4_0_ring_emit_fence,
2342	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2343	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2344	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2345	.test_ring = sdma_v4_0_ring_test_ring,
2346	.test_ib = sdma_v4_0_ring_test_ib,
2347	.insert_nop = sdma_v4_0_ring_insert_nop,
2348	.pad_ib = sdma_v4_0_ring_pad_ib,
2349	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2350	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2351	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2352};
2353
2354static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs_2nd_mmhub = {
2355	.type = AMDGPU_RING_TYPE_SDMA,
2356	.align_mask = 0xf,
2357	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2358	.support_64bit_ptrs = true,
2359	.vmhub = AMDGPU_MMHUB_1,
2360	.get_rptr = sdma_v4_0_ring_get_rptr,
2361	.get_wptr = sdma_v4_0_page_ring_get_wptr,
2362	.set_wptr = sdma_v4_0_page_ring_set_wptr,
2363	.emit_frame_size =
2364		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2365		3 + /* hdp invalidate */
2366		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2367		/* sdma_v4_0_ring_emit_vm_flush */
2368		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2369		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2370		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2371	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2372	.emit_ib = sdma_v4_0_ring_emit_ib,
2373	.emit_fence = sdma_v4_0_ring_emit_fence,
2374	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2375	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2376	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2377	.test_ring = sdma_v4_0_ring_test_ring,
2378	.test_ib = sdma_v4_0_ring_test_ib,
2379	.insert_nop = sdma_v4_0_ring_insert_nop,
2380	.pad_ib = sdma_v4_0_ring_pad_ib,
2381	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2382	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2383	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2384};
2385
2386static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
2387{
2388	int i;
2389
2390	for (i = 0; i < adev->sdma.num_instances; i++) {
2391		if (adev->asic_type == CHIP_ARCTURUS && i >= 5)
2392			adev->sdma.instance[i].ring.funcs =
2393					&sdma_v4_0_ring_funcs_2nd_mmhub;
2394		else
2395			adev->sdma.instance[i].ring.funcs =
2396					&sdma_v4_0_ring_funcs;
2397		adev->sdma.instance[i].ring.me = i;
2398		if (adev->sdma.has_page_queue) {
2399			if (adev->asic_type == CHIP_ARCTURUS && i >= 5)
2400				adev->sdma.instance[i].page.funcs =
2401					&sdma_v4_0_page_ring_funcs_2nd_mmhub;
2402			else
2403				adev->sdma.instance[i].page.funcs =
2404					&sdma_v4_0_page_ring_funcs;
2405			adev->sdma.instance[i].page.me = i;
2406		}
2407	}
2408}
2409
2410static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
2411	.set = sdma_v4_0_set_trap_irq_state,
2412	.process = sdma_v4_0_process_trap_irq,
2413};
2414
2415static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
2416	.process = sdma_v4_0_process_illegal_inst_irq,
2417};
2418
2419static const struct amdgpu_irq_src_funcs sdma_v4_0_ecc_irq_funcs = {
2420	.set = sdma_v4_0_set_ecc_irq_state,
2421	.process = sdma_v4_0_process_ecc_irq,
2422};
2423
2424
2425
2426static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
2427{
2428	switch (adev->sdma.num_instances) {
2429	case 1:
2430		adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE1;
2431		adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE1;
2432		break;
2433	case 8:
2434		adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
2435		adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
2436		break;
2437	case 2:
2438	default:
2439		adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE2;
2440		adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE2;
2441		break;
2442	}
2443	adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
2444	adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
2445	adev->sdma.ecc_irq.funcs = &sdma_v4_0_ecc_irq_funcs;
2446}
2447
2448/**
2449 * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
2450 *
2451 * @ring: amdgpu_ring structure holding ring information
2452 * @src_offset: src GPU address
2453 * @dst_offset: dst GPU address
2454 * @byte_count: number of bytes to xfer
2455 *
2456 * Copy GPU buffers using the DMA engine (VEGA10/12).
2457 * Used by the amdgpu ttm implementation to move pages if
2458 * registered as the asic copy callback.
2459 */
2460static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
2461				       uint64_t src_offset,
2462				       uint64_t dst_offset,
2463				       uint32_t byte_count)
 
2464{
2465	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
2466		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
 
2467	ib->ptr[ib->length_dw++] = byte_count - 1;
2468	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
2469	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
2470	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
2471	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2472	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2473}
2474
2475/**
2476 * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
2477 *
2478 * @ring: amdgpu_ring structure holding ring information
2479 * @src_data: value to write to buffer
2480 * @dst_offset: dst GPU address
2481 * @byte_count: number of bytes to xfer
2482 *
2483 * Fill GPU buffers using the DMA engine (VEGA10/12).
2484 */
2485static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
2486				       uint32_t src_data,
2487				       uint64_t dst_offset,
2488				       uint32_t byte_count)
2489{
2490	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
2491	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2492	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2493	ib->ptr[ib->length_dw++] = src_data;
2494	ib->ptr[ib->length_dw++] = byte_count - 1;
2495}
2496
2497static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
2498	.copy_max_bytes = 0x400000,
2499	.copy_num_dw = 7,
2500	.emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
2501
2502	.fill_max_bytes = 0x400000,
2503	.fill_num_dw = 5,
2504	.emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
2505};
2506
2507static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
2508{
2509	adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
2510	if (adev->sdma.has_page_queue)
2511		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page;
2512	else
2513		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
2514}
2515
2516static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
2517	.copy_pte_num_dw = 7,
2518	.copy_pte = sdma_v4_0_vm_copy_pte,
2519
2520	.write_pte = sdma_v4_0_vm_write_pte,
2521	.set_pte_pde = sdma_v4_0_vm_set_pte_pde,
2522};
2523
2524static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
2525{
2526	struct drm_gpu_scheduler *sched;
2527	unsigned i;
2528
2529	adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
2530	for (i = 0; i < adev->sdma.num_instances; i++) {
2531		if (adev->sdma.has_page_queue)
2532			sched = &adev->sdma.instance[i].page.sched;
2533		else
2534			sched = &adev->sdma.instance[i].ring.sched;
2535		adev->vm_manager.vm_pte_rqs[i] =
2536			&sched->sched_rq[DRM_SCHED_PRIORITY_KERNEL];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2537	}
2538	adev->vm_manager.vm_pte_num_rqs = adev->sdma.num_instances;
2539}
2540
2541const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
2542	.type = AMD_IP_BLOCK_TYPE_SDMA,
2543	.major = 4,
2544	.minor = 0,
2545	.rev = 0,
2546	.funcs = &sdma_v4_0_ip_funcs,
2547};
v5.9
   1/*
   2 * Copyright 2016 Advanced Micro Devices, Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 *
  22 */
  23
  24#include <linux/delay.h>
  25#include <linux/firmware.h>
  26#include <linux/module.h>
  27#include <linux/pci.h>
  28
  29#include "amdgpu.h"
  30#include "amdgpu_ucode.h"
  31#include "amdgpu_trace.h"
  32
  33#include "sdma0/sdma0_4_2_offset.h"
  34#include "sdma0/sdma0_4_2_sh_mask.h"
  35#include "sdma1/sdma1_4_2_offset.h"
  36#include "sdma1/sdma1_4_2_sh_mask.h"
  37#include "sdma2/sdma2_4_2_2_offset.h"
  38#include "sdma2/sdma2_4_2_2_sh_mask.h"
  39#include "sdma3/sdma3_4_2_2_offset.h"
  40#include "sdma3/sdma3_4_2_2_sh_mask.h"
  41#include "sdma4/sdma4_4_2_2_offset.h"
  42#include "sdma4/sdma4_4_2_2_sh_mask.h"
  43#include "sdma5/sdma5_4_2_2_offset.h"
  44#include "sdma5/sdma5_4_2_2_sh_mask.h"
  45#include "sdma6/sdma6_4_2_2_offset.h"
  46#include "sdma6/sdma6_4_2_2_sh_mask.h"
  47#include "sdma7/sdma7_4_2_2_offset.h"
  48#include "sdma7/sdma7_4_2_2_sh_mask.h"
  49#include "hdp/hdp_4_0_offset.h"
  50#include "sdma0/sdma0_4_1_default.h"
  51
  52#include "soc15_common.h"
  53#include "soc15.h"
  54#include "vega10_sdma_pkt_open.h"
  55
  56#include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
  57#include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
  58
  59#include "amdgpu_ras.h"
  60
  61MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
  62MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
  63MODULE_FIRMWARE("amdgpu/vega12_sdma.bin");
  64MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin");
  65MODULE_FIRMWARE("amdgpu/vega20_sdma.bin");
  66MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin");
  67MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
  68MODULE_FIRMWARE("amdgpu/picasso_sdma.bin");
  69MODULE_FIRMWARE("amdgpu/raven2_sdma.bin");
  70MODULE_FIRMWARE("amdgpu/arcturus_sdma.bin");
  71MODULE_FIRMWARE("amdgpu/renoir_sdma.bin");
  72
  73#define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK  0x000000F8L
  74#define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
  75
  76#define WREG32_SDMA(instance, offset, value) \
  77	WREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)), value)
  78#define RREG32_SDMA(instance, offset) \
  79	RREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)))
  80
  81static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
  82static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
  83static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
  84static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
  85static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev);
  86
  87static const struct soc15_reg_golden golden_settings_sdma_4[] = {
  88	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
  89	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
  90	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
  91	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
  92	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
  93	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  94	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
  95	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
  96	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  97	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
  98	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  99	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
 100	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000),
 101	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
 102	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
 103	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
 104	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
 105	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
 106	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
 107	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
 108	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
 109	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
 110	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
 111	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
 112	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000)
 113};
 114
 115static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
 116	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
 117	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
 118	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 119	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
 120	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
 121	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
 122	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 123};
 124
 125static const struct soc15_reg_golden golden_settings_sdma_vg12[] = {
 126	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
 127	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
 128	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 129	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
 130	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
 131	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
 132	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 133};
 134
 135static const struct soc15_reg_golden golden_settings_sdma_4_1[] = {
 136	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
 137	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
 138	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
 139	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 140	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
 141	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
 142	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 143	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
 144	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 145	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
 146	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000)
 147};
 148
 149static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = {
 150	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
 151};
 152
 153static const struct soc15_reg_golden golden_settings_sdma0_4_2[] =
 154{
 155	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 156	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
 157	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 158	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 159	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 160	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 161	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 162	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 163	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003),
 164	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 165	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
 166	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 167	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 168	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 169	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 170	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 171	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 172	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 173	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 174	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 175	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 176	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 177	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 178	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 179	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 180	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
 181	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 182};
 183
 184static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = {
 185	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 186	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
 187	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 188	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 189	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 190	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 191	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 192	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 193	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003),
 194	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 195	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
 196	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 197	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 198	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 199	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 200	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 201	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 202	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 203	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 204	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 205	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 206	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 207	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 208	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
 209	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 210	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
 211	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 212};
 213
 214static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
 215{
 216	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
 217	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
 218};
 219
 220static const struct soc15_reg_golden golden_settings_sdma_rv2[] =
 221{
 222	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001),
 223	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001)
 224};
 225
 226static const struct soc15_reg_golden golden_settings_sdma_arct[] =
 227{
 228	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 229	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 230	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 231	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 232	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 233	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 234	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 235	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 236	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 237	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 238	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 239	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 240	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 241	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 242	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 243	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 244	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 245	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 246	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 247	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 248	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 249	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 250	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 251	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 252	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 253	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 254	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 255	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
 256	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 257	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
 258	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
 259	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_UTCL1_TIMEOUT, 0xffffffff, 0x00010001)
 260};
 261
 262static const struct soc15_reg_golden golden_settings_sdma_4_3[] = {
 263	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
 264	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
 265	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
 266	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002),
 267	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 268	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003fff07, 0x40000051),
 269	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 270	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
 271	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
 272	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x03fbe1fe)
 273};
 274
 275static const struct soc15_ras_field_entry sdma_v4_0_ras_fields[] = {
 276	{ "SDMA_UCODE_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 277	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UCODE_BUF_SED),
 278	0, 0,
 279	},
 280	{ "SDMA_RB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 281	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_RB_CMD_BUF_SED),
 282	0, 0,
 283	},
 284	{ "SDMA_IB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 285	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_IB_CMD_BUF_SED),
 286	0, 0,
 287	},
 288	{ "SDMA_UTCL1_RD_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 289	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RD_FIFO_SED),
 290	0, 0,
 291	},
 292	{ "SDMA_UTCL1_RDBST_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 293	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RDBST_FIFO_SED),
 294	0, 0,
 295	},
 296	{ "SDMA_DATA_LUT_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 297	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_DATA_LUT_FIFO_SED),
 298	0, 0,
 299	},
 300	{ "SDMA_MBANK_DATA_BUF0_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 301	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF0_SED),
 302	0, 0,
 303	},
 304	{ "SDMA_MBANK_DATA_BUF1_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 305	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF1_SED),
 306	0, 0,
 307	},
 308	{ "SDMA_MBANK_DATA_BUF2_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 309	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF2_SED),
 310	0, 0,
 311	},
 312	{ "SDMA_MBANK_DATA_BUF3_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 313	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF3_SED),
 314	0, 0,
 315	},
 316	{ "SDMA_MBANK_DATA_BUF4_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 317	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF4_SED),
 318	0, 0,
 319	},
 320	{ "SDMA_MBANK_DATA_BUF5_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 321	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF5_SED),
 322	0, 0,
 323	},
 324	{ "SDMA_MBANK_DATA_BUF6_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 325	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF6_SED),
 326	0, 0,
 327	},
 328	{ "SDMA_MBANK_DATA_BUF7_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 329	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF7_SED),
 330	0, 0,
 331	},
 332	{ "SDMA_MBANK_DATA_BUF8_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 333	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF8_SED),
 334	0, 0,
 335	},
 336	{ "SDMA_MBANK_DATA_BUF9_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 337	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF9_SED),
 338	0, 0,
 339	},
 340	{ "SDMA_MBANK_DATA_BUF10_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 341	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF10_SED),
 342	0, 0,
 343	},
 344	{ "SDMA_MBANK_DATA_BUF11_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 345	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF11_SED),
 346	0, 0,
 347	},
 348	{ "SDMA_MBANK_DATA_BUF12_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 349	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF12_SED),
 350	0, 0,
 351	},
 352	{ "SDMA_MBANK_DATA_BUF13_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 353	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF13_SED),
 354	0, 0,
 355	},
 356	{ "SDMA_MBANK_DATA_BUF14_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 357	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF14_SED),
 358	0, 0,
 359	},
 360	{ "SDMA_MBANK_DATA_BUF15_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 361	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF15_SED),
 362	0, 0,
 363	},
 364	{ "SDMA_SPLIT_DAT_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 365	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_SPLIT_DAT_BUF_SED),
 366	0, 0,
 367	},
 368	{ "SDMA_MC_WR_ADDR_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
 369	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MC_WR_ADDR_FIFO_SED),
 370	0, 0,
 371	},
 372};
 373
 374static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
 375		u32 instance, u32 offset)
 376{
 377	switch (instance) {
 378	case 0:
 379		return (adev->reg_offset[SDMA0_HWIP][0][0] + offset);
 380	case 1:
 381		return (adev->reg_offset[SDMA1_HWIP][0][0] + offset);
 382	case 2:
 383		return (adev->reg_offset[SDMA2_HWIP][0][1] + offset);
 384	case 3:
 385		return (adev->reg_offset[SDMA3_HWIP][0][1] + offset);
 386	case 4:
 387		return (adev->reg_offset[SDMA4_HWIP][0][1] + offset);
 388	case 5:
 389		return (adev->reg_offset[SDMA5_HWIP][0][1] + offset);
 390	case 6:
 391		return (adev->reg_offset[SDMA6_HWIP][0][1] + offset);
 392	case 7:
 393		return (adev->reg_offset[SDMA7_HWIP][0][1] + offset);
 394	default:
 395		break;
 396	}
 397	return 0;
 398}
 399
 400static unsigned sdma_v4_0_seq_to_irq_id(int seq_num)
 401{
 402	switch (seq_num) {
 403	case 0:
 404		return SOC15_IH_CLIENTID_SDMA0;
 405	case 1:
 406		return SOC15_IH_CLIENTID_SDMA1;
 407	case 2:
 408		return SOC15_IH_CLIENTID_SDMA2;
 409	case 3:
 410		return SOC15_IH_CLIENTID_SDMA3;
 411	case 4:
 412		return SOC15_IH_CLIENTID_SDMA4;
 413	case 5:
 414		return SOC15_IH_CLIENTID_SDMA5;
 415	case 6:
 416		return SOC15_IH_CLIENTID_SDMA6;
 417	case 7:
 418		return SOC15_IH_CLIENTID_SDMA7;
 419	default:
 420		break;
 421	}
 422	return -EINVAL;
 423}
 424
 425static int sdma_v4_0_irq_id_to_seq(unsigned client_id)
 426{
 427	switch (client_id) {
 428	case SOC15_IH_CLIENTID_SDMA0:
 429		return 0;
 430	case SOC15_IH_CLIENTID_SDMA1:
 431		return 1;
 432	case SOC15_IH_CLIENTID_SDMA2:
 433		return 2;
 434	case SOC15_IH_CLIENTID_SDMA3:
 435		return 3;
 436	case SOC15_IH_CLIENTID_SDMA4:
 437		return 4;
 438	case SOC15_IH_CLIENTID_SDMA5:
 439		return 5;
 440	case SOC15_IH_CLIENTID_SDMA6:
 441		return 6;
 442	case SOC15_IH_CLIENTID_SDMA7:
 443		return 7;
 444	default:
 445		break;
 446	}
 447	return -EINVAL;
 448}
 449
 450static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
 451{
 452	switch (adev->asic_type) {
 453	case CHIP_VEGA10:
 454		soc15_program_register_sequence(adev,
 455						golden_settings_sdma_4,
 456						ARRAY_SIZE(golden_settings_sdma_4));
 457		soc15_program_register_sequence(adev,
 458						golden_settings_sdma_vg10,
 459						ARRAY_SIZE(golden_settings_sdma_vg10));
 460		break;
 461	case CHIP_VEGA12:
 462		soc15_program_register_sequence(adev,
 463						golden_settings_sdma_4,
 464						ARRAY_SIZE(golden_settings_sdma_4));
 465		soc15_program_register_sequence(adev,
 466						golden_settings_sdma_vg12,
 467						ARRAY_SIZE(golden_settings_sdma_vg12));
 468		break;
 469	case CHIP_VEGA20:
 470		soc15_program_register_sequence(adev,
 471						golden_settings_sdma0_4_2_init,
 472						ARRAY_SIZE(golden_settings_sdma0_4_2_init));
 473		soc15_program_register_sequence(adev,
 474						golden_settings_sdma0_4_2,
 475						ARRAY_SIZE(golden_settings_sdma0_4_2));
 476		soc15_program_register_sequence(adev,
 477						golden_settings_sdma1_4_2,
 478						ARRAY_SIZE(golden_settings_sdma1_4_2));
 479		break;
 480	case CHIP_ARCTURUS:
 481		soc15_program_register_sequence(adev,
 482						golden_settings_sdma_arct,
 483						ARRAY_SIZE(golden_settings_sdma_arct));
 484		break;
 485	case CHIP_RAVEN:
 486		soc15_program_register_sequence(adev,
 487						golden_settings_sdma_4_1,
 488						ARRAY_SIZE(golden_settings_sdma_4_1));
 489		if (adev->apu_flags & AMD_APU_IS_RAVEN2)
 490			soc15_program_register_sequence(adev,
 491							golden_settings_sdma_rv2,
 492							ARRAY_SIZE(golden_settings_sdma_rv2));
 493		else
 494			soc15_program_register_sequence(adev,
 495							golden_settings_sdma_rv1,
 496							ARRAY_SIZE(golden_settings_sdma_rv1));
 497		break;
 498	case CHIP_RENOIR:
 499		soc15_program_register_sequence(adev,
 500						golden_settings_sdma_4_3,
 501						ARRAY_SIZE(golden_settings_sdma_4_3));
 502		break;
 503	default:
 504		break;
 505	}
 506}
 507
 508static void sdma_v4_0_setup_ulv(struct amdgpu_device *adev)
 509{
 510	int i;
 511
 512	/*
 513	 * The only chips with SDMAv4 and ULV are VG10 and VG20.
 514	 * Server SKUs take a different hysteresis setting from other SKUs.
 515	 */
 516	switch (adev->asic_type) {
 517	case CHIP_VEGA10:
 518		if (adev->pdev->device == 0x6860)
 519			break;
 520		return;
 521	case CHIP_VEGA20:
 522		if (adev->pdev->device == 0x66a1)
 523			break;
 524		return;
 525	default:
 526		return;
 527	}
 528
 529	for (i = 0; i < adev->sdma.num_instances; i++) {
 530		uint32_t temp;
 531
 532		temp = RREG32_SDMA(i, mmSDMA0_ULV_CNTL);
 533		temp = REG_SET_FIELD(temp, SDMA0_ULV_CNTL, HYSTERESIS, 0x0);
 534		WREG32_SDMA(i, mmSDMA0_ULV_CNTL, temp);
 535	}
 536}
 537
 538static int sdma_v4_0_init_inst_ctx(struct amdgpu_sdma_instance *sdma_inst)
 539{
 540	int err = 0;
 541	const struct sdma_firmware_header_v1_0 *hdr;
 542
 543	err = amdgpu_ucode_validate(sdma_inst->fw);
 544	if (err)
 545		return err;
 546
 547	hdr = (const struct sdma_firmware_header_v1_0 *)sdma_inst->fw->data;
 548	sdma_inst->fw_version = le32_to_cpu(hdr->header.ucode_version);
 549	sdma_inst->feature_version = le32_to_cpu(hdr->ucode_feature_version);
 550
 551	if (sdma_inst->feature_version >= 20)
 552		sdma_inst->burst_nop = true;
 553
 554	return 0;
 555}
 556
 557static void sdma_v4_0_destroy_inst_ctx(struct amdgpu_device *adev)
 558{
 559	int i;
 560
 561	for (i = 0; i < adev->sdma.num_instances; i++) {
 562		release_firmware(adev->sdma.instance[i].fw);
 563		adev->sdma.instance[i].fw = NULL;
 564
 565		/* arcturus shares the same FW memory across
 566		   all SDMA isntances */
 567		if (adev->asic_type == CHIP_ARCTURUS)
 568			break;
 569	}
 570
 571	memset((void*)adev->sdma.instance, 0,
 572		sizeof(struct amdgpu_sdma_instance) * AMDGPU_MAX_SDMA_INSTANCES);
 573}
 574
 575/**
 576 * sdma_v4_0_init_microcode - load ucode images from disk
 577 *
 578 * @adev: amdgpu_device pointer
 579 *
 580 * Use the firmware interface to load the ucode images into
 581 * the driver (not loaded into hw).
 582 * Returns 0 on success, error on failure.
 583 */
 584
 585// emulation only, won't work on real chip
 586// vega10 real chip need to use PSP to load firmware
 587static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
 588{
 589	const char *chip_name;
 590	char fw_name[30];
 591	int err = 0, i;
 592	struct amdgpu_firmware_info *info = NULL;
 593	const struct common_firmware_header *header = NULL;
 594
 595	DRM_DEBUG("\n");
 596
 597	switch (adev->asic_type) {
 598	case CHIP_VEGA10:
 599		chip_name = "vega10";
 600		break;
 601	case CHIP_VEGA12:
 602		chip_name = "vega12";
 603		break;
 604	case CHIP_VEGA20:
 605		chip_name = "vega20";
 606		break;
 607	case CHIP_RAVEN:
 608		if (adev->apu_flags & AMD_APU_IS_RAVEN2)
 609			chip_name = "raven2";
 610		else if (adev->apu_flags & AMD_APU_IS_PICASSO)
 611			chip_name = "picasso";
 612		else
 613			chip_name = "raven";
 614		break;
 615	case CHIP_ARCTURUS:
 616		chip_name = "arcturus";
 617		break;
 618	case CHIP_RENOIR:
 619		chip_name = "renoir";
 620		break;
 621	default:
 622		BUG();
 623	}
 624
 625	snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
 626
 627	err = request_firmware(&adev->sdma.instance[0].fw, fw_name, adev->dev);
 628	if (err)
 629		goto out;
 630
 631	err = sdma_v4_0_init_inst_ctx(&adev->sdma.instance[0]);
 632	if (err)
 633		goto out;
 634
 635	for (i = 1; i < adev->sdma.num_instances; i++) {
 636		if (adev->asic_type == CHIP_ARCTURUS) {
 637			/* Acturus will leverage the same FW memory
 638			   for every SDMA instance */
 639			memcpy((void*)&adev->sdma.instance[i],
 640			       (void*)&adev->sdma.instance[0],
 641			       sizeof(struct amdgpu_sdma_instance));
 642		}
 643		else {
 644			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma%d.bin", chip_name, i);
 645
 646			err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
 647			if (err)
 648				goto out;
 649
 650			err = sdma_v4_0_init_inst_ctx(&adev->sdma.instance[i]);
 651			if (err)
 652				goto out;
 653		}
 654	}
 655
 656	DRM_DEBUG("psp_load == '%s'\n",
 657		adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
 658
 659	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
 660		for (i = 0; i < adev->sdma.num_instances; i++) {
 661			info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
 662			info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
 663			info->fw = adev->sdma.instance[i].fw;
 664			header = (const struct common_firmware_header *)info->fw->data;
 665			adev->firmware.fw_size +=
 666				ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
 667		}
 668	}
 669
 670out:
 671	if (err) {
 672		DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name);
 673		sdma_v4_0_destroy_inst_ctx(adev);
 674	}
 675	return err;
 676}
 677
 678/**
 679 * sdma_v4_0_ring_get_rptr - get the current read pointer
 680 *
 681 * @ring: amdgpu ring pointer
 682 *
 683 * Get the current rptr from the hardware (VEGA10+).
 684 */
 685static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
 686{
 687	u64 *rptr;
 688
 689	/* XXX check if swapping is necessary on BE */
 690	rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
 691
 692	DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
 693	return ((*rptr) >> 2);
 694}
 695
 696/**
 697 * sdma_v4_0_ring_get_wptr - get the current write pointer
 698 *
 699 * @ring: amdgpu ring pointer
 700 *
 701 * Get the current wptr from the hardware (VEGA10+).
 702 */
 703static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
 704{
 705	struct amdgpu_device *adev = ring->adev;
 706	u64 wptr;
 707
 708	if (ring->use_doorbell) {
 709		/* XXX check if swapping is necessary on BE */
 710		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
 711		DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
 712	} else {
 713		wptr = RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI);
 714		wptr = wptr << 32;
 715		wptr |= RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR);
 716		DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n",
 717				ring->me, wptr);
 718	}
 719
 720	return wptr >> 2;
 721}
 722
 723/**
 724 * sdma_v4_0_page_ring_set_wptr - commit the write pointer
 725 *
 726 * @ring: amdgpu ring pointer
 727 *
 728 * Write the wptr back to the hardware (VEGA10+).
 729 */
 730static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
 731{
 732	struct amdgpu_device *adev = ring->adev;
 733
 734	DRM_DEBUG("Setting write pointer\n");
 735	if (ring->use_doorbell) {
 736		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
 737
 738		DRM_DEBUG("Using doorbell -- "
 739				"wptr_offs == 0x%08x "
 740				"lower_32_bits(ring->wptr) << 2 == 0x%08x "
 741				"upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
 742				ring->wptr_offs,
 743				lower_32_bits(ring->wptr << 2),
 744				upper_32_bits(ring->wptr << 2));
 745		/* XXX check if swapping is necessary on BE */
 746		WRITE_ONCE(*wb, (ring->wptr << 2));
 747		DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
 748				ring->doorbell_index, ring->wptr << 2);
 749		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
 750	} else {
 751		DRM_DEBUG("Not using doorbell -- "
 752				"mmSDMA%i_GFX_RB_WPTR == 0x%08x "
 753				"mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
 754				ring->me,
 755				lower_32_bits(ring->wptr << 2),
 756				ring->me,
 757				upper_32_bits(ring->wptr << 2));
 758		WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR,
 759			    lower_32_bits(ring->wptr << 2));
 760		WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI,
 761			    upper_32_bits(ring->wptr << 2));
 762	}
 763}
 764
 765/**
 766 * sdma_v4_0_page_ring_get_wptr - get the current write pointer
 767 *
 768 * @ring: amdgpu ring pointer
 769 *
 770 * Get the current wptr from the hardware (VEGA10+).
 771 */
 772static uint64_t sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring *ring)
 773{
 774	struct amdgpu_device *adev = ring->adev;
 775	u64 wptr;
 776
 777	if (ring->use_doorbell) {
 778		/* XXX check if swapping is necessary on BE */
 779		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
 780	} else {
 781		wptr = RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI);
 782		wptr = wptr << 32;
 783		wptr |= RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR);
 784	}
 785
 786	return wptr >> 2;
 787}
 788
 789/**
 790 * sdma_v4_0_ring_set_wptr - commit the write pointer
 791 *
 792 * @ring: amdgpu ring pointer
 793 *
 794 * Write the wptr back to the hardware (VEGA10+).
 795 */
 796static void sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring *ring)
 797{
 798	struct amdgpu_device *adev = ring->adev;
 799
 800	if (ring->use_doorbell) {
 801		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
 802
 803		/* XXX check if swapping is necessary on BE */
 804		WRITE_ONCE(*wb, (ring->wptr << 2));
 805		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
 806	} else {
 807		uint64_t wptr = ring->wptr << 2;
 808
 809		WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR,
 810			    lower_32_bits(wptr));
 811		WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI,
 812			    upper_32_bits(wptr));
 813	}
 814}
 815
 816static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
 817{
 818	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
 819	int i;
 820
 821	for (i = 0; i < count; i++)
 822		if (sdma && sdma->burst_nop && (i == 0))
 823			amdgpu_ring_write(ring, ring->funcs->nop |
 824				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
 825		else
 826			amdgpu_ring_write(ring, ring->funcs->nop);
 827}
 828
 829/**
 830 * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
 831 *
 832 * @ring: amdgpu ring pointer
 833 * @ib: IB object to schedule
 834 *
 835 * Schedule an IB in the DMA ring (VEGA10).
 836 */
 837static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
 838				   struct amdgpu_job *job,
 839				   struct amdgpu_ib *ib,
 840				   uint32_t flags)
 841{
 842	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
 843
 844	/* IB packet must end on a 8 DW boundary */
 845	sdma_v4_0_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
 846
 847	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
 848			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
 849	/* base must be 32 byte aligned */
 850	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
 851	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
 852	amdgpu_ring_write(ring, ib->length_dw);
 853	amdgpu_ring_write(ring, 0);
 854	amdgpu_ring_write(ring, 0);
 855
 856}
 857
 858static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring,
 859				   int mem_space, int hdp,
 860				   uint32_t addr0, uint32_t addr1,
 861				   uint32_t ref, uint32_t mask,
 862				   uint32_t inv)
 863{
 864	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
 865			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
 866			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
 867			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
 868	if (mem_space) {
 869		/* memory */
 870		amdgpu_ring_write(ring, addr0);
 871		amdgpu_ring_write(ring, addr1);
 872	} else {
 873		/* registers */
 874		amdgpu_ring_write(ring, addr0 << 2);
 875		amdgpu_ring_write(ring, addr1 << 2);
 876	}
 877	amdgpu_ring_write(ring, ref); /* reference */
 878	amdgpu_ring_write(ring, mask); /* mask */
 879	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
 880			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
 881}
 882
 883/**
 884 * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
 885 *
 886 * @ring: amdgpu ring pointer
 887 *
 888 * Emit an hdp flush packet on the requested DMA ring.
 889 */
 890static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
 891{
 892	struct amdgpu_device *adev = ring->adev;
 893	u32 ref_and_mask = 0;
 894	const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;
 895
 896	ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me;
 897
 898	sdma_v4_0_wait_reg_mem(ring, 0, 1,
 899			       adev->nbio.funcs->get_hdp_flush_done_offset(adev),
 900			       adev->nbio.funcs->get_hdp_flush_req_offset(adev),
 901			       ref_and_mask, ref_and_mask, 10);
 902}
 903
 904/**
 905 * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
 906 *
 907 * @ring: amdgpu ring pointer
 908 * @fence: amdgpu fence object
 909 *
 910 * Add a DMA fence packet to the ring to write
 911 * the fence seq number and DMA trap packet to generate
 912 * an interrupt if needed (VEGA10).
 913 */
 914static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
 915				      unsigned flags)
 916{
 917	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
 918	/* write the fence */
 919	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
 920	/* zero in first two bits */
 921	BUG_ON(addr & 0x3);
 922	amdgpu_ring_write(ring, lower_32_bits(addr));
 923	amdgpu_ring_write(ring, upper_32_bits(addr));
 924	amdgpu_ring_write(ring, lower_32_bits(seq));
 925
 926	/* optionally write high bits as well */
 927	if (write64bit) {
 928		addr += 4;
 929		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
 930		/* zero in first two bits */
 931		BUG_ON(addr & 0x3);
 932		amdgpu_ring_write(ring, lower_32_bits(addr));
 933		amdgpu_ring_write(ring, upper_32_bits(addr));
 934		amdgpu_ring_write(ring, upper_32_bits(seq));
 935	}
 936
 937	/* generate an interrupt */
 938	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
 939	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
 940}
 941
 942
 943/**
 944 * sdma_v4_0_gfx_stop - stop the gfx async dma engines
 945 *
 946 * @adev: amdgpu_device pointer
 947 *
 948 * Stop the gfx async dma ring buffers (VEGA10).
 949 */
 950static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
 951{
 952	struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
 953	u32 rb_cntl, ib_cntl;
 954	int i, unset = 0;
 955
 956	for (i = 0; i < adev->sdma.num_instances; i++) {
 957		sdma[i] = &adev->sdma.instance[i].ring;
 958
 959		if ((adev->mman.buffer_funcs_ring == sdma[i]) && unset != 1) {
 960			amdgpu_ttm_set_buffer_funcs_status(adev, false);
 961			unset = 1;
 962		}
 963
 964		rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
 965		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
 966		WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
 967		ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
 968		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
 969		WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
 
 
 970	}
 971}
 972
 973/**
 974 * sdma_v4_0_rlc_stop - stop the compute async dma engines
 975 *
 976 * @adev: amdgpu_device pointer
 977 *
 978 * Stop the compute async dma queues (VEGA10).
 979 */
 980static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
 981{
 982	/* XXX todo */
 983}
 984
 985/**
 986 * sdma_v4_0_page_stop - stop the page async dma engines
 987 *
 988 * @adev: amdgpu_device pointer
 989 *
 990 * Stop the page async dma ring buffers (VEGA10).
 991 */
 992static void sdma_v4_0_page_stop(struct amdgpu_device *adev)
 993{
 994	struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
 995	u32 rb_cntl, ib_cntl;
 996	int i;
 997	bool unset = false;
 998
 999	for (i = 0; i < adev->sdma.num_instances; i++) {
1000		sdma[i] = &adev->sdma.instance[i].page;
1001
1002		if ((adev->mman.buffer_funcs_ring == sdma[i]) &&
1003			(unset == false)) {
1004			amdgpu_ttm_set_buffer_funcs_status(adev, false);
1005			unset = true;
1006		}
1007
1008		rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
1009		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
1010					RB_ENABLE, 0);
1011		WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1012		ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
1013		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL,
1014					IB_ENABLE, 0);
1015		WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
 
 
1016	}
1017}
1018
1019/**
1020 * sdma_v4_0_ctx_switch_enable - stop the async dma engines context switch
1021 *
1022 * @adev: amdgpu_device pointer
1023 * @enable: enable/disable the DMA MEs context switch.
1024 *
1025 * Halt or unhalt the async dma engines context switch (VEGA10).
1026 */
1027static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
1028{
1029	u32 f32_cntl, phase_quantum = 0;
1030	int i;
1031
1032	if (amdgpu_sdma_phase_quantum) {
1033		unsigned value = amdgpu_sdma_phase_quantum;
1034		unsigned unit = 0;
1035
1036		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
1037				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
1038			value = (value + 1) >> 1;
1039			unit++;
1040		}
1041		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
1042			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
1043			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
1044				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
1045			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
1046				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
1047			WARN_ONCE(1,
1048			"clamping sdma_phase_quantum to %uK clock cycles\n",
1049				  value << unit);
1050		}
1051		phase_quantum =
1052			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
1053			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
1054	}
1055
1056	for (i = 0; i < adev->sdma.num_instances; i++) {
1057		f32_cntl = RREG32_SDMA(i, mmSDMA0_CNTL);
1058		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
1059				AUTO_CTXSW_ENABLE, enable ? 1 : 0);
1060		if (enable && amdgpu_sdma_phase_quantum) {
1061			WREG32_SDMA(i, mmSDMA0_PHASE0_QUANTUM, phase_quantum);
1062			WREG32_SDMA(i, mmSDMA0_PHASE1_QUANTUM, phase_quantum);
1063			WREG32_SDMA(i, mmSDMA0_PHASE2_QUANTUM, phase_quantum);
1064		}
1065		WREG32_SDMA(i, mmSDMA0_CNTL, f32_cntl);
1066	}
1067
1068}
1069
1070/**
1071 * sdma_v4_0_enable - stop the async dma engines
1072 *
1073 * @adev: amdgpu_device pointer
1074 * @enable: enable/disable the DMA MEs.
1075 *
1076 * Halt or unhalt the async dma engines (VEGA10).
1077 */
1078static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
1079{
1080	u32 f32_cntl;
1081	int i;
1082
1083	if (enable == false) {
1084		sdma_v4_0_gfx_stop(adev);
1085		sdma_v4_0_rlc_stop(adev);
1086		if (adev->sdma.has_page_queue)
1087			sdma_v4_0_page_stop(adev);
1088	}
1089
1090	for (i = 0; i < adev->sdma.num_instances; i++) {
1091		f32_cntl = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1092		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
1093		WREG32_SDMA(i, mmSDMA0_F32_CNTL, f32_cntl);
1094	}
1095}
1096
1097/**
1098 * sdma_v4_0_rb_cntl - get parameters for rb_cntl
1099 */
1100static uint32_t sdma_v4_0_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
1101{
1102	/* Set ring buffer size in dwords */
1103	uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);
1104
1105	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
1106#ifdef __BIG_ENDIAN
1107	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
1108	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1109				RPTR_WRITEBACK_SWAP_ENABLE, 1);
1110#endif
1111	return rb_cntl;
1112}
1113
1114/**
1115 * sdma_v4_0_gfx_resume - setup and start the async dma engines
1116 *
1117 * @adev: amdgpu_device pointer
1118 * @i: instance to resume
1119 *
1120 * Set up the gfx DMA ring buffers and enable them (VEGA10).
1121 * Returns 0 for success, error for failure.
1122 */
1123static void sdma_v4_0_gfx_resume(struct amdgpu_device *adev, unsigned int i)
1124{
1125	struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
1126	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1127	u32 wb_offset;
1128	u32 doorbell;
1129	u32 doorbell_offset;
1130	u64 wptr_gpu_addr;
1131
1132	wb_offset = (ring->rptr_offs * 4);
1133
1134	rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
1135	rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1136	WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1137
1138	/* Initialize the ring buffer's read and write pointers */
1139	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR, 0);
1140	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_HI, 0);
1141	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR, 0);
1142	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_HI, 0);
1143
1144	/* set the wb address whether it's enabled or not */
1145	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI,
1146	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
1147	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO,
1148	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
1149
1150	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1151				RPTR_WRITEBACK_ENABLE, 1);
1152
1153	WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE, ring->gpu_addr >> 8);
1154	WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
1155
1156	ring->wptr = 0;
1157
1158	/* before programing wptr to a less value, need set minor_ptr_update first */
1159	WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 1);
1160
1161	doorbell = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL);
1162	doorbell_offset = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET);
1163
1164	doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE,
1165				 ring->use_doorbell);
1166	doorbell_offset = REG_SET_FIELD(doorbell_offset,
1167					SDMA0_GFX_DOORBELL_OFFSET,
1168					OFFSET, ring->doorbell_index);
1169	WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL, doorbell);
1170	WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET, doorbell_offset);
1171
1172	sdma_v4_0_ring_set_wptr(ring);
1173
1174	/* set minor_ptr_update to 0 after wptr programed */
1175	WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 0);
1176
1177	/* setup the wptr shadow polling */
1178	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
1179	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO,
1180		    lower_32_bits(wptr_gpu_addr));
1181	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI,
1182		    upper_32_bits(wptr_gpu_addr));
1183	wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL);
1184	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1185				       SDMA0_GFX_RB_WPTR_POLL_CNTL,
1186				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1187	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1188
1189	/* enable DMA RB */
1190	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
1191	WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1192
1193	ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
1194	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
1195#ifdef __BIG_ENDIAN
1196	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
1197#endif
1198	/* enable DMA IBs */
1199	WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
1200
1201	ring->sched.ready = true;
1202}
1203
1204/**
1205 * sdma_v4_0_page_resume - setup and start the async dma engines
1206 *
1207 * @adev: amdgpu_device pointer
1208 * @i: instance to resume
1209 *
1210 * Set up the page DMA ring buffers and enable them (VEGA10).
1211 * Returns 0 for success, error for failure.
1212 */
1213static void sdma_v4_0_page_resume(struct amdgpu_device *adev, unsigned int i)
1214{
1215	struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
1216	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1217	u32 wb_offset;
1218	u32 doorbell;
1219	u32 doorbell_offset;
1220	u64 wptr_gpu_addr;
1221
1222	wb_offset = (ring->rptr_offs * 4);
1223
1224	rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
1225	rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1226	WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1227
1228	/* Initialize the ring buffer's read and write pointers */
1229	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR, 0);
1230	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_HI, 0);
1231	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR, 0);
1232	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_HI, 0);
1233
1234	/* set the wb address whether it's enabled or not */
1235	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_HI,
1236	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
1237	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_LO,
1238	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
1239
1240	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
1241				RPTR_WRITEBACK_ENABLE, 1);
1242
1243	WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE, ring->gpu_addr >> 8);
1244	WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);
1245
1246	ring->wptr = 0;
1247
1248	/* before programing wptr to a less value, need set minor_ptr_update first */
1249	WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 1);
1250
1251	doorbell = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL);
1252	doorbell_offset = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET);
1253
1254	doorbell = REG_SET_FIELD(doorbell, SDMA0_PAGE_DOORBELL, ENABLE,
1255				 ring->use_doorbell);
1256	doorbell_offset = REG_SET_FIELD(doorbell_offset,
1257					SDMA0_PAGE_DOORBELL_OFFSET,
1258					OFFSET, ring->doorbell_index);
1259	WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL, doorbell);
1260	WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET, doorbell_offset);
1261
1262	/* paging queue doorbell range is setup at sdma_v4_0_gfx_resume */
1263	sdma_v4_0_page_ring_set_wptr(ring);
1264
1265	/* set minor_ptr_update to 0 after wptr programed */
1266	WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 0);
1267
1268	/* setup the wptr shadow polling */
1269	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
1270	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_LO,
1271		    lower_32_bits(wptr_gpu_addr));
1272	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_HI,
1273		    upper_32_bits(wptr_gpu_addr));
1274	wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL);
1275	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1276				       SDMA0_PAGE_RB_WPTR_POLL_CNTL,
1277				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1278	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1279
1280	/* enable DMA RB */
1281	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RB_ENABLE, 1);
1282	WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1283
1284	ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
1285	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_ENABLE, 1);
1286#ifdef __BIG_ENDIAN
1287	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
1288#endif
1289	/* enable DMA IBs */
1290	WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
1291
1292	ring->sched.ready = true;
1293}
1294
1295static void
1296sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
1297{
1298	uint32_t def, data;
1299
1300	if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
1301		/* enable idle interrupt */
1302		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1303		data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1304
1305		if (data != def)
1306			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1307	} else {
1308		/* disable idle interrupt */
1309		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1310		data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1311		if (data != def)
1312			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1313	}
1314}
1315
1316static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
1317{
1318	uint32_t def, data;
1319
1320	/* Enable HW based PG. */
1321	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1322	data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
1323	if (data != def)
1324		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1325
1326	/* enable interrupt */
1327	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1328	data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1329	if (data != def)
1330		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1331
1332	/* Configure hold time to filter in-valid power on/off request. Use default right now */
1333	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1334	data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
1335	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
1336	/* Configure switch time for hysteresis purpose. Use default right now */
1337	data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
1338	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
1339	if(data != def)
1340		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1341}
1342
1343static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
1344{
1345	if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
1346		return;
1347
1348	switch (adev->asic_type) {
1349	case CHIP_RAVEN:
1350	case CHIP_RENOIR:
1351		sdma_v4_1_init_power_gating(adev);
1352		sdma_v4_1_update_power_gating(adev, true);
1353		break;
1354	default:
1355		break;
1356	}
1357}
1358
1359/**
1360 * sdma_v4_0_rlc_resume - setup and start the async dma engines
1361 *
1362 * @adev: amdgpu_device pointer
1363 *
1364 * Set up the compute DMA queues and enable them (VEGA10).
1365 * Returns 0 for success, error for failure.
1366 */
1367static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
1368{
1369	sdma_v4_0_init_pg(adev);
1370
1371	return 0;
1372}
1373
1374/**
1375 * sdma_v4_0_load_microcode - load the sDMA ME ucode
1376 *
1377 * @adev: amdgpu_device pointer
1378 *
1379 * Loads the sDMA0/1 ucode.
1380 * Returns 0 for success, -EINVAL if the ucode is not available.
1381 */
1382static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
1383{
1384	const struct sdma_firmware_header_v1_0 *hdr;
1385	const __le32 *fw_data;
1386	u32 fw_size;
1387	int i, j;
1388
1389	/* halt the MEs */
1390	sdma_v4_0_enable(adev, false);
1391
1392	for (i = 0; i < adev->sdma.num_instances; i++) {
1393		if (!adev->sdma.instance[i].fw)
1394			return -EINVAL;
1395
1396		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
1397		amdgpu_ucode_print_sdma_hdr(&hdr->header);
1398		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
1399
1400		fw_data = (const __le32 *)
1401			(adev->sdma.instance[i].fw->data +
1402				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
1403
1404		WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 0);
1405
1406		for (j = 0; j < fw_size; j++)
1407			WREG32_SDMA(i, mmSDMA0_UCODE_DATA,
1408				    le32_to_cpup(fw_data++));
1409
1410		WREG32_SDMA(i, mmSDMA0_UCODE_ADDR,
1411			    adev->sdma.instance[i].fw_version);
1412	}
1413
1414	return 0;
1415}
1416
1417/**
1418 * sdma_v4_0_start - setup and start the async dma engines
1419 *
1420 * @adev: amdgpu_device pointer
1421 *
1422 * Set up the DMA engines and enable them (VEGA10).
1423 * Returns 0 for success, error for failure.
1424 */
1425static int sdma_v4_0_start(struct amdgpu_device *adev)
1426{
1427	struct amdgpu_ring *ring;
1428	int i, r = 0;
1429
1430	if (amdgpu_sriov_vf(adev)) {
1431		sdma_v4_0_ctx_switch_enable(adev, false);
1432		sdma_v4_0_enable(adev, false);
1433	} else {
1434
1435		if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
1436			r = sdma_v4_0_load_microcode(adev);
1437			if (r)
1438				return r;
1439		}
1440
1441		/* unhalt the MEs */
1442		sdma_v4_0_enable(adev, true);
1443		/* enable sdma ring preemption */
1444		sdma_v4_0_ctx_switch_enable(adev, true);
1445	}
1446
1447	/* start the gfx rings and rlc compute queues */
1448	for (i = 0; i < adev->sdma.num_instances; i++) {
1449		uint32_t temp;
1450
1451		WREG32_SDMA(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL, 0);
1452		sdma_v4_0_gfx_resume(adev, i);
1453		if (adev->sdma.has_page_queue)
1454			sdma_v4_0_page_resume(adev, i);
1455
1456		/* set utc l1 enable flag always to 1 */
1457		temp = RREG32_SDMA(i, mmSDMA0_CNTL);
1458		temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
1459		WREG32_SDMA(i, mmSDMA0_CNTL, temp);
1460
1461		if (!amdgpu_sriov_vf(adev)) {
1462			/* unhalt engine */
1463			temp = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1464			temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
1465			WREG32_SDMA(i, mmSDMA0_F32_CNTL, temp);
1466		}
1467	}
1468
1469	if (amdgpu_sriov_vf(adev)) {
1470		sdma_v4_0_ctx_switch_enable(adev, true);
1471		sdma_v4_0_enable(adev, true);
1472	} else {
1473		r = sdma_v4_0_rlc_resume(adev);
1474		if (r)
1475			return r;
1476	}
1477
1478	for (i = 0; i < adev->sdma.num_instances; i++) {
1479		ring = &adev->sdma.instance[i].ring;
1480
1481		r = amdgpu_ring_test_helper(ring);
1482		if (r)
1483			return r;
1484
1485		if (adev->sdma.has_page_queue) {
1486			struct amdgpu_ring *page = &adev->sdma.instance[i].page;
1487
1488			r = amdgpu_ring_test_helper(page);
1489			if (r)
1490				return r;
1491
1492			if (adev->mman.buffer_funcs_ring == page)
1493				amdgpu_ttm_set_buffer_funcs_status(adev, true);
1494		}
1495
1496		if (adev->mman.buffer_funcs_ring == ring)
1497			amdgpu_ttm_set_buffer_funcs_status(adev, true);
1498	}
1499
1500	return r;
1501}
1502
1503/**
1504 * sdma_v4_0_ring_test_ring - simple async dma engine test
1505 *
1506 * @ring: amdgpu_ring structure holding ring information
1507 *
1508 * Test the DMA engine by writing using it to write an
1509 * value to memory. (VEGA10).
1510 * Returns 0 for success, error for failure.
1511 */
1512static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
1513{
1514	struct amdgpu_device *adev = ring->adev;
1515	unsigned i;
1516	unsigned index;
1517	int r;
1518	u32 tmp;
1519	u64 gpu_addr;
1520
1521	r = amdgpu_device_wb_get(adev, &index);
1522	if (r)
1523		return r;
1524
1525	gpu_addr = adev->wb.gpu_addr + (index * 4);
1526	tmp = 0xCAFEDEAD;
1527	adev->wb.wb[index] = cpu_to_le32(tmp);
1528
1529	r = amdgpu_ring_alloc(ring, 5);
1530	if (r)
1531		goto error_free_wb;
1532
1533	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1534			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
1535	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
1536	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
1537	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
1538	amdgpu_ring_write(ring, 0xDEADBEEF);
1539	amdgpu_ring_commit(ring);
1540
1541	for (i = 0; i < adev->usec_timeout; i++) {
1542		tmp = le32_to_cpu(adev->wb.wb[index]);
1543		if (tmp == 0xDEADBEEF)
1544			break;
1545		udelay(1);
1546	}
1547
1548	if (i >= adev->usec_timeout)
1549		r = -ETIMEDOUT;
1550
1551error_free_wb:
1552	amdgpu_device_wb_free(adev, index);
1553	return r;
1554}
1555
1556/**
1557 * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
1558 *
1559 * @ring: amdgpu_ring structure holding ring information
1560 *
1561 * Test a simple IB in the DMA ring (VEGA10).
1562 * Returns 0 on success, error on failure.
1563 */
1564static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1565{
1566	struct amdgpu_device *adev = ring->adev;
1567	struct amdgpu_ib ib;
1568	struct dma_fence *f = NULL;
1569	unsigned index;
1570	long r;
1571	u32 tmp = 0;
1572	u64 gpu_addr;
1573
1574	r = amdgpu_device_wb_get(adev, &index);
1575	if (r)
1576		return r;
1577
1578	gpu_addr = adev->wb.gpu_addr + (index * 4);
1579	tmp = 0xCAFEDEAD;
1580	adev->wb.wb[index] = cpu_to_le32(tmp);
1581	memset(&ib, 0, sizeof(ib));
1582	r = amdgpu_ib_get(adev, NULL, 256,
1583					AMDGPU_IB_POOL_DIRECT, &ib);
1584	if (r)
1585		goto err0;
1586
1587	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1588		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1589	ib.ptr[1] = lower_32_bits(gpu_addr);
1590	ib.ptr[2] = upper_32_bits(gpu_addr);
1591	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1592	ib.ptr[4] = 0xDEADBEEF;
1593	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1594	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1595	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1596	ib.length_dw = 8;
1597
1598	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1599	if (r)
1600		goto err1;
1601
1602	r = dma_fence_wait_timeout(f, false, timeout);
1603	if (r == 0) {
1604		r = -ETIMEDOUT;
1605		goto err1;
1606	} else if (r < 0) {
1607		goto err1;
1608	}
1609	tmp = le32_to_cpu(adev->wb.wb[index]);
1610	if (tmp == 0xDEADBEEF)
1611		r = 0;
1612	else
1613		r = -EINVAL;
1614
1615err1:
1616	amdgpu_ib_free(adev, &ib, NULL);
1617	dma_fence_put(f);
1618err0:
1619	amdgpu_device_wb_free(adev, index);
1620	return r;
1621}
1622
1623
1624/**
1625 * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
1626 *
1627 * @ib: indirect buffer to fill with commands
1628 * @pe: addr of the page entry
1629 * @src: src addr to copy from
1630 * @count: number of page entries to update
1631 *
1632 * Update PTEs by copying them from the GART using sDMA (VEGA10).
1633 */
1634static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
1635				  uint64_t pe, uint64_t src,
1636				  unsigned count)
1637{
1638	unsigned bytes = count * 8;
1639
1640	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1641		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1642	ib->ptr[ib->length_dw++] = bytes - 1;
1643	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1644	ib->ptr[ib->length_dw++] = lower_32_bits(src);
1645	ib->ptr[ib->length_dw++] = upper_32_bits(src);
1646	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1647	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1648
1649}
1650
1651/**
1652 * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
1653 *
1654 * @ib: indirect buffer to fill with commands
1655 * @pe: addr of the page entry
1656 * @addr: dst addr to write into pe
1657 * @count: number of page entries to update
1658 * @incr: increase next addr by incr bytes
1659 * @flags: access flags
1660 *
1661 * Update PTEs by writing them manually using sDMA (VEGA10).
1662 */
1663static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1664				   uint64_t value, unsigned count,
1665				   uint32_t incr)
1666{
1667	unsigned ndw = count * 2;
1668
1669	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1670		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1671	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1672	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1673	ib->ptr[ib->length_dw++] = ndw - 1;
1674	for (; ndw > 0; ndw -= 2) {
1675		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1676		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1677		value += incr;
1678	}
1679}
1680
1681/**
1682 * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
1683 *
1684 * @ib: indirect buffer to fill with commands
1685 * @pe: addr of the page entry
1686 * @addr: dst addr to write into pe
1687 * @count: number of page entries to update
1688 * @incr: increase next addr by incr bytes
1689 * @flags: access flags
1690 *
1691 * Update the page tables using sDMA (VEGA10).
1692 */
1693static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1694				     uint64_t pe,
1695				     uint64_t addr, unsigned count,
1696				     uint32_t incr, uint64_t flags)
1697{
1698	/* for physically contiguous pages (vram) */
1699	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1700	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1701	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1702	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1703	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1704	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1705	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1706	ib->ptr[ib->length_dw++] = incr; /* increment size */
1707	ib->ptr[ib->length_dw++] = 0;
1708	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1709}
1710
1711/**
1712 * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
1713 *
1714 * @ib: indirect buffer to fill with padding
1715 *
1716 */
1717static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1718{
1719	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1720	u32 pad_count;
1721	int i;
1722
1723	pad_count = (-ib->length_dw) & 7;
1724	for (i = 0; i < pad_count; i++)
1725		if (sdma && sdma->burst_nop && (i == 0))
1726			ib->ptr[ib->length_dw++] =
1727				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1728				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1729		else
1730			ib->ptr[ib->length_dw++] =
1731				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1732}
1733
1734
1735/**
1736 * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
1737 *
1738 * @ring: amdgpu_ring pointer
1739 *
1740 * Make sure all previous operations are completed (CIK).
1741 */
1742static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1743{
1744	uint32_t seq = ring->fence_drv.sync_seq;
1745	uint64_t addr = ring->fence_drv.gpu_addr;
1746
1747	/* wait for idle */
1748	sdma_v4_0_wait_reg_mem(ring, 1, 0,
1749			       addr & 0xfffffffc,
1750			       upper_32_bits(addr) & 0xffffffff,
1751			       seq, 0xffffffff, 4);
1752}
1753
1754
1755/**
1756 * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
1757 *
1758 * @ring: amdgpu_ring pointer
1759 * @vm: amdgpu_vm pointer
1760 *
1761 * Update the page table base and flush the VM TLB
1762 * using sDMA (VEGA10).
1763 */
1764static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1765					 unsigned vmid, uint64_t pd_addr)
1766{
1767	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1768}
1769
1770static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring,
1771				     uint32_t reg, uint32_t val)
1772{
1773	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1774			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1775	amdgpu_ring_write(ring, reg);
1776	amdgpu_ring_write(ring, val);
1777}
1778
1779static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1780					 uint32_t val, uint32_t mask)
1781{
1782	sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1783}
1784
1785static bool sdma_v4_0_fw_support_paging_queue(struct amdgpu_device *adev)
1786{
1787	uint fw_version = adev->sdma.instance[0].fw_version;
1788
1789	switch (adev->asic_type) {
1790	case CHIP_VEGA10:
1791		return fw_version >= 430;
1792	case CHIP_VEGA12:
1793		/*return fw_version >= 31;*/
1794		return false;
1795	case CHIP_VEGA20:
1796		return fw_version >= 123;
1797	default:
1798		return false;
1799	}
1800}
1801
1802static int sdma_v4_0_early_init(void *handle)
1803{
1804	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1805	int r;
1806
1807	if (adev->flags & AMD_IS_APU)
1808		adev->sdma.num_instances = 1;
1809	else if (adev->asic_type == CHIP_ARCTURUS)
1810		adev->sdma.num_instances = 8;
1811	else
1812		adev->sdma.num_instances = 2;
1813
1814	r = sdma_v4_0_init_microcode(adev);
1815	if (r) {
1816		DRM_ERROR("Failed to load sdma firmware!\n");
1817		return r;
1818	}
1819
1820	/* TODO: Page queue breaks driver reload under SRIOV */
1821	if ((adev->asic_type == CHIP_VEGA10) && amdgpu_sriov_vf((adev)))
1822		adev->sdma.has_page_queue = false;
1823	else if (sdma_v4_0_fw_support_paging_queue(adev))
1824		adev->sdma.has_page_queue = true;
1825
1826	sdma_v4_0_set_ring_funcs(adev);
1827	sdma_v4_0_set_buffer_funcs(adev);
1828	sdma_v4_0_set_vm_pte_funcs(adev);
1829	sdma_v4_0_set_irq_funcs(adev);
1830	sdma_v4_0_set_ras_funcs(adev);
1831
1832	return 0;
1833}
1834
1835static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
1836		void *err_data,
1837		struct amdgpu_iv_entry *entry);
1838
1839static int sdma_v4_0_late_init(void *handle)
1840{
1841	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
 
1842	struct ras_ih_if ih_info = {
1843		.cb = sdma_v4_0_process_ras_data_cb,
1844	};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1845
1846	sdma_v4_0_setup_ulv(adev);
 
 
1847
1848	if (adev->sdma.funcs && adev->sdma.funcs->reset_ras_error_count)
1849		adev->sdma.funcs->reset_ras_error_count(adev);
1850
1851	if (adev->sdma.funcs && adev->sdma.funcs->ras_late_init)
1852		return adev->sdma.funcs->ras_late_init(adev, &ih_info);
1853	else
1854		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1855}
1856
1857static int sdma_v4_0_sw_init(void *handle)
1858{
1859	struct amdgpu_ring *ring;
1860	int r, i;
1861	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1862
1863	/* SDMA trap event */
1864	for (i = 0; i < adev->sdma.num_instances; i++) {
1865		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1866				      SDMA0_4_0__SRCID__SDMA_TRAP,
1867				      &adev->sdma.trap_irq);
1868		if (r)
1869			return r;
1870	}
1871
1872	/* SDMA SRAM ECC event */
1873	for (i = 0; i < adev->sdma.num_instances; i++) {
1874		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1875				      SDMA0_4_0__SRCID__SDMA_SRAM_ECC,
1876				      &adev->sdma.ecc_irq);
1877		if (r)
1878			return r;
1879	}
1880
1881	for (i = 0; i < adev->sdma.num_instances; i++) {
1882		ring = &adev->sdma.instance[i].ring;
1883		ring->ring_obj = NULL;
1884		ring->use_doorbell = true;
1885
1886		DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i,
1887				ring->use_doorbell?"true":"false");
1888
1889		/* doorbell size is 2 dwords, get DWORD offset */
1890		ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1891
1892		sprintf(ring->name, "sdma%d", i);
1893		r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1894				     AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1895				     AMDGPU_RING_PRIO_DEFAULT);
1896		if (r)
1897			return r;
1898
1899		if (adev->sdma.has_page_queue) {
1900			ring = &adev->sdma.instance[i].page;
1901			ring->ring_obj = NULL;
1902			ring->use_doorbell = true;
1903
1904			/* paging queue use same doorbell index/routing as gfx queue
1905			 * with 0x400 (4096 dwords) offset on second doorbell page
1906			 */
1907			ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1908			ring->doorbell_index += 0x400;
1909
1910			sprintf(ring->name, "page%d", i);
1911			r = amdgpu_ring_init(adev, ring, 1024,
1912					     &adev->sdma.trap_irq,
1913					     AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1914					     AMDGPU_RING_PRIO_DEFAULT);
1915			if (r)
1916				return r;
1917		}
1918	}
1919
1920	return r;
1921}
1922
1923static int sdma_v4_0_sw_fini(void *handle)
1924{
1925	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1926	int i;
1927
1928	if (adev->sdma.funcs && adev->sdma.funcs->ras_fini)
1929		adev->sdma.funcs->ras_fini(adev);
 
 
 
 
 
 
 
 
 
 
 
 
 
1930
1931	for (i = 0; i < adev->sdma.num_instances; i++) {
1932		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1933		if (adev->sdma.has_page_queue)
1934			amdgpu_ring_fini(&adev->sdma.instance[i].page);
1935	}
1936
1937	sdma_v4_0_destroy_inst_ctx(adev);
1938
1939	return 0;
1940}
1941
1942static int sdma_v4_0_hw_init(void *handle)
1943{
1944	int r;
1945	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1946
1947	if (adev->flags & AMD_IS_APU)
 
 
1948		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, false);
1949
1950	if (!amdgpu_sriov_vf(adev))
1951		sdma_v4_0_init_golden_registers(adev);
1952
1953	r = sdma_v4_0_start(adev);
1954
1955	return r;
1956}
1957
1958static int sdma_v4_0_hw_fini(void *handle)
1959{
1960	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1961	int i;
1962
1963	if (amdgpu_sriov_vf(adev))
1964		return 0;
1965
1966	for (i = 0; i < adev->sdma.num_instances; i++) {
1967		amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
1968			       AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1969	}
1970
1971	sdma_v4_0_ctx_switch_enable(adev, false);
1972	sdma_v4_0_enable(adev, false);
1973
1974	if (adev->flags & AMD_IS_APU)
 
 
1975		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, true);
1976
1977	return 0;
1978}
1979
1980static int sdma_v4_0_suspend(void *handle)
1981{
1982	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1983
1984	return sdma_v4_0_hw_fini(adev);
1985}
1986
1987static int sdma_v4_0_resume(void *handle)
1988{
1989	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1990
1991	return sdma_v4_0_hw_init(adev);
1992}
1993
1994static bool sdma_v4_0_is_idle(void *handle)
1995{
1996	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1997	u32 i;
1998
1999	for (i = 0; i < adev->sdma.num_instances; i++) {
2000		u32 tmp = RREG32_SDMA(i, mmSDMA0_STATUS_REG);
2001
2002		if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
2003			return false;
2004	}
2005
2006	return true;
2007}
2008
2009static int sdma_v4_0_wait_for_idle(void *handle)
2010{
2011	unsigned i, j;
2012	u32 sdma[AMDGPU_MAX_SDMA_INSTANCES];
2013	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2014
2015	for (i = 0; i < adev->usec_timeout; i++) {
2016		for (j = 0; j < adev->sdma.num_instances; j++) {
2017			sdma[j] = RREG32_SDMA(j, mmSDMA0_STATUS_REG);
2018			if (!(sdma[j] & SDMA0_STATUS_REG__IDLE_MASK))
2019				break;
2020		}
2021		if (j == adev->sdma.num_instances)
2022			return 0;
2023		udelay(1);
2024	}
2025	return -ETIMEDOUT;
2026}
2027
2028static int sdma_v4_0_soft_reset(void *handle)
2029{
2030	/* todo */
2031
2032	return 0;
2033}
2034
2035static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
2036					struct amdgpu_irq_src *source,
2037					unsigned type,
2038					enum amdgpu_interrupt_state state)
2039{
2040	u32 sdma_cntl;
2041
2042	sdma_cntl = RREG32_SDMA(type, mmSDMA0_CNTL);
2043	sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
2044		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2045	WREG32_SDMA(type, mmSDMA0_CNTL, sdma_cntl);
2046
2047	return 0;
2048}
2049
2050static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
2051				      struct amdgpu_irq_src *source,
2052				      struct amdgpu_iv_entry *entry)
2053{
2054	uint32_t instance;
2055
2056	DRM_DEBUG("IH: SDMA trap\n");
2057	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2058	switch (entry->ring_id) {
2059	case 0:
2060		amdgpu_fence_process(&adev->sdma.instance[instance].ring);
2061		break;
2062	case 1:
2063		if (adev->asic_type == CHIP_VEGA20)
2064			amdgpu_fence_process(&adev->sdma.instance[instance].page);
2065		break;
2066	case 2:
2067		/* XXX compute */
2068		break;
2069	case 3:
2070		if (adev->asic_type != CHIP_VEGA20)
2071			amdgpu_fence_process(&adev->sdma.instance[instance].page);
2072		break;
2073	}
2074	return 0;
2075}
2076
2077static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
2078		void *err_data,
2079		struct amdgpu_iv_entry *entry)
2080{
 
2081	int instance;
2082
2083	/* When “Full RAS” is enabled, the per-IP interrupt sources should
2084	 * be disabled and the driver should only look for the aggregated
2085	 * interrupt via sync flood
2086	 */
2087	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX))
2088		goto out;
2089
2090	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2091	if (instance < 0)
2092		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
2093
2094	amdgpu_sdma_process_ras_data_cb(adev, err_data, entry);
2095
2096out:
2097	return AMDGPU_RAS_SUCCESS;
2098}
2099
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2100static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
2101					      struct amdgpu_irq_src *source,
2102					      struct amdgpu_iv_entry *entry)
2103{
2104	int instance;
2105
2106	DRM_ERROR("Illegal instruction in SDMA command stream\n");
2107
2108	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2109	if (instance < 0)
2110		return 0;
2111
2112	switch (entry->ring_id) {
2113	case 0:
2114		drm_sched_fault(&adev->sdma.instance[instance].ring.sched);
2115		break;
2116	}
2117	return 0;
2118}
2119
2120static int sdma_v4_0_set_ecc_irq_state(struct amdgpu_device *adev,
2121					struct amdgpu_irq_src *source,
2122					unsigned type,
2123					enum amdgpu_interrupt_state state)
2124{
2125	u32 sdma_edc_config;
2126
2127	sdma_edc_config = RREG32_SDMA(type, mmSDMA0_EDC_CONFIG);
2128	sdma_edc_config = REG_SET_FIELD(sdma_edc_config, SDMA0_EDC_CONFIG, ECC_INT_ENABLE,
2129		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2130	WREG32_SDMA(type, mmSDMA0_EDC_CONFIG, sdma_edc_config);
2131
2132	return 0;
2133}
2134
2135static void sdma_v4_0_update_medium_grain_clock_gating(
2136		struct amdgpu_device *adev,
2137		bool enable)
2138{
2139	uint32_t data, def;
2140	int i;
2141
2142	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
2143		for (i = 0; i < adev->sdma.num_instances; i++) {
2144			def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2145			data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2146				  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2147				  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2148				  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2149				  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2150				  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2151				  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2152				  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2153			if (def != data)
2154				WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2155		}
2156	} else {
2157		for (i = 0; i < adev->sdma.num_instances; i++) {
2158			def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2159			data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2160				 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2161				 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2162				 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2163				 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2164				 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2165				 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2166				 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2167			if (def != data)
2168				WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2169		}
2170	}
2171}
2172
2173
2174static void sdma_v4_0_update_medium_grain_light_sleep(
2175		struct amdgpu_device *adev,
2176		bool enable)
2177{
2178	uint32_t data, def;
2179	int i;
2180
2181	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
2182		for (i = 0; i < adev->sdma.num_instances; i++) {
2183			/* 1-not override: enable sdma mem light sleep */
2184			def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2185			data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2186			if (def != data)
2187				WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2188		}
2189	} else {
2190		for (i = 0; i < adev->sdma.num_instances; i++) {
2191		/* 0-override:disable sdma mem light sleep */
2192			def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2193			data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2194			if (def != data)
2195				WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2196		}
2197	}
2198}
2199
2200static int sdma_v4_0_set_clockgating_state(void *handle,
2201					  enum amd_clockgating_state state)
2202{
2203	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2204
2205	if (amdgpu_sriov_vf(adev))
2206		return 0;
2207
2208	switch (adev->asic_type) {
2209	case CHIP_VEGA10:
2210	case CHIP_VEGA12:
2211	case CHIP_VEGA20:
2212	case CHIP_RAVEN:
2213	case CHIP_ARCTURUS:
2214	case CHIP_RENOIR:
2215		sdma_v4_0_update_medium_grain_clock_gating(adev,
2216				state == AMD_CG_STATE_GATE);
2217		sdma_v4_0_update_medium_grain_light_sleep(adev,
2218				state == AMD_CG_STATE_GATE);
2219		break;
2220	default:
2221		break;
2222	}
2223	return 0;
2224}
2225
2226static int sdma_v4_0_set_powergating_state(void *handle,
2227					  enum amd_powergating_state state)
2228{
2229	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2230
2231	switch (adev->asic_type) {
2232	case CHIP_RAVEN:
2233	case CHIP_RENOIR:
2234		sdma_v4_1_update_power_gating(adev,
2235				state == AMD_PG_STATE_GATE ? true : false);
2236		break;
2237	default:
2238		break;
2239	}
2240
2241	return 0;
2242}
2243
2244static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags)
2245{
2246	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2247	int data;
2248
2249	if (amdgpu_sriov_vf(adev))
2250		*flags = 0;
2251
2252	/* AMD_CG_SUPPORT_SDMA_MGCG */
2253	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
2254	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
2255		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
2256
2257	/* AMD_CG_SUPPORT_SDMA_LS */
2258	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
2259	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
2260		*flags |= AMD_CG_SUPPORT_SDMA_LS;
2261}
2262
2263const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
2264	.name = "sdma_v4_0",
2265	.early_init = sdma_v4_0_early_init,
2266	.late_init = sdma_v4_0_late_init,
2267	.sw_init = sdma_v4_0_sw_init,
2268	.sw_fini = sdma_v4_0_sw_fini,
2269	.hw_init = sdma_v4_0_hw_init,
2270	.hw_fini = sdma_v4_0_hw_fini,
2271	.suspend = sdma_v4_0_suspend,
2272	.resume = sdma_v4_0_resume,
2273	.is_idle = sdma_v4_0_is_idle,
2274	.wait_for_idle = sdma_v4_0_wait_for_idle,
2275	.soft_reset = sdma_v4_0_soft_reset,
2276	.set_clockgating_state = sdma_v4_0_set_clockgating_state,
2277	.set_powergating_state = sdma_v4_0_set_powergating_state,
2278	.get_clockgating_state = sdma_v4_0_get_clockgating_state,
2279};
2280
2281static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
2282	.type = AMDGPU_RING_TYPE_SDMA,
2283	.align_mask = 0xf,
2284	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2285	.support_64bit_ptrs = true,
2286	.vmhub = AMDGPU_MMHUB_0,
2287	.get_rptr = sdma_v4_0_ring_get_rptr,
2288	.get_wptr = sdma_v4_0_ring_get_wptr,
2289	.set_wptr = sdma_v4_0_ring_set_wptr,
2290	.emit_frame_size =
2291		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2292		3 + /* hdp invalidate */
2293		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2294		/* sdma_v4_0_ring_emit_vm_flush */
2295		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2296		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2297		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2298	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2299	.emit_ib = sdma_v4_0_ring_emit_ib,
2300	.emit_fence = sdma_v4_0_ring_emit_fence,
2301	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2302	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2303	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2304	.test_ring = sdma_v4_0_ring_test_ring,
2305	.test_ib = sdma_v4_0_ring_test_ib,
2306	.insert_nop = sdma_v4_0_ring_insert_nop,
2307	.pad_ib = sdma_v4_0_ring_pad_ib,
2308	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2309	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2310	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2311};
2312
2313/*
2314 * On Arcturus, SDMA instance 5~7 has a different vmhub type(AMDGPU_MMHUB_1).
2315 * So create a individual constant ring_funcs for those instances.
2316 */
2317static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs_2nd_mmhub = {
2318	.type = AMDGPU_RING_TYPE_SDMA,
2319	.align_mask = 0xf,
2320	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2321	.support_64bit_ptrs = true,
2322	.vmhub = AMDGPU_MMHUB_1,
2323	.get_rptr = sdma_v4_0_ring_get_rptr,
2324	.get_wptr = sdma_v4_0_ring_get_wptr,
2325	.set_wptr = sdma_v4_0_ring_set_wptr,
2326	.emit_frame_size =
2327		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2328		3 + /* hdp invalidate */
2329		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2330		/* sdma_v4_0_ring_emit_vm_flush */
2331		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2332		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2333		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2334	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2335	.emit_ib = sdma_v4_0_ring_emit_ib,
2336	.emit_fence = sdma_v4_0_ring_emit_fence,
2337	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2338	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2339	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2340	.test_ring = sdma_v4_0_ring_test_ring,
2341	.test_ib = sdma_v4_0_ring_test_ib,
2342	.insert_nop = sdma_v4_0_ring_insert_nop,
2343	.pad_ib = sdma_v4_0_ring_pad_ib,
2344	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2345	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2346	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2347};
2348
2349static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs = {
2350	.type = AMDGPU_RING_TYPE_SDMA,
2351	.align_mask = 0xf,
2352	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2353	.support_64bit_ptrs = true,
2354	.vmhub = AMDGPU_MMHUB_0,
2355	.get_rptr = sdma_v4_0_ring_get_rptr,
2356	.get_wptr = sdma_v4_0_page_ring_get_wptr,
2357	.set_wptr = sdma_v4_0_page_ring_set_wptr,
2358	.emit_frame_size =
2359		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2360		3 + /* hdp invalidate */
2361		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2362		/* sdma_v4_0_ring_emit_vm_flush */
2363		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2364		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2365		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2366	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2367	.emit_ib = sdma_v4_0_ring_emit_ib,
2368	.emit_fence = sdma_v4_0_ring_emit_fence,
2369	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2370	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2371	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2372	.test_ring = sdma_v4_0_ring_test_ring,
2373	.test_ib = sdma_v4_0_ring_test_ib,
2374	.insert_nop = sdma_v4_0_ring_insert_nop,
2375	.pad_ib = sdma_v4_0_ring_pad_ib,
2376	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2377	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2378	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2379};
2380
2381static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs_2nd_mmhub = {
2382	.type = AMDGPU_RING_TYPE_SDMA,
2383	.align_mask = 0xf,
2384	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2385	.support_64bit_ptrs = true,
2386	.vmhub = AMDGPU_MMHUB_1,
2387	.get_rptr = sdma_v4_0_ring_get_rptr,
2388	.get_wptr = sdma_v4_0_page_ring_get_wptr,
2389	.set_wptr = sdma_v4_0_page_ring_set_wptr,
2390	.emit_frame_size =
2391		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2392		3 + /* hdp invalidate */
2393		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2394		/* sdma_v4_0_ring_emit_vm_flush */
2395		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2396		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2397		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2398	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2399	.emit_ib = sdma_v4_0_ring_emit_ib,
2400	.emit_fence = sdma_v4_0_ring_emit_fence,
2401	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2402	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2403	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2404	.test_ring = sdma_v4_0_ring_test_ring,
2405	.test_ib = sdma_v4_0_ring_test_ib,
2406	.insert_nop = sdma_v4_0_ring_insert_nop,
2407	.pad_ib = sdma_v4_0_ring_pad_ib,
2408	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2409	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2410	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2411};
2412
2413static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
2414{
2415	int i;
2416
2417	for (i = 0; i < adev->sdma.num_instances; i++) {
2418		if (adev->asic_type == CHIP_ARCTURUS && i >= 5)
2419			adev->sdma.instance[i].ring.funcs =
2420					&sdma_v4_0_ring_funcs_2nd_mmhub;
2421		else
2422			adev->sdma.instance[i].ring.funcs =
2423					&sdma_v4_0_ring_funcs;
2424		adev->sdma.instance[i].ring.me = i;
2425		if (adev->sdma.has_page_queue) {
2426			if (adev->asic_type == CHIP_ARCTURUS && i >= 5)
2427				adev->sdma.instance[i].page.funcs =
2428					&sdma_v4_0_page_ring_funcs_2nd_mmhub;
2429			else
2430				adev->sdma.instance[i].page.funcs =
2431					&sdma_v4_0_page_ring_funcs;
2432			adev->sdma.instance[i].page.me = i;
2433		}
2434	}
2435}
2436
2437static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
2438	.set = sdma_v4_0_set_trap_irq_state,
2439	.process = sdma_v4_0_process_trap_irq,
2440};
2441
2442static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
2443	.process = sdma_v4_0_process_illegal_inst_irq,
2444};
2445
2446static const struct amdgpu_irq_src_funcs sdma_v4_0_ecc_irq_funcs = {
2447	.set = sdma_v4_0_set_ecc_irq_state,
2448	.process = amdgpu_sdma_process_ecc_irq,
2449};
2450
2451
2452
2453static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
2454{
2455	switch (adev->sdma.num_instances) {
2456	case 1:
2457		adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE1;
2458		adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE1;
2459		break;
2460	case 8:
2461		adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
2462		adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
2463		break;
2464	case 2:
2465	default:
2466		adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE2;
2467		adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE2;
2468		break;
2469	}
2470	adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
2471	adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
2472	adev->sdma.ecc_irq.funcs = &sdma_v4_0_ecc_irq_funcs;
2473}
2474
2475/**
2476 * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
2477 *
2478 * @ring: amdgpu_ring structure holding ring information
2479 * @src_offset: src GPU address
2480 * @dst_offset: dst GPU address
2481 * @byte_count: number of bytes to xfer
2482 *
2483 * Copy GPU buffers using the DMA engine (VEGA10/12).
2484 * Used by the amdgpu ttm implementation to move pages if
2485 * registered as the asic copy callback.
2486 */
2487static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
2488				       uint64_t src_offset,
2489				       uint64_t dst_offset,
2490				       uint32_t byte_count,
2491				       bool tmz)
2492{
2493	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
2494		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) |
2495		SDMA_PKT_COPY_LINEAR_HEADER_TMZ(tmz ? 1 : 0);
2496	ib->ptr[ib->length_dw++] = byte_count - 1;
2497	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
2498	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
2499	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
2500	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2501	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2502}
2503
2504/**
2505 * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
2506 *
2507 * @ring: amdgpu_ring structure holding ring information
2508 * @src_data: value to write to buffer
2509 * @dst_offset: dst GPU address
2510 * @byte_count: number of bytes to xfer
2511 *
2512 * Fill GPU buffers using the DMA engine (VEGA10/12).
2513 */
2514static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
2515				       uint32_t src_data,
2516				       uint64_t dst_offset,
2517				       uint32_t byte_count)
2518{
2519	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
2520	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2521	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2522	ib->ptr[ib->length_dw++] = src_data;
2523	ib->ptr[ib->length_dw++] = byte_count - 1;
2524}
2525
2526static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
2527	.copy_max_bytes = 0x400000,
2528	.copy_num_dw = 7,
2529	.emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
2530
2531	.fill_max_bytes = 0x400000,
2532	.fill_num_dw = 5,
2533	.emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
2534};
2535
2536static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
2537{
2538	adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
2539	if (adev->sdma.has_page_queue)
2540		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page;
2541	else
2542		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
2543}
2544
2545static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
2546	.copy_pte_num_dw = 7,
2547	.copy_pte = sdma_v4_0_vm_copy_pte,
2548
2549	.write_pte = sdma_v4_0_vm_write_pte,
2550	.set_pte_pde = sdma_v4_0_vm_set_pte_pde,
2551};
2552
2553static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
2554{
2555	struct drm_gpu_scheduler *sched;
2556	unsigned i;
2557
2558	adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
2559	for (i = 0; i < adev->sdma.num_instances; i++) {
2560		if (adev->sdma.has_page_queue)
2561			sched = &adev->sdma.instance[i].page.sched;
2562		else
2563			sched = &adev->sdma.instance[i].ring.sched;
2564		adev->vm_manager.vm_pte_scheds[i] = sched;
2565	}
2566	adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
2567}
2568
2569static void sdma_v4_0_get_ras_error_count(uint32_t value,
2570					uint32_t instance,
2571					uint32_t *sec_count)
2572{
2573	uint32_t i;
2574	uint32_t sec_cnt;
2575
2576	/* double bits error (multiple bits) error detection is not supported */
2577	for (i = 0; i < ARRAY_SIZE(sdma_v4_0_ras_fields); i++) {
2578		/* the SDMA_EDC_COUNTER register in each sdma instance
2579		 * shares the same sed shift_mask
2580		 * */
2581		sec_cnt = (value &
2582			sdma_v4_0_ras_fields[i].sec_count_mask) >>
2583			sdma_v4_0_ras_fields[i].sec_count_shift;
2584		if (sec_cnt) {
2585			DRM_INFO("Detected %s in SDMA%d, SED %d\n",
2586				sdma_v4_0_ras_fields[i].name,
2587				instance, sec_cnt);
2588			*sec_count += sec_cnt;
2589		}
2590	}
2591}
2592
2593static int sdma_v4_0_query_ras_error_count(struct amdgpu_device *adev,
2594			uint32_t instance, void *ras_error_status)
2595{
2596	struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
2597	uint32_t sec_count = 0;
2598	uint32_t reg_value = 0;
2599
2600	reg_value = RREG32_SDMA(instance, mmSDMA0_EDC_COUNTER);
2601	/* double bit error is not supported */
2602	if (reg_value)
2603		sdma_v4_0_get_ras_error_count(reg_value,
2604				instance, &sec_count);
2605	/* err_data->ce_count should be initialized to 0
2606	 * before calling into this function */
2607	err_data->ce_count += sec_count;
2608	/* double bit error is not supported
2609	 * set ue count to 0 */
2610	err_data->ue_count = 0;
2611
2612	return 0;
2613};
2614
2615static void sdma_v4_0_reset_ras_error_count(struct amdgpu_device *adev)
2616{
2617	int i;
2618
2619	/* read back edc counter registers to clear the counters */
2620	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
2621		for (i = 0; i < adev->sdma.num_instances; i++)
2622			RREG32_SDMA(i, mmSDMA0_EDC_COUNTER);
2623	}
2624}
2625
2626static const struct amdgpu_sdma_ras_funcs sdma_v4_0_ras_funcs = {
2627	.ras_late_init = amdgpu_sdma_ras_late_init,
2628	.ras_fini = amdgpu_sdma_ras_fini,
2629	.query_ras_error_count = sdma_v4_0_query_ras_error_count,
2630	.reset_ras_error_count = sdma_v4_0_reset_ras_error_count,
2631};
2632
2633static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev)
2634{
2635	switch (adev->asic_type) {
2636	case CHIP_VEGA20:
2637	case CHIP_ARCTURUS:
2638		adev->sdma.funcs = &sdma_v4_0_ras_funcs;
2639		break;
2640	default:
2641		break;
2642	}
 
2643}
2644
2645const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
2646	.type = AMD_IP_BLOCK_TYPE_SDMA,
2647	.major = 4,
2648	.minor = 0,
2649	.rev = 0,
2650	.funcs = &sdma_v4_0_ip_funcs,
2651};