Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2#include <linux/clockchips.h>
   3#include <linux/interrupt.h>
   4#include <linux/export.h>
   5#include <linux/delay.h>
   6#include <linux/hpet.h>
   7#include <linux/cpu.h>
   8#include <linux/irq.h>
   9
 
  10#include <asm/hpet.h>
  11#include <asm/time.h>
 
  12
  13#undef  pr_fmt
  14#define pr_fmt(fmt) "hpet: " fmt
  15
  16enum hpet_mode {
  17	HPET_MODE_UNUSED,
  18	HPET_MODE_LEGACY,
  19	HPET_MODE_CLOCKEVT,
  20	HPET_MODE_DEVICE,
  21};
  22
  23struct hpet_channel {
  24	struct clock_event_device	evt;
  25	unsigned int			num;
  26	unsigned int			cpu;
  27	unsigned int			irq;
  28	unsigned int			in_use;
  29	enum hpet_mode			mode;
  30	unsigned int			boot_cfg;
  31	char				name[10];
  32};
  33
  34struct hpet_base {
  35	unsigned int			nr_channels;
  36	unsigned int			nr_clockevents;
  37	unsigned int			boot_cfg;
  38	struct hpet_channel		*channels;
  39};
  40
  41#define HPET_MASK			CLOCKSOURCE_MASK(32)
  42
  43#define HPET_MIN_CYCLES			128
  44#define HPET_MIN_PROG_DELTA		(HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
  45
  46/*
  47 * HPET address is set in acpi/boot.c, when an ACPI entry exists
  48 */
  49unsigned long				hpet_address;
  50u8					hpet_blockid; /* OS timer block num */
  51bool					hpet_msi_disable;
  52
  53#ifdef CONFIG_PCI_MSI
  54static DEFINE_PER_CPU(struct hpet_channel *, cpu_hpet_channel);
  55static struct irq_domain		*hpet_domain;
  56#endif
  57
  58static void __iomem			*hpet_virt_address;
  59
  60static struct hpet_base			hpet_base;
  61
  62static bool				hpet_legacy_int_enabled;
  63static unsigned long			hpet_freq;
  64
  65bool					boot_hpet_disable;
  66bool					hpet_force_user;
  67static bool				hpet_verbose;
  68
  69static inline
  70struct hpet_channel *clockevent_to_channel(struct clock_event_device *evt)
  71{
  72	return container_of(evt, struct hpet_channel, evt);
  73}
  74
  75inline unsigned int hpet_readl(unsigned int a)
  76{
  77	return readl(hpet_virt_address + a);
  78}
  79
  80static inline void hpet_writel(unsigned int d, unsigned int a)
  81{
  82	writel(d, hpet_virt_address + a);
  83}
  84
  85static inline void hpet_set_mapping(void)
  86{
  87	hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
  88}
  89
  90static inline void hpet_clear_mapping(void)
  91{
  92	iounmap(hpet_virt_address);
  93	hpet_virt_address = NULL;
  94}
  95
  96/*
  97 * HPET command line enable / disable
  98 */
  99static int __init hpet_setup(char *str)
 100{
 101	while (str) {
 102		char *next = strchr(str, ',');
 103
 104		if (next)
 105			*next++ = 0;
 106		if (!strncmp("disable", str, 7))
 107			boot_hpet_disable = true;
 108		if (!strncmp("force", str, 5))
 109			hpet_force_user = true;
 110		if (!strncmp("verbose", str, 7))
 111			hpet_verbose = true;
 112		str = next;
 113	}
 114	return 1;
 115}
 116__setup("hpet=", hpet_setup);
 117
 118static int __init disable_hpet(char *str)
 119{
 120	boot_hpet_disable = true;
 121	return 1;
 122}
 123__setup("nohpet", disable_hpet);
 124
 125static inline int is_hpet_capable(void)
 126{
 127	return !boot_hpet_disable && hpet_address;
 128}
 129
 130/**
 131 * is_hpet_enabled - Check whether the legacy HPET timer interrupt is enabled
 132 */
 133int is_hpet_enabled(void)
 134{
 135	return is_hpet_capable() && hpet_legacy_int_enabled;
 136}
 137EXPORT_SYMBOL_GPL(is_hpet_enabled);
 138
 139static void _hpet_print_config(const char *function, int line)
 140{
 141	u32 i, id, period, cfg, status, channels, l, h;
 142
 143	pr_info("%s(%d):\n", function, line);
 144
 145	id = hpet_readl(HPET_ID);
 146	period = hpet_readl(HPET_PERIOD);
 147	pr_info("ID: 0x%x, PERIOD: 0x%x\n", id, period);
 148
 149	cfg = hpet_readl(HPET_CFG);
 150	status = hpet_readl(HPET_STATUS);
 151	pr_info("CFG: 0x%x, STATUS: 0x%x\n", cfg, status);
 152
 153	l = hpet_readl(HPET_COUNTER);
 154	h = hpet_readl(HPET_COUNTER+4);
 155	pr_info("COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
 156
 157	channels = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
 158
 159	for (i = 0; i < channels; i++) {
 160		l = hpet_readl(HPET_Tn_CFG(i));
 161		h = hpet_readl(HPET_Tn_CFG(i)+4);
 162		pr_info("T%d: CFG_l: 0x%x, CFG_h: 0x%x\n", i, l, h);
 163
 164		l = hpet_readl(HPET_Tn_CMP(i));
 165		h = hpet_readl(HPET_Tn_CMP(i)+4);
 166		pr_info("T%d: CMP_l: 0x%x, CMP_h: 0x%x\n", i, l, h);
 167
 168		l = hpet_readl(HPET_Tn_ROUTE(i));
 169		h = hpet_readl(HPET_Tn_ROUTE(i)+4);
 170		pr_info("T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n", i, l, h);
 171	}
 172}
 173
 174#define hpet_print_config()					\
 175do {								\
 176	if (hpet_verbose)					\
 177		_hpet_print_config(__func__, __LINE__);	\
 178} while (0)
 179
 180/*
 181 * When the HPET driver (/dev/hpet) is enabled, we need to reserve
 182 * timer 0 and timer 1 in case of RTC emulation.
 183 */
 184#ifdef CONFIG_HPET
 185
 186static void __init hpet_reserve_platform_timers(void)
 187{
 188	struct hpet_data hd;
 189	unsigned int i;
 190
 191	memset(&hd, 0, sizeof(hd));
 192	hd.hd_phys_address	= hpet_address;
 193	hd.hd_address		= hpet_virt_address;
 194	hd.hd_nirqs		= hpet_base.nr_channels;
 195
 196	/*
 197	 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
 198	 * is wrong for i8259!) not the output IRQ.  Many BIOS writers
 199	 * don't bother configuring *any* comparator interrupts.
 200	 */
 201	hd.hd_irq[0] = HPET_LEGACY_8254;
 202	hd.hd_irq[1] = HPET_LEGACY_RTC;
 203
 204	for (i = 0; i < hpet_base.nr_channels; i++) {
 205		struct hpet_channel *hc = hpet_base.channels + i;
 206
 207		if (i >= 2)
 208			hd.hd_irq[i] = hc->irq;
 209
 210		switch (hc->mode) {
 211		case HPET_MODE_UNUSED:
 212		case HPET_MODE_DEVICE:
 213			hc->mode = HPET_MODE_DEVICE;
 214			break;
 215		case HPET_MODE_CLOCKEVT:
 216		case HPET_MODE_LEGACY:
 217			hpet_reserve_timer(&hd, hc->num);
 218			break;
 219		}
 220	}
 221
 222	hpet_alloc(&hd);
 223}
 224
 225static void __init hpet_select_device_channel(void)
 226{
 227	int i;
 228
 229	for (i = 0; i < hpet_base.nr_channels; i++) {
 230		struct hpet_channel *hc = hpet_base.channels + i;
 231
 232		/* Associate the first unused channel to /dev/hpet */
 233		if (hc->mode == HPET_MODE_UNUSED) {
 234			hc->mode = HPET_MODE_DEVICE;
 235			return;
 236		}
 237	}
 238}
 239
 240#else
 241static inline void hpet_reserve_platform_timers(void) { }
 242static inline void hpet_select_device_channel(void) {}
 243#endif
 244
 245/* Common HPET functions */
 246static void hpet_stop_counter(void)
 247{
 248	u32 cfg = hpet_readl(HPET_CFG);
 249
 250	cfg &= ~HPET_CFG_ENABLE;
 251	hpet_writel(cfg, HPET_CFG);
 252}
 253
 254static void hpet_reset_counter(void)
 255{
 256	hpet_writel(0, HPET_COUNTER);
 257	hpet_writel(0, HPET_COUNTER + 4);
 258}
 259
 260static void hpet_start_counter(void)
 261{
 262	unsigned int cfg = hpet_readl(HPET_CFG);
 263
 264	cfg |= HPET_CFG_ENABLE;
 265	hpet_writel(cfg, HPET_CFG);
 266}
 267
 268static void hpet_restart_counter(void)
 269{
 270	hpet_stop_counter();
 271	hpet_reset_counter();
 272	hpet_start_counter();
 273}
 274
 275static void hpet_resume_device(void)
 276{
 277	force_hpet_resume();
 278}
 279
 280static void hpet_resume_counter(struct clocksource *cs)
 281{
 282	hpet_resume_device();
 283	hpet_restart_counter();
 284}
 285
 286static void hpet_enable_legacy_int(void)
 287{
 288	unsigned int cfg = hpet_readl(HPET_CFG);
 289
 290	cfg |= HPET_CFG_LEGACY;
 291	hpet_writel(cfg, HPET_CFG);
 292	hpet_legacy_int_enabled = true;
 293}
 294
 295static int hpet_clkevt_set_state_periodic(struct clock_event_device *evt)
 296{
 297	unsigned int channel = clockevent_to_channel(evt)->num;
 298	unsigned int cfg, cmp, now;
 299	uint64_t delta;
 300
 301	hpet_stop_counter();
 302	delta = ((uint64_t)(NSEC_PER_SEC / HZ)) * evt->mult;
 303	delta >>= evt->shift;
 304	now = hpet_readl(HPET_COUNTER);
 305	cmp = now + (unsigned int)delta;
 306	cfg = hpet_readl(HPET_Tn_CFG(channel));
 307	cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
 308	       HPET_TN_32BIT;
 309	hpet_writel(cfg, HPET_Tn_CFG(channel));
 310	hpet_writel(cmp, HPET_Tn_CMP(channel));
 311	udelay(1);
 312	/*
 313	 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
 314	 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
 315	 * bit is automatically cleared after the first write.
 316	 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
 317	 * Publication # 24674)
 318	 */
 319	hpet_writel((unsigned int)delta, HPET_Tn_CMP(channel));
 320	hpet_start_counter();
 321	hpet_print_config();
 322
 323	return 0;
 324}
 325
 326static int hpet_clkevt_set_state_oneshot(struct clock_event_device *evt)
 327{
 328	unsigned int channel = clockevent_to_channel(evt)->num;
 329	unsigned int cfg;
 330
 331	cfg = hpet_readl(HPET_Tn_CFG(channel));
 332	cfg &= ~HPET_TN_PERIODIC;
 333	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
 334	hpet_writel(cfg, HPET_Tn_CFG(channel));
 335
 336	return 0;
 337}
 338
 339static int hpet_clkevt_set_state_shutdown(struct clock_event_device *evt)
 340{
 341	unsigned int channel = clockevent_to_channel(evt)->num;
 342	unsigned int cfg;
 343
 344	cfg = hpet_readl(HPET_Tn_CFG(channel));
 345	cfg &= ~HPET_TN_ENABLE;
 346	hpet_writel(cfg, HPET_Tn_CFG(channel));
 347
 348	return 0;
 349}
 350
 351static int hpet_clkevt_legacy_resume(struct clock_event_device *evt)
 352{
 353	hpet_enable_legacy_int();
 354	hpet_print_config();
 355	return 0;
 356}
 357
 358static int
 359hpet_clkevt_set_next_event(unsigned long delta, struct clock_event_device *evt)
 360{
 361	unsigned int channel = clockevent_to_channel(evt)->num;
 362	u32 cnt;
 363	s32 res;
 364
 365	cnt = hpet_readl(HPET_COUNTER);
 366	cnt += (u32) delta;
 367	hpet_writel(cnt, HPET_Tn_CMP(channel));
 368
 369	/*
 370	 * HPETs are a complete disaster. The compare register is
 371	 * based on a equal comparison and neither provides a less
 372	 * than or equal functionality (which would require to take
 373	 * the wraparound into account) nor a simple count down event
 374	 * mode. Further the write to the comparator register is
 375	 * delayed internally up to two HPET clock cycles in certain
 376	 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
 377	 * longer delays. We worked around that by reading back the
 378	 * compare register, but that required another workaround for
 379	 * ICH9,10 chips where the first readout after write can
 380	 * return the old stale value. We already had a minimum
 381	 * programming delta of 5us enforced, but a NMI or SMI hitting
 382	 * between the counter readout and the comparator write can
 383	 * move us behind that point easily. Now instead of reading
 384	 * the compare register back several times, we make the ETIME
 385	 * decision based on the following: Return ETIME if the
 386	 * counter value after the write is less than HPET_MIN_CYCLES
 387	 * away from the event or if the counter is already ahead of
 388	 * the event. The minimum programming delta for the generic
 389	 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
 390	 */
 391	res = (s32)(cnt - hpet_readl(HPET_COUNTER));
 392
 393	return res < HPET_MIN_CYCLES ? -ETIME : 0;
 394}
 395
 396static void hpet_init_clockevent(struct hpet_channel *hc, unsigned int rating)
 397{
 398	struct clock_event_device *evt = &hc->evt;
 399
 400	evt->rating		= rating;
 401	evt->irq		= hc->irq;
 402	evt->name		= hc->name;
 403	evt->cpumask		= cpumask_of(hc->cpu);
 404	evt->set_state_oneshot	= hpet_clkevt_set_state_oneshot;
 405	evt->set_next_event	= hpet_clkevt_set_next_event;
 406	evt->set_state_shutdown	= hpet_clkevt_set_state_shutdown;
 407
 408	evt->features = CLOCK_EVT_FEAT_ONESHOT;
 409	if (hc->boot_cfg & HPET_TN_PERIODIC) {
 410		evt->features		|= CLOCK_EVT_FEAT_PERIODIC;
 411		evt->set_state_periodic	= hpet_clkevt_set_state_periodic;
 412	}
 413}
 414
 415static void __init hpet_legacy_clockevent_register(struct hpet_channel *hc)
 416{
 417	/*
 418	 * Start HPET with the boot CPU's cpumask and make it global after
 419	 * the IO_APIC has been initialized.
 420	 */
 421	hc->cpu = boot_cpu_data.cpu_index;
 422	strncpy(hc->name, "hpet", sizeof(hc->name));
 423	hpet_init_clockevent(hc, 50);
 424
 425	hc->evt.tick_resume	= hpet_clkevt_legacy_resume;
 426
 427	/*
 428	 * Legacy horrors and sins from the past. HPET used periodic mode
 429	 * unconditionally forever on the legacy channel 0. Removing the
 430	 * below hack and using the conditional in hpet_init_clockevent()
 431	 * makes at least Qemu and one hardware machine fail to boot.
 432	 * There are two issues which cause the boot failure:
 433	 *
 434	 * #1 After the timer delivery test in IOAPIC and the IOAPIC setup
 435	 *    the next interrupt is not delivered despite the HPET channel
 436	 *    being programmed correctly. Reprogramming the HPET after
 437	 *    switching to IOAPIC makes it work again. After fixing this,
 438	 *    the next issue surfaces:
 439	 *
 440	 * #2 Due to the unconditional periodic mode availability the Local
 441	 *    APIC timer calibration can hijack the global clockevents
 442	 *    event handler without causing damage. Using oneshot at this
 443	 *    stage makes if hang because the HPET does not get
 444	 *    reprogrammed due to the handler hijacking. Duh, stupid me!
 445	 *
 446	 * Both issues require major surgery and especially the kick HPET
 447	 * again after enabling IOAPIC results in really nasty hackery.
 448	 * This 'assume periodic works' magic has survived since HPET
 449	 * support got added, so it's questionable whether this should be
 450	 * fixed. Both Qemu and the failing hardware machine support
 451	 * periodic mode despite the fact that both don't advertise it in
 452	 * the configuration register and both need that extra kick after
 453	 * switching to IOAPIC. Seems to be a feature...
 454	 */
 455	hc->evt.features		|= CLOCK_EVT_FEAT_PERIODIC;
 456	hc->evt.set_state_periodic	= hpet_clkevt_set_state_periodic;
 457
 458	/* Start HPET legacy interrupts */
 459	hpet_enable_legacy_int();
 460
 461	clockevents_config_and_register(&hc->evt, hpet_freq,
 462					HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
 463	global_clock_event = &hc->evt;
 464	pr_debug("Clockevent registered\n");
 465}
 466
 467/*
 468 * HPET MSI Support
 469 */
 470#ifdef CONFIG_PCI_MSI
 471
 472void hpet_msi_unmask(struct irq_data *data)
 473{
 474	struct hpet_channel *hc = irq_data_get_irq_handler_data(data);
 475	unsigned int cfg;
 476
 477	cfg = hpet_readl(HPET_Tn_CFG(hc->num));
 478	cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
 479	hpet_writel(cfg, HPET_Tn_CFG(hc->num));
 480}
 481
 482void hpet_msi_mask(struct irq_data *data)
 483{
 484	struct hpet_channel *hc = irq_data_get_irq_handler_data(data);
 485	unsigned int cfg;
 486
 487	cfg = hpet_readl(HPET_Tn_CFG(hc->num));
 488	cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
 489	hpet_writel(cfg, HPET_Tn_CFG(hc->num));
 490}
 491
 492void hpet_msi_write(struct hpet_channel *hc, struct msi_msg *msg)
 493{
 494	hpet_writel(msg->data, HPET_Tn_ROUTE(hc->num));
 495	hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hc->num) + 4);
 496}
 497
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 498static int hpet_clkevt_msi_resume(struct clock_event_device *evt)
 499{
 500	struct hpet_channel *hc = clockevent_to_channel(evt);
 501	struct irq_data *data = irq_get_irq_data(hc->irq);
 502	struct msi_msg msg;
 503
 504	/* Restore the MSI msg and unmask the interrupt */
 505	irq_chip_compose_msi_msg(data, &msg);
 506	hpet_msi_write(hc, &msg);
 507	hpet_msi_unmask(data);
 508	return 0;
 509}
 510
 511static irqreturn_t hpet_msi_interrupt_handler(int irq, void *data)
 512{
 513	struct hpet_channel *hc = data;
 514	struct clock_event_device *evt = &hc->evt;
 515
 516	if (!evt->event_handler) {
 517		pr_info("Spurious interrupt HPET channel %d\n", hc->num);
 518		return IRQ_HANDLED;
 519	}
 520
 521	evt->event_handler(evt);
 522	return IRQ_HANDLED;
 523}
 524
 525static int hpet_setup_msi_irq(struct hpet_channel *hc)
 526{
 527	if (request_irq(hc->irq, hpet_msi_interrupt_handler,
 528			IRQF_TIMER | IRQF_NOBALANCING,
 529			hc->name, hc))
 530		return -1;
 531
 532	disable_irq(hc->irq);
 533	irq_set_affinity(hc->irq, cpumask_of(hc->cpu));
 534	enable_irq(hc->irq);
 535
 536	pr_debug("%s irq %u for MSI\n", hc->name, hc->irq);
 537
 538	return 0;
 539}
 540
 541/* Invoked from the hotplug callback on @cpu */
 542static void init_one_hpet_msi_clockevent(struct hpet_channel *hc, int cpu)
 543{
 544	struct clock_event_device *evt = &hc->evt;
 545
 546	hc->cpu = cpu;
 547	per_cpu(cpu_hpet_channel, cpu) = hc;
 548	hpet_setup_msi_irq(hc);
 549
 550	hpet_init_clockevent(hc, 110);
 551	evt->tick_resume = hpet_clkevt_msi_resume;
 552
 553	clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
 554					0x7FFFFFFF);
 555}
 556
 557static struct hpet_channel *hpet_get_unused_clockevent(void)
 558{
 559	int i;
 560
 561	for (i = 0; i < hpet_base.nr_channels; i++) {
 562		struct hpet_channel *hc = hpet_base.channels + i;
 563
 564		if (hc->mode != HPET_MODE_CLOCKEVT || hc->in_use)
 565			continue;
 566		hc->in_use = 1;
 567		return hc;
 568	}
 569	return NULL;
 570}
 571
 572static int hpet_cpuhp_online(unsigned int cpu)
 573{
 574	struct hpet_channel *hc = hpet_get_unused_clockevent();
 575
 576	if (hc)
 577		init_one_hpet_msi_clockevent(hc, cpu);
 578	return 0;
 579}
 580
 581static int hpet_cpuhp_dead(unsigned int cpu)
 582{
 583	struct hpet_channel *hc = per_cpu(cpu_hpet_channel, cpu);
 584
 585	if (!hc)
 586		return 0;
 587	free_irq(hc->irq, hc);
 588	hc->in_use = 0;
 589	per_cpu(cpu_hpet_channel, cpu) = NULL;
 590	return 0;
 591}
 592
 593static void __init hpet_select_clockevents(void)
 594{
 595	unsigned int i;
 596
 597	hpet_base.nr_clockevents = 0;
 598
 599	/* No point if MSI is disabled or CPU has an Always Runing APIC Timer */
 600	if (hpet_msi_disable || boot_cpu_has(X86_FEATURE_ARAT))
 601		return;
 602
 603	hpet_print_config();
 604
 605	hpet_domain = hpet_create_irq_domain(hpet_blockid);
 606	if (!hpet_domain)
 607		return;
 608
 609	for (i = 0; i < hpet_base.nr_channels; i++) {
 610		struct hpet_channel *hc = hpet_base.channels + i;
 611		int irq;
 612
 613		if (hc->mode != HPET_MODE_UNUSED)
 614			continue;
 615
 616		/* Only consider HPET channel with MSI support */
 617		if (!(hc->boot_cfg & HPET_TN_FSB_CAP))
 618			continue;
 619
 620		sprintf(hc->name, "hpet%d", i);
 621
 622		irq = hpet_assign_irq(hpet_domain, hc, hc->num);
 623		if (irq <= 0)
 624			continue;
 625
 626		hc->irq = irq;
 627		hc->mode = HPET_MODE_CLOCKEVT;
 628
 629		if (++hpet_base.nr_clockevents == num_possible_cpus())
 630			break;
 631	}
 632
 633	pr_info("%d channels of %d reserved for per-cpu timers\n",
 634		hpet_base.nr_channels, hpet_base.nr_clockevents);
 635}
 636
 637#else
 638
 639static inline void hpet_select_clockevents(void) { }
 640
 641#define hpet_cpuhp_online	NULL
 642#define hpet_cpuhp_dead		NULL
 643
 644#endif
 645
 646/*
 647 * Clock source related code
 648 */
 649#if defined(CONFIG_SMP) && defined(CONFIG_64BIT)
 650/*
 651 * Reading the HPET counter is a very slow operation. If a large number of
 652 * CPUs are trying to access the HPET counter simultaneously, it can cause
 653 * massive delays and slow down system performance dramatically. This may
 654 * happen when HPET is the default clock source instead of TSC. For a
 655 * really large system with hundreds of CPUs, the slowdown may be so
 656 * severe, that it can actually crash the system because of a NMI watchdog
 657 * soft lockup, for example.
 658 *
 659 * If multiple CPUs are trying to access the HPET counter at the same time,
 660 * we don't actually need to read the counter multiple times. Instead, the
 661 * other CPUs can use the counter value read by the first CPU in the group.
 662 *
 663 * This special feature is only enabled on x86-64 systems. It is unlikely
 664 * that 32-bit x86 systems will have enough CPUs to require this feature
 665 * with its associated locking overhead. We also need 64-bit atomic read.
 666 *
 667 * The lock and the HPET value are stored together and can be read in a
 668 * single atomic 64-bit read. It is explicitly assumed that arch_spinlock_t
 669 * is 32 bits in size.
 670 */
 671union hpet_lock {
 672	struct {
 673		arch_spinlock_t lock;
 674		u32 value;
 675	};
 676	u64 lockval;
 677};
 678
 679static union hpet_lock hpet __cacheline_aligned = {
 680	{ .lock = __ARCH_SPIN_LOCK_UNLOCKED, },
 681};
 682
 683static u64 read_hpet(struct clocksource *cs)
 684{
 685	unsigned long flags;
 686	union hpet_lock old, new;
 687
 688	BUILD_BUG_ON(sizeof(union hpet_lock) != 8);
 689
 690	/*
 691	 * Read HPET directly if in NMI.
 692	 */
 693	if (in_nmi())
 694		return (u64)hpet_readl(HPET_COUNTER);
 695
 696	/*
 697	 * Read the current state of the lock and HPET value atomically.
 698	 */
 699	old.lockval = READ_ONCE(hpet.lockval);
 700
 701	if (arch_spin_is_locked(&old.lock))
 702		goto contended;
 703
 704	local_irq_save(flags);
 705	if (arch_spin_trylock(&hpet.lock)) {
 706		new.value = hpet_readl(HPET_COUNTER);
 707		/*
 708		 * Use WRITE_ONCE() to prevent store tearing.
 709		 */
 710		WRITE_ONCE(hpet.value, new.value);
 711		arch_spin_unlock(&hpet.lock);
 712		local_irq_restore(flags);
 713		return (u64)new.value;
 714	}
 715	local_irq_restore(flags);
 716
 717contended:
 718	/*
 719	 * Contended case
 720	 * --------------
 721	 * Wait until the HPET value change or the lock is free to indicate
 722	 * its value is up-to-date.
 723	 *
 724	 * It is possible that old.value has already contained the latest
 725	 * HPET value while the lock holder was in the process of releasing
 726	 * the lock. Checking for lock state change will enable us to return
 727	 * the value immediately instead of waiting for the next HPET reader
 728	 * to come along.
 729	 */
 730	do {
 731		cpu_relax();
 732		new.lockval = READ_ONCE(hpet.lockval);
 733	} while ((new.value == old.value) && arch_spin_is_locked(&new.lock));
 734
 735	return (u64)new.value;
 736}
 737#else
 738/*
 739 * For UP or 32-bit.
 740 */
 741static u64 read_hpet(struct clocksource *cs)
 742{
 743	return (u64)hpet_readl(HPET_COUNTER);
 744}
 745#endif
 746
 747static struct clocksource clocksource_hpet = {
 748	.name		= "hpet",
 749	.rating		= 250,
 750	.read		= read_hpet,
 751	.mask		= HPET_MASK,
 752	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
 753	.resume		= hpet_resume_counter,
 754};
 755
 756/*
 757 * AMD SB700 based systems with spread spectrum enabled use a SMM based
 758 * HPET emulation to provide proper frequency setting.
 759 *
 760 * On such systems the SMM code is initialized with the first HPET register
 761 * access and takes some time to complete. During this time the config
 762 * register reads 0xffffffff. We check for max 1000 loops whether the
 763 * config register reads a non-0xffffffff value to make sure that the
 764 * HPET is up and running before we proceed any further.
 765 *
 766 * A counting loop is safe, as the HPET access takes thousands of CPU cycles.
 767 *
 768 * On non-SB700 based machines this check is only done once and has no
 769 * side effects.
 770 */
 771static bool __init hpet_cfg_working(void)
 772{
 773	int i;
 774
 775	for (i = 0; i < 1000; i++) {
 776		if (hpet_readl(HPET_CFG) != 0xFFFFFFFF)
 777			return true;
 778	}
 779
 780	pr_warn("Config register invalid. Disabling HPET\n");
 781	return false;
 782}
 783
 784static bool __init hpet_counting(void)
 785{
 786	u64 start, now, t1;
 787
 788	hpet_restart_counter();
 789
 790	t1 = hpet_readl(HPET_COUNTER);
 791	start = rdtsc();
 792
 793	/*
 794	 * We don't know the TSC frequency yet, but waiting for
 795	 * 200000 TSC cycles is safe:
 796	 * 4 GHz == 50us
 797	 * 1 GHz == 200us
 798	 */
 799	do {
 800		if (t1 != hpet_readl(HPET_COUNTER))
 801			return true;
 802		now = rdtsc();
 803	} while ((now - start) < 200000UL);
 804
 805	pr_warn("Counter not counting. HPET disabled\n");
 806	return false;
 807}
 808
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 809/**
 810 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
 811 */
 812int __init hpet_enable(void)
 813{
 814	u32 hpet_period, cfg, id, irq;
 815	unsigned int i, channels;
 816	struct hpet_channel *hc;
 817	u64 freq;
 818
 819	if (!is_hpet_capable())
 
 
 
 820		return 0;
 821
 822	hpet_set_mapping();
 823	if (!hpet_virt_address)
 824		return 0;
 825
 826	/* Validate that the config register is working */
 827	if (!hpet_cfg_working())
 828		goto out_nohpet;
 829
 830	/*
 831	 * Read the period and check for a sane value:
 832	 */
 833	hpet_period = hpet_readl(HPET_PERIOD);
 834	if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
 835		goto out_nohpet;
 836
 837	/* The period is a femtoseconds value. Convert it to a frequency. */
 838	freq = FSEC_PER_SEC;
 839	do_div(freq, hpet_period);
 840	hpet_freq = freq;
 841
 842	/*
 843	 * Read the HPET ID register to retrieve the IRQ routing
 844	 * information and the number of channels
 845	 */
 846	id = hpet_readl(HPET_ID);
 847	hpet_print_config();
 848
 849	/* This is the HPET channel number which is zero based */
 850	channels = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
 851
 852	/*
 853	 * The legacy routing mode needs at least two channels, tick timer
 854	 * and the rtc emulation channel.
 855	 */
 856	if (IS_ENABLED(CONFIG_HPET_EMULATE_RTC) && channels < 2)
 857		goto out_nohpet;
 858
 859	hc = kcalloc(channels, sizeof(*hc), GFP_KERNEL);
 860	if (!hc) {
 861		pr_warn("Disabling HPET.\n");
 862		goto out_nohpet;
 863	}
 864	hpet_base.channels = hc;
 865	hpet_base.nr_channels = channels;
 866
 867	/* Read, store and sanitize the global configuration */
 868	cfg = hpet_readl(HPET_CFG);
 869	hpet_base.boot_cfg = cfg;
 870	cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
 871	hpet_writel(cfg, HPET_CFG);
 872	if (cfg)
 873		pr_warn("Global config: Unknown bits %#x\n", cfg);
 874
 875	/* Read, store and sanitize the per channel configuration */
 876	for (i = 0; i < channels; i++, hc++) {
 877		hc->num = i;
 878
 879		cfg = hpet_readl(HPET_Tn_CFG(i));
 880		hc->boot_cfg = cfg;
 881		irq = (cfg & Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
 882		hc->irq = irq;
 883
 884		cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
 885		hpet_writel(cfg, HPET_Tn_CFG(i));
 886
 887		cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
 888			 | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
 889			 | HPET_TN_FSB | HPET_TN_FSB_CAP);
 890		if (cfg)
 891			pr_warn("Channel #%u config: Unknown bits %#x\n", i, cfg);
 892	}
 893	hpet_print_config();
 894
 895	/*
 896	 * Validate that the counter is counting. This needs to be done
 897	 * after sanitizing the config registers to properly deal with
 898	 * force enabled HPETs.
 899	 */
 900	if (!hpet_counting())
 901		goto out_nohpet;
 902
 903	clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
 904
 905	if (id & HPET_ID_LEGSUP) {
 906		hpet_legacy_clockevent_register(&hpet_base.channels[0]);
 907		hpet_base.channels[0].mode = HPET_MODE_LEGACY;
 908		if (IS_ENABLED(CONFIG_HPET_EMULATE_RTC))
 909			hpet_base.channels[1].mode = HPET_MODE_LEGACY;
 910		return 1;
 911	}
 912	return 0;
 913
 914out_nohpet:
 915	kfree(hpet_base.channels);
 916	hpet_base.channels = NULL;
 917	hpet_base.nr_channels = 0;
 918	hpet_clear_mapping();
 919	hpet_address = 0;
 920	return 0;
 921}
 922
 923/*
 924 * The late initialization runs after the PCI quirks have been invoked
 925 * which might have detected a system on which the HPET can be enforced.
 926 *
 927 * Also, the MSI machinery is not working yet when the HPET is initialized
 928 * early.
 929 *
 930 * If the HPET is enabled, then:
 931 *
 932 *  1) Reserve one channel for /dev/hpet if CONFIG_HPET=y
 933 *  2) Reserve up to num_possible_cpus() channels as per CPU clockevents
 934 *  3) Setup /dev/hpet if CONFIG_HPET=y
 935 *  4) Register hotplug callbacks when clockevents are available
 936 */
 937static __init int hpet_late_init(void)
 938{
 939	int ret;
 940
 941	if (!hpet_address) {
 942		if (!force_hpet_address)
 943			return -ENODEV;
 944
 945		hpet_address = force_hpet_address;
 946		hpet_enable();
 947	}
 948
 949	if (!hpet_virt_address)
 950		return -ENODEV;
 951
 952	hpet_select_device_channel();
 953	hpet_select_clockevents();
 954	hpet_reserve_platform_timers();
 955	hpet_print_config();
 956
 957	if (!hpet_base.nr_clockevents)
 958		return 0;
 959
 960	ret = cpuhp_setup_state(CPUHP_AP_X86_HPET_ONLINE, "x86/hpet:online",
 961				hpet_cpuhp_online, NULL);
 962	if (ret)
 963		return ret;
 964	ret = cpuhp_setup_state(CPUHP_X86_HPET_DEAD, "x86/hpet:dead", NULL,
 965				hpet_cpuhp_dead);
 966	if (ret)
 967		goto err_cpuhp;
 968	return 0;
 969
 970err_cpuhp:
 971	cpuhp_remove_state(CPUHP_AP_X86_HPET_ONLINE);
 972	return ret;
 973}
 974fs_initcall(hpet_late_init);
 975
 976void hpet_disable(void)
 977{
 978	unsigned int i;
 979	u32 cfg;
 980
 981	if (!is_hpet_capable() || !hpet_virt_address)
 982		return;
 983
 984	/* Restore boot configuration with the enable bit cleared */
 985	cfg = hpet_base.boot_cfg;
 986	cfg &= ~HPET_CFG_ENABLE;
 987	hpet_writel(cfg, HPET_CFG);
 988
 989	/* Restore the channel boot configuration */
 990	for (i = 0; i < hpet_base.nr_channels; i++)
 991		hpet_writel(hpet_base.channels[i].boot_cfg, HPET_Tn_CFG(i));
 992
 993	/* If the HPET was enabled at boot time, reenable it */
 994	if (hpet_base.boot_cfg & HPET_CFG_ENABLE)
 995		hpet_writel(hpet_base.boot_cfg, HPET_CFG);
 996}
 997
 998#ifdef CONFIG_HPET_EMULATE_RTC
 999
1000/*
1001 * HPET in LegacyReplacement mode eats up the RTC interrupt line. When HPET
1002 * is enabled, we support RTC interrupt functionality in software.
1003 *
1004 * RTC has 3 kinds of interrupts:
1005 *
1006 *  1) Update Interrupt - generate an interrupt, every second, when the
1007 *     RTC clock is updated
1008 *  2) Alarm Interrupt - generate an interrupt at a specific time of day
1009 *  3) Periodic Interrupt - generate periodic interrupt, with frequencies
1010 *     2Hz-8192Hz (2Hz-64Hz for non-root user) (all frequencies in powers of 2)
1011 *
1012 * (1) and (2) above are implemented using polling at a frequency of 64 Hz:
1013 * DEFAULT_RTC_INT_FREQ.
1014 *
1015 * The exact frequency is a tradeoff between accuracy and interrupt overhead.
1016 *
1017 * For (3), we use interrupts at 64 Hz, or the user specified periodic frequency,
1018 * if it's higher.
1019 */
1020#include <linux/mc146818rtc.h>
1021#include <linux/rtc.h>
1022
1023#define DEFAULT_RTC_INT_FREQ	64
1024#define DEFAULT_RTC_SHIFT	6
1025#define RTC_NUM_INTS		1
1026
1027static unsigned long hpet_rtc_flags;
1028static int hpet_prev_update_sec;
1029static struct rtc_time hpet_alarm_time;
1030static unsigned long hpet_pie_count;
1031static u32 hpet_t1_cmp;
1032static u32 hpet_default_delta;
1033static u32 hpet_pie_delta;
1034static unsigned long hpet_pie_limit;
1035
1036static rtc_irq_handler irq_handler;
1037
1038/*
1039 * Check that the HPET counter c1 is ahead of c2
1040 */
1041static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1042{
1043	return (s32)(c2 - c1) < 0;
1044}
1045
1046/*
1047 * Registers a IRQ handler.
1048 */
1049int hpet_register_irq_handler(rtc_irq_handler handler)
1050{
1051	if (!is_hpet_enabled())
1052		return -ENODEV;
1053	if (irq_handler)
1054		return -EBUSY;
1055
1056	irq_handler = handler;
1057
1058	return 0;
1059}
1060EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1061
1062/*
1063 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1064 * and does cleanup.
1065 */
1066void hpet_unregister_irq_handler(rtc_irq_handler handler)
1067{
1068	if (!is_hpet_enabled())
1069		return;
1070
1071	irq_handler = NULL;
1072	hpet_rtc_flags = 0;
1073}
1074EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1075
1076/*
1077 * Channel 1 for RTC emulation. We use one shot mode, as periodic mode
1078 * is not supported by all HPET implementations for channel 1.
1079 *
1080 * hpet_rtc_timer_init() is called when the rtc is initialized.
1081 */
1082int hpet_rtc_timer_init(void)
1083{
1084	unsigned int cfg, cnt, delta;
1085	unsigned long flags;
1086
1087	if (!is_hpet_enabled())
1088		return 0;
1089
1090	if (!hpet_default_delta) {
1091		struct clock_event_device *evt = &hpet_base.channels[0].evt;
1092		uint64_t clc;
1093
1094		clc = (uint64_t) evt->mult * NSEC_PER_SEC;
1095		clc >>= evt->shift + DEFAULT_RTC_SHIFT;
1096		hpet_default_delta = clc;
1097	}
1098
1099	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1100		delta = hpet_default_delta;
1101	else
1102		delta = hpet_pie_delta;
1103
1104	local_irq_save(flags);
1105
1106	cnt = delta + hpet_readl(HPET_COUNTER);
1107	hpet_writel(cnt, HPET_T1_CMP);
1108	hpet_t1_cmp = cnt;
1109
1110	cfg = hpet_readl(HPET_T1_CFG);
1111	cfg &= ~HPET_TN_PERIODIC;
1112	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1113	hpet_writel(cfg, HPET_T1_CFG);
1114
1115	local_irq_restore(flags);
1116
1117	return 1;
1118}
1119EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1120
1121static void hpet_disable_rtc_channel(void)
1122{
1123	u32 cfg = hpet_readl(HPET_T1_CFG);
1124
1125	cfg &= ~HPET_TN_ENABLE;
1126	hpet_writel(cfg, HPET_T1_CFG);
1127}
1128
1129/*
1130 * The functions below are called from rtc driver.
1131 * Return 0 if HPET is not being used.
1132 * Otherwise do the necessary changes and return 1.
1133 */
1134int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1135{
1136	if (!is_hpet_enabled())
1137		return 0;
1138
1139	hpet_rtc_flags &= ~bit_mask;
1140	if (unlikely(!hpet_rtc_flags))
1141		hpet_disable_rtc_channel();
1142
1143	return 1;
1144}
1145EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1146
1147int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1148{
1149	unsigned long oldbits = hpet_rtc_flags;
1150
1151	if (!is_hpet_enabled())
1152		return 0;
1153
1154	hpet_rtc_flags |= bit_mask;
1155
1156	if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1157		hpet_prev_update_sec = -1;
1158
1159	if (!oldbits)
1160		hpet_rtc_timer_init();
1161
1162	return 1;
1163}
1164EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1165
1166int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
1167{
1168	if (!is_hpet_enabled())
1169		return 0;
1170
1171	hpet_alarm_time.tm_hour = hrs;
1172	hpet_alarm_time.tm_min = min;
1173	hpet_alarm_time.tm_sec = sec;
1174
1175	return 1;
1176}
1177EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1178
1179int hpet_set_periodic_freq(unsigned long freq)
1180{
1181	uint64_t clc;
1182
1183	if (!is_hpet_enabled())
1184		return 0;
1185
1186	if (freq <= DEFAULT_RTC_INT_FREQ) {
1187		hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1188	} else {
1189		struct clock_event_device *evt = &hpet_base.channels[0].evt;
1190
1191		clc = (uint64_t) evt->mult * NSEC_PER_SEC;
1192		do_div(clc, freq);
1193		clc >>= evt->shift;
1194		hpet_pie_delta = clc;
1195		hpet_pie_limit = 0;
1196	}
1197
1198	return 1;
1199}
1200EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1201
1202int hpet_rtc_dropped_irq(void)
1203{
1204	return is_hpet_enabled();
1205}
1206EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1207
1208static void hpet_rtc_timer_reinit(void)
1209{
1210	unsigned int delta;
1211	int lost_ints = -1;
1212
1213	if (unlikely(!hpet_rtc_flags))
1214		hpet_disable_rtc_channel();
1215
1216	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1217		delta = hpet_default_delta;
1218	else
1219		delta = hpet_pie_delta;
1220
1221	/*
1222	 * Increment the comparator value until we are ahead of the
1223	 * current count.
1224	 */
1225	do {
1226		hpet_t1_cmp += delta;
1227		hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1228		lost_ints++;
1229	} while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1230
1231	if (lost_ints) {
1232		if (hpet_rtc_flags & RTC_PIE)
1233			hpet_pie_count += lost_ints;
1234		if (printk_ratelimit())
1235			pr_warn("Lost %d RTC interrupts\n", lost_ints);
1236	}
1237}
1238
1239irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1240{
1241	struct rtc_time curr_time;
1242	unsigned long rtc_int_flag = 0;
1243
1244	hpet_rtc_timer_reinit();
1245	memset(&curr_time, 0, sizeof(struct rtc_time));
1246
1247	if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1248		mc146818_get_time(&curr_time);
1249
1250	if (hpet_rtc_flags & RTC_UIE &&
1251	    curr_time.tm_sec != hpet_prev_update_sec) {
1252		if (hpet_prev_update_sec >= 0)
1253			rtc_int_flag = RTC_UF;
1254		hpet_prev_update_sec = curr_time.tm_sec;
1255	}
1256
1257	if (hpet_rtc_flags & RTC_PIE && ++hpet_pie_count >= hpet_pie_limit) {
1258		rtc_int_flag |= RTC_PF;
1259		hpet_pie_count = 0;
1260	}
1261
1262	if (hpet_rtc_flags & RTC_AIE &&
1263	    (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1264	    (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1265	    (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1266		rtc_int_flag |= RTC_AF;
1267
1268	if (rtc_int_flag) {
1269		rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1270		if (irq_handler)
1271			irq_handler(rtc_int_flag, dev_id);
1272	}
1273	return IRQ_HANDLED;
1274}
1275EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1276#endif
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2#include <linux/clockchips.h>
   3#include <linux/interrupt.h>
   4#include <linux/export.h>
   5#include <linux/delay.h>
   6#include <linux/hpet.h>
   7#include <linux/cpu.h>
   8#include <linux/irq.h>
   9
  10#include <asm/irq_remapping.h>
  11#include <asm/hpet.h>
  12#include <asm/time.h>
  13#include <asm/mwait.h>
  14
  15#undef  pr_fmt
  16#define pr_fmt(fmt) "hpet: " fmt
  17
  18enum hpet_mode {
  19	HPET_MODE_UNUSED,
  20	HPET_MODE_LEGACY,
  21	HPET_MODE_CLOCKEVT,
  22	HPET_MODE_DEVICE,
  23};
  24
  25struct hpet_channel {
  26	struct clock_event_device	evt;
  27	unsigned int			num;
  28	unsigned int			cpu;
  29	unsigned int			irq;
  30	unsigned int			in_use;
  31	enum hpet_mode			mode;
  32	unsigned int			boot_cfg;
  33	char				name[10];
  34};
  35
  36struct hpet_base {
  37	unsigned int			nr_channels;
  38	unsigned int			nr_clockevents;
  39	unsigned int			boot_cfg;
  40	struct hpet_channel		*channels;
  41};
  42
  43#define HPET_MASK			CLOCKSOURCE_MASK(32)
  44
  45#define HPET_MIN_CYCLES			128
  46#define HPET_MIN_PROG_DELTA		(HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
  47
  48/*
  49 * HPET address is set in acpi/boot.c, when an ACPI entry exists
  50 */
  51unsigned long				hpet_address;
  52u8					hpet_blockid; /* OS timer block num */
  53bool					hpet_msi_disable;
  54
  55#ifdef CONFIG_GENERIC_MSI_IRQ
  56static DEFINE_PER_CPU(struct hpet_channel *, cpu_hpet_channel);
  57static struct irq_domain		*hpet_domain;
  58#endif
  59
  60static void __iomem			*hpet_virt_address;
  61
  62static struct hpet_base			hpet_base;
  63
  64static bool				hpet_legacy_int_enabled;
  65static unsigned long			hpet_freq;
  66
  67bool					boot_hpet_disable;
  68bool					hpet_force_user;
  69static bool				hpet_verbose;
  70
  71static inline
  72struct hpet_channel *clockevent_to_channel(struct clock_event_device *evt)
  73{
  74	return container_of(evt, struct hpet_channel, evt);
  75}
  76
  77inline unsigned int hpet_readl(unsigned int a)
  78{
  79	return readl(hpet_virt_address + a);
  80}
  81
  82static inline void hpet_writel(unsigned int d, unsigned int a)
  83{
  84	writel(d, hpet_virt_address + a);
  85}
  86
  87static inline void hpet_set_mapping(void)
  88{
  89	hpet_virt_address = ioremap(hpet_address, HPET_MMAP_SIZE);
  90}
  91
  92static inline void hpet_clear_mapping(void)
  93{
  94	iounmap(hpet_virt_address);
  95	hpet_virt_address = NULL;
  96}
  97
  98/*
  99 * HPET command line enable / disable
 100 */
 101static int __init hpet_setup(char *str)
 102{
 103	while (str) {
 104		char *next = strchr(str, ',');
 105
 106		if (next)
 107			*next++ = 0;
 108		if (!strncmp("disable", str, 7))
 109			boot_hpet_disable = true;
 110		if (!strncmp("force", str, 5))
 111			hpet_force_user = true;
 112		if (!strncmp("verbose", str, 7))
 113			hpet_verbose = true;
 114		str = next;
 115	}
 116	return 1;
 117}
 118__setup("hpet=", hpet_setup);
 119
 120static int __init disable_hpet(char *str)
 121{
 122	boot_hpet_disable = true;
 123	return 1;
 124}
 125__setup("nohpet", disable_hpet);
 126
 127static inline int is_hpet_capable(void)
 128{
 129	return !boot_hpet_disable && hpet_address;
 130}
 131
 132/**
 133 * is_hpet_enabled - Check whether the legacy HPET timer interrupt is enabled
 134 */
 135int is_hpet_enabled(void)
 136{
 137	return is_hpet_capable() && hpet_legacy_int_enabled;
 138}
 139EXPORT_SYMBOL_GPL(is_hpet_enabled);
 140
 141static void _hpet_print_config(const char *function, int line)
 142{
 143	u32 i, id, period, cfg, status, channels, l, h;
 144
 145	pr_info("%s(%d):\n", function, line);
 146
 147	id = hpet_readl(HPET_ID);
 148	period = hpet_readl(HPET_PERIOD);
 149	pr_info("ID: 0x%x, PERIOD: 0x%x\n", id, period);
 150
 151	cfg = hpet_readl(HPET_CFG);
 152	status = hpet_readl(HPET_STATUS);
 153	pr_info("CFG: 0x%x, STATUS: 0x%x\n", cfg, status);
 154
 155	l = hpet_readl(HPET_COUNTER);
 156	h = hpet_readl(HPET_COUNTER+4);
 157	pr_info("COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
 158
 159	channels = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
 160
 161	for (i = 0; i < channels; i++) {
 162		l = hpet_readl(HPET_Tn_CFG(i));
 163		h = hpet_readl(HPET_Tn_CFG(i)+4);
 164		pr_info("T%d: CFG_l: 0x%x, CFG_h: 0x%x\n", i, l, h);
 165
 166		l = hpet_readl(HPET_Tn_CMP(i));
 167		h = hpet_readl(HPET_Tn_CMP(i)+4);
 168		pr_info("T%d: CMP_l: 0x%x, CMP_h: 0x%x\n", i, l, h);
 169
 170		l = hpet_readl(HPET_Tn_ROUTE(i));
 171		h = hpet_readl(HPET_Tn_ROUTE(i)+4);
 172		pr_info("T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n", i, l, h);
 173	}
 174}
 175
 176#define hpet_print_config()					\
 177do {								\
 178	if (hpet_verbose)					\
 179		_hpet_print_config(__func__, __LINE__);	\
 180} while (0)
 181
 182/*
 183 * When the HPET driver (/dev/hpet) is enabled, we need to reserve
 184 * timer 0 and timer 1 in case of RTC emulation.
 185 */
 186#ifdef CONFIG_HPET
 187
 188static void __init hpet_reserve_platform_timers(void)
 189{
 190	struct hpet_data hd;
 191	unsigned int i;
 192
 193	memset(&hd, 0, sizeof(hd));
 194	hd.hd_phys_address	= hpet_address;
 195	hd.hd_address		= hpet_virt_address;
 196	hd.hd_nirqs		= hpet_base.nr_channels;
 197
 198	/*
 199	 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
 200	 * is wrong for i8259!) not the output IRQ.  Many BIOS writers
 201	 * don't bother configuring *any* comparator interrupts.
 202	 */
 203	hd.hd_irq[0] = HPET_LEGACY_8254;
 204	hd.hd_irq[1] = HPET_LEGACY_RTC;
 205
 206	for (i = 0; i < hpet_base.nr_channels; i++) {
 207		struct hpet_channel *hc = hpet_base.channels + i;
 208
 209		if (i >= 2)
 210			hd.hd_irq[i] = hc->irq;
 211
 212		switch (hc->mode) {
 213		case HPET_MODE_UNUSED:
 214		case HPET_MODE_DEVICE:
 215			hc->mode = HPET_MODE_DEVICE;
 216			break;
 217		case HPET_MODE_CLOCKEVT:
 218		case HPET_MODE_LEGACY:
 219			hpet_reserve_timer(&hd, hc->num);
 220			break;
 221		}
 222	}
 223
 224	hpet_alloc(&hd);
 225}
 226
 227static void __init hpet_select_device_channel(void)
 228{
 229	int i;
 230
 231	for (i = 0; i < hpet_base.nr_channels; i++) {
 232		struct hpet_channel *hc = hpet_base.channels + i;
 233
 234		/* Associate the first unused channel to /dev/hpet */
 235		if (hc->mode == HPET_MODE_UNUSED) {
 236			hc->mode = HPET_MODE_DEVICE;
 237			return;
 238		}
 239	}
 240}
 241
 242#else
 243static inline void hpet_reserve_platform_timers(void) { }
 244static inline void hpet_select_device_channel(void) {}
 245#endif
 246
 247/* Common HPET functions */
 248static void hpet_stop_counter(void)
 249{
 250	u32 cfg = hpet_readl(HPET_CFG);
 251
 252	cfg &= ~HPET_CFG_ENABLE;
 253	hpet_writel(cfg, HPET_CFG);
 254}
 255
 256static void hpet_reset_counter(void)
 257{
 258	hpet_writel(0, HPET_COUNTER);
 259	hpet_writel(0, HPET_COUNTER + 4);
 260}
 261
 262static void hpet_start_counter(void)
 263{
 264	unsigned int cfg = hpet_readl(HPET_CFG);
 265
 266	cfg |= HPET_CFG_ENABLE;
 267	hpet_writel(cfg, HPET_CFG);
 268}
 269
 270static void hpet_restart_counter(void)
 271{
 272	hpet_stop_counter();
 273	hpet_reset_counter();
 274	hpet_start_counter();
 275}
 276
 277static void hpet_resume_device(void)
 278{
 279	force_hpet_resume();
 280}
 281
 282static void hpet_resume_counter(struct clocksource *cs)
 283{
 284	hpet_resume_device();
 285	hpet_restart_counter();
 286}
 287
 288static void hpet_enable_legacy_int(void)
 289{
 290	unsigned int cfg = hpet_readl(HPET_CFG);
 291
 292	cfg |= HPET_CFG_LEGACY;
 293	hpet_writel(cfg, HPET_CFG);
 294	hpet_legacy_int_enabled = true;
 295}
 296
 297static int hpet_clkevt_set_state_periodic(struct clock_event_device *evt)
 298{
 299	unsigned int channel = clockevent_to_channel(evt)->num;
 300	unsigned int cfg, cmp, now;
 301	uint64_t delta;
 302
 303	hpet_stop_counter();
 304	delta = ((uint64_t)(NSEC_PER_SEC / HZ)) * evt->mult;
 305	delta >>= evt->shift;
 306	now = hpet_readl(HPET_COUNTER);
 307	cmp = now + (unsigned int)delta;
 308	cfg = hpet_readl(HPET_Tn_CFG(channel));
 309	cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
 310	       HPET_TN_32BIT;
 311	hpet_writel(cfg, HPET_Tn_CFG(channel));
 312	hpet_writel(cmp, HPET_Tn_CMP(channel));
 313	udelay(1);
 314	/*
 315	 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
 316	 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
 317	 * bit is automatically cleared after the first write.
 318	 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
 319	 * Publication # 24674)
 320	 */
 321	hpet_writel((unsigned int)delta, HPET_Tn_CMP(channel));
 322	hpet_start_counter();
 323	hpet_print_config();
 324
 325	return 0;
 326}
 327
 328static int hpet_clkevt_set_state_oneshot(struct clock_event_device *evt)
 329{
 330	unsigned int channel = clockevent_to_channel(evt)->num;
 331	unsigned int cfg;
 332
 333	cfg = hpet_readl(HPET_Tn_CFG(channel));
 334	cfg &= ~HPET_TN_PERIODIC;
 335	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
 336	hpet_writel(cfg, HPET_Tn_CFG(channel));
 337
 338	return 0;
 339}
 340
 341static int hpet_clkevt_set_state_shutdown(struct clock_event_device *evt)
 342{
 343	unsigned int channel = clockevent_to_channel(evt)->num;
 344	unsigned int cfg;
 345
 346	cfg = hpet_readl(HPET_Tn_CFG(channel));
 347	cfg &= ~HPET_TN_ENABLE;
 348	hpet_writel(cfg, HPET_Tn_CFG(channel));
 349
 350	return 0;
 351}
 352
 353static int hpet_clkevt_legacy_resume(struct clock_event_device *evt)
 354{
 355	hpet_enable_legacy_int();
 356	hpet_print_config();
 357	return 0;
 358}
 359
 360static int
 361hpet_clkevt_set_next_event(unsigned long delta, struct clock_event_device *evt)
 362{
 363	unsigned int channel = clockevent_to_channel(evt)->num;
 364	u32 cnt;
 365	s32 res;
 366
 367	cnt = hpet_readl(HPET_COUNTER);
 368	cnt += (u32) delta;
 369	hpet_writel(cnt, HPET_Tn_CMP(channel));
 370
 371	/*
 372	 * HPETs are a complete disaster. The compare register is
 373	 * based on a equal comparison and neither provides a less
 374	 * than or equal functionality (which would require to take
 375	 * the wraparound into account) nor a simple count down event
 376	 * mode. Further the write to the comparator register is
 377	 * delayed internally up to two HPET clock cycles in certain
 378	 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
 379	 * longer delays. We worked around that by reading back the
 380	 * compare register, but that required another workaround for
 381	 * ICH9,10 chips where the first readout after write can
 382	 * return the old stale value. We already had a minimum
 383	 * programming delta of 5us enforced, but a NMI or SMI hitting
 384	 * between the counter readout and the comparator write can
 385	 * move us behind that point easily. Now instead of reading
 386	 * the compare register back several times, we make the ETIME
 387	 * decision based on the following: Return ETIME if the
 388	 * counter value after the write is less than HPET_MIN_CYCLES
 389	 * away from the event or if the counter is already ahead of
 390	 * the event. The minimum programming delta for the generic
 391	 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
 392	 */
 393	res = (s32)(cnt - hpet_readl(HPET_COUNTER));
 394
 395	return res < HPET_MIN_CYCLES ? -ETIME : 0;
 396}
 397
 398static void hpet_init_clockevent(struct hpet_channel *hc, unsigned int rating)
 399{
 400	struct clock_event_device *evt = &hc->evt;
 401
 402	evt->rating		= rating;
 403	evt->irq		= hc->irq;
 404	evt->name		= hc->name;
 405	evt->cpumask		= cpumask_of(hc->cpu);
 406	evt->set_state_oneshot	= hpet_clkevt_set_state_oneshot;
 407	evt->set_next_event	= hpet_clkevt_set_next_event;
 408	evt->set_state_shutdown	= hpet_clkevt_set_state_shutdown;
 409
 410	evt->features = CLOCK_EVT_FEAT_ONESHOT;
 411	if (hc->boot_cfg & HPET_TN_PERIODIC) {
 412		evt->features		|= CLOCK_EVT_FEAT_PERIODIC;
 413		evt->set_state_periodic	= hpet_clkevt_set_state_periodic;
 414	}
 415}
 416
 417static void __init hpet_legacy_clockevent_register(struct hpet_channel *hc)
 418{
 419	/*
 420	 * Start HPET with the boot CPU's cpumask and make it global after
 421	 * the IO_APIC has been initialized.
 422	 */
 423	hc->cpu = boot_cpu_data.cpu_index;
 424	strncpy(hc->name, "hpet", sizeof(hc->name));
 425	hpet_init_clockevent(hc, 50);
 426
 427	hc->evt.tick_resume	= hpet_clkevt_legacy_resume;
 428
 429	/*
 430	 * Legacy horrors and sins from the past. HPET used periodic mode
 431	 * unconditionally forever on the legacy channel 0. Removing the
 432	 * below hack and using the conditional in hpet_init_clockevent()
 433	 * makes at least Qemu and one hardware machine fail to boot.
 434	 * There are two issues which cause the boot failure:
 435	 *
 436	 * #1 After the timer delivery test in IOAPIC and the IOAPIC setup
 437	 *    the next interrupt is not delivered despite the HPET channel
 438	 *    being programmed correctly. Reprogramming the HPET after
 439	 *    switching to IOAPIC makes it work again. After fixing this,
 440	 *    the next issue surfaces:
 441	 *
 442	 * #2 Due to the unconditional periodic mode availability the Local
 443	 *    APIC timer calibration can hijack the global clockevents
 444	 *    event handler without causing damage. Using oneshot at this
 445	 *    stage makes if hang because the HPET does not get
 446	 *    reprogrammed due to the handler hijacking. Duh, stupid me!
 447	 *
 448	 * Both issues require major surgery and especially the kick HPET
 449	 * again after enabling IOAPIC results in really nasty hackery.
 450	 * This 'assume periodic works' magic has survived since HPET
 451	 * support got added, so it's questionable whether this should be
 452	 * fixed. Both Qemu and the failing hardware machine support
 453	 * periodic mode despite the fact that both don't advertise it in
 454	 * the configuration register and both need that extra kick after
 455	 * switching to IOAPIC. Seems to be a feature...
 456	 */
 457	hc->evt.features		|= CLOCK_EVT_FEAT_PERIODIC;
 458	hc->evt.set_state_periodic	= hpet_clkevt_set_state_periodic;
 459
 460	/* Start HPET legacy interrupts */
 461	hpet_enable_legacy_int();
 462
 463	clockevents_config_and_register(&hc->evt, hpet_freq,
 464					HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
 465	global_clock_event = &hc->evt;
 466	pr_debug("Clockevent registered\n");
 467}
 468
 469/*
 470 * HPET MSI Support
 471 */
 472#ifdef CONFIG_GENERIC_MSI_IRQ
 473static void hpet_msi_unmask(struct irq_data *data)
 
 474{
 475	struct hpet_channel *hc = irq_data_get_irq_handler_data(data);
 476	unsigned int cfg;
 477
 478	cfg = hpet_readl(HPET_Tn_CFG(hc->num));
 479	cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
 480	hpet_writel(cfg, HPET_Tn_CFG(hc->num));
 481}
 482
 483static void hpet_msi_mask(struct irq_data *data)
 484{
 485	struct hpet_channel *hc = irq_data_get_irq_handler_data(data);
 486	unsigned int cfg;
 487
 488	cfg = hpet_readl(HPET_Tn_CFG(hc->num));
 489	cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
 490	hpet_writel(cfg, HPET_Tn_CFG(hc->num));
 491}
 492
 493static void hpet_msi_write(struct hpet_channel *hc, struct msi_msg *msg)
 494{
 495	hpet_writel(msg->data, HPET_Tn_ROUTE(hc->num));
 496	hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hc->num) + 4);
 497}
 498
 499static void hpet_msi_write_msg(struct irq_data *data, struct msi_msg *msg)
 500{
 501	hpet_msi_write(irq_data_get_irq_handler_data(data), msg);
 502}
 503
 504static struct irq_chip hpet_msi_controller __ro_after_init = {
 505	.name = "HPET-MSI",
 506	.irq_unmask = hpet_msi_unmask,
 507	.irq_mask = hpet_msi_mask,
 508	.irq_ack = irq_chip_ack_parent,
 509	.irq_set_affinity = msi_domain_set_affinity,
 510	.irq_retrigger = irq_chip_retrigger_hierarchy,
 511	.irq_write_msi_msg = hpet_msi_write_msg,
 512	.flags = IRQCHIP_SKIP_SET_WAKE | IRQCHIP_AFFINITY_PRE_STARTUP,
 513};
 514
 515static int hpet_msi_init(struct irq_domain *domain,
 516			 struct msi_domain_info *info, unsigned int virq,
 517			 irq_hw_number_t hwirq, msi_alloc_info_t *arg)
 518{
 519	irq_set_status_flags(virq, IRQ_MOVE_PCNTXT);
 520	irq_domain_set_info(domain, virq, arg->hwirq, info->chip, NULL,
 521			    handle_edge_irq, arg->data, "edge");
 522
 523	return 0;
 524}
 525
 526static void hpet_msi_free(struct irq_domain *domain,
 527			  struct msi_domain_info *info, unsigned int virq)
 528{
 529	irq_clear_status_flags(virq, IRQ_MOVE_PCNTXT);
 530}
 531
 532static struct msi_domain_ops hpet_msi_domain_ops = {
 533	.msi_init	= hpet_msi_init,
 534	.msi_free	= hpet_msi_free,
 535};
 536
 537static struct msi_domain_info hpet_msi_domain_info = {
 538	.ops		= &hpet_msi_domain_ops,
 539	.chip		= &hpet_msi_controller,
 540	.flags		= MSI_FLAG_USE_DEF_DOM_OPS,
 541};
 542
 543static struct irq_domain *hpet_create_irq_domain(int hpet_id)
 544{
 545	struct msi_domain_info *domain_info;
 546	struct irq_domain *parent, *d;
 547	struct fwnode_handle *fn;
 548	struct irq_fwspec fwspec;
 549
 550	if (x86_vector_domain == NULL)
 551		return NULL;
 552
 553	domain_info = kzalloc(sizeof(*domain_info), GFP_KERNEL);
 554	if (!domain_info)
 555		return NULL;
 556
 557	*domain_info = hpet_msi_domain_info;
 558	domain_info->data = (void *)(long)hpet_id;
 559
 560	fn = irq_domain_alloc_named_id_fwnode(hpet_msi_controller.name,
 561					      hpet_id);
 562	if (!fn) {
 563		kfree(domain_info);
 564		return NULL;
 565	}
 566
 567	fwspec.fwnode = fn;
 568	fwspec.param_count = 1;
 569	fwspec.param[0] = hpet_id;
 570
 571	parent = irq_find_matching_fwspec(&fwspec, DOMAIN_BUS_ANY);
 572	if (!parent) {
 573		irq_domain_free_fwnode(fn);
 574		kfree(domain_info);
 575		return NULL;
 576	}
 577	if (parent != x86_vector_domain)
 578		hpet_msi_controller.name = "IR-HPET-MSI";
 579
 580	d = msi_create_irq_domain(fn, domain_info, parent);
 581	if (!d) {
 582		irq_domain_free_fwnode(fn);
 583		kfree(domain_info);
 584	}
 585	return d;
 586}
 587
 588static inline int hpet_dev_id(struct irq_domain *domain)
 589{
 590	struct msi_domain_info *info = msi_get_domain_info(domain);
 591
 592	return (int)(long)info->data;
 593}
 594
 595static int hpet_assign_irq(struct irq_domain *domain, struct hpet_channel *hc,
 596			   int dev_num)
 597{
 598	struct irq_alloc_info info;
 599
 600	init_irq_alloc_info(&info, NULL);
 601	info.type = X86_IRQ_ALLOC_TYPE_HPET;
 602	info.data = hc;
 603	info.devid = hpet_dev_id(domain);
 604	info.hwirq = dev_num;
 605
 606	return irq_domain_alloc_irqs(domain, 1, NUMA_NO_NODE, &info);
 607}
 608
 609static int hpet_clkevt_msi_resume(struct clock_event_device *evt)
 610{
 611	struct hpet_channel *hc = clockevent_to_channel(evt);
 612	struct irq_data *data = irq_get_irq_data(hc->irq);
 613	struct msi_msg msg;
 614
 615	/* Restore the MSI msg and unmask the interrupt */
 616	irq_chip_compose_msi_msg(data, &msg);
 617	hpet_msi_write(hc, &msg);
 618	hpet_msi_unmask(data);
 619	return 0;
 620}
 621
 622static irqreturn_t hpet_msi_interrupt_handler(int irq, void *data)
 623{
 624	struct hpet_channel *hc = data;
 625	struct clock_event_device *evt = &hc->evt;
 626
 627	if (!evt->event_handler) {
 628		pr_info("Spurious interrupt HPET channel %d\n", hc->num);
 629		return IRQ_HANDLED;
 630	}
 631
 632	evt->event_handler(evt);
 633	return IRQ_HANDLED;
 634}
 635
 636static int hpet_setup_msi_irq(struct hpet_channel *hc)
 637{
 638	if (request_irq(hc->irq, hpet_msi_interrupt_handler,
 639			IRQF_TIMER | IRQF_NOBALANCING,
 640			hc->name, hc))
 641		return -1;
 642
 643	disable_irq(hc->irq);
 644	irq_set_affinity(hc->irq, cpumask_of(hc->cpu));
 645	enable_irq(hc->irq);
 646
 647	pr_debug("%s irq %u for MSI\n", hc->name, hc->irq);
 648
 649	return 0;
 650}
 651
 652/* Invoked from the hotplug callback on @cpu */
 653static void init_one_hpet_msi_clockevent(struct hpet_channel *hc, int cpu)
 654{
 655	struct clock_event_device *evt = &hc->evt;
 656
 657	hc->cpu = cpu;
 658	per_cpu(cpu_hpet_channel, cpu) = hc;
 659	hpet_setup_msi_irq(hc);
 660
 661	hpet_init_clockevent(hc, 110);
 662	evt->tick_resume = hpet_clkevt_msi_resume;
 663
 664	clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
 665					0x7FFFFFFF);
 666}
 667
 668static struct hpet_channel *hpet_get_unused_clockevent(void)
 669{
 670	int i;
 671
 672	for (i = 0; i < hpet_base.nr_channels; i++) {
 673		struct hpet_channel *hc = hpet_base.channels + i;
 674
 675		if (hc->mode != HPET_MODE_CLOCKEVT || hc->in_use)
 676			continue;
 677		hc->in_use = 1;
 678		return hc;
 679	}
 680	return NULL;
 681}
 682
 683static int hpet_cpuhp_online(unsigned int cpu)
 684{
 685	struct hpet_channel *hc = hpet_get_unused_clockevent();
 686
 687	if (hc)
 688		init_one_hpet_msi_clockevent(hc, cpu);
 689	return 0;
 690}
 691
 692static int hpet_cpuhp_dead(unsigned int cpu)
 693{
 694	struct hpet_channel *hc = per_cpu(cpu_hpet_channel, cpu);
 695
 696	if (!hc)
 697		return 0;
 698	free_irq(hc->irq, hc);
 699	hc->in_use = 0;
 700	per_cpu(cpu_hpet_channel, cpu) = NULL;
 701	return 0;
 702}
 703
 704static void __init hpet_select_clockevents(void)
 705{
 706	unsigned int i;
 707
 708	hpet_base.nr_clockevents = 0;
 709
 710	/* No point if MSI is disabled or CPU has an Always Runing APIC Timer */
 711	if (hpet_msi_disable || boot_cpu_has(X86_FEATURE_ARAT))
 712		return;
 713
 714	hpet_print_config();
 715
 716	hpet_domain = hpet_create_irq_domain(hpet_blockid);
 717	if (!hpet_domain)
 718		return;
 719
 720	for (i = 0; i < hpet_base.nr_channels; i++) {
 721		struct hpet_channel *hc = hpet_base.channels + i;
 722		int irq;
 723
 724		if (hc->mode != HPET_MODE_UNUSED)
 725			continue;
 726
 727		/* Only consider HPET channel with MSI support */
 728		if (!(hc->boot_cfg & HPET_TN_FSB_CAP))
 729			continue;
 730
 731		sprintf(hc->name, "hpet%d", i);
 732
 733		irq = hpet_assign_irq(hpet_domain, hc, hc->num);
 734		if (irq <= 0)
 735			continue;
 736
 737		hc->irq = irq;
 738		hc->mode = HPET_MODE_CLOCKEVT;
 739
 740		if (++hpet_base.nr_clockevents == num_possible_cpus())
 741			break;
 742	}
 743
 744	pr_info("%d channels of %d reserved for per-cpu timers\n",
 745		hpet_base.nr_channels, hpet_base.nr_clockevents);
 746}
 747
 748#else
 749
 750static inline void hpet_select_clockevents(void) { }
 751
 752#define hpet_cpuhp_online	NULL
 753#define hpet_cpuhp_dead		NULL
 754
 755#endif
 756
 757/*
 758 * Clock source related code
 759 */
 760#if defined(CONFIG_SMP) && defined(CONFIG_64BIT)
 761/*
 762 * Reading the HPET counter is a very slow operation. If a large number of
 763 * CPUs are trying to access the HPET counter simultaneously, it can cause
 764 * massive delays and slow down system performance dramatically. This may
 765 * happen when HPET is the default clock source instead of TSC. For a
 766 * really large system with hundreds of CPUs, the slowdown may be so
 767 * severe, that it can actually crash the system because of a NMI watchdog
 768 * soft lockup, for example.
 769 *
 770 * If multiple CPUs are trying to access the HPET counter at the same time,
 771 * we don't actually need to read the counter multiple times. Instead, the
 772 * other CPUs can use the counter value read by the first CPU in the group.
 773 *
 774 * This special feature is only enabled on x86-64 systems. It is unlikely
 775 * that 32-bit x86 systems will have enough CPUs to require this feature
 776 * with its associated locking overhead. We also need 64-bit atomic read.
 777 *
 778 * The lock and the HPET value are stored together and can be read in a
 779 * single atomic 64-bit read. It is explicitly assumed that arch_spinlock_t
 780 * is 32 bits in size.
 781 */
 782union hpet_lock {
 783	struct {
 784		arch_spinlock_t lock;
 785		u32 value;
 786	};
 787	u64 lockval;
 788};
 789
 790static union hpet_lock hpet __cacheline_aligned = {
 791	{ .lock = __ARCH_SPIN_LOCK_UNLOCKED, },
 792};
 793
 794static u64 read_hpet(struct clocksource *cs)
 795{
 796	unsigned long flags;
 797	union hpet_lock old, new;
 798
 799	BUILD_BUG_ON(sizeof(union hpet_lock) != 8);
 800
 801	/*
 802	 * Read HPET directly if in NMI.
 803	 */
 804	if (in_nmi())
 805		return (u64)hpet_readl(HPET_COUNTER);
 806
 807	/*
 808	 * Read the current state of the lock and HPET value atomically.
 809	 */
 810	old.lockval = READ_ONCE(hpet.lockval);
 811
 812	if (arch_spin_is_locked(&old.lock))
 813		goto contended;
 814
 815	local_irq_save(flags);
 816	if (arch_spin_trylock(&hpet.lock)) {
 817		new.value = hpet_readl(HPET_COUNTER);
 818		/*
 819		 * Use WRITE_ONCE() to prevent store tearing.
 820		 */
 821		WRITE_ONCE(hpet.value, new.value);
 822		arch_spin_unlock(&hpet.lock);
 823		local_irq_restore(flags);
 824		return (u64)new.value;
 825	}
 826	local_irq_restore(flags);
 827
 828contended:
 829	/*
 830	 * Contended case
 831	 * --------------
 832	 * Wait until the HPET value change or the lock is free to indicate
 833	 * its value is up-to-date.
 834	 *
 835	 * It is possible that old.value has already contained the latest
 836	 * HPET value while the lock holder was in the process of releasing
 837	 * the lock. Checking for lock state change will enable us to return
 838	 * the value immediately instead of waiting for the next HPET reader
 839	 * to come along.
 840	 */
 841	do {
 842		cpu_relax();
 843		new.lockval = READ_ONCE(hpet.lockval);
 844	} while ((new.value == old.value) && arch_spin_is_locked(&new.lock));
 845
 846	return (u64)new.value;
 847}
 848#else
 849/*
 850 * For UP or 32-bit.
 851 */
 852static u64 read_hpet(struct clocksource *cs)
 853{
 854	return (u64)hpet_readl(HPET_COUNTER);
 855}
 856#endif
 857
 858static struct clocksource clocksource_hpet = {
 859	.name		= "hpet",
 860	.rating		= 250,
 861	.read		= read_hpet,
 862	.mask		= HPET_MASK,
 863	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
 864	.resume		= hpet_resume_counter,
 865};
 866
 867/*
 868 * AMD SB700 based systems with spread spectrum enabled use a SMM based
 869 * HPET emulation to provide proper frequency setting.
 870 *
 871 * On such systems the SMM code is initialized with the first HPET register
 872 * access and takes some time to complete. During this time the config
 873 * register reads 0xffffffff. We check for max 1000 loops whether the
 874 * config register reads a non-0xffffffff value to make sure that the
 875 * HPET is up and running before we proceed any further.
 876 *
 877 * A counting loop is safe, as the HPET access takes thousands of CPU cycles.
 878 *
 879 * On non-SB700 based machines this check is only done once and has no
 880 * side effects.
 881 */
 882static bool __init hpet_cfg_working(void)
 883{
 884	int i;
 885
 886	for (i = 0; i < 1000; i++) {
 887		if (hpet_readl(HPET_CFG) != 0xFFFFFFFF)
 888			return true;
 889	}
 890
 891	pr_warn("Config register invalid. Disabling HPET\n");
 892	return false;
 893}
 894
 895static bool __init hpet_counting(void)
 896{
 897	u64 start, now, t1;
 898
 899	hpet_restart_counter();
 900
 901	t1 = hpet_readl(HPET_COUNTER);
 902	start = rdtsc();
 903
 904	/*
 905	 * We don't know the TSC frequency yet, but waiting for
 906	 * 200000 TSC cycles is safe:
 907	 * 4 GHz == 50us
 908	 * 1 GHz == 200us
 909	 */
 910	do {
 911		if (t1 != hpet_readl(HPET_COUNTER))
 912			return true;
 913		now = rdtsc();
 914	} while ((now - start) < 200000UL);
 915
 916	pr_warn("Counter not counting. HPET disabled\n");
 917	return false;
 918}
 919
 920static bool __init mwait_pc10_supported(void)
 921{
 922	unsigned int eax, ebx, ecx, mwait_substates;
 923
 924	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
 925		return false;
 926
 927	if (!cpu_feature_enabled(X86_FEATURE_MWAIT))
 928		return false;
 929
 930	if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
 931		return false;
 932
 933	cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &mwait_substates);
 934
 935	return (ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) &&
 936	       (ecx & CPUID5_ECX_INTERRUPT_BREAK) &&
 937	       (mwait_substates & (0xF << 28));
 938}
 939
 940/*
 941 * Check whether the system supports PC10. If so force disable HPET as that
 942 * stops counting in PC10. This check is overbroad as it does not take any
 943 * of the following into account:
 944 *
 945 *	- ACPI tables
 946 *	- Enablement of intel_idle
 947 *	- Command line arguments which limit intel_idle C-state support
 948 *
 949 * That's perfectly fine. HPET is a piece of hardware designed by committee
 950 * and the only reasons why it is still in use on modern systems is the
 951 * fact that it is impossible to reliably query TSC and CPU frequency via
 952 * CPUID or firmware.
 953 *
 954 * If HPET is functional it is useful for calibrating TSC, but this can be
 955 * done via PMTIMER as well which seems to be the last remaining timer on
 956 * X86/INTEL platforms that has not been completely wreckaged by feature
 957 * creep.
 958 *
 959 * In theory HPET support should be removed altogether, but there are older
 960 * systems out there which depend on it because TSC and APIC timer are
 961 * dysfunctional in deeper C-states.
 962 *
 963 * It's only 20 years now that hardware people have been asked to provide
 964 * reliable and discoverable facilities which can be used for timekeeping
 965 * and per CPU timer interrupts.
 966 *
 967 * The probability that this problem is going to be solved in the
 968 * forseeable future is close to zero, so the kernel has to be cluttered
 969 * with heuristics to keep up with the ever growing amount of hardware and
 970 * firmware trainwrecks. Hopefully some day hardware people will understand
 971 * that the approach of "This can be fixed in software" is not sustainable.
 972 * Hope dies last...
 973 */
 974static bool __init hpet_is_pc10_damaged(void)
 975{
 976	unsigned long long pcfg;
 977
 978	/* Check whether PC10 substates are supported */
 979	if (!mwait_pc10_supported())
 980		return false;
 981
 982	/* Check whether PC10 is enabled in PKG C-state limit */
 983	rdmsrl(MSR_PKG_CST_CONFIG_CONTROL, pcfg);
 984	if ((pcfg & 0xF) < 8)
 985		return false;
 986
 987	if (hpet_force_user) {
 988		pr_warn("HPET force enabled via command line, but dysfunctional in PC10.\n");
 989		return false;
 990	}
 991
 992	pr_info("HPET dysfunctional in PC10. Force disabled.\n");
 993	boot_hpet_disable = true;
 994	return true;
 995}
 996
 997/**
 998 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
 999 */
1000int __init hpet_enable(void)
1001{
1002	u32 hpet_period, cfg, id, irq;
1003	unsigned int i, channels;
1004	struct hpet_channel *hc;
1005	u64 freq;
1006
1007	if (!is_hpet_capable())
1008		return 0;
1009
1010	if (hpet_is_pc10_damaged())
1011		return 0;
1012
1013	hpet_set_mapping();
1014	if (!hpet_virt_address)
1015		return 0;
1016
1017	/* Validate that the config register is working */
1018	if (!hpet_cfg_working())
1019		goto out_nohpet;
1020
1021	/*
1022	 * Read the period and check for a sane value:
1023	 */
1024	hpet_period = hpet_readl(HPET_PERIOD);
1025	if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
1026		goto out_nohpet;
1027
1028	/* The period is a femtoseconds value. Convert it to a frequency. */
1029	freq = FSEC_PER_SEC;
1030	do_div(freq, hpet_period);
1031	hpet_freq = freq;
1032
1033	/*
1034	 * Read the HPET ID register to retrieve the IRQ routing
1035	 * information and the number of channels
1036	 */
1037	id = hpet_readl(HPET_ID);
1038	hpet_print_config();
1039
1040	/* This is the HPET channel number which is zero based */
1041	channels = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
1042
1043	/*
1044	 * The legacy routing mode needs at least two channels, tick timer
1045	 * and the rtc emulation channel.
1046	 */
1047	if (IS_ENABLED(CONFIG_HPET_EMULATE_RTC) && channels < 2)
1048		goto out_nohpet;
1049
1050	hc = kcalloc(channels, sizeof(*hc), GFP_KERNEL);
1051	if (!hc) {
1052		pr_warn("Disabling HPET.\n");
1053		goto out_nohpet;
1054	}
1055	hpet_base.channels = hc;
1056	hpet_base.nr_channels = channels;
1057
1058	/* Read, store and sanitize the global configuration */
1059	cfg = hpet_readl(HPET_CFG);
1060	hpet_base.boot_cfg = cfg;
1061	cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
1062	hpet_writel(cfg, HPET_CFG);
1063	if (cfg)
1064		pr_warn("Global config: Unknown bits %#x\n", cfg);
1065
1066	/* Read, store and sanitize the per channel configuration */
1067	for (i = 0; i < channels; i++, hc++) {
1068		hc->num = i;
1069
1070		cfg = hpet_readl(HPET_Tn_CFG(i));
1071		hc->boot_cfg = cfg;
1072		irq = (cfg & Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
1073		hc->irq = irq;
1074
1075		cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
1076		hpet_writel(cfg, HPET_Tn_CFG(i));
1077
1078		cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
1079			 | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
1080			 | HPET_TN_FSB | HPET_TN_FSB_CAP);
1081		if (cfg)
1082			pr_warn("Channel #%u config: Unknown bits %#x\n", i, cfg);
1083	}
1084	hpet_print_config();
1085
1086	/*
1087	 * Validate that the counter is counting. This needs to be done
1088	 * after sanitizing the config registers to properly deal with
1089	 * force enabled HPETs.
1090	 */
1091	if (!hpet_counting())
1092		goto out_nohpet;
1093
1094	clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
1095
1096	if (id & HPET_ID_LEGSUP) {
1097		hpet_legacy_clockevent_register(&hpet_base.channels[0]);
1098		hpet_base.channels[0].mode = HPET_MODE_LEGACY;
1099		if (IS_ENABLED(CONFIG_HPET_EMULATE_RTC))
1100			hpet_base.channels[1].mode = HPET_MODE_LEGACY;
1101		return 1;
1102	}
1103	return 0;
1104
1105out_nohpet:
1106	kfree(hpet_base.channels);
1107	hpet_base.channels = NULL;
1108	hpet_base.nr_channels = 0;
1109	hpet_clear_mapping();
1110	hpet_address = 0;
1111	return 0;
1112}
1113
1114/*
1115 * The late initialization runs after the PCI quirks have been invoked
1116 * which might have detected a system on which the HPET can be enforced.
1117 *
1118 * Also, the MSI machinery is not working yet when the HPET is initialized
1119 * early.
1120 *
1121 * If the HPET is enabled, then:
1122 *
1123 *  1) Reserve one channel for /dev/hpet if CONFIG_HPET=y
1124 *  2) Reserve up to num_possible_cpus() channels as per CPU clockevents
1125 *  3) Setup /dev/hpet if CONFIG_HPET=y
1126 *  4) Register hotplug callbacks when clockevents are available
1127 */
1128static __init int hpet_late_init(void)
1129{
1130	int ret;
1131
1132	if (!hpet_address) {
1133		if (!force_hpet_address)
1134			return -ENODEV;
1135
1136		hpet_address = force_hpet_address;
1137		hpet_enable();
1138	}
1139
1140	if (!hpet_virt_address)
1141		return -ENODEV;
1142
1143	hpet_select_device_channel();
1144	hpet_select_clockevents();
1145	hpet_reserve_platform_timers();
1146	hpet_print_config();
1147
1148	if (!hpet_base.nr_clockevents)
1149		return 0;
1150
1151	ret = cpuhp_setup_state(CPUHP_AP_X86_HPET_ONLINE, "x86/hpet:online",
1152				hpet_cpuhp_online, NULL);
1153	if (ret)
1154		return ret;
1155	ret = cpuhp_setup_state(CPUHP_X86_HPET_DEAD, "x86/hpet:dead", NULL,
1156				hpet_cpuhp_dead);
1157	if (ret)
1158		goto err_cpuhp;
1159	return 0;
1160
1161err_cpuhp:
1162	cpuhp_remove_state(CPUHP_AP_X86_HPET_ONLINE);
1163	return ret;
1164}
1165fs_initcall(hpet_late_init);
1166
1167void hpet_disable(void)
1168{
1169	unsigned int i;
1170	u32 cfg;
1171
1172	if (!is_hpet_capable() || !hpet_virt_address)
1173		return;
1174
1175	/* Restore boot configuration with the enable bit cleared */
1176	cfg = hpet_base.boot_cfg;
1177	cfg &= ~HPET_CFG_ENABLE;
1178	hpet_writel(cfg, HPET_CFG);
1179
1180	/* Restore the channel boot configuration */
1181	for (i = 0; i < hpet_base.nr_channels; i++)
1182		hpet_writel(hpet_base.channels[i].boot_cfg, HPET_Tn_CFG(i));
1183
1184	/* If the HPET was enabled at boot time, reenable it */
1185	if (hpet_base.boot_cfg & HPET_CFG_ENABLE)
1186		hpet_writel(hpet_base.boot_cfg, HPET_CFG);
1187}
1188
1189#ifdef CONFIG_HPET_EMULATE_RTC
1190
1191/*
1192 * HPET in LegacyReplacement mode eats up the RTC interrupt line. When HPET
1193 * is enabled, we support RTC interrupt functionality in software.
1194 *
1195 * RTC has 3 kinds of interrupts:
1196 *
1197 *  1) Update Interrupt - generate an interrupt, every second, when the
1198 *     RTC clock is updated
1199 *  2) Alarm Interrupt - generate an interrupt at a specific time of day
1200 *  3) Periodic Interrupt - generate periodic interrupt, with frequencies
1201 *     2Hz-8192Hz (2Hz-64Hz for non-root user) (all frequencies in powers of 2)
1202 *
1203 * (1) and (2) above are implemented using polling at a frequency of 64 Hz:
1204 * DEFAULT_RTC_INT_FREQ.
1205 *
1206 * The exact frequency is a tradeoff between accuracy and interrupt overhead.
1207 *
1208 * For (3), we use interrupts at 64 Hz, or the user specified periodic frequency,
1209 * if it's higher.
1210 */
1211#include <linux/mc146818rtc.h>
1212#include <linux/rtc.h>
1213
1214#define DEFAULT_RTC_INT_FREQ	64
1215#define DEFAULT_RTC_SHIFT	6
1216#define RTC_NUM_INTS		1
1217
1218static unsigned long hpet_rtc_flags;
1219static int hpet_prev_update_sec;
1220static struct rtc_time hpet_alarm_time;
1221static unsigned long hpet_pie_count;
1222static u32 hpet_t1_cmp;
1223static u32 hpet_default_delta;
1224static u32 hpet_pie_delta;
1225static unsigned long hpet_pie_limit;
1226
1227static rtc_irq_handler irq_handler;
1228
1229/*
1230 * Check that the HPET counter c1 is ahead of c2
1231 */
1232static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1233{
1234	return (s32)(c2 - c1) < 0;
1235}
1236
1237/*
1238 * Registers a IRQ handler.
1239 */
1240int hpet_register_irq_handler(rtc_irq_handler handler)
1241{
1242	if (!is_hpet_enabled())
1243		return -ENODEV;
1244	if (irq_handler)
1245		return -EBUSY;
1246
1247	irq_handler = handler;
1248
1249	return 0;
1250}
1251EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1252
1253/*
1254 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1255 * and does cleanup.
1256 */
1257void hpet_unregister_irq_handler(rtc_irq_handler handler)
1258{
1259	if (!is_hpet_enabled())
1260		return;
1261
1262	irq_handler = NULL;
1263	hpet_rtc_flags = 0;
1264}
1265EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1266
1267/*
1268 * Channel 1 for RTC emulation. We use one shot mode, as periodic mode
1269 * is not supported by all HPET implementations for channel 1.
1270 *
1271 * hpet_rtc_timer_init() is called when the rtc is initialized.
1272 */
1273int hpet_rtc_timer_init(void)
1274{
1275	unsigned int cfg, cnt, delta;
1276	unsigned long flags;
1277
1278	if (!is_hpet_enabled())
1279		return 0;
1280
1281	if (!hpet_default_delta) {
1282		struct clock_event_device *evt = &hpet_base.channels[0].evt;
1283		uint64_t clc;
1284
1285		clc = (uint64_t) evt->mult * NSEC_PER_SEC;
1286		clc >>= evt->shift + DEFAULT_RTC_SHIFT;
1287		hpet_default_delta = clc;
1288	}
1289
1290	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1291		delta = hpet_default_delta;
1292	else
1293		delta = hpet_pie_delta;
1294
1295	local_irq_save(flags);
1296
1297	cnt = delta + hpet_readl(HPET_COUNTER);
1298	hpet_writel(cnt, HPET_T1_CMP);
1299	hpet_t1_cmp = cnt;
1300
1301	cfg = hpet_readl(HPET_T1_CFG);
1302	cfg &= ~HPET_TN_PERIODIC;
1303	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1304	hpet_writel(cfg, HPET_T1_CFG);
1305
1306	local_irq_restore(flags);
1307
1308	return 1;
1309}
1310EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1311
1312static void hpet_disable_rtc_channel(void)
1313{
1314	u32 cfg = hpet_readl(HPET_T1_CFG);
1315
1316	cfg &= ~HPET_TN_ENABLE;
1317	hpet_writel(cfg, HPET_T1_CFG);
1318}
1319
1320/*
1321 * The functions below are called from rtc driver.
1322 * Return 0 if HPET is not being used.
1323 * Otherwise do the necessary changes and return 1.
1324 */
1325int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1326{
1327	if (!is_hpet_enabled())
1328		return 0;
1329
1330	hpet_rtc_flags &= ~bit_mask;
1331	if (unlikely(!hpet_rtc_flags))
1332		hpet_disable_rtc_channel();
1333
1334	return 1;
1335}
1336EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1337
1338int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1339{
1340	unsigned long oldbits = hpet_rtc_flags;
1341
1342	if (!is_hpet_enabled())
1343		return 0;
1344
1345	hpet_rtc_flags |= bit_mask;
1346
1347	if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1348		hpet_prev_update_sec = -1;
1349
1350	if (!oldbits)
1351		hpet_rtc_timer_init();
1352
1353	return 1;
1354}
1355EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1356
1357int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
1358{
1359	if (!is_hpet_enabled())
1360		return 0;
1361
1362	hpet_alarm_time.tm_hour = hrs;
1363	hpet_alarm_time.tm_min = min;
1364	hpet_alarm_time.tm_sec = sec;
1365
1366	return 1;
1367}
1368EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1369
1370int hpet_set_periodic_freq(unsigned long freq)
1371{
1372	uint64_t clc;
1373
1374	if (!is_hpet_enabled())
1375		return 0;
1376
1377	if (freq <= DEFAULT_RTC_INT_FREQ) {
1378		hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1379	} else {
1380		struct clock_event_device *evt = &hpet_base.channels[0].evt;
1381
1382		clc = (uint64_t) evt->mult * NSEC_PER_SEC;
1383		do_div(clc, freq);
1384		clc >>= evt->shift;
1385		hpet_pie_delta = clc;
1386		hpet_pie_limit = 0;
1387	}
1388
1389	return 1;
1390}
1391EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1392
1393int hpet_rtc_dropped_irq(void)
1394{
1395	return is_hpet_enabled();
1396}
1397EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1398
1399static void hpet_rtc_timer_reinit(void)
1400{
1401	unsigned int delta;
1402	int lost_ints = -1;
1403
1404	if (unlikely(!hpet_rtc_flags))
1405		hpet_disable_rtc_channel();
1406
1407	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1408		delta = hpet_default_delta;
1409	else
1410		delta = hpet_pie_delta;
1411
1412	/*
1413	 * Increment the comparator value until we are ahead of the
1414	 * current count.
1415	 */
1416	do {
1417		hpet_t1_cmp += delta;
1418		hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1419		lost_ints++;
1420	} while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1421
1422	if (lost_ints) {
1423		if (hpet_rtc_flags & RTC_PIE)
1424			hpet_pie_count += lost_ints;
1425		if (printk_ratelimit())
1426			pr_warn("Lost %d RTC interrupts\n", lost_ints);
1427	}
1428}
1429
1430irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1431{
1432	struct rtc_time curr_time;
1433	unsigned long rtc_int_flag = 0;
1434
1435	hpet_rtc_timer_reinit();
1436	memset(&curr_time, 0, sizeof(struct rtc_time));
1437
1438	if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1439		mc146818_get_time(&curr_time);
1440
1441	if (hpet_rtc_flags & RTC_UIE &&
1442	    curr_time.tm_sec != hpet_prev_update_sec) {
1443		if (hpet_prev_update_sec >= 0)
1444			rtc_int_flag = RTC_UF;
1445		hpet_prev_update_sec = curr_time.tm_sec;
1446	}
1447
1448	if (hpet_rtc_flags & RTC_PIE && ++hpet_pie_count >= hpet_pie_limit) {
1449		rtc_int_flag |= RTC_PF;
1450		hpet_pie_count = 0;
1451	}
1452
1453	if (hpet_rtc_flags & RTC_AIE &&
1454	    (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1455	    (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1456	    (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1457		rtc_int_flag |= RTC_AF;
1458
1459	if (rtc_int_flag) {
1460		rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1461		if (irq_handler)
1462			irq_handler(rtc_int_flag, dev_id);
1463	}
1464	return IRQ_HANDLED;
1465}
1466EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1467#endif