Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2#include <linux/clockchips.h>
   3#include <linux/interrupt.h>
   4#include <linux/export.h>
   5#include <linux/delay.h>
 
 
 
   6#include <linux/hpet.h>
 
   7#include <linux/cpu.h>
   8#include <linux/irq.h>
 
   9
 
  10#include <asm/hpet.h>
  11#include <asm/time.h>
  12
  13#undef  pr_fmt
  14#define pr_fmt(fmt) "hpet: " fmt
  15
  16enum hpet_mode {
  17	HPET_MODE_UNUSED,
  18	HPET_MODE_LEGACY,
  19	HPET_MODE_CLOCKEVT,
  20	HPET_MODE_DEVICE,
  21};
  22
  23struct hpet_channel {
  24	struct clock_event_device	evt;
  25	unsigned int			num;
  26	unsigned int			cpu;
  27	unsigned int			irq;
  28	unsigned int			in_use;
  29	enum hpet_mode			mode;
  30	unsigned int			boot_cfg;
  31	char				name[10];
  32};
  33
  34struct hpet_base {
  35	unsigned int			nr_channels;
  36	unsigned int			nr_clockevents;
  37	unsigned int			boot_cfg;
  38	struct hpet_channel		*channels;
  39};
  40
  41#define HPET_MASK			CLOCKSOURCE_MASK(32)
  42
 
 
 
 
 
 
 
 
 
 
  43#define HPET_MIN_CYCLES			128
  44#define HPET_MIN_PROG_DELTA		(HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
  45
  46/*
  47 * HPET address is set in acpi/boot.c, when an ACPI entry exists
  48 */
  49unsigned long				hpet_address;
  50u8					hpet_blockid; /* OS timer block num */
  51bool					hpet_msi_disable;
  52
  53#ifdef CONFIG_PCI_MSI
  54static DEFINE_PER_CPU(struct hpet_channel *, cpu_hpet_channel);
  55static struct irq_domain		*hpet_domain;
  56#endif
  57
  58static void __iomem			*hpet_virt_address;
  59
  60static struct hpet_base			hpet_base;
  61
  62static bool				hpet_legacy_int_enabled;
  63static unsigned long			hpet_freq;
  64
  65bool					boot_hpet_disable;
  66bool					hpet_force_user;
  67static bool				hpet_verbose;
  68
  69static inline
  70struct hpet_channel *clockevent_to_channel(struct clock_event_device *evt)
  71{
  72	return container_of(evt, struct hpet_channel, evt);
  73}
  74
  75inline unsigned int hpet_readl(unsigned int a)
  76{
  77	return readl(hpet_virt_address + a);
  78}
  79
  80static inline void hpet_writel(unsigned int d, unsigned int a)
  81{
  82	writel(d, hpet_virt_address + a);
  83}
  84
 
 
 
 
  85static inline void hpet_set_mapping(void)
  86{
  87	hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
 
 
 
  88}
  89
  90static inline void hpet_clear_mapping(void)
  91{
  92	iounmap(hpet_virt_address);
  93	hpet_virt_address = NULL;
  94}
  95
  96/*
  97 * HPET command line enable / disable
  98 */
 
 
 
 
  99static int __init hpet_setup(char *str)
 100{
 101	while (str) {
 102		char *next = strchr(str, ',');
 103
 104		if (next)
 105			*next++ = 0;
 106		if (!strncmp("disable", str, 7))
 107			boot_hpet_disable = true;
 108		if (!strncmp("force", str, 5))
 109			hpet_force_user = true;
 110		if (!strncmp("verbose", str, 7))
 111			hpet_verbose = true;
 112		str = next;
 113	}
 114	return 1;
 115}
 116__setup("hpet=", hpet_setup);
 117
 118static int __init disable_hpet(char *str)
 119{
 120	boot_hpet_disable = true;
 121	return 1;
 122}
 123__setup("nohpet", disable_hpet);
 124
 125static inline int is_hpet_capable(void)
 126{
 127	return !boot_hpet_disable && hpet_address;
 128}
 129
 
 
 
 
 
 130/**
 131 * is_hpet_enabled - Check whether the legacy HPET timer interrupt is enabled
 132 */
 133int is_hpet_enabled(void)
 134{
 135	return is_hpet_capable() && hpet_legacy_int_enabled;
 136}
 137EXPORT_SYMBOL_GPL(is_hpet_enabled);
 138
 139static void _hpet_print_config(const char *function, int line)
 140{
 141	u32 i, id, period, cfg, status, channels, l, h;
 142
 143	pr_info("%s(%d):\n", function, line);
 144
 145	id = hpet_readl(HPET_ID);
 146	period = hpet_readl(HPET_PERIOD);
 147	pr_info("ID: 0x%x, PERIOD: 0x%x\n", id, period);
 148
 149	cfg = hpet_readl(HPET_CFG);
 150	status = hpet_readl(HPET_STATUS);
 151	pr_info("CFG: 0x%x, STATUS: 0x%x\n", cfg, status);
 152
 153	l = hpet_readl(HPET_COUNTER);
 154	h = hpet_readl(HPET_COUNTER+4);
 155	pr_info("COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
 156
 157	channels = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
 158
 159	for (i = 0; i < channels; i++) {
 160		l = hpet_readl(HPET_Tn_CFG(i));
 161		h = hpet_readl(HPET_Tn_CFG(i)+4);
 162		pr_info("T%d: CFG_l: 0x%x, CFG_h: 0x%x\n", i, l, h);
 163
 164		l = hpet_readl(HPET_Tn_CMP(i));
 165		h = hpet_readl(HPET_Tn_CMP(i)+4);
 166		pr_info("T%d: CMP_l: 0x%x, CMP_h: 0x%x\n", i, l, h);
 167
 168		l = hpet_readl(HPET_Tn_ROUTE(i));
 169		h = hpet_readl(HPET_Tn_ROUTE(i)+4);
 170		pr_info("T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n", i, l, h);
 
 171	}
 172}
 173
 174#define hpet_print_config()					\
 175do {								\
 176	if (hpet_verbose)					\
 177		_hpet_print_config(__func__, __LINE__);	\
 178} while (0)
 179
 180/*
 181 * When the HPET driver (/dev/hpet) is enabled, we need to reserve
 182 * timer 0 and timer 1 in case of RTC emulation.
 183 */
 184#ifdef CONFIG_HPET
 185
 186static void __init hpet_reserve_platform_timers(void)
 
 
 187{
 
 
 
 188	struct hpet_data hd;
 189	unsigned int i;
 
 190
 191	memset(&hd, 0, sizeof(hd));
 192	hd.hd_phys_address	= hpet_address;
 193	hd.hd_address		= hpet_virt_address;
 194	hd.hd_nirqs		= hpet_base.nr_channels;
 
 
 
 
 
 195
 196	/*
 197	 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
 198	 * is wrong for i8259!) not the output IRQ.  Many BIOS writers
 199	 * don't bother configuring *any* comparator interrupts.
 200	 */
 201	hd.hd_irq[0] = HPET_LEGACY_8254;
 202	hd.hd_irq[1] = HPET_LEGACY_RTC;
 203
 204	for (i = 0; i < hpet_base.nr_channels; i++) {
 205		struct hpet_channel *hc = hpet_base.channels + i;
 206
 207		if (i >= 2)
 208			hd.hd_irq[i] = hc->irq;
 209
 210		switch (hc->mode) {
 211		case HPET_MODE_UNUSED:
 212		case HPET_MODE_DEVICE:
 213			hc->mode = HPET_MODE_DEVICE;
 214			break;
 215		case HPET_MODE_CLOCKEVT:
 216		case HPET_MODE_LEGACY:
 217			hpet_reserve_timer(&hd, hc->num);
 218			break;
 219		}
 220	}
 221
 222	hpet_alloc(&hd);
 223}
 224
 225static void __init hpet_select_device_channel(void)
 226{
 227	int i;
 228
 229	for (i = 0; i < hpet_base.nr_channels; i++) {
 230		struct hpet_channel *hc = hpet_base.channels + i;
 231
 232		/* Associate the first unused channel to /dev/hpet */
 233		if (hc->mode == HPET_MODE_UNUSED) {
 234			hc->mode = HPET_MODE_DEVICE;
 235			return;
 236		}
 237	}
 238}
 239
 240#else
 241static inline void hpet_reserve_platform_timers(void) { }
 242static inline void hpet_select_device_channel(void) {}
 243#endif
 244
 245/* Common HPET functions */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 246static void hpet_stop_counter(void)
 247{
 248	u32 cfg = hpet_readl(HPET_CFG);
 249
 250	cfg &= ~HPET_CFG_ENABLE;
 251	hpet_writel(cfg, HPET_CFG);
 252}
 253
 254static void hpet_reset_counter(void)
 255{
 256	hpet_writel(0, HPET_COUNTER);
 257	hpet_writel(0, HPET_COUNTER + 4);
 258}
 259
 260static void hpet_start_counter(void)
 261{
 262	unsigned int cfg = hpet_readl(HPET_CFG);
 263
 264	cfg |= HPET_CFG_ENABLE;
 265	hpet_writel(cfg, HPET_CFG);
 266}
 267
 268static void hpet_restart_counter(void)
 269{
 270	hpet_stop_counter();
 271	hpet_reset_counter();
 272	hpet_start_counter();
 273}
 274
 275static void hpet_resume_device(void)
 276{
 277	force_hpet_resume();
 278}
 279
 280static void hpet_resume_counter(struct clocksource *cs)
 281{
 282	hpet_resume_device();
 283	hpet_restart_counter();
 284}
 285
 286static void hpet_enable_legacy_int(void)
 287{
 288	unsigned int cfg = hpet_readl(HPET_CFG);
 289
 290	cfg |= HPET_CFG_LEGACY;
 291	hpet_writel(cfg, HPET_CFG);
 292	hpet_legacy_int_enabled = true;
 293}
 294
 295static int hpet_clkevt_set_state_periodic(struct clock_event_device *evt)
 296{
 297	unsigned int channel = clockevent_to_channel(evt)->num;
 298	unsigned int cfg, cmp, now;
 299	uint64_t delta;
 300
 301	hpet_stop_counter();
 302	delta = ((uint64_t)(NSEC_PER_SEC / HZ)) * evt->mult;
 303	delta >>= evt->shift;
 304	now = hpet_readl(HPET_COUNTER);
 305	cmp = now + (unsigned int)delta;
 306	cfg = hpet_readl(HPET_Tn_CFG(channel));
 307	cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
 308	       HPET_TN_32BIT;
 309	hpet_writel(cfg, HPET_Tn_CFG(channel));
 310	hpet_writel(cmp, HPET_Tn_CMP(channel));
 311	udelay(1);
 312	/*
 313	 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
 314	 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
 315	 * bit is automatically cleared after the first write.
 316	 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
 317	 * Publication # 24674)
 318	 */
 319	hpet_writel((unsigned int)delta, HPET_Tn_CMP(channel));
 320	hpet_start_counter();
 321	hpet_print_config();
 322
 323	return 0;
 324}
 325
 326static int hpet_clkevt_set_state_oneshot(struct clock_event_device *evt)
 327{
 328	unsigned int channel = clockevent_to_channel(evt)->num;
 329	unsigned int cfg;
 330
 331	cfg = hpet_readl(HPET_Tn_CFG(channel));
 332	cfg &= ~HPET_TN_PERIODIC;
 333	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
 334	hpet_writel(cfg, HPET_Tn_CFG(channel));
 335
 336	return 0;
 337}
 338
 339static int hpet_clkevt_set_state_shutdown(struct clock_event_device *evt)
 
 340{
 341	unsigned int channel = clockevent_to_channel(evt)->num;
 342	unsigned int cfg;
 343
 344	cfg = hpet_readl(HPET_Tn_CFG(channel));
 345	cfg &= ~HPET_TN_ENABLE;
 346	hpet_writel(cfg, HPET_Tn_CFG(channel));
 347
 348	return 0;
 349}
 350
 351static int hpet_clkevt_legacy_resume(struct clock_event_device *evt)
 352{
 353	hpet_enable_legacy_int();
 354	hpet_print_config();
 355	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 356}
 357
 358static int
 359hpet_clkevt_set_next_event(unsigned long delta, struct clock_event_device *evt)
 360{
 361	unsigned int channel = clockevent_to_channel(evt)->num;
 362	u32 cnt;
 363	s32 res;
 364
 365	cnt = hpet_readl(HPET_COUNTER);
 366	cnt += (u32) delta;
 367	hpet_writel(cnt, HPET_Tn_CMP(channel));
 368
 369	/*
 370	 * HPETs are a complete disaster. The compare register is
 371	 * based on a equal comparison and neither provides a less
 372	 * than or equal functionality (which would require to take
 373	 * the wraparound into account) nor a simple count down event
 374	 * mode. Further the write to the comparator register is
 375	 * delayed internally up to two HPET clock cycles in certain
 376	 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
 377	 * longer delays. We worked around that by reading back the
 378	 * compare register, but that required another workaround for
 379	 * ICH9,10 chips where the first readout after write can
 380	 * return the old stale value. We already had a minimum
 381	 * programming delta of 5us enforced, but a NMI or SMI hitting
 382	 * between the counter readout and the comparator write can
 383	 * move us behind that point easily. Now instead of reading
 384	 * the compare register back several times, we make the ETIME
 385	 * decision based on the following: Return ETIME if the
 386	 * counter value after the write is less than HPET_MIN_CYCLES
 387	 * away from the event or if the counter is already ahead of
 388	 * the event. The minimum programming delta for the generic
 389	 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
 390	 */
 391	res = (s32)(cnt - hpet_readl(HPET_COUNTER));
 392
 393	return res < HPET_MIN_CYCLES ? -ETIME : 0;
 394}
 395
 396static void hpet_init_clockevent(struct hpet_channel *hc, unsigned int rating)
 
 397{
 398	struct clock_event_device *evt = &hc->evt;
 399
 400	evt->rating		= rating;
 401	evt->irq		= hc->irq;
 402	evt->name		= hc->name;
 403	evt->cpumask		= cpumask_of(hc->cpu);
 404	evt->set_state_oneshot	= hpet_clkevt_set_state_oneshot;
 405	evt->set_next_event	= hpet_clkevt_set_next_event;
 406	evt->set_state_shutdown	= hpet_clkevt_set_state_shutdown;
 407
 408	evt->features = CLOCK_EVT_FEAT_ONESHOT;
 409	if (hc->boot_cfg & HPET_TN_PERIODIC) {
 410		evt->features		|= CLOCK_EVT_FEAT_PERIODIC;
 411		evt->set_state_periodic	= hpet_clkevt_set_state_periodic;
 412	}
 413}
 414
 415static void __init hpet_legacy_clockevent_register(struct hpet_channel *hc)
 
 416{
 417	/*
 418	 * Start HPET with the boot CPU's cpumask and make it global after
 419	 * the IO_APIC has been initialized.
 420	 */
 421	hc->cpu = boot_cpu_data.cpu_index;
 422	strncpy(hc->name, "hpet", sizeof(hc->name));
 423	hpet_init_clockevent(hc, 50);
 424
 425	hc->evt.tick_resume	= hpet_clkevt_legacy_resume;
 426
 427	/*
 428	 * Legacy horrors and sins from the past. HPET used periodic mode
 429	 * unconditionally forever on the legacy channel 0. Removing the
 430	 * below hack and using the conditional in hpet_init_clockevent()
 431	 * makes at least Qemu and one hardware machine fail to boot.
 432	 * There are two issues which cause the boot failure:
 433	 *
 434	 * #1 After the timer delivery test in IOAPIC and the IOAPIC setup
 435	 *    the next interrupt is not delivered despite the HPET channel
 436	 *    being programmed correctly. Reprogramming the HPET after
 437	 *    switching to IOAPIC makes it work again. After fixing this,
 438	 *    the next issue surfaces:
 439	 *
 440	 * #2 Due to the unconditional periodic mode availability the Local
 441	 *    APIC timer calibration can hijack the global clockevents
 442	 *    event handler without causing damage. Using oneshot at this
 443	 *    stage makes if hang because the HPET does not get
 444	 *    reprogrammed due to the handler hijacking. Duh, stupid me!
 445	 *
 446	 * Both issues require major surgery and especially the kick HPET
 447	 * again after enabling IOAPIC results in really nasty hackery.
 448	 * This 'assume periodic works' magic has survived since HPET
 449	 * support got added, so it's questionable whether this should be
 450	 * fixed. Both Qemu and the failing hardware machine support
 451	 * periodic mode despite the fact that both don't advertise it in
 452	 * the configuration register and both need that extra kick after
 453	 * switching to IOAPIC. Seems to be a feature...
 454	 */
 455	hc->evt.features		|= CLOCK_EVT_FEAT_PERIODIC;
 456	hc->evt.set_state_periodic	= hpet_clkevt_set_state_periodic;
 457
 458	/* Start HPET legacy interrupts */
 459	hpet_enable_legacy_int();
 460
 461	clockevents_config_and_register(&hc->evt, hpet_freq,
 462					HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
 463	global_clock_event = &hc->evt;
 464	pr_debug("Clockevent registered\n");
 465}
 466
 467/*
 468 * HPET MSI Support
 469 */
 470#ifdef CONFIG_PCI_MSI
 471
 
 
 
 472void hpet_msi_unmask(struct irq_data *data)
 473{
 474	struct hpet_channel *hc = irq_data_get_irq_handler_data(data);
 475	unsigned int cfg;
 476
 477	cfg = hpet_readl(HPET_Tn_CFG(hc->num));
 478	cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
 479	hpet_writel(cfg, HPET_Tn_CFG(hc->num));
 
 480}
 481
 482void hpet_msi_mask(struct irq_data *data)
 483{
 484	struct hpet_channel *hc = irq_data_get_irq_handler_data(data);
 485	unsigned int cfg;
 486
 487	cfg = hpet_readl(HPET_Tn_CFG(hc->num));
 488	cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
 489	hpet_writel(cfg, HPET_Tn_CFG(hc->num));
 
 490}
 491
 492void hpet_msi_write(struct hpet_channel *hc, struct msi_msg *msg)
 493{
 494	hpet_writel(msg->data, HPET_Tn_ROUTE(hc->num));
 495	hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hc->num) + 4);
 496}
 497
 498static int hpet_clkevt_msi_resume(struct clock_event_device *evt)
 499{
 500	struct hpet_channel *hc = clockevent_to_channel(evt);
 501	struct irq_data *data = irq_get_irq_data(hc->irq);
 502	struct msi_msg msg;
 
 503
 504	/* Restore the MSI msg and unmask the interrupt */
 505	irq_chip_compose_msi_msg(data, &msg);
 506	hpet_msi_write(hc, &msg);
 507	hpet_msi_unmask(data);
 508	return 0;
 509}
 510
 511static irqreturn_t hpet_msi_interrupt_handler(int irq, void *data)
 
 512{
 513	struct hpet_channel *hc = data;
 514	struct clock_event_device *evt = &hc->evt;
 
 515
 516	if (!evt->event_handler) {
 517		pr_info("Spurious interrupt HPET channel %d\n", hc->num);
 518		return IRQ_HANDLED;
 
 
 519	}
 520
 521	evt->event_handler(evt);
 522	return IRQ_HANDLED;
 523}
 524
 525static int hpet_setup_msi_irq(struct hpet_channel *hc)
 526{
 527	if (request_irq(hc->irq, hpet_msi_interrupt_handler,
 528			IRQF_TIMER | IRQF_NOBALANCING,
 529			hc->name, hc))
 530		return -1;
 531
 532	disable_irq(hc->irq);
 533	irq_set_affinity(hc->irq, cpumask_of(hc->cpu));
 534	enable_irq(hc->irq);
 535
 536	pr_debug("%s irq %u for MSI\n", hc->name, hc->irq);
 537
 
 
 
 
 538	return 0;
 539}
 540
 541/* Invoked from the hotplug callback on @cpu */
 542static void init_one_hpet_msi_clockevent(struct hpet_channel *hc, int cpu)
 543{
 544	struct clock_event_device *evt = &hc->evt;
 545
 546	hc->cpu = cpu;
 547	per_cpu(cpu_hpet_channel, cpu) = hc;
 548	hpet_setup_msi_irq(hc);
 549
 550	hpet_init_clockevent(hc, 110);
 551	evt->tick_resume = hpet_clkevt_msi_resume;
 
 
 
 552
 553	clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
 554					0x7FFFFFFF);
 555}
 556
 557static struct hpet_channel *hpet_get_unused_clockevent(void)
 558{
 559	int i;
 560
 561	for (i = 0; i < hpet_base.nr_channels; i++) {
 562		struct hpet_channel *hc = hpet_base.channels + i;
 
 
 563
 564		if (hc->mode != HPET_MODE_CLOCKEVT || hc->in_use)
 565			continue;
 566		hc->in_use = 1;
 567		return hc;
 568	}
 569	return NULL;
 570}
 571
 572static int hpet_cpuhp_online(unsigned int cpu)
 573{
 574	struct hpet_channel *hc = hpet_get_unused_clockevent();
 575
 576	if (hc)
 577		init_one_hpet_msi_clockevent(hc, cpu);
 578	return 0;
 579}
 580
 581static int hpet_cpuhp_dead(unsigned int cpu)
 
 582{
 583	struct hpet_channel *hc = per_cpu(cpu_hpet_channel, cpu);
 584
 585	if (!hc)
 586		return 0;
 587	free_irq(hc->irq, hc);
 588	hc->in_use = 0;
 589	per_cpu(cpu_hpet_channel, cpu) = NULL;
 590	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 591}
 592
 593static void __init hpet_select_clockevents(void)
 
 
 
 
 
 
 
 594{
 595	unsigned int i;
 
 
 
 596
 597	hpet_base.nr_clockevents = 0;
 
 598
 599	/* No point if MSI is disabled or CPU has an Always Runing APIC Timer */
 600	if (hpet_msi_disable || boot_cpu_has(X86_FEATURE_ARAT))
 601		return;
 
 602
 
 
 603	hpet_print_config();
 604
 605	hpet_domain = hpet_create_irq_domain(hpet_blockid);
 606	if (!hpet_domain)
 607		return;
 608
 609	for (i = 0; i < hpet_base.nr_channels; i++) {
 610		struct hpet_channel *hc = hpet_base.channels + i;
 611		int irq;
 612
 613		if (hc->mode != HPET_MODE_UNUSED)
 614			continue;
 
 615
 616		/* Only consider HPET channel with MSI support */
 617		if (!(hc->boot_cfg & HPET_TN_FSB_CAP))
 618			continue;
 619
 620		sprintf(hc->name, "hpet%d", i);
 
 
 
 621
 622		irq = hpet_assign_irq(hpet_domain, hc, hc->num);
 623		if (irq <= 0)
 624			continue;
 625
 626		hc->irq = irq;
 627		hc->mode = HPET_MODE_CLOCKEVT;
 628
 629		if (++hpet_base.nr_clockevents == num_possible_cpus())
 630			break;
 631	}
 632
 633	pr_info("%d channels of %d reserved for per-cpu timers\n",
 634		hpet_base.nr_channels, hpet_base.nr_clockevents);
 635}
 636
 637#else
 
 
 
 638
 639static inline void hpet_select_clockevents(void) { }
 
 640
 641#define hpet_cpuhp_online	NULL
 642#define hpet_cpuhp_dead		NULL
 643
 644#endif
 645
 646/*
 647 * Clock source related code
 648 */
 649#if defined(CONFIG_SMP) && defined(CONFIG_64BIT)
 650/*
 651 * Reading the HPET counter is a very slow operation. If a large number of
 652 * CPUs are trying to access the HPET counter simultaneously, it can cause
 653 * massive delays and slow down system performance dramatically. This may
 654 * happen when HPET is the default clock source instead of TSC. For a
 655 * really large system with hundreds of CPUs, the slowdown may be so
 656 * severe, that it can actually crash the system because of a NMI watchdog
 657 * soft lockup, for example.
 658 *
 659 * If multiple CPUs are trying to access the HPET counter at the same time,
 660 * we don't actually need to read the counter multiple times. Instead, the
 661 * other CPUs can use the counter value read by the first CPU in the group.
 662 *
 663 * This special feature is only enabled on x86-64 systems. It is unlikely
 664 * that 32-bit x86 systems will have enough CPUs to require this feature
 665 * with its associated locking overhead. We also need 64-bit atomic read.
 666 *
 667 * The lock and the HPET value are stored together and can be read in a
 668 * single atomic 64-bit read. It is explicitly assumed that arch_spinlock_t
 669 * is 32 bits in size.
 670 */
 671union hpet_lock {
 672	struct {
 673		arch_spinlock_t lock;
 674		u32 value;
 675	};
 676	u64 lockval;
 677};
 678
 679static union hpet_lock hpet __cacheline_aligned = {
 680	{ .lock = __ARCH_SPIN_LOCK_UNLOCKED, },
 681};
 
 
 682
 683static u64 read_hpet(struct clocksource *cs)
 684{
 685	unsigned long flags;
 686	union hpet_lock old, new;
 687
 688	BUILD_BUG_ON(sizeof(union hpet_lock) != 8);
 
 689
 690	/*
 691	 * Read HPET directly if in NMI.
 692	 */
 693	if (in_nmi())
 694		return (u64)hpet_readl(HPET_COUNTER);
 695
 696	/*
 697	 * Read the current state of the lock and HPET value atomically.
 698	 */
 699	old.lockval = READ_ONCE(hpet.lockval);
 
 
 
 
 
 700
 701	if (arch_spin_is_locked(&old.lock))
 702		goto contended;
 
 
 703
 704	local_irq_save(flags);
 705	if (arch_spin_trylock(&hpet.lock)) {
 706		new.value = hpet_readl(HPET_COUNTER);
 707		/*
 708		 * Use WRITE_ONCE() to prevent store tearing.
 709		 */
 710		WRITE_ONCE(hpet.value, new.value);
 711		arch_spin_unlock(&hpet.lock);
 712		local_irq_restore(flags);
 713		return (u64)new.value;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 714	}
 715	local_irq_restore(flags);
 
 
 716
 717contended:
 718	/*
 719	 * Contended case
 720	 * --------------
 721	 * Wait until the HPET value change or the lock is free to indicate
 722	 * its value is up-to-date.
 723	 *
 724	 * It is possible that old.value has already contained the latest
 725	 * HPET value while the lock holder was in the process of releasing
 726	 * the lock. Checking for lock state change will enable us to return
 727	 * the value immediately instead of waiting for the next HPET reader
 728	 * to come along.
 729	 */
 730	do {
 731		cpu_relax();
 732		new.lockval = READ_ONCE(hpet.lockval);
 733	} while ((new.value == old.value) && arch_spin_is_locked(&new.lock));
 734
 735	return (u64)new.value;
 
 
 
 736}
 737#else
 
 
 
 
 
 
 
 
 
 738/*
 739 * For UP or 32-bit.
 740 */
 741static u64 read_hpet(struct clocksource *cs)
 742{
 743	return (u64)hpet_readl(HPET_COUNTER);
 744}
 745#endif
 746
 747static struct clocksource clocksource_hpet = {
 748	.name		= "hpet",
 749	.rating		= 250,
 750	.read		= read_hpet,
 751	.mask		= HPET_MASK,
 752	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
 753	.resume		= hpet_resume_counter,
 
 
 
 754};
 755
 756/*
 757 * AMD SB700 based systems with spread spectrum enabled use a SMM based
 758 * HPET emulation to provide proper frequency setting.
 759 *
 760 * On such systems the SMM code is initialized with the first HPET register
 761 * access and takes some time to complete. During this time the config
 762 * register reads 0xffffffff. We check for max 1000 loops whether the
 763 * config register reads a non-0xffffffff value to make sure that the
 764 * HPET is up and running before we proceed any further.
 765 *
 766 * A counting loop is safe, as the HPET access takes thousands of CPU cycles.
 767 *
 768 * On non-SB700 based machines this check is only done once and has no
 769 * side effects.
 770 */
 771static bool __init hpet_cfg_working(void)
 772{
 773	int i;
 774
 775	for (i = 0; i < 1000; i++) {
 776		if (hpet_readl(HPET_CFG) != 0xFFFFFFFF)
 777			return true;
 778	}
 779
 780	pr_warn("Config register invalid. Disabling HPET\n");
 781	return false;
 782}
 783
 784static bool __init hpet_counting(void)
 785{
 786	u64 start, now, t1;
 787
 
 788	hpet_restart_counter();
 789
 
 790	t1 = hpet_readl(HPET_COUNTER);
 791	start = rdtsc();
 792
 793	/*
 794	 * We don't know the TSC frequency yet, but waiting for
 795	 * 200000 TSC cycles is safe:
 796	 * 4 GHz == 50us
 797	 * 1 GHz == 200us
 798	 */
 799	do {
 800		if (t1 != hpet_readl(HPET_COUNTER))
 801			return true;
 802		now = rdtsc();
 803	} while ((now - start) < 200000UL);
 804
 805	pr_warn("Counter not counting. HPET disabled\n");
 806	return false;
 
 
 
 
 
 
 807}
 808
 
 
 809/**
 810 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
 811 */
 812int __init hpet_enable(void)
 813{
 814	u32 hpet_period, cfg, id, irq;
 815	unsigned int i, channels;
 816	struct hpet_channel *hc;
 817	u64 freq;
 
 818
 819	if (!is_hpet_capable())
 820		return 0;
 821
 822	hpet_set_mapping();
 823	if (!hpet_virt_address)
 824		return 0;
 825
 826	/* Validate that the config register is working */
 827	if (!hpet_cfg_working())
 828		goto out_nohpet;
 829
 830	/*
 831	 * Read the period and check for a sane value:
 832	 */
 833	hpet_period = hpet_readl(HPET_PERIOD);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 834	if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
 835		goto out_nohpet;
 836
 837	/* The period is a femtoseconds value. Convert it to a frequency. */
 
 
 
 838	freq = FSEC_PER_SEC;
 839	do_div(freq, hpet_period);
 840	hpet_freq = freq;
 841
 842	/*
 843	 * Read the HPET ID register to retrieve the IRQ routing
 844	 * information and the number of channels
 845	 */
 846	id = hpet_readl(HPET_ID);
 847	hpet_print_config();
 848
 849	/* This is the HPET channel number which is zero based */
 850	channels = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
 851
 
 852	/*
 853	 * The legacy routing mode needs at least two channels, tick timer
 854	 * and the rtc emulation channel.
 855	 */
 856	if (IS_ENABLED(CONFIG_HPET_EMULATE_RTC) && channels < 2)
 857		goto out_nohpet;
 
 858
 859	hc = kcalloc(channels, sizeof(*hc), GFP_KERNEL);
 860	if (!hc) {
 861		pr_warn("Disabling HPET.\n");
 862		goto out_nohpet;
 863	}
 864	hpet_base.channels = hc;
 865	hpet_base.nr_channels = channels;
 866
 867	/* Read, store and sanitize the global configuration */
 868	cfg = hpet_readl(HPET_CFG);
 869	hpet_base.boot_cfg = cfg;
 
 
 
 
 
 870	cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
 871	hpet_writel(cfg, HPET_CFG);
 872	if (cfg)
 873		pr_warn("Global config: Unknown bits %#x\n", cfg);
 874
 875	/* Read, store and sanitize the per channel configuration */
 876	for (i = 0; i < channels; i++, hc++) {
 877		hc->num = i;
 878
 
 879		cfg = hpet_readl(HPET_Tn_CFG(i));
 880		hc->boot_cfg = cfg;
 881		irq = (cfg & Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
 882		hc->irq = irq;
 883
 884		cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
 885		hpet_writel(cfg, HPET_Tn_CFG(i));
 886
 887		cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
 888			 | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
 889			 | HPET_TN_FSB | HPET_TN_FSB_CAP);
 890		if (cfg)
 891			pr_warn("Channel #%u config: Unknown bits %#x\n", i, cfg);
 
 892	}
 893	hpet_print_config();
 894
 895	/*
 896	 * Validate that the counter is counting. This needs to be done
 897	 * after sanitizing the config registers to properly deal with
 898	 * force enabled HPETs.
 899	 */
 900	if (!hpet_counting())
 901		goto out_nohpet;
 902
 903	clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
 904
 905	if (id & HPET_ID_LEGSUP) {
 906		hpet_legacy_clockevent_register(&hpet_base.channels[0]);
 907		hpet_base.channels[0].mode = HPET_MODE_LEGACY;
 908		if (IS_ENABLED(CONFIG_HPET_EMULATE_RTC))
 909			hpet_base.channels[1].mode = HPET_MODE_LEGACY;
 910		return 1;
 911	}
 912	return 0;
 913
 914out_nohpet:
 915	kfree(hpet_base.channels);
 916	hpet_base.channels = NULL;
 917	hpet_base.nr_channels = 0;
 918	hpet_clear_mapping();
 919	hpet_address = 0;
 920	return 0;
 921}
 922
 923/*
 924 * The late initialization runs after the PCI quirks have been invoked
 925 * which might have detected a system on which the HPET can be enforced.
 926 *
 927 * Also, the MSI machinery is not working yet when the HPET is initialized
 928 * early.
 929 *
 930 * If the HPET is enabled, then:
 931 *
 932 *  1) Reserve one channel for /dev/hpet if CONFIG_HPET=y
 933 *  2) Reserve up to num_possible_cpus() channels as per CPU clockevents
 934 *  3) Setup /dev/hpet if CONFIG_HPET=y
 935 *  4) Register hotplug callbacks when clockevents are available
 936 */
 937static __init int hpet_late_init(void)
 938{
 939	int ret;
 
 
 
 940
 941	if (!hpet_address) {
 942		if (!force_hpet_address)
 943			return -ENODEV;
 944
 945		hpet_address = force_hpet_address;
 946		hpet_enable();
 947	}
 948
 949	if (!hpet_virt_address)
 950		return -ENODEV;
 951
 952	hpet_select_device_channel();
 953	hpet_select_clockevents();
 954	hpet_reserve_platform_timers();
 
 
 
 955	hpet_print_config();
 956
 957	if (!hpet_base.nr_clockevents)
 958		return 0;
 959
 960	ret = cpuhp_setup_state(CPUHP_AP_X86_HPET_ONLINE, "x86/hpet:online",
 961				hpet_cpuhp_online, NULL);
 962	if (ret)
 963		return ret;
 964	ret = cpuhp_setup_state(CPUHP_X86_HPET_DEAD, "x86/hpet:dead", NULL,
 965				hpet_cpuhp_dead);
 966	if (ret)
 967		goto err_cpuhp;
 968	return 0;
 969
 970err_cpuhp:
 971	cpuhp_remove_state(CPUHP_AP_X86_HPET_ONLINE);
 972	return ret;
 
 
 
 
 
 973}
 974fs_initcall(hpet_late_init);
 975
 976void hpet_disable(void)
 977{
 978	unsigned int i;
 979	u32 cfg;
 980
 981	if (!is_hpet_capable() || !hpet_virt_address)
 982		return;
 
 
 
 
 
 
 983
 984	/* Restore boot configuration with the enable bit cleared */
 985	cfg = hpet_base.boot_cfg;
 986	cfg &= ~HPET_CFG_ENABLE;
 987	hpet_writel(cfg, HPET_CFG);
 988
 989	/* Restore the channel boot configuration */
 990	for (i = 0; i < hpet_base.nr_channels; i++)
 991		hpet_writel(hpet_base.channels[i].boot_cfg, HPET_Tn_CFG(i));
 992
 993	/* If the HPET was enabled at boot time, reenable it */
 994	if (hpet_base.boot_cfg & HPET_CFG_ENABLE)
 995		hpet_writel(hpet_base.boot_cfg, HPET_CFG);
 
 
 996}
 997
 998#ifdef CONFIG_HPET_EMULATE_RTC
 999
1000/*
1001 * HPET in LegacyReplacement mode eats up the RTC interrupt line. When HPET
1002 * is enabled, we support RTC interrupt functionality in software.
1003 *
1004 * RTC has 3 kinds of interrupts:
1005 *
1006 *  1) Update Interrupt - generate an interrupt, every second, when the
1007 *     RTC clock is updated
1008 *  2) Alarm Interrupt - generate an interrupt at a specific time of day
1009 *  3) Periodic Interrupt - generate periodic interrupt, with frequencies
1010 *     2Hz-8192Hz (2Hz-64Hz for non-root user) (all frequencies in powers of 2)
1011 *
1012 * (1) and (2) above are implemented using polling at a frequency of 64 Hz:
1013 * DEFAULT_RTC_INT_FREQ.
1014 *
1015 * The exact frequency is a tradeoff between accuracy and interrupt overhead.
1016 *
1017 * For (3), we use interrupts at 64 Hz, or the user specified periodic frequency,
1018 * if it's higher.
1019 */
1020#include <linux/mc146818rtc.h>
1021#include <linux/rtc.h>
 
1022
1023#define DEFAULT_RTC_INT_FREQ	64
1024#define DEFAULT_RTC_SHIFT	6
1025#define RTC_NUM_INTS		1
1026
1027static unsigned long hpet_rtc_flags;
1028static int hpet_prev_update_sec;
1029static struct rtc_time hpet_alarm_time;
1030static unsigned long hpet_pie_count;
1031static u32 hpet_t1_cmp;
1032static u32 hpet_default_delta;
1033static u32 hpet_pie_delta;
1034static unsigned long hpet_pie_limit;
1035
1036static rtc_irq_handler irq_handler;
1037
1038/*
1039 * Check that the HPET counter c1 is ahead of c2
1040 */
1041static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1042{
1043	return (s32)(c2 - c1) < 0;
1044}
1045
1046/*
1047 * Registers a IRQ handler.
1048 */
1049int hpet_register_irq_handler(rtc_irq_handler handler)
1050{
1051	if (!is_hpet_enabled())
1052		return -ENODEV;
1053	if (irq_handler)
1054		return -EBUSY;
1055
1056	irq_handler = handler;
1057
1058	return 0;
1059}
1060EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1061
1062/*
1063 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1064 * and does cleanup.
1065 */
1066void hpet_unregister_irq_handler(rtc_irq_handler handler)
1067{
1068	if (!is_hpet_enabled())
1069		return;
1070
1071	irq_handler = NULL;
1072	hpet_rtc_flags = 0;
1073}
1074EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1075
1076/*
1077 * Channel 1 for RTC emulation. We use one shot mode, as periodic mode
1078 * is not supported by all HPET implementations for channel 1.
1079 *
1080 * hpet_rtc_timer_init() is called when the rtc is initialized.
1081 */
1082int hpet_rtc_timer_init(void)
1083{
1084	unsigned int cfg, cnt, delta;
1085	unsigned long flags;
1086
1087	if (!is_hpet_enabled())
1088		return 0;
1089
1090	if (!hpet_default_delta) {
1091		struct clock_event_device *evt = &hpet_base.channels[0].evt;
1092		uint64_t clc;
1093
1094		clc = (uint64_t) evt->mult * NSEC_PER_SEC;
1095		clc >>= evt->shift + DEFAULT_RTC_SHIFT;
1096		hpet_default_delta = clc;
1097	}
1098
1099	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1100		delta = hpet_default_delta;
1101	else
1102		delta = hpet_pie_delta;
1103
1104	local_irq_save(flags);
1105
1106	cnt = delta + hpet_readl(HPET_COUNTER);
1107	hpet_writel(cnt, HPET_T1_CMP);
1108	hpet_t1_cmp = cnt;
1109
1110	cfg = hpet_readl(HPET_T1_CFG);
1111	cfg &= ~HPET_TN_PERIODIC;
1112	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1113	hpet_writel(cfg, HPET_T1_CFG);
1114
1115	local_irq_restore(flags);
1116
1117	return 1;
1118}
1119EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1120
1121static void hpet_disable_rtc_channel(void)
1122{
1123	u32 cfg = hpet_readl(HPET_T1_CFG);
1124
1125	cfg &= ~HPET_TN_ENABLE;
1126	hpet_writel(cfg, HPET_T1_CFG);
1127}
1128
1129/*
1130 * The functions below are called from rtc driver.
1131 * Return 0 if HPET is not being used.
1132 * Otherwise do the necessary changes and return 1.
1133 */
1134int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1135{
1136	if (!is_hpet_enabled())
1137		return 0;
1138
1139	hpet_rtc_flags &= ~bit_mask;
1140	if (unlikely(!hpet_rtc_flags))
1141		hpet_disable_rtc_channel();
1142
1143	return 1;
1144}
1145EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1146
1147int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1148{
1149	unsigned long oldbits = hpet_rtc_flags;
1150
1151	if (!is_hpet_enabled())
1152		return 0;
1153
1154	hpet_rtc_flags |= bit_mask;
1155
1156	if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1157		hpet_prev_update_sec = -1;
1158
1159	if (!oldbits)
1160		hpet_rtc_timer_init();
1161
1162	return 1;
1163}
1164EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1165
1166int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
 
1167{
1168	if (!is_hpet_enabled())
1169		return 0;
1170
1171	hpet_alarm_time.tm_hour = hrs;
1172	hpet_alarm_time.tm_min = min;
1173	hpet_alarm_time.tm_sec = sec;
1174
1175	return 1;
1176}
1177EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1178
1179int hpet_set_periodic_freq(unsigned long freq)
1180{
1181	uint64_t clc;
1182
1183	if (!is_hpet_enabled())
1184		return 0;
1185
1186	if (freq <= DEFAULT_RTC_INT_FREQ) {
1187		hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1188	} else {
1189		struct clock_event_device *evt = &hpet_base.channels[0].evt;
1190
1191		clc = (uint64_t) evt->mult * NSEC_PER_SEC;
1192		do_div(clc, freq);
1193		clc >>= evt->shift;
1194		hpet_pie_delta = clc;
1195		hpet_pie_limit = 0;
1196	}
1197
1198	return 1;
1199}
1200EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1201
1202int hpet_rtc_dropped_irq(void)
1203{
1204	return is_hpet_enabled();
1205}
1206EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1207
1208static void hpet_rtc_timer_reinit(void)
1209{
1210	unsigned int delta;
1211	int lost_ints = -1;
1212
1213	if (unlikely(!hpet_rtc_flags))
1214		hpet_disable_rtc_channel();
1215
1216	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1217		delta = hpet_default_delta;
1218	else
1219		delta = hpet_pie_delta;
1220
1221	/*
1222	 * Increment the comparator value until we are ahead of the
1223	 * current count.
1224	 */
1225	do {
1226		hpet_t1_cmp += delta;
1227		hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1228		lost_ints++;
1229	} while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1230
1231	if (lost_ints) {
1232		if (hpet_rtc_flags & RTC_PIE)
1233			hpet_pie_count += lost_ints;
1234		if (printk_ratelimit())
1235			pr_warn("Lost %d RTC interrupts\n", lost_ints);
 
1236	}
1237}
1238
1239irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1240{
1241	struct rtc_time curr_time;
1242	unsigned long rtc_int_flag = 0;
1243
1244	hpet_rtc_timer_reinit();
1245	memset(&curr_time, 0, sizeof(struct rtc_time));
1246
1247	if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1248		mc146818_get_time(&curr_time);
1249
1250	if (hpet_rtc_flags & RTC_UIE &&
1251	    curr_time.tm_sec != hpet_prev_update_sec) {
1252		if (hpet_prev_update_sec >= 0)
1253			rtc_int_flag = RTC_UF;
1254		hpet_prev_update_sec = curr_time.tm_sec;
1255	}
1256
1257	if (hpet_rtc_flags & RTC_PIE && ++hpet_pie_count >= hpet_pie_limit) {
 
1258		rtc_int_flag |= RTC_PF;
1259		hpet_pie_count = 0;
1260	}
1261
1262	if (hpet_rtc_flags & RTC_AIE &&
1263	    (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1264	    (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1265	    (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1266		rtc_int_flag |= RTC_AF;
1267
1268	if (rtc_int_flag) {
1269		rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1270		if (irq_handler)
1271			irq_handler(rtc_int_flag, dev_id);
1272	}
1273	return IRQ_HANDLED;
1274}
1275EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1276#endif
v3.5.6
   1#include <linux/clocksource.h>
   2#include <linux/clockchips.h>
   3#include <linux/interrupt.h>
   4#include <linux/export.h>
   5#include <linux/delay.h>
   6#include <linux/errno.h>
   7#include <linux/i8253.h>
   8#include <linux/slab.h>
   9#include <linux/hpet.h>
  10#include <linux/init.h>
  11#include <linux/cpu.h>
  12#include <linux/pm.h>
  13#include <linux/io.h>
  14
  15#include <asm/fixmap.h>
  16#include <asm/hpet.h>
  17#include <asm/time.h>
  18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  19#define HPET_MASK			CLOCKSOURCE_MASK(32)
  20
  21/* FSEC = 10^-15
  22   NSEC = 10^-9 */
  23#define FSEC_PER_NSEC			1000000L
  24
  25#define HPET_DEV_USED_BIT		2
  26#define HPET_DEV_USED			(1 << HPET_DEV_USED_BIT)
  27#define HPET_DEV_VALID			0x8
  28#define HPET_DEV_FSB_CAP		0x1000
  29#define HPET_DEV_PERI_CAP		0x2000
  30
  31#define HPET_MIN_CYCLES			128
  32#define HPET_MIN_PROG_DELTA		(HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
  33
  34/*
  35 * HPET address is set in acpi/boot.c, when an ACPI entry exists
  36 */
  37unsigned long				hpet_address;
  38u8					hpet_blockid; /* OS timer block num */
  39u8					hpet_msi_disable;
  40
  41#ifdef CONFIG_PCI_MSI
  42static unsigned long			hpet_num_timers;
 
  43#endif
 
  44static void __iomem			*hpet_virt_address;
  45
  46struct hpet_dev {
  47	struct clock_event_device	evt;
  48	unsigned int			num;
  49	int				cpu;
  50	unsigned int			irq;
  51	unsigned int			flags;
  52	char				name[10];
  53};
  54
  55inline struct hpet_dev *EVT_TO_HPET_DEV(struct clock_event_device *evtdev)
 
  56{
  57	return container_of(evtdev, struct hpet_dev, evt);
  58}
  59
  60inline unsigned int hpet_readl(unsigned int a)
  61{
  62	return readl(hpet_virt_address + a);
  63}
  64
  65static inline void hpet_writel(unsigned int d, unsigned int a)
  66{
  67	writel(d, hpet_virt_address + a);
  68}
  69
  70#ifdef CONFIG_X86_64
  71#include <asm/pgtable.h>
  72#endif
  73
  74static inline void hpet_set_mapping(void)
  75{
  76	hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
  77#ifdef CONFIG_X86_64
  78	__set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VVAR_NOCACHE);
  79#endif
  80}
  81
  82static inline void hpet_clear_mapping(void)
  83{
  84	iounmap(hpet_virt_address);
  85	hpet_virt_address = NULL;
  86}
  87
  88/*
  89 * HPET command line enable / disable
  90 */
  91static int boot_hpet_disable;
  92int hpet_force_user;
  93static int hpet_verbose;
  94
  95static int __init hpet_setup(char *str)
  96{
  97	while (str) {
  98		char *next = strchr(str, ',');
  99
 100		if (next)
 101			*next++ = 0;
 102		if (!strncmp("disable", str, 7))
 103			boot_hpet_disable = 1;
 104		if (!strncmp("force", str, 5))
 105			hpet_force_user = 1;
 106		if (!strncmp("verbose", str, 7))
 107			hpet_verbose = 1;
 108		str = next;
 109	}
 110	return 1;
 111}
 112__setup("hpet=", hpet_setup);
 113
 114static int __init disable_hpet(char *str)
 115{
 116	boot_hpet_disable = 1;
 117	return 1;
 118}
 119__setup("nohpet", disable_hpet);
 120
 121static inline int is_hpet_capable(void)
 122{
 123	return !boot_hpet_disable && hpet_address;
 124}
 125
 126/*
 127 * HPET timer interrupt enable / disable
 128 */
 129static int hpet_legacy_int_enabled;
 130
 131/**
 132 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
 133 */
 134int is_hpet_enabled(void)
 135{
 136	return is_hpet_capable() && hpet_legacy_int_enabled;
 137}
 138EXPORT_SYMBOL_GPL(is_hpet_enabled);
 139
 140static void _hpet_print_config(const char *function, int line)
 141{
 142	u32 i, timers, l, h;
 143	printk(KERN_INFO "hpet: %s(%d):\n", function, line);
 144	l = hpet_readl(HPET_ID);
 145	h = hpet_readl(HPET_PERIOD);
 146	timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
 147	printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
 148	l = hpet_readl(HPET_CFG);
 149	h = hpet_readl(HPET_STATUS);
 150	printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
 
 
 
 151	l = hpet_readl(HPET_COUNTER);
 152	h = hpet_readl(HPET_COUNTER+4);
 153	printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
 
 
 154
 155	for (i = 0; i < timers; i++) {
 156		l = hpet_readl(HPET_Tn_CFG(i));
 157		h = hpet_readl(HPET_Tn_CFG(i)+4);
 158		printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
 159		       i, l, h);
 160		l = hpet_readl(HPET_Tn_CMP(i));
 161		h = hpet_readl(HPET_Tn_CMP(i)+4);
 162		printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
 163		       i, l, h);
 164		l = hpet_readl(HPET_Tn_ROUTE(i));
 165		h = hpet_readl(HPET_Tn_ROUTE(i)+4);
 166		printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
 167		       i, l, h);
 168	}
 169}
 170
 171#define hpet_print_config()					\
 172do {								\
 173	if (hpet_verbose)					\
 174		_hpet_print_config(__FUNCTION__, __LINE__);	\
 175} while (0)
 176
 177/*
 178 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
 179 * timer 0 and timer 1 in case of RTC emulation.
 180 */
 181#ifdef CONFIG_HPET
 182
 183static void hpet_reserve_msi_timers(struct hpet_data *hd);
 184
 185static void hpet_reserve_platform_timers(unsigned int id)
 186{
 187	struct hpet __iomem *hpet = hpet_virt_address;
 188	struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
 189	unsigned int nrtimers, i;
 190	struct hpet_data hd;
 191
 192	nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
 193
 194	memset(&hd, 0, sizeof(hd));
 195	hd.hd_phys_address	= hpet_address;
 196	hd.hd_address		= hpet;
 197	hd.hd_nirqs		= nrtimers;
 198	hpet_reserve_timer(&hd, 0);
 199
 200#ifdef CONFIG_HPET_EMULATE_RTC
 201	hpet_reserve_timer(&hd, 1);
 202#endif
 203
 204	/*
 205	 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
 206	 * is wrong for i8259!) not the output IRQ.  Many BIOS writers
 207	 * don't bother configuring *any* comparator interrupts.
 208	 */
 209	hd.hd_irq[0] = HPET_LEGACY_8254;
 210	hd.hd_irq[1] = HPET_LEGACY_RTC;
 211
 212	for (i = 2; i < nrtimers; timer++, i++) {
 213		hd.hd_irq[i] = (readl(&timer->hpet_config) &
 214			Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 215	}
 216
 217	hpet_reserve_msi_timers(&hd);
 
 218
 219	hpet_alloc(&hd);
 
 
 
 
 
 220
 
 
 
 
 
 
 221}
 
 222#else
 223static void hpet_reserve_platform_timers(unsigned int id) { }
 
 224#endif
 225
 226/*
 227 * Common hpet info
 228 */
 229static unsigned long hpet_freq;
 230
 231static void hpet_legacy_set_mode(enum clock_event_mode mode,
 232			  struct clock_event_device *evt);
 233static int hpet_legacy_next_event(unsigned long delta,
 234			   struct clock_event_device *evt);
 235
 236/*
 237 * The hpet clock event device
 238 */
 239static struct clock_event_device hpet_clockevent = {
 240	.name		= "hpet",
 241	.features	= CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
 242	.set_mode	= hpet_legacy_set_mode,
 243	.set_next_event = hpet_legacy_next_event,
 244	.irq		= 0,
 245	.rating		= 50,
 246};
 247
 248static void hpet_stop_counter(void)
 249{
 250	unsigned long cfg = hpet_readl(HPET_CFG);
 
 251	cfg &= ~HPET_CFG_ENABLE;
 252	hpet_writel(cfg, HPET_CFG);
 253}
 254
 255static void hpet_reset_counter(void)
 256{
 257	hpet_writel(0, HPET_COUNTER);
 258	hpet_writel(0, HPET_COUNTER + 4);
 259}
 260
 261static void hpet_start_counter(void)
 262{
 263	unsigned int cfg = hpet_readl(HPET_CFG);
 
 264	cfg |= HPET_CFG_ENABLE;
 265	hpet_writel(cfg, HPET_CFG);
 266}
 267
 268static void hpet_restart_counter(void)
 269{
 270	hpet_stop_counter();
 271	hpet_reset_counter();
 272	hpet_start_counter();
 273}
 274
 275static void hpet_resume_device(void)
 276{
 277	force_hpet_resume();
 278}
 279
 280static void hpet_resume_counter(struct clocksource *cs)
 281{
 282	hpet_resume_device();
 283	hpet_restart_counter();
 284}
 285
 286static void hpet_enable_legacy_int(void)
 287{
 288	unsigned int cfg = hpet_readl(HPET_CFG);
 289
 290	cfg |= HPET_CFG_LEGACY;
 291	hpet_writel(cfg, HPET_CFG);
 292	hpet_legacy_int_enabled = 1;
 293}
 294
 295static void hpet_legacy_clockevent_register(void)
 296{
 297	/* Start HPET legacy interrupts */
 298	hpet_enable_legacy_int();
 
 299
 
 
 
 
 
 
 
 
 
 
 
 300	/*
 301	 * Start hpet with the boot cpu mask and make it
 302	 * global after the IO_APIC has been initialized.
 
 
 
 303	 */
 304	hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
 305	clockevents_config_and_register(&hpet_clockevent, hpet_freq,
 306					HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
 307	global_clock_event = &hpet_clockevent;
 308	printk(KERN_DEBUG "hpet clockevent registered\n");
 309}
 310
 311static int hpet_setup_msi_irq(unsigned int irq);
 
 
 
 
 
 
 
 
 
 
 
 312
 313static void hpet_set_mode(enum clock_event_mode mode,
 314			  struct clock_event_device *evt, int timer)
 315{
 316	unsigned int cfg, cmp, now;
 317	uint64_t delta;
 
 
 
 
 
 
 
 318
 319	switch (mode) {
 320	case CLOCK_EVT_MODE_PERIODIC:
 321		hpet_stop_counter();
 322		delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
 323		delta >>= evt->shift;
 324		now = hpet_readl(HPET_COUNTER);
 325		cmp = now + (unsigned int) delta;
 326		cfg = hpet_readl(HPET_Tn_CFG(timer));
 327		cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
 328		       HPET_TN_SETVAL | HPET_TN_32BIT;
 329		hpet_writel(cfg, HPET_Tn_CFG(timer));
 330		hpet_writel(cmp, HPET_Tn_CMP(timer));
 331		udelay(1);
 332		/*
 333		 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
 334		 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
 335		 * bit is automatically cleared after the first write.
 336		 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
 337		 * Publication # 24674)
 338		 */
 339		hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
 340		hpet_start_counter();
 341		hpet_print_config();
 342		break;
 343
 344	case CLOCK_EVT_MODE_ONESHOT:
 345		cfg = hpet_readl(HPET_Tn_CFG(timer));
 346		cfg &= ~HPET_TN_PERIODIC;
 347		cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
 348		hpet_writel(cfg, HPET_Tn_CFG(timer));
 349		break;
 350
 351	case CLOCK_EVT_MODE_UNUSED:
 352	case CLOCK_EVT_MODE_SHUTDOWN:
 353		cfg = hpet_readl(HPET_Tn_CFG(timer));
 354		cfg &= ~HPET_TN_ENABLE;
 355		hpet_writel(cfg, HPET_Tn_CFG(timer));
 356		break;
 357
 358	case CLOCK_EVT_MODE_RESUME:
 359		if (timer == 0) {
 360			hpet_enable_legacy_int();
 361		} else {
 362			struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
 363			hpet_setup_msi_irq(hdev->irq);
 364			disable_irq(hdev->irq);
 365			irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
 366			enable_irq(hdev->irq);
 367		}
 368		hpet_print_config();
 369		break;
 370	}
 371}
 372
 373static int hpet_next_event(unsigned long delta,
 374			   struct clock_event_device *evt, int timer)
 375{
 
 376	u32 cnt;
 377	s32 res;
 378
 379	cnt = hpet_readl(HPET_COUNTER);
 380	cnt += (u32) delta;
 381	hpet_writel(cnt, HPET_Tn_CMP(timer));
 382
 383	/*
 384	 * HPETs are a complete disaster. The compare register is
 385	 * based on a equal comparison and neither provides a less
 386	 * than or equal functionality (which would require to take
 387	 * the wraparound into account) nor a simple count down event
 388	 * mode. Further the write to the comparator register is
 389	 * delayed internally up to two HPET clock cycles in certain
 390	 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
 391	 * longer delays. We worked around that by reading back the
 392	 * compare register, but that required another workaround for
 393	 * ICH9,10 chips where the first readout after write can
 394	 * return the old stale value. We already had a minimum
 395	 * programming delta of 5us enforced, but a NMI or SMI hitting
 396	 * between the counter readout and the comparator write can
 397	 * move us behind that point easily. Now instead of reading
 398	 * the compare register back several times, we make the ETIME
 399	 * decision based on the following: Return ETIME if the
 400	 * counter value after the write is less than HPET_MIN_CYCLES
 401	 * away from the event or if the counter is already ahead of
 402	 * the event. The minimum programming delta for the generic
 403	 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
 404	 */
 405	res = (s32)(cnt - hpet_readl(HPET_COUNTER));
 406
 407	return res < HPET_MIN_CYCLES ? -ETIME : 0;
 408}
 409
 410static void hpet_legacy_set_mode(enum clock_event_mode mode,
 411			struct clock_event_device *evt)
 412{
 413	hpet_set_mode(mode, evt, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 414}
 415
 416static int hpet_legacy_next_event(unsigned long delta,
 417			struct clock_event_device *evt)
 418{
 419	return hpet_next_event(delta, evt, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 420}
 421
 422/*
 423 * HPET MSI Support
 424 */
 425#ifdef CONFIG_PCI_MSI
 426
 427static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
 428static struct hpet_dev	*hpet_devs;
 429
 430void hpet_msi_unmask(struct irq_data *data)
 431{
 432	struct hpet_dev *hdev = data->handler_data;
 433	unsigned int cfg;
 434
 435	/* unmask it */
 436	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
 437	cfg |= HPET_TN_FSB;
 438	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
 439}
 440
 441void hpet_msi_mask(struct irq_data *data)
 442{
 443	struct hpet_dev *hdev = data->handler_data;
 444	unsigned int cfg;
 445
 446	/* mask it */
 447	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
 448	cfg &= ~HPET_TN_FSB;
 449	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
 450}
 451
 452void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
 453{
 454	hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
 455	hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
 456}
 457
 458void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
 459{
 460	msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
 461	msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
 462	msg->address_hi = 0;
 463}
 464
 465static void hpet_msi_set_mode(enum clock_event_mode mode,
 466				struct clock_event_device *evt)
 467{
 468	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
 469	hpet_set_mode(mode, evt, hdev->num);
 470}
 471
 472static int hpet_msi_next_event(unsigned long delta,
 473				struct clock_event_device *evt)
 474{
 475	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
 476	return hpet_next_event(delta, evt, hdev->num);
 477}
 478
 479static int hpet_setup_msi_irq(unsigned int irq)
 480{
 481	if (arch_setup_hpet_msi(irq, hpet_blockid)) {
 482		destroy_irq(irq);
 483		return -EINVAL;
 484	}
 485	return 0;
 
 
 486}
 487
 488static int hpet_assign_irq(struct hpet_dev *dev)
 489{
 490	unsigned int irq;
 
 
 
 491
 492	irq = create_irq_nr(0, -1);
 493	if (!irq)
 494		return -EINVAL;
 495
 496	irq_set_handler_data(irq, dev);
 497
 498	if (hpet_setup_msi_irq(irq))
 499		return -EINVAL;
 500
 501	dev->irq = irq;
 502	return 0;
 503}
 504
 505static irqreturn_t hpet_interrupt_handler(int irq, void *data)
 
 506{
 507	struct hpet_dev *dev = (struct hpet_dev *)data;
 508	struct clock_event_device *hevt = &dev->evt;
 
 
 
 509
 510	if (!hevt->event_handler) {
 511		printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
 512				dev->num);
 513		return IRQ_HANDLED;
 514	}
 515
 516	hevt->event_handler(hevt);
 517	return IRQ_HANDLED;
 518}
 519
 520static int hpet_setup_irq(struct hpet_dev *dev)
 521{
 
 522
 523	if (request_irq(dev->irq, hpet_interrupt_handler,
 524			IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
 525			dev->name, dev))
 526		return -1;
 527
 528	disable_irq(dev->irq);
 529	irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
 530	enable_irq(dev->irq);
 
 
 
 
 531
 532	printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
 533			 dev->name, dev->irq);
 
 534
 
 
 535	return 0;
 536}
 537
 538/* This should be called in specific @cpu */
 539static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
 540{
 541	struct clock_event_device *evt = &hdev->evt;
 542
 543	WARN_ON(cpu != smp_processor_id());
 544	if (!(hdev->flags & HPET_DEV_VALID))
 545		return;
 546
 547	if (hpet_setup_msi_irq(hdev->irq))
 548		return;
 549
 550	hdev->cpu = cpu;
 551	per_cpu(cpu_hpet_dev, cpu) = hdev;
 552	evt->name = hdev->name;
 553	hpet_setup_irq(hdev);
 554	evt->irq = hdev->irq;
 555
 556	evt->rating = 110;
 557	evt->features = CLOCK_EVT_FEAT_ONESHOT;
 558	if (hdev->flags & HPET_DEV_PERI_CAP)
 559		evt->features |= CLOCK_EVT_FEAT_PERIODIC;
 560
 561	evt->set_mode = hpet_msi_set_mode;
 562	evt->set_next_event = hpet_msi_next_event;
 563	evt->cpumask = cpumask_of(hdev->cpu);
 564
 565	clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
 566					0x7FFFFFFF);
 567}
 568
 569#ifdef CONFIG_HPET
 570/* Reserve at least one timer for userspace (/dev/hpet) */
 571#define RESERVE_TIMERS 1
 572#else
 573#define RESERVE_TIMERS 0
 574#endif
 575
 576static void hpet_msi_capability_lookup(unsigned int start_timer)
 577{
 578	unsigned int id;
 579	unsigned int num_timers;
 580	unsigned int num_timers_used = 0;
 581	int i;
 582
 583	if (hpet_msi_disable)
 584		return;
 585
 586	if (boot_cpu_has(X86_FEATURE_ARAT))
 
 587		return;
 588	id = hpet_readl(HPET_ID);
 589
 590	num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
 591	num_timers++; /* Value read out starts from 0 */
 592	hpet_print_config();
 593
 594	hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
 595	if (!hpet_devs)
 596		return;
 597
 598	hpet_num_timers = num_timers;
 
 
 599
 600	for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
 601		struct hpet_dev *hdev = &hpet_devs[num_timers_used];
 602		unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
 603
 604		/* Only consider HPET timer with MSI support */
 605		if (!(cfg & HPET_TN_FSB_CAP))
 606			continue;
 607
 608		hdev->flags = 0;
 609		if (cfg & HPET_TN_PERIODIC_CAP)
 610			hdev->flags |= HPET_DEV_PERI_CAP;
 611		hdev->num = i;
 612
 613		sprintf(hdev->name, "hpet%d", i);
 614		if (hpet_assign_irq(hdev))
 615			continue;
 616
 617		hdev->flags |= HPET_DEV_FSB_CAP;
 618		hdev->flags |= HPET_DEV_VALID;
 619		num_timers_used++;
 620		if (num_timers_used == num_possible_cpus())
 621			break;
 622	}
 623
 624	printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
 625		num_timers, num_timers_used);
 626}
 627
 628#ifdef CONFIG_HPET
 629static void hpet_reserve_msi_timers(struct hpet_data *hd)
 630{
 631	int i;
 632
 633	if (!hpet_devs)
 634		return;
 635
 636	for (i = 0; i < hpet_num_timers; i++) {
 637		struct hpet_dev *hdev = &hpet_devs[i];
 638
 639		if (!(hdev->flags & HPET_DEV_VALID))
 640			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 641
 642		hd->hd_irq[hdev->num] = hdev->irq;
 643		hpet_reserve_timer(hd, hdev->num);
 644	}
 645}
 646#endif
 647
 648static struct hpet_dev *hpet_get_unused_timer(void)
 649{
 650	int i;
 
 651
 652	if (!hpet_devs)
 653		return NULL;
 654
 655	for (i = 0; i < hpet_num_timers; i++) {
 656		struct hpet_dev *hdev = &hpet_devs[i];
 
 
 
 657
 658		if (!(hdev->flags & HPET_DEV_VALID))
 659			continue;
 660		if (test_and_set_bit(HPET_DEV_USED_BIT,
 661			(unsigned long *)&hdev->flags))
 662			continue;
 663		return hdev;
 664	}
 665	return NULL;
 666}
 667
 668struct hpet_work_struct {
 669	struct delayed_work work;
 670	struct completion complete;
 671};
 672
 673static void hpet_work(struct work_struct *w)
 674{
 675	struct hpet_dev *hdev;
 676	int cpu = smp_processor_id();
 677	struct hpet_work_struct *hpet_work;
 678
 679	hpet_work = container_of(w, struct hpet_work_struct, work.work);
 680
 681	hdev = hpet_get_unused_timer();
 682	if (hdev)
 683		init_one_hpet_msi_clockevent(hdev, cpu);
 684
 685	complete(&hpet_work->complete);
 686}
 687
 688static int hpet_cpuhp_notify(struct notifier_block *n,
 689		unsigned long action, void *hcpu)
 690{
 691	unsigned long cpu = (unsigned long)hcpu;
 692	struct hpet_work_struct work;
 693	struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
 694
 695	switch (action & 0xf) {
 696	case CPU_ONLINE:
 697		INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
 698		init_completion(&work.complete);
 699		/* FIXME: add schedule_work_on() */
 700		schedule_delayed_work_on(cpu, &work.work, 0);
 701		wait_for_completion(&work.complete);
 702		destroy_timer_on_stack(&work.work.timer);
 703		break;
 704	case CPU_DEAD:
 705		if (hdev) {
 706			free_irq(hdev->irq, hdev);
 707			hdev->flags &= ~HPET_DEV_USED;
 708			per_cpu(cpu_hpet_dev, cpu) = NULL;
 709		}
 710		break;
 711	}
 712	return NOTIFY_OK;
 713}
 714#else
 715
 716static int hpet_setup_msi_irq(unsigned int irq)
 717{
 718	return 0;
 719}
 720static void hpet_msi_capability_lookup(unsigned int start_timer)
 721{
 722	return;
 723}
 
 
 
 
 
 
 
 
 
 724
 725#ifdef CONFIG_HPET
 726static void hpet_reserve_msi_timers(struct hpet_data *hd)
 727{
 728	return;
 729}
 730#endif
 731
 732static int hpet_cpuhp_notify(struct notifier_block *n,
 733		unsigned long action, void *hcpu)
 734{
 735	return NOTIFY_OK;
 736}
 737
 738#endif
 739
 740/*
 741 * Clock source related code
 742 */
 743static cycle_t read_hpet(struct clocksource *cs)
 744{
 745	return (cycle_t)hpet_readl(HPET_COUNTER);
 746}
 
 747
 748static struct clocksource clocksource_hpet = {
 749	.name		= "hpet",
 750	.rating		= 250,
 751	.read		= read_hpet,
 752	.mask		= HPET_MASK,
 753	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
 754	.resume		= hpet_resume_counter,
 755#ifdef CONFIG_X86_64
 756	.archdata	= { .vclock_mode = VCLOCK_HPET },
 757#endif
 758};
 759
 760static int hpet_clocksource_register(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 761{
 762	u64 start, now;
 763	cycle_t t1;
 
 
 
 
 
 
 
 
 
 
 
 
 764
 765	/* Start the counter */
 766	hpet_restart_counter();
 767
 768	/* Verify whether hpet counter works */
 769	t1 = hpet_readl(HPET_COUNTER);
 770	rdtscll(start);
 771
 772	/*
 773	 * We don't know the TSC frequency yet, but waiting for
 774	 * 200000 TSC cycles is safe:
 775	 * 4 GHz == 50us
 776	 * 1 GHz == 200us
 777	 */
 778	do {
 779		rep_nop();
 780		rdtscll(now);
 
 781	} while ((now - start) < 200000UL);
 782
 783	if (t1 == hpet_readl(HPET_COUNTER)) {
 784		printk(KERN_WARNING
 785		       "HPET counter not counting. HPET disabled\n");
 786		return -ENODEV;
 787	}
 788
 789	clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
 790	return 0;
 791}
 792
 793static u32 *hpet_boot_cfg;
 794
 795/**
 796 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
 797 */
 798int __init hpet_enable(void)
 799{
 800	u32 hpet_period, cfg, id;
 
 
 801	u64 freq;
 802	unsigned int i, last;
 803
 804	if (!is_hpet_capable())
 805		return 0;
 806
 807	hpet_set_mapping();
 
 
 
 
 
 
 808
 809	/*
 810	 * Read the period and check for a sane value:
 811	 */
 812	hpet_period = hpet_readl(HPET_PERIOD);
 813
 814	/*
 815	 * AMD SB700 based systems with spread spectrum enabled use a
 816	 * SMM based HPET emulation to provide proper frequency
 817	 * setting. The SMM code is initialized with the first HPET
 818	 * register access and takes some time to complete. During
 819	 * this time the config register reads 0xffffffff. We check
 820	 * for max. 1000 loops whether the config register reads a non
 821	 * 0xffffffff value to make sure that HPET is up and running
 822	 * before we go further. A counting loop is safe, as the HPET
 823	 * access takes thousands of CPU cycles. On non SB700 based
 824	 * machines this check is only done once and has no side
 825	 * effects.
 826	 */
 827	for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
 828		if (i == 1000) {
 829			printk(KERN_WARNING
 830			       "HPET config register value = 0xFFFFFFFF. "
 831			       "Disabling HPET\n");
 832			goto out_nohpet;
 833		}
 834	}
 835
 836	if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
 837		goto out_nohpet;
 838
 839	/*
 840	 * The period is a femto seconds value. Convert it to a
 841	 * frequency.
 842	 */
 843	freq = FSEC_PER_SEC;
 844	do_div(freq, hpet_period);
 845	hpet_freq = freq;
 846
 847	/*
 848	 * Read the HPET ID register to retrieve the IRQ routing
 849	 * information and the number of channels
 850	 */
 851	id = hpet_readl(HPET_ID);
 852	hpet_print_config();
 853
 854	last = (id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
 
 855
 856#ifdef CONFIG_HPET_EMULATE_RTC
 857	/*
 858	 * The legacy routing mode needs at least two channels, tick timer
 859	 * and the rtc emulation channel.
 860	 */
 861	if (!last)
 862		goto out_nohpet;
 863#endif
 864
 
 
 
 
 
 
 
 
 
 865	cfg = hpet_readl(HPET_CFG);
 866	hpet_boot_cfg = kmalloc((last + 2) * sizeof(*hpet_boot_cfg),
 867				GFP_KERNEL);
 868	if (hpet_boot_cfg)
 869		*hpet_boot_cfg = cfg;
 870	else
 871		pr_warn("HPET initial state will not be saved\n");
 872	cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
 873	hpet_writel(cfg, HPET_CFG);
 874	if (cfg)
 875		pr_warn("HPET: Unrecognized bits %#x set in global cfg\n",
 876			cfg);
 
 
 
 877
 878	for (i = 0; i <= last; ++i) {
 879		cfg = hpet_readl(HPET_Tn_CFG(i));
 880		if (hpet_boot_cfg)
 881			hpet_boot_cfg[i + 1] = cfg;
 
 
 882		cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
 883		hpet_writel(cfg, HPET_Tn_CFG(i));
 
 884		cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
 885			 | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
 886			 | HPET_TN_FSB | HPET_TN_FSB_CAP);
 887		if (cfg)
 888			pr_warn("HPET: Unrecognized bits %#x set in cfg#%u\n",
 889				cfg, i);
 890	}
 891	hpet_print_config();
 892
 893	if (hpet_clocksource_register())
 
 
 
 
 
 894		goto out_nohpet;
 895
 
 
 896	if (id & HPET_ID_LEGSUP) {
 897		hpet_legacy_clockevent_register();
 
 
 
 898		return 1;
 899	}
 900	return 0;
 901
 902out_nohpet:
 
 
 
 903	hpet_clear_mapping();
 904	hpet_address = 0;
 905	return 0;
 906}
 907
 908/*
 909 * Needs to be late, as the reserve_timer code calls kalloc !
 
 
 
 
 910 *
 911 * Not a problem on i386 as hpet_enable is called from late_time_init,
 912 * but on x86_64 it is necessary !
 
 
 
 
 913 */
 914static __init int hpet_late_init(void)
 915{
 916	int cpu;
 917
 918	if (boot_hpet_disable)
 919		return -ENODEV;
 920
 921	if (!hpet_address) {
 922		if (!force_hpet_address)
 923			return -ENODEV;
 924
 925		hpet_address = force_hpet_address;
 926		hpet_enable();
 927	}
 928
 929	if (!hpet_virt_address)
 930		return -ENODEV;
 931
 932	if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
 933		hpet_msi_capability_lookup(2);
 934	else
 935		hpet_msi_capability_lookup(0);
 936
 937	hpet_reserve_platform_timers(hpet_readl(HPET_ID));
 938	hpet_print_config();
 939
 940	if (hpet_msi_disable)
 941		return 0;
 942
 943	if (boot_cpu_has(X86_FEATURE_ARAT))
 944		return 0;
 
 
 
 
 
 
 
 945
 946	for_each_online_cpu(cpu) {
 947		hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
 948	}
 949
 950	/* This notifier should be called after workqueue is ready */
 951	hotcpu_notifier(hpet_cpuhp_notify, -20);
 952
 953	return 0;
 954}
 955fs_initcall(hpet_late_init);
 956
 957void hpet_disable(void)
 958{
 959	if (is_hpet_capable() && hpet_virt_address) {
 960		unsigned int cfg = hpet_readl(HPET_CFG), id, last;
 961
 962		if (hpet_boot_cfg)
 963			cfg = *hpet_boot_cfg;
 964		else if (hpet_legacy_int_enabled) {
 965			cfg &= ~HPET_CFG_LEGACY;
 966			hpet_legacy_int_enabled = 0;
 967		}
 968		cfg &= ~HPET_CFG_ENABLE;
 969		hpet_writel(cfg, HPET_CFG);
 970
 971		if (!hpet_boot_cfg)
 972			return;
 
 
 973
 974		id = hpet_readl(HPET_ID);
 975		last = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
 976
 977		for (id = 0; id <= last; ++id)
 978			hpet_writel(hpet_boot_cfg[id + 1], HPET_Tn_CFG(id));
 979
 980		if (*hpet_boot_cfg & HPET_CFG_ENABLE)
 981			hpet_writel(*hpet_boot_cfg, HPET_CFG);
 982	}
 983}
 984
 985#ifdef CONFIG_HPET_EMULATE_RTC
 986
 987/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
 
 988 * is enabled, we support RTC interrupt functionality in software.
 
 989 * RTC has 3 kinds of interrupts:
 990 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
 991 *    is updated
 992 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
 993 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
 994 *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
 995 * (1) and (2) above are implemented using polling at a frequency of
 996 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
 997 * overhead. (DEFAULT_RTC_INT_FREQ)
 998 * For (3), we use interrupts at 64Hz or user specified periodic
 999 * frequency, whichever is higher.
 
 
 
 
1000 */
1001#include <linux/mc146818rtc.h>
1002#include <linux/rtc.h>
1003#include <asm/rtc.h>
1004
1005#define DEFAULT_RTC_INT_FREQ	64
1006#define DEFAULT_RTC_SHIFT	6
1007#define RTC_NUM_INTS		1
1008
1009static unsigned long hpet_rtc_flags;
1010static int hpet_prev_update_sec;
1011static struct rtc_time hpet_alarm_time;
1012static unsigned long hpet_pie_count;
1013static u32 hpet_t1_cmp;
1014static u32 hpet_default_delta;
1015static u32 hpet_pie_delta;
1016static unsigned long hpet_pie_limit;
1017
1018static rtc_irq_handler irq_handler;
1019
1020/*
1021 * Check that the hpet counter c1 is ahead of the c2
1022 */
1023static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1024{
1025	return (s32)(c2 - c1) < 0;
1026}
1027
1028/*
1029 * Registers a IRQ handler.
1030 */
1031int hpet_register_irq_handler(rtc_irq_handler handler)
1032{
1033	if (!is_hpet_enabled())
1034		return -ENODEV;
1035	if (irq_handler)
1036		return -EBUSY;
1037
1038	irq_handler = handler;
1039
1040	return 0;
1041}
1042EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1043
1044/*
1045 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1046 * and does cleanup.
1047 */
1048void hpet_unregister_irq_handler(rtc_irq_handler handler)
1049{
1050	if (!is_hpet_enabled())
1051		return;
1052
1053	irq_handler = NULL;
1054	hpet_rtc_flags = 0;
1055}
1056EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1057
1058/*
1059 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1060 * is not supported by all HPET implementations for timer 1.
1061 *
1062 * hpet_rtc_timer_init() is called when the rtc is initialized.
1063 */
1064int hpet_rtc_timer_init(void)
1065{
1066	unsigned int cfg, cnt, delta;
1067	unsigned long flags;
1068
1069	if (!is_hpet_enabled())
1070		return 0;
1071
1072	if (!hpet_default_delta) {
 
1073		uint64_t clc;
1074
1075		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1076		clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1077		hpet_default_delta = clc;
1078	}
1079
1080	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1081		delta = hpet_default_delta;
1082	else
1083		delta = hpet_pie_delta;
1084
1085	local_irq_save(flags);
1086
1087	cnt = delta + hpet_readl(HPET_COUNTER);
1088	hpet_writel(cnt, HPET_T1_CMP);
1089	hpet_t1_cmp = cnt;
1090
1091	cfg = hpet_readl(HPET_T1_CFG);
1092	cfg &= ~HPET_TN_PERIODIC;
1093	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1094	hpet_writel(cfg, HPET_T1_CFG);
1095
1096	local_irq_restore(flags);
1097
1098	return 1;
1099}
1100EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1101
1102static void hpet_disable_rtc_channel(void)
1103{
1104	unsigned long cfg;
1105	cfg = hpet_readl(HPET_T1_CFG);
1106	cfg &= ~HPET_TN_ENABLE;
1107	hpet_writel(cfg, HPET_T1_CFG);
1108}
1109
1110/*
1111 * The functions below are called from rtc driver.
1112 * Return 0 if HPET is not being used.
1113 * Otherwise do the necessary changes and return 1.
1114 */
1115int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1116{
1117	if (!is_hpet_enabled())
1118		return 0;
1119
1120	hpet_rtc_flags &= ~bit_mask;
1121	if (unlikely(!hpet_rtc_flags))
1122		hpet_disable_rtc_channel();
1123
1124	return 1;
1125}
1126EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1127
1128int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1129{
1130	unsigned long oldbits = hpet_rtc_flags;
1131
1132	if (!is_hpet_enabled())
1133		return 0;
1134
1135	hpet_rtc_flags |= bit_mask;
1136
1137	if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1138		hpet_prev_update_sec = -1;
1139
1140	if (!oldbits)
1141		hpet_rtc_timer_init();
1142
1143	return 1;
1144}
1145EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1146
1147int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1148			unsigned char sec)
1149{
1150	if (!is_hpet_enabled())
1151		return 0;
1152
1153	hpet_alarm_time.tm_hour = hrs;
1154	hpet_alarm_time.tm_min = min;
1155	hpet_alarm_time.tm_sec = sec;
1156
1157	return 1;
1158}
1159EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1160
1161int hpet_set_periodic_freq(unsigned long freq)
1162{
1163	uint64_t clc;
1164
1165	if (!is_hpet_enabled())
1166		return 0;
1167
1168	if (freq <= DEFAULT_RTC_INT_FREQ)
1169		hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1170	else {
1171		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
 
 
1172		do_div(clc, freq);
1173		clc >>= hpet_clockevent.shift;
1174		hpet_pie_delta = clc;
1175		hpet_pie_limit = 0;
1176	}
 
1177	return 1;
1178}
1179EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1180
1181int hpet_rtc_dropped_irq(void)
1182{
1183	return is_hpet_enabled();
1184}
1185EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1186
1187static void hpet_rtc_timer_reinit(void)
1188{
1189	unsigned int delta;
1190	int lost_ints = -1;
1191
1192	if (unlikely(!hpet_rtc_flags))
1193		hpet_disable_rtc_channel();
1194
1195	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1196		delta = hpet_default_delta;
1197	else
1198		delta = hpet_pie_delta;
1199
1200	/*
1201	 * Increment the comparator value until we are ahead of the
1202	 * current count.
1203	 */
1204	do {
1205		hpet_t1_cmp += delta;
1206		hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1207		lost_ints++;
1208	} while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1209
1210	if (lost_ints) {
1211		if (hpet_rtc_flags & RTC_PIE)
1212			hpet_pie_count += lost_ints;
1213		if (printk_ratelimit())
1214			printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1215				lost_ints);
1216	}
1217}
1218
1219irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1220{
1221	struct rtc_time curr_time;
1222	unsigned long rtc_int_flag = 0;
1223
1224	hpet_rtc_timer_reinit();
1225	memset(&curr_time, 0, sizeof(struct rtc_time));
1226
1227	if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1228		get_rtc_time(&curr_time);
1229
1230	if (hpet_rtc_flags & RTC_UIE &&
1231	    curr_time.tm_sec != hpet_prev_update_sec) {
1232		if (hpet_prev_update_sec >= 0)
1233			rtc_int_flag = RTC_UF;
1234		hpet_prev_update_sec = curr_time.tm_sec;
1235	}
1236
1237	if (hpet_rtc_flags & RTC_PIE &&
1238	    ++hpet_pie_count >= hpet_pie_limit) {
1239		rtc_int_flag |= RTC_PF;
1240		hpet_pie_count = 0;
1241	}
1242
1243	if (hpet_rtc_flags & RTC_AIE &&
1244	    (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1245	    (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1246	    (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1247			rtc_int_flag |= RTC_AF;
1248
1249	if (rtc_int_flag) {
1250		rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1251		if (irq_handler)
1252			irq_handler(rtc_int_flag, dev_id);
1253	}
1254	return IRQ_HANDLED;
1255}
1256EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1257#endif