Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *	fs/libfs.c
   4 *	Library for filesystems writers.
   5 */
   6
   7#include <linux/blkdev.h>
   8#include <linux/export.h>
   9#include <linux/pagemap.h>
  10#include <linux/slab.h>
  11#include <linux/cred.h>
  12#include <linux/mount.h>
  13#include <linux/vfs.h>
  14#include <linux/quotaops.h>
  15#include <linux/mutex.h>
  16#include <linux/namei.h>
  17#include <linux/exportfs.h>
  18#include <linux/writeback.h>
  19#include <linux/buffer_head.h> /* sync_mapping_buffers */
  20#include <linux/fs_context.h>
  21#include <linux/pseudo_fs.h>
 
 
 
  22
  23#include <linux/uaccess.h>
  24
  25#include "internal.h"
  26
  27int simple_getattr(const struct path *path, struct kstat *stat,
  28		   u32 request_mask, unsigned int query_flags)
 
  29{
  30	struct inode *inode = d_inode(path->dentry);
  31	generic_fillattr(inode, stat);
  32	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
  33	return 0;
  34}
  35EXPORT_SYMBOL(simple_getattr);
  36
  37int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
  38{
  39	buf->f_type = dentry->d_sb->s_magic;
  40	buf->f_bsize = PAGE_SIZE;
  41	buf->f_namelen = NAME_MAX;
  42	return 0;
  43}
  44EXPORT_SYMBOL(simple_statfs);
  45
  46/*
  47 * Retaining negative dentries for an in-memory filesystem just wastes
  48 * memory and lookup time: arrange for them to be deleted immediately.
  49 */
  50int always_delete_dentry(const struct dentry *dentry)
  51{
  52	return 1;
  53}
  54EXPORT_SYMBOL(always_delete_dentry);
  55
  56const struct dentry_operations simple_dentry_operations = {
  57	.d_delete = always_delete_dentry,
  58};
  59EXPORT_SYMBOL(simple_dentry_operations);
  60
  61/*
  62 * Lookup the data. This is trivial - if the dentry didn't already
  63 * exist, we know it is negative.  Set d_op to delete negative dentries.
  64 */
  65struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
  66{
  67	if (dentry->d_name.len > NAME_MAX)
  68		return ERR_PTR(-ENAMETOOLONG);
  69	if (!dentry->d_sb->s_d_op)
  70		d_set_d_op(dentry, &simple_dentry_operations);
  71	d_add(dentry, NULL);
  72	return NULL;
  73}
  74EXPORT_SYMBOL(simple_lookup);
  75
  76int dcache_dir_open(struct inode *inode, struct file *file)
  77{
  78	file->private_data = d_alloc_cursor(file->f_path.dentry);
  79
  80	return file->private_data ? 0 : -ENOMEM;
  81}
  82EXPORT_SYMBOL(dcache_dir_open);
  83
  84int dcache_dir_close(struct inode *inode, struct file *file)
  85{
  86	dput(file->private_data);
  87	return 0;
  88}
  89EXPORT_SYMBOL(dcache_dir_close);
  90
  91/* parent is locked at least shared */
  92/*
  93 * Returns an element of siblings' list.
  94 * We are looking for <count>th positive after <p>; if
  95 * found, dentry is grabbed and returned to caller.
  96 * If no such element exists, NULL is returned.
  97 */
  98static struct dentry *scan_positives(struct dentry *cursor,
  99					struct list_head *p,
 100					loff_t count,
 101					struct dentry *last)
 102{
 103	struct dentry *dentry = cursor->d_parent, *found = NULL;
 104
 105	spin_lock(&dentry->d_lock);
 106	while ((p = p->next) != &dentry->d_subdirs) {
 107		struct dentry *d = list_entry(p, struct dentry, d_child);
 108		// we must at least skip cursors, to avoid livelocks
 109		if (d->d_flags & DCACHE_DENTRY_CURSOR)
 110			continue;
 111		if (simple_positive(d) && !--count) {
 112			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
 113			if (simple_positive(d))
 114				found = dget_dlock(d);
 115			spin_unlock(&d->d_lock);
 116			if (likely(found))
 117				break;
 118			count = 1;
 119		}
 120		if (need_resched()) {
 121			list_move(&cursor->d_child, p);
 122			p = &cursor->d_child;
 123			spin_unlock(&dentry->d_lock);
 124			cond_resched();
 125			spin_lock(&dentry->d_lock);
 126		}
 127	}
 128	spin_unlock(&dentry->d_lock);
 129	dput(last);
 130	return found;
 131}
 132
 133loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
 134{
 135	struct dentry *dentry = file->f_path.dentry;
 136	switch (whence) {
 137		case 1:
 138			offset += file->f_pos;
 139			/* fall through */
 140		case 0:
 141			if (offset >= 0)
 142				break;
 143			/* fall through */
 144		default:
 145			return -EINVAL;
 146	}
 147	if (offset != file->f_pos) {
 148		struct dentry *cursor = file->private_data;
 149		struct dentry *to = NULL;
 150
 151		inode_lock_shared(dentry->d_inode);
 152
 153		if (offset > 2)
 154			to = scan_positives(cursor, &dentry->d_subdirs,
 155					    offset - 2, NULL);
 156		spin_lock(&dentry->d_lock);
 157		if (to)
 158			list_move(&cursor->d_child, &to->d_child);
 159		else
 160			list_del_init(&cursor->d_child);
 161		spin_unlock(&dentry->d_lock);
 162		dput(to);
 163
 164		file->f_pos = offset;
 165
 166		inode_unlock_shared(dentry->d_inode);
 167	}
 168	return offset;
 169}
 170EXPORT_SYMBOL(dcache_dir_lseek);
 171
 172/* Relationship between i_mode and the DT_xxx types */
 173static inline unsigned char dt_type(struct inode *inode)
 174{
 175	return (inode->i_mode >> 12) & 15;
 176}
 177
 178/*
 179 * Directory is locked and all positive dentries in it are safe, since
 180 * for ramfs-type trees they can't go away without unlink() or rmdir(),
 181 * both impossible due to the lock on directory.
 182 */
 183
 184int dcache_readdir(struct file *file, struct dir_context *ctx)
 185{
 186	struct dentry *dentry = file->f_path.dentry;
 187	struct dentry *cursor = file->private_data;
 188	struct list_head *anchor = &dentry->d_subdirs;
 189	struct dentry *next = NULL;
 190	struct list_head *p;
 191
 192	if (!dir_emit_dots(file, ctx))
 193		return 0;
 194
 195	if (ctx->pos == 2)
 196		p = anchor;
 197	else if (!list_empty(&cursor->d_child))
 198		p = &cursor->d_child;
 199	else
 200		return 0;
 201
 202	while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
 203		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
 204			      d_inode(next)->i_ino, dt_type(d_inode(next))))
 205			break;
 206		ctx->pos++;
 207		p = &next->d_child;
 208	}
 209	spin_lock(&dentry->d_lock);
 210	if (next)
 211		list_move_tail(&cursor->d_child, &next->d_child);
 212	else
 213		list_del_init(&cursor->d_child);
 214	spin_unlock(&dentry->d_lock);
 215	dput(next);
 216
 217	return 0;
 218}
 219EXPORT_SYMBOL(dcache_readdir);
 220
 221ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
 222{
 223	return -EISDIR;
 224}
 225EXPORT_SYMBOL(generic_read_dir);
 226
 227const struct file_operations simple_dir_operations = {
 228	.open		= dcache_dir_open,
 229	.release	= dcache_dir_close,
 230	.llseek		= dcache_dir_lseek,
 231	.read		= generic_read_dir,
 232	.iterate_shared	= dcache_readdir,
 233	.fsync		= noop_fsync,
 234};
 235EXPORT_SYMBOL(simple_dir_operations);
 236
 237const struct inode_operations simple_dir_inode_operations = {
 238	.lookup		= simple_lookup,
 239};
 240EXPORT_SYMBOL(simple_dir_inode_operations);
 241
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 242static const struct super_operations simple_super_operations = {
 243	.statfs		= simple_statfs,
 244};
 245
 246static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
 247{
 248	struct pseudo_fs_context *ctx = fc->fs_private;
 249	struct inode *root;
 250
 251	s->s_maxbytes = MAX_LFS_FILESIZE;
 252	s->s_blocksize = PAGE_SIZE;
 253	s->s_blocksize_bits = PAGE_SHIFT;
 254	s->s_magic = ctx->magic;
 255	s->s_op = ctx->ops ?: &simple_super_operations;
 256	s->s_xattr = ctx->xattr;
 257	s->s_time_gran = 1;
 258	root = new_inode(s);
 259	if (!root)
 260		return -ENOMEM;
 261
 262	/*
 263	 * since this is the first inode, make it number 1. New inodes created
 264	 * after this must take care not to collide with it (by passing
 265	 * max_reserved of 1 to iunique).
 266	 */
 267	root->i_ino = 1;
 268	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
 269	root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
 270	s->s_root = d_make_root(root);
 271	if (!s->s_root)
 272		return -ENOMEM;
 273	s->s_d_op = ctx->dops;
 274	return 0;
 275}
 276
 277static int pseudo_fs_get_tree(struct fs_context *fc)
 278{
 279	return get_tree_nodev(fc, pseudo_fs_fill_super);
 280}
 281
 282static void pseudo_fs_free(struct fs_context *fc)
 283{
 284	kfree(fc->fs_private);
 285}
 286
 287static const struct fs_context_operations pseudo_fs_context_ops = {
 288	.free		= pseudo_fs_free,
 289	.get_tree	= pseudo_fs_get_tree,
 290};
 291
 292/*
 293 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
 294 * will never be mountable)
 295 */
 296struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
 297					unsigned long magic)
 298{
 299	struct pseudo_fs_context *ctx;
 300
 301	ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
 302	if (likely(ctx)) {
 303		ctx->magic = magic;
 304		fc->fs_private = ctx;
 305		fc->ops = &pseudo_fs_context_ops;
 306		fc->sb_flags |= SB_NOUSER;
 307		fc->global = true;
 308	}
 309	return ctx;
 310}
 311EXPORT_SYMBOL(init_pseudo);
 312
 313int simple_open(struct inode *inode, struct file *file)
 314{
 315	if (inode->i_private)
 316		file->private_data = inode->i_private;
 317	return 0;
 318}
 319EXPORT_SYMBOL(simple_open);
 320
 321int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
 322{
 323	struct inode *inode = d_inode(old_dentry);
 324
 325	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
 326	inc_nlink(inode);
 327	ihold(inode);
 328	dget(dentry);
 329	d_instantiate(dentry, inode);
 330	return 0;
 331}
 332EXPORT_SYMBOL(simple_link);
 333
 334int simple_empty(struct dentry *dentry)
 335{
 336	struct dentry *child;
 337	int ret = 0;
 338
 339	spin_lock(&dentry->d_lock);
 340	list_for_each_entry(child, &dentry->d_subdirs, d_child) {
 341		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
 342		if (simple_positive(child)) {
 343			spin_unlock(&child->d_lock);
 344			goto out;
 345		}
 346		spin_unlock(&child->d_lock);
 347	}
 348	ret = 1;
 349out:
 350	spin_unlock(&dentry->d_lock);
 351	return ret;
 352}
 353EXPORT_SYMBOL(simple_empty);
 354
 355int simple_unlink(struct inode *dir, struct dentry *dentry)
 356{
 357	struct inode *inode = d_inode(dentry);
 358
 359	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
 360	drop_nlink(inode);
 361	dput(dentry);
 362	return 0;
 363}
 364EXPORT_SYMBOL(simple_unlink);
 365
 366int simple_rmdir(struct inode *dir, struct dentry *dentry)
 367{
 368	if (!simple_empty(dentry))
 369		return -ENOTEMPTY;
 370
 371	drop_nlink(d_inode(dentry));
 372	simple_unlink(dir, dentry);
 373	drop_nlink(dir);
 374	return 0;
 375}
 376EXPORT_SYMBOL(simple_rmdir);
 377
 378int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
 379		  struct inode *new_dir, struct dentry *new_dentry,
 380		  unsigned int flags)
 381{
 382	struct inode *inode = d_inode(old_dentry);
 383	int they_are_dirs = d_is_dir(old_dentry);
 384
 385	if (flags & ~RENAME_NOREPLACE)
 386		return -EINVAL;
 387
 388	if (!simple_empty(new_dentry))
 389		return -ENOTEMPTY;
 390
 391	if (d_really_is_positive(new_dentry)) {
 392		simple_unlink(new_dir, new_dentry);
 393		if (they_are_dirs) {
 394			drop_nlink(d_inode(new_dentry));
 395			drop_nlink(old_dir);
 396		}
 397	} else if (they_are_dirs) {
 398		drop_nlink(old_dir);
 399		inc_nlink(new_dir);
 400	}
 401
 402	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
 403		new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
 404
 405	return 0;
 406}
 407EXPORT_SYMBOL(simple_rename);
 408
 409/**
 410 * simple_setattr - setattr for simple filesystem
 
 411 * @dentry: dentry
 412 * @iattr: iattr structure
 413 *
 414 * Returns 0 on success, -error on failure.
 415 *
 416 * simple_setattr is a simple ->setattr implementation without a proper
 417 * implementation of size changes.
 418 *
 419 * It can either be used for in-memory filesystems or special files
 420 * on simple regular filesystems.  Anything that needs to change on-disk
 421 * or wire state on size changes needs its own setattr method.
 422 */
 423int simple_setattr(struct dentry *dentry, struct iattr *iattr)
 
 424{
 425	struct inode *inode = d_inode(dentry);
 426	int error;
 427
 428	error = setattr_prepare(dentry, iattr);
 429	if (error)
 430		return error;
 431
 432	if (iattr->ia_valid & ATTR_SIZE)
 433		truncate_setsize(inode, iattr->ia_size);
 434	setattr_copy(inode, iattr);
 435	mark_inode_dirty(inode);
 436	return 0;
 437}
 438EXPORT_SYMBOL(simple_setattr);
 439
 440int simple_readpage(struct file *file, struct page *page)
 441{
 442	clear_highpage(page);
 443	flush_dcache_page(page);
 444	SetPageUptodate(page);
 445	unlock_page(page);
 446	return 0;
 447}
 448EXPORT_SYMBOL(simple_readpage);
 449
 450int simple_write_begin(struct file *file, struct address_space *mapping,
 451			loff_t pos, unsigned len, unsigned flags,
 452			struct page **pagep, void **fsdata)
 453{
 454	struct page *page;
 455	pgoff_t index;
 456
 457	index = pos >> PAGE_SHIFT;
 458
 459	page = grab_cache_page_write_begin(mapping, index, flags);
 460	if (!page)
 461		return -ENOMEM;
 462
 463	*pagep = page;
 464
 465	if (!PageUptodate(page) && (len != PAGE_SIZE)) {
 466		unsigned from = pos & (PAGE_SIZE - 1);
 467
 468		zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
 469	}
 470	return 0;
 471}
 472EXPORT_SYMBOL(simple_write_begin);
 473
 474/**
 475 * simple_write_end - .write_end helper for non-block-device FSes
 476 * @file: See .write_end of address_space_operations
 477 * @mapping: 		"
 478 * @pos: 		"
 479 * @len: 		"
 480 * @copied: 		"
 481 * @page: 		"
 482 * @fsdata: 		"
 483 *
 484 * simple_write_end does the minimum needed for updating a page after writing is
 485 * done. It has the same API signature as the .write_end of
 486 * address_space_operations vector. So it can just be set onto .write_end for
 487 * FSes that don't need any other processing. i_mutex is assumed to be held.
 488 * Block based filesystems should use generic_write_end().
 489 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
 490 * is not called, so a filesystem that actually does store data in .write_inode
 491 * should extend on what's done here with a call to mark_inode_dirty() in the
 492 * case that i_size has changed.
 493 *
 494 * Use *ONLY* with simple_readpage()
 495 */
 496int simple_write_end(struct file *file, struct address_space *mapping,
 497			loff_t pos, unsigned len, unsigned copied,
 498			struct page *page, void *fsdata)
 499{
 500	struct inode *inode = page->mapping->host;
 501	loff_t last_pos = pos + copied;
 502
 503	/* zero the stale part of the page if we did a short copy */
 504	if (!PageUptodate(page)) {
 505		if (copied < len) {
 506			unsigned from = pos & (PAGE_SIZE - 1);
 507
 508			zero_user(page, from + copied, len - copied);
 509		}
 510		SetPageUptodate(page);
 511	}
 512	/*
 513	 * No need to use i_size_read() here, the i_size
 514	 * cannot change under us because we hold the i_mutex.
 515	 */
 516	if (last_pos > inode->i_size)
 517		i_size_write(inode, last_pos);
 518
 519	set_page_dirty(page);
 520	unlock_page(page);
 521	put_page(page);
 522
 523	return copied;
 524}
 525EXPORT_SYMBOL(simple_write_end);
 
 
 
 
 
 
 
 
 
 
 526
 527/*
 528 * the inodes created here are not hashed. If you use iunique to generate
 529 * unique inode values later for this filesystem, then you must take care
 530 * to pass it an appropriate max_reserved value to avoid collisions.
 531 */
 532int simple_fill_super(struct super_block *s, unsigned long magic,
 533		      const struct tree_descr *files)
 534{
 535	struct inode *inode;
 536	struct dentry *root;
 537	struct dentry *dentry;
 538	int i;
 539
 540	s->s_blocksize = PAGE_SIZE;
 541	s->s_blocksize_bits = PAGE_SHIFT;
 542	s->s_magic = magic;
 543	s->s_op = &simple_super_operations;
 544	s->s_time_gran = 1;
 545
 546	inode = new_inode(s);
 547	if (!inode)
 548		return -ENOMEM;
 549	/*
 550	 * because the root inode is 1, the files array must not contain an
 551	 * entry at index 1
 552	 */
 553	inode->i_ino = 1;
 554	inode->i_mode = S_IFDIR | 0755;
 555	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 556	inode->i_op = &simple_dir_inode_operations;
 557	inode->i_fop = &simple_dir_operations;
 558	set_nlink(inode, 2);
 559	root = d_make_root(inode);
 560	if (!root)
 561		return -ENOMEM;
 562	for (i = 0; !files->name || files->name[0]; i++, files++) {
 563		if (!files->name)
 564			continue;
 565
 566		/* warn if it tries to conflict with the root inode */
 567		if (unlikely(i == 1))
 568			printk(KERN_WARNING "%s: %s passed in a files array"
 569				"with an index of 1!\n", __func__,
 570				s->s_type->name);
 571
 572		dentry = d_alloc_name(root, files->name);
 573		if (!dentry)
 574			goto out;
 575		inode = new_inode(s);
 576		if (!inode) {
 577			dput(dentry);
 578			goto out;
 579		}
 580		inode->i_mode = S_IFREG | files->mode;
 581		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 582		inode->i_fop = files->ops;
 583		inode->i_ino = i;
 584		d_add(dentry, inode);
 585	}
 586	s->s_root = root;
 587	return 0;
 588out:
 589	d_genocide(root);
 590	shrink_dcache_parent(root);
 591	dput(root);
 592	return -ENOMEM;
 593}
 594EXPORT_SYMBOL(simple_fill_super);
 595
 596static DEFINE_SPINLOCK(pin_fs_lock);
 597
 598int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
 599{
 600	struct vfsmount *mnt = NULL;
 601	spin_lock(&pin_fs_lock);
 602	if (unlikely(!*mount)) {
 603		spin_unlock(&pin_fs_lock);
 604		mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
 605		if (IS_ERR(mnt))
 606			return PTR_ERR(mnt);
 607		spin_lock(&pin_fs_lock);
 608		if (!*mount)
 609			*mount = mnt;
 610	}
 611	mntget(*mount);
 612	++*count;
 613	spin_unlock(&pin_fs_lock);
 614	mntput(mnt);
 615	return 0;
 616}
 617EXPORT_SYMBOL(simple_pin_fs);
 618
 619void simple_release_fs(struct vfsmount **mount, int *count)
 620{
 621	struct vfsmount *mnt;
 622	spin_lock(&pin_fs_lock);
 623	mnt = *mount;
 624	if (!--*count)
 625		*mount = NULL;
 626	spin_unlock(&pin_fs_lock);
 627	mntput(mnt);
 628}
 629EXPORT_SYMBOL(simple_release_fs);
 630
 631/**
 632 * simple_read_from_buffer - copy data from the buffer to user space
 633 * @to: the user space buffer to read to
 634 * @count: the maximum number of bytes to read
 635 * @ppos: the current position in the buffer
 636 * @from: the buffer to read from
 637 * @available: the size of the buffer
 638 *
 639 * The simple_read_from_buffer() function reads up to @count bytes from the
 640 * buffer @from at offset @ppos into the user space address starting at @to.
 641 *
 642 * On success, the number of bytes read is returned and the offset @ppos is
 643 * advanced by this number, or negative value is returned on error.
 644 **/
 645ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
 646				const void *from, size_t available)
 647{
 648	loff_t pos = *ppos;
 649	size_t ret;
 650
 651	if (pos < 0)
 652		return -EINVAL;
 653	if (pos >= available || !count)
 654		return 0;
 655	if (count > available - pos)
 656		count = available - pos;
 657	ret = copy_to_user(to, from + pos, count);
 658	if (ret == count)
 659		return -EFAULT;
 660	count -= ret;
 661	*ppos = pos + count;
 662	return count;
 663}
 664EXPORT_SYMBOL(simple_read_from_buffer);
 665
 666/**
 667 * simple_write_to_buffer - copy data from user space to the buffer
 668 * @to: the buffer to write to
 669 * @available: the size of the buffer
 670 * @ppos: the current position in the buffer
 671 * @from: the user space buffer to read from
 672 * @count: the maximum number of bytes to read
 673 *
 674 * The simple_write_to_buffer() function reads up to @count bytes from the user
 675 * space address starting at @from into the buffer @to at offset @ppos.
 676 *
 677 * On success, the number of bytes written is returned and the offset @ppos is
 678 * advanced by this number, or negative value is returned on error.
 679 **/
 680ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
 681		const void __user *from, size_t count)
 682{
 683	loff_t pos = *ppos;
 684	size_t res;
 685
 686	if (pos < 0)
 687		return -EINVAL;
 688	if (pos >= available || !count)
 689		return 0;
 690	if (count > available - pos)
 691		count = available - pos;
 692	res = copy_from_user(to + pos, from, count);
 693	if (res == count)
 694		return -EFAULT;
 695	count -= res;
 696	*ppos = pos + count;
 697	return count;
 698}
 699EXPORT_SYMBOL(simple_write_to_buffer);
 700
 701/**
 702 * memory_read_from_buffer - copy data from the buffer
 703 * @to: the kernel space buffer to read to
 704 * @count: the maximum number of bytes to read
 705 * @ppos: the current position in the buffer
 706 * @from: the buffer to read from
 707 * @available: the size of the buffer
 708 *
 709 * The memory_read_from_buffer() function reads up to @count bytes from the
 710 * buffer @from at offset @ppos into the kernel space address starting at @to.
 711 *
 712 * On success, the number of bytes read is returned and the offset @ppos is
 713 * advanced by this number, or negative value is returned on error.
 714 **/
 715ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
 716				const void *from, size_t available)
 717{
 718	loff_t pos = *ppos;
 719
 720	if (pos < 0)
 721		return -EINVAL;
 722	if (pos >= available)
 723		return 0;
 724	if (count > available - pos)
 725		count = available - pos;
 726	memcpy(to, from + pos, count);
 727	*ppos = pos + count;
 728
 729	return count;
 730}
 731EXPORT_SYMBOL(memory_read_from_buffer);
 732
 733/*
 734 * Transaction based IO.
 735 * The file expects a single write which triggers the transaction, and then
 736 * possibly a read which collects the result - which is stored in a
 737 * file-local buffer.
 738 */
 739
 740void simple_transaction_set(struct file *file, size_t n)
 741{
 742	struct simple_transaction_argresp *ar = file->private_data;
 743
 744	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
 745
 746	/*
 747	 * The barrier ensures that ar->size will really remain zero until
 748	 * ar->data is ready for reading.
 749	 */
 750	smp_mb();
 751	ar->size = n;
 752}
 753EXPORT_SYMBOL(simple_transaction_set);
 754
 755char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
 756{
 757	struct simple_transaction_argresp *ar;
 758	static DEFINE_SPINLOCK(simple_transaction_lock);
 759
 760	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
 761		return ERR_PTR(-EFBIG);
 762
 763	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
 764	if (!ar)
 765		return ERR_PTR(-ENOMEM);
 766
 767	spin_lock(&simple_transaction_lock);
 768
 769	/* only one write allowed per open */
 770	if (file->private_data) {
 771		spin_unlock(&simple_transaction_lock);
 772		free_page((unsigned long)ar);
 773		return ERR_PTR(-EBUSY);
 774	}
 775
 776	file->private_data = ar;
 777
 778	spin_unlock(&simple_transaction_lock);
 779
 780	if (copy_from_user(ar->data, buf, size))
 781		return ERR_PTR(-EFAULT);
 782
 783	return ar->data;
 784}
 785EXPORT_SYMBOL(simple_transaction_get);
 786
 787ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
 788{
 789	struct simple_transaction_argresp *ar = file->private_data;
 790
 791	if (!ar)
 792		return 0;
 793	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
 794}
 795EXPORT_SYMBOL(simple_transaction_read);
 796
 797int simple_transaction_release(struct inode *inode, struct file *file)
 798{
 799	free_page((unsigned long)file->private_data);
 800	return 0;
 801}
 802EXPORT_SYMBOL(simple_transaction_release);
 803
 804/* Simple attribute files */
 805
 806struct simple_attr {
 807	int (*get)(void *, u64 *);
 808	int (*set)(void *, u64);
 809	char get_buf[24];	/* enough to store a u64 and "\n\0" */
 810	char set_buf[24];
 811	void *data;
 812	const char *fmt;	/* format for read operation */
 813	struct mutex mutex;	/* protects access to these buffers */
 814};
 815
 816/* simple_attr_open is called by an actual attribute open file operation
 817 * to set the attribute specific access operations. */
 818int simple_attr_open(struct inode *inode, struct file *file,
 819		     int (*get)(void *, u64 *), int (*set)(void *, u64),
 820		     const char *fmt)
 821{
 822	struct simple_attr *attr;
 823
 824	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
 825	if (!attr)
 826		return -ENOMEM;
 827
 828	attr->get = get;
 829	attr->set = set;
 830	attr->data = inode->i_private;
 831	attr->fmt = fmt;
 832	mutex_init(&attr->mutex);
 833
 834	file->private_data = attr;
 835
 836	return nonseekable_open(inode, file);
 837}
 838EXPORT_SYMBOL_GPL(simple_attr_open);
 839
 840int simple_attr_release(struct inode *inode, struct file *file)
 841{
 842	kfree(file->private_data);
 843	return 0;
 844}
 845EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
 846
 847/* read from the buffer that is filled with the get function */
 848ssize_t simple_attr_read(struct file *file, char __user *buf,
 849			 size_t len, loff_t *ppos)
 850{
 851	struct simple_attr *attr;
 852	size_t size;
 853	ssize_t ret;
 854
 855	attr = file->private_data;
 856
 857	if (!attr->get)
 858		return -EACCES;
 859
 860	ret = mutex_lock_interruptible(&attr->mutex);
 861	if (ret)
 862		return ret;
 863
 864	if (*ppos) {		/* continued read */
 
 865		size = strlen(attr->get_buf);
 866	} else {		/* first read */
 
 867		u64 val;
 868		ret = attr->get(attr->data, &val);
 869		if (ret)
 870			goto out;
 871
 872		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
 873				 attr->fmt, (unsigned long long)val);
 874	}
 875
 876	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
 877out:
 878	mutex_unlock(&attr->mutex);
 879	return ret;
 880}
 881EXPORT_SYMBOL_GPL(simple_attr_read);
 882
 883/* interpret the buffer as a number to call the set function with */
 884ssize_t simple_attr_write(struct file *file, const char __user *buf,
 885			  size_t len, loff_t *ppos)
 886{
 887	struct simple_attr *attr;
 888	u64 val;
 889	size_t size;
 890	ssize_t ret;
 891
 892	attr = file->private_data;
 893	if (!attr->set)
 894		return -EACCES;
 895
 896	ret = mutex_lock_interruptible(&attr->mutex);
 897	if (ret)
 898		return ret;
 899
 900	ret = -EFAULT;
 901	size = min(sizeof(attr->set_buf) - 1, len);
 902	if (copy_from_user(attr->set_buf, buf, size))
 903		goto out;
 904
 905	attr->set_buf[size] = '\0';
 906	val = simple_strtoll(attr->set_buf, NULL, 0);
 
 
 907	ret = attr->set(attr->data, val);
 908	if (ret == 0)
 909		ret = len; /* on success, claim we got the whole input */
 910out:
 911	mutex_unlock(&attr->mutex);
 912	return ret;
 913}
 914EXPORT_SYMBOL_GPL(simple_attr_write);
 915
 916/**
 917 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
 918 * @sb:		filesystem to do the file handle conversion on
 919 * @fid:	file handle to convert
 920 * @fh_len:	length of the file handle in bytes
 921 * @fh_type:	type of file handle
 922 * @get_inode:	filesystem callback to retrieve inode
 923 *
 924 * This function decodes @fid as long as it has one of the well-known
 925 * Linux filehandle types and calls @get_inode on it to retrieve the
 926 * inode for the object specified in the file handle.
 927 */
 928struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
 929		int fh_len, int fh_type, struct inode *(*get_inode)
 930			(struct super_block *sb, u64 ino, u32 gen))
 931{
 932	struct inode *inode = NULL;
 933
 934	if (fh_len < 2)
 935		return NULL;
 936
 937	switch (fh_type) {
 938	case FILEID_INO32_GEN:
 939	case FILEID_INO32_GEN_PARENT:
 940		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
 941		break;
 942	}
 943
 944	return d_obtain_alias(inode);
 945}
 946EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
 947
 948/**
 949 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
 950 * @sb:		filesystem to do the file handle conversion on
 951 * @fid:	file handle to convert
 952 * @fh_len:	length of the file handle in bytes
 953 * @fh_type:	type of file handle
 954 * @get_inode:	filesystem callback to retrieve inode
 955 *
 956 * This function decodes @fid as long as it has one of the well-known
 957 * Linux filehandle types and calls @get_inode on it to retrieve the
 958 * inode for the _parent_ object specified in the file handle if it
 959 * is specified in the file handle, or NULL otherwise.
 960 */
 961struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
 962		int fh_len, int fh_type, struct inode *(*get_inode)
 963			(struct super_block *sb, u64 ino, u32 gen))
 964{
 965	struct inode *inode = NULL;
 966
 967	if (fh_len <= 2)
 968		return NULL;
 969
 970	switch (fh_type) {
 971	case FILEID_INO32_GEN_PARENT:
 972		inode = get_inode(sb, fid->i32.parent_ino,
 973				  (fh_len > 3 ? fid->i32.parent_gen : 0));
 974		break;
 975	}
 976
 977	return d_obtain_alias(inode);
 978}
 979EXPORT_SYMBOL_GPL(generic_fh_to_parent);
 980
 981/**
 982 * __generic_file_fsync - generic fsync implementation for simple filesystems
 983 *
 984 * @file:	file to synchronize
 985 * @start:	start offset in bytes
 986 * @end:	end offset in bytes (inclusive)
 987 * @datasync:	only synchronize essential metadata if true
 988 *
 989 * This is a generic implementation of the fsync method for simple
 990 * filesystems which track all non-inode metadata in the buffers list
 991 * hanging off the address_space structure.
 992 */
 993int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
 994				 int datasync)
 995{
 996	struct inode *inode = file->f_mapping->host;
 997	int err;
 998	int ret;
 999
1000	err = file_write_and_wait_range(file, start, end);
1001	if (err)
1002		return err;
1003
1004	inode_lock(inode);
1005	ret = sync_mapping_buffers(inode->i_mapping);
1006	if (!(inode->i_state & I_DIRTY_ALL))
1007		goto out;
1008	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1009		goto out;
1010
1011	err = sync_inode_metadata(inode, 1);
1012	if (ret == 0)
1013		ret = err;
1014
1015out:
1016	inode_unlock(inode);
1017	/* check and advance again to catch errors after syncing out buffers */
1018	err = file_check_and_advance_wb_err(file);
1019	if (ret == 0)
1020		ret = err;
1021	return ret;
1022}
1023EXPORT_SYMBOL(__generic_file_fsync);
1024
1025/**
1026 * generic_file_fsync - generic fsync implementation for simple filesystems
1027 *			with flush
1028 * @file:	file to synchronize
1029 * @start:	start offset in bytes
1030 * @end:	end offset in bytes (inclusive)
1031 * @datasync:	only synchronize essential metadata if true
1032 *
1033 */
1034
1035int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1036		       int datasync)
1037{
1038	struct inode *inode = file->f_mapping->host;
1039	int err;
1040
1041	err = __generic_file_fsync(file, start, end, datasync);
1042	if (err)
1043		return err;
1044	return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
1045}
1046EXPORT_SYMBOL(generic_file_fsync);
1047
1048/**
1049 * generic_check_addressable - Check addressability of file system
1050 * @blocksize_bits:	log of file system block size
1051 * @num_blocks:		number of blocks in file system
1052 *
1053 * Determine whether a file system with @num_blocks blocks (and a
1054 * block size of 2**@blocksize_bits) is addressable by the sector_t
1055 * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1056 */
1057int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1058{
1059	u64 last_fs_block = num_blocks - 1;
1060	u64 last_fs_page =
1061		last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1062
1063	if (unlikely(num_blocks == 0))
1064		return 0;
1065
1066	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1067		return -EINVAL;
1068
1069	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1070	    (last_fs_page > (pgoff_t)(~0ULL))) {
1071		return -EFBIG;
1072	}
1073	return 0;
1074}
1075EXPORT_SYMBOL(generic_check_addressable);
1076
1077/*
1078 * No-op implementation of ->fsync for in-memory filesystems.
1079 */
1080int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1081{
1082	return 0;
1083}
1084EXPORT_SYMBOL(noop_fsync);
1085
1086int noop_set_page_dirty(struct page *page)
1087{
1088	/*
1089	 * Unlike __set_page_dirty_no_writeback that handles dirty page
1090	 * tracking in the page object, dax does all dirty tracking in
1091	 * the inode address_space in response to mkwrite faults. In the
1092	 * dax case we only need to worry about potentially dirty CPU
1093	 * caches, not dirty page cache pages to write back.
1094	 *
1095	 * This callback is defined to prevent fallback to
1096	 * __set_page_dirty_buffers() in set_page_dirty().
1097	 */
1098	return 0;
1099}
1100EXPORT_SYMBOL_GPL(noop_set_page_dirty);
1101
1102void noop_invalidatepage(struct page *page, unsigned int offset,
1103		unsigned int length)
1104{
1105	/*
1106	 * There is no page cache to invalidate in the dax case, however
1107	 * we need this callback defined to prevent falling back to
1108	 * block_invalidatepage() in do_invalidatepage().
1109	 */
1110}
1111EXPORT_SYMBOL_GPL(noop_invalidatepage);
1112
1113ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1114{
1115	/*
1116	 * iomap based filesystems support direct I/O without need for
1117	 * this callback. However, it still needs to be set in
1118	 * inode->a_ops so that open/fcntl know that direct I/O is
1119	 * generally supported.
1120	 */
1121	return -EINVAL;
1122}
1123EXPORT_SYMBOL_GPL(noop_direct_IO);
1124
1125/* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1126void kfree_link(void *p)
1127{
1128	kfree(p);
1129}
1130EXPORT_SYMBOL(kfree_link);
1131
1132/*
1133 * nop .set_page_dirty method so that people can use .page_mkwrite on
1134 * anon inodes.
1135 */
1136static int anon_set_page_dirty(struct page *page)
1137{
1138	return 0;
1139};
1140
1141/*
1142 * A single inode exists for all anon_inode files. Contrary to pipes,
1143 * anon_inode inodes have no associated per-instance data, so we need
1144 * only allocate one of them.
1145 */
1146struct inode *alloc_anon_inode(struct super_block *s)
1147{
1148	static const struct address_space_operations anon_aops = {
1149		.set_page_dirty = anon_set_page_dirty,
1150	};
1151	struct inode *inode = new_inode_pseudo(s);
1152
1153	if (!inode)
1154		return ERR_PTR(-ENOMEM);
1155
1156	inode->i_ino = get_next_ino();
1157	inode->i_mapping->a_ops = &anon_aops;
1158
1159	/*
1160	 * Mark the inode dirty from the very beginning,
1161	 * that way it will never be moved to the dirty
1162	 * list because mark_inode_dirty() will think
1163	 * that it already _is_ on the dirty list.
1164	 */
1165	inode->i_state = I_DIRTY;
1166	inode->i_mode = S_IRUSR | S_IWUSR;
1167	inode->i_uid = current_fsuid();
1168	inode->i_gid = current_fsgid();
1169	inode->i_flags |= S_PRIVATE;
1170	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1171	return inode;
1172}
1173EXPORT_SYMBOL(alloc_anon_inode);
1174
1175/**
1176 * simple_nosetlease - generic helper for prohibiting leases
1177 * @filp: file pointer
1178 * @arg: type of lease to obtain
1179 * @flp: new lease supplied for insertion
1180 * @priv: private data for lm_setup operation
1181 *
1182 * Generic helper for filesystems that do not wish to allow leases to be set.
1183 * All arguments are ignored and it just returns -EINVAL.
1184 */
1185int
1186simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1187		  void **priv)
1188{
1189	return -EINVAL;
1190}
1191EXPORT_SYMBOL(simple_nosetlease);
1192
1193/**
1194 * simple_get_link - generic helper to get the target of "fast" symlinks
1195 * @dentry: not used here
1196 * @inode: the symlink inode
1197 * @done: not used here
1198 *
1199 * Generic helper for filesystems to use for symlink inodes where a pointer to
1200 * the symlink target is stored in ->i_link.  NOTE: this isn't normally called,
1201 * since as an optimization the path lookup code uses any non-NULL ->i_link
1202 * directly, without calling ->get_link().  But ->get_link() still must be set,
1203 * to mark the inode_operations as being for a symlink.
1204 *
1205 * Return: the symlink target
1206 */
1207const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1208			    struct delayed_call *done)
1209{
1210	return inode->i_link;
1211}
1212EXPORT_SYMBOL(simple_get_link);
1213
1214const struct inode_operations simple_symlink_inode_operations = {
1215	.get_link = simple_get_link,
1216};
1217EXPORT_SYMBOL(simple_symlink_inode_operations);
1218
1219/*
1220 * Operations for a permanently empty directory.
1221 */
1222static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1223{
1224	return ERR_PTR(-ENOENT);
1225}
1226
1227static int empty_dir_getattr(const struct path *path, struct kstat *stat,
 
1228			     u32 request_mask, unsigned int query_flags)
1229{
1230	struct inode *inode = d_inode(path->dentry);
1231	generic_fillattr(inode, stat);
1232	return 0;
1233}
1234
1235static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr)
 
1236{
1237	return -EPERM;
1238}
1239
1240static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1241{
1242	return -EOPNOTSUPP;
1243}
1244
1245static const struct inode_operations empty_dir_inode_operations = {
1246	.lookup		= empty_dir_lookup,
1247	.permission	= generic_permission,
1248	.setattr	= empty_dir_setattr,
1249	.getattr	= empty_dir_getattr,
1250	.listxattr	= empty_dir_listxattr,
1251};
1252
1253static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1254{
1255	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1256	return generic_file_llseek_size(file, offset, whence, 2, 2);
1257}
1258
1259static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1260{
1261	dir_emit_dots(file, ctx);
1262	return 0;
1263}
1264
1265static const struct file_operations empty_dir_operations = {
1266	.llseek		= empty_dir_llseek,
1267	.read		= generic_read_dir,
1268	.iterate_shared	= empty_dir_readdir,
1269	.fsync		= noop_fsync,
1270};
1271
1272
1273void make_empty_dir_inode(struct inode *inode)
1274{
1275	set_nlink(inode, 2);
1276	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1277	inode->i_uid = GLOBAL_ROOT_UID;
1278	inode->i_gid = GLOBAL_ROOT_GID;
1279	inode->i_rdev = 0;
1280	inode->i_size = 0;
1281	inode->i_blkbits = PAGE_SHIFT;
1282	inode->i_blocks = 0;
1283
1284	inode->i_op = &empty_dir_inode_operations;
1285	inode->i_opflags &= ~IOP_XATTR;
1286	inode->i_fop = &empty_dir_operations;
1287}
1288
1289bool is_empty_dir_inode(struct inode *inode)
1290{
1291	return (inode->i_fop == &empty_dir_operations) &&
1292		(inode->i_op == &empty_dir_inode_operations);
1293}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *	fs/libfs.c
   4 *	Library for filesystems writers.
   5 */
   6
   7#include <linux/blkdev.h>
   8#include <linux/export.h>
   9#include <linux/pagemap.h>
  10#include <linux/slab.h>
  11#include <linux/cred.h>
  12#include <linux/mount.h>
  13#include <linux/vfs.h>
  14#include <linux/quotaops.h>
  15#include <linux/mutex.h>
  16#include <linux/namei.h>
  17#include <linux/exportfs.h>
  18#include <linux/writeback.h>
  19#include <linux/buffer_head.h> /* sync_mapping_buffers */
  20#include <linux/fs_context.h>
  21#include <linux/pseudo_fs.h>
  22#include <linux/fsnotify.h>
  23#include <linux/unicode.h>
  24#include <linux/fscrypt.h>
  25
  26#include <linux/uaccess.h>
  27
  28#include "internal.h"
  29
  30int simple_getattr(struct user_namespace *mnt_userns, const struct path *path,
  31		   struct kstat *stat, u32 request_mask,
  32		   unsigned int query_flags)
  33{
  34	struct inode *inode = d_inode(path->dentry);
  35	generic_fillattr(&init_user_ns, inode, stat);
  36	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
  37	return 0;
  38}
  39EXPORT_SYMBOL(simple_getattr);
  40
  41int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
  42{
  43	buf->f_type = dentry->d_sb->s_magic;
  44	buf->f_bsize = PAGE_SIZE;
  45	buf->f_namelen = NAME_MAX;
  46	return 0;
  47}
  48EXPORT_SYMBOL(simple_statfs);
  49
  50/*
  51 * Retaining negative dentries for an in-memory filesystem just wastes
  52 * memory and lookup time: arrange for them to be deleted immediately.
  53 */
  54int always_delete_dentry(const struct dentry *dentry)
  55{
  56	return 1;
  57}
  58EXPORT_SYMBOL(always_delete_dentry);
  59
  60const struct dentry_operations simple_dentry_operations = {
  61	.d_delete = always_delete_dentry,
  62};
  63EXPORT_SYMBOL(simple_dentry_operations);
  64
  65/*
  66 * Lookup the data. This is trivial - if the dentry didn't already
  67 * exist, we know it is negative.  Set d_op to delete negative dentries.
  68 */
  69struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
  70{
  71	if (dentry->d_name.len > NAME_MAX)
  72		return ERR_PTR(-ENAMETOOLONG);
  73	if (!dentry->d_sb->s_d_op)
  74		d_set_d_op(dentry, &simple_dentry_operations);
  75	d_add(dentry, NULL);
  76	return NULL;
  77}
  78EXPORT_SYMBOL(simple_lookup);
  79
  80int dcache_dir_open(struct inode *inode, struct file *file)
  81{
  82	file->private_data = d_alloc_cursor(file->f_path.dentry);
  83
  84	return file->private_data ? 0 : -ENOMEM;
  85}
  86EXPORT_SYMBOL(dcache_dir_open);
  87
  88int dcache_dir_close(struct inode *inode, struct file *file)
  89{
  90	dput(file->private_data);
  91	return 0;
  92}
  93EXPORT_SYMBOL(dcache_dir_close);
  94
  95/* parent is locked at least shared */
  96/*
  97 * Returns an element of siblings' list.
  98 * We are looking for <count>th positive after <p>; if
  99 * found, dentry is grabbed and returned to caller.
 100 * If no such element exists, NULL is returned.
 101 */
 102static struct dentry *scan_positives(struct dentry *cursor,
 103					struct list_head *p,
 104					loff_t count,
 105					struct dentry *last)
 106{
 107	struct dentry *dentry = cursor->d_parent, *found = NULL;
 108
 109	spin_lock(&dentry->d_lock);
 110	while ((p = p->next) != &dentry->d_subdirs) {
 111		struct dentry *d = list_entry(p, struct dentry, d_child);
 112		// we must at least skip cursors, to avoid livelocks
 113		if (d->d_flags & DCACHE_DENTRY_CURSOR)
 114			continue;
 115		if (simple_positive(d) && !--count) {
 116			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
 117			if (simple_positive(d))
 118				found = dget_dlock(d);
 119			spin_unlock(&d->d_lock);
 120			if (likely(found))
 121				break;
 122			count = 1;
 123		}
 124		if (need_resched()) {
 125			list_move(&cursor->d_child, p);
 126			p = &cursor->d_child;
 127			spin_unlock(&dentry->d_lock);
 128			cond_resched();
 129			spin_lock(&dentry->d_lock);
 130		}
 131	}
 132	spin_unlock(&dentry->d_lock);
 133	dput(last);
 134	return found;
 135}
 136
 137loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
 138{
 139	struct dentry *dentry = file->f_path.dentry;
 140	switch (whence) {
 141		case 1:
 142			offset += file->f_pos;
 143			fallthrough;
 144		case 0:
 145			if (offset >= 0)
 146				break;
 147			fallthrough;
 148		default:
 149			return -EINVAL;
 150	}
 151	if (offset != file->f_pos) {
 152		struct dentry *cursor = file->private_data;
 153		struct dentry *to = NULL;
 154
 155		inode_lock_shared(dentry->d_inode);
 156
 157		if (offset > 2)
 158			to = scan_positives(cursor, &dentry->d_subdirs,
 159					    offset - 2, NULL);
 160		spin_lock(&dentry->d_lock);
 161		if (to)
 162			list_move(&cursor->d_child, &to->d_child);
 163		else
 164			list_del_init(&cursor->d_child);
 165		spin_unlock(&dentry->d_lock);
 166		dput(to);
 167
 168		file->f_pos = offset;
 169
 170		inode_unlock_shared(dentry->d_inode);
 171	}
 172	return offset;
 173}
 174EXPORT_SYMBOL(dcache_dir_lseek);
 175
 176/* Relationship between i_mode and the DT_xxx types */
 177static inline unsigned char dt_type(struct inode *inode)
 178{
 179	return (inode->i_mode >> 12) & 15;
 180}
 181
 182/*
 183 * Directory is locked and all positive dentries in it are safe, since
 184 * for ramfs-type trees they can't go away without unlink() or rmdir(),
 185 * both impossible due to the lock on directory.
 186 */
 187
 188int dcache_readdir(struct file *file, struct dir_context *ctx)
 189{
 190	struct dentry *dentry = file->f_path.dentry;
 191	struct dentry *cursor = file->private_data;
 192	struct list_head *anchor = &dentry->d_subdirs;
 193	struct dentry *next = NULL;
 194	struct list_head *p;
 195
 196	if (!dir_emit_dots(file, ctx))
 197		return 0;
 198
 199	if (ctx->pos == 2)
 200		p = anchor;
 201	else if (!list_empty(&cursor->d_child))
 202		p = &cursor->d_child;
 203	else
 204		return 0;
 205
 206	while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
 207		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
 208			      d_inode(next)->i_ino, dt_type(d_inode(next))))
 209			break;
 210		ctx->pos++;
 211		p = &next->d_child;
 212	}
 213	spin_lock(&dentry->d_lock);
 214	if (next)
 215		list_move_tail(&cursor->d_child, &next->d_child);
 216	else
 217		list_del_init(&cursor->d_child);
 218	spin_unlock(&dentry->d_lock);
 219	dput(next);
 220
 221	return 0;
 222}
 223EXPORT_SYMBOL(dcache_readdir);
 224
 225ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
 226{
 227	return -EISDIR;
 228}
 229EXPORT_SYMBOL(generic_read_dir);
 230
 231const struct file_operations simple_dir_operations = {
 232	.open		= dcache_dir_open,
 233	.release	= dcache_dir_close,
 234	.llseek		= dcache_dir_lseek,
 235	.read		= generic_read_dir,
 236	.iterate_shared	= dcache_readdir,
 237	.fsync		= noop_fsync,
 238};
 239EXPORT_SYMBOL(simple_dir_operations);
 240
 241const struct inode_operations simple_dir_inode_operations = {
 242	.lookup		= simple_lookup,
 243};
 244EXPORT_SYMBOL(simple_dir_inode_operations);
 245
 246static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
 247{
 248	struct dentry *child = NULL;
 249	struct list_head *p = prev ? &prev->d_child : &parent->d_subdirs;
 250
 251	spin_lock(&parent->d_lock);
 252	while ((p = p->next) != &parent->d_subdirs) {
 253		struct dentry *d = container_of(p, struct dentry, d_child);
 254		if (simple_positive(d)) {
 255			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
 256			if (simple_positive(d))
 257				child = dget_dlock(d);
 258			spin_unlock(&d->d_lock);
 259			if (likely(child))
 260				break;
 261		}
 262	}
 263	spin_unlock(&parent->d_lock);
 264	dput(prev);
 265	return child;
 266}
 267
 268void simple_recursive_removal(struct dentry *dentry,
 269                              void (*callback)(struct dentry *))
 270{
 271	struct dentry *this = dget(dentry);
 272	while (true) {
 273		struct dentry *victim = NULL, *child;
 274		struct inode *inode = this->d_inode;
 275
 276		inode_lock(inode);
 277		if (d_is_dir(this))
 278			inode->i_flags |= S_DEAD;
 279		while ((child = find_next_child(this, victim)) == NULL) {
 280			// kill and ascend
 281			// update metadata while it's still locked
 282			inode->i_ctime = current_time(inode);
 283			clear_nlink(inode);
 284			inode_unlock(inode);
 285			victim = this;
 286			this = this->d_parent;
 287			inode = this->d_inode;
 288			inode_lock(inode);
 289			if (simple_positive(victim)) {
 290				d_invalidate(victim);	// avoid lost mounts
 291				if (d_is_dir(victim))
 292					fsnotify_rmdir(inode, victim);
 293				else
 294					fsnotify_unlink(inode, victim);
 295				if (callback)
 296					callback(victim);
 297				dput(victim);		// unpin it
 298			}
 299			if (victim == dentry) {
 300				inode->i_ctime = inode->i_mtime =
 301					current_time(inode);
 302				if (d_is_dir(dentry))
 303					drop_nlink(inode);
 304				inode_unlock(inode);
 305				dput(dentry);
 306				return;
 307			}
 308		}
 309		inode_unlock(inode);
 310		this = child;
 311	}
 312}
 313EXPORT_SYMBOL(simple_recursive_removal);
 314
 315static const struct super_operations simple_super_operations = {
 316	.statfs		= simple_statfs,
 317};
 318
 319static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
 320{
 321	struct pseudo_fs_context *ctx = fc->fs_private;
 322	struct inode *root;
 323
 324	s->s_maxbytes = MAX_LFS_FILESIZE;
 325	s->s_blocksize = PAGE_SIZE;
 326	s->s_blocksize_bits = PAGE_SHIFT;
 327	s->s_magic = ctx->magic;
 328	s->s_op = ctx->ops ?: &simple_super_operations;
 329	s->s_xattr = ctx->xattr;
 330	s->s_time_gran = 1;
 331	root = new_inode(s);
 332	if (!root)
 333		return -ENOMEM;
 334
 335	/*
 336	 * since this is the first inode, make it number 1. New inodes created
 337	 * after this must take care not to collide with it (by passing
 338	 * max_reserved of 1 to iunique).
 339	 */
 340	root->i_ino = 1;
 341	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
 342	root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
 343	s->s_root = d_make_root(root);
 344	if (!s->s_root)
 345		return -ENOMEM;
 346	s->s_d_op = ctx->dops;
 347	return 0;
 348}
 349
 350static int pseudo_fs_get_tree(struct fs_context *fc)
 351{
 352	return get_tree_nodev(fc, pseudo_fs_fill_super);
 353}
 354
 355static void pseudo_fs_free(struct fs_context *fc)
 356{
 357	kfree(fc->fs_private);
 358}
 359
 360static const struct fs_context_operations pseudo_fs_context_ops = {
 361	.free		= pseudo_fs_free,
 362	.get_tree	= pseudo_fs_get_tree,
 363};
 364
 365/*
 366 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
 367 * will never be mountable)
 368 */
 369struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
 370					unsigned long magic)
 371{
 372	struct pseudo_fs_context *ctx;
 373
 374	ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
 375	if (likely(ctx)) {
 376		ctx->magic = magic;
 377		fc->fs_private = ctx;
 378		fc->ops = &pseudo_fs_context_ops;
 379		fc->sb_flags |= SB_NOUSER;
 380		fc->global = true;
 381	}
 382	return ctx;
 383}
 384EXPORT_SYMBOL(init_pseudo);
 385
 386int simple_open(struct inode *inode, struct file *file)
 387{
 388	if (inode->i_private)
 389		file->private_data = inode->i_private;
 390	return 0;
 391}
 392EXPORT_SYMBOL(simple_open);
 393
 394int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
 395{
 396	struct inode *inode = d_inode(old_dentry);
 397
 398	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
 399	inc_nlink(inode);
 400	ihold(inode);
 401	dget(dentry);
 402	d_instantiate(dentry, inode);
 403	return 0;
 404}
 405EXPORT_SYMBOL(simple_link);
 406
 407int simple_empty(struct dentry *dentry)
 408{
 409	struct dentry *child;
 410	int ret = 0;
 411
 412	spin_lock(&dentry->d_lock);
 413	list_for_each_entry(child, &dentry->d_subdirs, d_child) {
 414		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
 415		if (simple_positive(child)) {
 416			spin_unlock(&child->d_lock);
 417			goto out;
 418		}
 419		spin_unlock(&child->d_lock);
 420	}
 421	ret = 1;
 422out:
 423	spin_unlock(&dentry->d_lock);
 424	return ret;
 425}
 426EXPORT_SYMBOL(simple_empty);
 427
 428int simple_unlink(struct inode *dir, struct dentry *dentry)
 429{
 430	struct inode *inode = d_inode(dentry);
 431
 432	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
 433	drop_nlink(inode);
 434	dput(dentry);
 435	return 0;
 436}
 437EXPORT_SYMBOL(simple_unlink);
 438
 439int simple_rmdir(struct inode *dir, struct dentry *dentry)
 440{
 441	if (!simple_empty(dentry))
 442		return -ENOTEMPTY;
 443
 444	drop_nlink(d_inode(dentry));
 445	simple_unlink(dir, dentry);
 446	drop_nlink(dir);
 447	return 0;
 448}
 449EXPORT_SYMBOL(simple_rmdir);
 450
 451int simple_rename(struct user_namespace *mnt_userns, struct inode *old_dir,
 452		  struct dentry *old_dentry, struct inode *new_dir,
 453		  struct dentry *new_dentry, unsigned int flags)
 454{
 455	struct inode *inode = d_inode(old_dentry);
 456	int they_are_dirs = d_is_dir(old_dentry);
 457
 458	if (flags & ~RENAME_NOREPLACE)
 459		return -EINVAL;
 460
 461	if (!simple_empty(new_dentry))
 462		return -ENOTEMPTY;
 463
 464	if (d_really_is_positive(new_dentry)) {
 465		simple_unlink(new_dir, new_dentry);
 466		if (they_are_dirs) {
 467			drop_nlink(d_inode(new_dentry));
 468			drop_nlink(old_dir);
 469		}
 470	} else if (they_are_dirs) {
 471		drop_nlink(old_dir);
 472		inc_nlink(new_dir);
 473	}
 474
 475	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
 476		new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
 477
 478	return 0;
 479}
 480EXPORT_SYMBOL(simple_rename);
 481
 482/**
 483 * simple_setattr - setattr for simple filesystem
 484 * @mnt_userns: user namespace of the target mount
 485 * @dentry: dentry
 486 * @iattr: iattr structure
 487 *
 488 * Returns 0 on success, -error on failure.
 489 *
 490 * simple_setattr is a simple ->setattr implementation without a proper
 491 * implementation of size changes.
 492 *
 493 * It can either be used for in-memory filesystems or special files
 494 * on simple regular filesystems.  Anything that needs to change on-disk
 495 * or wire state on size changes needs its own setattr method.
 496 */
 497int simple_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
 498		   struct iattr *iattr)
 499{
 500	struct inode *inode = d_inode(dentry);
 501	int error;
 502
 503	error = setattr_prepare(mnt_userns, dentry, iattr);
 504	if (error)
 505		return error;
 506
 507	if (iattr->ia_valid & ATTR_SIZE)
 508		truncate_setsize(inode, iattr->ia_size);
 509	setattr_copy(mnt_userns, inode, iattr);
 510	mark_inode_dirty(inode);
 511	return 0;
 512}
 513EXPORT_SYMBOL(simple_setattr);
 514
 515static int simple_readpage(struct file *file, struct page *page)
 516{
 517	clear_highpage(page);
 518	flush_dcache_page(page);
 519	SetPageUptodate(page);
 520	unlock_page(page);
 521	return 0;
 522}
 
 523
 524int simple_write_begin(struct file *file, struct address_space *mapping,
 525			loff_t pos, unsigned len, unsigned flags,
 526			struct page **pagep, void **fsdata)
 527{
 528	struct page *page;
 529	pgoff_t index;
 530
 531	index = pos >> PAGE_SHIFT;
 532
 533	page = grab_cache_page_write_begin(mapping, index, flags);
 534	if (!page)
 535		return -ENOMEM;
 536
 537	*pagep = page;
 538
 539	if (!PageUptodate(page) && (len != PAGE_SIZE)) {
 540		unsigned from = pos & (PAGE_SIZE - 1);
 541
 542		zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
 543	}
 544	return 0;
 545}
 546EXPORT_SYMBOL(simple_write_begin);
 547
 548/**
 549 * simple_write_end - .write_end helper for non-block-device FSes
 550 * @file: See .write_end of address_space_operations
 551 * @mapping: 		"
 552 * @pos: 		"
 553 * @len: 		"
 554 * @copied: 		"
 555 * @page: 		"
 556 * @fsdata: 		"
 557 *
 558 * simple_write_end does the minimum needed for updating a page after writing is
 559 * done. It has the same API signature as the .write_end of
 560 * address_space_operations vector. So it can just be set onto .write_end for
 561 * FSes that don't need any other processing. i_mutex is assumed to be held.
 562 * Block based filesystems should use generic_write_end().
 563 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
 564 * is not called, so a filesystem that actually does store data in .write_inode
 565 * should extend on what's done here with a call to mark_inode_dirty() in the
 566 * case that i_size has changed.
 567 *
 568 * Use *ONLY* with simple_readpage()
 569 */
 570static int simple_write_end(struct file *file, struct address_space *mapping,
 571			loff_t pos, unsigned len, unsigned copied,
 572			struct page *page, void *fsdata)
 573{
 574	struct inode *inode = page->mapping->host;
 575	loff_t last_pos = pos + copied;
 576
 577	/* zero the stale part of the page if we did a short copy */
 578	if (!PageUptodate(page)) {
 579		if (copied < len) {
 580			unsigned from = pos & (PAGE_SIZE - 1);
 581
 582			zero_user(page, from + copied, len - copied);
 583		}
 584		SetPageUptodate(page);
 585	}
 586	/*
 587	 * No need to use i_size_read() here, the i_size
 588	 * cannot change under us because we hold the i_mutex.
 589	 */
 590	if (last_pos > inode->i_size)
 591		i_size_write(inode, last_pos);
 592
 593	set_page_dirty(page);
 594	unlock_page(page);
 595	put_page(page);
 596
 597	return copied;
 598}
 599
 600/*
 601 * Provides ramfs-style behavior: data in the pagecache, but no writeback.
 602 */
 603const struct address_space_operations ram_aops = {
 604	.readpage	= simple_readpage,
 605	.write_begin	= simple_write_begin,
 606	.write_end	= simple_write_end,
 607	.set_page_dirty	= __set_page_dirty_no_writeback,
 608};
 609EXPORT_SYMBOL(ram_aops);
 610
 611/*
 612 * the inodes created here are not hashed. If you use iunique to generate
 613 * unique inode values later for this filesystem, then you must take care
 614 * to pass it an appropriate max_reserved value to avoid collisions.
 615 */
 616int simple_fill_super(struct super_block *s, unsigned long magic,
 617		      const struct tree_descr *files)
 618{
 619	struct inode *inode;
 620	struct dentry *root;
 621	struct dentry *dentry;
 622	int i;
 623
 624	s->s_blocksize = PAGE_SIZE;
 625	s->s_blocksize_bits = PAGE_SHIFT;
 626	s->s_magic = magic;
 627	s->s_op = &simple_super_operations;
 628	s->s_time_gran = 1;
 629
 630	inode = new_inode(s);
 631	if (!inode)
 632		return -ENOMEM;
 633	/*
 634	 * because the root inode is 1, the files array must not contain an
 635	 * entry at index 1
 636	 */
 637	inode->i_ino = 1;
 638	inode->i_mode = S_IFDIR | 0755;
 639	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 640	inode->i_op = &simple_dir_inode_operations;
 641	inode->i_fop = &simple_dir_operations;
 642	set_nlink(inode, 2);
 643	root = d_make_root(inode);
 644	if (!root)
 645		return -ENOMEM;
 646	for (i = 0; !files->name || files->name[0]; i++, files++) {
 647		if (!files->name)
 648			continue;
 649
 650		/* warn if it tries to conflict with the root inode */
 651		if (unlikely(i == 1))
 652			printk(KERN_WARNING "%s: %s passed in a files array"
 653				"with an index of 1!\n", __func__,
 654				s->s_type->name);
 655
 656		dentry = d_alloc_name(root, files->name);
 657		if (!dentry)
 658			goto out;
 659		inode = new_inode(s);
 660		if (!inode) {
 661			dput(dentry);
 662			goto out;
 663		}
 664		inode->i_mode = S_IFREG | files->mode;
 665		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 666		inode->i_fop = files->ops;
 667		inode->i_ino = i;
 668		d_add(dentry, inode);
 669	}
 670	s->s_root = root;
 671	return 0;
 672out:
 673	d_genocide(root);
 674	shrink_dcache_parent(root);
 675	dput(root);
 676	return -ENOMEM;
 677}
 678EXPORT_SYMBOL(simple_fill_super);
 679
 680static DEFINE_SPINLOCK(pin_fs_lock);
 681
 682int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
 683{
 684	struct vfsmount *mnt = NULL;
 685	spin_lock(&pin_fs_lock);
 686	if (unlikely(!*mount)) {
 687		spin_unlock(&pin_fs_lock);
 688		mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
 689		if (IS_ERR(mnt))
 690			return PTR_ERR(mnt);
 691		spin_lock(&pin_fs_lock);
 692		if (!*mount)
 693			*mount = mnt;
 694	}
 695	mntget(*mount);
 696	++*count;
 697	spin_unlock(&pin_fs_lock);
 698	mntput(mnt);
 699	return 0;
 700}
 701EXPORT_SYMBOL(simple_pin_fs);
 702
 703void simple_release_fs(struct vfsmount **mount, int *count)
 704{
 705	struct vfsmount *mnt;
 706	spin_lock(&pin_fs_lock);
 707	mnt = *mount;
 708	if (!--*count)
 709		*mount = NULL;
 710	spin_unlock(&pin_fs_lock);
 711	mntput(mnt);
 712}
 713EXPORT_SYMBOL(simple_release_fs);
 714
 715/**
 716 * simple_read_from_buffer - copy data from the buffer to user space
 717 * @to: the user space buffer to read to
 718 * @count: the maximum number of bytes to read
 719 * @ppos: the current position in the buffer
 720 * @from: the buffer to read from
 721 * @available: the size of the buffer
 722 *
 723 * The simple_read_from_buffer() function reads up to @count bytes from the
 724 * buffer @from at offset @ppos into the user space address starting at @to.
 725 *
 726 * On success, the number of bytes read is returned and the offset @ppos is
 727 * advanced by this number, or negative value is returned on error.
 728 **/
 729ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
 730				const void *from, size_t available)
 731{
 732	loff_t pos = *ppos;
 733	size_t ret;
 734
 735	if (pos < 0)
 736		return -EINVAL;
 737	if (pos >= available || !count)
 738		return 0;
 739	if (count > available - pos)
 740		count = available - pos;
 741	ret = copy_to_user(to, from + pos, count);
 742	if (ret == count)
 743		return -EFAULT;
 744	count -= ret;
 745	*ppos = pos + count;
 746	return count;
 747}
 748EXPORT_SYMBOL(simple_read_from_buffer);
 749
 750/**
 751 * simple_write_to_buffer - copy data from user space to the buffer
 752 * @to: the buffer to write to
 753 * @available: the size of the buffer
 754 * @ppos: the current position in the buffer
 755 * @from: the user space buffer to read from
 756 * @count: the maximum number of bytes to read
 757 *
 758 * The simple_write_to_buffer() function reads up to @count bytes from the user
 759 * space address starting at @from into the buffer @to at offset @ppos.
 760 *
 761 * On success, the number of bytes written is returned and the offset @ppos is
 762 * advanced by this number, or negative value is returned on error.
 763 **/
 764ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
 765		const void __user *from, size_t count)
 766{
 767	loff_t pos = *ppos;
 768	size_t res;
 769
 770	if (pos < 0)
 771		return -EINVAL;
 772	if (pos >= available || !count)
 773		return 0;
 774	if (count > available - pos)
 775		count = available - pos;
 776	res = copy_from_user(to + pos, from, count);
 777	if (res == count)
 778		return -EFAULT;
 779	count -= res;
 780	*ppos = pos + count;
 781	return count;
 782}
 783EXPORT_SYMBOL(simple_write_to_buffer);
 784
 785/**
 786 * memory_read_from_buffer - copy data from the buffer
 787 * @to: the kernel space buffer to read to
 788 * @count: the maximum number of bytes to read
 789 * @ppos: the current position in the buffer
 790 * @from: the buffer to read from
 791 * @available: the size of the buffer
 792 *
 793 * The memory_read_from_buffer() function reads up to @count bytes from the
 794 * buffer @from at offset @ppos into the kernel space address starting at @to.
 795 *
 796 * On success, the number of bytes read is returned and the offset @ppos is
 797 * advanced by this number, or negative value is returned on error.
 798 **/
 799ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
 800				const void *from, size_t available)
 801{
 802	loff_t pos = *ppos;
 803
 804	if (pos < 0)
 805		return -EINVAL;
 806	if (pos >= available)
 807		return 0;
 808	if (count > available - pos)
 809		count = available - pos;
 810	memcpy(to, from + pos, count);
 811	*ppos = pos + count;
 812
 813	return count;
 814}
 815EXPORT_SYMBOL(memory_read_from_buffer);
 816
 817/*
 818 * Transaction based IO.
 819 * The file expects a single write which triggers the transaction, and then
 820 * possibly a read which collects the result - which is stored in a
 821 * file-local buffer.
 822 */
 823
 824void simple_transaction_set(struct file *file, size_t n)
 825{
 826	struct simple_transaction_argresp *ar = file->private_data;
 827
 828	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
 829
 830	/*
 831	 * The barrier ensures that ar->size will really remain zero until
 832	 * ar->data is ready for reading.
 833	 */
 834	smp_mb();
 835	ar->size = n;
 836}
 837EXPORT_SYMBOL(simple_transaction_set);
 838
 839char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
 840{
 841	struct simple_transaction_argresp *ar;
 842	static DEFINE_SPINLOCK(simple_transaction_lock);
 843
 844	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
 845		return ERR_PTR(-EFBIG);
 846
 847	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
 848	if (!ar)
 849		return ERR_PTR(-ENOMEM);
 850
 851	spin_lock(&simple_transaction_lock);
 852
 853	/* only one write allowed per open */
 854	if (file->private_data) {
 855		spin_unlock(&simple_transaction_lock);
 856		free_page((unsigned long)ar);
 857		return ERR_PTR(-EBUSY);
 858	}
 859
 860	file->private_data = ar;
 861
 862	spin_unlock(&simple_transaction_lock);
 863
 864	if (copy_from_user(ar->data, buf, size))
 865		return ERR_PTR(-EFAULT);
 866
 867	return ar->data;
 868}
 869EXPORT_SYMBOL(simple_transaction_get);
 870
 871ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
 872{
 873	struct simple_transaction_argresp *ar = file->private_data;
 874
 875	if (!ar)
 876		return 0;
 877	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
 878}
 879EXPORT_SYMBOL(simple_transaction_read);
 880
 881int simple_transaction_release(struct inode *inode, struct file *file)
 882{
 883	free_page((unsigned long)file->private_data);
 884	return 0;
 885}
 886EXPORT_SYMBOL(simple_transaction_release);
 887
 888/* Simple attribute files */
 889
 890struct simple_attr {
 891	int (*get)(void *, u64 *);
 892	int (*set)(void *, u64);
 893	char get_buf[24];	/* enough to store a u64 and "\n\0" */
 894	char set_buf[24];
 895	void *data;
 896	const char *fmt;	/* format for read operation */
 897	struct mutex mutex;	/* protects access to these buffers */
 898};
 899
 900/* simple_attr_open is called by an actual attribute open file operation
 901 * to set the attribute specific access operations. */
 902int simple_attr_open(struct inode *inode, struct file *file,
 903		     int (*get)(void *, u64 *), int (*set)(void *, u64),
 904		     const char *fmt)
 905{
 906	struct simple_attr *attr;
 907
 908	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
 909	if (!attr)
 910		return -ENOMEM;
 911
 912	attr->get = get;
 913	attr->set = set;
 914	attr->data = inode->i_private;
 915	attr->fmt = fmt;
 916	mutex_init(&attr->mutex);
 917
 918	file->private_data = attr;
 919
 920	return nonseekable_open(inode, file);
 921}
 922EXPORT_SYMBOL_GPL(simple_attr_open);
 923
 924int simple_attr_release(struct inode *inode, struct file *file)
 925{
 926	kfree(file->private_data);
 927	return 0;
 928}
 929EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
 930
 931/* read from the buffer that is filled with the get function */
 932ssize_t simple_attr_read(struct file *file, char __user *buf,
 933			 size_t len, loff_t *ppos)
 934{
 935	struct simple_attr *attr;
 936	size_t size;
 937	ssize_t ret;
 938
 939	attr = file->private_data;
 940
 941	if (!attr->get)
 942		return -EACCES;
 943
 944	ret = mutex_lock_interruptible(&attr->mutex);
 945	if (ret)
 946		return ret;
 947
 948	if (*ppos && attr->get_buf[0]) {
 949		/* continued read */
 950		size = strlen(attr->get_buf);
 951	} else {
 952		/* first read */
 953		u64 val;
 954		ret = attr->get(attr->data, &val);
 955		if (ret)
 956			goto out;
 957
 958		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
 959				 attr->fmt, (unsigned long long)val);
 960	}
 961
 962	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
 963out:
 964	mutex_unlock(&attr->mutex);
 965	return ret;
 966}
 967EXPORT_SYMBOL_GPL(simple_attr_read);
 968
 969/* interpret the buffer as a number to call the set function with */
 970ssize_t simple_attr_write(struct file *file, const char __user *buf,
 971			  size_t len, loff_t *ppos)
 972{
 973	struct simple_attr *attr;
 974	unsigned long long val;
 975	size_t size;
 976	ssize_t ret;
 977
 978	attr = file->private_data;
 979	if (!attr->set)
 980		return -EACCES;
 981
 982	ret = mutex_lock_interruptible(&attr->mutex);
 983	if (ret)
 984		return ret;
 985
 986	ret = -EFAULT;
 987	size = min(sizeof(attr->set_buf) - 1, len);
 988	if (copy_from_user(attr->set_buf, buf, size))
 989		goto out;
 990
 991	attr->set_buf[size] = '\0';
 992	ret = kstrtoull(attr->set_buf, 0, &val);
 993	if (ret)
 994		goto out;
 995	ret = attr->set(attr->data, val);
 996	if (ret == 0)
 997		ret = len; /* on success, claim we got the whole input */
 998out:
 999	mutex_unlock(&attr->mutex);
1000	return ret;
1001}
1002EXPORT_SYMBOL_GPL(simple_attr_write);
1003
1004/**
1005 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1006 * @sb:		filesystem to do the file handle conversion on
1007 * @fid:	file handle to convert
1008 * @fh_len:	length of the file handle in bytes
1009 * @fh_type:	type of file handle
1010 * @get_inode:	filesystem callback to retrieve inode
1011 *
1012 * This function decodes @fid as long as it has one of the well-known
1013 * Linux filehandle types and calls @get_inode on it to retrieve the
1014 * inode for the object specified in the file handle.
1015 */
1016struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1017		int fh_len, int fh_type, struct inode *(*get_inode)
1018			(struct super_block *sb, u64 ino, u32 gen))
1019{
1020	struct inode *inode = NULL;
1021
1022	if (fh_len < 2)
1023		return NULL;
1024
1025	switch (fh_type) {
1026	case FILEID_INO32_GEN:
1027	case FILEID_INO32_GEN_PARENT:
1028		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1029		break;
1030	}
1031
1032	return d_obtain_alias(inode);
1033}
1034EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1035
1036/**
1037 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1038 * @sb:		filesystem to do the file handle conversion on
1039 * @fid:	file handle to convert
1040 * @fh_len:	length of the file handle in bytes
1041 * @fh_type:	type of file handle
1042 * @get_inode:	filesystem callback to retrieve inode
1043 *
1044 * This function decodes @fid as long as it has one of the well-known
1045 * Linux filehandle types and calls @get_inode on it to retrieve the
1046 * inode for the _parent_ object specified in the file handle if it
1047 * is specified in the file handle, or NULL otherwise.
1048 */
1049struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1050		int fh_len, int fh_type, struct inode *(*get_inode)
1051			(struct super_block *sb, u64 ino, u32 gen))
1052{
1053	struct inode *inode = NULL;
1054
1055	if (fh_len <= 2)
1056		return NULL;
1057
1058	switch (fh_type) {
1059	case FILEID_INO32_GEN_PARENT:
1060		inode = get_inode(sb, fid->i32.parent_ino,
1061				  (fh_len > 3 ? fid->i32.parent_gen : 0));
1062		break;
1063	}
1064
1065	return d_obtain_alias(inode);
1066}
1067EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1068
1069/**
1070 * __generic_file_fsync - generic fsync implementation for simple filesystems
1071 *
1072 * @file:	file to synchronize
1073 * @start:	start offset in bytes
1074 * @end:	end offset in bytes (inclusive)
1075 * @datasync:	only synchronize essential metadata if true
1076 *
1077 * This is a generic implementation of the fsync method for simple
1078 * filesystems which track all non-inode metadata in the buffers list
1079 * hanging off the address_space structure.
1080 */
1081int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1082				 int datasync)
1083{
1084	struct inode *inode = file->f_mapping->host;
1085	int err;
1086	int ret;
1087
1088	err = file_write_and_wait_range(file, start, end);
1089	if (err)
1090		return err;
1091
1092	inode_lock(inode);
1093	ret = sync_mapping_buffers(inode->i_mapping);
1094	if (!(inode->i_state & I_DIRTY_ALL))
1095		goto out;
1096	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1097		goto out;
1098
1099	err = sync_inode_metadata(inode, 1);
1100	if (ret == 0)
1101		ret = err;
1102
1103out:
1104	inode_unlock(inode);
1105	/* check and advance again to catch errors after syncing out buffers */
1106	err = file_check_and_advance_wb_err(file);
1107	if (ret == 0)
1108		ret = err;
1109	return ret;
1110}
1111EXPORT_SYMBOL(__generic_file_fsync);
1112
1113/**
1114 * generic_file_fsync - generic fsync implementation for simple filesystems
1115 *			with flush
1116 * @file:	file to synchronize
1117 * @start:	start offset in bytes
1118 * @end:	end offset in bytes (inclusive)
1119 * @datasync:	only synchronize essential metadata if true
1120 *
1121 */
1122
1123int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1124		       int datasync)
1125{
1126	struct inode *inode = file->f_mapping->host;
1127	int err;
1128
1129	err = __generic_file_fsync(file, start, end, datasync);
1130	if (err)
1131		return err;
1132	return blkdev_issue_flush(inode->i_sb->s_bdev);
1133}
1134EXPORT_SYMBOL(generic_file_fsync);
1135
1136/**
1137 * generic_check_addressable - Check addressability of file system
1138 * @blocksize_bits:	log of file system block size
1139 * @num_blocks:		number of blocks in file system
1140 *
1141 * Determine whether a file system with @num_blocks blocks (and a
1142 * block size of 2**@blocksize_bits) is addressable by the sector_t
1143 * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1144 */
1145int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1146{
1147	u64 last_fs_block = num_blocks - 1;
1148	u64 last_fs_page =
1149		last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1150
1151	if (unlikely(num_blocks == 0))
1152		return 0;
1153
1154	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1155		return -EINVAL;
1156
1157	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1158	    (last_fs_page > (pgoff_t)(~0ULL))) {
1159		return -EFBIG;
1160	}
1161	return 0;
1162}
1163EXPORT_SYMBOL(generic_check_addressable);
1164
1165/*
1166 * No-op implementation of ->fsync for in-memory filesystems.
1167 */
1168int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1169{
1170	return 0;
1171}
1172EXPORT_SYMBOL(noop_fsync);
1173
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1174void noop_invalidatepage(struct page *page, unsigned int offset,
1175		unsigned int length)
1176{
1177	/*
1178	 * There is no page cache to invalidate in the dax case, however
1179	 * we need this callback defined to prevent falling back to
1180	 * block_invalidatepage() in do_invalidatepage().
1181	 */
1182}
1183EXPORT_SYMBOL_GPL(noop_invalidatepage);
1184
1185ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1186{
1187	/*
1188	 * iomap based filesystems support direct I/O without need for
1189	 * this callback. However, it still needs to be set in
1190	 * inode->a_ops so that open/fcntl know that direct I/O is
1191	 * generally supported.
1192	 */
1193	return -EINVAL;
1194}
1195EXPORT_SYMBOL_GPL(noop_direct_IO);
1196
1197/* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1198void kfree_link(void *p)
1199{
1200	kfree(p);
1201}
1202EXPORT_SYMBOL(kfree_link);
1203
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1204struct inode *alloc_anon_inode(struct super_block *s)
1205{
1206	static const struct address_space_operations anon_aops = {
1207		.set_page_dirty = __set_page_dirty_no_writeback,
1208	};
1209	struct inode *inode = new_inode_pseudo(s);
1210
1211	if (!inode)
1212		return ERR_PTR(-ENOMEM);
1213
1214	inode->i_ino = get_next_ino();
1215	inode->i_mapping->a_ops = &anon_aops;
1216
1217	/*
1218	 * Mark the inode dirty from the very beginning,
1219	 * that way it will never be moved to the dirty
1220	 * list because mark_inode_dirty() will think
1221	 * that it already _is_ on the dirty list.
1222	 */
1223	inode->i_state = I_DIRTY;
1224	inode->i_mode = S_IRUSR | S_IWUSR;
1225	inode->i_uid = current_fsuid();
1226	inode->i_gid = current_fsgid();
1227	inode->i_flags |= S_PRIVATE;
1228	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1229	return inode;
1230}
1231EXPORT_SYMBOL(alloc_anon_inode);
1232
1233/**
1234 * simple_nosetlease - generic helper for prohibiting leases
1235 * @filp: file pointer
1236 * @arg: type of lease to obtain
1237 * @flp: new lease supplied for insertion
1238 * @priv: private data for lm_setup operation
1239 *
1240 * Generic helper for filesystems that do not wish to allow leases to be set.
1241 * All arguments are ignored and it just returns -EINVAL.
1242 */
1243int
1244simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1245		  void **priv)
1246{
1247	return -EINVAL;
1248}
1249EXPORT_SYMBOL(simple_nosetlease);
1250
1251/**
1252 * simple_get_link - generic helper to get the target of "fast" symlinks
1253 * @dentry: not used here
1254 * @inode: the symlink inode
1255 * @done: not used here
1256 *
1257 * Generic helper for filesystems to use for symlink inodes where a pointer to
1258 * the symlink target is stored in ->i_link.  NOTE: this isn't normally called,
1259 * since as an optimization the path lookup code uses any non-NULL ->i_link
1260 * directly, without calling ->get_link().  But ->get_link() still must be set,
1261 * to mark the inode_operations as being for a symlink.
1262 *
1263 * Return: the symlink target
1264 */
1265const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1266			    struct delayed_call *done)
1267{
1268	return inode->i_link;
1269}
1270EXPORT_SYMBOL(simple_get_link);
1271
1272const struct inode_operations simple_symlink_inode_operations = {
1273	.get_link = simple_get_link,
1274};
1275EXPORT_SYMBOL(simple_symlink_inode_operations);
1276
1277/*
1278 * Operations for a permanently empty directory.
1279 */
1280static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1281{
1282	return ERR_PTR(-ENOENT);
1283}
1284
1285static int empty_dir_getattr(struct user_namespace *mnt_userns,
1286			     const struct path *path, struct kstat *stat,
1287			     u32 request_mask, unsigned int query_flags)
1288{
1289	struct inode *inode = d_inode(path->dentry);
1290	generic_fillattr(&init_user_ns, inode, stat);
1291	return 0;
1292}
1293
1294static int empty_dir_setattr(struct user_namespace *mnt_userns,
1295			     struct dentry *dentry, struct iattr *attr)
1296{
1297	return -EPERM;
1298}
1299
1300static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1301{
1302	return -EOPNOTSUPP;
1303}
1304
1305static const struct inode_operations empty_dir_inode_operations = {
1306	.lookup		= empty_dir_lookup,
1307	.permission	= generic_permission,
1308	.setattr	= empty_dir_setattr,
1309	.getattr	= empty_dir_getattr,
1310	.listxattr	= empty_dir_listxattr,
1311};
1312
1313static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1314{
1315	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1316	return generic_file_llseek_size(file, offset, whence, 2, 2);
1317}
1318
1319static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1320{
1321	dir_emit_dots(file, ctx);
1322	return 0;
1323}
1324
1325static const struct file_operations empty_dir_operations = {
1326	.llseek		= empty_dir_llseek,
1327	.read		= generic_read_dir,
1328	.iterate_shared	= empty_dir_readdir,
1329	.fsync		= noop_fsync,
1330};
1331
1332
1333void make_empty_dir_inode(struct inode *inode)
1334{
1335	set_nlink(inode, 2);
1336	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1337	inode->i_uid = GLOBAL_ROOT_UID;
1338	inode->i_gid = GLOBAL_ROOT_GID;
1339	inode->i_rdev = 0;
1340	inode->i_size = 0;
1341	inode->i_blkbits = PAGE_SHIFT;
1342	inode->i_blocks = 0;
1343
1344	inode->i_op = &empty_dir_inode_operations;
1345	inode->i_opflags &= ~IOP_XATTR;
1346	inode->i_fop = &empty_dir_operations;
1347}
1348
1349bool is_empty_dir_inode(struct inode *inode)
1350{
1351	return (inode->i_fop == &empty_dir_operations) &&
1352		(inode->i_op == &empty_dir_inode_operations);
1353}
1354
1355#ifdef CONFIG_UNICODE
1356/*
1357 * Determine if the name of a dentry should be casefolded.
1358 *
1359 * Return: if names will need casefolding
1360 */
1361static bool needs_casefold(const struct inode *dir)
1362{
1363	return IS_CASEFOLDED(dir) && dir->i_sb->s_encoding;
1364}
1365
1366/**
1367 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1368 * @dentry:	dentry whose name we are checking against
1369 * @len:	len of name of dentry
1370 * @str:	str pointer to name of dentry
1371 * @name:	Name to compare against
1372 *
1373 * Return: 0 if names match, 1 if mismatch, or -ERRNO
1374 */
1375static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1376				const char *str, const struct qstr *name)
1377{
1378	const struct dentry *parent = READ_ONCE(dentry->d_parent);
1379	const struct inode *dir = READ_ONCE(parent->d_inode);
1380	const struct super_block *sb = dentry->d_sb;
1381	const struct unicode_map *um = sb->s_encoding;
1382	struct qstr qstr = QSTR_INIT(str, len);
1383	char strbuf[DNAME_INLINE_LEN];
1384	int ret;
1385
1386	if (!dir || !needs_casefold(dir))
1387		goto fallback;
1388	/*
1389	 * If the dentry name is stored in-line, then it may be concurrently
1390	 * modified by a rename.  If this happens, the VFS will eventually retry
1391	 * the lookup, so it doesn't matter what ->d_compare() returns.
1392	 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1393	 * string.  Therefore, we have to copy the name into a temporary buffer.
1394	 */
1395	if (len <= DNAME_INLINE_LEN - 1) {
1396		memcpy(strbuf, str, len);
1397		strbuf[len] = 0;
1398		qstr.name = strbuf;
1399		/* prevent compiler from optimizing out the temporary buffer */
1400		barrier();
1401	}
1402	ret = utf8_strncasecmp(um, name, &qstr);
1403	if (ret >= 0)
1404		return ret;
1405
1406	if (sb_has_strict_encoding(sb))
1407		return -EINVAL;
1408fallback:
1409	if (len != name->len)
1410		return 1;
1411	return !!memcmp(str, name->name, len);
1412}
1413
1414/**
1415 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1416 * @dentry:	dentry of the parent directory
1417 * @str:	qstr of name whose hash we should fill in
1418 *
1419 * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1420 */
1421static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1422{
1423	const struct inode *dir = READ_ONCE(dentry->d_inode);
1424	struct super_block *sb = dentry->d_sb;
1425	const struct unicode_map *um = sb->s_encoding;
1426	int ret = 0;
1427
1428	if (!dir || !needs_casefold(dir))
1429		return 0;
1430
1431	ret = utf8_casefold_hash(um, dentry, str);
1432	if (ret < 0 && sb_has_strict_encoding(sb))
1433		return -EINVAL;
1434	return 0;
1435}
1436
1437static const struct dentry_operations generic_ci_dentry_ops = {
1438	.d_hash = generic_ci_d_hash,
1439	.d_compare = generic_ci_d_compare,
1440};
1441#endif
1442
1443#ifdef CONFIG_FS_ENCRYPTION
1444static const struct dentry_operations generic_encrypted_dentry_ops = {
1445	.d_revalidate = fscrypt_d_revalidate,
1446};
1447#endif
1448
1449#if defined(CONFIG_FS_ENCRYPTION) && defined(CONFIG_UNICODE)
1450static const struct dentry_operations generic_encrypted_ci_dentry_ops = {
1451	.d_hash = generic_ci_d_hash,
1452	.d_compare = generic_ci_d_compare,
1453	.d_revalidate = fscrypt_d_revalidate,
1454};
1455#endif
1456
1457/**
1458 * generic_set_encrypted_ci_d_ops - helper for setting d_ops for given dentry
1459 * @dentry:	dentry to set ops on
1460 *
1461 * Casefolded directories need d_hash and d_compare set, so that the dentries
1462 * contained in them are handled case-insensitively.  Note that these operations
1463 * are needed on the parent directory rather than on the dentries in it, and
1464 * while the casefolding flag can be toggled on and off on an empty directory,
1465 * dentry_operations can't be changed later.  As a result, if the filesystem has
1466 * casefolding support enabled at all, we have to give all dentries the
1467 * casefolding operations even if their inode doesn't have the casefolding flag
1468 * currently (and thus the casefolding ops would be no-ops for now).
1469 *
1470 * Encryption works differently in that the only dentry operation it needs is
1471 * d_revalidate, which it only needs on dentries that have the no-key name flag.
1472 * The no-key flag can't be set "later", so we don't have to worry about that.
1473 *
1474 * Finally, to maximize compatibility with overlayfs (which isn't compatible
1475 * with certain dentry operations) and to avoid taking an unnecessary
1476 * performance hit, we use custom dentry_operations for each possible
1477 * combination rather than always installing all operations.
1478 */
1479void generic_set_encrypted_ci_d_ops(struct dentry *dentry)
1480{
1481#ifdef CONFIG_FS_ENCRYPTION
1482	bool needs_encrypt_ops = dentry->d_flags & DCACHE_NOKEY_NAME;
1483#endif
1484#ifdef CONFIG_UNICODE
1485	bool needs_ci_ops = dentry->d_sb->s_encoding;
1486#endif
1487#if defined(CONFIG_FS_ENCRYPTION) && defined(CONFIG_UNICODE)
1488	if (needs_encrypt_ops && needs_ci_ops) {
1489		d_set_d_op(dentry, &generic_encrypted_ci_dentry_ops);
1490		return;
1491	}
1492#endif
1493#ifdef CONFIG_FS_ENCRYPTION
1494	if (needs_encrypt_ops) {
1495		d_set_d_op(dentry, &generic_encrypted_dentry_ops);
1496		return;
1497	}
1498#endif
1499#ifdef CONFIG_UNICODE
1500	if (needs_ci_ops) {
1501		d_set_d_op(dentry, &generic_ci_dentry_ops);
1502		return;
1503	}
1504#endif
1505}
1506EXPORT_SYMBOL(generic_set_encrypted_ci_d_ops);