Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *	fs/libfs.c
   4 *	Library for filesystems writers.
   5 */
   6
   7#include <linux/blkdev.h>
   8#include <linux/export.h>
   9#include <linux/pagemap.h>
  10#include <linux/slab.h>
  11#include <linux/cred.h>
  12#include <linux/mount.h>
  13#include <linux/vfs.h>
  14#include <linux/quotaops.h>
  15#include <linux/mutex.h>
  16#include <linux/namei.h>
  17#include <linux/exportfs.h>
  18#include <linux/writeback.h>
  19#include <linux/buffer_head.h> /* sync_mapping_buffers */
  20#include <linux/fs_context.h>
  21#include <linux/pseudo_fs.h>
  22
  23#include <linux/uaccess.h>
  24
  25#include "internal.h"
  26
  27int simple_getattr(const struct path *path, struct kstat *stat,
  28		   u32 request_mask, unsigned int query_flags)
  29{
  30	struct inode *inode = d_inode(path->dentry);
 
 
 
 
 
 
  31	generic_fillattr(inode, stat);
  32	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
  33	return 0;
  34}
  35EXPORT_SYMBOL(simple_getattr);
  36
  37int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
  38{
  39	buf->f_type = dentry->d_sb->s_magic;
  40	buf->f_bsize = PAGE_SIZE;
  41	buf->f_namelen = NAME_MAX;
  42	return 0;
  43}
  44EXPORT_SYMBOL(simple_statfs);
  45
  46/*
  47 * Retaining negative dentries for an in-memory filesystem just wastes
  48 * memory and lookup time: arrange for them to be deleted immediately.
  49 */
  50int always_delete_dentry(const struct dentry *dentry)
  51{
  52	return 1;
  53}
  54EXPORT_SYMBOL(always_delete_dentry);
  55
  56const struct dentry_operations simple_dentry_operations = {
  57	.d_delete = always_delete_dentry,
  58};
  59EXPORT_SYMBOL(simple_dentry_operations);
  60
  61/*
  62 * Lookup the data. This is trivial - if the dentry didn't already
  63 * exist, we know it is negative.  Set d_op to delete negative dentries.
  64 */
  65struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
  66{
  67	if (dentry->d_name.len > NAME_MAX)
  68		return ERR_PTR(-ENAMETOOLONG);
  69	if (!dentry->d_sb->s_d_op)
  70		d_set_d_op(dentry, &simple_dentry_operations);
  71	d_add(dentry, NULL);
  72	return NULL;
  73}
  74EXPORT_SYMBOL(simple_lookup);
  75
  76int dcache_dir_open(struct inode *inode, struct file *file)
  77{
  78	file->private_data = d_alloc_cursor(file->f_path.dentry);
 
 
  79
  80	return file->private_data ? 0 : -ENOMEM;
  81}
  82EXPORT_SYMBOL(dcache_dir_open);
  83
  84int dcache_dir_close(struct inode *inode, struct file *file)
  85{
  86	dput(file->private_data);
  87	return 0;
  88}
  89EXPORT_SYMBOL(dcache_dir_close);
  90
  91/* parent is locked at least shared */
  92/*
  93 * Returns an element of siblings' list.
  94 * We are looking for <count>th positive after <p>; if
  95 * found, dentry is grabbed and returned to caller.
  96 * If no such element exists, NULL is returned.
  97 */
  98static struct dentry *scan_positives(struct dentry *cursor,
  99					struct list_head *p,
 100					loff_t count,
 101					struct dentry *last)
 102{
 103	struct dentry *dentry = cursor->d_parent, *found = NULL;
 104
 105	spin_lock(&dentry->d_lock);
 106	while ((p = p->next) != &dentry->d_subdirs) {
 107		struct dentry *d = list_entry(p, struct dentry, d_child);
 108		// we must at least skip cursors, to avoid livelocks
 109		if (d->d_flags & DCACHE_DENTRY_CURSOR)
 110			continue;
 111		if (simple_positive(d) && !--count) {
 112			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
 113			if (simple_positive(d))
 114				found = dget_dlock(d);
 115			spin_unlock(&d->d_lock);
 116			if (likely(found))
 117				break;
 118			count = 1;
 119		}
 120		if (need_resched()) {
 121			list_move(&cursor->d_child, p);
 122			p = &cursor->d_child;
 123			spin_unlock(&dentry->d_lock);
 124			cond_resched();
 125			spin_lock(&dentry->d_lock);
 126		}
 127	}
 128	spin_unlock(&dentry->d_lock);
 129	dput(last);
 130	return found;
 131}
 132
 133loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
 134{
 135	struct dentry *dentry = file->f_path.dentry;
 
 136	switch (whence) {
 137		case 1:
 138			offset += file->f_pos;
 139			/* fall through */
 140		case 0:
 141			if (offset >= 0)
 142				break;
 143			/* fall through */
 144		default:
 
 145			return -EINVAL;
 146	}
 147	if (offset != file->f_pos) {
 148		struct dentry *cursor = file->private_data;
 149		struct dentry *to = NULL;
 150
 151		inode_lock_shared(dentry->d_inode);
 152
 153		if (offset > 2)
 154			to = scan_positives(cursor, &dentry->d_subdirs,
 155					    offset - 2, NULL);
 156		spin_lock(&dentry->d_lock);
 157		if (to)
 158			list_move(&cursor->d_child, &to->d_child);
 159		else
 160			list_del_init(&cursor->d_child);
 161		spin_unlock(&dentry->d_lock);
 162		dput(to);
 163
 164		file->f_pos = offset;
 
 
 
 
 165
 166		inode_unlock_shared(dentry->d_inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 167	}
 
 168	return offset;
 169}
 170EXPORT_SYMBOL(dcache_dir_lseek);
 171
 172/* Relationship between i_mode and the DT_xxx types */
 173static inline unsigned char dt_type(struct inode *inode)
 174{
 175	return (inode->i_mode >> 12) & 15;
 176}
 177
 178/*
 179 * Directory is locked and all positive dentries in it are safe, since
 180 * for ramfs-type trees they can't go away without unlink() or rmdir(),
 181 * both impossible due to the lock on directory.
 182 */
 183
 184int dcache_readdir(struct file *file, struct dir_context *ctx)
 185{
 186	struct dentry *dentry = file->f_path.dentry;
 187	struct dentry *cursor = file->private_data;
 188	struct list_head *anchor = &dentry->d_subdirs;
 189	struct dentry *next = NULL;
 190	struct list_head *p;
 191
 192	if (!dir_emit_dots(file, ctx))
 193		return 0;
 194
 195	if (ctx->pos == 2)
 196		p = anchor;
 197	else if (!list_empty(&cursor->d_child))
 198		p = &cursor->d_child;
 199	else
 200		return 0;
 201
 202	while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
 
 
 
 
 
 
 
 
 
 203		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
 204			      d_inode(next)->i_ino, dt_type(d_inode(next))))
 205			break;
 
 
 
 
 
 
 206		ctx->pos++;
 207		p = &next->d_child;
 208	}
 209	spin_lock(&dentry->d_lock);
 210	if (next)
 211		list_move_tail(&cursor->d_child, &next->d_child);
 212	else
 213		list_del_init(&cursor->d_child);
 214	spin_unlock(&dentry->d_lock);
 215	dput(next);
 216
 217	return 0;
 218}
 219EXPORT_SYMBOL(dcache_readdir);
 220
 221ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
 222{
 223	return -EISDIR;
 224}
 225EXPORT_SYMBOL(generic_read_dir);
 226
 227const struct file_operations simple_dir_operations = {
 228	.open		= dcache_dir_open,
 229	.release	= dcache_dir_close,
 230	.llseek		= dcache_dir_lseek,
 231	.read		= generic_read_dir,
 232	.iterate_shared	= dcache_readdir,
 233	.fsync		= noop_fsync,
 234};
 235EXPORT_SYMBOL(simple_dir_operations);
 236
 237const struct inode_operations simple_dir_inode_operations = {
 238	.lookup		= simple_lookup,
 239};
 240EXPORT_SYMBOL(simple_dir_inode_operations);
 241
 242static const struct super_operations simple_super_operations = {
 243	.statfs		= simple_statfs,
 244};
 245
 246static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
 
 
 
 
 
 
 247{
 248	struct pseudo_fs_context *ctx = fc->fs_private;
 
 249	struct inode *root;
 
 
 
 
 
 250
 251	s->s_maxbytes = MAX_LFS_FILESIZE;
 252	s->s_blocksize = PAGE_SIZE;
 253	s->s_blocksize_bits = PAGE_SHIFT;
 254	s->s_magic = ctx->magic;
 255	s->s_op = ctx->ops ?: &simple_super_operations;
 256	s->s_xattr = ctx->xattr;
 257	s->s_time_gran = 1;
 258	root = new_inode(s);
 259	if (!root)
 260		return -ENOMEM;
 261
 262	/*
 263	 * since this is the first inode, make it number 1. New inodes created
 264	 * after this must take care not to collide with it (by passing
 265	 * max_reserved of 1 to iunique).
 266	 */
 267	root->i_ino = 1;
 268	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
 269	root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
 270	s->s_root = d_make_root(root);
 271	if (!s->s_root)
 272		return -ENOMEM;
 273	s->s_d_op = ctx->dops;
 274	return 0;
 275}
 276
 277static int pseudo_fs_get_tree(struct fs_context *fc)
 278{
 279	return get_tree_nodev(fc, pseudo_fs_fill_super);
 280}
 281
 282static void pseudo_fs_free(struct fs_context *fc)
 283{
 284	kfree(fc->fs_private);
 285}
 286
 287static const struct fs_context_operations pseudo_fs_context_ops = {
 288	.free		= pseudo_fs_free,
 289	.get_tree	= pseudo_fs_get_tree,
 290};
 291
 292/*
 293 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
 294 * will never be mountable)
 295 */
 296struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
 297					unsigned long magic)
 298{
 299	struct pseudo_fs_context *ctx;
 300
 301	ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
 302	if (likely(ctx)) {
 303		ctx->magic = magic;
 304		fc->fs_private = ctx;
 305		fc->ops = &pseudo_fs_context_ops;
 306		fc->sb_flags |= SB_NOUSER;
 307		fc->global = true;
 308	}
 309	return ctx;
 
 
 
 
 
 
 
 
 310}
 311EXPORT_SYMBOL(init_pseudo);
 312
 313int simple_open(struct inode *inode, struct file *file)
 314{
 315	if (inode->i_private)
 316		file->private_data = inode->i_private;
 317	return 0;
 318}
 319EXPORT_SYMBOL(simple_open);
 320
 321int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
 322{
 323	struct inode *inode = d_inode(old_dentry);
 324
 325	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
 326	inc_nlink(inode);
 327	ihold(inode);
 328	dget(dentry);
 329	d_instantiate(dentry, inode);
 330	return 0;
 331}
 332EXPORT_SYMBOL(simple_link);
 333
 334int simple_empty(struct dentry *dentry)
 335{
 336	struct dentry *child;
 337	int ret = 0;
 338
 339	spin_lock(&dentry->d_lock);
 340	list_for_each_entry(child, &dentry->d_subdirs, d_child) {
 341		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
 342		if (simple_positive(child)) {
 343			spin_unlock(&child->d_lock);
 344			goto out;
 345		}
 346		spin_unlock(&child->d_lock);
 347	}
 348	ret = 1;
 349out:
 350	spin_unlock(&dentry->d_lock);
 351	return ret;
 352}
 353EXPORT_SYMBOL(simple_empty);
 354
 355int simple_unlink(struct inode *dir, struct dentry *dentry)
 356{
 357	struct inode *inode = d_inode(dentry);
 358
 359	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
 360	drop_nlink(inode);
 361	dput(dentry);
 362	return 0;
 363}
 364EXPORT_SYMBOL(simple_unlink);
 365
 366int simple_rmdir(struct inode *dir, struct dentry *dentry)
 367{
 368	if (!simple_empty(dentry))
 369		return -ENOTEMPTY;
 370
 371	drop_nlink(d_inode(dentry));
 372	simple_unlink(dir, dentry);
 373	drop_nlink(dir);
 374	return 0;
 375}
 376EXPORT_SYMBOL(simple_rmdir);
 377
 378int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
 379		  struct inode *new_dir, struct dentry *new_dentry,
 380		  unsigned int flags)
 381{
 382	struct inode *inode = d_inode(old_dentry);
 383	int they_are_dirs = d_is_dir(old_dentry);
 384
 385	if (flags & ~RENAME_NOREPLACE)
 386		return -EINVAL;
 387
 388	if (!simple_empty(new_dentry))
 389		return -ENOTEMPTY;
 390
 391	if (d_really_is_positive(new_dentry)) {
 392		simple_unlink(new_dir, new_dentry);
 393		if (they_are_dirs) {
 394			drop_nlink(d_inode(new_dentry));
 395			drop_nlink(old_dir);
 396		}
 397	} else if (they_are_dirs) {
 398		drop_nlink(old_dir);
 399		inc_nlink(new_dir);
 400	}
 401
 402	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
 403		new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
 404
 405	return 0;
 406}
 407EXPORT_SYMBOL(simple_rename);
 408
 409/**
 410 * simple_setattr - setattr for simple filesystem
 411 * @dentry: dentry
 412 * @iattr: iattr structure
 413 *
 414 * Returns 0 on success, -error on failure.
 415 *
 416 * simple_setattr is a simple ->setattr implementation without a proper
 417 * implementation of size changes.
 418 *
 419 * It can either be used for in-memory filesystems or special files
 420 * on simple regular filesystems.  Anything that needs to change on-disk
 421 * or wire state on size changes needs its own setattr method.
 422 */
 423int simple_setattr(struct dentry *dentry, struct iattr *iattr)
 424{
 425	struct inode *inode = d_inode(dentry);
 426	int error;
 427
 428	error = setattr_prepare(dentry, iattr);
 429	if (error)
 430		return error;
 431
 432	if (iattr->ia_valid & ATTR_SIZE)
 433		truncate_setsize(inode, iattr->ia_size);
 434	setattr_copy(inode, iattr);
 435	mark_inode_dirty(inode);
 436	return 0;
 437}
 438EXPORT_SYMBOL(simple_setattr);
 439
 440int simple_readpage(struct file *file, struct page *page)
 441{
 442	clear_highpage(page);
 443	flush_dcache_page(page);
 444	SetPageUptodate(page);
 445	unlock_page(page);
 446	return 0;
 447}
 448EXPORT_SYMBOL(simple_readpage);
 449
 450int simple_write_begin(struct file *file, struct address_space *mapping,
 451			loff_t pos, unsigned len, unsigned flags,
 452			struct page **pagep, void **fsdata)
 453{
 454	struct page *page;
 455	pgoff_t index;
 456
 457	index = pos >> PAGE_SHIFT;
 458
 459	page = grab_cache_page_write_begin(mapping, index, flags);
 460	if (!page)
 461		return -ENOMEM;
 462
 463	*pagep = page;
 464
 465	if (!PageUptodate(page) && (len != PAGE_SIZE)) {
 466		unsigned from = pos & (PAGE_SIZE - 1);
 467
 468		zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
 469	}
 470	return 0;
 471}
 472EXPORT_SYMBOL(simple_write_begin);
 473
 474/**
 475 * simple_write_end - .write_end helper for non-block-device FSes
 476 * @file: See .write_end of address_space_operations
 
 477 * @mapping: 		"
 478 * @pos: 		"
 479 * @len: 		"
 480 * @copied: 		"
 481 * @page: 		"
 482 * @fsdata: 		"
 483 *
 484 * simple_write_end does the minimum needed for updating a page after writing is
 485 * done. It has the same API signature as the .write_end of
 486 * address_space_operations vector. So it can just be set onto .write_end for
 487 * FSes that don't need any other processing. i_mutex is assumed to be held.
 488 * Block based filesystems should use generic_write_end().
 489 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
 490 * is not called, so a filesystem that actually does store data in .write_inode
 491 * should extend on what's done here with a call to mark_inode_dirty() in the
 492 * case that i_size has changed.
 493 *
 494 * Use *ONLY* with simple_readpage()
 495 */
 496int simple_write_end(struct file *file, struct address_space *mapping,
 497			loff_t pos, unsigned len, unsigned copied,
 498			struct page *page, void *fsdata)
 499{
 500	struct inode *inode = page->mapping->host;
 501	loff_t last_pos = pos + copied;
 502
 503	/* zero the stale part of the page if we did a short copy */
 504	if (!PageUptodate(page)) {
 505		if (copied < len) {
 506			unsigned from = pos & (PAGE_SIZE - 1);
 507
 508			zero_user(page, from + copied, len - copied);
 509		}
 510		SetPageUptodate(page);
 511	}
 
 
 
 512	/*
 513	 * No need to use i_size_read() here, the i_size
 514	 * cannot change under us because we hold the i_mutex.
 515	 */
 516	if (last_pos > inode->i_size)
 517		i_size_write(inode, last_pos);
 518
 519	set_page_dirty(page);
 520	unlock_page(page);
 521	put_page(page);
 522
 523	return copied;
 524}
 525EXPORT_SYMBOL(simple_write_end);
 526
 527/*
 528 * the inodes created here are not hashed. If you use iunique to generate
 529 * unique inode values later for this filesystem, then you must take care
 530 * to pass it an appropriate max_reserved value to avoid collisions.
 531 */
 532int simple_fill_super(struct super_block *s, unsigned long magic,
 533		      const struct tree_descr *files)
 534{
 535	struct inode *inode;
 536	struct dentry *root;
 537	struct dentry *dentry;
 538	int i;
 539
 540	s->s_blocksize = PAGE_SIZE;
 541	s->s_blocksize_bits = PAGE_SHIFT;
 542	s->s_magic = magic;
 543	s->s_op = &simple_super_operations;
 544	s->s_time_gran = 1;
 545
 546	inode = new_inode(s);
 547	if (!inode)
 548		return -ENOMEM;
 549	/*
 550	 * because the root inode is 1, the files array must not contain an
 551	 * entry at index 1
 552	 */
 553	inode->i_ino = 1;
 554	inode->i_mode = S_IFDIR | 0755;
 555	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 556	inode->i_op = &simple_dir_inode_operations;
 557	inode->i_fop = &simple_dir_operations;
 558	set_nlink(inode, 2);
 559	root = d_make_root(inode);
 560	if (!root)
 561		return -ENOMEM;
 562	for (i = 0; !files->name || files->name[0]; i++, files++) {
 563		if (!files->name)
 564			continue;
 565
 566		/* warn if it tries to conflict with the root inode */
 567		if (unlikely(i == 1))
 568			printk(KERN_WARNING "%s: %s passed in a files array"
 569				"with an index of 1!\n", __func__,
 570				s->s_type->name);
 571
 572		dentry = d_alloc_name(root, files->name);
 573		if (!dentry)
 574			goto out;
 575		inode = new_inode(s);
 576		if (!inode) {
 577			dput(dentry);
 578			goto out;
 579		}
 580		inode->i_mode = S_IFREG | files->mode;
 581		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 582		inode->i_fop = files->ops;
 583		inode->i_ino = i;
 584		d_add(dentry, inode);
 585	}
 586	s->s_root = root;
 587	return 0;
 588out:
 589	d_genocide(root);
 590	shrink_dcache_parent(root);
 591	dput(root);
 592	return -ENOMEM;
 593}
 594EXPORT_SYMBOL(simple_fill_super);
 595
 596static DEFINE_SPINLOCK(pin_fs_lock);
 597
 598int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
 599{
 600	struct vfsmount *mnt = NULL;
 601	spin_lock(&pin_fs_lock);
 602	if (unlikely(!*mount)) {
 603		spin_unlock(&pin_fs_lock);
 604		mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
 605		if (IS_ERR(mnt))
 606			return PTR_ERR(mnt);
 607		spin_lock(&pin_fs_lock);
 608		if (!*mount)
 609			*mount = mnt;
 610	}
 611	mntget(*mount);
 612	++*count;
 613	spin_unlock(&pin_fs_lock);
 614	mntput(mnt);
 615	return 0;
 616}
 617EXPORT_SYMBOL(simple_pin_fs);
 618
 619void simple_release_fs(struct vfsmount **mount, int *count)
 620{
 621	struct vfsmount *mnt;
 622	spin_lock(&pin_fs_lock);
 623	mnt = *mount;
 624	if (!--*count)
 625		*mount = NULL;
 626	spin_unlock(&pin_fs_lock);
 627	mntput(mnt);
 628}
 629EXPORT_SYMBOL(simple_release_fs);
 630
 631/**
 632 * simple_read_from_buffer - copy data from the buffer to user space
 633 * @to: the user space buffer to read to
 634 * @count: the maximum number of bytes to read
 635 * @ppos: the current position in the buffer
 636 * @from: the buffer to read from
 637 * @available: the size of the buffer
 638 *
 639 * The simple_read_from_buffer() function reads up to @count bytes from the
 640 * buffer @from at offset @ppos into the user space address starting at @to.
 641 *
 642 * On success, the number of bytes read is returned and the offset @ppos is
 643 * advanced by this number, or negative value is returned on error.
 644 **/
 645ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
 646				const void *from, size_t available)
 647{
 648	loff_t pos = *ppos;
 649	size_t ret;
 650
 651	if (pos < 0)
 652		return -EINVAL;
 653	if (pos >= available || !count)
 654		return 0;
 655	if (count > available - pos)
 656		count = available - pos;
 657	ret = copy_to_user(to, from + pos, count);
 658	if (ret == count)
 659		return -EFAULT;
 660	count -= ret;
 661	*ppos = pos + count;
 662	return count;
 663}
 664EXPORT_SYMBOL(simple_read_from_buffer);
 665
 666/**
 667 * simple_write_to_buffer - copy data from user space to the buffer
 668 * @to: the buffer to write to
 669 * @available: the size of the buffer
 670 * @ppos: the current position in the buffer
 671 * @from: the user space buffer to read from
 672 * @count: the maximum number of bytes to read
 673 *
 674 * The simple_write_to_buffer() function reads up to @count bytes from the user
 675 * space address starting at @from into the buffer @to at offset @ppos.
 676 *
 677 * On success, the number of bytes written is returned and the offset @ppos is
 678 * advanced by this number, or negative value is returned on error.
 679 **/
 680ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
 681		const void __user *from, size_t count)
 682{
 683	loff_t pos = *ppos;
 684	size_t res;
 685
 686	if (pos < 0)
 687		return -EINVAL;
 688	if (pos >= available || !count)
 689		return 0;
 690	if (count > available - pos)
 691		count = available - pos;
 692	res = copy_from_user(to + pos, from, count);
 693	if (res == count)
 694		return -EFAULT;
 695	count -= res;
 696	*ppos = pos + count;
 697	return count;
 698}
 699EXPORT_SYMBOL(simple_write_to_buffer);
 700
 701/**
 702 * memory_read_from_buffer - copy data from the buffer
 703 * @to: the kernel space buffer to read to
 704 * @count: the maximum number of bytes to read
 705 * @ppos: the current position in the buffer
 706 * @from: the buffer to read from
 707 * @available: the size of the buffer
 708 *
 709 * The memory_read_from_buffer() function reads up to @count bytes from the
 710 * buffer @from at offset @ppos into the kernel space address starting at @to.
 711 *
 712 * On success, the number of bytes read is returned and the offset @ppos is
 713 * advanced by this number, or negative value is returned on error.
 714 **/
 715ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
 716				const void *from, size_t available)
 717{
 718	loff_t pos = *ppos;
 719
 720	if (pos < 0)
 721		return -EINVAL;
 722	if (pos >= available)
 723		return 0;
 724	if (count > available - pos)
 725		count = available - pos;
 726	memcpy(to, from + pos, count);
 727	*ppos = pos + count;
 728
 729	return count;
 730}
 731EXPORT_SYMBOL(memory_read_from_buffer);
 732
 733/*
 734 * Transaction based IO.
 735 * The file expects a single write which triggers the transaction, and then
 736 * possibly a read which collects the result - which is stored in a
 737 * file-local buffer.
 738 */
 739
 740void simple_transaction_set(struct file *file, size_t n)
 741{
 742	struct simple_transaction_argresp *ar = file->private_data;
 743
 744	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
 745
 746	/*
 747	 * The barrier ensures that ar->size will really remain zero until
 748	 * ar->data is ready for reading.
 749	 */
 750	smp_mb();
 751	ar->size = n;
 752}
 753EXPORT_SYMBOL(simple_transaction_set);
 754
 755char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
 756{
 757	struct simple_transaction_argresp *ar;
 758	static DEFINE_SPINLOCK(simple_transaction_lock);
 759
 760	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
 761		return ERR_PTR(-EFBIG);
 762
 763	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
 764	if (!ar)
 765		return ERR_PTR(-ENOMEM);
 766
 767	spin_lock(&simple_transaction_lock);
 768
 769	/* only one write allowed per open */
 770	if (file->private_data) {
 771		spin_unlock(&simple_transaction_lock);
 772		free_page((unsigned long)ar);
 773		return ERR_PTR(-EBUSY);
 774	}
 775
 776	file->private_data = ar;
 777
 778	spin_unlock(&simple_transaction_lock);
 779
 780	if (copy_from_user(ar->data, buf, size))
 781		return ERR_PTR(-EFAULT);
 782
 783	return ar->data;
 784}
 785EXPORT_SYMBOL(simple_transaction_get);
 786
 787ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
 788{
 789	struct simple_transaction_argresp *ar = file->private_data;
 790
 791	if (!ar)
 792		return 0;
 793	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
 794}
 795EXPORT_SYMBOL(simple_transaction_read);
 796
 797int simple_transaction_release(struct inode *inode, struct file *file)
 798{
 799	free_page((unsigned long)file->private_data);
 800	return 0;
 801}
 802EXPORT_SYMBOL(simple_transaction_release);
 803
 804/* Simple attribute files */
 805
 806struct simple_attr {
 807	int (*get)(void *, u64 *);
 808	int (*set)(void *, u64);
 809	char get_buf[24];	/* enough to store a u64 and "\n\0" */
 810	char set_buf[24];
 811	void *data;
 812	const char *fmt;	/* format for read operation */
 813	struct mutex mutex;	/* protects access to these buffers */
 814};
 815
 816/* simple_attr_open is called by an actual attribute open file operation
 817 * to set the attribute specific access operations. */
 818int simple_attr_open(struct inode *inode, struct file *file,
 819		     int (*get)(void *, u64 *), int (*set)(void *, u64),
 820		     const char *fmt)
 821{
 822	struct simple_attr *attr;
 823
 824	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
 825	if (!attr)
 826		return -ENOMEM;
 827
 828	attr->get = get;
 829	attr->set = set;
 830	attr->data = inode->i_private;
 831	attr->fmt = fmt;
 832	mutex_init(&attr->mutex);
 833
 834	file->private_data = attr;
 835
 836	return nonseekable_open(inode, file);
 837}
 838EXPORT_SYMBOL_GPL(simple_attr_open);
 839
 840int simple_attr_release(struct inode *inode, struct file *file)
 841{
 842	kfree(file->private_data);
 843	return 0;
 844}
 845EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
 846
 847/* read from the buffer that is filled with the get function */
 848ssize_t simple_attr_read(struct file *file, char __user *buf,
 849			 size_t len, loff_t *ppos)
 850{
 851	struct simple_attr *attr;
 852	size_t size;
 853	ssize_t ret;
 854
 855	attr = file->private_data;
 856
 857	if (!attr->get)
 858		return -EACCES;
 859
 860	ret = mutex_lock_interruptible(&attr->mutex);
 861	if (ret)
 862		return ret;
 863
 864	if (*ppos) {		/* continued read */
 865		size = strlen(attr->get_buf);
 866	} else {		/* first read */
 867		u64 val;
 868		ret = attr->get(attr->data, &val);
 869		if (ret)
 870			goto out;
 871
 872		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
 873				 attr->fmt, (unsigned long long)val);
 874	}
 875
 876	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
 877out:
 878	mutex_unlock(&attr->mutex);
 879	return ret;
 880}
 881EXPORT_SYMBOL_GPL(simple_attr_read);
 882
 883/* interpret the buffer as a number to call the set function with */
 884ssize_t simple_attr_write(struct file *file, const char __user *buf,
 885			  size_t len, loff_t *ppos)
 886{
 887	struct simple_attr *attr;
 888	u64 val;
 889	size_t size;
 890	ssize_t ret;
 891
 892	attr = file->private_data;
 893	if (!attr->set)
 894		return -EACCES;
 895
 896	ret = mutex_lock_interruptible(&attr->mutex);
 897	if (ret)
 898		return ret;
 899
 900	ret = -EFAULT;
 901	size = min(sizeof(attr->set_buf) - 1, len);
 902	if (copy_from_user(attr->set_buf, buf, size))
 903		goto out;
 904
 905	attr->set_buf[size] = '\0';
 906	val = simple_strtoll(attr->set_buf, NULL, 0);
 907	ret = attr->set(attr->data, val);
 908	if (ret == 0)
 909		ret = len; /* on success, claim we got the whole input */
 910out:
 911	mutex_unlock(&attr->mutex);
 912	return ret;
 913}
 914EXPORT_SYMBOL_GPL(simple_attr_write);
 915
 916/**
 917 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
 918 * @sb:		filesystem to do the file handle conversion on
 919 * @fid:	file handle to convert
 920 * @fh_len:	length of the file handle in bytes
 921 * @fh_type:	type of file handle
 922 * @get_inode:	filesystem callback to retrieve inode
 923 *
 924 * This function decodes @fid as long as it has one of the well-known
 925 * Linux filehandle types and calls @get_inode on it to retrieve the
 926 * inode for the object specified in the file handle.
 927 */
 928struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
 929		int fh_len, int fh_type, struct inode *(*get_inode)
 930			(struct super_block *sb, u64 ino, u32 gen))
 931{
 932	struct inode *inode = NULL;
 933
 934	if (fh_len < 2)
 935		return NULL;
 936
 937	switch (fh_type) {
 938	case FILEID_INO32_GEN:
 939	case FILEID_INO32_GEN_PARENT:
 940		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
 941		break;
 942	}
 943
 944	return d_obtain_alias(inode);
 945}
 946EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
 947
 948/**
 949 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
 950 * @sb:		filesystem to do the file handle conversion on
 951 * @fid:	file handle to convert
 952 * @fh_len:	length of the file handle in bytes
 953 * @fh_type:	type of file handle
 954 * @get_inode:	filesystem callback to retrieve inode
 955 *
 956 * This function decodes @fid as long as it has one of the well-known
 957 * Linux filehandle types and calls @get_inode on it to retrieve the
 958 * inode for the _parent_ object specified in the file handle if it
 959 * is specified in the file handle, or NULL otherwise.
 960 */
 961struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
 962		int fh_len, int fh_type, struct inode *(*get_inode)
 963			(struct super_block *sb, u64 ino, u32 gen))
 964{
 965	struct inode *inode = NULL;
 966
 967	if (fh_len <= 2)
 968		return NULL;
 969
 970	switch (fh_type) {
 971	case FILEID_INO32_GEN_PARENT:
 972		inode = get_inode(sb, fid->i32.parent_ino,
 973				  (fh_len > 3 ? fid->i32.parent_gen : 0));
 974		break;
 975	}
 976
 977	return d_obtain_alias(inode);
 978}
 979EXPORT_SYMBOL_GPL(generic_fh_to_parent);
 980
 981/**
 982 * __generic_file_fsync - generic fsync implementation for simple filesystems
 983 *
 984 * @file:	file to synchronize
 985 * @start:	start offset in bytes
 986 * @end:	end offset in bytes (inclusive)
 987 * @datasync:	only synchronize essential metadata if true
 988 *
 989 * This is a generic implementation of the fsync method for simple
 990 * filesystems which track all non-inode metadata in the buffers list
 991 * hanging off the address_space structure.
 992 */
 993int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
 994				 int datasync)
 995{
 996	struct inode *inode = file->f_mapping->host;
 997	int err;
 998	int ret;
 999
1000	err = file_write_and_wait_range(file, start, end);
1001	if (err)
1002		return err;
1003
1004	inode_lock(inode);
1005	ret = sync_mapping_buffers(inode->i_mapping);
1006	if (!(inode->i_state & I_DIRTY_ALL))
1007		goto out;
1008	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1009		goto out;
1010
1011	err = sync_inode_metadata(inode, 1);
1012	if (ret == 0)
1013		ret = err;
1014
1015out:
1016	inode_unlock(inode);
1017	/* check and advance again to catch errors after syncing out buffers */
1018	err = file_check_and_advance_wb_err(file);
1019	if (ret == 0)
1020		ret = err;
1021	return ret;
1022}
1023EXPORT_SYMBOL(__generic_file_fsync);
1024
1025/**
1026 * generic_file_fsync - generic fsync implementation for simple filesystems
1027 *			with flush
1028 * @file:	file to synchronize
1029 * @start:	start offset in bytes
1030 * @end:	end offset in bytes (inclusive)
1031 * @datasync:	only synchronize essential metadata if true
1032 *
1033 */
1034
1035int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1036		       int datasync)
1037{
1038	struct inode *inode = file->f_mapping->host;
1039	int err;
1040
1041	err = __generic_file_fsync(file, start, end, datasync);
1042	if (err)
1043		return err;
1044	return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
1045}
1046EXPORT_SYMBOL(generic_file_fsync);
1047
1048/**
1049 * generic_check_addressable - Check addressability of file system
1050 * @blocksize_bits:	log of file system block size
1051 * @num_blocks:		number of blocks in file system
1052 *
1053 * Determine whether a file system with @num_blocks blocks (and a
1054 * block size of 2**@blocksize_bits) is addressable by the sector_t
1055 * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1056 */
1057int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1058{
1059	u64 last_fs_block = num_blocks - 1;
1060	u64 last_fs_page =
1061		last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1062
1063	if (unlikely(num_blocks == 0))
1064		return 0;
1065
1066	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1067		return -EINVAL;
1068
1069	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1070	    (last_fs_page > (pgoff_t)(~0ULL))) {
1071		return -EFBIG;
1072	}
1073	return 0;
1074}
1075EXPORT_SYMBOL(generic_check_addressable);
1076
1077/*
1078 * No-op implementation of ->fsync for in-memory filesystems.
1079 */
1080int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1081{
1082	return 0;
1083}
1084EXPORT_SYMBOL(noop_fsync);
1085
1086int noop_set_page_dirty(struct page *page)
 
1087{
1088	/*
1089	 * Unlike __set_page_dirty_no_writeback that handles dirty page
1090	 * tracking in the page object, dax does all dirty tracking in
1091	 * the inode address_space in response to mkwrite faults. In the
1092	 * dax case we only need to worry about potentially dirty CPU
1093	 * caches, not dirty page cache pages to write back.
1094	 *
1095	 * This callback is defined to prevent fallback to
1096	 * __set_page_dirty_buffers() in set_page_dirty().
1097	 */
1098	return 0;
1099}
1100EXPORT_SYMBOL_GPL(noop_set_page_dirty);
1101
1102void noop_invalidatepage(struct page *page, unsigned int offset,
1103		unsigned int length)
1104{
1105	/*
1106	 * There is no page cache to invalidate in the dax case, however
1107	 * we need this callback defined to prevent falling back to
1108	 * block_invalidatepage() in do_invalidatepage().
1109	 */
1110}
1111EXPORT_SYMBOL_GPL(noop_invalidatepage);
1112
1113ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1114{
1115	/*
1116	 * iomap based filesystems support direct I/O without need for
1117	 * this callback. However, it still needs to be set in
1118	 * inode->a_ops so that open/fcntl know that direct I/O is
1119	 * generally supported.
1120	 */
1121	return -EINVAL;
1122}
1123EXPORT_SYMBOL_GPL(noop_direct_IO);
1124
1125/* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1126void kfree_link(void *p)
1127{
1128	kfree(p);
1129}
1130EXPORT_SYMBOL(kfree_link);
1131
1132/*
1133 * nop .set_page_dirty method so that people can use .page_mkwrite on
1134 * anon inodes.
1135 */
1136static int anon_set_page_dirty(struct page *page)
1137{
1138	return 0;
1139};
1140
1141/*
1142 * A single inode exists for all anon_inode files. Contrary to pipes,
1143 * anon_inode inodes have no associated per-instance data, so we need
1144 * only allocate one of them.
1145 */
1146struct inode *alloc_anon_inode(struct super_block *s)
1147{
1148	static const struct address_space_operations anon_aops = {
1149		.set_page_dirty = anon_set_page_dirty,
1150	};
1151	struct inode *inode = new_inode_pseudo(s);
1152
1153	if (!inode)
1154		return ERR_PTR(-ENOMEM);
1155
1156	inode->i_ino = get_next_ino();
1157	inode->i_mapping->a_ops = &anon_aops;
1158
1159	/*
1160	 * Mark the inode dirty from the very beginning,
1161	 * that way it will never be moved to the dirty
1162	 * list because mark_inode_dirty() will think
1163	 * that it already _is_ on the dirty list.
1164	 */
1165	inode->i_state = I_DIRTY;
1166	inode->i_mode = S_IRUSR | S_IWUSR;
1167	inode->i_uid = current_fsuid();
1168	inode->i_gid = current_fsgid();
1169	inode->i_flags |= S_PRIVATE;
1170	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1171	return inode;
1172}
1173EXPORT_SYMBOL(alloc_anon_inode);
1174
1175/**
1176 * simple_nosetlease - generic helper for prohibiting leases
1177 * @filp: file pointer
1178 * @arg: type of lease to obtain
1179 * @flp: new lease supplied for insertion
1180 * @priv: private data for lm_setup operation
1181 *
1182 * Generic helper for filesystems that do not wish to allow leases to be set.
1183 * All arguments are ignored and it just returns -EINVAL.
1184 */
1185int
1186simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1187		  void **priv)
1188{
1189	return -EINVAL;
1190}
1191EXPORT_SYMBOL(simple_nosetlease);
1192
1193/**
1194 * simple_get_link - generic helper to get the target of "fast" symlinks
1195 * @dentry: not used here
1196 * @inode: the symlink inode
1197 * @done: not used here
1198 *
1199 * Generic helper for filesystems to use for symlink inodes where a pointer to
1200 * the symlink target is stored in ->i_link.  NOTE: this isn't normally called,
1201 * since as an optimization the path lookup code uses any non-NULL ->i_link
1202 * directly, without calling ->get_link().  But ->get_link() still must be set,
1203 * to mark the inode_operations as being for a symlink.
1204 *
1205 * Return: the symlink target
1206 */
1207const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1208			    struct delayed_call *done)
1209{
1210	return inode->i_link;
1211}
1212EXPORT_SYMBOL(simple_get_link);
1213
1214const struct inode_operations simple_symlink_inode_operations = {
1215	.get_link = simple_get_link,
1216};
1217EXPORT_SYMBOL(simple_symlink_inode_operations);
1218
1219/*
1220 * Operations for a permanently empty directory.
1221 */
1222static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1223{
1224	return ERR_PTR(-ENOENT);
1225}
1226
1227static int empty_dir_getattr(const struct path *path, struct kstat *stat,
1228			     u32 request_mask, unsigned int query_flags)
1229{
1230	struct inode *inode = d_inode(path->dentry);
1231	generic_fillattr(inode, stat);
1232	return 0;
1233}
1234
1235static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr)
1236{
1237	return -EPERM;
1238}
1239
1240static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1241{
1242	return -EOPNOTSUPP;
1243}
1244
1245static const struct inode_operations empty_dir_inode_operations = {
1246	.lookup		= empty_dir_lookup,
1247	.permission	= generic_permission,
1248	.setattr	= empty_dir_setattr,
1249	.getattr	= empty_dir_getattr,
1250	.listxattr	= empty_dir_listxattr,
1251};
1252
1253static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1254{
1255	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1256	return generic_file_llseek_size(file, offset, whence, 2, 2);
1257}
1258
1259static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1260{
1261	dir_emit_dots(file, ctx);
1262	return 0;
1263}
1264
1265static const struct file_operations empty_dir_operations = {
1266	.llseek		= empty_dir_llseek,
1267	.read		= generic_read_dir,
1268	.iterate_shared	= empty_dir_readdir,
1269	.fsync		= noop_fsync,
1270};
1271
1272
1273void make_empty_dir_inode(struct inode *inode)
1274{
1275	set_nlink(inode, 2);
1276	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1277	inode->i_uid = GLOBAL_ROOT_UID;
1278	inode->i_gid = GLOBAL_ROOT_GID;
1279	inode->i_rdev = 0;
1280	inode->i_size = 0;
1281	inode->i_blkbits = PAGE_SHIFT;
1282	inode->i_blocks = 0;
1283
1284	inode->i_op = &empty_dir_inode_operations;
1285	inode->i_opflags &= ~IOP_XATTR;
1286	inode->i_fop = &empty_dir_operations;
1287}
1288
1289bool is_empty_dir_inode(struct inode *inode)
1290{
1291	return (inode->i_fop == &empty_dir_operations) &&
1292		(inode->i_op == &empty_dir_inode_operations);
1293}
v3.15
 
   1/*
   2 *	fs/libfs.c
   3 *	Library for filesystems writers.
   4 */
   5
 
   6#include <linux/export.h>
   7#include <linux/pagemap.h>
   8#include <linux/slab.h>
 
   9#include <linux/mount.h>
  10#include <linux/vfs.h>
  11#include <linux/quotaops.h>
  12#include <linux/mutex.h>
  13#include <linux/namei.h>
  14#include <linux/exportfs.h>
  15#include <linux/writeback.h>
  16#include <linux/buffer_head.h> /* sync_mapping_buffers */
 
 
  17
  18#include <asm/uaccess.h>
  19
  20#include "internal.h"
  21
  22static inline int simple_positive(struct dentry *dentry)
 
  23{
  24	return dentry->d_inode && !d_unhashed(dentry);
  25}
  26
  27int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
  28		   struct kstat *stat)
  29{
  30	struct inode *inode = dentry->d_inode;
  31	generic_fillattr(inode, stat);
  32	stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9);
  33	return 0;
  34}
  35EXPORT_SYMBOL(simple_getattr);
  36
  37int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
  38{
  39	buf->f_type = dentry->d_sb->s_magic;
  40	buf->f_bsize = PAGE_CACHE_SIZE;
  41	buf->f_namelen = NAME_MAX;
  42	return 0;
  43}
  44EXPORT_SYMBOL(simple_statfs);
  45
  46/*
  47 * Retaining negative dentries for an in-memory filesystem just wastes
  48 * memory and lookup time: arrange for them to be deleted immediately.
  49 */
  50int always_delete_dentry(const struct dentry *dentry)
  51{
  52	return 1;
  53}
  54EXPORT_SYMBOL(always_delete_dentry);
  55
  56const struct dentry_operations simple_dentry_operations = {
  57	.d_delete = always_delete_dentry,
  58};
  59EXPORT_SYMBOL(simple_dentry_operations);
  60
  61/*
  62 * Lookup the data. This is trivial - if the dentry didn't already
  63 * exist, we know it is negative.  Set d_op to delete negative dentries.
  64 */
  65struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
  66{
  67	if (dentry->d_name.len > NAME_MAX)
  68		return ERR_PTR(-ENAMETOOLONG);
  69	if (!dentry->d_sb->s_d_op)
  70		d_set_d_op(dentry, &simple_dentry_operations);
  71	d_add(dentry, NULL);
  72	return NULL;
  73}
  74EXPORT_SYMBOL(simple_lookup);
  75
  76int dcache_dir_open(struct inode *inode, struct file *file)
  77{
  78	static struct qstr cursor_name = QSTR_INIT(".", 1);
  79
  80	file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
  81
  82	return file->private_data ? 0 : -ENOMEM;
  83}
  84EXPORT_SYMBOL(dcache_dir_open);
  85
  86int dcache_dir_close(struct inode *inode, struct file *file)
  87{
  88	dput(file->private_data);
  89	return 0;
  90}
  91EXPORT_SYMBOL(dcache_dir_close);
  92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  93loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
  94{
  95	struct dentry *dentry = file->f_path.dentry;
  96	mutex_lock(&dentry->d_inode->i_mutex);
  97	switch (whence) {
  98		case 1:
  99			offset += file->f_pos;
 
 100		case 0:
 101			if (offset >= 0)
 102				break;
 
 103		default:
 104			mutex_unlock(&dentry->d_inode->i_mutex);
 105			return -EINVAL;
 106	}
 107	if (offset != file->f_pos) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 108		file->f_pos = offset;
 109		if (file->f_pos >= 2) {
 110			struct list_head *p;
 111			struct dentry *cursor = file->private_data;
 112			loff_t n = file->f_pos - 2;
 113
 114			spin_lock(&dentry->d_lock);
 115			/* d_lock not required for cursor */
 116			list_del(&cursor->d_u.d_child);
 117			p = dentry->d_subdirs.next;
 118			while (n && p != &dentry->d_subdirs) {
 119				struct dentry *next;
 120				next = list_entry(p, struct dentry, d_u.d_child);
 121				spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
 122				if (simple_positive(next))
 123					n--;
 124				spin_unlock(&next->d_lock);
 125				p = p->next;
 126			}
 127			list_add_tail(&cursor->d_u.d_child, p);
 128			spin_unlock(&dentry->d_lock);
 129		}
 130	}
 131	mutex_unlock(&dentry->d_inode->i_mutex);
 132	return offset;
 133}
 134EXPORT_SYMBOL(dcache_dir_lseek);
 135
 136/* Relationship between i_mode and the DT_xxx types */
 137static inline unsigned char dt_type(struct inode *inode)
 138{
 139	return (inode->i_mode >> 12) & 15;
 140}
 141
 142/*
 143 * Directory is locked and all positive dentries in it are safe, since
 144 * for ramfs-type trees they can't go away without unlink() or rmdir(),
 145 * both impossible due to the lock on directory.
 146 */
 147
 148int dcache_readdir(struct file *file, struct dir_context *ctx)
 149{
 150	struct dentry *dentry = file->f_path.dentry;
 151	struct dentry *cursor = file->private_data;
 152	struct list_head *p, *q = &cursor->d_u.d_child;
 
 
 153
 154	if (!dir_emit_dots(file, ctx))
 155		return 0;
 156	spin_lock(&dentry->d_lock);
 157	if (ctx->pos == 2)
 158		list_move(q, &dentry->d_subdirs);
 
 
 
 
 159
 160	for (p = q->next; p != &dentry->d_subdirs; p = p->next) {
 161		struct dentry *next = list_entry(p, struct dentry, d_u.d_child);
 162		spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
 163		if (!simple_positive(next)) {
 164			spin_unlock(&next->d_lock);
 165			continue;
 166		}
 167
 168		spin_unlock(&next->d_lock);
 169		spin_unlock(&dentry->d_lock);
 170		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
 171			      next->d_inode->i_ino, dt_type(next->d_inode)))
 172			return 0;
 173		spin_lock(&dentry->d_lock);
 174		spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
 175		/* next is still alive */
 176		list_move(q, p);
 177		spin_unlock(&next->d_lock);
 178		p = q;
 179		ctx->pos++;
 
 180	}
 
 
 
 
 
 181	spin_unlock(&dentry->d_lock);
 
 
 182	return 0;
 183}
 184EXPORT_SYMBOL(dcache_readdir);
 185
 186ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
 187{
 188	return -EISDIR;
 189}
 190EXPORT_SYMBOL(generic_read_dir);
 191
 192const struct file_operations simple_dir_operations = {
 193	.open		= dcache_dir_open,
 194	.release	= dcache_dir_close,
 195	.llseek		= dcache_dir_lseek,
 196	.read		= generic_read_dir,
 197	.iterate	= dcache_readdir,
 198	.fsync		= noop_fsync,
 199};
 200EXPORT_SYMBOL(simple_dir_operations);
 201
 202const struct inode_operations simple_dir_inode_operations = {
 203	.lookup		= simple_lookup,
 204};
 205EXPORT_SYMBOL(simple_dir_inode_operations);
 206
 207static const struct super_operations simple_super_operations = {
 208	.statfs		= simple_statfs,
 209};
 210
 211/*
 212 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
 213 * will never be mountable)
 214 */
 215struct dentry *mount_pseudo(struct file_system_type *fs_type, char *name,
 216	const struct super_operations *ops,
 217	const struct dentry_operations *dops, unsigned long magic)
 218{
 219	struct super_block *s;
 220	struct dentry *dentry;
 221	struct inode *root;
 222	struct qstr d_name = QSTR_INIT(name, strlen(name));
 223
 224	s = sget(fs_type, NULL, set_anon_super, MS_NOUSER, NULL);
 225	if (IS_ERR(s))
 226		return ERR_CAST(s);
 227
 228	s->s_maxbytes = MAX_LFS_FILESIZE;
 229	s->s_blocksize = PAGE_SIZE;
 230	s->s_blocksize_bits = PAGE_SHIFT;
 231	s->s_magic = magic;
 232	s->s_op = ops ? ops : &simple_super_operations;
 
 233	s->s_time_gran = 1;
 234	root = new_inode(s);
 235	if (!root)
 236		goto Enomem;
 
 237	/*
 238	 * since this is the first inode, make it number 1. New inodes created
 239	 * after this must take care not to collide with it (by passing
 240	 * max_reserved of 1 to iunique).
 241	 */
 242	root->i_ino = 1;
 243	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
 244	root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
 245	dentry = __d_alloc(s, &d_name);
 246	if (!dentry) {
 247		iput(root);
 248		goto Enomem;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 249	}
 250	d_instantiate(dentry, root);
 251	s->s_root = dentry;
 252	s->s_d_op = dops;
 253	s->s_flags |= MS_ACTIVE;
 254	return dget(s->s_root);
 255
 256Enomem:
 257	deactivate_locked_super(s);
 258	return ERR_PTR(-ENOMEM);
 259}
 260EXPORT_SYMBOL(mount_pseudo);
 261
 262int simple_open(struct inode *inode, struct file *file)
 263{
 264	if (inode->i_private)
 265		file->private_data = inode->i_private;
 266	return 0;
 267}
 268EXPORT_SYMBOL(simple_open);
 269
 270int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
 271{
 272	struct inode *inode = old_dentry->d_inode;
 273
 274	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
 275	inc_nlink(inode);
 276	ihold(inode);
 277	dget(dentry);
 278	d_instantiate(dentry, inode);
 279	return 0;
 280}
 281EXPORT_SYMBOL(simple_link);
 282
 283int simple_empty(struct dentry *dentry)
 284{
 285	struct dentry *child;
 286	int ret = 0;
 287
 288	spin_lock(&dentry->d_lock);
 289	list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child) {
 290		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
 291		if (simple_positive(child)) {
 292			spin_unlock(&child->d_lock);
 293			goto out;
 294		}
 295		spin_unlock(&child->d_lock);
 296	}
 297	ret = 1;
 298out:
 299	spin_unlock(&dentry->d_lock);
 300	return ret;
 301}
 302EXPORT_SYMBOL(simple_empty);
 303
 304int simple_unlink(struct inode *dir, struct dentry *dentry)
 305{
 306	struct inode *inode = dentry->d_inode;
 307
 308	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
 309	drop_nlink(inode);
 310	dput(dentry);
 311	return 0;
 312}
 313EXPORT_SYMBOL(simple_unlink);
 314
 315int simple_rmdir(struct inode *dir, struct dentry *dentry)
 316{
 317	if (!simple_empty(dentry))
 318		return -ENOTEMPTY;
 319
 320	drop_nlink(dentry->d_inode);
 321	simple_unlink(dir, dentry);
 322	drop_nlink(dir);
 323	return 0;
 324}
 325EXPORT_SYMBOL(simple_rmdir);
 326
 327int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
 328		struct inode *new_dir, struct dentry *new_dentry)
 
 329{
 330	struct inode *inode = old_dentry->d_inode;
 331	int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode);
 
 
 
 332
 333	if (!simple_empty(new_dentry))
 334		return -ENOTEMPTY;
 335
 336	if (new_dentry->d_inode) {
 337		simple_unlink(new_dir, new_dentry);
 338		if (they_are_dirs) {
 339			drop_nlink(new_dentry->d_inode);
 340			drop_nlink(old_dir);
 341		}
 342	} else if (they_are_dirs) {
 343		drop_nlink(old_dir);
 344		inc_nlink(new_dir);
 345	}
 346
 347	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
 348		new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
 349
 350	return 0;
 351}
 352EXPORT_SYMBOL(simple_rename);
 353
 354/**
 355 * simple_setattr - setattr for simple filesystem
 356 * @dentry: dentry
 357 * @iattr: iattr structure
 358 *
 359 * Returns 0 on success, -error on failure.
 360 *
 361 * simple_setattr is a simple ->setattr implementation without a proper
 362 * implementation of size changes.
 363 *
 364 * It can either be used for in-memory filesystems or special files
 365 * on simple regular filesystems.  Anything that needs to change on-disk
 366 * or wire state on size changes needs its own setattr method.
 367 */
 368int simple_setattr(struct dentry *dentry, struct iattr *iattr)
 369{
 370	struct inode *inode = dentry->d_inode;
 371	int error;
 372
 373	error = inode_change_ok(inode, iattr);
 374	if (error)
 375		return error;
 376
 377	if (iattr->ia_valid & ATTR_SIZE)
 378		truncate_setsize(inode, iattr->ia_size);
 379	setattr_copy(inode, iattr);
 380	mark_inode_dirty(inode);
 381	return 0;
 382}
 383EXPORT_SYMBOL(simple_setattr);
 384
 385int simple_readpage(struct file *file, struct page *page)
 386{
 387	clear_highpage(page);
 388	flush_dcache_page(page);
 389	SetPageUptodate(page);
 390	unlock_page(page);
 391	return 0;
 392}
 393EXPORT_SYMBOL(simple_readpage);
 394
 395int simple_write_begin(struct file *file, struct address_space *mapping,
 396			loff_t pos, unsigned len, unsigned flags,
 397			struct page **pagep, void **fsdata)
 398{
 399	struct page *page;
 400	pgoff_t index;
 401
 402	index = pos >> PAGE_CACHE_SHIFT;
 403
 404	page = grab_cache_page_write_begin(mapping, index, flags);
 405	if (!page)
 406		return -ENOMEM;
 407
 408	*pagep = page;
 409
 410	if (!PageUptodate(page) && (len != PAGE_CACHE_SIZE)) {
 411		unsigned from = pos & (PAGE_CACHE_SIZE - 1);
 412
 413		zero_user_segments(page, 0, from, from + len, PAGE_CACHE_SIZE);
 414	}
 415	return 0;
 416}
 417EXPORT_SYMBOL(simple_write_begin);
 418
 419/**
 420 * simple_write_end - .write_end helper for non-block-device FSes
 421 * @available: See .write_end of address_space_operations
 422 * @file: 		"
 423 * @mapping: 		"
 424 * @pos: 		"
 425 * @len: 		"
 426 * @copied: 		"
 427 * @page: 		"
 428 * @fsdata: 		"
 429 *
 430 * simple_write_end does the minimum needed for updating a page after writing is
 431 * done. It has the same API signature as the .write_end of
 432 * address_space_operations vector. So it can just be set onto .write_end for
 433 * FSes that don't need any other processing. i_mutex is assumed to be held.
 434 * Block based filesystems should use generic_write_end().
 435 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
 436 * is not called, so a filesystem that actually does store data in .write_inode
 437 * should extend on what's done here with a call to mark_inode_dirty() in the
 438 * case that i_size has changed.
 
 
 439 */
 440int simple_write_end(struct file *file, struct address_space *mapping,
 441			loff_t pos, unsigned len, unsigned copied,
 442			struct page *page, void *fsdata)
 443{
 444	struct inode *inode = page->mapping->host;
 445	loff_t last_pos = pos + copied;
 446
 447	/* zero the stale part of the page if we did a short copy */
 448	if (copied < len) {
 449		unsigned from = pos & (PAGE_CACHE_SIZE - 1);
 
 450
 451		zero_user(page, from + copied, len - copied);
 
 
 452	}
 453
 454	if (!PageUptodate(page))
 455		SetPageUptodate(page);
 456	/*
 457	 * No need to use i_size_read() here, the i_size
 458	 * cannot change under us because we hold the i_mutex.
 459	 */
 460	if (last_pos > inode->i_size)
 461		i_size_write(inode, last_pos);
 462
 463	set_page_dirty(page);
 464	unlock_page(page);
 465	page_cache_release(page);
 466
 467	return copied;
 468}
 469EXPORT_SYMBOL(simple_write_end);
 470
 471/*
 472 * the inodes created here are not hashed. If you use iunique to generate
 473 * unique inode values later for this filesystem, then you must take care
 474 * to pass it an appropriate max_reserved value to avoid collisions.
 475 */
 476int simple_fill_super(struct super_block *s, unsigned long magic,
 477		      struct tree_descr *files)
 478{
 479	struct inode *inode;
 480	struct dentry *root;
 481	struct dentry *dentry;
 482	int i;
 483
 484	s->s_blocksize = PAGE_CACHE_SIZE;
 485	s->s_blocksize_bits = PAGE_CACHE_SHIFT;
 486	s->s_magic = magic;
 487	s->s_op = &simple_super_operations;
 488	s->s_time_gran = 1;
 489
 490	inode = new_inode(s);
 491	if (!inode)
 492		return -ENOMEM;
 493	/*
 494	 * because the root inode is 1, the files array must not contain an
 495	 * entry at index 1
 496	 */
 497	inode->i_ino = 1;
 498	inode->i_mode = S_IFDIR | 0755;
 499	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
 500	inode->i_op = &simple_dir_inode_operations;
 501	inode->i_fop = &simple_dir_operations;
 502	set_nlink(inode, 2);
 503	root = d_make_root(inode);
 504	if (!root)
 505		return -ENOMEM;
 506	for (i = 0; !files->name || files->name[0]; i++, files++) {
 507		if (!files->name)
 508			continue;
 509
 510		/* warn if it tries to conflict with the root inode */
 511		if (unlikely(i == 1))
 512			printk(KERN_WARNING "%s: %s passed in a files array"
 513				"with an index of 1!\n", __func__,
 514				s->s_type->name);
 515
 516		dentry = d_alloc_name(root, files->name);
 517		if (!dentry)
 518			goto out;
 519		inode = new_inode(s);
 520		if (!inode) {
 521			dput(dentry);
 522			goto out;
 523		}
 524		inode->i_mode = S_IFREG | files->mode;
 525		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
 526		inode->i_fop = files->ops;
 527		inode->i_ino = i;
 528		d_add(dentry, inode);
 529	}
 530	s->s_root = root;
 531	return 0;
 532out:
 533	d_genocide(root);
 534	shrink_dcache_parent(root);
 535	dput(root);
 536	return -ENOMEM;
 537}
 538EXPORT_SYMBOL(simple_fill_super);
 539
 540static DEFINE_SPINLOCK(pin_fs_lock);
 541
 542int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
 543{
 544	struct vfsmount *mnt = NULL;
 545	spin_lock(&pin_fs_lock);
 546	if (unlikely(!*mount)) {
 547		spin_unlock(&pin_fs_lock);
 548		mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, NULL);
 549		if (IS_ERR(mnt))
 550			return PTR_ERR(mnt);
 551		spin_lock(&pin_fs_lock);
 552		if (!*mount)
 553			*mount = mnt;
 554	}
 555	mntget(*mount);
 556	++*count;
 557	spin_unlock(&pin_fs_lock);
 558	mntput(mnt);
 559	return 0;
 560}
 561EXPORT_SYMBOL(simple_pin_fs);
 562
 563void simple_release_fs(struct vfsmount **mount, int *count)
 564{
 565	struct vfsmount *mnt;
 566	spin_lock(&pin_fs_lock);
 567	mnt = *mount;
 568	if (!--*count)
 569		*mount = NULL;
 570	spin_unlock(&pin_fs_lock);
 571	mntput(mnt);
 572}
 573EXPORT_SYMBOL(simple_release_fs);
 574
 575/**
 576 * simple_read_from_buffer - copy data from the buffer to user space
 577 * @to: the user space buffer to read to
 578 * @count: the maximum number of bytes to read
 579 * @ppos: the current position in the buffer
 580 * @from: the buffer to read from
 581 * @available: the size of the buffer
 582 *
 583 * The simple_read_from_buffer() function reads up to @count bytes from the
 584 * buffer @from at offset @ppos into the user space address starting at @to.
 585 *
 586 * On success, the number of bytes read is returned and the offset @ppos is
 587 * advanced by this number, or negative value is returned on error.
 588 **/
 589ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
 590				const void *from, size_t available)
 591{
 592	loff_t pos = *ppos;
 593	size_t ret;
 594
 595	if (pos < 0)
 596		return -EINVAL;
 597	if (pos >= available || !count)
 598		return 0;
 599	if (count > available - pos)
 600		count = available - pos;
 601	ret = copy_to_user(to, from + pos, count);
 602	if (ret == count)
 603		return -EFAULT;
 604	count -= ret;
 605	*ppos = pos + count;
 606	return count;
 607}
 608EXPORT_SYMBOL(simple_read_from_buffer);
 609
 610/**
 611 * simple_write_to_buffer - copy data from user space to the buffer
 612 * @to: the buffer to write to
 613 * @available: the size of the buffer
 614 * @ppos: the current position in the buffer
 615 * @from: the user space buffer to read from
 616 * @count: the maximum number of bytes to read
 617 *
 618 * The simple_write_to_buffer() function reads up to @count bytes from the user
 619 * space address starting at @from into the buffer @to at offset @ppos.
 620 *
 621 * On success, the number of bytes written is returned and the offset @ppos is
 622 * advanced by this number, or negative value is returned on error.
 623 **/
 624ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
 625		const void __user *from, size_t count)
 626{
 627	loff_t pos = *ppos;
 628	size_t res;
 629
 630	if (pos < 0)
 631		return -EINVAL;
 632	if (pos >= available || !count)
 633		return 0;
 634	if (count > available - pos)
 635		count = available - pos;
 636	res = copy_from_user(to + pos, from, count);
 637	if (res == count)
 638		return -EFAULT;
 639	count -= res;
 640	*ppos = pos + count;
 641	return count;
 642}
 643EXPORT_SYMBOL(simple_write_to_buffer);
 644
 645/**
 646 * memory_read_from_buffer - copy data from the buffer
 647 * @to: the kernel space buffer to read to
 648 * @count: the maximum number of bytes to read
 649 * @ppos: the current position in the buffer
 650 * @from: the buffer to read from
 651 * @available: the size of the buffer
 652 *
 653 * The memory_read_from_buffer() function reads up to @count bytes from the
 654 * buffer @from at offset @ppos into the kernel space address starting at @to.
 655 *
 656 * On success, the number of bytes read is returned and the offset @ppos is
 657 * advanced by this number, or negative value is returned on error.
 658 **/
 659ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
 660				const void *from, size_t available)
 661{
 662	loff_t pos = *ppos;
 663
 664	if (pos < 0)
 665		return -EINVAL;
 666	if (pos >= available)
 667		return 0;
 668	if (count > available - pos)
 669		count = available - pos;
 670	memcpy(to, from + pos, count);
 671	*ppos = pos + count;
 672
 673	return count;
 674}
 675EXPORT_SYMBOL(memory_read_from_buffer);
 676
 677/*
 678 * Transaction based IO.
 679 * The file expects a single write which triggers the transaction, and then
 680 * possibly a read which collects the result - which is stored in a
 681 * file-local buffer.
 682 */
 683
 684void simple_transaction_set(struct file *file, size_t n)
 685{
 686	struct simple_transaction_argresp *ar = file->private_data;
 687
 688	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
 689
 690	/*
 691	 * The barrier ensures that ar->size will really remain zero until
 692	 * ar->data is ready for reading.
 693	 */
 694	smp_mb();
 695	ar->size = n;
 696}
 697EXPORT_SYMBOL(simple_transaction_set);
 698
 699char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
 700{
 701	struct simple_transaction_argresp *ar;
 702	static DEFINE_SPINLOCK(simple_transaction_lock);
 703
 704	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
 705		return ERR_PTR(-EFBIG);
 706
 707	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
 708	if (!ar)
 709		return ERR_PTR(-ENOMEM);
 710
 711	spin_lock(&simple_transaction_lock);
 712
 713	/* only one write allowed per open */
 714	if (file->private_data) {
 715		spin_unlock(&simple_transaction_lock);
 716		free_page((unsigned long)ar);
 717		return ERR_PTR(-EBUSY);
 718	}
 719
 720	file->private_data = ar;
 721
 722	spin_unlock(&simple_transaction_lock);
 723
 724	if (copy_from_user(ar->data, buf, size))
 725		return ERR_PTR(-EFAULT);
 726
 727	return ar->data;
 728}
 729EXPORT_SYMBOL(simple_transaction_get);
 730
 731ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
 732{
 733	struct simple_transaction_argresp *ar = file->private_data;
 734
 735	if (!ar)
 736		return 0;
 737	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
 738}
 739EXPORT_SYMBOL(simple_transaction_read);
 740
 741int simple_transaction_release(struct inode *inode, struct file *file)
 742{
 743	free_page((unsigned long)file->private_data);
 744	return 0;
 745}
 746EXPORT_SYMBOL(simple_transaction_release);
 747
 748/* Simple attribute files */
 749
 750struct simple_attr {
 751	int (*get)(void *, u64 *);
 752	int (*set)(void *, u64);
 753	char get_buf[24];	/* enough to store a u64 and "\n\0" */
 754	char set_buf[24];
 755	void *data;
 756	const char *fmt;	/* format for read operation */
 757	struct mutex mutex;	/* protects access to these buffers */
 758};
 759
 760/* simple_attr_open is called by an actual attribute open file operation
 761 * to set the attribute specific access operations. */
 762int simple_attr_open(struct inode *inode, struct file *file,
 763		     int (*get)(void *, u64 *), int (*set)(void *, u64),
 764		     const char *fmt)
 765{
 766	struct simple_attr *attr;
 767
 768	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
 769	if (!attr)
 770		return -ENOMEM;
 771
 772	attr->get = get;
 773	attr->set = set;
 774	attr->data = inode->i_private;
 775	attr->fmt = fmt;
 776	mutex_init(&attr->mutex);
 777
 778	file->private_data = attr;
 779
 780	return nonseekable_open(inode, file);
 781}
 782EXPORT_SYMBOL_GPL(simple_attr_open);
 783
 784int simple_attr_release(struct inode *inode, struct file *file)
 785{
 786	kfree(file->private_data);
 787	return 0;
 788}
 789EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
 790
 791/* read from the buffer that is filled with the get function */
 792ssize_t simple_attr_read(struct file *file, char __user *buf,
 793			 size_t len, loff_t *ppos)
 794{
 795	struct simple_attr *attr;
 796	size_t size;
 797	ssize_t ret;
 798
 799	attr = file->private_data;
 800
 801	if (!attr->get)
 802		return -EACCES;
 803
 804	ret = mutex_lock_interruptible(&attr->mutex);
 805	if (ret)
 806		return ret;
 807
 808	if (*ppos) {		/* continued read */
 809		size = strlen(attr->get_buf);
 810	} else {		/* first read */
 811		u64 val;
 812		ret = attr->get(attr->data, &val);
 813		if (ret)
 814			goto out;
 815
 816		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
 817				 attr->fmt, (unsigned long long)val);
 818	}
 819
 820	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
 821out:
 822	mutex_unlock(&attr->mutex);
 823	return ret;
 824}
 825EXPORT_SYMBOL_GPL(simple_attr_read);
 826
 827/* interpret the buffer as a number to call the set function with */
 828ssize_t simple_attr_write(struct file *file, const char __user *buf,
 829			  size_t len, loff_t *ppos)
 830{
 831	struct simple_attr *attr;
 832	u64 val;
 833	size_t size;
 834	ssize_t ret;
 835
 836	attr = file->private_data;
 837	if (!attr->set)
 838		return -EACCES;
 839
 840	ret = mutex_lock_interruptible(&attr->mutex);
 841	if (ret)
 842		return ret;
 843
 844	ret = -EFAULT;
 845	size = min(sizeof(attr->set_buf) - 1, len);
 846	if (copy_from_user(attr->set_buf, buf, size))
 847		goto out;
 848
 849	attr->set_buf[size] = '\0';
 850	val = simple_strtoll(attr->set_buf, NULL, 0);
 851	ret = attr->set(attr->data, val);
 852	if (ret == 0)
 853		ret = len; /* on success, claim we got the whole input */
 854out:
 855	mutex_unlock(&attr->mutex);
 856	return ret;
 857}
 858EXPORT_SYMBOL_GPL(simple_attr_write);
 859
 860/**
 861 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
 862 * @sb:		filesystem to do the file handle conversion on
 863 * @fid:	file handle to convert
 864 * @fh_len:	length of the file handle in bytes
 865 * @fh_type:	type of file handle
 866 * @get_inode:	filesystem callback to retrieve inode
 867 *
 868 * This function decodes @fid as long as it has one of the well-known
 869 * Linux filehandle types and calls @get_inode on it to retrieve the
 870 * inode for the object specified in the file handle.
 871 */
 872struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
 873		int fh_len, int fh_type, struct inode *(*get_inode)
 874			(struct super_block *sb, u64 ino, u32 gen))
 875{
 876	struct inode *inode = NULL;
 877
 878	if (fh_len < 2)
 879		return NULL;
 880
 881	switch (fh_type) {
 882	case FILEID_INO32_GEN:
 883	case FILEID_INO32_GEN_PARENT:
 884		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
 885		break;
 886	}
 887
 888	return d_obtain_alias(inode);
 889}
 890EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
 891
 892/**
 893 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
 894 * @sb:		filesystem to do the file handle conversion on
 895 * @fid:	file handle to convert
 896 * @fh_len:	length of the file handle in bytes
 897 * @fh_type:	type of file handle
 898 * @get_inode:	filesystem callback to retrieve inode
 899 *
 900 * This function decodes @fid as long as it has one of the well-known
 901 * Linux filehandle types and calls @get_inode on it to retrieve the
 902 * inode for the _parent_ object specified in the file handle if it
 903 * is specified in the file handle, or NULL otherwise.
 904 */
 905struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
 906		int fh_len, int fh_type, struct inode *(*get_inode)
 907			(struct super_block *sb, u64 ino, u32 gen))
 908{
 909	struct inode *inode = NULL;
 910
 911	if (fh_len <= 2)
 912		return NULL;
 913
 914	switch (fh_type) {
 915	case FILEID_INO32_GEN_PARENT:
 916		inode = get_inode(sb, fid->i32.parent_ino,
 917				  (fh_len > 3 ? fid->i32.parent_gen : 0));
 918		break;
 919	}
 920
 921	return d_obtain_alias(inode);
 922}
 923EXPORT_SYMBOL_GPL(generic_fh_to_parent);
 924
 925/**
 926 * generic_file_fsync - generic fsync implementation for simple filesystems
 
 927 * @file:	file to synchronize
 
 
 928 * @datasync:	only synchronize essential metadata if true
 929 *
 930 * This is a generic implementation of the fsync method for simple
 931 * filesystems which track all non-inode metadata in the buffers list
 932 * hanging off the address_space structure.
 933 */
 934int generic_file_fsync(struct file *file, loff_t start, loff_t end,
 935		       int datasync)
 936{
 937	struct inode *inode = file->f_mapping->host;
 938	int err;
 939	int ret;
 940
 941	err = filemap_write_and_wait_range(inode->i_mapping, start, end);
 942	if (err)
 943		return err;
 944
 945	mutex_lock(&inode->i_mutex);
 946	ret = sync_mapping_buffers(inode->i_mapping);
 947	if (!(inode->i_state & I_DIRTY))
 948		goto out;
 949	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
 950		goto out;
 951
 952	err = sync_inode_metadata(inode, 1);
 953	if (ret == 0)
 954		ret = err;
 
 955out:
 956	mutex_unlock(&inode->i_mutex);
 
 
 
 
 957	return ret;
 958}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 959EXPORT_SYMBOL(generic_file_fsync);
 960
 961/**
 962 * generic_check_addressable - Check addressability of file system
 963 * @blocksize_bits:	log of file system block size
 964 * @num_blocks:		number of blocks in file system
 965 *
 966 * Determine whether a file system with @num_blocks blocks (and a
 967 * block size of 2**@blocksize_bits) is addressable by the sector_t
 968 * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
 969 */
 970int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
 971{
 972	u64 last_fs_block = num_blocks - 1;
 973	u64 last_fs_page =
 974		last_fs_block >> (PAGE_CACHE_SHIFT - blocksize_bits);
 975
 976	if (unlikely(num_blocks == 0))
 977		return 0;
 978
 979	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_CACHE_SHIFT))
 980		return -EINVAL;
 981
 982	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
 983	    (last_fs_page > (pgoff_t)(~0ULL))) {
 984		return -EFBIG;
 985	}
 986	return 0;
 987}
 988EXPORT_SYMBOL(generic_check_addressable);
 989
 990/*
 991 * No-op implementation of ->fsync for in-memory filesystems.
 992 */
 993int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
 994{
 995	return 0;
 996}
 997EXPORT_SYMBOL(noop_fsync);
 998
 999void kfree_put_link(struct dentry *dentry, struct nameidata *nd,
1000				void *cookie)
1001{
1002	char *s = nd_get_link(nd);
1003	if (!IS_ERR(s))
1004		kfree(s);
 
 
 
 
 
 
 
 
1005}
1006EXPORT_SYMBOL(kfree_put_link);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1007
1008/*
1009 * nop .set_page_dirty method so that people can use .page_mkwrite on
1010 * anon inodes.
1011 */
1012static int anon_set_page_dirty(struct page *page)
1013{
1014	return 0;
1015};
1016
1017/*
1018 * A single inode exists for all anon_inode files. Contrary to pipes,
1019 * anon_inode inodes have no associated per-instance data, so we need
1020 * only allocate one of them.
1021 */
1022struct inode *alloc_anon_inode(struct super_block *s)
1023{
1024	static const struct address_space_operations anon_aops = {
1025		.set_page_dirty = anon_set_page_dirty,
1026	};
1027	struct inode *inode = new_inode_pseudo(s);
1028
1029	if (!inode)
1030		return ERR_PTR(-ENOMEM);
1031
1032	inode->i_ino = get_next_ino();
1033	inode->i_mapping->a_ops = &anon_aops;
1034
1035	/*
1036	 * Mark the inode dirty from the very beginning,
1037	 * that way it will never be moved to the dirty
1038	 * list because mark_inode_dirty() will think
1039	 * that it already _is_ on the dirty list.
1040	 */
1041	inode->i_state = I_DIRTY;
1042	inode->i_mode = S_IRUSR | S_IWUSR;
1043	inode->i_uid = current_fsuid();
1044	inode->i_gid = current_fsgid();
1045	inode->i_flags |= S_PRIVATE;
1046	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1047	return inode;
1048}
1049EXPORT_SYMBOL(alloc_anon_inode);