Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2// SPI init/core code
   3//
   4// Copyright (C) 2005 David Brownell
   5// Copyright (C) 2008 Secret Lab Technologies Ltd.
   6
   7#include <linux/kernel.h>
   8#include <linux/device.h>
   9#include <linux/init.h>
  10#include <linux/cache.h>
  11#include <linux/dma-mapping.h>
  12#include <linux/dmaengine.h>
  13#include <linux/mutex.h>
  14#include <linux/of_device.h>
  15#include <linux/of_irq.h>
  16#include <linux/clk/clk-conf.h>
  17#include <linux/slab.h>
  18#include <linux/mod_devicetable.h>
  19#include <linux/spi/spi.h>
  20#include <linux/spi/spi-mem.h>
  21#include <linux/of_gpio.h>
  22#include <linux/gpio/consumer.h>
  23#include <linux/pm_runtime.h>
  24#include <linux/pm_domain.h>
  25#include <linux/property.h>
  26#include <linux/export.h>
  27#include <linux/sched/rt.h>
  28#include <uapi/linux/sched/types.h>
  29#include <linux/delay.h>
  30#include <linux/kthread.h>
  31#include <linux/ioport.h>
  32#include <linux/acpi.h>
  33#include <linux/highmem.h>
  34#include <linux/idr.h>
  35#include <linux/platform_data/x86/apple.h>
  36
  37#define CREATE_TRACE_POINTS
  38#include <trace/events/spi.h>
  39EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
  40EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
  41
  42#include "internals.h"
  43
  44static DEFINE_IDR(spi_master_idr);
  45
  46static void spidev_release(struct device *dev)
  47{
  48	struct spi_device	*spi = to_spi_device(dev);
  49
  50	/* spi controllers may cleanup for released devices */
  51	if (spi->controller->cleanup)
  52		spi->controller->cleanup(spi);
  53
  54	spi_controller_put(spi->controller);
  55	kfree(spi->driver_override);
  56	kfree(spi);
  57}
  58
  59static ssize_t
  60modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  61{
  62	const struct spi_device	*spi = to_spi_device(dev);
  63	int len;
  64
  65	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
  66	if (len != -ENODEV)
  67		return len;
  68
  69	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
  70}
  71static DEVICE_ATTR_RO(modalias);
  72
  73static ssize_t driver_override_store(struct device *dev,
  74				     struct device_attribute *a,
  75				     const char *buf, size_t count)
  76{
  77	struct spi_device *spi = to_spi_device(dev);
  78	const char *end = memchr(buf, '\n', count);
  79	const size_t len = end ? end - buf : count;
  80	const char *driver_override, *old;
  81
  82	/* We need to keep extra room for a newline when displaying value */
  83	if (len >= (PAGE_SIZE - 1))
  84		return -EINVAL;
  85
  86	driver_override = kstrndup(buf, len, GFP_KERNEL);
  87	if (!driver_override)
  88		return -ENOMEM;
  89
  90	device_lock(dev);
  91	old = spi->driver_override;
  92	if (len) {
  93		spi->driver_override = driver_override;
  94	} else {
  95		/* Emptry string, disable driver override */
  96		spi->driver_override = NULL;
  97		kfree(driver_override);
  98	}
  99	device_unlock(dev);
 100	kfree(old);
 101
 102	return count;
 103}
 104
 105static ssize_t driver_override_show(struct device *dev,
 106				    struct device_attribute *a, char *buf)
 107{
 108	const struct spi_device *spi = to_spi_device(dev);
 109	ssize_t len;
 110
 111	device_lock(dev);
 112	len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
 113	device_unlock(dev);
 114	return len;
 115}
 116static DEVICE_ATTR_RW(driver_override);
 117
 118#define SPI_STATISTICS_ATTRS(field, file)				\
 119static ssize_t spi_controller_##field##_show(struct device *dev,	\
 120					     struct device_attribute *attr, \
 121					     char *buf)			\
 122{									\
 123	struct spi_controller *ctlr = container_of(dev,			\
 124					 struct spi_controller, dev);	\
 125	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
 126}									\
 127static struct device_attribute dev_attr_spi_controller_##field = {	\
 128	.attr = { .name = file, .mode = 0444 },				\
 129	.show = spi_controller_##field##_show,				\
 130};									\
 131static ssize_t spi_device_##field##_show(struct device *dev,		\
 132					 struct device_attribute *attr,	\
 133					char *buf)			\
 134{									\
 135	struct spi_device *spi = to_spi_device(dev);			\
 136	return spi_statistics_##field##_show(&spi->statistics, buf);	\
 137}									\
 138static struct device_attribute dev_attr_spi_device_##field = {		\
 139	.attr = { .name = file, .mode = 0444 },				\
 140	.show = spi_device_##field##_show,				\
 141}
 142
 143#define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
 144static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
 145					    char *buf)			\
 146{									\
 147	unsigned long flags;						\
 148	ssize_t len;							\
 149	spin_lock_irqsave(&stat->lock, flags);				\
 150	len = sprintf(buf, format_string, stat->field);			\
 151	spin_unlock_irqrestore(&stat->lock, flags);			\
 152	return len;							\
 153}									\
 154SPI_STATISTICS_ATTRS(name, file)
 155
 156#define SPI_STATISTICS_SHOW(field, format_string)			\
 157	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
 158				 field, format_string)
 159
 160SPI_STATISTICS_SHOW(messages, "%lu");
 161SPI_STATISTICS_SHOW(transfers, "%lu");
 162SPI_STATISTICS_SHOW(errors, "%lu");
 163SPI_STATISTICS_SHOW(timedout, "%lu");
 164
 165SPI_STATISTICS_SHOW(spi_sync, "%lu");
 166SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
 167SPI_STATISTICS_SHOW(spi_async, "%lu");
 168
 169SPI_STATISTICS_SHOW(bytes, "%llu");
 170SPI_STATISTICS_SHOW(bytes_rx, "%llu");
 171SPI_STATISTICS_SHOW(bytes_tx, "%llu");
 172
 173#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
 174	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
 175				 "transfer_bytes_histo_" number,	\
 176				 transfer_bytes_histo[index],  "%lu")
 177SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
 178SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
 179SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
 180SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
 181SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
 182SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
 183SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
 184SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
 185SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
 186SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
 187SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
 188SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
 189SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
 190SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
 191SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
 192SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
 193SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
 194
 195SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
 196
 197static struct attribute *spi_dev_attrs[] = {
 198	&dev_attr_modalias.attr,
 199	&dev_attr_driver_override.attr,
 200	NULL,
 201};
 202
 203static const struct attribute_group spi_dev_group = {
 204	.attrs  = spi_dev_attrs,
 205};
 206
 207static struct attribute *spi_device_statistics_attrs[] = {
 208	&dev_attr_spi_device_messages.attr,
 209	&dev_attr_spi_device_transfers.attr,
 210	&dev_attr_spi_device_errors.attr,
 211	&dev_attr_spi_device_timedout.attr,
 212	&dev_attr_spi_device_spi_sync.attr,
 213	&dev_attr_spi_device_spi_sync_immediate.attr,
 214	&dev_attr_spi_device_spi_async.attr,
 215	&dev_attr_spi_device_bytes.attr,
 216	&dev_attr_spi_device_bytes_rx.attr,
 217	&dev_attr_spi_device_bytes_tx.attr,
 218	&dev_attr_spi_device_transfer_bytes_histo0.attr,
 219	&dev_attr_spi_device_transfer_bytes_histo1.attr,
 220	&dev_attr_spi_device_transfer_bytes_histo2.attr,
 221	&dev_attr_spi_device_transfer_bytes_histo3.attr,
 222	&dev_attr_spi_device_transfer_bytes_histo4.attr,
 223	&dev_attr_spi_device_transfer_bytes_histo5.attr,
 224	&dev_attr_spi_device_transfer_bytes_histo6.attr,
 225	&dev_attr_spi_device_transfer_bytes_histo7.attr,
 226	&dev_attr_spi_device_transfer_bytes_histo8.attr,
 227	&dev_attr_spi_device_transfer_bytes_histo9.attr,
 228	&dev_attr_spi_device_transfer_bytes_histo10.attr,
 229	&dev_attr_spi_device_transfer_bytes_histo11.attr,
 230	&dev_attr_spi_device_transfer_bytes_histo12.attr,
 231	&dev_attr_spi_device_transfer_bytes_histo13.attr,
 232	&dev_attr_spi_device_transfer_bytes_histo14.attr,
 233	&dev_attr_spi_device_transfer_bytes_histo15.attr,
 234	&dev_attr_spi_device_transfer_bytes_histo16.attr,
 235	&dev_attr_spi_device_transfers_split_maxsize.attr,
 236	NULL,
 237};
 238
 239static const struct attribute_group spi_device_statistics_group = {
 240	.name  = "statistics",
 241	.attrs  = spi_device_statistics_attrs,
 242};
 243
 244static const struct attribute_group *spi_dev_groups[] = {
 245	&spi_dev_group,
 246	&spi_device_statistics_group,
 247	NULL,
 248};
 249
 250static struct attribute *spi_controller_statistics_attrs[] = {
 251	&dev_attr_spi_controller_messages.attr,
 252	&dev_attr_spi_controller_transfers.attr,
 253	&dev_attr_spi_controller_errors.attr,
 254	&dev_attr_spi_controller_timedout.attr,
 255	&dev_attr_spi_controller_spi_sync.attr,
 256	&dev_attr_spi_controller_spi_sync_immediate.attr,
 257	&dev_attr_spi_controller_spi_async.attr,
 258	&dev_attr_spi_controller_bytes.attr,
 259	&dev_attr_spi_controller_bytes_rx.attr,
 260	&dev_attr_spi_controller_bytes_tx.attr,
 261	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
 262	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
 263	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
 264	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
 265	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
 266	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
 267	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
 268	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
 269	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
 270	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
 271	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
 272	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
 273	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
 274	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
 275	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
 276	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
 277	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
 278	&dev_attr_spi_controller_transfers_split_maxsize.attr,
 279	NULL,
 280};
 281
 282static const struct attribute_group spi_controller_statistics_group = {
 283	.name  = "statistics",
 284	.attrs  = spi_controller_statistics_attrs,
 285};
 286
 287static const struct attribute_group *spi_master_groups[] = {
 288	&spi_controller_statistics_group,
 289	NULL,
 290};
 291
 292void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
 293				       struct spi_transfer *xfer,
 294				       struct spi_controller *ctlr)
 295{
 296	unsigned long flags;
 297	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
 298
 299	if (l2len < 0)
 300		l2len = 0;
 301
 302	spin_lock_irqsave(&stats->lock, flags);
 303
 304	stats->transfers++;
 305	stats->transfer_bytes_histo[l2len]++;
 306
 307	stats->bytes += xfer->len;
 308	if ((xfer->tx_buf) &&
 309	    (xfer->tx_buf != ctlr->dummy_tx))
 310		stats->bytes_tx += xfer->len;
 311	if ((xfer->rx_buf) &&
 312	    (xfer->rx_buf != ctlr->dummy_rx))
 313		stats->bytes_rx += xfer->len;
 314
 315	spin_unlock_irqrestore(&stats->lock, flags);
 316}
 317EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
 318
 319/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 320 * and the sysfs version makes coldplug work too.
 321 */
 322
 323static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
 324						const struct spi_device *sdev)
 325{
 326	while (id->name[0]) {
 327		if (!strcmp(sdev->modalias, id->name))
 328			return id;
 329		id++;
 330	}
 331	return NULL;
 332}
 333
 334const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
 335{
 336	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
 337
 338	return spi_match_id(sdrv->id_table, sdev);
 339}
 340EXPORT_SYMBOL_GPL(spi_get_device_id);
 341
 342static int spi_match_device(struct device *dev, struct device_driver *drv)
 343{
 344	const struct spi_device	*spi = to_spi_device(dev);
 345	const struct spi_driver	*sdrv = to_spi_driver(drv);
 346
 347	/* Check override first, and if set, only use the named driver */
 348	if (spi->driver_override)
 349		return strcmp(spi->driver_override, drv->name) == 0;
 350
 351	/* Attempt an OF style match */
 352	if (of_driver_match_device(dev, drv))
 353		return 1;
 354
 355	/* Then try ACPI */
 356	if (acpi_driver_match_device(dev, drv))
 357		return 1;
 358
 359	if (sdrv->id_table)
 360		return !!spi_match_id(sdrv->id_table, spi);
 361
 362	return strcmp(spi->modalias, drv->name) == 0;
 363}
 364
 365static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
 366{
 367	const struct spi_device		*spi = to_spi_device(dev);
 368	int rc;
 369
 370	rc = acpi_device_uevent_modalias(dev, env);
 371	if (rc != -ENODEV)
 372		return rc;
 373
 374	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
 375}
 376
 377struct bus_type spi_bus_type = {
 378	.name		= "spi",
 379	.dev_groups	= spi_dev_groups,
 380	.match		= spi_match_device,
 381	.uevent		= spi_uevent,
 382};
 383EXPORT_SYMBOL_GPL(spi_bus_type);
 384
 385
 386static int spi_drv_probe(struct device *dev)
 387{
 388	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 389	struct spi_device		*spi = to_spi_device(dev);
 390	int ret;
 391
 392	ret = of_clk_set_defaults(dev->of_node, false);
 393	if (ret)
 394		return ret;
 395
 396	if (dev->of_node) {
 397		spi->irq = of_irq_get(dev->of_node, 0);
 398		if (spi->irq == -EPROBE_DEFER)
 399			return -EPROBE_DEFER;
 400		if (spi->irq < 0)
 401			spi->irq = 0;
 402	}
 403
 404	ret = dev_pm_domain_attach(dev, true);
 405	if (ret)
 406		return ret;
 407
 408	ret = sdrv->probe(spi);
 409	if (ret)
 410		dev_pm_domain_detach(dev, true);
 
 
 411
 412	return ret;
 413}
 414
 415static int spi_drv_remove(struct device *dev)
 416{
 417	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 418	int ret;
 419
 420	ret = sdrv->remove(to_spi_device(dev));
 
 
 
 
 
 
 
 
 
 421	dev_pm_domain_detach(dev, true);
 422
 423	return ret;
 424}
 425
 426static void spi_drv_shutdown(struct device *dev)
 427{
 428	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 
 429
 430	sdrv->shutdown(to_spi_device(dev));
 
 
 431}
 432
 
 
 
 
 
 
 
 
 
 
 
 433/**
 434 * __spi_register_driver - register a SPI driver
 435 * @owner: owner module of the driver to register
 436 * @sdrv: the driver to register
 437 * Context: can sleep
 438 *
 439 * Return: zero on success, else a negative error code.
 440 */
 441int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
 442{
 443	sdrv->driver.owner = owner;
 444	sdrv->driver.bus = &spi_bus_type;
 445	if (sdrv->probe)
 446		sdrv->driver.probe = spi_drv_probe;
 447	if (sdrv->remove)
 448		sdrv->driver.remove = spi_drv_remove;
 449	if (sdrv->shutdown)
 450		sdrv->driver.shutdown = spi_drv_shutdown;
 451	return driver_register(&sdrv->driver);
 452}
 453EXPORT_SYMBOL_GPL(__spi_register_driver);
 454
 455/*-------------------------------------------------------------------------*/
 456
 457/* SPI devices should normally not be created by SPI device drivers; that
 458 * would make them board-specific.  Similarly with SPI controller drivers.
 459 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 460 * with other readonly (flashable) information about mainboard devices.
 461 */
 462
 463struct boardinfo {
 464	struct list_head	list;
 465	struct spi_board_info	board_info;
 466};
 467
 468static LIST_HEAD(board_list);
 469static LIST_HEAD(spi_controller_list);
 470
 471/*
 472 * Used to protect add/del opertion for board_info list and
 473 * spi_controller list, and their matching process
 474 * also used to protect object of type struct idr
 475 */
 476static DEFINE_MUTEX(board_lock);
 477
 478/**
 479 * spi_alloc_device - Allocate a new SPI device
 480 * @ctlr: Controller to which device is connected
 481 * Context: can sleep
 482 *
 483 * Allows a driver to allocate and initialize a spi_device without
 484 * registering it immediately.  This allows a driver to directly
 485 * fill the spi_device with device parameters before calling
 486 * spi_add_device() on it.
 487 *
 488 * Caller is responsible to call spi_add_device() on the returned
 489 * spi_device structure to add it to the SPI controller.  If the caller
 490 * needs to discard the spi_device without adding it, then it should
 491 * call spi_dev_put() on it.
 492 *
 493 * Return: a pointer to the new device, or NULL.
 494 */
 495struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
 496{
 497	struct spi_device	*spi;
 498
 499	if (!spi_controller_get(ctlr))
 500		return NULL;
 501
 502	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
 503	if (!spi) {
 504		spi_controller_put(ctlr);
 505		return NULL;
 506	}
 507
 508	spi->master = spi->controller = ctlr;
 509	spi->dev.parent = &ctlr->dev;
 510	spi->dev.bus = &spi_bus_type;
 511	spi->dev.release = spidev_release;
 512	spi->cs_gpio = -ENOENT;
 
 513
 514	spin_lock_init(&spi->statistics.lock);
 515
 516	device_initialize(&spi->dev);
 517	return spi;
 518}
 519EXPORT_SYMBOL_GPL(spi_alloc_device);
 520
 521static void spi_dev_set_name(struct spi_device *spi)
 522{
 523	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
 524
 525	if (adev) {
 526		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
 527		return;
 528	}
 529
 530	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
 531		     spi->chip_select);
 532}
 533
 534static int spi_dev_check(struct device *dev, void *data)
 535{
 536	struct spi_device *spi = to_spi_device(dev);
 537	struct spi_device *new_spi = data;
 538
 539	if (spi->controller == new_spi->controller &&
 540	    spi->chip_select == new_spi->chip_select)
 541		return -EBUSY;
 542	return 0;
 543}
 544
 545/**
 546 * spi_add_device - Add spi_device allocated with spi_alloc_device
 547 * @spi: spi_device to register
 548 *
 549 * Companion function to spi_alloc_device.  Devices allocated with
 550 * spi_alloc_device can be added onto the spi bus with this function.
 551 *
 552 * Return: 0 on success; negative errno on failure
 553 */
 554int spi_add_device(struct spi_device *spi)
 555{
 556	static DEFINE_MUTEX(spi_add_lock);
 557	struct spi_controller *ctlr = spi->controller;
 558	struct device *dev = ctlr->dev.parent;
 559	int status;
 560
 561	/* Chipselects are numbered 0..max; validate. */
 562	if (spi->chip_select >= ctlr->num_chipselect) {
 563		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
 564			ctlr->num_chipselect);
 565		return -EINVAL;
 566	}
 567
 568	/* Set the bus ID string */
 569	spi_dev_set_name(spi);
 570
 571	/* We need to make sure there's no other device with this
 572	 * chipselect **BEFORE** we call setup(), else we'll trash
 573	 * its configuration.  Lock against concurrent add() calls.
 574	 */
 575	mutex_lock(&spi_add_lock);
 576
 577	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
 578	if (status) {
 579		dev_err(dev, "chipselect %d already in use\n",
 580				spi->chip_select);
 581		goto done;
 
 
 
 
 
 
 582	}
 583
 584	/* Descriptors take precedence */
 585	if (ctlr->cs_gpiods)
 586		spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
 587	else if (ctlr->cs_gpios)
 588		spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
 589
 590	/* Drivers may modify this initial i/o setup, but will
 591	 * normally rely on the device being setup.  Devices
 592	 * using SPI_CS_HIGH can't coexist well otherwise...
 593	 */
 594	status = spi_setup(spi);
 595	if (status < 0) {
 596		dev_err(dev, "can't setup %s, status %d\n",
 597				dev_name(&spi->dev), status);
 598		goto done;
 599	}
 600
 601	/* Device may be bound to an active driver when this returns */
 602	status = device_add(&spi->dev);
 603	if (status < 0)
 604		dev_err(dev, "can't add %s, status %d\n",
 605				dev_name(&spi->dev), status);
 606	else
 
 607		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
 
 608
 609done:
 610	mutex_unlock(&spi_add_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 611	return status;
 612}
 613EXPORT_SYMBOL_GPL(spi_add_device);
 614
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 615/**
 616 * spi_new_device - instantiate one new SPI device
 617 * @ctlr: Controller to which device is connected
 618 * @chip: Describes the SPI device
 619 * Context: can sleep
 620 *
 621 * On typical mainboards, this is purely internal; and it's not needed
 622 * after board init creates the hard-wired devices.  Some development
 623 * platforms may not be able to use spi_register_board_info though, and
 624 * this is exported so that for example a USB or parport based adapter
 625 * driver could add devices (which it would learn about out-of-band).
 626 *
 627 * Return: the new device, or NULL.
 628 */
 629struct spi_device *spi_new_device(struct spi_controller *ctlr,
 630				  struct spi_board_info *chip)
 631{
 632	struct spi_device	*proxy;
 633	int			status;
 634
 635	/* NOTE:  caller did any chip->bus_num checks necessary.
 636	 *
 637	 * Also, unless we change the return value convention to use
 638	 * error-or-pointer (not NULL-or-pointer), troubleshootability
 639	 * suggests syslogged diagnostics are best here (ugh).
 640	 */
 641
 642	proxy = spi_alloc_device(ctlr);
 643	if (!proxy)
 644		return NULL;
 645
 646	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
 647
 648	proxy->chip_select = chip->chip_select;
 649	proxy->max_speed_hz = chip->max_speed_hz;
 650	proxy->mode = chip->mode;
 651	proxy->irq = chip->irq;
 652	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
 653	proxy->dev.platform_data = (void *) chip->platform_data;
 654	proxy->controller_data = chip->controller_data;
 655	proxy->controller_state = NULL;
 656
 657	if (chip->properties) {
 658		status = device_add_properties(&proxy->dev, chip->properties);
 659		if (status) {
 660			dev_err(&ctlr->dev,
 661				"failed to add properties to '%s': %d\n",
 662				chip->modalias, status);
 663			goto err_dev_put;
 664		}
 665	}
 666
 667	status = spi_add_device(proxy);
 668	if (status < 0)
 669		goto err_remove_props;
 670
 671	return proxy;
 672
 673err_remove_props:
 674	if (chip->properties)
 675		device_remove_properties(&proxy->dev);
 676err_dev_put:
 
 677	spi_dev_put(proxy);
 678	return NULL;
 679}
 680EXPORT_SYMBOL_GPL(spi_new_device);
 681
 682/**
 683 * spi_unregister_device - unregister a single SPI device
 684 * @spi: spi_device to unregister
 685 *
 686 * Start making the passed SPI device vanish. Normally this would be handled
 687 * by spi_unregister_controller().
 688 */
 689void spi_unregister_device(struct spi_device *spi)
 690{
 691	if (!spi)
 692		return;
 693
 694	if (spi->dev.of_node) {
 695		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
 696		of_node_put(spi->dev.of_node);
 697	}
 698	if (ACPI_COMPANION(&spi->dev))
 699		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
 700	device_unregister(&spi->dev);
 
 
 
 701}
 702EXPORT_SYMBOL_GPL(spi_unregister_device);
 703
 704static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
 705					      struct spi_board_info *bi)
 706{
 707	struct spi_device *dev;
 708
 709	if (ctlr->bus_num != bi->bus_num)
 710		return;
 711
 712	dev = spi_new_device(ctlr, bi);
 713	if (!dev)
 714		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
 715			bi->modalias);
 716}
 717
 718/**
 719 * spi_register_board_info - register SPI devices for a given board
 720 * @info: array of chip descriptors
 721 * @n: how many descriptors are provided
 722 * Context: can sleep
 723 *
 724 * Board-specific early init code calls this (probably during arch_initcall)
 725 * with segments of the SPI device table.  Any device nodes are created later,
 726 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 727 * this table of devices forever, so that reloading a controller driver will
 728 * not make Linux forget about these hard-wired devices.
 729 *
 730 * Other code can also call this, e.g. a particular add-on board might provide
 731 * SPI devices through its expansion connector, so code initializing that board
 732 * would naturally declare its SPI devices.
 733 *
 734 * The board info passed can safely be __initdata ... but be careful of
 735 * any embedded pointers (platform_data, etc), they're copied as-is.
 736 * Device properties are deep-copied though.
 737 *
 738 * Return: zero on success, else a negative error code.
 739 */
 740int spi_register_board_info(struct spi_board_info const *info, unsigned n)
 741{
 742	struct boardinfo *bi;
 743	int i;
 744
 745	if (!n)
 746		return 0;
 747
 748	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
 749	if (!bi)
 750		return -ENOMEM;
 751
 752	for (i = 0; i < n; i++, bi++, info++) {
 753		struct spi_controller *ctlr;
 754
 755		memcpy(&bi->board_info, info, sizeof(*info));
 756		if (info->properties) {
 757			bi->board_info.properties =
 758					property_entries_dup(info->properties);
 759			if (IS_ERR(bi->board_info.properties))
 760				return PTR_ERR(bi->board_info.properties);
 761		}
 762
 763		mutex_lock(&board_lock);
 764		list_add_tail(&bi->list, &board_list);
 765		list_for_each_entry(ctlr, &spi_controller_list, list)
 766			spi_match_controller_to_boardinfo(ctlr,
 767							  &bi->board_info);
 768		mutex_unlock(&board_lock);
 769	}
 770
 771	return 0;
 772}
 773
 774/*-------------------------------------------------------------------------*/
 775
 776static void spi_set_cs(struct spi_device *spi, bool enable)
 777{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 778	if (spi->mode & SPI_CS_HIGH)
 779		enable = !enable;
 780
 781	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
 782		/*
 783		 * Honour the SPI_NO_CS flag and invert the enable line, as
 784		 * active low is default for SPI. Execution paths that handle
 785		 * polarity inversion in gpiolib (such as device tree) will
 786		 * enforce active high using the SPI_CS_HIGH resulting in a
 787		 * double inversion through the code above.
 788		 */
 789		if (!(spi->mode & SPI_NO_CS)) {
 790			if (spi->cs_gpiod)
 791				gpiod_set_value_cansleep(spi->cs_gpiod,
 792							 !enable);
 793			else
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 794				gpio_set_value_cansleep(spi->cs_gpio, !enable);
 
 795		}
 796		/* Some SPI masters need both GPIO CS & slave_select */
 797		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
 798		    spi->controller->set_cs)
 799			spi->controller->set_cs(spi, !enable);
 800	} else if (spi->controller->set_cs) {
 801		spi->controller->set_cs(spi, !enable);
 802	}
 
 
 
 
 
 
 803}
 804
 805#ifdef CONFIG_HAS_DMA
 806int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
 807		struct sg_table *sgt, void *buf, size_t len,
 808		enum dma_data_direction dir)
 809{
 810	const bool vmalloced_buf = is_vmalloc_addr(buf);
 811	unsigned int max_seg_size = dma_get_max_seg_size(dev);
 812#ifdef CONFIG_HIGHMEM
 813	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
 814				(unsigned long)buf < (PKMAP_BASE +
 815					(LAST_PKMAP * PAGE_SIZE)));
 816#else
 817	const bool kmap_buf = false;
 818#endif
 819	int desc_len;
 820	int sgs;
 821	struct page *vm_page;
 822	struct scatterlist *sg;
 823	void *sg_buf;
 824	size_t min;
 825	int i, ret;
 826
 827	if (vmalloced_buf || kmap_buf) {
 828		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
 829		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
 830	} else if (virt_addr_valid(buf)) {
 831		desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
 832		sgs = DIV_ROUND_UP(len, desc_len);
 833	} else {
 834		return -EINVAL;
 835	}
 836
 837	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
 838	if (ret != 0)
 839		return ret;
 840
 841	sg = &sgt->sgl[0];
 842	for (i = 0; i < sgs; i++) {
 843
 844		if (vmalloced_buf || kmap_buf) {
 845			/*
 846			 * Next scatterlist entry size is the minimum between
 847			 * the desc_len and the remaining buffer length that
 848			 * fits in a page.
 849			 */
 850			min = min_t(size_t, desc_len,
 851				    min_t(size_t, len,
 852					  PAGE_SIZE - offset_in_page(buf)));
 853			if (vmalloced_buf)
 854				vm_page = vmalloc_to_page(buf);
 855			else
 856				vm_page = kmap_to_page(buf);
 857			if (!vm_page) {
 858				sg_free_table(sgt);
 859				return -ENOMEM;
 860			}
 861			sg_set_page(sg, vm_page,
 862				    min, offset_in_page(buf));
 863		} else {
 864			min = min_t(size_t, len, desc_len);
 865			sg_buf = buf;
 866			sg_set_buf(sg, sg_buf, min);
 867		}
 868
 869		buf += min;
 870		len -= min;
 871		sg = sg_next(sg);
 872	}
 873
 874	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
 875	if (!ret)
 876		ret = -ENOMEM;
 877	if (ret < 0) {
 878		sg_free_table(sgt);
 879		return ret;
 880	}
 881
 882	sgt->nents = ret;
 883
 884	return 0;
 885}
 886
 887void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
 888		   struct sg_table *sgt, enum dma_data_direction dir)
 889{
 890	if (sgt->orig_nents) {
 891		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
 892		sg_free_table(sgt);
 893	}
 894}
 895
 896static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
 897{
 898	struct device *tx_dev, *rx_dev;
 899	struct spi_transfer *xfer;
 900	int ret;
 901
 902	if (!ctlr->can_dma)
 903		return 0;
 904
 905	if (ctlr->dma_tx)
 906		tx_dev = ctlr->dma_tx->device->dev;
 
 
 907	else
 908		tx_dev = ctlr->dev.parent;
 909
 910	if (ctlr->dma_rx)
 911		rx_dev = ctlr->dma_rx->device->dev;
 
 
 912	else
 913		rx_dev = ctlr->dev.parent;
 914
 915	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 916		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
 917			continue;
 918
 919		if (xfer->tx_buf != NULL) {
 920			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
 921					  (void *)xfer->tx_buf, xfer->len,
 922					  DMA_TO_DEVICE);
 923			if (ret != 0)
 924				return ret;
 925		}
 926
 927		if (xfer->rx_buf != NULL) {
 928			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
 929					  xfer->rx_buf, xfer->len,
 930					  DMA_FROM_DEVICE);
 931			if (ret != 0) {
 932				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
 933					      DMA_TO_DEVICE);
 934				return ret;
 935			}
 936		}
 937	}
 938
 939	ctlr->cur_msg_mapped = true;
 940
 941	return 0;
 942}
 943
 944static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
 945{
 946	struct spi_transfer *xfer;
 947	struct device *tx_dev, *rx_dev;
 948
 949	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
 950		return 0;
 951
 952	if (ctlr->dma_tx)
 953		tx_dev = ctlr->dma_tx->device->dev;
 954	else
 955		tx_dev = ctlr->dev.parent;
 956
 957	if (ctlr->dma_rx)
 958		rx_dev = ctlr->dma_rx->device->dev;
 959	else
 960		rx_dev = ctlr->dev.parent;
 961
 962	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 963		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
 964			continue;
 965
 966		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
 967		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
 968	}
 969
 
 
 970	return 0;
 971}
 972#else /* !CONFIG_HAS_DMA */
 973static inline int __spi_map_msg(struct spi_controller *ctlr,
 974				struct spi_message *msg)
 975{
 976	return 0;
 977}
 978
 979static inline int __spi_unmap_msg(struct spi_controller *ctlr,
 980				  struct spi_message *msg)
 981{
 982	return 0;
 983}
 984#endif /* !CONFIG_HAS_DMA */
 985
 986static inline int spi_unmap_msg(struct spi_controller *ctlr,
 987				struct spi_message *msg)
 988{
 989	struct spi_transfer *xfer;
 990
 991	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 992		/*
 993		 * Restore the original value of tx_buf or rx_buf if they are
 994		 * NULL.
 995		 */
 996		if (xfer->tx_buf == ctlr->dummy_tx)
 997			xfer->tx_buf = NULL;
 998		if (xfer->rx_buf == ctlr->dummy_rx)
 999			xfer->rx_buf = NULL;
1000	}
1001
1002	return __spi_unmap_msg(ctlr, msg);
1003}
1004
1005static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1006{
1007	struct spi_transfer *xfer;
1008	void *tmp;
1009	unsigned int max_tx, max_rx;
1010
1011	if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
 
1012		max_tx = 0;
1013		max_rx = 0;
1014
1015		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1016			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1017			    !xfer->tx_buf)
1018				max_tx = max(xfer->len, max_tx);
1019			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1020			    !xfer->rx_buf)
1021				max_rx = max(xfer->len, max_rx);
1022		}
1023
1024		if (max_tx) {
1025			tmp = krealloc(ctlr->dummy_tx, max_tx,
1026				       GFP_KERNEL | GFP_DMA);
1027			if (!tmp)
1028				return -ENOMEM;
1029			ctlr->dummy_tx = tmp;
1030			memset(tmp, 0, max_tx);
1031		}
1032
1033		if (max_rx) {
1034			tmp = krealloc(ctlr->dummy_rx, max_rx,
1035				       GFP_KERNEL | GFP_DMA);
1036			if (!tmp)
1037				return -ENOMEM;
1038			ctlr->dummy_rx = tmp;
1039		}
1040
1041		if (max_tx || max_rx) {
1042			list_for_each_entry(xfer, &msg->transfers,
1043					    transfer_list) {
1044				if (!xfer->len)
1045					continue;
1046				if (!xfer->tx_buf)
1047					xfer->tx_buf = ctlr->dummy_tx;
1048				if (!xfer->rx_buf)
1049					xfer->rx_buf = ctlr->dummy_rx;
1050			}
1051		}
1052	}
1053
1054	return __spi_map_msg(ctlr, msg);
1055}
1056
1057static int spi_transfer_wait(struct spi_controller *ctlr,
1058			     struct spi_message *msg,
1059			     struct spi_transfer *xfer)
1060{
1061	struct spi_statistics *statm = &ctlr->statistics;
1062	struct spi_statistics *stats = &msg->spi->statistics;
1063	unsigned long long ms = 1;
 
1064
1065	if (spi_controller_is_slave(ctlr)) {
1066		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1067			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1068			return -EINTR;
1069		}
1070	} else {
1071		ms = 8LL * 1000LL * xfer->len;
1072		do_div(ms, xfer->speed_hz);
1073		ms += ms + 200; /* some tolerance */
 
 
 
 
 
 
 
 
1074
 
 
 
 
 
1075		if (ms > UINT_MAX)
1076			ms = UINT_MAX;
1077
1078		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1079						 msecs_to_jiffies(ms));
1080
1081		if (ms == 0) {
1082			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1083			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1084			dev_err(&msg->spi->dev,
1085				"SPI transfer timed out\n");
1086			return -ETIMEDOUT;
1087		}
1088	}
1089
1090	return 0;
1091}
1092
1093static void _spi_transfer_delay_ns(u32 ns)
1094{
1095	if (!ns)
1096		return;
1097	if (ns <= 1000) {
1098		ndelay(ns);
1099	} else {
1100		u32 us = DIV_ROUND_UP(ns, 1000);
1101
1102		if (us <= 10)
1103			udelay(us);
1104		else
1105			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1106	}
1107}
1108
1109static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1110					  struct spi_transfer *xfer)
1111{
1112	u32 delay = xfer->cs_change_delay;
1113	u32 unit = xfer->cs_change_delay_unit;
1114	u32 hz;
1115
1116	/* return early on "fast" mode - for everything but USECS */
1117	if (!delay && unit != SPI_DELAY_UNIT_USECS)
1118		return;
1119
1120	switch (unit) {
1121	case SPI_DELAY_UNIT_USECS:
1122		/* for compatibility use default of 10us */
1123		if (!delay)
1124			delay = 10000;
1125		else
1126			delay *= 1000;
1127		break;
1128	case SPI_DELAY_UNIT_NSECS: /* nothing to do here */
 
1129		break;
1130	case SPI_DELAY_UNIT_SCK:
1131		/* if there is no effective speed know, then approximate
1132		 * by underestimating with half the requested hz
 
 
 
 
1133		 */
1134		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1135		delay *= DIV_ROUND_UP(1000000000, hz);
 
 
 
 
1136		break;
1137	default:
1138		dev_err_once(&msg->spi->dev,
1139			     "Use of unsupported delay unit %i, using default of 10us\n",
1140			     xfer->cs_change_delay_unit);
1141		delay = 10000;
1142	}
1143	/* now sleep for the requested amount of time */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1144	_spi_transfer_delay_ns(delay);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1145}
1146
1147/*
1148 * spi_transfer_one_message - Default implementation of transfer_one_message()
1149 *
1150 * This is a standard implementation of transfer_one_message() for
1151 * drivers which implement a transfer_one() operation.  It provides
1152 * standard handling of delays and chip select management.
1153 */
1154static int spi_transfer_one_message(struct spi_controller *ctlr,
1155				    struct spi_message *msg)
1156{
1157	struct spi_transfer *xfer;
1158	bool keep_cs = false;
1159	int ret = 0;
1160	struct spi_statistics *statm = &ctlr->statistics;
1161	struct spi_statistics *stats = &msg->spi->statistics;
1162
1163	spi_set_cs(msg->spi, true);
1164
1165	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1166	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1167
1168	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1169		trace_spi_transfer_start(msg, xfer);
1170
1171		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1172		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1173
1174		if (xfer->tx_buf || xfer->rx_buf) {
 
 
 
 
 
1175			reinit_completion(&ctlr->xfer_completion);
1176
 
1177			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1178			if (ret < 0) {
 
 
 
 
 
 
 
 
1179				SPI_STATISTICS_INCREMENT_FIELD(statm,
1180							       errors);
1181				SPI_STATISTICS_INCREMENT_FIELD(stats,
1182							       errors);
1183				dev_err(&msg->spi->dev,
1184					"SPI transfer failed: %d\n", ret);
1185				goto out;
1186			}
1187
1188			if (ret > 0) {
1189				ret = spi_transfer_wait(ctlr, msg, xfer);
1190				if (ret < 0)
1191					msg->status = ret;
1192			}
1193		} else {
1194			if (xfer->len)
1195				dev_err(&msg->spi->dev,
1196					"Bufferless transfer has length %u\n",
1197					xfer->len);
1198		}
1199
 
 
 
 
 
1200		trace_spi_transfer_stop(msg, xfer);
1201
1202		if (msg->status != -EINPROGRESS)
1203			goto out;
1204
1205		if (xfer->delay_usecs)
1206			_spi_transfer_delay_ns(xfer->delay_usecs * 1000);
1207
1208		if (xfer->cs_change) {
1209			if (list_is_last(&xfer->transfer_list,
1210					 &msg->transfers)) {
1211				keep_cs = true;
1212			} else {
1213				spi_set_cs(msg->spi, false);
1214				_spi_transfer_cs_change_delay(msg, xfer);
1215				spi_set_cs(msg->spi, true);
1216			}
1217		}
1218
1219		msg->actual_length += xfer->len;
1220	}
1221
1222out:
1223	if (ret != 0 || !keep_cs)
1224		spi_set_cs(msg->spi, false);
1225
1226	if (msg->status == -EINPROGRESS)
1227		msg->status = ret;
1228
1229	if (msg->status && ctlr->handle_err)
1230		ctlr->handle_err(ctlr, msg);
1231
1232	spi_res_release(ctlr, msg);
1233
1234	spi_finalize_current_message(ctlr);
1235
1236	return ret;
1237}
1238
1239/**
1240 * spi_finalize_current_transfer - report completion of a transfer
1241 * @ctlr: the controller reporting completion
1242 *
1243 * Called by SPI drivers using the core transfer_one_message()
1244 * implementation to notify it that the current interrupt driven
1245 * transfer has finished and the next one may be scheduled.
1246 */
1247void spi_finalize_current_transfer(struct spi_controller *ctlr)
1248{
1249	complete(&ctlr->xfer_completion);
1250}
1251EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1252
 
 
 
 
 
 
 
 
1253/**
1254 * __spi_pump_messages - function which processes spi message queue
1255 * @ctlr: controller to process queue for
1256 * @in_kthread: true if we are in the context of the message pump thread
1257 *
1258 * This function checks if there is any spi message in the queue that
1259 * needs processing and if so call out to the driver to initialize hardware
1260 * and transfer each message.
1261 *
1262 * Note that it is called both from the kthread itself and also from
1263 * inside spi_sync(); the queue extraction handling at the top of the
1264 * function should deal with this safely.
1265 */
1266static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1267{
 
1268	struct spi_message *msg;
1269	bool was_busy = false;
1270	unsigned long flags;
1271	int ret;
1272
1273	/* Lock queue */
1274	spin_lock_irqsave(&ctlr->queue_lock, flags);
1275
1276	/* Make sure we are not already running a message */
1277	if (ctlr->cur_msg) {
1278		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1279		return;
1280	}
1281
1282	/* If another context is idling the device then defer */
1283	if (ctlr->idling) {
1284		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1285		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1286		return;
1287	}
1288
1289	/* Check if the queue is idle */
1290	if (list_empty(&ctlr->queue) || !ctlr->running) {
1291		if (!ctlr->busy) {
1292			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1293			return;
1294		}
1295
1296		/* Only do teardown in the thread */
1297		if (!in_kthread) {
1298			kthread_queue_work(&ctlr->kworker,
1299					   &ctlr->pump_messages);
 
 
 
 
 
 
 
1300			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1301			return;
1302		}
1303
1304		ctlr->busy = false;
1305		ctlr->idling = true;
1306		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1307
1308		kfree(ctlr->dummy_rx);
1309		ctlr->dummy_rx = NULL;
1310		kfree(ctlr->dummy_tx);
1311		ctlr->dummy_tx = NULL;
1312		if (ctlr->unprepare_transfer_hardware &&
1313		    ctlr->unprepare_transfer_hardware(ctlr))
1314			dev_err(&ctlr->dev,
1315				"failed to unprepare transfer hardware\n");
1316		if (ctlr->auto_runtime_pm) {
1317			pm_runtime_mark_last_busy(ctlr->dev.parent);
1318			pm_runtime_put_autosuspend(ctlr->dev.parent);
1319		}
1320		trace_spi_controller_idle(ctlr);
1321
1322		spin_lock_irqsave(&ctlr->queue_lock, flags);
1323		ctlr->idling = false;
1324		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1325		return;
1326	}
1327
1328	/* Extract head of queue */
1329	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1330	ctlr->cur_msg = msg;
1331
1332	list_del_init(&msg->queue);
1333	if (ctlr->busy)
1334		was_busy = true;
1335	else
1336		ctlr->busy = true;
1337	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1338
1339	mutex_lock(&ctlr->io_mutex);
1340
1341	if (!was_busy && ctlr->auto_runtime_pm) {
1342		ret = pm_runtime_get_sync(ctlr->dev.parent);
1343		if (ret < 0) {
1344			pm_runtime_put_noidle(ctlr->dev.parent);
1345			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1346				ret);
1347			mutex_unlock(&ctlr->io_mutex);
1348			return;
1349		}
1350	}
1351
1352	if (!was_busy)
1353		trace_spi_controller_busy(ctlr);
1354
1355	if (!was_busy && ctlr->prepare_transfer_hardware) {
1356		ret = ctlr->prepare_transfer_hardware(ctlr);
1357		if (ret) {
1358			dev_err(&ctlr->dev,
1359				"failed to prepare transfer hardware: %d\n",
1360				ret);
1361
1362			if (ctlr->auto_runtime_pm)
1363				pm_runtime_put(ctlr->dev.parent);
1364
1365			msg->status = ret;
1366			spi_finalize_current_message(ctlr);
1367
1368			mutex_unlock(&ctlr->io_mutex);
1369			return;
1370		}
1371	}
1372
1373	trace_spi_message_start(msg);
1374
1375	if (ctlr->prepare_message) {
1376		ret = ctlr->prepare_message(ctlr, msg);
1377		if (ret) {
1378			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1379				ret);
1380			msg->status = ret;
1381			spi_finalize_current_message(ctlr);
1382			goto out;
1383		}
1384		ctlr->cur_msg_prepared = true;
1385	}
1386
1387	ret = spi_map_msg(ctlr, msg);
1388	if (ret) {
1389		msg->status = ret;
1390		spi_finalize_current_message(ctlr);
1391		goto out;
1392	}
1393
 
 
 
 
 
 
 
1394	ret = ctlr->transfer_one_message(ctlr, msg);
1395	if (ret) {
1396		dev_err(&ctlr->dev,
1397			"failed to transfer one message from queue\n");
1398		goto out;
1399	}
1400
1401out:
1402	mutex_unlock(&ctlr->io_mutex);
1403
1404	/* Prod the scheduler in case transfer_one() was busy waiting */
1405	if (!ret)
1406		cond_resched();
1407}
1408
1409/**
1410 * spi_pump_messages - kthread work function which processes spi message queue
1411 * @work: pointer to kthread work struct contained in the controller struct
1412 */
1413static void spi_pump_messages(struct kthread_work *work)
1414{
1415	struct spi_controller *ctlr =
1416		container_of(work, struct spi_controller, pump_messages);
1417
1418	__spi_pump_messages(ctlr, true);
1419}
1420
1421/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1422 * spi_set_thread_rt - set the controller to pump at realtime priority
1423 * @ctlr: controller to boost priority of
1424 *
1425 * This can be called because the controller requested realtime priority
1426 * (by setting the ->rt value before calling spi_register_controller()) or
1427 * because a device on the bus said that its transfers needed realtime
1428 * priority.
1429 *
1430 * NOTE: at the moment if any device on a bus says it needs realtime then
1431 * the thread will be at realtime priority for all transfers on that
1432 * controller.  If this eventually becomes a problem we may see if we can
1433 * find a way to boost the priority only temporarily during relevant
1434 * transfers.
1435 */
1436static void spi_set_thread_rt(struct spi_controller *ctlr)
1437{
1438	struct sched_param param = { .sched_priority = MAX_RT_PRIO / 2 };
1439
1440	dev_info(&ctlr->dev,
1441		"will run message pump with realtime priority\n");
1442	sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
1443}
1444
1445static int spi_init_queue(struct spi_controller *ctlr)
1446{
1447	ctlr->running = false;
1448	ctlr->busy = false;
1449
1450	kthread_init_worker(&ctlr->kworker);
1451	ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1452					 "%s", dev_name(&ctlr->dev));
1453	if (IS_ERR(ctlr->kworker_task)) {
1454		dev_err(&ctlr->dev, "failed to create message pump task\n");
1455		return PTR_ERR(ctlr->kworker_task);
1456	}
 
1457	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1458
1459	/*
1460	 * Controller config will indicate if this controller should run the
1461	 * message pump with high (realtime) priority to reduce the transfer
1462	 * latency on the bus by minimising the delay between a transfer
1463	 * request and the scheduling of the message pump thread. Without this
1464	 * setting the message pump thread will remain at default priority.
1465	 */
1466	if (ctlr->rt)
1467		spi_set_thread_rt(ctlr);
1468
1469	return 0;
1470}
1471
1472/**
1473 * spi_get_next_queued_message() - called by driver to check for queued
1474 * messages
1475 * @ctlr: the controller to check for queued messages
1476 *
1477 * If there are more messages in the queue, the next message is returned from
1478 * this call.
1479 *
1480 * Return: the next message in the queue, else NULL if the queue is empty.
1481 */
1482struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1483{
1484	struct spi_message *next;
1485	unsigned long flags;
1486
1487	/* get a pointer to the next message, if any */
1488	spin_lock_irqsave(&ctlr->queue_lock, flags);
1489	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1490					queue);
1491	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1492
1493	return next;
1494}
1495EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1496
1497/**
1498 * spi_finalize_current_message() - the current message is complete
1499 * @ctlr: the controller to return the message to
1500 *
1501 * Called by the driver to notify the core that the message in the front of the
1502 * queue is complete and can be removed from the queue.
1503 */
1504void spi_finalize_current_message(struct spi_controller *ctlr)
1505{
 
1506	struct spi_message *mesg;
1507	unsigned long flags;
1508	int ret;
1509
1510	spin_lock_irqsave(&ctlr->queue_lock, flags);
1511	mesg = ctlr->cur_msg;
1512	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1513
 
 
 
 
 
 
 
 
 
 
 
1514	spi_unmap_msg(ctlr, mesg);
1515
 
 
 
 
 
 
 
1516	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1517		ret = ctlr->unprepare_message(ctlr, mesg);
1518		if (ret) {
1519			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1520				ret);
1521		}
1522	}
1523
1524	spin_lock_irqsave(&ctlr->queue_lock, flags);
1525	ctlr->cur_msg = NULL;
1526	ctlr->cur_msg_prepared = false;
1527	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
 
1528	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1529
1530	trace_spi_message_done(mesg);
1531
1532	mesg->state = NULL;
1533	if (mesg->complete)
1534		mesg->complete(mesg->context);
1535}
1536EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1537
1538static int spi_start_queue(struct spi_controller *ctlr)
1539{
1540	unsigned long flags;
1541
1542	spin_lock_irqsave(&ctlr->queue_lock, flags);
1543
1544	if (ctlr->running || ctlr->busy) {
1545		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1546		return -EBUSY;
1547	}
1548
1549	ctlr->running = true;
1550	ctlr->cur_msg = NULL;
1551	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1552
1553	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1554
1555	return 0;
1556}
1557
1558static int spi_stop_queue(struct spi_controller *ctlr)
1559{
1560	unsigned long flags;
1561	unsigned limit = 500;
1562	int ret = 0;
1563
1564	spin_lock_irqsave(&ctlr->queue_lock, flags);
1565
1566	/*
1567	 * This is a bit lame, but is optimized for the common execution path.
1568	 * A wait_queue on the ctlr->busy could be used, but then the common
1569	 * execution path (pump_messages) would be required to call wake_up or
1570	 * friends on every SPI message. Do this instead.
1571	 */
1572	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1573		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1574		usleep_range(10000, 11000);
1575		spin_lock_irqsave(&ctlr->queue_lock, flags);
1576	}
1577
1578	if (!list_empty(&ctlr->queue) || ctlr->busy)
1579		ret = -EBUSY;
1580	else
1581		ctlr->running = false;
1582
1583	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1584
1585	if (ret) {
1586		dev_warn(&ctlr->dev, "could not stop message queue\n");
1587		return ret;
1588	}
1589	return ret;
1590}
1591
1592static int spi_destroy_queue(struct spi_controller *ctlr)
1593{
1594	int ret;
1595
1596	ret = spi_stop_queue(ctlr);
1597
1598	/*
1599	 * kthread_flush_worker will block until all work is done.
1600	 * If the reason that stop_queue timed out is that the work will never
1601	 * finish, then it does no good to call flush/stop thread, so
1602	 * return anyway.
1603	 */
1604	if (ret) {
1605		dev_err(&ctlr->dev, "problem destroying queue\n");
1606		return ret;
1607	}
1608
1609	kthread_flush_worker(&ctlr->kworker);
1610	kthread_stop(ctlr->kworker_task);
1611
1612	return 0;
1613}
1614
1615static int __spi_queued_transfer(struct spi_device *spi,
1616				 struct spi_message *msg,
1617				 bool need_pump)
1618{
1619	struct spi_controller *ctlr = spi->controller;
1620	unsigned long flags;
1621
1622	spin_lock_irqsave(&ctlr->queue_lock, flags);
1623
1624	if (!ctlr->running) {
1625		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1626		return -ESHUTDOWN;
1627	}
1628	msg->actual_length = 0;
1629	msg->status = -EINPROGRESS;
1630
1631	list_add_tail(&msg->queue, &ctlr->queue);
1632	if (!ctlr->busy && need_pump)
1633		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1634
1635	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1636	return 0;
1637}
1638
1639/**
1640 * spi_queued_transfer - transfer function for queued transfers
1641 * @spi: spi device which is requesting transfer
1642 * @msg: spi message which is to handled is queued to driver queue
1643 *
1644 * Return: zero on success, else a negative error code.
1645 */
1646static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1647{
1648	return __spi_queued_transfer(spi, msg, true);
1649}
1650
1651static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1652{
1653	int ret;
1654
1655	ctlr->transfer = spi_queued_transfer;
1656	if (!ctlr->transfer_one_message)
1657		ctlr->transfer_one_message = spi_transfer_one_message;
1658
1659	/* Initialize and start queue */
1660	ret = spi_init_queue(ctlr);
1661	if (ret) {
1662		dev_err(&ctlr->dev, "problem initializing queue\n");
1663		goto err_init_queue;
1664	}
1665	ctlr->queued = true;
1666	ret = spi_start_queue(ctlr);
1667	if (ret) {
1668		dev_err(&ctlr->dev, "problem starting queue\n");
1669		goto err_start_queue;
1670	}
1671
1672	return 0;
1673
1674err_start_queue:
1675	spi_destroy_queue(ctlr);
1676err_init_queue:
1677	return ret;
1678}
1679
1680/**
1681 * spi_flush_queue - Send all pending messages in the queue from the callers'
1682 *		     context
1683 * @ctlr: controller to process queue for
1684 *
1685 * This should be used when one wants to ensure all pending messages have been
1686 * sent before doing something. Is used by the spi-mem code to make sure SPI
1687 * memory operations do not preempt regular SPI transfers that have been queued
1688 * before the spi-mem operation.
1689 */
1690void spi_flush_queue(struct spi_controller *ctlr)
1691{
1692	if (ctlr->transfer == spi_queued_transfer)
1693		__spi_pump_messages(ctlr, false);
1694}
1695
1696/*-------------------------------------------------------------------------*/
1697
1698#if defined(CONFIG_OF)
1699static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1700			   struct device_node *nc)
1701{
1702	u32 value;
1703	int rc;
1704
1705	/* Mode (clock phase/polarity/etc.) */
1706	if (of_property_read_bool(nc, "spi-cpha"))
1707		spi->mode |= SPI_CPHA;
1708	if (of_property_read_bool(nc, "spi-cpol"))
1709		spi->mode |= SPI_CPOL;
1710	if (of_property_read_bool(nc, "spi-3wire"))
1711		spi->mode |= SPI_3WIRE;
1712	if (of_property_read_bool(nc, "spi-lsb-first"))
1713		spi->mode |= SPI_LSB_FIRST;
1714
1715	/*
1716	 * For descriptors associated with the device, polarity inversion is
1717	 * handled in the gpiolib, so all chip selects are "active high" in
1718	 * the logical sense, the gpiolib will invert the line if need be.
1719	 */
1720	if (ctlr->use_gpio_descriptors)
1721		spi->mode |= SPI_CS_HIGH;
1722	else if (of_property_read_bool(nc, "spi-cs-high"))
1723		spi->mode |= SPI_CS_HIGH;
1724
1725	/* Device DUAL/QUAD mode */
1726	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1727		switch (value) {
 
 
 
1728		case 1:
1729			break;
1730		case 2:
1731			spi->mode |= SPI_TX_DUAL;
1732			break;
1733		case 4:
1734			spi->mode |= SPI_TX_QUAD;
1735			break;
1736		case 8:
1737			spi->mode |= SPI_TX_OCTAL;
1738			break;
1739		default:
1740			dev_warn(&ctlr->dev,
1741				"spi-tx-bus-width %d not supported\n",
1742				value);
1743			break;
1744		}
1745	}
1746
1747	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1748		switch (value) {
 
 
 
1749		case 1:
1750			break;
1751		case 2:
1752			spi->mode |= SPI_RX_DUAL;
1753			break;
1754		case 4:
1755			spi->mode |= SPI_RX_QUAD;
1756			break;
1757		case 8:
1758			spi->mode |= SPI_RX_OCTAL;
1759			break;
1760		default:
1761			dev_warn(&ctlr->dev,
1762				"spi-rx-bus-width %d not supported\n",
1763				value);
1764			break;
1765		}
1766	}
1767
1768	if (spi_controller_is_slave(ctlr)) {
1769		if (!of_node_name_eq(nc, "slave")) {
1770			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1771				nc);
1772			return -EINVAL;
1773		}
1774		return 0;
1775	}
1776
1777	/* Device address */
1778	rc = of_property_read_u32(nc, "reg", &value);
1779	if (rc) {
1780		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1781			nc, rc);
1782		return rc;
1783	}
1784	spi->chip_select = value;
1785
1786	/* Device speed */
1787	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1788	if (rc) {
1789		dev_err(&ctlr->dev,
1790			"%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
1791		return rc;
1792	}
1793	spi->max_speed_hz = value;
1794
1795	return 0;
1796}
1797
1798static struct spi_device *
1799of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1800{
1801	struct spi_device *spi;
1802	int rc;
1803
1804	/* Alloc an spi_device */
1805	spi = spi_alloc_device(ctlr);
1806	if (!spi) {
1807		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1808		rc = -ENOMEM;
1809		goto err_out;
1810	}
1811
1812	/* Select device driver */
1813	rc = of_modalias_node(nc, spi->modalias,
1814				sizeof(spi->modalias));
1815	if (rc < 0) {
1816		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1817		goto err_out;
1818	}
1819
1820	rc = of_spi_parse_dt(ctlr, spi, nc);
1821	if (rc)
1822		goto err_out;
1823
1824	/* Store a pointer to the node in the device structure */
1825	of_node_get(nc);
1826	spi->dev.of_node = nc;
 
1827
1828	/* Register the new device */
1829	rc = spi_add_device(spi);
1830	if (rc) {
1831		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
1832		goto err_of_node_put;
1833	}
1834
1835	return spi;
1836
1837err_of_node_put:
1838	of_node_put(nc);
1839err_out:
1840	spi_dev_put(spi);
1841	return ERR_PTR(rc);
1842}
1843
1844/**
1845 * of_register_spi_devices() - Register child devices onto the SPI bus
1846 * @ctlr:	Pointer to spi_controller device
1847 *
1848 * Registers an spi_device for each child node of controller node which
1849 * represents a valid SPI slave.
1850 */
1851static void of_register_spi_devices(struct spi_controller *ctlr)
1852{
1853	struct spi_device *spi;
1854	struct device_node *nc;
1855
1856	if (!ctlr->dev.of_node)
1857		return;
1858
1859	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
1860		if (of_node_test_and_set_flag(nc, OF_POPULATED))
1861			continue;
1862		spi = of_register_spi_device(ctlr, nc);
1863		if (IS_ERR(spi)) {
1864			dev_warn(&ctlr->dev,
1865				 "Failed to create SPI device for %pOF\n", nc);
1866			of_node_clear_flag(nc, OF_POPULATED);
1867		}
1868	}
1869}
1870#else
1871static void of_register_spi_devices(struct spi_controller *ctlr) { }
1872#endif
1873
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1874#ifdef CONFIG_ACPI
1875struct acpi_spi_lookup {
1876	struct spi_controller 	*ctlr;
1877	u32			max_speed_hz;
1878	u32			mode;
1879	int			irq;
1880	u8			bits_per_word;
1881	u8			chip_select;
1882};
1883
1884static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
1885					    struct acpi_spi_lookup *lookup)
1886{
1887	const union acpi_object *obj;
1888
1889	if (!x86_apple_machine)
1890		return;
1891
1892	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
1893	    && obj->buffer.length >= 4)
1894		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
1895
1896	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
1897	    && obj->buffer.length == 8)
1898		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
1899
1900	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
1901	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
1902		lookup->mode |= SPI_LSB_FIRST;
1903
1904	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
1905	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
1906		lookup->mode |= SPI_CPOL;
1907
1908	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
1909	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
1910		lookup->mode |= SPI_CPHA;
1911}
1912
1913static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1914{
1915	struct acpi_spi_lookup *lookup = data;
1916	struct spi_controller *ctlr = lookup->ctlr;
1917
1918	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1919		struct acpi_resource_spi_serialbus *sb;
1920		acpi_handle parent_handle;
1921		acpi_status status;
1922
1923		sb = &ares->data.spi_serial_bus;
1924		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1925
1926			status = acpi_get_handle(NULL,
1927						 sb->resource_source.string_ptr,
1928						 &parent_handle);
1929
1930			if (ACPI_FAILURE(status) ||
1931			    ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
1932				return -ENODEV;
1933
1934			/*
1935			 * ACPI DeviceSelection numbering is handled by the
1936			 * host controller driver in Windows and can vary
1937			 * from driver to driver. In Linux we always expect
1938			 * 0 .. max - 1 so we need to ask the driver to
1939			 * translate between the two schemes.
1940			 */
1941			if (ctlr->fw_translate_cs) {
1942				int cs = ctlr->fw_translate_cs(ctlr,
1943						sb->device_selection);
1944				if (cs < 0)
1945					return cs;
1946				lookup->chip_select = cs;
1947			} else {
1948				lookup->chip_select = sb->device_selection;
1949			}
1950
1951			lookup->max_speed_hz = sb->connection_speed;
 
1952
1953			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1954				lookup->mode |= SPI_CPHA;
1955			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1956				lookup->mode |= SPI_CPOL;
1957			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1958				lookup->mode |= SPI_CS_HIGH;
1959		}
1960	} else if (lookup->irq < 0) {
1961		struct resource r;
1962
1963		if (acpi_dev_resource_interrupt(ares, 0, &r))
1964			lookup->irq = r.start;
1965	}
1966
1967	/* Always tell the ACPI core to skip this resource */
1968	return 1;
1969}
1970
1971static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
1972					    struct acpi_device *adev)
1973{
1974	acpi_handle parent_handle = NULL;
1975	struct list_head resource_list;
1976	struct acpi_spi_lookup lookup = {};
1977	struct spi_device *spi;
1978	int ret;
1979
1980	if (acpi_bus_get_status(adev) || !adev->status.present ||
1981	    acpi_device_enumerated(adev))
1982		return AE_OK;
1983
1984	lookup.ctlr		= ctlr;
1985	lookup.irq		= -1;
1986
1987	INIT_LIST_HEAD(&resource_list);
1988	ret = acpi_dev_get_resources(adev, &resource_list,
1989				     acpi_spi_add_resource, &lookup);
1990	acpi_dev_free_resource_list(&resource_list);
1991
1992	if (ret < 0)
1993		/* found SPI in _CRS but it points to another controller */
1994		return AE_OK;
1995
1996	if (!lookup.max_speed_hz &&
1997	    !ACPI_FAILURE(acpi_get_parent(adev->handle, &parent_handle)) &&
1998	    ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
1999		/* Apple does not use _CRS but nested devices for SPI slaves */
2000		acpi_spi_parse_apple_properties(adev, &lookup);
2001	}
2002
2003	if (!lookup.max_speed_hz)
2004		return AE_OK;
2005
2006	spi = spi_alloc_device(ctlr);
2007	if (!spi) {
2008		dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2009			dev_name(&adev->dev));
2010		return AE_NO_MEMORY;
2011	}
2012
 
2013	ACPI_COMPANION_SET(&spi->dev, adev);
2014	spi->max_speed_hz	= lookup.max_speed_hz;
2015	spi->mode		= lookup.mode;
2016	spi->irq		= lookup.irq;
2017	spi->bits_per_word	= lookup.bits_per_word;
2018	spi->chip_select	= lookup.chip_select;
2019
2020	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2021			  sizeof(spi->modalias));
2022
2023	if (spi->irq < 0)
2024		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2025
2026	acpi_device_set_enumerated(adev);
2027
2028	adev->power.flags.ignore_parent = true;
2029	if (spi_add_device(spi)) {
2030		adev->power.flags.ignore_parent = false;
2031		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2032			dev_name(&adev->dev));
2033		spi_dev_put(spi);
2034	}
2035
2036	return AE_OK;
2037}
2038
2039static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2040				       void *data, void **return_value)
2041{
2042	struct spi_controller *ctlr = data;
2043	struct acpi_device *adev;
2044
2045	if (acpi_bus_get_device(handle, &adev))
2046		return AE_OK;
2047
2048	return acpi_register_spi_device(ctlr, adev);
2049}
2050
2051#define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2052
2053static void acpi_register_spi_devices(struct spi_controller *ctlr)
2054{
2055	acpi_status status;
2056	acpi_handle handle;
2057
2058	handle = ACPI_HANDLE(ctlr->dev.parent);
2059	if (!handle)
2060		return;
2061
2062	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2063				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2064				     acpi_spi_add_device, NULL, ctlr, NULL);
2065	if (ACPI_FAILURE(status))
2066		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2067}
2068#else
2069static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2070#endif /* CONFIG_ACPI */
2071
2072static void spi_controller_release(struct device *dev)
2073{
2074	struct spi_controller *ctlr;
2075
2076	ctlr = container_of(dev, struct spi_controller, dev);
2077	kfree(ctlr);
2078}
2079
2080static struct class spi_master_class = {
2081	.name		= "spi_master",
2082	.owner		= THIS_MODULE,
2083	.dev_release	= spi_controller_release,
2084	.dev_groups	= spi_master_groups,
2085};
2086
2087#ifdef CONFIG_SPI_SLAVE
2088/**
2089 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2090 *		     controller
2091 * @spi: device used for the current transfer
2092 */
2093int spi_slave_abort(struct spi_device *spi)
2094{
2095	struct spi_controller *ctlr = spi->controller;
2096
2097	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2098		return ctlr->slave_abort(ctlr);
2099
2100	return -ENOTSUPP;
2101}
2102EXPORT_SYMBOL_GPL(spi_slave_abort);
2103
2104static int match_true(struct device *dev, void *data)
2105{
2106	return 1;
2107}
2108
2109static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2110			  char *buf)
2111{
2112	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2113						   dev);
2114	struct device *child;
2115
2116	child = device_find_child(&ctlr->dev, NULL, match_true);
2117	return sprintf(buf, "%s\n",
2118		       child ? to_spi_device(child)->modalias : NULL);
2119}
2120
2121static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2122			   const char *buf, size_t count)
2123{
2124	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2125						   dev);
2126	struct spi_device *spi;
2127	struct device *child;
2128	char name[32];
2129	int rc;
2130
2131	rc = sscanf(buf, "%31s", name);
2132	if (rc != 1 || !name[0])
2133		return -EINVAL;
2134
2135	child = device_find_child(&ctlr->dev, NULL, match_true);
2136	if (child) {
2137		/* Remove registered slave */
2138		device_unregister(child);
2139		put_device(child);
2140	}
2141
2142	if (strcmp(name, "(null)")) {
2143		/* Register new slave */
2144		spi = spi_alloc_device(ctlr);
2145		if (!spi)
2146			return -ENOMEM;
2147
2148		strlcpy(spi->modalias, name, sizeof(spi->modalias));
2149
2150		rc = spi_add_device(spi);
2151		if (rc) {
2152			spi_dev_put(spi);
2153			return rc;
2154		}
2155	}
2156
2157	return count;
2158}
2159
2160static DEVICE_ATTR_RW(slave);
2161
2162static struct attribute *spi_slave_attrs[] = {
2163	&dev_attr_slave.attr,
2164	NULL,
2165};
2166
2167static const struct attribute_group spi_slave_group = {
2168	.attrs = spi_slave_attrs,
2169};
2170
2171static const struct attribute_group *spi_slave_groups[] = {
2172	&spi_controller_statistics_group,
2173	&spi_slave_group,
2174	NULL,
2175};
2176
2177static struct class spi_slave_class = {
2178	.name		= "spi_slave",
2179	.owner		= THIS_MODULE,
2180	.dev_release	= spi_controller_release,
2181	.dev_groups	= spi_slave_groups,
2182};
2183#else
2184extern struct class spi_slave_class;	/* dummy */
2185#endif
2186
2187/**
2188 * __spi_alloc_controller - allocate an SPI master or slave controller
2189 * @dev: the controller, possibly using the platform_bus
2190 * @size: how much zeroed driver-private data to allocate; the pointer to this
2191 *	memory is in the driver_data field of the returned device, accessible
2192 *	with spi_controller_get_devdata(); the memory is cacheline aligned;
2193 *	drivers granting DMA access to portions of their private data need to
2194 *	round up @size using ALIGN(size, dma_get_cache_alignment()).
2195 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2196 *	slave (true) controller
2197 * Context: can sleep
2198 *
2199 * This call is used only by SPI controller drivers, which are the
2200 * only ones directly touching chip registers.  It's how they allocate
2201 * an spi_controller structure, prior to calling spi_register_controller().
2202 *
2203 * This must be called from context that can sleep.
2204 *
2205 * The caller is responsible for assigning the bus number and initializing the
2206 * controller's methods before calling spi_register_controller(); and (after
2207 * errors adding the device) calling spi_controller_put() to prevent a memory
2208 * leak.
2209 *
2210 * Return: the SPI controller structure on success, else NULL.
2211 */
2212struct spi_controller *__spi_alloc_controller(struct device *dev,
2213					      unsigned int size, bool slave)
2214{
2215	struct spi_controller	*ctlr;
2216	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2217
2218	if (!dev)
2219		return NULL;
2220
2221	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2222	if (!ctlr)
2223		return NULL;
2224
2225	device_initialize(&ctlr->dev);
 
 
 
 
 
 
2226	ctlr->bus_num = -1;
2227	ctlr->num_chipselect = 1;
2228	ctlr->slave = slave;
2229	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2230		ctlr->dev.class = &spi_slave_class;
2231	else
2232		ctlr->dev.class = &spi_master_class;
2233	ctlr->dev.parent = dev;
2234	pm_suspend_ignore_children(&ctlr->dev, true);
2235	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2236
2237	return ctlr;
2238}
2239EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2241#ifdef CONFIG_OF
2242static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2243{
2244	int nb, i, *cs;
2245	struct device_node *np = ctlr->dev.of_node;
2246
2247	if (!np)
2248		return 0;
2249
2250	nb = of_gpio_named_count(np, "cs-gpios");
2251	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2252
2253	/* Return error only for an incorrectly formed cs-gpios property */
2254	if (nb == 0 || nb == -ENOENT)
2255		return 0;
2256	else if (nb < 0)
2257		return nb;
2258
2259	cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2260			  GFP_KERNEL);
2261	ctlr->cs_gpios = cs;
2262
2263	if (!ctlr->cs_gpios)
2264		return -ENOMEM;
2265
2266	for (i = 0; i < ctlr->num_chipselect; i++)
2267		cs[i] = -ENOENT;
2268
2269	for (i = 0; i < nb; i++)
2270		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2271
2272	return 0;
2273}
2274#else
2275static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2276{
2277	return 0;
2278}
2279#endif
2280
2281/**
2282 * spi_get_gpio_descs() - grab chip select GPIOs for the master
2283 * @ctlr: The SPI master to grab GPIO descriptors for
2284 */
2285static int spi_get_gpio_descs(struct spi_controller *ctlr)
2286{
2287	int nb, i;
2288	struct gpio_desc **cs;
2289	struct device *dev = &ctlr->dev;
 
 
2290
2291	nb = gpiod_count(dev, "cs");
2292	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2293
2294	/* No GPIOs at all is fine, else return the error */
2295	if (nb == 0 || nb == -ENOENT)
2296		return 0;
2297	else if (nb < 0)
2298		return nb;
 
 
 
2299
2300	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2301			  GFP_KERNEL);
2302	if (!cs)
2303		return -ENOMEM;
2304	ctlr->cs_gpiods = cs;
2305
2306	for (i = 0; i < nb; i++) {
2307		/*
2308		 * Most chipselects are active low, the inverted
2309		 * semantics are handled by special quirks in gpiolib,
2310		 * so initializing them GPIOD_OUT_LOW here means
2311		 * "unasserted", in most cases this will drive the physical
2312		 * line high.
2313		 */
2314		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2315						      GPIOD_OUT_LOW);
2316		if (IS_ERR(cs[i]))
2317			return PTR_ERR(cs[i]);
2318
2319		if (cs[i]) {
2320			/*
2321			 * If we find a CS GPIO, name it after the device and
2322			 * chip select line.
2323			 */
2324			char *gpioname;
2325
2326			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2327						  dev_name(dev), i);
2328			if (!gpioname)
2329				return -ENOMEM;
2330			gpiod_set_consumer_name(cs[i], gpioname);
 
 
 
 
 
 
 
2331		}
 
 
 
 
 
 
 
 
 
2332	}
2333
2334	return 0;
2335}
2336
2337static int spi_controller_check_ops(struct spi_controller *ctlr)
2338{
2339	/*
2340	 * The controller may implement only the high-level SPI-memory like
2341	 * operations if it does not support regular SPI transfers, and this is
2342	 * valid use case.
2343	 * If ->mem_ops is NULL, we request that at least one of the
2344	 * ->transfer_xxx() method be implemented.
2345	 */
2346	if (ctlr->mem_ops) {
2347		if (!ctlr->mem_ops->exec_op)
2348			return -EINVAL;
2349	} else if (!ctlr->transfer && !ctlr->transfer_one &&
2350		   !ctlr->transfer_one_message) {
2351		return -EINVAL;
2352	}
2353
2354	return 0;
2355}
2356
2357/**
2358 * spi_register_controller - register SPI master or slave controller
2359 * @ctlr: initialized master, originally from spi_alloc_master() or
2360 *	spi_alloc_slave()
2361 * Context: can sleep
2362 *
2363 * SPI controllers connect to their drivers using some non-SPI bus,
2364 * such as the platform bus.  The final stage of probe() in that code
2365 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2366 *
2367 * SPI controllers use board specific (often SOC specific) bus numbers,
2368 * and board-specific addressing for SPI devices combines those numbers
2369 * with chip select numbers.  Since SPI does not directly support dynamic
2370 * device identification, boards need configuration tables telling which
2371 * chip is at which address.
2372 *
2373 * This must be called from context that can sleep.  It returns zero on
2374 * success, else a negative error code (dropping the controller's refcount).
2375 * After a successful return, the caller is responsible for calling
2376 * spi_unregister_controller().
2377 *
2378 * Return: zero on success, else a negative error code.
2379 */
2380int spi_register_controller(struct spi_controller *ctlr)
2381{
2382	struct device		*dev = ctlr->dev.parent;
2383	struct boardinfo	*bi;
2384	int			status;
2385	int			id, first_dynamic;
2386
2387	if (!dev)
2388		return -ENODEV;
2389
2390	/*
2391	 * Make sure all necessary hooks are implemented before registering
2392	 * the SPI controller.
2393	 */
2394	status = spi_controller_check_ops(ctlr);
2395	if (status)
2396		return status;
2397
2398	if (ctlr->bus_num >= 0) {
2399		/* devices with a fixed bus num must check-in with the num */
2400		mutex_lock(&board_lock);
2401		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2402			ctlr->bus_num + 1, GFP_KERNEL);
2403		mutex_unlock(&board_lock);
2404		if (WARN(id < 0, "couldn't get idr"))
2405			return id == -ENOSPC ? -EBUSY : id;
2406		ctlr->bus_num = id;
2407	} else if (ctlr->dev.of_node) {
2408		/* allocate dynamic bus number using Linux idr */
2409		id = of_alias_get_id(ctlr->dev.of_node, "spi");
2410		if (id >= 0) {
2411			ctlr->bus_num = id;
2412			mutex_lock(&board_lock);
2413			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2414				       ctlr->bus_num + 1, GFP_KERNEL);
2415			mutex_unlock(&board_lock);
2416			if (WARN(id < 0, "couldn't get idr"))
2417				return id == -ENOSPC ? -EBUSY : id;
2418		}
2419	}
2420	if (ctlr->bus_num < 0) {
2421		first_dynamic = of_alias_get_highest_id("spi");
2422		if (first_dynamic < 0)
2423			first_dynamic = 0;
2424		else
2425			first_dynamic++;
2426
2427		mutex_lock(&board_lock);
2428		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2429			       0, GFP_KERNEL);
2430		mutex_unlock(&board_lock);
2431		if (WARN(id < 0, "couldn't get idr"))
2432			return id;
2433		ctlr->bus_num = id;
2434	}
2435	INIT_LIST_HEAD(&ctlr->queue);
2436	spin_lock_init(&ctlr->queue_lock);
2437	spin_lock_init(&ctlr->bus_lock_spinlock);
2438	mutex_init(&ctlr->bus_lock_mutex);
2439	mutex_init(&ctlr->io_mutex);
2440	ctlr->bus_lock_flag = 0;
2441	init_completion(&ctlr->xfer_completion);
2442	if (!ctlr->max_dma_len)
2443		ctlr->max_dma_len = INT_MAX;
2444
2445	/* register the device, then userspace will see it.
2446	 * registration fails if the bus ID is in use.
2447	 */
2448	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2449
2450	if (!spi_controller_is_slave(ctlr)) {
2451		if (ctlr->use_gpio_descriptors) {
2452			status = spi_get_gpio_descs(ctlr);
2453			if (status)
2454				return status;
2455			/*
2456			 * A controller using GPIO descriptors always
2457			 * supports SPI_CS_HIGH if need be.
2458			 */
2459			ctlr->mode_bits |= SPI_CS_HIGH;
2460		} else {
2461			/* Legacy code path for GPIOs from DT */
2462			status = of_spi_get_gpio_numbers(ctlr);
2463			if (status)
2464				return status;
2465		}
2466	}
2467
2468	/*
2469	 * Even if it's just one always-selected device, there must
2470	 * be at least one chipselect.
2471	 */
2472	if (!ctlr->num_chipselect)
2473		return -EINVAL;
 
 
2474
2475	status = device_add(&ctlr->dev);
2476	if (status < 0) {
2477		/* free bus id */
2478		mutex_lock(&board_lock);
2479		idr_remove(&spi_master_idr, ctlr->bus_num);
2480		mutex_unlock(&board_lock);
2481		goto done;
2482	}
2483	dev_dbg(dev, "registered %s %s\n",
2484			spi_controller_is_slave(ctlr) ? "slave" : "master",
2485			dev_name(&ctlr->dev));
2486
2487	/*
2488	 * If we're using a queued driver, start the queue. Note that we don't
2489	 * need the queueing logic if the driver is only supporting high-level
2490	 * memory operations.
2491	 */
2492	if (ctlr->transfer) {
2493		dev_info(dev, "controller is unqueued, this is deprecated\n");
2494	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2495		status = spi_controller_initialize_queue(ctlr);
2496		if (status) {
2497			device_del(&ctlr->dev);
2498			/* free bus id */
2499			mutex_lock(&board_lock);
2500			idr_remove(&spi_master_idr, ctlr->bus_num);
2501			mutex_unlock(&board_lock);
2502			goto done;
2503		}
2504	}
2505	/* add statistics */
2506	spin_lock_init(&ctlr->statistics.lock);
2507
2508	mutex_lock(&board_lock);
2509	list_add_tail(&ctlr->list, &spi_controller_list);
2510	list_for_each_entry(bi, &board_list, list)
2511		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2512	mutex_unlock(&board_lock);
2513
2514	/* Register devices from the device tree and ACPI */
2515	of_register_spi_devices(ctlr);
2516	acpi_register_spi_devices(ctlr);
2517done:
 
 
 
 
 
2518	return status;
2519}
2520EXPORT_SYMBOL_GPL(spi_register_controller);
2521
2522static void devm_spi_unregister(struct device *dev, void *res)
2523{
2524	spi_unregister_controller(*(struct spi_controller **)res);
2525}
2526
2527/**
2528 * devm_spi_register_controller - register managed SPI master or slave
2529 *	controller
2530 * @dev:    device managing SPI controller
2531 * @ctlr: initialized controller, originally from spi_alloc_master() or
2532 *	spi_alloc_slave()
2533 * Context: can sleep
2534 *
2535 * Register a SPI device as with spi_register_controller() which will
2536 * automatically be unregistered and freed.
2537 *
2538 * Return: zero on success, else a negative error code.
2539 */
2540int devm_spi_register_controller(struct device *dev,
2541				 struct spi_controller *ctlr)
2542{
2543	struct spi_controller **ptr;
2544	int ret;
2545
2546	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2547	if (!ptr)
2548		return -ENOMEM;
2549
2550	ret = spi_register_controller(ctlr);
2551	if (!ret) {
2552		*ptr = ctlr;
2553		devres_add(dev, ptr);
2554	} else {
2555		devres_free(ptr);
2556	}
2557
2558	return ret;
2559}
2560EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2561
2562static int __unregister(struct device *dev, void *null)
2563{
2564	spi_unregister_device(to_spi_device(dev));
2565	return 0;
2566}
2567
2568/**
2569 * spi_unregister_controller - unregister SPI master or slave controller
2570 * @ctlr: the controller being unregistered
2571 * Context: can sleep
2572 *
2573 * This call is used only by SPI controller drivers, which are the
2574 * only ones directly touching chip registers.
2575 *
2576 * This must be called from context that can sleep.
2577 *
2578 * Note that this function also drops a reference to the controller.
2579 */
2580void spi_unregister_controller(struct spi_controller *ctlr)
2581{
2582	struct spi_controller *found;
2583	int id = ctlr->bus_num;
2584
 
 
 
 
 
 
2585	/* First make sure that this controller was ever added */
2586	mutex_lock(&board_lock);
2587	found = idr_find(&spi_master_idr, id);
2588	mutex_unlock(&board_lock);
2589	if (ctlr->queued) {
2590		if (spi_destroy_queue(ctlr))
2591			dev_err(&ctlr->dev, "queue remove failed\n");
2592	}
2593	mutex_lock(&board_lock);
2594	list_del(&ctlr->list);
2595	mutex_unlock(&board_lock);
2596
2597	device_for_each_child(&ctlr->dev, NULL, __unregister);
2598	device_unregister(&ctlr->dev);
 
 
 
 
 
 
2599	/* free bus id */
2600	mutex_lock(&board_lock);
2601	if (found == ctlr)
2602		idr_remove(&spi_master_idr, id);
2603	mutex_unlock(&board_lock);
 
 
 
2604}
2605EXPORT_SYMBOL_GPL(spi_unregister_controller);
2606
2607int spi_controller_suspend(struct spi_controller *ctlr)
2608{
2609	int ret;
2610
2611	/* Basically no-ops for non-queued controllers */
2612	if (!ctlr->queued)
2613		return 0;
2614
2615	ret = spi_stop_queue(ctlr);
2616	if (ret)
2617		dev_err(&ctlr->dev, "queue stop failed\n");
2618
2619	return ret;
2620}
2621EXPORT_SYMBOL_GPL(spi_controller_suspend);
2622
2623int spi_controller_resume(struct spi_controller *ctlr)
2624{
2625	int ret;
2626
2627	if (!ctlr->queued)
2628		return 0;
2629
2630	ret = spi_start_queue(ctlr);
2631	if (ret)
2632		dev_err(&ctlr->dev, "queue restart failed\n");
2633
2634	return ret;
2635}
2636EXPORT_SYMBOL_GPL(spi_controller_resume);
2637
2638static int __spi_controller_match(struct device *dev, const void *data)
2639{
2640	struct spi_controller *ctlr;
2641	const u16 *bus_num = data;
2642
2643	ctlr = container_of(dev, struct spi_controller, dev);
2644	return ctlr->bus_num == *bus_num;
2645}
2646
2647/**
2648 * spi_busnum_to_master - look up master associated with bus_num
2649 * @bus_num: the master's bus number
2650 * Context: can sleep
2651 *
2652 * This call may be used with devices that are registered after
2653 * arch init time.  It returns a refcounted pointer to the relevant
2654 * spi_controller (which the caller must release), or NULL if there is
2655 * no such master registered.
2656 *
2657 * Return: the SPI master structure on success, else NULL.
2658 */
2659struct spi_controller *spi_busnum_to_master(u16 bus_num)
2660{
2661	struct device		*dev;
2662	struct spi_controller	*ctlr = NULL;
2663
2664	dev = class_find_device(&spi_master_class, NULL, &bus_num,
2665				__spi_controller_match);
2666	if (dev)
2667		ctlr = container_of(dev, struct spi_controller, dev);
2668	/* reference got in class_find_device */
2669	return ctlr;
2670}
2671EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2672
2673/*-------------------------------------------------------------------------*/
2674
2675/* Core methods for SPI resource management */
2676
2677/**
2678 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2679 *                 during the processing of a spi_message while using
2680 *                 spi_transfer_one
2681 * @spi:     the spi device for which we allocate memory
2682 * @release: the release code to execute for this resource
2683 * @size:    size to alloc and return
2684 * @gfp:     GFP allocation flags
2685 *
2686 * Return: the pointer to the allocated data
2687 *
2688 * This may get enhanced in the future to allocate from a memory pool
2689 * of the @spi_device or @spi_controller to avoid repeated allocations.
2690 */
2691void *spi_res_alloc(struct spi_device *spi,
2692		    spi_res_release_t release,
2693		    size_t size, gfp_t gfp)
2694{
2695	struct spi_res *sres;
2696
2697	sres = kzalloc(sizeof(*sres) + size, gfp);
2698	if (!sres)
2699		return NULL;
2700
2701	INIT_LIST_HEAD(&sres->entry);
2702	sres->release = release;
2703
2704	return sres->data;
2705}
2706EXPORT_SYMBOL_GPL(spi_res_alloc);
2707
2708/**
2709 * spi_res_free - free an spi resource
2710 * @res: pointer to the custom data of a resource
2711 *
2712 */
2713void spi_res_free(void *res)
2714{
2715	struct spi_res *sres = container_of(res, struct spi_res, data);
2716
2717	if (!res)
2718		return;
2719
2720	WARN_ON(!list_empty(&sres->entry));
2721	kfree(sres);
2722}
2723EXPORT_SYMBOL_GPL(spi_res_free);
2724
2725/**
2726 * spi_res_add - add a spi_res to the spi_message
2727 * @message: the spi message
2728 * @res:     the spi_resource
2729 */
2730void spi_res_add(struct spi_message *message, void *res)
2731{
2732	struct spi_res *sres = container_of(res, struct spi_res, data);
2733
2734	WARN_ON(!list_empty(&sres->entry));
2735	list_add_tail(&sres->entry, &message->resources);
2736}
2737EXPORT_SYMBOL_GPL(spi_res_add);
2738
2739/**
2740 * spi_res_release - release all spi resources for this message
2741 * @ctlr:  the @spi_controller
2742 * @message: the @spi_message
2743 */
2744void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2745{
2746	struct spi_res *res, *tmp;
2747
2748	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
2749		if (res->release)
2750			res->release(ctlr, message, res->data);
2751
2752		list_del(&res->entry);
2753
2754		kfree(res);
2755	}
2756}
2757EXPORT_SYMBOL_GPL(spi_res_release);
2758
2759/*-------------------------------------------------------------------------*/
2760
2761/* Core methods for spi_message alterations */
2762
2763static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2764					    struct spi_message *msg,
2765					    void *res)
2766{
2767	struct spi_replaced_transfers *rxfer = res;
2768	size_t i;
2769
2770	/* call extra callback if requested */
2771	if (rxfer->release)
2772		rxfer->release(ctlr, msg, res);
2773
2774	/* insert replaced transfers back into the message */
2775	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2776
2777	/* remove the formerly inserted entries */
2778	for (i = 0; i < rxfer->inserted; i++)
2779		list_del(&rxfer->inserted_transfers[i].transfer_list);
2780}
2781
2782/**
2783 * spi_replace_transfers - replace transfers with several transfers
2784 *                         and register change with spi_message.resources
2785 * @msg:           the spi_message we work upon
2786 * @xfer_first:    the first spi_transfer we want to replace
2787 * @remove:        number of transfers to remove
2788 * @insert:        the number of transfers we want to insert instead
2789 * @release:       extra release code necessary in some circumstances
2790 * @extradatasize: extra data to allocate (with alignment guarantees
2791 *                 of struct @spi_transfer)
2792 * @gfp:           gfp flags
2793 *
2794 * Returns: pointer to @spi_replaced_transfers,
2795 *          PTR_ERR(...) in case of errors.
2796 */
2797struct spi_replaced_transfers *spi_replace_transfers(
2798	struct spi_message *msg,
2799	struct spi_transfer *xfer_first,
2800	size_t remove,
2801	size_t insert,
2802	spi_replaced_release_t release,
2803	size_t extradatasize,
2804	gfp_t gfp)
2805{
2806	struct spi_replaced_transfers *rxfer;
2807	struct spi_transfer *xfer;
2808	size_t i;
2809
2810	/* allocate the structure using spi_res */
2811	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2812			      struct_size(rxfer, inserted_transfers, insert)
2813			      + extradatasize,
2814			      gfp);
2815	if (!rxfer)
2816		return ERR_PTR(-ENOMEM);
2817
2818	/* the release code to invoke before running the generic release */
2819	rxfer->release = release;
2820
2821	/* assign extradata */
2822	if (extradatasize)
2823		rxfer->extradata =
2824			&rxfer->inserted_transfers[insert];
2825
2826	/* init the replaced_transfers list */
2827	INIT_LIST_HEAD(&rxfer->replaced_transfers);
2828
2829	/* assign the list_entry after which we should reinsert
2830	 * the @replaced_transfers - it may be spi_message.messages!
2831	 */
2832	rxfer->replaced_after = xfer_first->transfer_list.prev;
2833
2834	/* remove the requested number of transfers */
2835	for (i = 0; i < remove; i++) {
2836		/* if the entry after replaced_after it is msg->transfers
2837		 * then we have been requested to remove more transfers
2838		 * than are in the list
2839		 */
2840		if (rxfer->replaced_after->next == &msg->transfers) {
2841			dev_err(&msg->spi->dev,
2842				"requested to remove more spi_transfers than are available\n");
2843			/* insert replaced transfers back into the message */
2844			list_splice(&rxfer->replaced_transfers,
2845				    rxfer->replaced_after);
2846
2847			/* free the spi_replace_transfer structure */
2848			spi_res_free(rxfer);
2849
2850			/* and return with an error */
2851			return ERR_PTR(-EINVAL);
2852		}
2853
2854		/* remove the entry after replaced_after from list of
2855		 * transfers and add it to list of replaced_transfers
2856		 */
2857		list_move_tail(rxfer->replaced_after->next,
2858			       &rxfer->replaced_transfers);
2859	}
2860
2861	/* create copy of the given xfer with identical settings
2862	 * based on the first transfer to get removed
2863	 */
2864	for (i = 0; i < insert; i++) {
2865		/* we need to run in reverse order */
2866		xfer = &rxfer->inserted_transfers[insert - 1 - i];
2867
2868		/* copy all spi_transfer data */
2869		memcpy(xfer, xfer_first, sizeof(*xfer));
2870
2871		/* add to list */
2872		list_add(&xfer->transfer_list, rxfer->replaced_after);
2873
2874		/* clear cs_change and delay_usecs for all but the last */
2875		if (i) {
2876			xfer->cs_change = false;
2877			xfer->delay_usecs = 0;
2878		}
2879	}
2880
2881	/* set up inserted */
2882	rxfer->inserted = insert;
2883
2884	/* and register it with spi_res/spi_message */
2885	spi_res_add(msg, rxfer);
2886
2887	return rxfer;
2888}
2889EXPORT_SYMBOL_GPL(spi_replace_transfers);
2890
2891static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
2892					struct spi_message *msg,
2893					struct spi_transfer **xferp,
2894					size_t maxsize,
2895					gfp_t gfp)
2896{
2897	struct spi_transfer *xfer = *xferp, *xfers;
2898	struct spi_replaced_transfers *srt;
2899	size_t offset;
2900	size_t count, i;
2901
2902	/* calculate how many we have to replace */
2903	count = DIV_ROUND_UP(xfer->len, maxsize);
2904
2905	/* create replacement */
2906	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2907	if (IS_ERR(srt))
2908		return PTR_ERR(srt);
2909	xfers = srt->inserted_transfers;
2910
2911	/* now handle each of those newly inserted spi_transfers
2912	 * note that the replacements spi_transfers all are preset
2913	 * to the same values as *xferp, so tx_buf, rx_buf and len
2914	 * are all identical (as well as most others)
2915	 * so we just have to fix up len and the pointers.
2916	 *
2917	 * this also includes support for the depreciated
2918	 * spi_message.is_dma_mapped interface
2919	 */
2920
2921	/* the first transfer just needs the length modified, so we
2922	 * run it outside the loop
2923	 */
2924	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2925
2926	/* all the others need rx_buf/tx_buf also set */
2927	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2928		/* update rx_buf, tx_buf and dma */
2929		if (xfers[i].rx_buf)
2930			xfers[i].rx_buf += offset;
2931		if (xfers[i].rx_dma)
2932			xfers[i].rx_dma += offset;
2933		if (xfers[i].tx_buf)
2934			xfers[i].tx_buf += offset;
2935		if (xfers[i].tx_dma)
2936			xfers[i].tx_dma += offset;
2937
2938		/* update length */
2939		xfers[i].len = min(maxsize, xfers[i].len - offset);
2940	}
2941
2942	/* we set up xferp to the last entry we have inserted,
2943	 * so that we skip those already split transfers
2944	 */
2945	*xferp = &xfers[count - 1];
2946
2947	/* increment statistics counters */
2948	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
2949				       transfers_split_maxsize);
2950	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2951				       transfers_split_maxsize);
2952
2953	return 0;
2954}
2955
2956/**
2957 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2958 *                              when an individual transfer exceeds a
2959 *                              certain size
2960 * @ctlr:    the @spi_controller for this transfer
2961 * @msg:   the @spi_message to transform
2962 * @maxsize:  the maximum when to apply this
2963 * @gfp: GFP allocation flags
2964 *
2965 * Return: status of transformation
2966 */
2967int spi_split_transfers_maxsize(struct spi_controller *ctlr,
2968				struct spi_message *msg,
2969				size_t maxsize,
2970				gfp_t gfp)
2971{
2972	struct spi_transfer *xfer;
2973	int ret;
2974
2975	/* iterate over the transfer_list,
2976	 * but note that xfer is advanced to the last transfer inserted
2977	 * to avoid checking sizes again unnecessarily (also xfer does
2978	 * potentiall belong to a different list by the time the
2979	 * replacement has happened
2980	 */
2981	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2982		if (xfer->len > maxsize) {
2983			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
2984							   maxsize, gfp);
2985			if (ret)
2986				return ret;
2987		}
2988	}
2989
2990	return 0;
2991}
2992EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2993
2994/*-------------------------------------------------------------------------*/
2995
2996/* Core methods for SPI controller protocol drivers.  Some of the
2997 * other core methods are currently defined as inline functions.
2998 */
2999
3000static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3001					u8 bits_per_word)
3002{
3003	if (ctlr->bits_per_word_mask) {
3004		/* Only 32 bits fit in the mask */
3005		if (bits_per_word > 32)
3006			return -EINVAL;
3007		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3008			return -EINVAL;
3009	}
3010
3011	return 0;
3012}
3013
3014/**
3015 * spi_setup - setup SPI mode and clock rate
3016 * @spi: the device whose settings are being modified
3017 * Context: can sleep, and no requests are queued to the device
3018 *
3019 * SPI protocol drivers may need to update the transfer mode if the
3020 * device doesn't work with its default.  They may likewise need
3021 * to update clock rates or word sizes from initial values.  This function
3022 * changes those settings, and must be called from a context that can sleep.
3023 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3024 * effect the next time the device is selected and data is transferred to
3025 * or from it.  When this function returns, the spi device is deselected.
3026 *
3027 * Note that this call will fail if the protocol driver specifies an option
3028 * that the underlying controller or its driver does not support.  For
3029 * example, not all hardware supports wire transfers using nine bit words,
3030 * LSB-first wire encoding, or active-high chipselects.
3031 *
3032 * Return: zero on success, else a negative error code.
3033 */
3034int spi_setup(struct spi_device *spi)
3035{
3036	unsigned	bad_bits, ugly_bits;
3037	int		status;
3038
3039	/* check mode to prevent that DUAL and QUAD set at the same time
 
 
3040	 */
3041	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
3042		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
 
 
3043		dev_err(&spi->dev,
3044		"setup: can not select dual and quad at the same time\n");
3045		return -EINVAL;
3046	}
3047	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3048	 */
3049	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3050		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3051		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3052		return -EINVAL;
3053	/* help drivers fail *cleanly* when they need options
3054	 * that aren't supported with their current controller
3055	 * SPI_CS_WORD has a fallback software implementation,
3056	 * so it is ignored here.
3057	 */
3058	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD);
 
3059	/* nothing prevents from working with active-high CS in case if it
3060	 * is driven by GPIO.
3061	 */
3062	if (gpio_is_valid(spi->cs_gpio))
3063		bad_bits &= ~SPI_CS_HIGH;
3064	ugly_bits = bad_bits &
3065		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3066		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3067	if (ugly_bits) {
3068		dev_warn(&spi->dev,
3069			 "setup: ignoring unsupported mode bits %x\n",
3070			 ugly_bits);
3071		spi->mode &= ~ugly_bits;
3072		bad_bits &= ~ugly_bits;
3073	}
3074	if (bad_bits) {
3075		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3076			bad_bits);
3077		return -EINVAL;
3078	}
3079
3080	if (!spi->bits_per_word)
3081		spi->bits_per_word = 8;
3082
3083	status = __spi_validate_bits_per_word(spi->controller,
3084					      spi->bits_per_word);
3085	if (status)
3086		return status;
3087
3088	if (!spi->max_speed_hz)
 
 
3089		spi->max_speed_hz = spi->controller->max_speed_hz;
3090
3091	if (spi->controller->setup)
 
 
3092		status = spi->controller->setup(spi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3093
3094	spi_set_cs(spi, false);
 
 
 
 
 
 
 
3095
3096	if (spi->rt && !spi->controller->rt) {
3097		spi->controller->rt = true;
3098		spi_set_thread_rt(spi->controller);
3099	}
3100
3101	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3102			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
 
 
3103			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3104			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3105			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
3106			(spi->mode & SPI_LOOP) ? "loopback, " : "",
3107			spi->bits_per_word, spi->max_speed_hz,
3108			status);
3109
3110	return status;
3111}
3112EXPORT_SYMBOL_GPL(spi_setup);
3113
3114/**
3115 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3116 * @spi: the device that requires specific CS timing configuration
3117 * @setup: CS setup time in terms of clock count
3118 * @hold: CS hold time in terms of clock count
3119 * @inactive_dly: CS inactive delay between transfers in terms of clock count
3120 */
3121void spi_set_cs_timing(struct spi_device *spi, u8 setup, u8 hold,
3122		       u8 inactive_dly)
3123{
3124	if (spi->controller->set_cs_timing)
3125		spi->controller->set_cs_timing(spi, setup, hold, inactive_dly);
 
 
 
 
 
 
 
 
 
 
 
 
 
3126}
3127EXPORT_SYMBOL_GPL(spi_set_cs_timing);
3128
3129static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3130{
3131	struct spi_controller *ctlr = spi->controller;
3132	struct spi_transfer *xfer;
3133	int w_size;
3134
3135	if (list_empty(&message->transfers))
3136		return -EINVAL;
3137
3138	/* If an SPI controller does not support toggling the CS line on each
3139	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3140	 * for the CS line, we can emulate the CS-per-word hardware function by
3141	 * splitting transfers into one-word transfers and ensuring that
3142	 * cs_change is set for each transfer.
3143	 */
3144	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3145					  spi->cs_gpiod ||
3146					  gpio_is_valid(spi->cs_gpio))) {
3147		size_t maxsize;
3148		int ret;
3149
3150		maxsize = (spi->bits_per_word + 7) / 8;
3151
3152		/* spi_split_transfers_maxsize() requires message->spi */
3153		message->spi = spi;
3154
3155		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3156						  GFP_KERNEL);
3157		if (ret)
3158			return ret;
3159
3160		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3161			/* don't change cs_change on the last entry in the list */
3162			if (list_is_last(&xfer->transfer_list, &message->transfers))
3163				break;
3164			xfer->cs_change = 1;
3165		}
3166	}
3167
3168	/* Half-duplex links include original MicroWire, and ones with
3169	 * only one data pin like SPI_3WIRE (switches direction) or where
3170	 * either MOSI or MISO is missing.  They can also be caused by
3171	 * software limitations.
3172	 */
3173	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3174	    (spi->mode & SPI_3WIRE)) {
3175		unsigned flags = ctlr->flags;
3176
3177		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3178			if (xfer->rx_buf && xfer->tx_buf)
3179				return -EINVAL;
3180			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3181				return -EINVAL;
3182			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3183				return -EINVAL;
3184		}
3185	}
3186
3187	/**
3188	 * Set transfer bits_per_word and max speed as spi device default if
3189	 * it is not set for this transfer.
3190	 * Set transfer tx_nbits and rx_nbits as single transfer default
3191	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3192	 * Ensure transfer word_delay is at least as long as that required by
3193	 * device itself.
3194	 */
3195	message->frame_length = 0;
3196	list_for_each_entry(xfer, &message->transfers, transfer_list) {
3197		xfer->effective_speed_hz = 0;
3198		message->frame_length += xfer->len;
3199		if (!xfer->bits_per_word)
3200			xfer->bits_per_word = spi->bits_per_word;
3201
3202		if (!xfer->speed_hz)
3203			xfer->speed_hz = spi->max_speed_hz;
3204
3205		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3206			xfer->speed_hz = ctlr->max_speed_hz;
3207
3208		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3209			return -EINVAL;
3210
3211		/*
3212		 * SPI transfer length should be multiple of SPI word size
3213		 * where SPI word size should be power-of-two multiple
3214		 */
3215		if (xfer->bits_per_word <= 8)
3216			w_size = 1;
3217		else if (xfer->bits_per_word <= 16)
3218			w_size = 2;
3219		else
3220			w_size = 4;
3221
3222		/* No partial transfers accepted */
3223		if (xfer->len % w_size)
3224			return -EINVAL;
3225
3226		if (xfer->speed_hz && ctlr->min_speed_hz &&
3227		    xfer->speed_hz < ctlr->min_speed_hz)
3228			return -EINVAL;
3229
3230		if (xfer->tx_buf && !xfer->tx_nbits)
3231			xfer->tx_nbits = SPI_NBITS_SINGLE;
3232		if (xfer->rx_buf && !xfer->rx_nbits)
3233			xfer->rx_nbits = SPI_NBITS_SINGLE;
3234		/* check transfer tx/rx_nbits:
3235		 * 1. check the value matches one of single, dual and quad
3236		 * 2. check tx/rx_nbits match the mode in spi_device
3237		 */
3238		if (xfer->tx_buf) {
 
 
3239			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3240				xfer->tx_nbits != SPI_NBITS_DUAL &&
3241				xfer->tx_nbits != SPI_NBITS_QUAD)
3242				return -EINVAL;
3243			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3244				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3245				return -EINVAL;
3246			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3247				!(spi->mode & SPI_TX_QUAD))
3248				return -EINVAL;
3249		}
3250		/* check transfer rx_nbits */
3251		if (xfer->rx_buf) {
 
 
3252			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3253				xfer->rx_nbits != SPI_NBITS_DUAL &&
3254				xfer->rx_nbits != SPI_NBITS_QUAD)
3255				return -EINVAL;
3256			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3257				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3258				return -EINVAL;
3259			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3260				!(spi->mode & SPI_RX_QUAD))
3261				return -EINVAL;
3262		}
3263
3264		if (xfer->word_delay_usecs < spi->word_delay_usecs)
3265			xfer->word_delay_usecs = spi->word_delay_usecs;
3266	}
3267
3268	message->status = -EINPROGRESS;
3269
3270	return 0;
3271}
3272
3273static int __spi_async(struct spi_device *spi, struct spi_message *message)
3274{
3275	struct spi_controller *ctlr = spi->controller;
 
3276
3277	/*
3278	 * Some controllers do not support doing regular SPI transfers. Return
3279	 * ENOTSUPP when this is the case.
3280	 */
3281	if (!ctlr->transfer)
3282		return -ENOTSUPP;
3283
3284	message->spi = spi;
3285
3286	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3287	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3288
3289	trace_spi_message_submit(message);
3290
 
 
 
 
 
 
 
3291	return ctlr->transfer(spi, message);
3292}
3293
3294/**
3295 * spi_async - asynchronous SPI transfer
3296 * @spi: device with which data will be exchanged
3297 * @message: describes the data transfers, including completion callback
3298 * Context: any (irqs may be blocked, etc)
3299 *
3300 * This call may be used in_irq and other contexts which can't sleep,
3301 * as well as from task contexts which can sleep.
3302 *
3303 * The completion callback is invoked in a context which can't sleep.
3304 * Before that invocation, the value of message->status is undefined.
3305 * When the callback is issued, message->status holds either zero (to
3306 * indicate complete success) or a negative error code.  After that
3307 * callback returns, the driver which issued the transfer request may
3308 * deallocate the associated memory; it's no longer in use by any SPI
3309 * core or controller driver code.
3310 *
3311 * Note that although all messages to a spi_device are handled in
3312 * FIFO order, messages may go to different devices in other orders.
3313 * Some device might be higher priority, or have various "hard" access
3314 * time requirements, for example.
3315 *
3316 * On detection of any fault during the transfer, processing of
3317 * the entire message is aborted, and the device is deselected.
3318 * Until returning from the associated message completion callback,
3319 * no other spi_message queued to that device will be processed.
3320 * (This rule applies equally to all the synchronous transfer calls,
3321 * which are wrappers around this core asynchronous primitive.)
3322 *
3323 * Return: zero on success, else a negative error code.
3324 */
3325int spi_async(struct spi_device *spi, struct spi_message *message)
3326{
3327	struct spi_controller *ctlr = spi->controller;
3328	int ret;
3329	unsigned long flags;
3330
3331	ret = __spi_validate(spi, message);
3332	if (ret != 0)
3333		return ret;
3334
3335	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3336
3337	if (ctlr->bus_lock_flag)
3338		ret = -EBUSY;
3339	else
3340		ret = __spi_async(spi, message);
3341
3342	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3343
3344	return ret;
3345}
3346EXPORT_SYMBOL_GPL(spi_async);
3347
3348/**
3349 * spi_async_locked - version of spi_async with exclusive bus usage
3350 * @spi: device with which data will be exchanged
3351 * @message: describes the data transfers, including completion callback
3352 * Context: any (irqs may be blocked, etc)
3353 *
3354 * This call may be used in_irq and other contexts which can't sleep,
3355 * as well as from task contexts which can sleep.
3356 *
3357 * The completion callback is invoked in a context which can't sleep.
3358 * Before that invocation, the value of message->status is undefined.
3359 * When the callback is issued, message->status holds either zero (to
3360 * indicate complete success) or a negative error code.  After that
3361 * callback returns, the driver which issued the transfer request may
3362 * deallocate the associated memory; it's no longer in use by any SPI
3363 * core or controller driver code.
3364 *
3365 * Note that although all messages to a spi_device are handled in
3366 * FIFO order, messages may go to different devices in other orders.
3367 * Some device might be higher priority, or have various "hard" access
3368 * time requirements, for example.
3369 *
3370 * On detection of any fault during the transfer, processing of
3371 * the entire message is aborted, and the device is deselected.
3372 * Until returning from the associated message completion callback,
3373 * no other spi_message queued to that device will be processed.
3374 * (This rule applies equally to all the synchronous transfer calls,
3375 * which are wrappers around this core asynchronous primitive.)
3376 *
3377 * Return: zero on success, else a negative error code.
3378 */
3379int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3380{
3381	struct spi_controller *ctlr = spi->controller;
3382	int ret;
3383	unsigned long flags;
3384
3385	ret = __spi_validate(spi, message);
3386	if (ret != 0)
3387		return ret;
3388
3389	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3390
3391	ret = __spi_async(spi, message);
3392
3393	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3394
3395	return ret;
3396
3397}
3398EXPORT_SYMBOL_GPL(spi_async_locked);
3399
3400/*-------------------------------------------------------------------------*/
3401
3402/* Utility methods for SPI protocol drivers, layered on
3403 * top of the core.  Some other utility methods are defined as
3404 * inline functions.
3405 */
3406
3407static void spi_complete(void *arg)
3408{
3409	complete(arg);
3410}
3411
3412static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3413{
3414	DECLARE_COMPLETION_ONSTACK(done);
3415	int status;
3416	struct spi_controller *ctlr = spi->controller;
3417	unsigned long flags;
3418
3419	status = __spi_validate(spi, message);
3420	if (status != 0)
3421		return status;
3422
3423	message->complete = spi_complete;
3424	message->context = &done;
3425	message->spi = spi;
3426
3427	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3428	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3429
3430	/* If we're not using the legacy transfer method then we will
3431	 * try to transfer in the calling context so special case.
3432	 * This code would be less tricky if we could remove the
3433	 * support for driver implemented message queues.
3434	 */
3435	if (ctlr->transfer == spi_queued_transfer) {
3436		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3437
3438		trace_spi_message_submit(message);
3439
3440		status = __spi_queued_transfer(spi, message, false);
3441
3442		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3443	} else {
3444		status = spi_async_locked(spi, message);
3445	}
3446
3447	if (status == 0) {
3448		/* Push out the messages in the calling context if we
3449		 * can.
3450		 */
3451		if (ctlr->transfer == spi_queued_transfer) {
3452			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3453						       spi_sync_immediate);
3454			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3455						       spi_sync_immediate);
3456			__spi_pump_messages(ctlr, false);
3457		}
3458
3459		wait_for_completion(&done);
3460		status = message->status;
3461	}
3462	message->context = NULL;
3463	return status;
3464}
3465
3466/**
3467 * spi_sync - blocking/synchronous SPI data transfers
3468 * @spi: device with which data will be exchanged
3469 * @message: describes the data transfers
3470 * Context: can sleep
3471 *
3472 * This call may only be used from a context that may sleep.  The sleep
3473 * is non-interruptible, and has no timeout.  Low-overhead controller
3474 * drivers may DMA directly into and out of the message buffers.
3475 *
3476 * Note that the SPI device's chip select is active during the message,
3477 * and then is normally disabled between messages.  Drivers for some
3478 * frequently-used devices may want to minimize costs of selecting a chip,
3479 * by leaving it selected in anticipation that the next message will go
3480 * to the same chip.  (That may increase power usage.)
3481 *
3482 * Also, the caller is guaranteeing that the memory associated with the
3483 * message will not be freed before this call returns.
3484 *
3485 * Return: zero on success, else a negative error code.
3486 */
3487int spi_sync(struct spi_device *spi, struct spi_message *message)
3488{
3489	int ret;
3490
3491	mutex_lock(&spi->controller->bus_lock_mutex);
3492	ret = __spi_sync(spi, message);
3493	mutex_unlock(&spi->controller->bus_lock_mutex);
3494
3495	return ret;
3496}
3497EXPORT_SYMBOL_GPL(spi_sync);
3498
3499/**
3500 * spi_sync_locked - version of spi_sync with exclusive bus usage
3501 * @spi: device with which data will be exchanged
3502 * @message: describes the data transfers
3503 * Context: can sleep
3504 *
3505 * This call may only be used from a context that may sleep.  The sleep
3506 * is non-interruptible, and has no timeout.  Low-overhead controller
3507 * drivers may DMA directly into and out of the message buffers.
3508 *
3509 * This call should be used by drivers that require exclusive access to the
3510 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3511 * be released by a spi_bus_unlock call when the exclusive access is over.
3512 *
3513 * Return: zero on success, else a negative error code.
3514 */
3515int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3516{
3517	return __spi_sync(spi, message);
3518}
3519EXPORT_SYMBOL_GPL(spi_sync_locked);
3520
3521/**
3522 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3523 * @ctlr: SPI bus master that should be locked for exclusive bus access
3524 * Context: can sleep
3525 *
3526 * This call may only be used from a context that may sleep.  The sleep
3527 * is non-interruptible, and has no timeout.
3528 *
3529 * This call should be used by drivers that require exclusive access to the
3530 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3531 * exclusive access is over. Data transfer must be done by spi_sync_locked
3532 * and spi_async_locked calls when the SPI bus lock is held.
3533 *
3534 * Return: always zero.
3535 */
3536int spi_bus_lock(struct spi_controller *ctlr)
3537{
3538	unsigned long flags;
3539
3540	mutex_lock(&ctlr->bus_lock_mutex);
3541
3542	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3543	ctlr->bus_lock_flag = 1;
3544	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3545
3546	/* mutex remains locked until spi_bus_unlock is called */
3547
3548	return 0;
3549}
3550EXPORT_SYMBOL_GPL(spi_bus_lock);
3551
3552/**
3553 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3554 * @ctlr: SPI bus master that was locked for exclusive bus access
3555 * Context: can sleep
3556 *
3557 * This call may only be used from a context that may sleep.  The sleep
3558 * is non-interruptible, and has no timeout.
3559 *
3560 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3561 * call.
3562 *
3563 * Return: always zero.
3564 */
3565int spi_bus_unlock(struct spi_controller *ctlr)
3566{
3567	ctlr->bus_lock_flag = 0;
3568
3569	mutex_unlock(&ctlr->bus_lock_mutex);
3570
3571	return 0;
3572}
3573EXPORT_SYMBOL_GPL(spi_bus_unlock);
3574
3575/* portable code must never pass more than 32 bytes */
3576#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
3577
3578static u8	*buf;
3579
3580/**
3581 * spi_write_then_read - SPI synchronous write followed by read
3582 * @spi: device with which data will be exchanged
3583 * @txbuf: data to be written (need not be dma-safe)
3584 * @n_tx: size of txbuf, in bytes
3585 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3586 * @n_rx: size of rxbuf, in bytes
3587 * Context: can sleep
3588 *
3589 * This performs a half duplex MicroWire style transaction with the
3590 * device, sending txbuf and then reading rxbuf.  The return value
3591 * is zero for success, else a negative errno status code.
3592 * This call may only be used from a context that may sleep.
3593 *
3594 * Parameters to this routine are always copied using a small buffer;
3595 * portable code should never use this for more than 32 bytes.
3596 * Performance-sensitive or bulk transfer code should instead use
3597 * spi_{async,sync}() calls with dma-safe buffers.
3598 *
3599 * Return: zero on success, else a negative error code.
3600 */
3601int spi_write_then_read(struct spi_device *spi,
3602		const void *txbuf, unsigned n_tx,
3603		void *rxbuf, unsigned n_rx)
3604{
3605	static DEFINE_MUTEX(lock);
3606
3607	int			status;
3608	struct spi_message	message;
3609	struct spi_transfer	x[2];
3610	u8			*local_buf;
3611
3612	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
3613	 * copying here, (as a pure convenience thing), but we can
3614	 * keep heap costs out of the hot path unless someone else is
3615	 * using the pre-allocated buffer or the transfer is too large.
3616	 */
3617	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3618		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3619				    GFP_KERNEL | GFP_DMA);
3620		if (!local_buf)
3621			return -ENOMEM;
3622	} else {
3623		local_buf = buf;
3624	}
3625
3626	spi_message_init(&message);
3627	memset(x, 0, sizeof(x));
3628	if (n_tx) {
3629		x[0].len = n_tx;
3630		spi_message_add_tail(&x[0], &message);
3631	}
3632	if (n_rx) {
3633		x[1].len = n_rx;
3634		spi_message_add_tail(&x[1], &message);
3635	}
3636
3637	memcpy(local_buf, txbuf, n_tx);
3638	x[0].tx_buf = local_buf;
3639	x[1].rx_buf = local_buf + n_tx;
3640
3641	/* do the i/o */
3642	status = spi_sync(spi, &message);
3643	if (status == 0)
3644		memcpy(rxbuf, x[1].rx_buf, n_rx);
3645
3646	if (x[0].tx_buf == buf)
3647		mutex_unlock(&lock);
3648	else
3649		kfree(local_buf);
3650
3651	return status;
3652}
3653EXPORT_SYMBOL_GPL(spi_write_then_read);
3654
3655/*-------------------------------------------------------------------------*/
3656
3657#if IS_ENABLED(CONFIG_OF)
3658/* must call put_device() when done with returned spi_device device */
3659struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3660{
3661	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
3662
3663	return dev ? to_spi_device(dev) : NULL;
3664}
3665EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
3666#endif /* IS_ENABLED(CONFIG_OF) */
3667
3668#if IS_ENABLED(CONFIG_OF_DYNAMIC)
3669/* the spi controllers are not using spi_bus, so we find it with another way */
3670static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3671{
3672	struct device *dev;
3673
3674	dev = class_find_device_by_of_node(&spi_master_class, node);
3675	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3676		dev = class_find_device_by_of_node(&spi_slave_class, node);
3677	if (!dev)
3678		return NULL;
3679
3680	/* reference got in class_find_device */
3681	return container_of(dev, struct spi_controller, dev);
3682}
3683
3684static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3685			 void *arg)
3686{
3687	struct of_reconfig_data *rd = arg;
3688	struct spi_controller *ctlr;
3689	struct spi_device *spi;
3690
3691	switch (of_reconfig_get_state_change(action, arg)) {
3692	case OF_RECONFIG_CHANGE_ADD:
3693		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3694		if (ctlr == NULL)
3695			return NOTIFY_OK;	/* not for us */
3696
3697		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3698			put_device(&ctlr->dev);
3699			return NOTIFY_OK;
3700		}
3701
3702		spi = of_register_spi_device(ctlr, rd->dn);
3703		put_device(&ctlr->dev);
3704
3705		if (IS_ERR(spi)) {
3706			pr_err("%s: failed to create for '%pOF'\n",
3707					__func__, rd->dn);
3708			of_node_clear_flag(rd->dn, OF_POPULATED);
3709			return notifier_from_errno(PTR_ERR(spi));
3710		}
3711		break;
3712
3713	case OF_RECONFIG_CHANGE_REMOVE:
3714		/* already depopulated? */
3715		if (!of_node_check_flag(rd->dn, OF_POPULATED))
3716			return NOTIFY_OK;
3717
3718		/* find our device by node */
3719		spi = of_find_spi_device_by_node(rd->dn);
3720		if (spi == NULL)
3721			return NOTIFY_OK;	/* no? not meant for us */
3722
3723		/* unregister takes one ref away */
3724		spi_unregister_device(spi);
3725
3726		/* and put the reference of the find */
3727		put_device(&spi->dev);
3728		break;
3729	}
3730
3731	return NOTIFY_OK;
3732}
3733
3734static struct notifier_block spi_of_notifier = {
3735	.notifier_call = of_spi_notify,
3736};
3737#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3738extern struct notifier_block spi_of_notifier;
3739#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3740
3741#if IS_ENABLED(CONFIG_ACPI)
3742static int spi_acpi_controller_match(struct device *dev, const void *data)
3743{
3744	return ACPI_COMPANION(dev->parent) == data;
3745}
3746
3747static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
3748{
3749	struct device *dev;
3750
3751	dev = class_find_device(&spi_master_class, NULL, adev,
3752				spi_acpi_controller_match);
3753	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3754		dev = class_find_device(&spi_slave_class, NULL, adev,
3755					spi_acpi_controller_match);
3756	if (!dev)
3757		return NULL;
3758
3759	return container_of(dev, struct spi_controller, dev);
3760}
3761
3762static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3763{
3764	struct device *dev;
3765
3766	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
3767	return dev ? to_spi_device(dev) : NULL;
3768}
3769
3770static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3771			   void *arg)
3772{
3773	struct acpi_device *adev = arg;
3774	struct spi_controller *ctlr;
3775	struct spi_device *spi;
3776
3777	switch (value) {
3778	case ACPI_RECONFIG_DEVICE_ADD:
3779		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
3780		if (!ctlr)
3781			break;
3782
3783		acpi_register_spi_device(ctlr, adev);
3784		put_device(&ctlr->dev);
3785		break;
3786	case ACPI_RECONFIG_DEVICE_REMOVE:
3787		if (!acpi_device_enumerated(adev))
3788			break;
3789
3790		spi = acpi_spi_find_device_by_adev(adev);
3791		if (!spi)
3792			break;
3793
3794		spi_unregister_device(spi);
3795		put_device(&spi->dev);
3796		break;
3797	}
3798
3799	return NOTIFY_OK;
3800}
3801
3802static struct notifier_block spi_acpi_notifier = {
3803	.notifier_call = acpi_spi_notify,
3804};
3805#else
3806extern struct notifier_block spi_acpi_notifier;
3807#endif
3808
3809static int __init spi_init(void)
3810{
3811	int	status;
3812
3813	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3814	if (!buf) {
3815		status = -ENOMEM;
3816		goto err0;
3817	}
3818
3819	status = bus_register(&spi_bus_type);
3820	if (status < 0)
3821		goto err1;
3822
3823	status = class_register(&spi_master_class);
3824	if (status < 0)
3825		goto err2;
3826
3827	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
3828		status = class_register(&spi_slave_class);
3829		if (status < 0)
3830			goto err3;
3831	}
3832
3833	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3834		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3835	if (IS_ENABLED(CONFIG_ACPI))
3836		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3837
3838	return 0;
3839
3840err3:
3841	class_unregister(&spi_master_class);
3842err2:
3843	bus_unregister(&spi_bus_type);
3844err1:
3845	kfree(buf);
3846	buf = NULL;
3847err0:
3848	return status;
3849}
3850
3851/* board_info is normally registered in arch_initcall(),
3852 * but even essential drivers wait till later
3853 *
3854 * REVISIT only boardinfo really needs static linking. the rest (device and
3855 * driver registration) _could_ be dynamically linked (modular) ... costs
3856 * include needing to have boardinfo data structures be much more public.
3857 */
3858postcore_initcall(spi_init);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2// SPI init/core code
   3//
   4// Copyright (C) 2005 David Brownell
   5// Copyright (C) 2008 Secret Lab Technologies Ltd.
   6
   7#include <linux/kernel.h>
   8#include <linux/device.h>
   9#include <linux/init.h>
  10#include <linux/cache.h>
  11#include <linux/dma-mapping.h>
  12#include <linux/dmaengine.h>
  13#include <linux/mutex.h>
  14#include <linux/of_device.h>
  15#include <linux/of_irq.h>
  16#include <linux/clk/clk-conf.h>
  17#include <linux/slab.h>
  18#include <linux/mod_devicetable.h>
  19#include <linux/spi/spi.h>
  20#include <linux/spi/spi-mem.h>
  21#include <linux/of_gpio.h>
  22#include <linux/gpio/consumer.h>
  23#include <linux/pm_runtime.h>
  24#include <linux/pm_domain.h>
  25#include <linux/property.h>
  26#include <linux/export.h>
  27#include <linux/sched/rt.h>
  28#include <uapi/linux/sched/types.h>
  29#include <linux/delay.h>
  30#include <linux/kthread.h>
  31#include <linux/ioport.h>
  32#include <linux/acpi.h>
  33#include <linux/highmem.h>
  34#include <linux/idr.h>
  35#include <linux/platform_data/x86/apple.h>
  36
  37#define CREATE_TRACE_POINTS
  38#include <trace/events/spi.h>
  39EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
  40EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
  41
  42#include "internals.h"
  43
  44static DEFINE_IDR(spi_master_idr);
  45
  46static void spidev_release(struct device *dev)
  47{
  48	struct spi_device	*spi = to_spi_device(dev);
  49
 
 
 
 
  50	spi_controller_put(spi->controller);
  51	kfree(spi->driver_override);
  52	kfree(spi);
  53}
  54
  55static ssize_t
  56modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  57{
  58	const struct spi_device	*spi = to_spi_device(dev);
  59	int len;
  60
  61	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
  62	if (len != -ENODEV)
  63		return len;
  64
  65	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
  66}
  67static DEVICE_ATTR_RO(modalias);
  68
  69static ssize_t driver_override_store(struct device *dev,
  70				     struct device_attribute *a,
  71				     const char *buf, size_t count)
  72{
  73	struct spi_device *spi = to_spi_device(dev);
  74	const char *end = memchr(buf, '\n', count);
  75	const size_t len = end ? end - buf : count;
  76	const char *driver_override, *old;
  77
  78	/* We need to keep extra room for a newline when displaying value */
  79	if (len >= (PAGE_SIZE - 1))
  80		return -EINVAL;
  81
  82	driver_override = kstrndup(buf, len, GFP_KERNEL);
  83	if (!driver_override)
  84		return -ENOMEM;
  85
  86	device_lock(dev);
  87	old = spi->driver_override;
  88	if (len) {
  89		spi->driver_override = driver_override;
  90	} else {
  91		/* Empty string, disable driver override */
  92		spi->driver_override = NULL;
  93		kfree(driver_override);
  94	}
  95	device_unlock(dev);
  96	kfree(old);
  97
  98	return count;
  99}
 100
 101static ssize_t driver_override_show(struct device *dev,
 102				    struct device_attribute *a, char *buf)
 103{
 104	const struct spi_device *spi = to_spi_device(dev);
 105	ssize_t len;
 106
 107	device_lock(dev);
 108	len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
 109	device_unlock(dev);
 110	return len;
 111}
 112static DEVICE_ATTR_RW(driver_override);
 113
 114#define SPI_STATISTICS_ATTRS(field, file)				\
 115static ssize_t spi_controller_##field##_show(struct device *dev,	\
 116					     struct device_attribute *attr, \
 117					     char *buf)			\
 118{									\
 119	struct spi_controller *ctlr = container_of(dev,			\
 120					 struct spi_controller, dev);	\
 121	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
 122}									\
 123static struct device_attribute dev_attr_spi_controller_##field = {	\
 124	.attr = { .name = file, .mode = 0444 },				\
 125	.show = spi_controller_##field##_show,				\
 126};									\
 127static ssize_t spi_device_##field##_show(struct device *dev,		\
 128					 struct device_attribute *attr,	\
 129					char *buf)			\
 130{									\
 131	struct spi_device *spi = to_spi_device(dev);			\
 132	return spi_statistics_##field##_show(&spi->statistics, buf);	\
 133}									\
 134static struct device_attribute dev_attr_spi_device_##field = {		\
 135	.attr = { .name = file, .mode = 0444 },				\
 136	.show = spi_device_##field##_show,				\
 137}
 138
 139#define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
 140static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
 141					    char *buf)			\
 142{									\
 143	unsigned long flags;						\
 144	ssize_t len;							\
 145	spin_lock_irqsave(&stat->lock, flags);				\
 146	len = sprintf(buf, format_string, stat->field);			\
 147	spin_unlock_irqrestore(&stat->lock, flags);			\
 148	return len;							\
 149}									\
 150SPI_STATISTICS_ATTRS(name, file)
 151
 152#define SPI_STATISTICS_SHOW(field, format_string)			\
 153	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
 154				 field, format_string)
 155
 156SPI_STATISTICS_SHOW(messages, "%lu");
 157SPI_STATISTICS_SHOW(transfers, "%lu");
 158SPI_STATISTICS_SHOW(errors, "%lu");
 159SPI_STATISTICS_SHOW(timedout, "%lu");
 160
 161SPI_STATISTICS_SHOW(spi_sync, "%lu");
 162SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
 163SPI_STATISTICS_SHOW(spi_async, "%lu");
 164
 165SPI_STATISTICS_SHOW(bytes, "%llu");
 166SPI_STATISTICS_SHOW(bytes_rx, "%llu");
 167SPI_STATISTICS_SHOW(bytes_tx, "%llu");
 168
 169#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
 170	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
 171				 "transfer_bytes_histo_" number,	\
 172				 transfer_bytes_histo[index],  "%lu")
 173SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
 174SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
 175SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
 176SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
 177SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
 178SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
 179SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
 180SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
 181SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
 182SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
 183SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
 184SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
 185SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
 186SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
 187SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
 188SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
 189SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
 190
 191SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
 192
 193static struct attribute *spi_dev_attrs[] = {
 194	&dev_attr_modalias.attr,
 195	&dev_attr_driver_override.attr,
 196	NULL,
 197};
 198
 199static const struct attribute_group spi_dev_group = {
 200	.attrs  = spi_dev_attrs,
 201};
 202
 203static struct attribute *spi_device_statistics_attrs[] = {
 204	&dev_attr_spi_device_messages.attr,
 205	&dev_attr_spi_device_transfers.attr,
 206	&dev_attr_spi_device_errors.attr,
 207	&dev_attr_spi_device_timedout.attr,
 208	&dev_attr_spi_device_spi_sync.attr,
 209	&dev_attr_spi_device_spi_sync_immediate.attr,
 210	&dev_attr_spi_device_spi_async.attr,
 211	&dev_attr_spi_device_bytes.attr,
 212	&dev_attr_spi_device_bytes_rx.attr,
 213	&dev_attr_spi_device_bytes_tx.attr,
 214	&dev_attr_spi_device_transfer_bytes_histo0.attr,
 215	&dev_attr_spi_device_transfer_bytes_histo1.attr,
 216	&dev_attr_spi_device_transfer_bytes_histo2.attr,
 217	&dev_attr_spi_device_transfer_bytes_histo3.attr,
 218	&dev_attr_spi_device_transfer_bytes_histo4.attr,
 219	&dev_attr_spi_device_transfer_bytes_histo5.attr,
 220	&dev_attr_spi_device_transfer_bytes_histo6.attr,
 221	&dev_attr_spi_device_transfer_bytes_histo7.attr,
 222	&dev_attr_spi_device_transfer_bytes_histo8.attr,
 223	&dev_attr_spi_device_transfer_bytes_histo9.attr,
 224	&dev_attr_spi_device_transfer_bytes_histo10.attr,
 225	&dev_attr_spi_device_transfer_bytes_histo11.attr,
 226	&dev_attr_spi_device_transfer_bytes_histo12.attr,
 227	&dev_attr_spi_device_transfer_bytes_histo13.attr,
 228	&dev_attr_spi_device_transfer_bytes_histo14.attr,
 229	&dev_attr_spi_device_transfer_bytes_histo15.attr,
 230	&dev_attr_spi_device_transfer_bytes_histo16.attr,
 231	&dev_attr_spi_device_transfers_split_maxsize.attr,
 232	NULL,
 233};
 234
 235static const struct attribute_group spi_device_statistics_group = {
 236	.name  = "statistics",
 237	.attrs  = spi_device_statistics_attrs,
 238};
 239
 240static const struct attribute_group *spi_dev_groups[] = {
 241	&spi_dev_group,
 242	&spi_device_statistics_group,
 243	NULL,
 244};
 245
 246static struct attribute *spi_controller_statistics_attrs[] = {
 247	&dev_attr_spi_controller_messages.attr,
 248	&dev_attr_spi_controller_transfers.attr,
 249	&dev_attr_spi_controller_errors.attr,
 250	&dev_attr_spi_controller_timedout.attr,
 251	&dev_attr_spi_controller_spi_sync.attr,
 252	&dev_attr_spi_controller_spi_sync_immediate.attr,
 253	&dev_attr_spi_controller_spi_async.attr,
 254	&dev_attr_spi_controller_bytes.attr,
 255	&dev_attr_spi_controller_bytes_rx.attr,
 256	&dev_attr_spi_controller_bytes_tx.attr,
 257	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
 258	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
 259	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
 260	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
 261	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
 262	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
 263	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
 264	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
 265	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
 266	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
 267	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
 268	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
 269	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
 270	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
 271	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
 272	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
 273	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
 274	&dev_attr_spi_controller_transfers_split_maxsize.attr,
 275	NULL,
 276};
 277
 278static const struct attribute_group spi_controller_statistics_group = {
 279	.name  = "statistics",
 280	.attrs  = spi_controller_statistics_attrs,
 281};
 282
 283static const struct attribute_group *spi_master_groups[] = {
 284	&spi_controller_statistics_group,
 285	NULL,
 286};
 287
 288void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
 289				       struct spi_transfer *xfer,
 290				       struct spi_controller *ctlr)
 291{
 292	unsigned long flags;
 293	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
 294
 295	if (l2len < 0)
 296		l2len = 0;
 297
 298	spin_lock_irqsave(&stats->lock, flags);
 299
 300	stats->transfers++;
 301	stats->transfer_bytes_histo[l2len]++;
 302
 303	stats->bytes += xfer->len;
 304	if ((xfer->tx_buf) &&
 305	    (xfer->tx_buf != ctlr->dummy_tx))
 306		stats->bytes_tx += xfer->len;
 307	if ((xfer->rx_buf) &&
 308	    (xfer->rx_buf != ctlr->dummy_rx))
 309		stats->bytes_rx += xfer->len;
 310
 311	spin_unlock_irqrestore(&stats->lock, flags);
 312}
 313EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
 314
 315/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 316 * and the sysfs version makes coldplug work too.
 317 */
 318
 319static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
 320						const struct spi_device *sdev)
 321{
 322	while (id->name[0]) {
 323		if (!strcmp(sdev->modalias, id->name))
 324			return id;
 325		id++;
 326	}
 327	return NULL;
 328}
 329
 330const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
 331{
 332	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
 333
 334	return spi_match_id(sdrv->id_table, sdev);
 335}
 336EXPORT_SYMBOL_GPL(spi_get_device_id);
 337
 338static int spi_match_device(struct device *dev, struct device_driver *drv)
 339{
 340	const struct spi_device	*spi = to_spi_device(dev);
 341	const struct spi_driver	*sdrv = to_spi_driver(drv);
 342
 343	/* Check override first, and if set, only use the named driver */
 344	if (spi->driver_override)
 345		return strcmp(spi->driver_override, drv->name) == 0;
 346
 347	/* Attempt an OF style match */
 348	if (of_driver_match_device(dev, drv))
 349		return 1;
 350
 351	/* Then try ACPI */
 352	if (acpi_driver_match_device(dev, drv))
 353		return 1;
 354
 355	if (sdrv->id_table)
 356		return !!spi_match_id(sdrv->id_table, spi);
 357
 358	return strcmp(spi->modalias, drv->name) == 0;
 359}
 360
 361static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
 362{
 363	const struct spi_device		*spi = to_spi_device(dev);
 364	int rc;
 365
 366	rc = acpi_device_uevent_modalias(dev, env);
 367	if (rc != -ENODEV)
 368		return rc;
 369
 370	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
 371}
 372
 373static int spi_probe(struct device *dev)
 
 
 
 
 
 
 
 
 
 374{
 375	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 376	struct spi_device		*spi = to_spi_device(dev);
 377	int ret;
 378
 379	ret = of_clk_set_defaults(dev->of_node, false);
 380	if (ret)
 381		return ret;
 382
 383	if (dev->of_node) {
 384		spi->irq = of_irq_get(dev->of_node, 0);
 385		if (spi->irq == -EPROBE_DEFER)
 386			return -EPROBE_DEFER;
 387		if (spi->irq < 0)
 388			spi->irq = 0;
 389	}
 390
 391	ret = dev_pm_domain_attach(dev, true);
 392	if (ret)
 393		return ret;
 394
 395	if (sdrv->probe) {
 396		ret = sdrv->probe(spi);
 397		if (ret)
 398			dev_pm_domain_detach(dev, true);
 399	}
 400
 401	return ret;
 402}
 403
 404static int spi_remove(struct device *dev)
 405{
 406	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 
 407
 408	if (sdrv->remove) {
 409		int ret;
 410
 411		ret = sdrv->remove(to_spi_device(dev));
 412		if (ret)
 413			dev_warn(dev,
 414				 "Failed to unbind driver (%pe), ignoring\n",
 415				 ERR_PTR(ret));
 416	}
 417
 418	dev_pm_domain_detach(dev, true);
 419
 420	return 0;
 421}
 422
 423static void spi_shutdown(struct device *dev)
 424{
 425	if (dev->driver) {
 426		const struct spi_driver	*sdrv = to_spi_driver(dev->driver);
 427
 428		if (sdrv->shutdown)
 429			sdrv->shutdown(to_spi_device(dev));
 430	}
 431}
 432
 433struct bus_type spi_bus_type = {
 434	.name		= "spi",
 435	.dev_groups	= spi_dev_groups,
 436	.match		= spi_match_device,
 437	.uevent		= spi_uevent,
 438	.probe		= spi_probe,
 439	.remove		= spi_remove,
 440	.shutdown	= spi_shutdown,
 441};
 442EXPORT_SYMBOL_GPL(spi_bus_type);
 443
 444/**
 445 * __spi_register_driver - register a SPI driver
 446 * @owner: owner module of the driver to register
 447 * @sdrv: the driver to register
 448 * Context: can sleep
 449 *
 450 * Return: zero on success, else a negative error code.
 451 */
 452int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
 453{
 454	sdrv->driver.owner = owner;
 455	sdrv->driver.bus = &spi_bus_type;
 
 
 
 
 
 
 456	return driver_register(&sdrv->driver);
 457}
 458EXPORT_SYMBOL_GPL(__spi_register_driver);
 459
 460/*-------------------------------------------------------------------------*/
 461
 462/* SPI devices should normally not be created by SPI device drivers; that
 463 * would make them board-specific.  Similarly with SPI controller drivers.
 464 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 465 * with other readonly (flashable) information about mainboard devices.
 466 */
 467
 468struct boardinfo {
 469	struct list_head	list;
 470	struct spi_board_info	board_info;
 471};
 472
 473static LIST_HEAD(board_list);
 474static LIST_HEAD(spi_controller_list);
 475
 476/*
 477 * Used to protect add/del operation for board_info list and
 478 * spi_controller list, and their matching process
 479 * also used to protect object of type struct idr
 480 */
 481static DEFINE_MUTEX(board_lock);
 482
 483/**
 484 * spi_alloc_device - Allocate a new SPI device
 485 * @ctlr: Controller to which device is connected
 486 * Context: can sleep
 487 *
 488 * Allows a driver to allocate and initialize a spi_device without
 489 * registering it immediately.  This allows a driver to directly
 490 * fill the spi_device with device parameters before calling
 491 * spi_add_device() on it.
 492 *
 493 * Caller is responsible to call spi_add_device() on the returned
 494 * spi_device structure to add it to the SPI controller.  If the caller
 495 * needs to discard the spi_device without adding it, then it should
 496 * call spi_dev_put() on it.
 497 *
 498 * Return: a pointer to the new device, or NULL.
 499 */
 500struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
 501{
 502	struct spi_device	*spi;
 503
 504	if (!spi_controller_get(ctlr))
 505		return NULL;
 506
 507	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
 508	if (!spi) {
 509		spi_controller_put(ctlr);
 510		return NULL;
 511	}
 512
 513	spi->master = spi->controller = ctlr;
 514	spi->dev.parent = &ctlr->dev;
 515	spi->dev.bus = &spi_bus_type;
 516	spi->dev.release = spidev_release;
 517	spi->cs_gpio = -ENOENT;
 518	spi->mode = ctlr->buswidth_override_bits;
 519
 520	spin_lock_init(&spi->statistics.lock);
 521
 522	device_initialize(&spi->dev);
 523	return spi;
 524}
 525EXPORT_SYMBOL_GPL(spi_alloc_device);
 526
 527static void spi_dev_set_name(struct spi_device *spi)
 528{
 529	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
 530
 531	if (adev) {
 532		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
 533		return;
 534	}
 535
 536	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
 537		     spi->chip_select);
 538}
 539
 540static int spi_dev_check(struct device *dev, void *data)
 541{
 542	struct spi_device *spi = to_spi_device(dev);
 543	struct spi_device *new_spi = data;
 544
 545	if (spi->controller == new_spi->controller &&
 546	    spi->chip_select == new_spi->chip_select)
 547		return -EBUSY;
 548	return 0;
 549}
 550
 551static void spi_cleanup(struct spi_device *spi)
 552{
 553	if (spi->controller->cleanup)
 554		spi->controller->cleanup(spi);
 555}
 556
 557static int __spi_add_device(struct spi_device *spi)
 
 
 
 558{
 
 559	struct spi_controller *ctlr = spi->controller;
 560	struct device *dev = ctlr->dev.parent;
 561	int status;
 562
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 563	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
 564	if (status) {
 565		dev_err(dev, "chipselect %d already in use\n",
 566				spi->chip_select);
 567		return status;
 568	}
 569
 570	/* Controller may unregister concurrently */
 571	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
 572	    !device_is_registered(&ctlr->dev)) {
 573		return -ENODEV;
 574	}
 575
 576	/* Descriptors take precedence */
 577	if (ctlr->cs_gpiods)
 578		spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
 579	else if (ctlr->cs_gpios)
 580		spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
 581
 582	/* Drivers may modify this initial i/o setup, but will
 583	 * normally rely on the device being setup.  Devices
 584	 * using SPI_CS_HIGH can't coexist well otherwise...
 585	 */
 586	status = spi_setup(spi);
 587	if (status < 0) {
 588		dev_err(dev, "can't setup %s, status %d\n",
 589				dev_name(&spi->dev), status);
 590		return status;
 591	}
 592
 593	/* Device may be bound to an active driver when this returns */
 594	status = device_add(&spi->dev);
 595	if (status < 0) {
 596		dev_err(dev, "can't add %s, status %d\n",
 597				dev_name(&spi->dev), status);
 598		spi_cleanup(spi);
 599	} else {
 600		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
 601	}
 602
 603	return status;
 604}
 605
 606/**
 607 * spi_add_device - Add spi_device allocated with spi_alloc_device
 608 * @spi: spi_device to register
 609 *
 610 * Companion function to spi_alloc_device.  Devices allocated with
 611 * spi_alloc_device can be added onto the spi bus with this function.
 612 *
 613 * Return: 0 on success; negative errno on failure
 614 */
 615int spi_add_device(struct spi_device *spi)
 616{
 617	struct spi_controller *ctlr = spi->controller;
 618	struct device *dev = ctlr->dev.parent;
 619	int status;
 620
 621	/* Chipselects are numbered 0..max; validate. */
 622	if (spi->chip_select >= ctlr->num_chipselect) {
 623		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
 624			ctlr->num_chipselect);
 625		return -EINVAL;
 626	}
 627
 628	/* Set the bus ID string */
 629	spi_dev_set_name(spi);
 630
 631	/* We need to make sure there's no other device with this
 632	 * chipselect **BEFORE** we call setup(), else we'll trash
 633	 * its configuration.  Lock against concurrent add() calls.
 634	 */
 635	mutex_lock(&ctlr->add_lock);
 636	status = __spi_add_device(spi);
 637	mutex_unlock(&ctlr->add_lock);
 638	return status;
 639}
 640EXPORT_SYMBOL_GPL(spi_add_device);
 641
 642static int spi_add_device_locked(struct spi_device *spi)
 643{
 644	struct spi_controller *ctlr = spi->controller;
 645	struct device *dev = ctlr->dev.parent;
 646
 647	/* Chipselects are numbered 0..max; validate. */
 648	if (spi->chip_select >= ctlr->num_chipselect) {
 649		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
 650			ctlr->num_chipselect);
 651		return -EINVAL;
 652	}
 653
 654	/* Set the bus ID string */
 655	spi_dev_set_name(spi);
 656
 657	WARN_ON(!mutex_is_locked(&ctlr->add_lock));
 658	return __spi_add_device(spi);
 659}
 660
 661/**
 662 * spi_new_device - instantiate one new SPI device
 663 * @ctlr: Controller to which device is connected
 664 * @chip: Describes the SPI device
 665 * Context: can sleep
 666 *
 667 * On typical mainboards, this is purely internal; and it's not needed
 668 * after board init creates the hard-wired devices.  Some development
 669 * platforms may not be able to use spi_register_board_info though, and
 670 * this is exported so that for example a USB or parport based adapter
 671 * driver could add devices (which it would learn about out-of-band).
 672 *
 673 * Return: the new device, or NULL.
 674 */
 675struct spi_device *spi_new_device(struct spi_controller *ctlr,
 676				  struct spi_board_info *chip)
 677{
 678	struct spi_device	*proxy;
 679	int			status;
 680
 681	/* NOTE:  caller did any chip->bus_num checks necessary.
 682	 *
 683	 * Also, unless we change the return value convention to use
 684	 * error-or-pointer (not NULL-or-pointer), troubleshootability
 685	 * suggests syslogged diagnostics are best here (ugh).
 686	 */
 687
 688	proxy = spi_alloc_device(ctlr);
 689	if (!proxy)
 690		return NULL;
 691
 692	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
 693
 694	proxy->chip_select = chip->chip_select;
 695	proxy->max_speed_hz = chip->max_speed_hz;
 696	proxy->mode = chip->mode;
 697	proxy->irq = chip->irq;
 698	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
 699	proxy->dev.platform_data = (void *) chip->platform_data;
 700	proxy->controller_data = chip->controller_data;
 701	proxy->controller_state = NULL;
 702
 703	if (chip->swnode) {
 704		status = device_add_software_node(&proxy->dev, chip->swnode);
 705		if (status) {
 706			dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
 
 707				chip->modalias, status);
 708			goto err_dev_put;
 709		}
 710	}
 711
 712	status = spi_add_device(proxy);
 713	if (status < 0)
 714		goto err_dev_put;
 715
 716	return proxy;
 717
 
 
 
 718err_dev_put:
 719	device_remove_software_node(&proxy->dev);
 720	spi_dev_put(proxy);
 721	return NULL;
 722}
 723EXPORT_SYMBOL_GPL(spi_new_device);
 724
 725/**
 726 * spi_unregister_device - unregister a single SPI device
 727 * @spi: spi_device to unregister
 728 *
 729 * Start making the passed SPI device vanish. Normally this would be handled
 730 * by spi_unregister_controller().
 731 */
 732void spi_unregister_device(struct spi_device *spi)
 733{
 734	if (!spi)
 735		return;
 736
 737	if (spi->dev.of_node) {
 738		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
 739		of_node_put(spi->dev.of_node);
 740	}
 741	if (ACPI_COMPANION(&spi->dev))
 742		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
 743	device_remove_software_node(&spi->dev);
 744	device_del(&spi->dev);
 745	spi_cleanup(spi);
 746	put_device(&spi->dev);
 747}
 748EXPORT_SYMBOL_GPL(spi_unregister_device);
 749
 750static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
 751					      struct spi_board_info *bi)
 752{
 753	struct spi_device *dev;
 754
 755	if (ctlr->bus_num != bi->bus_num)
 756		return;
 757
 758	dev = spi_new_device(ctlr, bi);
 759	if (!dev)
 760		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
 761			bi->modalias);
 762}
 763
 764/**
 765 * spi_register_board_info - register SPI devices for a given board
 766 * @info: array of chip descriptors
 767 * @n: how many descriptors are provided
 768 * Context: can sleep
 769 *
 770 * Board-specific early init code calls this (probably during arch_initcall)
 771 * with segments of the SPI device table.  Any device nodes are created later,
 772 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 773 * this table of devices forever, so that reloading a controller driver will
 774 * not make Linux forget about these hard-wired devices.
 775 *
 776 * Other code can also call this, e.g. a particular add-on board might provide
 777 * SPI devices through its expansion connector, so code initializing that board
 778 * would naturally declare its SPI devices.
 779 *
 780 * The board info passed can safely be __initdata ... but be careful of
 781 * any embedded pointers (platform_data, etc), they're copied as-is.
 
 782 *
 783 * Return: zero on success, else a negative error code.
 784 */
 785int spi_register_board_info(struct spi_board_info const *info, unsigned n)
 786{
 787	struct boardinfo *bi;
 788	int i;
 789
 790	if (!n)
 791		return 0;
 792
 793	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
 794	if (!bi)
 795		return -ENOMEM;
 796
 797	for (i = 0; i < n; i++, bi++, info++) {
 798		struct spi_controller *ctlr;
 799
 800		memcpy(&bi->board_info, info, sizeof(*info));
 
 
 
 
 
 
 801
 802		mutex_lock(&board_lock);
 803		list_add_tail(&bi->list, &board_list);
 804		list_for_each_entry(ctlr, &spi_controller_list, list)
 805			spi_match_controller_to_boardinfo(ctlr,
 806							  &bi->board_info);
 807		mutex_unlock(&board_lock);
 808	}
 809
 810	return 0;
 811}
 812
 813/*-------------------------------------------------------------------------*/
 814
 815static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
 816{
 817	bool activate = enable;
 818
 819	/*
 820	 * Avoid calling into the driver (or doing delays) if the chip select
 821	 * isn't actually changing from the last time this was called.
 822	 */
 823	if (!force && (spi->controller->last_cs_enable == enable) &&
 824	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
 825		return;
 826
 827	trace_spi_set_cs(spi, activate);
 828
 829	spi->controller->last_cs_enable = enable;
 830	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
 831
 832	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) ||
 833	    !spi->controller->set_cs_timing) {
 834		if (activate)
 835			spi_delay_exec(&spi->controller->cs_setup, NULL);
 836		else
 837			spi_delay_exec(&spi->controller->cs_hold, NULL);
 838	}
 839
 840	if (spi->mode & SPI_CS_HIGH)
 841		enable = !enable;
 842
 843	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
 
 
 
 
 
 
 
 844		if (!(spi->mode & SPI_NO_CS)) {
 845			if (spi->cs_gpiod) {
 846				/*
 847				 * Historically ACPI has no means of the GPIO polarity and
 848				 * thus the SPISerialBus() resource defines it on the per-chip
 849				 * basis. In order to avoid a chain of negations, the GPIO
 850				 * polarity is considered being Active High. Even for the cases
 851				 * when _DSD() is involved (in the updated versions of ACPI)
 852				 * the GPIO CS polarity must be defined Active High to avoid
 853				 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
 854				 * into account.
 855				 */
 856				if (has_acpi_companion(&spi->dev))
 857					gpiod_set_value_cansleep(spi->cs_gpiod, !enable);
 858				else
 859					/* Polarity handled by GPIO library */
 860					gpiod_set_value_cansleep(spi->cs_gpiod, activate);
 861			} else {
 862				/*
 863				 * invert the enable line, as active low is
 864				 * default for SPI.
 865				 */
 866				gpio_set_value_cansleep(spi->cs_gpio, !enable);
 867			}
 868		}
 869		/* Some SPI masters need both GPIO CS & slave_select */
 870		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
 871		    spi->controller->set_cs)
 872			spi->controller->set_cs(spi, !enable);
 873	} else if (spi->controller->set_cs) {
 874		spi->controller->set_cs(spi, !enable);
 875	}
 876
 877	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) ||
 878	    !spi->controller->set_cs_timing) {
 879		if (!activate)
 880			spi_delay_exec(&spi->controller->cs_inactive, NULL);
 881	}
 882}
 883
 884#ifdef CONFIG_HAS_DMA
 885int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
 886		struct sg_table *sgt, void *buf, size_t len,
 887		enum dma_data_direction dir)
 888{
 889	const bool vmalloced_buf = is_vmalloc_addr(buf);
 890	unsigned int max_seg_size = dma_get_max_seg_size(dev);
 891#ifdef CONFIG_HIGHMEM
 892	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
 893				(unsigned long)buf < (PKMAP_BASE +
 894					(LAST_PKMAP * PAGE_SIZE)));
 895#else
 896	const bool kmap_buf = false;
 897#endif
 898	int desc_len;
 899	int sgs;
 900	struct page *vm_page;
 901	struct scatterlist *sg;
 902	void *sg_buf;
 903	size_t min;
 904	int i, ret;
 905
 906	if (vmalloced_buf || kmap_buf) {
 907		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
 908		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
 909	} else if (virt_addr_valid(buf)) {
 910		desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
 911		sgs = DIV_ROUND_UP(len, desc_len);
 912	} else {
 913		return -EINVAL;
 914	}
 915
 916	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
 917	if (ret != 0)
 918		return ret;
 919
 920	sg = &sgt->sgl[0];
 921	for (i = 0; i < sgs; i++) {
 922
 923		if (vmalloced_buf || kmap_buf) {
 924			/*
 925			 * Next scatterlist entry size is the minimum between
 926			 * the desc_len and the remaining buffer length that
 927			 * fits in a page.
 928			 */
 929			min = min_t(size_t, desc_len,
 930				    min_t(size_t, len,
 931					  PAGE_SIZE - offset_in_page(buf)));
 932			if (vmalloced_buf)
 933				vm_page = vmalloc_to_page(buf);
 934			else
 935				vm_page = kmap_to_page(buf);
 936			if (!vm_page) {
 937				sg_free_table(sgt);
 938				return -ENOMEM;
 939			}
 940			sg_set_page(sg, vm_page,
 941				    min, offset_in_page(buf));
 942		} else {
 943			min = min_t(size_t, len, desc_len);
 944			sg_buf = buf;
 945			sg_set_buf(sg, sg_buf, min);
 946		}
 947
 948		buf += min;
 949		len -= min;
 950		sg = sg_next(sg);
 951	}
 952
 953	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
 954	if (!ret)
 955		ret = -ENOMEM;
 956	if (ret < 0) {
 957		sg_free_table(sgt);
 958		return ret;
 959	}
 960
 961	sgt->nents = ret;
 962
 963	return 0;
 964}
 965
 966void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
 967		   struct sg_table *sgt, enum dma_data_direction dir)
 968{
 969	if (sgt->orig_nents) {
 970		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
 971		sg_free_table(sgt);
 972	}
 973}
 974
 975static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
 976{
 977	struct device *tx_dev, *rx_dev;
 978	struct spi_transfer *xfer;
 979	int ret;
 980
 981	if (!ctlr->can_dma)
 982		return 0;
 983
 984	if (ctlr->dma_tx)
 985		tx_dev = ctlr->dma_tx->device->dev;
 986	else if (ctlr->dma_map_dev)
 987		tx_dev = ctlr->dma_map_dev;
 988	else
 989		tx_dev = ctlr->dev.parent;
 990
 991	if (ctlr->dma_rx)
 992		rx_dev = ctlr->dma_rx->device->dev;
 993	else if (ctlr->dma_map_dev)
 994		rx_dev = ctlr->dma_map_dev;
 995	else
 996		rx_dev = ctlr->dev.parent;
 997
 998	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 999		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1000			continue;
1001
1002		if (xfer->tx_buf != NULL) {
1003			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
1004					  (void *)xfer->tx_buf, xfer->len,
1005					  DMA_TO_DEVICE);
1006			if (ret != 0)
1007				return ret;
1008		}
1009
1010		if (xfer->rx_buf != NULL) {
1011			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
1012					  xfer->rx_buf, xfer->len,
1013					  DMA_FROM_DEVICE);
1014			if (ret != 0) {
1015				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
1016					      DMA_TO_DEVICE);
1017				return ret;
1018			}
1019		}
1020	}
1021
1022	ctlr->cur_msg_mapped = true;
1023
1024	return 0;
1025}
1026
1027static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1028{
1029	struct spi_transfer *xfer;
1030	struct device *tx_dev, *rx_dev;
1031
1032	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1033		return 0;
1034
1035	if (ctlr->dma_tx)
1036		tx_dev = ctlr->dma_tx->device->dev;
1037	else
1038		tx_dev = ctlr->dev.parent;
1039
1040	if (ctlr->dma_rx)
1041		rx_dev = ctlr->dma_rx->device->dev;
1042	else
1043		rx_dev = ctlr->dev.parent;
1044
1045	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1046		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1047			continue;
1048
1049		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1050		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1051	}
1052
1053	ctlr->cur_msg_mapped = false;
1054
1055	return 0;
1056}
1057#else /* !CONFIG_HAS_DMA */
1058static inline int __spi_map_msg(struct spi_controller *ctlr,
1059				struct spi_message *msg)
1060{
1061	return 0;
1062}
1063
1064static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1065				  struct spi_message *msg)
1066{
1067	return 0;
1068}
1069#endif /* !CONFIG_HAS_DMA */
1070
1071static inline int spi_unmap_msg(struct spi_controller *ctlr,
1072				struct spi_message *msg)
1073{
1074	struct spi_transfer *xfer;
1075
1076	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1077		/*
1078		 * Restore the original value of tx_buf or rx_buf if they are
1079		 * NULL.
1080		 */
1081		if (xfer->tx_buf == ctlr->dummy_tx)
1082			xfer->tx_buf = NULL;
1083		if (xfer->rx_buf == ctlr->dummy_rx)
1084			xfer->rx_buf = NULL;
1085	}
1086
1087	return __spi_unmap_msg(ctlr, msg);
1088}
1089
1090static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1091{
1092	struct spi_transfer *xfer;
1093	void *tmp;
1094	unsigned int max_tx, max_rx;
1095
1096	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1097		&& !(msg->spi->mode & SPI_3WIRE)) {
1098		max_tx = 0;
1099		max_rx = 0;
1100
1101		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1102			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1103			    !xfer->tx_buf)
1104				max_tx = max(xfer->len, max_tx);
1105			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1106			    !xfer->rx_buf)
1107				max_rx = max(xfer->len, max_rx);
1108		}
1109
1110		if (max_tx) {
1111			tmp = krealloc(ctlr->dummy_tx, max_tx,
1112				       GFP_KERNEL | GFP_DMA);
1113			if (!tmp)
1114				return -ENOMEM;
1115			ctlr->dummy_tx = tmp;
1116			memset(tmp, 0, max_tx);
1117		}
1118
1119		if (max_rx) {
1120			tmp = krealloc(ctlr->dummy_rx, max_rx,
1121				       GFP_KERNEL | GFP_DMA);
1122			if (!tmp)
1123				return -ENOMEM;
1124			ctlr->dummy_rx = tmp;
1125		}
1126
1127		if (max_tx || max_rx) {
1128			list_for_each_entry(xfer, &msg->transfers,
1129					    transfer_list) {
1130				if (!xfer->len)
1131					continue;
1132				if (!xfer->tx_buf)
1133					xfer->tx_buf = ctlr->dummy_tx;
1134				if (!xfer->rx_buf)
1135					xfer->rx_buf = ctlr->dummy_rx;
1136			}
1137		}
1138	}
1139
1140	return __spi_map_msg(ctlr, msg);
1141}
1142
1143static int spi_transfer_wait(struct spi_controller *ctlr,
1144			     struct spi_message *msg,
1145			     struct spi_transfer *xfer)
1146{
1147	struct spi_statistics *statm = &ctlr->statistics;
1148	struct spi_statistics *stats = &msg->spi->statistics;
1149	u32 speed_hz = xfer->speed_hz;
1150	unsigned long long ms;
1151
1152	if (spi_controller_is_slave(ctlr)) {
1153		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1154			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1155			return -EINTR;
1156		}
1157	} else {
1158		if (!speed_hz)
1159			speed_hz = 100000;
1160
1161		/*
1162		 * For each byte we wait for 8 cycles of the SPI clock.
1163		 * Since speed is defined in Hz and we want milliseconds,
1164		 * use respective multiplier, but before the division,
1165		 * otherwise we may get 0 for short transfers.
1166		 */
1167		ms = 8LL * MSEC_PER_SEC * xfer->len;
1168		do_div(ms, speed_hz);
1169
1170		/*
1171		 * Increase it twice and add 200 ms tolerance, use
1172		 * predefined maximum in case of overflow.
1173		 */
1174		ms += ms + 200;
1175		if (ms > UINT_MAX)
1176			ms = UINT_MAX;
1177
1178		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1179						 msecs_to_jiffies(ms));
1180
1181		if (ms == 0) {
1182			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1183			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1184			dev_err(&msg->spi->dev,
1185				"SPI transfer timed out\n");
1186			return -ETIMEDOUT;
1187		}
1188	}
1189
1190	return 0;
1191}
1192
1193static void _spi_transfer_delay_ns(u32 ns)
1194{
1195	if (!ns)
1196		return;
1197	if (ns <= NSEC_PER_USEC) {
1198		ndelay(ns);
1199	} else {
1200		u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1201
1202		if (us <= 10)
1203			udelay(us);
1204		else
1205			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1206	}
1207}
1208
1209int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
 
1210{
1211	u32 delay = _delay->value;
1212	u32 unit = _delay->unit;
1213	u32 hz;
1214
1215	if (!delay)
1216		return 0;
 
1217
1218	switch (unit) {
1219	case SPI_DELAY_UNIT_USECS:
1220		delay *= NSEC_PER_USEC;
 
 
 
 
1221		break;
1222	case SPI_DELAY_UNIT_NSECS:
1223		/* Nothing to do here */
1224		break;
1225	case SPI_DELAY_UNIT_SCK:
1226		/* clock cycles need to be obtained from spi_transfer */
1227		if (!xfer)
1228			return -EINVAL;
1229		/*
1230		 * If there is unknown effective speed, approximate it
1231		 * by underestimating with half of the requested hz.
1232		 */
1233		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1234		if (!hz)
1235			return -EINVAL;
1236
1237		/* Convert delay to nanoseconds */
1238		delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1239		break;
1240	default:
1241		return -EINVAL;
 
 
 
1242	}
1243
1244	return delay;
1245}
1246EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1247
1248int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1249{
1250	int delay;
1251
1252	might_sleep();
1253
1254	if (!_delay)
1255		return -EINVAL;
1256
1257	delay = spi_delay_to_ns(_delay, xfer);
1258	if (delay < 0)
1259		return delay;
1260
1261	_spi_transfer_delay_ns(delay);
1262
1263	return 0;
1264}
1265EXPORT_SYMBOL_GPL(spi_delay_exec);
1266
1267static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1268					  struct spi_transfer *xfer)
1269{
1270	u32 default_delay_ns = 10 * NSEC_PER_USEC;
1271	u32 delay = xfer->cs_change_delay.value;
1272	u32 unit = xfer->cs_change_delay.unit;
1273	int ret;
1274
1275	/* return early on "fast" mode - for everything but USECS */
1276	if (!delay) {
1277		if (unit == SPI_DELAY_UNIT_USECS)
1278			_spi_transfer_delay_ns(default_delay_ns);
1279		return;
1280	}
1281
1282	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1283	if (ret) {
1284		dev_err_once(&msg->spi->dev,
1285			     "Use of unsupported delay unit %i, using default of %luus\n",
1286			     unit, default_delay_ns / NSEC_PER_USEC);
1287		_spi_transfer_delay_ns(default_delay_ns);
1288	}
1289}
1290
1291/*
1292 * spi_transfer_one_message - Default implementation of transfer_one_message()
1293 *
1294 * This is a standard implementation of transfer_one_message() for
1295 * drivers which implement a transfer_one() operation.  It provides
1296 * standard handling of delays and chip select management.
1297 */
1298static int spi_transfer_one_message(struct spi_controller *ctlr,
1299				    struct spi_message *msg)
1300{
1301	struct spi_transfer *xfer;
1302	bool keep_cs = false;
1303	int ret = 0;
1304	struct spi_statistics *statm = &ctlr->statistics;
1305	struct spi_statistics *stats = &msg->spi->statistics;
1306
1307	spi_set_cs(msg->spi, true, false);
1308
1309	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1310	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1311
1312	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1313		trace_spi_transfer_start(msg, xfer);
1314
1315		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1316		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1317
1318		if (!ctlr->ptp_sts_supported) {
1319			xfer->ptp_sts_word_pre = 0;
1320			ptp_read_system_prets(xfer->ptp_sts);
1321		}
1322
1323		if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1324			reinit_completion(&ctlr->xfer_completion);
1325
1326fallback_pio:
1327			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1328			if (ret < 0) {
1329				if (ctlr->cur_msg_mapped &&
1330				   (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1331					__spi_unmap_msg(ctlr, msg);
1332					ctlr->fallback = true;
1333					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1334					goto fallback_pio;
1335				}
1336
1337				SPI_STATISTICS_INCREMENT_FIELD(statm,
1338							       errors);
1339				SPI_STATISTICS_INCREMENT_FIELD(stats,
1340							       errors);
1341				dev_err(&msg->spi->dev,
1342					"SPI transfer failed: %d\n", ret);
1343				goto out;
1344			}
1345
1346			if (ret > 0) {
1347				ret = spi_transfer_wait(ctlr, msg, xfer);
1348				if (ret < 0)
1349					msg->status = ret;
1350			}
1351		} else {
1352			if (xfer->len)
1353				dev_err(&msg->spi->dev,
1354					"Bufferless transfer has length %u\n",
1355					xfer->len);
1356		}
1357
1358		if (!ctlr->ptp_sts_supported) {
1359			ptp_read_system_postts(xfer->ptp_sts);
1360			xfer->ptp_sts_word_post = xfer->len;
1361		}
1362
1363		trace_spi_transfer_stop(msg, xfer);
1364
1365		if (msg->status != -EINPROGRESS)
1366			goto out;
1367
1368		spi_transfer_delay_exec(xfer);
 
1369
1370		if (xfer->cs_change) {
1371			if (list_is_last(&xfer->transfer_list,
1372					 &msg->transfers)) {
1373				keep_cs = true;
1374			} else {
1375				spi_set_cs(msg->spi, false, false);
1376				_spi_transfer_cs_change_delay(msg, xfer);
1377				spi_set_cs(msg->spi, true, false);
1378			}
1379		}
1380
1381		msg->actual_length += xfer->len;
1382	}
1383
1384out:
1385	if (ret != 0 || !keep_cs)
1386		spi_set_cs(msg->spi, false, false);
1387
1388	if (msg->status == -EINPROGRESS)
1389		msg->status = ret;
1390
1391	if (msg->status && ctlr->handle_err)
1392		ctlr->handle_err(ctlr, msg);
1393
 
 
1394	spi_finalize_current_message(ctlr);
1395
1396	return ret;
1397}
1398
1399/**
1400 * spi_finalize_current_transfer - report completion of a transfer
1401 * @ctlr: the controller reporting completion
1402 *
1403 * Called by SPI drivers using the core transfer_one_message()
1404 * implementation to notify it that the current interrupt driven
1405 * transfer has finished and the next one may be scheduled.
1406 */
1407void spi_finalize_current_transfer(struct spi_controller *ctlr)
1408{
1409	complete(&ctlr->xfer_completion);
1410}
1411EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1412
1413static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1414{
1415	if (ctlr->auto_runtime_pm) {
1416		pm_runtime_mark_last_busy(ctlr->dev.parent);
1417		pm_runtime_put_autosuspend(ctlr->dev.parent);
1418	}
1419}
1420
1421/**
1422 * __spi_pump_messages - function which processes spi message queue
1423 * @ctlr: controller to process queue for
1424 * @in_kthread: true if we are in the context of the message pump thread
1425 *
1426 * This function checks if there is any spi message in the queue that
1427 * needs processing and if so call out to the driver to initialize hardware
1428 * and transfer each message.
1429 *
1430 * Note that it is called both from the kthread itself and also from
1431 * inside spi_sync(); the queue extraction handling at the top of the
1432 * function should deal with this safely.
1433 */
1434static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1435{
1436	struct spi_transfer *xfer;
1437	struct spi_message *msg;
1438	bool was_busy = false;
1439	unsigned long flags;
1440	int ret;
1441
1442	/* Lock queue */
1443	spin_lock_irqsave(&ctlr->queue_lock, flags);
1444
1445	/* Make sure we are not already running a message */
1446	if (ctlr->cur_msg) {
1447		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1448		return;
1449	}
1450
1451	/* If another context is idling the device then defer */
1452	if (ctlr->idling) {
1453		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1454		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1455		return;
1456	}
1457
1458	/* Check if the queue is idle */
1459	if (list_empty(&ctlr->queue) || !ctlr->running) {
1460		if (!ctlr->busy) {
1461			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1462			return;
1463		}
1464
1465		/* Defer any non-atomic teardown to the thread */
1466		if (!in_kthread) {
1467			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1468			    !ctlr->unprepare_transfer_hardware) {
1469				spi_idle_runtime_pm(ctlr);
1470				ctlr->busy = false;
1471				trace_spi_controller_idle(ctlr);
1472			} else {
1473				kthread_queue_work(ctlr->kworker,
1474						   &ctlr->pump_messages);
1475			}
1476			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1477			return;
1478		}
1479
1480		ctlr->busy = false;
1481		ctlr->idling = true;
1482		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1483
1484		kfree(ctlr->dummy_rx);
1485		ctlr->dummy_rx = NULL;
1486		kfree(ctlr->dummy_tx);
1487		ctlr->dummy_tx = NULL;
1488		if (ctlr->unprepare_transfer_hardware &&
1489		    ctlr->unprepare_transfer_hardware(ctlr))
1490			dev_err(&ctlr->dev,
1491				"failed to unprepare transfer hardware\n");
1492		spi_idle_runtime_pm(ctlr);
 
 
 
1493		trace_spi_controller_idle(ctlr);
1494
1495		spin_lock_irqsave(&ctlr->queue_lock, flags);
1496		ctlr->idling = false;
1497		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1498		return;
1499	}
1500
1501	/* Extract head of queue */
1502	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1503	ctlr->cur_msg = msg;
1504
1505	list_del_init(&msg->queue);
1506	if (ctlr->busy)
1507		was_busy = true;
1508	else
1509		ctlr->busy = true;
1510	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1511
1512	mutex_lock(&ctlr->io_mutex);
1513
1514	if (!was_busy && ctlr->auto_runtime_pm) {
1515		ret = pm_runtime_get_sync(ctlr->dev.parent);
1516		if (ret < 0) {
1517			pm_runtime_put_noidle(ctlr->dev.parent);
1518			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1519				ret);
1520			mutex_unlock(&ctlr->io_mutex);
1521			return;
1522		}
1523	}
1524
1525	if (!was_busy)
1526		trace_spi_controller_busy(ctlr);
1527
1528	if (!was_busy && ctlr->prepare_transfer_hardware) {
1529		ret = ctlr->prepare_transfer_hardware(ctlr);
1530		if (ret) {
1531			dev_err(&ctlr->dev,
1532				"failed to prepare transfer hardware: %d\n",
1533				ret);
1534
1535			if (ctlr->auto_runtime_pm)
1536				pm_runtime_put(ctlr->dev.parent);
1537
1538			msg->status = ret;
1539			spi_finalize_current_message(ctlr);
1540
1541			mutex_unlock(&ctlr->io_mutex);
1542			return;
1543		}
1544	}
1545
1546	trace_spi_message_start(msg);
1547
1548	if (ctlr->prepare_message) {
1549		ret = ctlr->prepare_message(ctlr, msg);
1550		if (ret) {
1551			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1552				ret);
1553			msg->status = ret;
1554			spi_finalize_current_message(ctlr);
1555			goto out;
1556		}
1557		ctlr->cur_msg_prepared = true;
1558	}
1559
1560	ret = spi_map_msg(ctlr, msg);
1561	if (ret) {
1562		msg->status = ret;
1563		spi_finalize_current_message(ctlr);
1564		goto out;
1565	}
1566
1567	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1568		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1569			xfer->ptp_sts_word_pre = 0;
1570			ptp_read_system_prets(xfer->ptp_sts);
1571		}
1572	}
1573
1574	ret = ctlr->transfer_one_message(ctlr, msg);
1575	if (ret) {
1576		dev_err(&ctlr->dev,
1577			"failed to transfer one message from queue\n");
1578		goto out;
1579	}
1580
1581out:
1582	mutex_unlock(&ctlr->io_mutex);
1583
1584	/* Prod the scheduler in case transfer_one() was busy waiting */
1585	if (!ret)
1586		cond_resched();
1587}
1588
1589/**
1590 * spi_pump_messages - kthread work function which processes spi message queue
1591 * @work: pointer to kthread work struct contained in the controller struct
1592 */
1593static void spi_pump_messages(struct kthread_work *work)
1594{
1595	struct spi_controller *ctlr =
1596		container_of(work, struct spi_controller, pump_messages);
1597
1598	__spi_pump_messages(ctlr, true);
1599}
1600
1601/**
1602 * spi_take_timestamp_pre - helper for drivers to collect the beginning of the
1603 *			    TX timestamp for the requested byte from the SPI
1604 *			    transfer. The frequency with which this function
1605 *			    must be called (once per word, once for the whole
1606 *			    transfer, once per batch of words etc) is arbitrary
1607 *			    as long as the @tx buffer offset is greater than or
1608 *			    equal to the requested byte at the time of the
1609 *			    call. The timestamp is only taken once, at the
1610 *			    first such call. It is assumed that the driver
1611 *			    advances its @tx buffer pointer monotonically.
1612 * @ctlr: Pointer to the spi_controller structure of the driver
1613 * @xfer: Pointer to the transfer being timestamped
1614 * @progress: How many words (not bytes) have been transferred so far
1615 * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1616 *	      transfer, for less jitter in time measurement. Only compatible
1617 *	      with PIO drivers. If true, must follow up with
1618 *	      spi_take_timestamp_post or otherwise system will crash.
1619 *	      WARNING: for fully predictable results, the CPU frequency must
1620 *	      also be under control (governor).
1621 */
1622void spi_take_timestamp_pre(struct spi_controller *ctlr,
1623			    struct spi_transfer *xfer,
1624			    size_t progress, bool irqs_off)
1625{
1626	if (!xfer->ptp_sts)
1627		return;
1628
1629	if (xfer->timestamped)
1630		return;
1631
1632	if (progress > xfer->ptp_sts_word_pre)
1633		return;
1634
1635	/* Capture the resolution of the timestamp */
1636	xfer->ptp_sts_word_pre = progress;
1637
1638	if (irqs_off) {
1639		local_irq_save(ctlr->irq_flags);
1640		preempt_disable();
1641	}
1642
1643	ptp_read_system_prets(xfer->ptp_sts);
1644}
1645EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1646
1647/**
1648 * spi_take_timestamp_post - helper for drivers to collect the end of the
1649 *			     TX timestamp for the requested byte from the SPI
1650 *			     transfer. Can be called with an arbitrary
1651 *			     frequency: only the first call where @tx exceeds
1652 *			     or is equal to the requested word will be
1653 *			     timestamped.
1654 * @ctlr: Pointer to the spi_controller structure of the driver
1655 * @xfer: Pointer to the transfer being timestamped
1656 * @progress: How many words (not bytes) have been transferred so far
1657 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1658 */
1659void spi_take_timestamp_post(struct spi_controller *ctlr,
1660			     struct spi_transfer *xfer,
1661			     size_t progress, bool irqs_off)
1662{
1663	if (!xfer->ptp_sts)
1664		return;
1665
1666	if (xfer->timestamped)
1667		return;
1668
1669	if (progress < xfer->ptp_sts_word_post)
1670		return;
1671
1672	ptp_read_system_postts(xfer->ptp_sts);
1673
1674	if (irqs_off) {
1675		local_irq_restore(ctlr->irq_flags);
1676		preempt_enable();
1677	}
1678
1679	/* Capture the resolution of the timestamp */
1680	xfer->ptp_sts_word_post = progress;
1681
1682	xfer->timestamped = true;
1683}
1684EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1685
1686/**
1687 * spi_set_thread_rt - set the controller to pump at realtime priority
1688 * @ctlr: controller to boost priority of
1689 *
1690 * This can be called because the controller requested realtime priority
1691 * (by setting the ->rt value before calling spi_register_controller()) or
1692 * because a device on the bus said that its transfers needed realtime
1693 * priority.
1694 *
1695 * NOTE: at the moment if any device on a bus says it needs realtime then
1696 * the thread will be at realtime priority for all transfers on that
1697 * controller.  If this eventually becomes a problem we may see if we can
1698 * find a way to boost the priority only temporarily during relevant
1699 * transfers.
1700 */
1701static void spi_set_thread_rt(struct spi_controller *ctlr)
1702{
 
 
1703	dev_info(&ctlr->dev,
1704		"will run message pump with realtime priority\n");
1705	sched_set_fifo(ctlr->kworker->task);
1706}
1707
1708static int spi_init_queue(struct spi_controller *ctlr)
1709{
1710	ctlr->running = false;
1711	ctlr->busy = false;
1712
1713	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1714	if (IS_ERR(ctlr->kworker)) {
1715		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1716		return PTR_ERR(ctlr->kworker);
 
 
1717	}
1718
1719	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1720
1721	/*
1722	 * Controller config will indicate if this controller should run the
1723	 * message pump with high (realtime) priority to reduce the transfer
1724	 * latency on the bus by minimising the delay between a transfer
1725	 * request and the scheduling of the message pump thread. Without this
1726	 * setting the message pump thread will remain at default priority.
1727	 */
1728	if (ctlr->rt)
1729		spi_set_thread_rt(ctlr);
1730
1731	return 0;
1732}
1733
1734/**
1735 * spi_get_next_queued_message() - called by driver to check for queued
1736 * messages
1737 * @ctlr: the controller to check for queued messages
1738 *
1739 * If there are more messages in the queue, the next message is returned from
1740 * this call.
1741 *
1742 * Return: the next message in the queue, else NULL if the queue is empty.
1743 */
1744struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1745{
1746	struct spi_message *next;
1747	unsigned long flags;
1748
1749	/* get a pointer to the next message, if any */
1750	spin_lock_irqsave(&ctlr->queue_lock, flags);
1751	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1752					queue);
1753	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1754
1755	return next;
1756}
1757EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1758
1759/**
1760 * spi_finalize_current_message() - the current message is complete
1761 * @ctlr: the controller to return the message to
1762 *
1763 * Called by the driver to notify the core that the message in the front of the
1764 * queue is complete and can be removed from the queue.
1765 */
1766void spi_finalize_current_message(struct spi_controller *ctlr)
1767{
1768	struct spi_transfer *xfer;
1769	struct spi_message *mesg;
1770	unsigned long flags;
1771	int ret;
1772
1773	spin_lock_irqsave(&ctlr->queue_lock, flags);
1774	mesg = ctlr->cur_msg;
1775	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1776
1777	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1778		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1779			ptp_read_system_postts(xfer->ptp_sts);
1780			xfer->ptp_sts_word_post = xfer->len;
1781		}
1782	}
1783
1784	if (unlikely(ctlr->ptp_sts_supported))
1785		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
1786			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
1787
1788	spi_unmap_msg(ctlr, mesg);
1789
1790	/* In the prepare_messages callback the spi bus has the opportunity to
1791	 * split a transfer to smaller chunks.
1792	 * Release splited transfers here since spi_map_msg is done on the
1793	 * splited transfers.
1794	 */
1795	spi_res_release(ctlr, mesg);
1796
1797	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1798		ret = ctlr->unprepare_message(ctlr, mesg);
1799		if (ret) {
1800			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1801				ret);
1802		}
1803	}
1804
1805	spin_lock_irqsave(&ctlr->queue_lock, flags);
1806	ctlr->cur_msg = NULL;
1807	ctlr->cur_msg_prepared = false;
1808	ctlr->fallback = false;
1809	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1810	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1811
1812	trace_spi_message_done(mesg);
1813
1814	mesg->state = NULL;
1815	if (mesg->complete)
1816		mesg->complete(mesg->context);
1817}
1818EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1819
1820static int spi_start_queue(struct spi_controller *ctlr)
1821{
1822	unsigned long flags;
1823
1824	spin_lock_irqsave(&ctlr->queue_lock, flags);
1825
1826	if (ctlr->running || ctlr->busy) {
1827		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1828		return -EBUSY;
1829	}
1830
1831	ctlr->running = true;
1832	ctlr->cur_msg = NULL;
1833	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1834
1835	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1836
1837	return 0;
1838}
1839
1840static int spi_stop_queue(struct spi_controller *ctlr)
1841{
1842	unsigned long flags;
1843	unsigned limit = 500;
1844	int ret = 0;
1845
1846	spin_lock_irqsave(&ctlr->queue_lock, flags);
1847
1848	/*
1849	 * This is a bit lame, but is optimized for the common execution path.
1850	 * A wait_queue on the ctlr->busy could be used, but then the common
1851	 * execution path (pump_messages) would be required to call wake_up or
1852	 * friends on every SPI message. Do this instead.
1853	 */
1854	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1855		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1856		usleep_range(10000, 11000);
1857		spin_lock_irqsave(&ctlr->queue_lock, flags);
1858	}
1859
1860	if (!list_empty(&ctlr->queue) || ctlr->busy)
1861		ret = -EBUSY;
1862	else
1863		ctlr->running = false;
1864
1865	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1866
1867	if (ret) {
1868		dev_warn(&ctlr->dev, "could not stop message queue\n");
1869		return ret;
1870	}
1871	return ret;
1872}
1873
1874static int spi_destroy_queue(struct spi_controller *ctlr)
1875{
1876	int ret;
1877
1878	ret = spi_stop_queue(ctlr);
1879
1880	/*
1881	 * kthread_flush_worker will block until all work is done.
1882	 * If the reason that stop_queue timed out is that the work will never
1883	 * finish, then it does no good to call flush/stop thread, so
1884	 * return anyway.
1885	 */
1886	if (ret) {
1887		dev_err(&ctlr->dev, "problem destroying queue\n");
1888		return ret;
1889	}
1890
1891	kthread_destroy_worker(ctlr->kworker);
 
1892
1893	return 0;
1894}
1895
1896static int __spi_queued_transfer(struct spi_device *spi,
1897				 struct spi_message *msg,
1898				 bool need_pump)
1899{
1900	struct spi_controller *ctlr = spi->controller;
1901	unsigned long flags;
1902
1903	spin_lock_irqsave(&ctlr->queue_lock, flags);
1904
1905	if (!ctlr->running) {
1906		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1907		return -ESHUTDOWN;
1908	}
1909	msg->actual_length = 0;
1910	msg->status = -EINPROGRESS;
1911
1912	list_add_tail(&msg->queue, &ctlr->queue);
1913	if (!ctlr->busy && need_pump)
1914		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1915
1916	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1917	return 0;
1918}
1919
1920/**
1921 * spi_queued_transfer - transfer function for queued transfers
1922 * @spi: spi device which is requesting transfer
1923 * @msg: spi message which is to handled is queued to driver queue
1924 *
1925 * Return: zero on success, else a negative error code.
1926 */
1927static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1928{
1929	return __spi_queued_transfer(spi, msg, true);
1930}
1931
1932static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1933{
1934	int ret;
1935
1936	ctlr->transfer = spi_queued_transfer;
1937	if (!ctlr->transfer_one_message)
1938		ctlr->transfer_one_message = spi_transfer_one_message;
1939
1940	/* Initialize and start queue */
1941	ret = spi_init_queue(ctlr);
1942	if (ret) {
1943		dev_err(&ctlr->dev, "problem initializing queue\n");
1944		goto err_init_queue;
1945	}
1946	ctlr->queued = true;
1947	ret = spi_start_queue(ctlr);
1948	if (ret) {
1949		dev_err(&ctlr->dev, "problem starting queue\n");
1950		goto err_start_queue;
1951	}
1952
1953	return 0;
1954
1955err_start_queue:
1956	spi_destroy_queue(ctlr);
1957err_init_queue:
1958	return ret;
1959}
1960
1961/**
1962 * spi_flush_queue - Send all pending messages in the queue from the callers'
1963 *		     context
1964 * @ctlr: controller to process queue for
1965 *
1966 * This should be used when one wants to ensure all pending messages have been
1967 * sent before doing something. Is used by the spi-mem code to make sure SPI
1968 * memory operations do not preempt regular SPI transfers that have been queued
1969 * before the spi-mem operation.
1970 */
1971void spi_flush_queue(struct spi_controller *ctlr)
1972{
1973	if (ctlr->transfer == spi_queued_transfer)
1974		__spi_pump_messages(ctlr, false);
1975}
1976
1977/*-------------------------------------------------------------------------*/
1978
1979#if defined(CONFIG_OF)
1980static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1981			   struct device_node *nc)
1982{
1983	u32 value;
1984	int rc;
1985
1986	/* Mode (clock phase/polarity/etc.) */
1987	if (of_property_read_bool(nc, "spi-cpha"))
1988		spi->mode |= SPI_CPHA;
1989	if (of_property_read_bool(nc, "spi-cpol"))
1990		spi->mode |= SPI_CPOL;
1991	if (of_property_read_bool(nc, "spi-3wire"))
1992		spi->mode |= SPI_3WIRE;
1993	if (of_property_read_bool(nc, "spi-lsb-first"))
1994		spi->mode |= SPI_LSB_FIRST;
1995	if (of_property_read_bool(nc, "spi-cs-high"))
 
 
 
 
 
 
 
 
1996		spi->mode |= SPI_CS_HIGH;
1997
1998	/* Device DUAL/QUAD mode */
1999	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2000		switch (value) {
2001		case 0:
2002			spi->mode |= SPI_NO_TX;
2003			break;
2004		case 1:
2005			break;
2006		case 2:
2007			spi->mode |= SPI_TX_DUAL;
2008			break;
2009		case 4:
2010			spi->mode |= SPI_TX_QUAD;
2011			break;
2012		case 8:
2013			spi->mode |= SPI_TX_OCTAL;
2014			break;
2015		default:
2016			dev_warn(&ctlr->dev,
2017				"spi-tx-bus-width %d not supported\n",
2018				value);
2019			break;
2020		}
2021	}
2022
2023	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2024		switch (value) {
2025		case 0:
2026			spi->mode |= SPI_NO_RX;
2027			break;
2028		case 1:
2029			break;
2030		case 2:
2031			spi->mode |= SPI_RX_DUAL;
2032			break;
2033		case 4:
2034			spi->mode |= SPI_RX_QUAD;
2035			break;
2036		case 8:
2037			spi->mode |= SPI_RX_OCTAL;
2038			break;
2039		default:
2040			dev_warn(&ctlr->dev,
2041				"spi-rx-bus-width %d not supported\n",
2042				value);
2043			break;
2044		}
2045	}
2046
2047	if (spi_controller_is_slave(ctlr)) {
2048		if (!of_node_name_eq(nc, "slave")) {
2049			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2050				nc);
2051			return -EINVAL;
2052		}
2053		return 0;
2054	}
2055
2056	/* Device address */
2057	rc = of_property_read_u32(nc, "reg", &value);
2058	if (rc) {
2059		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2060			nc, rc);
2061		return rc;
2062	}
2063	spi->chip_select = value;
2064
2065	/* Device speed */
2066	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2067		spi->max_speed_hz = value;
 
 
 
 
 
2068
2069	return 0;
2070}
2071
2072static struct spi_device *
2073of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2074{
2075	struct spi_device *spi;
2076	int rc;
2077
2078	/* Alloc an spi_device */
2079	spi = spi_alloc_device(ctlr);
2080	if (!spi) {
2081		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2082		rc = -ENOMEM;
2083		goto err_out;
2084	}
2085
2086	/* Select device driver */
2087	rc = of_modalias_node(nc, spi->modalias,
2088				sizeof(spi->modalias));
2089	if (rc < 0) {
2090		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2091		goto err_out;
2092	}
2093
2094	rc = of_spi_parse_dt(ctlr, spi, nc);
2095	if (rc)
2096		goto err_out;
2097
2098	/* Store a pointer to the node in the device structure */
2099	of_node_get(nc);
2100	spi->dev.of_node = nc;
2101	spi->dev.fwnode = of_fwnode_handle(nc);
2102
2103	/* Register the new device */
2104	rc = spi_add_device(spi);
2105	if (rc) {
2106		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2107		goto err_of_node_put;
2108	}
2109
2110	return spi;
2111
2112err_of_node_put:
2113	of_node_put(nc);
2114err_out:
2115	spi_dev_put(spi);
2116	return ERR_PTR(rc);
2117}
2118
2119/**
2120 * of_register_spi_devices() - Register child devices onto the SPI bus
2121 * @ctlr:	Pointer to spi_controller device
2122 *
2123 * Registers an spi_device for each child node of controller node which
2124 * represents a valid SPI slave.
2125 */
2126static void of_register_spi_devices(struct spi_controller *ctlr)
2127{
2128	struct spi_device *spi;
2129	struct device_node *nc;
2130
2131	if (!ctlr->dev.of_node)
2132		return;
2133
2134	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2135		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2136			continue;
2137		spi = of_register_spi_device(ctlr, nc);
2138		if (IS_ERR(spi)) {
2139			dev_warn(&ctlr->dev,
2140				 "Failed to create SPI device for %pOF\n", nc);
2141			of_node_clear_flag(nc, OF_POPULATED);
2142		}
2143	}
2144}
2145#else
2146static void of_register_spi_devices(struct spi_controller *ctlr) { }
2147#endif
2148
2149/**
2150 * spi_new_ancillary_device() - Register ancillary SPI device
2151 * @spi:         Pointer to the main SPI device registering the ancillary device
2152 * @chip_select: Chip Select of the ancillary device
2153 *
2154 * Register an ancillary SPI device; for example some chips have a chip-select
2155 * for normal device usage and another one for setup/firmware upload.
2156 *
2157 * This may only be called from main SPI device's probe routine.
2158 *
2159 * Return: 0 on success; negative errno on failure
2160 */
2161struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2162					     u8 chip_select)
2163{
2164	struct spi_device *ancillary;
2165	int rc = 0;
2166
2167	/* Alloc an spi_device */
2168	ancillary = spi_alloc_device(spi->controller);
2169	if (!ancillary) {
2170		rc = -ENOMEM;
2171		goto err_out;
2172	}
2173
2174	strlcpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2175
2176	/* Use provided chip-select for ancillary device */
2177	ancillary->chip_select = chip_select;
2178
2179	/* Take over SPI mode/speed from SPI main device */
2180	ancillary->max_speed_hz = spi->max_speed_hz;
2181	ancillary->mode = spi->mode;
2182
2183	/* Register the new device */
2184	rc = spi_add_device_locked(ancillary);
2185	if (rc) {
2186		dev_err(&spi->dev, "failed to register ancillary device\n");
2187		goto err_out;
2188	}
2189
2190	return ancillary;
2191
2192err_out:
2193	spi_dev_put(ancillary);
2194	return ERR_PTR(rc);
2195}
2196EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2197
2198#ifdef CONFIG_ACPI
2199struct acpi_spi_lookup {
2200	struct spi_controller 	*ctlr;
2201	u32			max_speed_hz;
2202	u32			mode;
2203	int			irq;
2204	u8			bits_per_word;
2205	u8			chip_select;
2206};
2207
2208static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2209					    struct acpi_spi_lookup *lookup)
2210{
2211	const union acpi_object *obj;
2212
2213	if (!x86_apple_machine)
2214		return;
2215
2216	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2217	    && obj->buffer.length >= 4)
2218		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2219
2220	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2221	    && obj->buffer.length == 8)
2222		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2223
2224	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2225	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2226		lookup->mode |= SPI_LSB_FIRST;
2227
2228	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2229	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2230		lookup->mode |= SPI_CPOL;
2231
2232	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2233	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2234		lookup->mode |= SPI_CPHA;
2235}
2236
2237static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2238{
2239	struct acpi_spi_lookup *lookup = data;
2240	struct spi_controller *ctlr = lookup->ctlr;
2241
2242	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2243		struct acpi_resource_spi_serialbus *sb;
2244		acpi_handle parent_handle;
2245		acpi_status status;
2246
2247		sb = &ares->data.spi_serial_bus;
2248		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2249
2250			status = acpi_get_handle(NULL,
2251						 sb->resource_source.string_ptr,
2252						 &parent_handle);
2253
2254			if (ACPI_FAILURE(status) ||
2255			    ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2256				return -ENODEV;
2257
2258			/*
2259			 * ACPI DeviceSelection numbering is handled by the
2260			 * host controller driver in Windows and can vary
2261			 * from driver to driver. In Linux we always expect
2262			 * 0 .. max - 1 so we need to ask the driver to
2263			 * translate between the two schemes.
2264			 */
2265			if (ctlr->fw_translate_cs) {
2266				int cs = ctlr->fw_translate_cs(ctlr,
2267						sb->device_selection);
2268				if (cs < 0)
2269					return cs;
2270				lookup->chip_select = cs;
2271			} else {
2272				lookup->chip_select = sb->device_selection;
2273			}
2274
2275			lookup->max_speed_hz = sb->connection_speed;
2276			lookup->bits_per_word = sb->data_bit_length;
2277
2278			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2279				lookup->mode |= SPI_CPHA;
2280			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2281				lookup->mode |= SPI_CPOL;
2282			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2283				lookup->mode |= SPI_CS_HIGH;
2284		}
2285	} else if (lookup->irq < 0) {
2286		struct resource r;
2287
2288		if (acpi_dev_resource_interrupt(ares, 0, &r))
2289			lookup->irq = r.start;
2290	}
2291
2292	/* Always tell the ACPI core to skip this resource */
2293	return 1;
2294}
2295
2296static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2297					    struct acpi_device *adev)
2298{
2299	acpi_handle parent_handle = NULL;
2300	struct list_head resource_list;
2301	struct acpi_spi_lookup lookup = {};
2302	struct spi_device *spi;
2303	int ret;
2304
2305	if (acpi_bus_get_status(adev) || !adev->status.present ||
2306	    acpi_device_enumerated(adev))
2307		return AE_OK;
2308
2309	lookup.ctlr		= ctlr;
2310	lookup.irq		= -1;
2311
2312	INIT_LIST_HEAD(&resource_list);
2313	ret = acpi_dev_get_resources(adev, &resource_list,
2314				     acpi_spi_add_resource, &lookup);
2315	acpi_dev_free_resource_list(&resource_list);
2316
2317	if (ret < 0)
2318		/* found SPI in _CRS but it points to another controller */
2319		return AE_OK;
2320
2321	if (!lookup.max_speed_hz &&
2322	    ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2323	    ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
2324		/* Apple does not use _CRS but nested devices for SPI slaves */
2325		acpi_spi_parse_apple_properties(adev, &lookup);
2326	}
2327
2328	if (!lookup.max_speed_hz)
2329		return AE_OK;
2330
2331	spi = spi_alloc_device(ctlr);
2332	if (!spi) {
2333		dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2334			dev_name(&adev->dev));
2335		return AE_NO_MEMORY;
2336	}
2337
2338
2339	ACPI_COMPANION_SET(&spi->dev, adev);
2340	spi->max_speed_hz	= lookup.max_speed_hz;
2341	spi->mode		|= lookup.mode;
2342	spi->irq		= lookup.irq;
2343	spi->bits_per_word	= lookup.bits_per_word;
2344	spi->chip_select	= lookup.chip_select;
2345
2346	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2347			  sizeof(spi->modalias));
2348
2349	if (spi->irq < 0)
2350		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2351
2352	acpi_device_set_enumerated(adev);
2353
2354	adev->power.flags.ignore_parent = true;
2355	if (spi_add_device(spi)) {
2356		adev->power.flags.ignore_parent = false;
2357		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2358			dev_name(&adev->dev));
2359		spi_dev_put(spi);
2360	}
2361
2362	return AE_OK;
2363}
2364
2365static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2366				       void *data, void **return_value)
2367{
2368	struct spi_controller *ctlr = data;
2369	struct acpi_device *adev;
2370
2371	if (acpi_bus_get_device(handle, &adev))
2372		return AE_OK;
2373
2374	return acpi_register_spi_device(ctlr, adev);
2375}
2376
2377#define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2378
2379static void acpi_register_spi_devices(struct spi_controller *ctlr)
2380{
2381	acpi_status status;
2382	acpi_handle handle;
2383
2384	handle = ACPI_HANDLE(ctlr->dev.parent);
2385	if (!handle)
2386		return;
2387
2388	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2389				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2390				     acpi_spi_add_device, NULL, ctlr, NULL);
2391	if (ACPI_FAILURE(status))
2392		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2393}
2394#else
2395static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2396#endif /* CONFIG_ACPI */
2397
2398static void spi_controller_release(struct device *dev)
2399{
2400	struct spi_controller *ctlr;
2401
2402	ctlr = container_of(dev, struct spi_controller, dev);
2403	kfree(ctlr);
2404}
2405
2406static struct class spi_master_class = {
2407	.name		= "spi_master",
2408	.owner		= THIS_MODULE,
2409	.dev_release	= spi_controller_release,
2410	.dev_groups	= spi_master_groups,
2411};
2412
2413#ifdef CONFIG_SPI_SLAVE
2414/**
2415 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2416 *		     controller
2417 * @spi: device used for the current transfer
2418 */
2419int spi_slave_abort(struct spi_device *spi)
2420{
2421	struct spi_controller *ctlr = spi->controller;
2422
2423	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2424		return ctlr->slave_abort(ctlr);
2425
2426	return -ENOTSUPP;
2427}
2428EXPORT_SYMBOL_GPL(spi_slave_abort);
2429
2430static int match_true(struct device *dev, void *data)
2431{
2432	return 1;
2433}
2434
2435static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2436			  char *buf)
2437{
2438	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2439						   dev);
2440	struct device *child;
2441
2442	child = device_find_child(&ctlr->dev, NULL, match_true);
2443	return sprintf(buf, "%s\n",
2444		       child ? to_spi_device(child)->modalias : NULL);
2445}
2446
2447static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2448			   const char *buf, size_t count)
2449{
2450	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2451						   dev);
2452	struct spi_device *spi;
2453	struct device *child;
2454	char name[32];
2455	int rc;
2456
2457	rc = sscanf(buf, "%31s", name);
2458	if (rc != 1 || !name[0])
2459		return -EINVAL;
2460
2461	child = device_find_child(&ctlr->dev, NULL, match_true);
2462	if (child) {
2463		/* Remove registered slave */
2464		device_unregister(child);
2465		put_device(child);
2466	}
2467
2468	if (strcmp(name, "(null)")) {
2469		/* Register new slave */
2470		spi = spi_alloc_device(ctlr);
2471		if (!spi)
2472			return -ENOMEM;
2473
2474		strlcpy(spi->modalias, name, sizeof(spi->modalias));
2475
2476		rc = spi_add_device(spi);
2477		if (rc) {
2478			spi_dev_put(spi);
2479			return rc;
2480		}
2481	}
2482
2483	return count;
2484}
2485
2486static DEVICE_ATTR_RW(slave);
2487
2488static struct attribute *spi_slave_attrs[] = {
2489	&dev_attr_slave.attr,
2490	NULL,
2491};
2492
2493static const struct attribute_group spi_slave_group = {
2494	.attrs = spi_slave_attrs,
2495};
2496
2497static const struct attribute_group *spi_slave_groups[] = {
2498	&spi_controller_statistics_group,
2499	&spi_slave_group,
2500	NULL,
2501};
2502
2503static struct class spi_slave_class = {
2504	.name		= "spi_slave",
2505	.owner		= THIS_MODULE,
2506	.dev_release	= spi_controller_release,
2507	.dev_groups	= spi_slave_groups,
2508};
2509#else
2510extern struct class spi_slave_class;	/* dummy */
2511#endif
2512
2513/**
2514 * __spi_alloc_controller - allocate an SPI master or slave controller
2515 * @dev: the controller, possibly using the platform_bus
2516 * @size: how much zeroed driver-private data to allocate; the pointer to this
2517 *	memory is in the driver_data field of the returned device, accessible
2518 *	with spi_controller_get_devdata(); the memory is cacheline aligned;
2519 *	drivers granting DMA access to portions of their private data need to
2520 *	round up @size using ALIGN(size, dma_get_cache_alignment()).
2521 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2522 *	slave (true) controller
2523 * Context: can sleep
2524 *
2525 * This call is used only by SPI controller drivers, which are the
2526 * only ones directly touching chip registers.  It's how they allocate
2527 * an spi_controller structure, prior to calling spi_register_controller().
2528 *
2529 * This must be called from context that can sleep.
2530 *
2531 * The caller is responsible for assigning the bus number and initializing the
2532 * controller's methods before calling spi_register_controller(); and (after
2533 * errors adding the device) calling spi_controller_put() to prevent a memory
2534 * leak.
2535 *
2536 * Return: the SPI controller structure on success, else NULL.
2537 */
2538struct spi_controller *__spi_alloc_controller(struct device *dev,
2539					      unsigned int size, bool slave)
2540{
2541	struct spi_controller	*ctlr;
2542	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2543
2544	if (!dev)
2545		return NULL;
2546
2547	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2548	if (!ctlr)
2549		return NULL;
2550
2551	device_initialize(&ctlr->dev);
2552	INIT_LIST_HEAD(&ctlr->queue);
2553	spin_lock_init(&ctlr->queue_lock);
2554	spin_lock_init(&ctlr->bus_lock_spinlock);
2555	mutex_init(&ctlr->bus_lock_mutex);
2556	mutex_init(&ctlr->io_mutex);
2557	mutex_init(&ctlr->add_lock);
2558	ctlr->bus_num = -1;
2559	ctlr->num_chipselect = 1;
2560	ctlr->slave = slave;
2561	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2562		ctlr->dev.class = &spi_slave_class;
2563	else
2564		ctlr->dev.class = &spi_master_class;
2565	ctlr->dev.parent = dev;
2566	pm_suspend_ignore_children(&ctlr->dev, true);
2567	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2568
2569	return ctlr;
2570}
2571EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2572
2573static void devm_spi_release_controller(struct device *dev, void *ctlr)
2574{
2575	spi_controller_put(*(struct spi_controller **)ctlr);
2576}
2577
2578/**
2579 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2580 * @dev: physical device of SPI controller
2581 * @size: how much zeroed driver-private data to allocate
2582 * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2583 * Context: can sleep
2584 *
2585 * Allocate an SPI controller and automatically release a reference on it
2586 * when @dev is unbound from its driver.  Drivers are thus relieved from
2587 * having to call spi_controller_put().
2588 *
2589 * The arguments to this function are identical to __spi_alloc_controller().
2590 *
2591 * Return: the SPI controller structure on success, else NULL.
2592 */
2593struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2594						   unsigned int size,
2595						   bool slave)
2596{
2597	struct spi_controller **ptr, *ctlr;
2598
2599	ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2600			   GFP_KERNEL);
2601	if (!ptr)
2602		return NULL;
2603
2604	ctlr = __spi_alloc_controller(dev, size, slave);
2605	if (ctlr) {
2606		ctlr->devm_allocated = true;
2607		*ptr = ctlr;
2608		devres_add(dev, ptr);
2609	} else {
2610		devres_free(ptr);
2611	}
2612
2613	return ctlr;
2614}
2615EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2616
2617#ifdef CONFIG_OF
2618static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2619{
2620	int nb, i, *cs;
2621	struct device_node *np = ctlr->dev.of_node;
2622
2623	if (!np)
2624		return 0;
2625
2626	nb = of_gpio_named_count(np, "cs-gpios");
2627	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2628
2629	/* Return error only for an incorrectly formed cs-gpios property */
2630	if (nb == 0 || nb == -ENOENT)
2631		return 0;
2632	else if (nb < 0)
2633		return nb;
2634
2635	cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2636			  GFP_KERNEL);
2637	ctlr->cs_gpios = cs;
2638
2639	if (!ctlr->cs_gpios)
2640		return -ENOMEM;
2641
2642	for (i = 0; i < ctlr->num_chipselect; i++)
2643		cs[i] = -ENOENT;
2644
2645	for (i = 0; i < nb; i++)
2646		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2647
2648	return 0;
2649}
2650#else
2651static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2652{
2653	return 0;
2654}
2655#endif
2656
2657/**
2658 * spi_get_gpio_descs() - grab chip select GPIOs for the master
2659 * @ctlr: The SPI master to grab GPIO descriptors for
2660 */
2661static int spi_get_gpio_descs(struct spi_controller *ctlr)
2662{
2663	int nb, i;
2664	struct gpio_desc **cs;
2665	struct device *dev = &ctlr->dev;
2666	unsigned long native_cs_mask = 0;
2667	unsigned int num_cs_gpios = 0;
2668
2669	nb = gpiod_count(dev, "cs");
2670	if (nb < 0) {
2671		/* No GPIOs at all is fine, else return the error */
2672		if (nb == -ENOENT)
2673			return 0;
 
 
2674		return nb;
2675	}
2676
2677	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2678
2679	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2680			  GFP_KERNEL);
2681	if (!cs)
2682		return -ENOMEM;
2683	ctlr->cs_gpiods = cs;
2684
2685	for (i = 0; i < nb; i++) {
2686		/*
2687		 * Most chipselects are active low, the inverted
2688		 * semantics are handled by special quirks in gpiolib,
2689		 * so initializing them GPIOD_OUT_LOW here means
2690		 * "unasserted", in most cases this will drive the physical
2691		 * line high.
2692		 */
2693		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2694						      GPIOD_OUT_LOW);
2695		if (IS_ERR(cs[i]))
2696			return PTR_ERR(cs[i]);
2697
2698		if (cs[i]) {
2699			/*
2700			 * If we find a CS GPIO, name it after the device and
2701			 * chip select line.
2702			 */
2703			char *gpioname;
2704
2705			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2706						  dev_name(dev), i);
2707			if (!gpioname)
2708				return -ENOMEM;
2709			gpiod_set_consumer_name(cs[i], gpioname);
2710			num_cs_gpios++;
2711			continue;
2712		}
2713
2714		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
2715			dev_err(dev, "Invalid native chip select %d\n", i);
2716			return -EINVAL;
2717		}
2718		native_cs_mask |= BIT(i);
2719	}
2720
2721	ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
2722
2723	if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios &&
2724	    ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
2725		dev_err(dev, "No unused native chip select available\n");
2726		return -EINVAL;
2727	}
2728
2729	return 0;
2730}
2731
2732static int spi_controller_check_ops(struct spi_controller *ctlr)
2733{
2734	/*
2735	 * The controller may implement only the high-level SPI-memory like
2736	 * operations if it does not support regular SPI transfers, and this is
2737	 * valid use case.
2738	 * If ->mem_ops is NULL, we request that at least one of the
2739	 * ->transfer_xxx() method be implemented.
2740	 */
2741	if (ctlr->mem_ops) {
2742		if (!ctlr->mem_ops->exec_op)
2743			return -EINVAL;
2744	} else if (!ctlr->transfer && !ctlr->transfer_one &&
2745		   !ctlr->transfer_one_message) {
2746		return -EINVAL;
2747	}
2748
2749	return 0;
2750}
2751
2752/**
2753 * spi_register_controller - register SPI master or slave controller
2754 * @ctlr: initialized master, originally from spi_alloc_master() or
2755 *	spi_alloc_slave()
2756 * Context: can sleep
2757 *
2758 * SPI controllers connect to their drivers using some non-SPI bus,
2759 * such as the platform bus.  The final stage of probe() in that code
2760 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2761 *
2762 * SPI controllers use board specific (often SOC specific) bus numbers,
2763 * and board-specific addressing for SPI devices combines those numbers
2764 * with chip select numbers.  Since SPI does not directly support dynamic
2765 * device identification, boards need configuration tables telling which
2766 * chip is at which address.
2767 *
2768 * This must be called from context that can sleep.  It returns zero on
2769 * success, else a negative error code (dropping the controller's refcount).
2770 * After a successful return, the caller is responsible for calling
2771 * spi_unregister_controller().
2772 *
2773 * Return: zero on success, else a negative error code.
2774 */
2775int spi_register_controller(struct spi_controller *ctlr)
2776{
2777	struct device		*dev = ctlr->dev.parent;
2778	struct boardinfo	*bi;
2779	int			status;
2780	int			id, first_dynamic;
2781
2782	if (!dev)
2783		return -ENODEV;
2784
2785	/*
2786	 * Make sure all necessary hooks are implemented before registering
2787	 * the SPI controller.
2788	 */
2789	status = spi_controller_check_ops(ctlr);
2790	if (status)
2791		return status;
2792
2793	if (ctlr->bus_num >= 0) {
2794		/* devices with a fixed bus num must check-in with the num */
2795		mutex_lock(&board_lock);
2796		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2797			ctlr->bus_num + 1, GFP_KERNEL);
2798		mutex_unlock(&board_lock);
2799		if (WARN(id < 0, "couldn't get idr"))
2800			return id == -ENOSPC ? -EBUSY : id;
2801		ctlr->bus_num = id;
2802	} else if (ctlr->dev.of_node) {
2803		/* allocate dynamic bus number using Linux idr */
2804		id = of_alias_get_id(ctlr->dev.of_node, "spi");
2805		if (id >= 0) {
2806			ctlr->bus_num = id;
2807			mutex_lock(&board_lock);
2808			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2809				       ctlr->bus_num + 1, GFP_KERNEL);
2810			mutex_unlock(&board_lock);
2811			if (WARN(id < 0, "couldn't get idr"))
2812				return id == -ENOSPC ? -EBUSY : id;
2813		}
2814	}
2815	if (ctlr->bus_num < 0) {
2816		first_dynamic = of_alias_get_highest_id("spi");
2817		if (first_dynamic < 0)
2818			first_dynamic = 0;
2819		else
2820			first_dynamic++;
2821
2822		mutex_lock(&board_lock);
2823		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2824			       0, GFP_KERNEL);
2825		mutex_unlock(&board_lock);
2826		if (WARN(id < 0, "couldn't get idr"))
2827			return id;
2828		ctlr->bus_num = id;
2829	}
 
 
 
 
 
2830	ctlr->bus_lock_flag = 0;
2831	init_completion(&ctlr->xfer_completion);
2832	if (!ctlr->max_dma_len)
2833		ctlr->max_dma_len = INT_MAX;
2834
2835	/* register the device, then userspace will see it.
2836	 * registration fails if the bus ID is in use.
2837	 */
2838	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2839
2840	if (!spi_controller_is_slave(ctlr)) {
2841		if (ctlr->use_gpio_descriptors) {
2842			status = spi_get_gpio_descs(ctlr);
2843			if (status)
2844				goto free_bus_id;
2845			/*
2846			 * A controller using GPIO descriptors always
2847			 * supports SPI_CS_HIGH if need be.
2848			 */
2849			ctlr->mode_bits |= SPI_CS_HIGH;
2850		} else {
2851			/* Legacy code path for GPIOs from DT */
2852			status = of_spi_get_gpio_numbers(ctlr);
2853			if (status)
2854				goto free_bus_id;
2855		}
2856	}
2857
2858	/*
2859	 * Even if it's just one always-selected device, there must
2860	 * be at least one chipselect.
2861	 */
2862	if (!ctlr->num_chipselect) {
2863		status = -EINVAL;
2864		goto free_bus_id;
2865	}
2866
2867	status = device_add(&ctlr->dev);
2868	if (status < 0)
2869		goto free_bus_id;
 
 
 
 
 
2870	dev_dbg(dev, "registered %s %s\n",
2871			spi_controller_is_slave(ctlr) ? "slave" : "master",
2872			dev_name(&ctlr->dev));
2873
2874	/*
2875	 * If we're using a queued driver, start the queue. Note that we don't
2876	 * need the queueing logic if the driver is only supporting high-level
2877	 * memory operations.
2878	 */
2879	if (ctlr->transfer) {
2880		dev_info(dev, "controller is unqueued, this is deprecated\n");
2881	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2882		status = spi_controller_initialize_queue(ctlr);
2883		if (status) {
2884			device_del(&ctlr->dev);
2885			goto free_bus_id;
 
 
 
 
2886		}
2887	}
2888	/* add statistics */
2889	spin_lock_init(&ctlr->statistics.lock);
2890
2891	mutex_lock(&board_lock);
2892	list_add_tail(&ctlr->list, &spi_controller_list);
2893	list_for_each_entry(bi, &board_list, list)
2894		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2895	mutex_unlock(&board_lock);
2896
2897	/* Register devices from the device tree and ACPI */
2898	of_register_spi_devices(ctlr);
2899	acpi_register_spi_devices(ctlr);
2900	return status;
2901
2902free_bus_id:
2903	mutex_lock(&board_lock);
2904	idr_remove(&spi_master_idr, ctlr->bus_num);
2905	mutex_unlock(&board_lock);
2906	return status;
2907}
2908EXPORT_SYMBOL_GPL(spi_register_controller);
2909
2910static void devm_spi_unregister(void *ctlr)
2911{
2912	spi_unregister_controller(ctlr);
2913}
2914
2915/**
2916 * devm_spi_register_controller - register managed SPI master or slave
2917 *	controller
2918 * @dev:    device managing SPI controller
2919 * @ctlr: initialized controller, originally from spi_alloc_master() or
2920 *	spi_alloc_slave()
2921 * Context: can sleep
2922 *
2923 * Register a SPI device as with spi_register_controller() which will
2924 * automatically be unregistered and freed.
2925 *
2926 * Return: zero on success, else a negative error code.
2927 */
2928int devm_spi_register_controller(struct device *dev,
2929				 struct spi_controller *ctlr)
2930{
 
2931	int ret;
2932
 
 
 
 
2933	ret = spi_register_controller(ctlr);
2934	if (ret)
2935		return ret;
 
 
 
 
2936
2937	return devm_add_action_or_reset(dev, devm_spi_unregister, ctlr);
2938}
2939EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2940
2941static int __unregister(struct device *dev, void *null)
2942{
2943	spi_unregister_device(to_spi_device(dev));
2944	return 0;
2945}
2946
2947/**
2948 * spi_unregister_controller - unregister SPI master or slave controller
2949 * @ctlr: the controller being unregistered
2950 * Context: can sleep
2951 *
2952 * This call is used only by SPI controller drivers, which are the
2953 * only ones directly touching chip registers.
2954 *
2955 * This must be called from context that can sleep.
2956 *
2957 * Note that this function also drops a reference to the controller.
2958 */
2959void spi_unregister_controller(struct spi_controller *ctlr)
2960{
2961	struct spi_controller *found;
2962	int id = ctlr->bus_num;
2963
2964	/* Prevent addition of new devices, unregister existing ones */
2965	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2966		mutex_lock(&ctlr->add_lock);
2967
2968	device_for_each_child(&ctlr->dev, NULL, __unregister);
2969
2970	/* First make sure that this controller was ever added */
2971	mutex_lock(&board_lock);
2972	found = idr_find(&spi_master_idr, id);
2973	mutex_unlock(&board_lock);
2974	if (ctlr->queued) {
2975		if (spi_destroy_queue(ctlr))
2976			dev_err(&ctlr->dev, "queue remove failed\n");
2977	}
2978	mutex_lock(&board_lock);
2979	list_del(&ctlr->list);
2980	mutex_unlock(&board_lock);
2981
2982	device_del(&ctlr->dev);
2983
2984	/* Release the last reference on the controller if its driver
2985	 * has not yet been converted to devm_spi_alloc_master/slave().
2986	 */
2987	if (!ctlr->devm_allocated)
2988		put_device(&ctlr->dev);
2989
2990	/* free bus id */
2991	mutex_lock(&board_lock);
2992	if (found == ctlr)
2993		idr_remove(&spi_master_idr, id);
2994	mutex_unlock(&board_lock);
2995
2996	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2997		mutex_unlock(&ctlr->add_lock);
2998}
2999EXPORT_SYMBOL_GPL(spi_unregister_controller);
3000
3001int spi_controller_suspend(struct spi_controller *ctlr)
3002{
3003	int ret;
3004
3005	/* Basically no-ops for non-queued controllers */
3006	if (!ctlr->queued)
3007		return 0;
3008
3009	ret = spi_stop_queue(ctlr);
3010	if (ret)
3011		dev_err(&ctlr->dev, "queue stop failed\n");
3012
3013	return ret;
3014}
3015EXPORT_SYMBOL_GPL(spi_controller_suspend);
3016
3017int spi_controller_resume(struct spi_controller *ctlr)
3018{
3019	int ret;
3020
3021	if (!ctlr->queued)
3022		return 0;
3023
3024	ret = spi_start_queue(ctlr);
3025	if (ret)
3026		dev_err(&ctlr->dev, "queue restart failed\n");
3027
3028	return ret;
3029}
3030EXPORT_SYMBOL_GPL(spi_controller_resume);
3031
3032static int __spi_controller_match(struct device *dev, const void *data)
3033{
3034	struct spi_controller *ctlr;
3035	const u16 *bus_num = data;
3036
3037	ctlr = container_of(dev, struct spi_controller, dev);
3038	return ctlr->bus_num == *bus_num;
3039}
3040
3041/**
3042 * spi_busnum_to_master - look up master associated with bus_num
3043 * @bus_num: the master's bus number
3044 * Context: can sleep
3045 *
3046 * This call may be used with devices that are registered after
3047 * arch init time.  It returns a refcounted pointer to the relevant
3048 * spi_controller (which the caller must release), or NULL if there is
3049 * no such master registered.
3050 *
3051 * Return: the SPI master structure on success, else NULL.
3052 */
3053struct spi_controller *spi_busnum_to_master(u16 bus_num)
3054{
3055	struct device		*dev;
3056	struct spi_controller	*ctlr = NULL;
3057
3058	dev = class_find_device(&spi_master_class, NULL, &bus_num,
3059				__spi_controller_match);
3060	if (dev)
3061		ctlr = container_of(dev, struct spi_controller, dev);
3062	/* reference got in class_find_device */
3063	return ctlr;
3064}
3065EXPORT_SYMBOL_GPL(spi_busnum_to_master);
3066
3067/*-------------------------------------------------------------------------*/
3068
3069/* Core methods for SPI resource management */
3070
3071/**
3072 * spi_res_alloc - allocate a spi resource that is life-cycle managed
3073 *                 during the processing of a spi_message while using
3074 *                 spi_transfer_one
3075 * @spi:     the spi device for which we allocate memory
3076 * @release: the release code to execute for this resource
3077 * @size:    size to alloc and return
3078 * @gfp:     GFP allocation flags
3079 *
3080 * Return: the pointer to the allocated data
3081 *
3082 * This may get enhanced in the future to allocate from a memory pool
3083 * of the @spi_device or @spi_controller to avoid repeated allocations.
3084 */
3085void *spi_res_alloc(struct spi_device *spi,
3086		    spi_res_release_t release,
3087		    size_t size, gfp_t gfp)
3088{
3089	struct spi_res *sres;
3090
3091	sres = kzalloc(sizeof(*sres) + size, gfp);
3092	if (!sres)
3093		return NULL;
3094
3095	INIT_LIST_HEAD(&sres->entry);
3096	sres->release = release;
3097
3098	return sres->data;
3099}
3100EXPORT_SYMBOL_GPL(spi_res_alloc);
3101
3102/**
3103 * spi_res_free - free an spi resource
3104 * @res: pointer to the custom data of a resource
3105 *
3106 */
3107void spi_res_free(void *res)
3108{
3109	struct spi_res *sres = container_of(res, struct spi_res, data);
3110
3111	if (!res)
3112		return;
3113
3114	WARN_ON(!list_empty(&sres->entry));
3115	kfree(sres);
3116}
3117EXPORT_SYMBOL_GPL(spi_res_free);
3118
3119/**
3120 * spi_res_add - add a spi_res to the spi_message
3121 * @message: the spi message
3122 * @res:     the spi_resource
3123 */
3124void spi_res_add(struct spi_message *message, void *res)
3125{
3126	struct spi_res *sres = container_of(res, struct spi_res, data);
3127
3128	WARN_ON(!list_empty(&sres->entry));
3129	list_add_tail(&sres->entry, &message->resources);
3130}
3131EXPORT_SYMBOL_GPL(spi_res_add);
3132
3133/**
3134 * spi_res_release - release all spi resources for this message
3135 * @ctlr:  the @spi_controller
3136 * @message: the @spi_message
3137 */
3138void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
3139{
3140	struct spi_res *res, *tmp;
3141
3142	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
3143		if (res->release)
3144			res->release(ctlr, message, res->data);
3145
3146		list_del(&res->entry);
3147
3148		kfree(res);
3149	}
3150}
3151EXPORT_SYMBOL_GPL(spi_res_release);
3152
3153/*-------------------------------------------------------------------------*/
3154
3155/* Core methods for spi_message alterations */
3156
3157static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3158					    struct spi_message *msg,
3159					    void *res)
3160{
3161	struct spi_replaced_transfers *rxfer = res;
3162	size_t i;
3163
3164	/* call extra callback if requested */
3165	if (rxfer->release)
3166		rxfer->release(ctlr, msg, res);
3167
3168	/* insert replaced transfers back into the message */
3169	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3170
3171	/* remove the formerly inserted entries */
3172	for (i = 0; i < rxfer->inserted; i++)
3173		list_del(&rxfer->inserted_transfers[i].transfer_list);
3174}
3175
3176/**
3177 * spi_replace_transfers - replace transfers with several transfers
3178 *                         and register change with spi_message.resources
3179 * @msg:           the spi_message we work upon
3180 * @xfer_first:    the first spi_transfer we want to replace
3181 * @remove:        number of transfers to remove
3182 * @insert:        the number of transfers we want to insert instead
3183 * @release:       extra release code necessary in some circumstances
3184 * @extradatasize: extra data to allocate (with alignment guarantees
3185 *                 of struct @spi_transfer)
3186 * @gfp:           gfp flags
3187 *
3188 * Returns: pointer to @spi_replaced_transfers,
3189 *          PTR_ERR(...) in case of errors.
3190 */
3191struct spi_replaced_transfers *spi_replace_transfers(
3192	struct spi_message *msg,
3193	struct spi_transfer *xfer_first,
3194	size_t remove,
3195	size_t insert,
3196	spi_replaced_release_t release,
3197	size_t extradatasize,
3198	gfp_t gfp)
3199{
3200	struct spi_replaced_transfers *rxfer;
3201	struct spi_transfer *xfer;
3202	size_t i;
3203
3204	/* allocate the structure using spi_res */
3205	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3206			      struct_size(rxfer, inserted_transfers, insert)
3207			      + extradatasize,
3208			      gfp);
3209	if (!rxfer)
3210		return ERR_PTR(-ENOMEM);
3211
3212	/* the release code to invoke before running the generic release */
3213	rxfer->release = release;
3214
3215	/* assign extradata */
3216	if (extradatasize)
3217		rxfer->extradata =
3218			&rxfer->inserted_transfers[insert];
3219
3220	/* init the replaced_transfers list */
3221	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3222
3223	/* assign the list_entry after which we should reinsert
3224	 * the @replaced_transfers - it may be spi_message.messages!
3225	 */
3226	rxfer->replaced_after = xfer_first->transfer_list.prev;
3227
3228	/* remove the requested number of transfers */
3229	for (i = 0; i < remove; i++) {
3230		/* if the entry after replaced_after it is msg->transfers
3231		 * then we have been requested to remove more transfers
3232		 * than are in the list
3233		 */
3234		if (rxfer->replaced_after->next == &msg->transfers) {
3235			dev_err(&msg->spi->dev,
3236				"requested to remove more spi_transfers than are available\n");
3237			/* insert replaced transfers back into the message */
3238			list_splice(&rxfer->replaced_transfers,
3239				    rxfer->replaced_after);
3240
3241			/* free the spi_replace_transfer structure */
3242			spi_res_free(rxfer);
3243
3244			/* and return with an error */
3245			return ERR_PTR(-EINVAL);
3246		}
3247
3248		/* remove the entry after replaced_after from list of
3249		 * transfers and add it to list of replaced_transfers
3250		 */
3251		list_move_tail(rxfer->replaced_after->next,
3252			       &rxfer->replaced_transfers);
3253	}
3254
3255	/* create copy of the given xfer with identical settings
3256	 * based on the first transfer to get removed
3257	 */
3258	for (i = 0; i < insert; i++) {
3259		/* we need to run in reverse order */
3260		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3261
3262		/* copy all spi_transfer data */
3263		memcpy(xfer, xfer_first, sizeof(*xfer));
3264
3265		/* add to list */
3266		list_add(&xfer->transfer_list, rxfer->replaced_after);
3267
3268		/* clear cs_change and delay for all but the last */
3269		if (i) {
3270			xfer->cs_change = false;
3271			xfer->delay.value = 0;
3272		}
3273	}
3274
3275	/* set up inserted */
3276	rxfer->inserted = insert;
3277
3278	/* and register it with spi_res/spi_message */
3279	spi_res_add(msg, rxfer);
3280
3281	return rxfer;
3282}
3283EXPORT_SYMBOL_GPL(spi_replace_transfers);
3284
3285static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3286					struct spi_message *msg,
3287					struct spi_transfer **xferp,
3288					size_t maxsize,
3289					gfp_t gfp)
3290{
3291	struct spi_transfer *xfer = *xferp, *xfers;
3292	struct spi_replaced_transfers *srt;
3293	size_t offset;
3294	size_t count, i;
3295
3296	/* calculate how many we have to replace */
3297	count = DIV_ROUND_UP(xfer->len, maxsize);
3298
3299	/* create replacement */
3300	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3301	if (IS_ERR(srt))
3302		return PTR_ERR(srt);
3303	xfers = srt->inserted_transfers;
3304
3305	/* now handle each of those newly inserted spi_transfers
3306	 * note that the replacements spi_transfers all are preset
3307	 * to the same values as *xferp, so tx_buf, rx_buf and len
3308	 * are all identical (as well as most others)
3309	 * so we just have to fix up len and the pointers.
3310	 *
3311	 * this also includes support for the depreciated
3312	 * spi_message.is_dma_mapped interface
3313	 */
3314
3315	/* the first transfer just needs the length modified, so we
3316	 * run it outside the loop
3317	 */
3318	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3319
3320	/* all the others need rx_buf/tx_buf also set */
3321	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3322		/* update rx_buf, tx_buf and dma */
3323		if (xfers[i].rx_buf)
3324			xfers[i].rx_buf += offset;
3325		if (xfers[i].rx_dma)
3326			xfers[i].rx_dma += offset;
3327		if (xfers[i].tx_buf)
3328			xfers[i].tx_buf += offset;
3329		if (xfers[i].tx_dma)
3330			xfers[i].tx_dma += offset;
3331
3332		/* update length */
3333		xfers[i].len = min(maxsize, xfers[i].len - offset);
3334	}
3335
3336	/* we set up xferp to the last entry we have inserted,
3337	 * so that we skip those already split transfers
3338	 */
3339	*xferp = &xfers[count - 1];
3340
3341	/* increment statistics counters */
3342	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3343				       transfers_split_maxsize);
3344	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
3345				       transfers_split_maxsize);
3346
3347	return 0;
3348}
3349
3350/**
3351 * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3352 *                               when an individual transfer exceeds a
3353 *                               certain size
3354 * @ctlr:    the @spi_controller for this transfer
3355 * @msg:   the @spi_message to transform
3356 * @maxsize:  the maximum when to apply this
3357 * @gfp: GFP allocation flags
3358 *
3359 * Return: status of transformation
3360 */
3361int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3362				struct spi_message *msg,
3363				size_t maxsize,
3364				gfp_t gfp)
3365{
3366	struct spi_transfer *xfer;
3367	int ret;
3368
3369	/* iterate over the transfer_list,
3370	 * but note that xfer is advanced to the last transfer inserted
3371	 * to avoid checking sizes again unnecessarily (also xfer does
3372	 * potentiall belong to a different list by the time the
3373	 * replacement has happened
3374	 */
3375	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3376		if (xfer->len > maxsize) {
3377			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3378							   maxsize, gfp);
3379			if (ret)
3380				return ret;
3381		}
3382	}
3383
3384	return 0;
3385}
3386EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3387
3388/*-------------------------------------------------------------------------*/
3389
3390/* Core methods for SPI controller protocol drivers.  Some of the
3391 * other core methods are currently defined as inline functions.
3392 */
3393
3394static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3395					u8 bits_per_word)
3396{
3397	if (ctlr->bits_per_word_mask) {
3398		/* Only 32 bits fit in the mask */
3399		if (bits_per_word > 32)
3400			return -EINVAL;
3401		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3402			return -EINVAL;
3403	}
3404
3405	return 0;
3406}
3407
3408/**
3409 * spi_setup - setup SPI mode and clock rate
3410 * @spi: the device whose settings are being modified
3411 * Context: can sleep, and no requests are queued to the device
3412 *
3413 * SPI protocol drivers may need to update the transfer mode if the
3414 * device doesn't work with its default.  They may likewise need
3415 * to update clock rates or word sizes from initial values.  This function
3416 * changes those settings, and must be called from a context that can sleep.
3417 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3418 * effect the next time the device is selected and data is transferred to
3419 * or from it.  When this function returns, the spi device is deselected.
3420 *
3421 * Note that this call will fail if the protocol driver specifies an option
3422 * that the underlying controller or its driver does not support.  For
3423 * example, not all hardware supports wire transfers using nine bit words,
3424 * LSB-first wire encoding, or active-high chipselects.
3425 *
3426 * Return: zero on success, else a negative error code.
3427 */
3428int spi_setup(struct spi_device *spi)
3429{
3430	unsigned	bad_bits, ugly_bits;
3431	int		status;
3432
3433	/*
3434	 * check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3435	 * are set at the same time
3436	 */
3437	if ((hweight_long(spi->mode &
3438		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3439	    (hweight_long(spi->mode &
3440		(SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3441		dev_err(&spi->dev,
3442		"setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3443		return -EINVAL;
3444	}
3445	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3446	 */
3447	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3448		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3449		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3450		return -EINVAL;
3451	/* help drivers fail *cleanly* when they need options
3452	 * that aren't supported with their current controller
3453	 * SPI_CS_WORD has a fallback software implementation,
3454	 * so it is ignored here.
3455	 */
3456	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3457				 SPI_NO_TX | SPI_NO_RX);
3458	/* nothing prevents from working with active-high CS in case if it
3459	 * is driven by GPIO.
3460	 */
3461	if (gpio_is_valid(spi->cs_gpio))
3462		bad_bits &= ~SPI_CS_HIGH;
3463	ugly_bits = bad_bits &
3464		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3465		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3466	if (ugly_bits) {
3467		dev_warn(&spi->dev,
3468			 "setup: ignoring unsupported mode bits %x\n",
3469			 ugly_bits);
3470		spi->mode &= ~ugly_bits;
3471		bad_bits &= ~ugly_bits;
3472	}
3473	if (bad_bits) {
3474		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3475			bad_bits);
3476		return -EINVAL;
3477	}
3478
3479	if (!spi->bits_per_word)
3480		spi->bits_per_word = 8;
3481
3482	status = __spi_validate_bits_per_word(spi->controller,
3483					      spi->bits_per_word);
3484	if (status)
3485		return status;
3486
3487	if (spi->controller->max_speed_hz &&
3488	    (!spi->max_speed_hz ||
3489	     spi->max_speed_hz > spi->controller->max_speed_hz))
3490		spi->max_speed_hz = spi->controller->max_speed_hz;
3491
3492	mutex_lock(&spi->controller->io_mutex);
3493
3494	if (spi->controller->setup) {
3495		status = spi->controller->setup(spi);
3496		if (status) {
3497			mutex_unlock(&spi->controller->io_mutex);
3498			dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3499				status);
3500			return status;
3501		}
3502	}
3503
3504	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3505		status = pm_runtime_get_sync(spi->controller->dev.parent);
3506		if (status < 0) {
3507			mutex_unlock(&spi->controller->io_mutex);
3508			pm_runtime_put_noidle(spi->controller->dev.parent);
3509			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3510				status);
3511			return status;
3512		}
3513
3514		/*
3515		 * We do not want to return positive value from pm_runtime_get,
3516		 * there are many instances of devices calling spi_setup() and
3517		 * checking for a non-zero return value instead of a negative
3518		 * return value.
3519		 */
3520		status = 0;
3521
3522		spi_set_cs(spi, false, true);
3523		pm_runtime_mark_last_busy(spi->controller->dev.parent);
3524		pm_runtime_put_autosuspend(spi->controller->dev.parent);
3525	} else {
3526		spi_set_cs(spi, false, true);
3527	}
3528
3529	mutex_unlock(&spi->controller->io_mutex);
3530
3531	if (spi->rt && !spi->controller->rt) {
3532		spi->controller->rt = true;
3533		spi_set_thread_rt(spi->controller);
3534	}
3535
3536	trace_spi_setup(spi, status);
3537
3538	dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3539			spi->mode & SPI_MODE_X_MASK,
3540			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3541			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3542			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
3543			(spi->mode & SPI_LOOP) ? "loopback, " : "",
3544			spi->bits_per_word, spi->max_speed_hz,
3545			status);
3546
3547	return status;
3548}
3549EXPORT_SYMBOL_GPL(spi_setup);
3550
3551static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3552				       struct spi_device *spi)
 
 
 
 
 
 
 
3553{
3554	int delay1, delay2;
3555
3556	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3557	if (delay1 < 0)
3558		return delay1;
3559
3560	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3561	if (delay2 < 0)
3562		return delay2;
3563
3564	if (delay1 < delay2)
3565		memcpy(&xfer->word_delay, &spi->word_delay,
3566		       sizeof(xfer->word_delay));
3567
3568	return 0;
3569}
 
3570
3571static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3572{
3573	struct spi_controller *ctlr = spi->controller;
3574	struct spi_transfer *xfer;
3575	int w_size;
3576
3577	if (list_empty(&message->transfers))
3578		return -EINVAL;
3579
3580	/* If an SPI controller does not support toggling the CS line on each
3581	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3582	 * for the CS line, we can emulate the CS-per-word hardware function by
3583	 * splitting transfers into one-word transfers and ensuring that
3584	 * cs_change is set for each transfer.
3585	 */
3586	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3587					  spi->cs_gpiod ||
3588					  gpio_is_valid(spi->cs_gpio))) {
3589		size_t maxsize;
3590		int ret;
3591
3592		maxsize = (spi->bits_per_word + 7) / 8;
3593
3594		/* spi_split_transfers_maxsize() requires message->spi */
3595		message->spi = spi;
3596
3597		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3598						  GFP_KERNEL);
3599		if (ret)
3600			return ret;
3601
3602		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3603			/* don't change cs_change on the last entry in the list */
3604			if (list_is_last(&xfer->transfer_list, &message->transfers))
3605				break;
3606			xfer->cs_change = 1;
3607		}
3608	}
3609
3610	/* Half-duplex links include original MicroWire, and ones with
3611	 * only one data pin like SPI_3WIRE (switches direction) or where
3612	 * either MOSI or MISO is missing.  They can also be caused by
3613	 * software limitations.
3614	 */
3615	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3616	    (spi->mode & SPI_3WIRE)) {
3617		unsigned flags = ctlr->flags;
3618
3619		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3620			if (xfer->rx_buf && xfer->tx_buf)
3621				return -EINVAL;
3622			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3623				return -EINVAL;
3624			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3625				return -EINVAL;
3626		}
3627	}
3628
3629	/**
3630	 * Set transfer bits_per_word and max speed as spi device default if
3631	 * it is not set for this transfer.
3632	 * Set transfer tx_nbits and rx_nbits as single transfer default
3633	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3634	 * Ensure transfer word_delay is at least as long as that required by
3635	 * device itself.
3636	 */
3637	message->frame_length = 0;
3638	list_for_each_entry(xfer, &message->transfers, transfer_list) {
3639		xfer->effective_speed_hz = 0;
3640		message->frame_length += xfer->len;
3641		if (!xfer->bits_per_word)
3642			xfer->bits_per_word = spi->bits_per_word;
3643
3644		if (!xfer->speed_hz)
3645			xfer->speed_hz = spi->max_speed_hz;
3646
3647		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3648			xfer->speed_hz = ctlr->max_speed_hz;
3649
3650		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3651			return -EINVAL;
3652
3653		/*
3654		 * SPI transfer length should be multiple of SPI word size
3655		 * where SPI word size should be power-of-two multiple
3656		 */
3657		if (xfer->bits_per_word <= 8)
3658			w_size = 1;
3659		else if (xfer->bits_per_word <= 16)
3660			w_size = 2;
3661		else
3662			w_size = 4;
3663
3664		/* No partial transfers accepted */
3665		if (xfer->len % w_size)
3666			return -EINVAL;
3667
3668		if (xfer->speed_hz && ctlr->min_speed_hz &&
3669		    xfer->speed_hz < ctlr->min_speed_hz)
3670			return -EINVAL;
3671
3672		if (xfer->tx_buf && !xfer->tx_nbits)
3673			xfer->tx_nbits = SPI_NBITS_SINGLE;
3674		if (xfer->rx_buf && !xfer->rx_nbits)
3675			xfer->rx_nbits = SPI_NBITS_SINGLE;
3676		/* check transfer tx/rx_nbits:
3677		 * 1. check the value matches one of single, dual and quad
3678		 * 2. check tx/rx_nbits match the mode in spi_device
3679		 */
3680		if (xfer->tx_buf) {
3681			if (spi->mode & SPI_NO_TX)
3682				return -EINVAL;
3683			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3684				xfer->tx_nbits != SPI_NBITS_DUAL &&
3685				xfer->tx_nbits != SPI_NBITS_QUAD)
3686				return -EINVAL;
3687			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3688				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3689				return -EINVAL;
3690			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3691				!(spi->mode & SPI_TX_QUAD))
3692				return -EINVAL;
3693		}
3694		/* check transfer rx_nbits */
3695		if (xfer->rx_buf) {
3696			if (spi->mode & SPI_NO_RX)
3697				return -EINVAL;
3698			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3699				xfer->rx_nbits != SPI_NBITS_DUAL &&
3700				xfer->rx_nbits != SPI_NBITS_QUAD)
3701				return -EINVAL;
3702			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3703				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3704				return -EINVAL;
3705			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3706				!(spi->mode & SPI_RX_QUAD))
3707				return -EINVAL;
3708		}
3709
3710		if (_spi_xfer_word_delay_update(xfer, spi))
3711			return -EINVAL;
3712	}
3713
3714	message->status = -EINPROGRESS;
3715
3716	return 0;
3717}
3718
3719static int __spi_async(struct spi_device *spi, struct spi_message *message)
3720{
3721	struct spi_controller *ctlr = spi->controller;
3722	struct spi_transfer *xfer;
3723
3724	/*
3725	 * Some controllers do not support doing regular SPI transfers. Return
3726	 * ENOTSUPP when this is the case.
3727	 */
3728	if (!ctlr->transfer)
3729		return -ENOTSUPP;
3730
3731	message->spi = spi;
3732
3733	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3734	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3735
3736	trace_spi_message_submit(message);
3737
3738	if (!ctlr->ptp_sts_supported) {
3739		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3740			xfer->ptp_sts_word_pre = 0;
3741			ptp_read_system_prets(xfer->ptp_sts);
3742		}
3743	}
3744
3745	return ctlr->transfer(spi, message);
3746}
3747
3748/**
3749 * spi_async - asynchronous SPI transfer
3750 * @spi: device with which data will be exchanged
3751 * @message: describes the data transfers, including completion callback
3752 * Context: any (irqs may be blocked, etc)
3753 *
3754 * This call may be used in_irq and other contexts which can't sleep,
3755 * as well as from task contexts which can sleep.
3756 *
3757 * The completion callback is invoked in a context which can't sleep.
3758 * Before that invocation, the value of message->status is undefined.
3759 * When the callback is issued, message->status holds either zero (to
3760 * indicate complete success) or a negative error code.  After that
3761 * callback returns, the driver which issued the transfer request may
3762 * deallocate the associated memory; it's no longer in use by any SPI
3763 * core or controller driver code.
3764 *
3765 * Note that although all messages to a spi_device are handled in
3766 * FIFO order, messages may go to different devices in other orders.
3767 * Some device might be higher priority, or have various "hard" access
3768 * time requirements, for example.
3769 *
3770 * On detection of any fault during the transfer, processing of
3771 * the entire message is aborted, and the device is deselected.
3772 * Until returning from the associated message completion callback,
3773 * no other spi_message queued to that device will be processed.
3774 * (This rule applies equally to all the synchronous transfer calls,
3775 * which are wrappers around this core asynchronous primitive.)
3776 *
3777 * Return: zero on success, else a negative error code.
3778 */
3779int spi_async(struct spi_device *spi, struct spi_message *message)
3780{
3781	struct spi_controller *ctlr = spi->controller;
3782	int ret;
3783	unsigned long flags;
3784
3785	ret = __spi_validate(spi, message);
3786	if (ret != 0)
3787		return ret;
3788
3789	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3790
3791	if (ctlr->bus_lock_flag)
3792		ret = -EBUSY;
3793	else
3794		ret = __spi_async(spi, message);
3795
3796	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3797
3798	return ret;
3799}
3800EXPORT_SYMBOL_GPL(spi_async);
3801
3802/**
3803 * spi_async_locked - version of spi_async with exclusive bus usage
3804 * @spi: device with which data will be exchanged
3805 * @message: describes the data transfers, including completion callback
3806 * Context: any (irqs may be blocked, etc)
3807 *
3808 * This call may be used in_irq and other contexts which can't sleep,
3809 * as well as from task contexts which can sleep.
3810 *
3811 * The completion callback is invoked in a context which can't sleep.
3812 * Before that invocation, the value of message->status is undefined.
3813 * When the callback is issued, message->status holds either zero (to
3814 * indicate complete success) or a negative error code.  After that
3815 * callback returns, the driver which issued the transfer request may
3816 * deallocate the associated memory; it's no longer in use by any SPI
3817 * core or controller driver code.
3818 *
3819 * Note that although all messages to a spi_device are handled in
3820 * FIFO order, messages may go to different devices in other orders.
3821 * Some device might be higher priority, or have various "hard" access
3822 * time requirements, for example.
3823 *
3824 * On detection of any fault during the transfer, processing of
3825 * the entire message is aborted, and the device is deselected.
3826 * Until returning from the associated message completion callback,
3827 * no other spi_message queued to that device will be processed.
3828 * (This rule applies equally to all the synchronous transfer calls,
3829 * which are wrappers around this core asynchronous primitive.)
3830 *
3831 * Return: zero on success, else a negative error code.
3832 */
3833int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3834{
3835	struct spi_controller *ctlr = spi->controller;
3836	int ret;
3837	unsigned long flags;
3838
3839	ret = __spi_validate(spi, message);
3840	if (ret != 0)
3841		return ret;
3842
3843	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3844
3845	ret = __spi_async(spi, message);
3846
3847	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3848
3849	return ret;
3850
3851}
3852EXPORT_SYMBOL_GPL(spi_async_locked);
3853
3854/*-------------------------------------------------------------------------*/
3855
3856/* Utility methods for SPI protocol drivers, layered on
3857 * top of the core.  Some other utility methods are defined as
3858 * inline functions.
3859 */
3860
3861static void spi_complete(void *arg)
3862{
3863	complete(arg);
3864}
3865
3866static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3867{
3868	DECLARE_COMPLETION_ONSTACK(done);
3869	int status;
3870	struct spi_controller *ctlr = spi->controller;
3871	unsigned long flags;
3872
3873	status = __spi_validate(spi, message);
3874	if (status != 0)
3875		return status;
3876
3877	message->complete = spi_complete;
3878	message->context = &done;
3879	message->spi = spi;
3880
3881	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3882	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3883
3884	/* If we're not using the legacy transfer method then we will
3885	 * try to transfer in the calling context so special case.
3886	 * This code would be less tricky if we could remove the
3887	 * support for driver implemented message queues.
3888	 */
3889	if (ctlr->transfer == spi_queued_transfer) {
3890		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3891
3892		trace_spi_message_submit(message);
3893
3894		status = __spi_queued_transfer(spi, message, false);
3895
3896		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3897	} else {
3898		status = spi_async_locked(spi, message);
3899	}
3900
3901	if (status == 0) {
3902		/* Push out the messages in the calling context if we
3903		 * can.
3904		 */
3905		if (ctlr->transfer == spi_queued_transfer) {
3906			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3907						       spi_sync_immediate);
3908			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3909						       spi_sync_immediate);
3910			__spi_pump_messages(ctlr, false);
3911		}
3912
3913		wait_for_completion(&done);
3914		status = message->status;
3915	}
3916	message->context = NULL;
3917	return status;
3918}
3919
3920/**
3921 * spi_sync - blocking/synchronous SPI data transfers
3922 * @spi: device with which data will be exchanged
3923 * @message: describes the data transfers
3924 * Context: can sleep
3925 *
3926 * This call may only be used from a context that may sleep.  The sleep
3927 * is non-interruptible, and has no timeout.  Low-overhead controller
3928 * drivers may DMA directly into and out of the message buffers.
3929 *
3930 * Note that the SPI device's chip select is active during the message,
3931 * and then is normally disabled between messages.  Drivers for some
3932 * frequently-used devices may want to minimize costs of selecting a chip,
3933 * by leaving it selected in anticipation that the next message will go
3934 * to the same chip.  (That may increase power usage.)
3935 *
3936 * Also, the caller is guaranteeing that the memory associated with the
3937 * message will not be freed before this call returns.
3938 *
3939 * Return: zero on success, else a negative error code.
3940 */
3941int spi_sync(struct spi_device *spi, struct spi_message *message)
3942{
3943	int ret;
3944
3945	mutex_lock(&spi->controller->bus_lock_mutex);
3946	ret = __spi_sync(spi, message);
3947	mutex_unlock(&spi->controller->bus_lock_mutex);
3948
3949	return ret;
3950}
3951EXPORT_SYMBOL_GPL(spi_sync);
3952
3953/**
3954 * spi_sync_locked - version of spi_sync with exclusive bus usage
3955 * @spi: device with which data will be exchanged
3956 * @message: describes the data transfers
3957 * Context: can sleep
3958 *
3959 * This call may only be used from a context that may sleep.  The sleep
3960 * is non-interruptible, and has no timeout.  Low-overhead controller
3961 * drivers may DMA directly into and out of the message buffers.
3962 *
3963 * This call should be used by drivers that require exclusive access to the
3964 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3965 * be released by a spi_bus_unlock call when the exclusive access is over.
3966 *
3967 * Return: zero on success, else a negative error code.
3968 */
3969int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3970{
3971	return __spi_sync(spi, message);
3972}
3973EXPORT_SYMBOL_GPL(spi_sync_locked);
3974
3975/**
3976 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3977 * @ctlr: SPI bus master that should be locked for exclusive bus access
3978 * Context: can sleep
3979 *
3980 * This call may only be used from a context that may sleep.  The sleep
3981 * is non-interruptible, and has no timeout.
3982 *
3983 * This call should be used by drivers that require exclusive access to the
3984 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3985 * exclusive access is over. Data transfer must be done by spi_sync_locked
3986 * and spi_async_locked calls when the SPI bus lock is held.
3987 *
3988 * Return: always zero.
3989 */
3990int spi_bus_lock(struct spi_controller *ctlr)
3991{
3992	unsigned long flags;
3993
3994	mutex_lock(&ctlr->bus_lock_mutex);
3995
3996	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3997	ctlr->bus_lock_flag = 1;
3998	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3999
4000	/* mutex remains locked until spi_bus_unlock is called */
4001
4002	return 0;
4003}
4004EXPORT_SYMBOL_GPL(spi_bus_lock);
4005
4006/**
4007 * spi_bus_unlock - release the lock for exclusive SPI bus usage
4008 * @ctlr: SPI bus master that was locked for exclusive bus access
4009 * Context: can sleep
4010 *
4011 * This call may only be used from a context that may sleep.  The sleep
4012 * is non-interruptible, and has no timeout.
4013 *
4014 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4015 * call.
4016 *
4017 * Return: always zero.
4018 */
4019int spi_bus_unlock(struct spi_controller *ctlr)
4020{
4021	ctlr->bus_lock_flag = 0;
4022
4023	mutex_unlock(&ctlr->bus_lock_mutex);
4024
4025	return 0;
4026}
4027EXPORT_SYMBOL_GPL(spi_bus_unlock);
4028
4029/* portable code must never pass more than 32 bytes */
4030#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
4031
4032static u8	*buf;
4033
4034/**
4035 * spi_write_then_read - SPI synchronous write followed by read
4036 * @spi: device with which data will be exchanged
4037 * @txbuf: data to be written (need not be dma-safe)
4038 * @n_tx: size of txbuf, in bytes
4039 * @rxbuf: buffer into which data will be read (need not be dma-safe)
4040 * @n_rx: size of rxbuf, in bytes
4041 * Context: can sleep
4042 *
4043 * This performs a half duplex MicroWire style transaction with the
4044 * device, sending txbuf and then reading rxbuf.  The return value
4045 * is zero for success, else a negative errno status code.
4046 * This call may only be used from a context that may sleep.
4047 *
4048 * Parameters to this routine are always copied using a small buffer.
 
4049 * Performance-sensitive or bulk transfer code should instead use
4050 * spi_{async,sync}() calls with dma-safe buffers.
4051 *
4052 * Return: zero on success, else a negative error code.
4053 */
4054int spi_write_then_read(struct spi_device *spi,
4055		const void *txbuf, unsigned n_tx,
4056		void *rxbuf, unsigned n_rx)
4057{
4058	static DEFINE_MUTEX(lock);
4059
4060	int			status;
4061	struct spi_message	message;
4062	struct spi_transfer	x[2];
4063	u8			*local_buf;
4064
4065	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
4066	 * copying here, (as a pure convenience thing), but we can
4067	 * keep heap costs out of the hot path unless someone else is
4068	 * using the pre-allocated buffer or the transfer is too large.
4069	 */
4070	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4071		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4072				    GFP_KERNEL | GFP_DMA);
4073		if (!local_buf)
4074			return -ENOMEM;
4075	} else {
4076		local_buf = buf;
4077	}
4078
4079	spi_message_init(&message);
4080	memset(x, 0, sizeof(x));
4081	if (n_tx) {
4082		x[0].len = n_tx;
4083		spi_message_add_tail(&x[0], &message);
4084	}
4085	if (n_rx) {
4086		x[1].len = n_rx;
4087		spi_message_add_tail(&x[1], &message);
4088	}
4089
4090	memcpy(local_buf, txbuf, n_tx);
4091	x[0].tx_buf = local_buf;
4092	x[1].rx_buf = local_buf + n_tx;
4093
4094	/* do the i/o */
4095	status = spi_sync(spi, &message);
4096	if (status == 0)
4097		memcpy(rxbuf, x[1].rx_buf, n_rx);
4098
4099	if (x[0].tx_buf == buf)
4100		mutex_unlock(&lock);
4101	else
4102		kfree(local_buf);
4103
4104	return status;
4105}
4106EXPORT_SYMBOL_GPL(spi_write_then_read);
4107
4108/*-------------------------------------------------------------------------*/
4109
4110#if IS_ENABLED(CONFIG_OF)
4111/* must call put_device() when done with returned spi_device device */
4112struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4113{
4114	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4115
4116	return dev ? to_spi_device(dev) : NULL;
4117}
4118EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
4119#endif /* IS_ENABLED(CONFIG_OF) */
4120
4121#if IS_ENABLED(CONFIG_OF_DYNAMIC)
4122/* the spi controllers are not using spi_bus, so we find it with another way */
4123static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4124{
4125	struct device *dev;
4126
4127	dev = class_find_device_by_of_node(&spi_master_class, node);
4128	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4129		dev = class_find_device_by_of_node(&spi_slave_class, node);
4130	if (!dev)
4131		return NULL;
4132
4133	/* reference got in class_find_device */
4134	return container_of(dev, struct spi_controller, dev);
4135}
4136
4137static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4138			 void *arg)
4139{
4140	struct of_reconfig_data *rd = arg;
4141	struct spi_controller *ctlr;
4142	struct spi_device *spi;
4143
4144	switch (of_reconfig_get_state_change(action, arg)) {
4145	case OF_RECONFIG_CHANGE_ADD:
4146		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4147		if (ctlr == NULL)
4148			return NOTIFY_OK;	/* not for us */
4149
4150		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4151			put_device(&ctlr->dev);
4152			return NOTIFY_OK;
4153		}
4154
4155		spi = of_register_spi_device(ctlr, rd->dn);
4156		put_device(&ctlr->dev);
4157
4158		if (IS_ERR(spi)) {
4159			pr_err("%s: failed to create for '%pOF'\n",
4160					__func__, rd->dn);
4161			of_node_clear_flag(rd->dn, OF_POPULATED);
4162			return notifier_from_errno(PTR_ERR(spi));
4163		}
4164		break;
4165
4166	case OF_RECONFIG_CHANGE_REMOVE:
4167		/* already depopulated? */
4168		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4169			return NOTIFY_OK;
4170
4171		/* find our device by node */
4172		spi = of_find_spi_device_by_node(rd->dn);
4173		if (spi == NULL)
4174			return NOTIFY_OK;	/* no? not meant for us */
4175
4176		/* unregister takes one ref away */
4177		spi_unregister_device(spi);
4178
4179		/* and put the reference of the find */
4180		put_device(&spi->dev);
4181		break;
4182	}
4183
4184	return NOTIFY_OK;
4185}
4186
4187static struct notifier_block spi_of_notifier = {
4188	.notifier_call = of_spi_notify,
4189};
4190#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4191extern struct notifier_block spi_of_notifier;
4192#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4193
4194#if IS_ENABLED(CONFIG_ACPI)
4195static int spi_acpi_controller_match(struct device *dev, const void *data)
4196{
4197	return ACPI_COMPANION(dev->parent) == data;
4198}
4199
4200static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4201{
4202	struct device *dev;
4203
4204	dev = class_find_device(&spi_master_class, NULL, adev,
4205				spi_acpi_controller_match);
4206	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4207		dev = class_find_device(&spi_slave_class, NULL, adev,
4208					spi_acpi_controller_match);
4209	if (!dev)
4210		return NULL;
4211
4212	return container_of(dev, struct spi_controller, dev);
4213}
4214
4215static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4216{
4217	struct device *dev;
4218
4219	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4220	return to_spi_device(dev);
4221}
4222
4223static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4224			   void *arg)
4225{
4226	struct acpi_device *adev = arg;
4227	struct spi_controller *ctlr;
4228	struct spi_device *spi;
4229
4230	switch (value) {
4231	case ACPI_RECONFIG_DEVICE_ADD:
4232		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4233		if (!ctlr)
4234			break;
4235
4236		acpi_register_spi_device(ctlr, adev);
4237		put_device(&ctlr->dev);
4238		break;
4239	case ACPI_RECONFIG_DEVICE_REMOVE:
4240		if (!acpi_device_enumerated(adev))
4241			break;
4242
4243		spi = acpi_spi_find_device_by_adev(adev);
4244		if (!spi)
4245			break;
4246
4247		spi_unregister_device(spi);
4248		put_device(&spi->dev);
4249		break;
4250	}
4251
4252	return NOTIFY_OK;
4253}
4254
4255static struct notifier_block spi_acpi_notifier = {
4256	.notifier_call = acpi_spi_notify,
4257};
4258#else
4259extern struct notifier_block spi_acpi_notifier;
4260#endif
4261
4262static int __init spi_init(void)
4263{
4264	int	status;
4265
4266	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4267	if (!buf) {
4268		status = -ENOMEM;
4269		goto err0;
4270	}
4271
4272	status = bus_register(&spi_bus_type);
4273	if (status < 0)
4274		goto err1;
4275
4276	status = class_register(&spi_master_class);
4277	if (status < 0)
4278		goto err2;
4279
4280	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4281		status = class_register(&spi_slave_class);
4282		if (status < 0)
4283			goto err3;
4284	}
4285
4286	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4287		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4288	if (IS_ENABLED(CONFIG_ACPI))
4289		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4290
4291	return 0;
4292
4293err3:
4294	class_unregister(&spi_master_class);
4295err2:
4296	bus_unregister(&spi_bus_type);
4297err1:
4298	kfree(buf);
4299	buf = NULL;
4300err0:
4301	return status;
4302}
4303
4304/* board_info is normally registered in arch_initcall(),
4305 * but even essential drivers wait till later
4306 *
4307 * REVISIT only boardinfo really needs static linking. the rest (device and
4308 * driver registration) _could_ be dynamically linked (modular) ... costs
4309 * include needing to have boardinfo data structures be much more public.
4310 */
4311postcore_initcall(spi_init);