Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
 
 
  3 * This file contains the base functions to manage periodic tick
  4 * related events.
  5 *
  6 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
  7 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
  8 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
 
 
 
  9 */
 10#include <linux/cpu.h>
 11#include <linux/err.h>
 12#include <linux/hrtimer.h>
 13#include <linux/interrupt.h>
 14#include <linux/percpu.h>
 15#include <linux/profile.h>
 16#include <linux/sched.h>
 17#include <linux/module.h>
 18#include <trace/events/power.h>
 19
 20#include <asm/irq_regs.h>
 21
 22#include "tick-internal.h"
 23
 24/*
 25 * Tick devices
 26 */
 27DEFINE_PER_CPU(struct tick_device, tick_cpu_device);
 28/*
 29 * Tick next event: keeps track of the tick time
 30 */
 31ktime_t tick_next_period;
 32ktime_t tick_period;
 33
 34/*
 35 * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR
 36 * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This
 37 * variable has two functions:
 38 *
 39 * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the
 40 *    timekeeping lock all at once. Only the CPU which is assigned to do the
 41 *    update is handling it.
 42 *
 43 * 2) Hand off the duty in the NOHZ idle case by setting the value to
 44 *    TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks
 45 *    at it will take over and keep the time keeping alive.  The handover
 46 *    procedure also covers cpu hotplug.
 47 */
 48int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT;
 49#ifdef CONFIG_NO_HZ_FULL
 50/*
 51 * tick_do_timer_boot_cpu indicates the boot CPU temporarily owns
 52 * tick_do_timer_cpu and it should be taken over by an eligible secondary
 53 * when one comes online.
 54 */
 55static int tick_do_timer_boot_cpu __read_mostly = -1;
 56#endif
 57
 58/*
 59 * Debugging: see timer_list.c
 60 */
 61struct tick_device *tick_get_device(int cpu)
 62{
 63	return &per_cpu(tick_cpu_device, cpu);
 64}
 65
 66/**
 67 * tick_is_oneshot_available - check for a oneshot capable event device
 68 */
 69int tick_is_oneshot_available(void)
 70{
 71	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
 72
 73	if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT))
 74		return 0;
 75	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
 76		return 1;
 77	return tick_broadcast_oneshot_available();
 78}
 79
 80/*
 81 * Periodic tick
 82 */
 83static void tick_periodic(int cpu)
 84{
 85	if (tick_do_timer_cpu == cpu) {
 86		write_seqlock(&jiffies_lock);
 87
 88		/* Keep track of the next tick event */
 89		tick_next_period = ktime_add(tick_next_period, tick_period);
 90
 91		do_timer(1);
 92		write_sequnlock(&jiffies_lock);
 93		update_wall_time();
 94	}
 95
 96	update_process_times(user_mode(get_irq_regs()));
 97	profile_tick(CPU_PROFILING);
 98}
 99
100/*
101 * Event handler for periodic ticks
102 */
103void tick_handle_periodic(struct clock_event_device *dev)
104{
105	int cpu = smp_processor_id();
106	ktime_t next = dev->next_event;
107
108	tick_periodic(cpu);
109
110#if defined(CONFIG_HIGH_RES_TIMERS) || defined(CONFIG_NO_HZ_COMMON)
111	/*
112	 * The cpu might have transitioned to HIGHRES or NOHZ mode via
113	 * update_process_times() -> run_local_timers() ->
114	 * hrtimer_run_queues().
115	 */
116	if (dev->event_handler != tick_handle_periodic)
117		return;
118#endif
119
120	if (!clockevent_state_oneshot(dev))
121		return;
122	for (;;) {
123		/*
124		 * Setup the next period for devices, which do not have
125		 * periodic mode:
126		 */
127		next = ktime_add(next, tick_period);
128
129		if (!clockevents_program_event(dev, next, false))
130			return;
131		/*
132		 * Have to be careful here. If we're in oneshot mode,
133		 * before we call tick_periodic() in a loop, we need
134		 * to be sure we're using a real hardware clocksource.
135		 * Otherwise we could get trapped in an infinite
136		 * loop, as the tick_periodic() increments jiffies,
137		 * which then will increment time, possibly causing
138		 * the loop to trigger again and again.
139		 */
140		if (timekeeping_valid_for_hres())
141			tick_periodic(cpu);
142	}
143}
144
145/*
146 * Setup the device for a periodic tick
147 */
148void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
149{
150	tick_set_periodic_handler(dev, broadcast);
151
152	/* Broadcast setup ? */
153	if (!tick_device_is_functional(dev))
154		return;
155
156	if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
157	    !tick_broadcast_oneshot_active()) {
158		clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC);
159	} else {
160		unsigned int seq;
161		ktime_t next;
162
163		do {
164			seq = read_seqbegin(&jiffies_lock);
165			next = tick_next_period;
166		} while (read_seqretry(&jiffies_lock, seq));
167
168		clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
169
170		for (;;) {
171			if (!clockevents_program_event(dev, next, false))
172				return;
173			next = ktime_add(next, tick_period);
174		}
175	}
176}
177
178#ifdef CONFIG_NO_HZ_FULL
179static void giveup_do_timer(void *info)
180{
181	int cpu = *(unsigned int *)info;
182
183	WARN_ON(tick_do_timer_cpu != smp_processor_id());
184
185	tick_do_timer_cpu = cpu;
186}
187
188static void tick_take_do_timer_from_boot(void)
189{
190	int cpu = smp_processor_id();
191	int from = tick_do_timer_boot_cpu;
192
193	if (from >= 0 && from != cpu)
194		smp_call_function_single(from, giveup_do_timer, &cpu, 1);
195}
196#endif
197
198/*
199 * Setup the tick device
200 */
201static void tick_setup_device(struct tick_device *td,
202			      struct clock_event_device *newdev, int cpu,
203			      const struct cpumask *cpumask)
204{
 
205	void (*handler)(struct clock_event_device *) = NULL;
206	ktime_t next_event = 0;
207
208	/*
209	 * First device setup ?
210	 */
211	if (!td->evtdev) {
212		/*
213		 * If no cpu took the do_timer update, assign it to
214		 * this cpu:
215		 */
216		if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) {
217			tick_do_timer_cpu = cpu;
218
 
 
219			tick_next_period = ktime_get();
220			tick_period = NSEC_PER_SEC / HZ;
221#ifdef CONFIG_NO_HZ_FULL
222			/*
223			 * The boot CPU may be nohz_full, in which case set
224			 * tick_do_timer_boot_cpu so the first housekeeping
225			 * secondary that comes up will take do_timer from
226			 * us.
227			 */
228			if (tick_nohz_full_cpu(cpu))
229				tick_do_timer_boot_cpu = cpu;
230
231		} else if (tick_do_timer_boot_cpu != -1 &&
232						!tick_nohz_full_cpu(cpu)) {
233			tick_take_do_timer_from_boot();
234			tick_do_timer_boot_cpu = -1;
235			WARN_ON(tick_do_timer_cpu != cpu);
236#endif
237		}
238
239		/*
240		 * Startup in periodic mode first.
241		 */
242		td->mode = TICKDEV_MODE_PERIODIC;
243	} else {
244		handler = td->evtdev->event_handler;
245		next_event = td->evtdev->next_event;
246		td->evtdev->event_handler = clockevents_handle_noop;
247	}
248
249	td->evtdev = newdev;
250
251	/*
252	 * When the device is not per cpu, pin the interrupt to the
253	 * current cpu:
254	 */
255	if (!cpumask_equal(newdev->cpumask, cpumask))
256		irq_set_affinity(newdev->irq, cpumask);
257
258	/*
259	 * When global broadcasting is active, check if the current
260	 * device is registered as a placeholder for broadcast mode.
261	 * This allows us to handle this x86 misfeature in a generic
262	 * way. This function also returns !=0 when we keep the
263	 * current active broadcast state for this CPU.
264	 */
265	if (tick_device_uses_broadcast(newdev, cpu))
266		return;
267
268	if (td->mode == TICKDEV_MODE_PERIODIC)
269		tick_setup_periodic(newdev, 0);
270	else
271		tick_setup_oneshot(newdev, handler, next_event);
272}
273
274void tick_install_replacement(struct clock_event_device *newdev)
275{
276	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
277	int cpu = smp_processor_id();
278
279	clockevents_exchange_device(td->evtdev, newdev);
280	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
281	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
282		tick_oneshot_notify();
283}
284
285static bool tick_check_percpu(struct clock_event_device *curdev,
286			      struct clock_event_device *newdev, int cpu)
287{
288	if (!cpumask_test_cpu(cpu, newdev->cpumask))
289		return false;
290	if (cpumask_equal(newdev->cpumask, cpumask_of(cpu)))
291		return true;
292	/* Check if irq affinity can be set */
293	if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq))
294		return false;
295	/* Prefer an existing cpu local device */
296	if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu)))
297		return false;
298	return true;
299}
300
301static bool tick_check_preferred(struct clock_event_device *curdev,
302				 struct clock_event_device *newdev)
303{
304	/* Prefer oneshot capable device */
305	if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) {
306		if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT))
307			return false;
308		if (tick_oneshot_mode_active())
309			return false;
310	}
311
312	/*
313	 * Use the higher rated one, but prefer a CPU local device with a lower
314	 * rating than a non-CPU local device
315	 */
316	return !curdev ||
317		newdev->rating > curdev->rating ||
318	       !cpumask_equal(curdev->cpumask, newdev->cpumask);
319}
320
321/*
322 * Check whether the new device is a better fit than curdev. curdev
323 * can be NULL !
324 */
325bool tick_check_replacement(struct clock_event_device *curdev,
326			    struct clock_event_device *newdev)
327{
328	if (!tick_check_percpu(curdev, newdev, smp_processor_id()))
329		return false;
330
331	return tick_check_preferred(curdev, newdev);
332}
333
334/*
335 * Check, if the new registered device should be used. Called with
336 * clockevents_lock held and interrupts disabled.
337 */
338void tick_check_new_device(struct clock_event_device *newdev)
339{
340	struct clock_event_device *curdev;
341	struct tick_device *td;
342	int cpu;
343
344	cpu = smp_processor_id();
345	td = &per_cpu(tick_cpu_device, cpu);
346	curdev = td->evtdev;
347
348	/* cpu local device ? */
349	if (!tick_check_percpu(curdev, newdev, cpu))
350		goto out_bc;
351
352	/* Preference decision */
353	if (!tick_check_preferred(curdev, newdev))
354		goto out_bc;
355
356	if (!try_module_get(newdev->owner))
357		return;
358
359	/*
360	 * Replace the eventually existing device by the new
361	 * device. If the current device is the broadcast device, do
362	 * not give it back to the clockevents layer !
363	 */
364	if (tick_is_broadcast_device(curdev)) {
365		clockevents_shutdown(curdev);
366		curdev = NULL;
367	}
368	clockevents_exchange_device(curdev, newdev);
369	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
370	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
371		tick_oneshot_notify();
372	return;
373
374out_bc:
375	/*
376	 * Can the new device be used as a broadcast device ?
377	 */
378	tick_install_broadcast_device(newdev);
379}
380
381/**
382 * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode
383 * @state:	The target state (enter/exit)
384 *
385 * The system enters/leaves a state, where affected devices might stop
386 * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
387 *
388 * Called with interrupts disabled, so clockevents_lock is not
389 * required here because the local clock event device cannot go away
390 * under us.
391 */
392int tick_broadcast_oneshot_control(enum tick_broadcast_state state)
393{
394	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
395
396	if (!(td->evtdev->features & CLOCK_EVT_FEAT_C3STOP))
397		return 0;
398
399	return __tick_broadcast_oneshot_control(state);
400}
401EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control);
402
403#ifdef CONFIG_HOTPLUG_CPU
404/*
405 * Transfer the do_timer job away from a dying cpu.
406 *
407 * Called with interrupts disabled. Not locking required. If
408 * tick_do_timer_cpu is owned by this cpu, nothing can change it.
409 */
410void tick_handover_do_timer(void)
411{
412	if (tick_do_timer_cpu == smp_processor_id()) {
413		int cpu = cpumask_first(cpu_online_mask);
414
415		tick_do_timer_cpu = (cpu < nr_cpu_ids) ? cpu :
416			TICK_DO_TIMER_NONE;
417	}
418}
419
420/*
421 * Shutdown an event device on a given cpu:
422 *
423 * This is called on a life CPU, when a CPU is dead. So we cannot
424 * access the hardware device itself.
425 * We just set the mode and remove it from the lists.
426 */
427void tick_shutdown(unsigned int cpu)
428{
429	struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
430	struct clock_event_device *dev = td->evtdev;
431
432	td->mode = TICKDEV_MODE_PERIODIC;
433	if (dev) {
434		/*
435		 * Prevent that the clock events layer tries to call
436		 * the set mode function!
437		 */
438		clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED);
439		clockevents_exchange_device(dev, NULL);
440		dev->event_handler = clockevents_handle_noop;
441		td->evtdev = NULL;
442	}
443}
444#endif
445
446/**
447 * tick_suspend_local - Suspend the local tick device
448 *
449 * Called from the local cpu for freeze with interrupts disabled.
450 *
451 * No locks required. Nothing can change the per cpu device.
452 */
453void tick_suspend_local(void)
454{
455	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
456
457	clockevents_shutdown(td->evtdev);
458}
459
460/**
461 * tick_resume_local - Resume the local tick device
462 *
463 * Called from the local CPU for unfreeze or XEN resume magic.
464 *
465 * No locks required. Nothing can change the per cpu device.
466 */
467void tick_resume_local(void)
468{
469	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
470	bool broadcast = tick_resume_check_broadcast();
471
472	clockevents_tick_resume(td->evtdev);
473	if (!broadcast) {
474		if (td->mode == TICKDEV_MODE_PERIODIC)
475			tick_setup_periodic(td->evtdev, 0);
476		else
477			tick_resume_oneshot();
478	}
479}
480
481/**
482 * tick_suspend - Suspend the tick and the broadcast device
483 *
484 * Called from syscore_suspend() via timekeeping_suspend with only one
485 * CPU online and interrupts disabled or from tick_unfreeze() under
486 * tick_freeze_lock.
487 *
488 * No locks required. Nothing can change the per cpu device.
489 */
490void tick_suspend(void)
491{
492	tick_suspend_local();
493	tick_suspend_broadcast();
494}
495
496/**
497 * tick_resume - Resume the tick and the broadcast device
498 *
499 * Called from syscore_resume() via timekeeping_resume with only one
500 * CPU online and interrupts disabled.
501 *
502 * No locks required. Nothing can change the per cpu device.
503 */
504void tick_resume(void)
505{
506	tick_resume_broadcast();
507	tick_resume_local();
508}
509
510#ifdef CONFIG_SUSPEND
511static DEFINE_RAW_SPINLOCK(tick_freeze_lock);
512static unsigned int tick_freeze_depth;
513
514/**
515 * tick_freeze - Suspend the local tick and (possibly) timekeeping.
516 *
517 * Check if this is the last online CPU executing the function and if so,
518 * suspend timekeeping.  Otherwise suspend the local tick.
519 *
520 * Call with interrupts disabled.  Must be balanced with %tick_unfreeze().
521 * Interrupts must not be enabled before the subsequent %tick_unfreeze().
522 */
523void tick_freeze(void)
524{
525	raw_spin_lock(&tick_freeze_lock);
526
527	tick_freeze_depth++;
528	if (tick_freeze_depth == num_online_cpus()) {
529		trace_suspend_resume(TPS("timekeeping_freeze"),
530				     smp_processor_id(), true);
531		system_state = SYSTEM_SUSPEND;
532		sched_clock_suspend();
533		timekeeping_suspend();
534	} else {
535		tick_suspend_local();
536	}
537
538	raw_spin_unlock(&tick_freeze_lock);
539}
540
541/**
542 * tick_unfreeze - Resume the local tick and (possibly) timekeeping.
543 *
544 * Check if this is the first CPU executing the function and if so, resume
545 * timekeeping.  Otherwise resume the local tick.
546 *
547 * Call with interrupts disabled.  Must be balanced with %tick_freeze().
548 * Interrupts must not be enabled after the preceding %tick_freeze().
549 */
550void tick_unfreeze(void)
551{
552	raw_spin_lock(&tick_freeze_lock);
553
554	if (tick_freeze_depth == num_online_cpus()) {
555		timekeeping_resume();
556		sched_clock_resume();
557		system_state = SYSTEM_RUNNING;
558		trace_suspend_resume(TPS("timekeeping_freeze"),
559				     smp_processor_id(), false);
560	} else {
561		tick_resume_local();
562	}
563
564	tick_freeze_depth--;
565
566	raw_spin_unlock(&tick_freeze_lock);
567}
568#endif /* CONFIG_SUSPEND */
569
570/**
571 * tick_init - initialize the tick control
572 */
573void __init tick_init(void)
574{
575	tick_broadcast_init();
576	tick_nohz_init();
577}
v4.6
 
  1/*
  2 * linux/kernel/time/tick-common.c
  3 *
  4 * This file contains the base functions to manage periodic tick
  5 * related events.
  6 *
  7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
  8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
  9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
 10 *
 11 * This code is licenced under the GPL version 2. For details see
 12 * kernel-base/COPYING.
 13 */
 14#include <linux/cpu.h>
 15#include <linux/err.h>
 16#include <linux/hrtimer.h>
 17#include <linux/interrupt.h>
 18#include <linux/percpu.h>
 19#include <linux/profile.h>
 20#include <linux/sched.h>
 21#include <linux/module.h>
 22#include <trace/events/power.h>
 23
 24#include <asm/irq_regs.h>
 25
 26#include "tick-internal.h"
 27
 28/*
 29 * Tick devices
 30 */
 31DEFINE_PER_CPU(struct tick_device, tick_cpu_device);
 32/*
 33 * Tick next event: keeps track of the tick time
 34 */
 35ktime_t tick_next_period;
 36ktime_t tick_period;
 37
 38/*
 39 * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR
 40 * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This
 41 * variable has two functions:
 42 *
 43 * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the
 44 *    timekeeping lock all at once. Only the CPU which is assigned to do the
 45 *    update is handling it.
 46 *
 47 * 2) Hand off the duty in the NOHZ idle case by setting the value to
 48 *    TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks
 49 *    at it will take over and keep the time keeping alive.  The handover
 50 *    procedure also covers cpu hotplug.
 51 */
 52int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT;
 
 
 
 
 
 
 
 
 53
 54/*
 55 * Debugging: see timer_list.c
 56 */
 57struct tick_device *tick_get_device(int cpu)
 58{
 59	return &per_cpu(tick_cpu_device, cpu);
 60}
 61
 62/**
 63 * tick_is_oneshot_available - check for a oneshot capable event device
 64 */
 65int tick_is_oneshot_available(void)
 66{
 67	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
 68
 69	if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT))
 70		return 0;
 71	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
 72		return 1;
 73	return tick_broadcast_oneshot_available();
 74}
 75
 76/*
 77 * Periodic tick
 78 */
 79static void tick_periodic(int cpu)
 80{
 81	if (tick_do_timer_cpu == cpu) {
 82		write_seqlock(&jiffies_lock);
 83
 84		/* Keep track of the next tick event */
 85		tick_next_period = ktime_add(tick_next_period, tick_period);
 86
 87		do_timer(1);
 88		write_sequnlock(&jiffies_lock);
 89		update_wall_time();
 90	}
 91
 92	update_process_times(user_mode(get_irq_regs()));
 93	profile_tick(CPU_PROFILING);
 94}
 95
 96/*
 97 * Event handler for periodic ticks
 98 */
 99void tick_handle_periodic(struct clock_event_device *dev)
100{
101	int cpu = smp_processor_id();
102	ktime_t next = dev->next_event;
103
104	tick_periodic(cpu);
105
106#if defined(CONFIG_HIGH_RES_TIMERS) || defined(CONFIG_NO_HZ_COMMON)
107	/*
108	 * The cpu might have transitioned to HIGHRES or NOHZ mode via
109	 * update_process_times() -> run_local_timers() ->
110	 * hrtimer_run_queues().
111	 */
112	if (dev->event_handler != tick_handle_periodic)
113		return;
114#endif
115
116	if (!clockevent_state_oneshot(dev))
117		return;
118	for (;;) {
119		/*
120		 * Setup the next period for devices, which do not have
121		 * periodic mode:
122		 */
123		next = ktime_add(next, tick_period);
124
125		if (!clockevents_program_event(dev, next, false))
126			return;
127		/*
128		 * Have to be careful here. If we're in oneshot mode,
129		 * before we call tick_periodic() in a loop, we need
130		 * to be sure we're using a real hardware clocksource.
131		 * Otherwise we could get trapped in an infinite
132		 * loop, as the tick_periodic() increments jiffies,
133		 * which then will increment time, possibly causing
134		 * the loop to trigger again and again.
135		 */
136		if (timekeeping_valid_for_hres())
137			tick_periodic(cpu);
138	}
139}
140
141/*
142 * Setup the device for a periodic tick
143 */
144void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
145{
146	tick_set_periodic_handler(dev, broadcast);
147
148	/* Broadcast setup ? */
149	if (!tick_device_is_functional(dev))
150		return;
151
152	if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
153	    !tick_broadcast_oneshot_active()) {
154		clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC);
155	} else {
156		unsigned long seq;
157		ktime_t next;
158
159		do {
160			seq = read_seqbegin(&jiffies_lock);
161			next = tick_next_period;
162		} while (read_seqretry(&jiffies_lock, seq));
163
164		clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
165
166		for (;;) {
167			if (!clockevents_program_event(dev, next, false))
168				return;
169			next = ktime_add(next, tick_period);
170		}
171	}
172}
173
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
174/*
175 * Setup the tick device
176 */
177static void tick_setup_device(struct tick_device *td,
178			      struct clock_event_device *newdev, int cpu,
179			      const struct cpumask *cpumask)
180{
181	ktime_t next_event;
182	void (*handler)(struct clock_event_device *) = NULL;
 
183
184	/*
185	 * First device setup ?
186	 */
187	if (!td->evtdev) {
188		/*
189		 * If no cpu took the do_timer update, assign it to
190		 * this cpu:
191		 */
192		if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) {
193			if (!tick_nohz_full_cpu(cpu))
194				tick_do_timer_cpu = cpu;
195			else
196				tick_do_timer_cpu = TICK_DO_TIMER_NONE;
197			tick_next_period = ktime_get();
198			tick_period = ktime_set(0, NSEC_PER_SEC / HZ);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
199		}
200
201		/*
202		 * Startup in periodic mode first.
203		 */
204		td->mode = TICKDEV_MODE_PERIODIC;
205	} else {
206		handler = td->evtdev->event_handler;
207		next_event = td->evtdev->next_event;
208		td->evtdev->event_handler = clockevents_handle_noop;
209	}
210
211	td->evtdev = newdev;
212
213	/*
214	 * When the device is not per cpu, pin the interrupt to the
215	 * current cpu:
216	 */
217	if (!cpumask_equal(newdev->cpumask, cpumask))
218		irq_set_affinity(newdev->irq, cpumask);
219
220	/*
221	 * When global broadcasting is active, check if the current
222	 * device is registered as a placeholder for broadcast mode.
223	 * This allows us to handle this x86 misfeature in a generic
224	 * way. This function also returns !=0 when we keep the
225	 * current active broadcast state for this CPU.
226	 */
227	if (tick_device_uses_broadcast(newdev, cpu))
228		return;
229
230	if (td->mode == TICKDEV_MODE_PERIODIC)
231		tick_setup_periodic(newdev, 0);
232	else
233		tick_setup_oneshot(newdev, handler, next_event);
234}
235
236void tick_install_replacement(struct clock_event_device *newdev)
237{
238	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
239	int cpu = smp_processor_id();
240
241	clockevents_exchange_device(td->evtdev, newdev);
242	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
243	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
244		tick_oneshot_notify();
245}
246
247static bool tick_check_percpu(struct clock_event_device *curdev,
248			      struct clock_event_device *newdev, int cpu)
249{
250	if (!cpumask_test_cpu(cpu, newdev->cpumask))
251		return false;
252	if (cpumask_equal(newdev->cpumask, cpumask_of(cpu)))
253		return true;
254	/* Check if irq affinity can be set */
255	if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq))
256		return false;
257	/* Prefer an existing cpu local device */
258	if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu)))
259		return false;
260	return true;
261}
262
263static bool tick_check_preferred(struct clock_event_device *curdev,
264				 struct clock_event_device *newdev)
265{
266	/* Prefer oneshot capable device */
267	if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) {
268		if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT))
269			return false;
270		if (tick_oneshot_mode_active())
271			return false;
272	}
273
274	/*
275	 * Use the higher rated one, but prefer a CPU local device with a lower
276	 * rating than a non-CPU local device
277	 */
278	return !curdev ||
279		newdev->rating > curdev->rating ||
280	       !cpumask_equal(curdev->cpumask, newdev->cpumask);
281}
282
283/*
284 * Check whether the new device is a better fit than curdev. curdev
285 * can be NULL !
286 */
287bool tick_check_replacement(struct clock_event_device *curdev,
288			    struct clock_event_device *newdev)
289{
290	if (!tick_check_percpu(curdev, newdev, smp_processor_id()))
291		return false;
292
293	return tick_check_preferred(curdev, newdev);
294}
295
296/*
297 * Check, if the new registered device should be used. Called with
298 * clockevents_lock held and interrupts disabled.
299 */
300void tick_check_new_device(struct clock_event_device *newdev)
301{
302	struct clock_event_device *curdev;
303	struct tick_device *td;
304	int cpu;
305
306	cpu = smp_processor_id();
307	td = &per_cpu(tick_cpu_device, cpu);
308	curdev = td->evtdev;
309
310	/* cpu local device ? */
311	if (!tick_check_percpu(curdev, newdev, cpu))
312		goto out_bc;
313
314	/* Preference decision */
315	if (!tick_check_preferred(curdev, newdev))
316		goto out_bc;
317
318	if (!try_module_get(newdev->owner))
319		return;
320
321	/*
322	 * Replace the eventually existing device by the new
323	 * device. If the current device is the broadcast device, do
324	 * not give it back to the clockevents layer !
325	 */
326	if (tick_is_broadcast_device(curdev)) {
327		clockevents_shutdown(curdev);
328		curdev = NULL;
329	}
330	clockevents_exchange_device(curdev, newdev);
331	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
332	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
333		tick_oneshot_notify();
334	return;
335
336out_bc:
337	/*
338	 * Can the new device be used as a broadcast device ?
339	 */
340	tick_install_broadcast_device(newdev);
341}
342
343/**
344 * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode
345 * @state:	The target state (enter/exit)
346 *
347 * The system enters/leaves a state, where affected devices might stop
348 * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
349 *
350 * Called with interrupts disabled, so clockevents_lock is not
351 * required here because the local clock event device cannot go away
352 * under us.
353 */
354int tick_broadcast_oneshot_control(enum tick_broadcast_state state)
355{
356	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
357
358	if (!(td->evtdev->features & CLOCK_EVT_FEAT_C3STOP))
359		return 0;
360
361	return __tick_broadcast_oneshot_control(state);
362}
363EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control);
364
365#ifdef CONFIG_HOTPLUG_CPU
366/*
367 * Transfer the do_timer job away from a dying cpu.
368 *
369 * Called with interrupts disabled. Not locking required. If
370 * tick_do_timer_cpu is owned by this cpu, nothing can change it.
371 */
372void tick_handover_do_timer(void)
373{
374	if (tick_do_timer_cpu == smp_processor_id()) {
375		int cpu = cpumask_first(cpu_online_mask);
376
377		tick_do_timer_cpu = (cpu < nr_cpu_ids) ? cpu :
378			TICK_DO_TIMER_NONE;
379	}
380}
381
382/*
383 * Shutdown an event device on a given cpu:
384 *
385 * This is called on a life CPU, when a CPU is dead. So we cannot
386 * access the hardware device itself.
387 * We just set the mode and remove it from the lists.
388 */
389void tick_shutdown(unsigned int cpu)
390{
391	struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
392	struct clock_event_device *dev = td->evtdev;
393
394	td->mode = TICKDEV_MODE_PERIODIC;
395	if (dev) {
396		/*
397		 * Prevent that the clock events layer tries to call
398		 * the set mode function!
399		 */
400		clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED);
401		clockevents_exchange_device(dev, NULL);
402		dev->event_handler = clockevents_handle_noop;
403		td->evtdev = NULL;
404	}
405}
406#endif
407
408/**
409 * tick_suspend_local - Suspend the local tick device
410 *
411 * Called from the local cpu for freeze with interrupts disabled.
412 *
413 * No locks required. Nothing can change the per cpu device.
414 */
415void tick_suspend_local(void)
416{
417	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
418
419	clockevents_shutdown(td->evtdev);
420}
421
422/**
423 * tick_resume_local - Resume the local tick device
424 *
425 * Called from the local CPU for unfreeze or XEN resume magic.
426 *
427 * No locks required. Nothing can change the per cpu device.
428 */
429void tick_resume_local(void)
430{
431	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
432	bool broadcast = tick_resume_check_broadcast();
433
434	clockevents_tick_resume(td->evtdev);
435	if (!broadcast) {
436		if (td->mode == TICKDEV_MODE_PERIODIC)
437			tick_setup_periodic(td->evtdev, 0);
438		else
439			tick_resume_oneshot();
440	}
441}
442
443/**
444 * tick_suspend - Suspend the tick and the broadcast device
445 *
446 * Called from syscore_suspend() via timekeeping_suspend with only one
447 * CPU online and interrupts disabled or from tick_unfreeze() under
448 * tick_freeze_lock.
449 *
450 * No locks required. Nothing can change the per cpu device.
451 */
452void tick_suspend(void)
453{
454	tick_suspend_local();
455	tick_suspend_broadcast();
456}
457
458/**
459 * tick_resume - Resume the tick and the broadcast device
460 *
461 * Called from syscore_resume() via timekeeping_resume with only one
462 * CPU online and interrupts disabled.
463 *
464 * No locks required. Nothing can change the per cpu device.
465 */
466void tick_resume(void)
467{
468	tick_resume_broadcast();
469	tick_resume_local();
470}
471
472#ifdef CONFIG_SUSPEND
473static DEFINE_RAW_SPINLOCK(tick_freeze_lock);
474static unsigned int tick_freeze_depth;
475
476/**
477 * tick_freeze - Suspend the local tick and (possibly) timekeeping.
478 *
479 * Check if this is the last online CPU executing the function and if so,
480 * suspend timekeeping.  Otherwise suspend the local tick.
481 *
482 * Call with interrupts disabled.  Must be balanced with %tick_unfreeze().
483 * Interrupts must not be enabled before the subsequent %tick_unfreeze().
484 */
485void tick_freeze(void)
486{
487	raw_spin_lock(&tick_freeze_lock);
488
489	tick_freeze_depth++;
490	if (tick_freeze_depth == num_online_cpus()) {
491		trace_suspend_resume(TPS("timekeeping_freeze"),
492				     smp_processor_id(), true);
 
 
493		timekeeping_suspend();
494	} else {
495		tick_suspend_local();
496	}
497
498	raw_spin_unlock(&tick_freeze_lock);
499}
500
501/**
502 * tick_unfreeze - Resume the local tick and (possibly) timekeeping.
503 *
504 * Check if this is the first CPU executing the function and if so, resume
505 * timekeeping.  Otherwise resume the local tick.
506 *
507 * Call with interrupts disabled.  Must be balanced with %tick_freeze().
508 * Interrupts must not be enabled after the preceding %tick_freeze().
509 */
510void tick_unfreeze(void)
511{
512	raw_spin_lock(&tick_freeze_lock);
513
514	if (tick_freeze_depth == num_online_cpus()) {
515		timekeeping_resume();
 
 
516		trace_suspend_resume(TPS("timekeeping_freeze"),
517				     smp_processor_id(), false);
518	} else {
519		tick_resume_local();
520	}
521
522	tick_freeze_depth--;
523
524	raw_spin_unlock(&tick_freeze_lock);
525}
526#endif /* CONFIG_SUSPEND */
527
528/**
529 * tick_init - initialize the tick control
530 */
531void __init tick_init(void)
532{
533	tick_broadcast_init();
534	tick_nohz_init();
535}