Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/kernel/profile.c
  4 *  Simple profiling. Manages a direct-mapped profile hit count buffer,
  5 *  with configurable resolution, support for restricting the cpus on
  6 *  which profiling is done, and switching between cpu time and
  7 *  schedule() calls via kernel command line parameters passed at boot.
  8 *
  9 *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
 10 *	Red Hat, July 2004
 11 *  Consolidation of architecture support code for profiling,
 12 *	Nadia Yvette Chambers, Oracle, July 2004
 13 *  Amortized hit count accounting via per-cpu open-addressed hashtables
 14 *	to resolve timer interrupt livelocks, Nadia Yvette Chambers,
 15 *	Oracle, 2004
 16 */
 17
 18#include <linux/export.h>
 19#include <linux/profile.h>
 20#include <linux/memblock.h>
 21#include <linux/notifier.h>
 22#include <linux/mm.h>
 23#include <linux/cpumask.h>
 24#include <linux/cpu.h>
 25#include <linux/highmem.h>
 26#include <linux/mutex.h>
 27#include <linux/slab.h>
 28#include <linux/vmalloc.h>
 29#include <linux/sched/stat.h>
 30
 31#include <asm/sections.h>
 32#include <asm/irq_regs.h>
 33#include <asm/ptrace.h>
 34
 35struct profile_hit {
 36	u32 pc, hits;
 37};
 38#define PROFILE_GRPSHIFT	3
 39#define PROFILE_GRPSZ		(1 << PROFILE_GRPSHIFT)
 40#define NR_PROFILE_HIT		(PAGE_SIZE/sizeof(struct profile_hit))
 41#define NR_PROFILE_GRP		(NR_PROFILE_HIT/PROFILE_GRPSZ)
 42
 43static atomic_t *prof_buffer;
 44static unsigned long prof_len, prof_shift;
 45
 46int prof_on __read_mostly;
 47EXPORT_SYMBOL_GPL(prof_on);
 48
 49static cpumask_var_t prof_cpu_mask;
 50#if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
 51static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
 52static DEFINE_PER_CPU(int, cpu_profile_flip);
 53static DEFINE_MUTEX(profile_flip_mutex);
 54#endif /* CONFIG_SMP */
 55
 56int profile_setup(char *str)
 57{
 58	static const char schedstr[] = "schedule";
 59	static const char sleepstr[] = "sleep";
 60	static const char kvmstr[] = "kvm";
 61	int par;
 62
 63	if (!strncmp(str, sleepstr, strlen(sleepstr))) {
 64#ifdef CONFIG_SCHEDSTATS
 65		force_schedstat_enabled();
 66		prof_on = SLEEP_PROFILING;
 67		if (str[strlen(sleepstr)] == ',')
 68			str += strlen(sleepstr) + 1;
 69		if (get_option(&str, &par))
 70			prof_shift = par;
 71		pr_info("kernel sleep profiling enabled (shift: %ld)\n",
 72			prof_shift);
 73#else
 74		pr_warn("kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
 75#endif /* CONFIG_SCHEDSTATS */
 76	} else if (!strncmp(str, schedstr, strlen(schedstr))) {
 77		prof_on = SCHED_PROFILING;
 78		if (str[strlen(schedstr)] == ',')
 79			str += strlen(schedstr) + 1;
 80		if (get_option(&str, &par))
 81			prof_shift = par;
 82		pr_info("kernel schedule profiling enabled (shift: %ld)\n",
 83			prof_shift);
 84	} else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
 85		prof_on = KVM_PROFILING;
 86		if (str[strlen(kvmstr)] == ',')
 87			str += strlen(kvmstr) + 1;
 88		if (get_option(&str, &par))
 89			prof_shift = par;
 90		pr_info("kernel KVM profiling enabled (shift: %ld)\n",
 91			prof_shift);
 92	} else if (get_option(&str, &par)) {
 93		prof_shift = par;
 94		prof_on = CPU_PROFILING;
 95		pr_info("kernel profiling enabled (shift: %ld)\n",
 96			prof_shift);
 97	}
 98	return 1;
 99}
100__setup("profile=", profile_setup);
101
102
103int __ref profile_init(void)
104{
105	int buffer_bytes;
106	if (!prof_on)
107		return 0;
108
109	/* only text is profiled */
110	prof_len = (_etext - _stext) >> prof_shift;
111	buffer_bytes = prof_len*sizeof(atomic_t);
112
113	if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
114		return -ENOMEM;
115
116	cpumask_copy(prof_cpu_mask, cpu_possible_mask);
117
118	prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN);
119	if (prof_buffer)
120		return 0;
121
122	prof_buffer = alloc_pages_exact(buffer_bytes,
123					GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN);
124	if (prof_buffer)
125		return 0;
126
127	prof_buffer = vzalloc(buffer_bytes);
128	if (prof_buffer)
129		return 0;
130
131	free_cpumask_var(prof_cpu_mask);
132	return -ENOMEM;
133}
134
135/* Profile event notifications */
136
137static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
138static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
139static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
140
141void profile_task_exit(struct task_struct *task)
142{
143	blocking_notifier_call_chain(&task_exit_notifier, 0, task);
144}
145
146int profile_handoff_task(struct task_struct *task)
147{
148	int ret;
149	ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
150	return (ret == NOTIFY_OK) ? 1 : 0;
151}
152
153void profile_munmap(unsigned long addr)
154{
155	blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
156}
157
158int task_handoff_register(struct notifier_block *n)
159{
160	return atomic_notifier_chain_register(&task_free_notifier, n);
161}
162EXPORT_SYMBOL_GPL(task_handoff_register);
163
164int task_handoff_unregister(struct notifier_block *n)
165{
166	return atomic_notifier_chain_unregister(&task_free_notifier, n);
167}
168EXPORT_SYMBOL_GPL(task_handoff_unregister);
169
170int profile_event_register(enum profile_type type, struct notifier_block *n)
171{
172	int err = -EINVAL;
173
174	switch (type) {
175	case PROFILE_TASK_EXIT:
176		err = blocking_notifier_chain_register(
177				&task_exit_notifier, n);
178		break;
179	case PROFILE_MUNMAP:
180		err = blocking_notifier_chain_register(
181				&munmap_notifier, n);
182		break;
183	}
184
185	return err;
186}
187EXPORT_SYMBOL_GPL(profile_event_register);
188
189int profile_event_unregister(enum profile_type type, struct notifier_block *n)
190{
191	int err = -EINVAL;
192
193	switch (type) {
194	case PROFILE_TASK_EXIT:
195		err = blocking_notifier_chain_unregister(
196				&task_exit_notifier, n);
197		break;
198	case PROFILE_MUNMAP:
199		err = blocking_notifier_chain_unregister(
200				&munmap_notifier, n);
201		break;
202	}
203
204	return err;
205}
206EXPORT_SYMBOL_GPL(profile_event_unregister);
207
208#if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
209/*
210 * Each cpu has a pair of open-addressed hashtables for pending
211 * profile hits. read_profile() IPI's all cpus to request them
212 * to flip buffers and flushes their contents to prof_buffer itself.
213 * Flip requests are serialized by the profile_flip_mutex. The sole
214 * use of having a second hashtable is for avoiding cacheline
215 * contention that would otherwise happen during flushes of pending
216 * profile hits required for the accuracy of reported profile hits
217 * and so resurrect the interrupt livelock issue.
218 *
219 * The open-addressed hashtables are indexed by profile buffer slot
220 * and hold the number of pending hits to that profile buffer slot on
221 * a cpu in an entry. When the hashtable overflows, all pending hits
222 * are accounted to their corresponding profile buffer slots with
223 * atomic_add() and the hashtable emptied. As numerous pending hits
224 * may be accounted to a profile buffer slot in a hashtable entry,
225 * this amortizes a number of atomic profile buffer increments likely
226 * to be far larger than the number of entries in the hashtable,
227 * particularly given that the number of distinct profile buffer
228 * positions to which hits are accounted during short intervals (e.g.
229 * several seconds) is usually very small. Exclusion from buffer
230 * flipping is provided by interrupt disablement (note that for
231 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
232 * process context).
233 * The hash function is meant to be lightweight as opposed to strong,
234 * and was vaguely inspired by ppc64 firmware-supported inverted
235 * pagetable hash functions, but uses a full hashtable full of finite
236 * collision chains, not just pairs of them.
237 *
238 * -- nyc
239 */
240static void __profile_flip_buffers(void *unused)
241{
242	int cpu = smp_processor_id();
243
244	per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
245}
246
247static void profile_flip_buffers(void)
248{
249	int i, j, cpu;
250
251	mutex_lock(&profile_flip_mutex);
252	j = per_cpu(cpu_profile_flip, get_cpu());
253	put_cpu();
254	on_each_cpu(__profile_flip_buffers, NULL, 1);
255	for_each_online_cpu(cpu) {
256		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
257		for (i = 0; i < NR_PROFILE_HIT; ++i) {
258			if (!hits[i].hits) {
259				if (hits[i].pc)
260					hits[i].pc = 0;
261				continue;
262			}
263			atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
264			hits[i].hits = hits[i].pc = 0;
265		}
266	}
267	mutex_unlock(&profile_flip_mutex);
268}
269
270static void profile_discard_flip_buffers(void)
271{
272	int i, cpu;
273
274	mutex_lock(&profile_flip_mutex);
275	i = per_cpu(cpu_profile_flip, get_cpu());
276	put_cpu();
277	on_each_cpu(__profile_flip_buffers, NULL, 1);
278	for_each_online_cpu(cpu) {
279		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
280		memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
281	}
282	mutex_unlock(&profile_flip_mutex);
283}
284
285static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
286{
287	unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
288	int i, j, cpu;
289	struct profile_hit *hits;
290
291	pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
292	i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
293	secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
294	cpu = get_cpu();
295	hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
296	if (!hits) {
297		put_cpu();
298		return;
299	}
300	/*
301	 * We buffer the global profiler buffer into a per-CPU
302	 * queue and thus reduce the number of global (and possibly
303	 * NUMA-alien) accesses. The write-queue is self-coalescing:
304	 */
305	local_irq_save(flags);
306	do {
307		for (j = 0; j < PROFILE_GRPSZ; ++j) {
308			if (hits[i + j].pc == pc) {
309				hits[i + j].hits += nr_hits;
310				goto out;
311			} else if (!hits[i + j].hits) {
312				hits[i + j].pc = pc;
313				hits[i + j].hits = nr_hits;
314				goto out;
315			}
316		}
317		i = (i + secondary) & (NR_PROFILE_HIT - 1);
318	} while (i != primary);
319
320	/*
321	 * Add the current hit(s) and flush the write-queue out
322	 * to the global buffer:
323	 */
324	atomic_add(nr_hits, &prof_buffer[pc]);
325	for (i = 0; i < NR_PROFILE_HIT; ++i) {
326		atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
327		hits[i].pc = hits[i].hits = 0;
328	}
329out:
330	local_irq_restore(flags);
331	put_cpu();
332}
333
334static int profile_dead_cpu(unsigned int cpu)
 
335{
 
336	struct page *page;
337	int i;
338
339	if (prof_cpu_mask != NULL)
340		cpumask_clear_cpu(cpu, prof_cpu_mask);
341
342	for (i = 0; i < 2; i++) {
343		if (per_cpu(cpu_profile_hits, cpu)[i]) {
344			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[i]);
345			per_cpu(cpu_profile_hits, cpu)[i] = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
346			__free_page(page);
347		}
348	}
349	return 0;
350}
351
352static int profile_prepare_cpu(unsigned int cpu)
353{
354	int i, node = cpu_to_mem(cpu);
355	struct page *page;
356
357	per_cpu(cpu_profile_flip, cpu) = 0;
358
359	for (i = 0; i < 2; i++) {
360		if (per_cpu(cpu_profile_hits, cpu)[i])
361			continue;
362
363		page = __alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
364		if (!page) {
365			profile_dead_cpu(cpu);
366			return -ENOMEM;
367		}
368		per_cpu(cpu_profile_hits, cpu)[i] = page_address(page);
369
370	}
371	return 0;
372}
373
374static int profile_online_cpu(unsigned int cpu)
375{
376	if (prof_cpu_mask != NULL)
377		cpumask_set_cpu(cpu, prof_cpu_mask);
378
379	return 0;
380}
381
382#else /* !CONFIG_SMP */
383#define profile_flip_buffers()		do { } while (0)
384#define profile_discard_flip_buffers()	do { } while (0)
 
385
386static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
387{
388	unsigned long pc;
389	pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
390	atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
391}
392#endif /* !CONFIG_SMP */
393
394void profile_hits(int type, void *__pc, unsigned int nr_hits)
395{
396	if (prof_on != type || !prof_buffer)
397		return;
398	do_profile_hits(type, __pc, nr_hits);
399}
400EXPORT_SYMBOL_GPL(profile_hits);
401
402void profile_tick(int type)
403{
404	struct pt_regs *regs = get_irq_regs();
405
406	if (!user_mode(regs) && prof_cpu_mask != NULL &&
407	    cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
408		profile_hit(type, (void *)profile_pc(regs));
409}
410
411#ifdef CONFIG_PROC_FS
412#include <linux/proc_fs.h>
413#include <linux/seq_file.h>
414#include <linux/uaccess.h>
415
416static int prof_cpu_mask_proc_show(struct seq_file *m, void *v)
417{
418	seq_printf(m, "%*pb\n", cpumask_pr_args(prof_cpu_mask));
419	return 0;
420}
421
422static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file)
423{
424	return single_open(file, prof_cpu_mask_proc_show, NULL);
425}
426
427static ssize_t prof_cpu_mask_proc_write(struct file *file,
428	const char __user *buffer, size_t count, loff_t *pos)
429{
430	cpumask_var_t new_value;
431	int err;
432
433	if (!alloc_cpumask_var(&new_value, GFP_KERNEL))
434		return -ENOMEM;
435
436	err = cpumask_parse_user(buffer, count, new_value);
437	if (!err) {
438		cpumask_copy(prof_cpu_mask, new_value);
439		err = count;
440	}
441	free_cpumask_var(new_value);
442	return err;
443}
444
445static const struct file_operations prof_cpu_mask_proc_fops = {
446	.open		= prof_cpu_mask_proc_open,
447	.read		= seq_read,
448	.llseek		= seq_lseek,
449	.release	= single_release,
450	.write		= prof_cpu_mask_proc_write,
451};
452
453void create_prof_cpu_mask(void)
454{
455	/* create /proc/irq/prof_cpu_mask */
456	proc_create("irq/prof_cpu_mask", 0600, NULL, &prof_cpu_mask_proc_fops);
457}
458
459/*
460 * This function accesses profiling information. The returned data is
461 * binary: the sampling step and the actual contents of the profile
462 * buffer. Use of the program readprofile is recommended in order to
463 * get meaningful info out of these data.
464 */
465static ssize_t
466read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
467{
468	unsigned long p = *ppos;
469	ssize_t read;
470	char *pnt;
471	unsigned int sample_step = 1 << prof_shift;
472
473	profile_flip_buffers();
474	if (p >= (prof_len+1)*sizeof(unsigned int))
475		return 0;
476	if (count > (prof_len+1)*sizeof(unsigned int) - p)
477		count = (prof_len+1)*sizeof(unsigned int) - p;
478	read = 0;
479
480	while (p < sizeof(unsigned int) && count > 0) {
481		if (put_user(*((char *)(&sample_step)+p), buf))
482			return -EFAULT;
483		buf++; p++; count--; read++;
484	}
485	pnt = (char *)prof_buffer + p - sizeof(atomic_t);
486	if (copy_to_user(buf, (void *)pnt, count))
487		return -EFAULT;
488	read += count;
489	*ppos += read;
490	return read;
491}
492
493/*
494 * Writing to /proc/profile resets the counters
495 *
496 * Writing a 'profiling multiplier' value into it also re-sets the profiling
497 * interrupt frequency, on architectures that support this.
498 */
499static ssize_t write_profile(struct file *file, const char __user *buf,
500			     size_t count, loff_t *ppos)
501{
502#ifdef CONFIG_SMP
503	extern int setup_profiling_timer(unsigned int multiplier);
504
505	if (count == sizeof(int)) {
506		unsigned int multiplier;
507
508		if (copy_from_user(&multiplier, buf, sizeof(int)))
509			return -EFAULT;
510
511		if (setup_profiling_timer(multiplier))
512			return -EINVAL;
513	}
514#endif
515	profile_discard_flip_buffers();
516	memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
517	return count;
518}
519
520static const struct file_operations proc_profile_operations = {
521	.read		= read_profile,
522	.write		= write_profile,
523	.llseek		= default_llseek,
524};
525
526int __ref create_proc_profile(void)
527{
528	struct proc_dir_entry *entry;
529#ifdef CONFIG_SMP
530	enum cpuhp_state online_state;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
531#endif
532
 
 
 
533	int err = 0;
534
535	if (!prof_on)
536		return 0;
537#ifdef CONFIG_SMP
538	err = cpuhp_setup_state(CPUHP_PROFILE_PREPARE, "PROFILE_PREPARE",
539				profile_prepare_cpu, profile_dead_cpu);
540	if (err)
541		return err;
542
543	err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "AP_PROFILE_ONLINE",
544				profile_online_cpu, NULL);
545	if (err < 0)
546		goto err_state_prep;
547	online_state = err;
548	err = 0;
549#endif
550	entry = proc_create("profile", S_IWUSR | S_IRUGO,
551			    NULL, &proc_profile_operations);
552	if (!entry)
553		goto err_state_onl;
554	proc_set_size(entry, (1 + prof_len) * sizeof(atomic_t));
 
555
556	return err;
557err_state_onl:
558#ifdef CONFIG_SMP
559	cpuhp_remove_state(online_state);
560err_state_prep:
561	cpuhp_remove_state(CPUHP_PROFILE_PREPARE);
562#endif
563	return err;
564}
565subsys_initcall(create_proc_profile);
566#endif /* CONFIG_PROC_FS */
v4.6
 
  1/*
  2 *  linux/kernel/profile.c
  3 *  Simple profiling. Manages a direct-mapped profile hit count buffer,
  4 *  with configurable resolution, support for restricting the cpus on
  5 *  which profiling is done, and switching between cpu time and
  6 *  schedule() calls via kernel command line parameters passed at boot.
  7 *
  8 *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
  9 *	Red Hat, July 2004
 10 *  Consolidation of architecture support code for profiling,
 11 *	Nadia Yvette Chambers, Oracle, July 2004
 12 *  Amortized hit count accounting via per-cpu open-addressed hashtables
 13 *	to resolve timer interrupt livelocks, Nadia Yvette Chambers,
 14 *	Oracle, 2004
 15 */
 16
 17#include <linux/export.h>
 18#include <linux/profile.h>
 19#include <linux/bootmem.h>
 20#include <linux/notifier.h>
 21#include <linux/mm.h>
 22#include <linux/cpumask.h>
 23#include <linux/cpu.h>
 24#include <linux/highmem.h>
 25#include <linux/mutex.h>
 26#include <linux/slab.h>
 27#include <linux/vmalloc.h>
 
 
 28#include <asm/sections.h>
 29#include <asm/irq_regs.h>
 30#include <asm/ptrace.h>
 31
 32struct profile_hit {
 33	u32 pc, hits;
 34};
 35#define PROFILE_GRPSHIFT	3
 36#define PROFILE_GRPSZ		(1 << PROFILE_GRPSHIFT)
 37#define NR_PROFILE_HIT		(PAGE_SIZE/sizeof(struct profile_hit))
 38#define NR_PROFILE_GRP		(NR_PROFILE_HIT/PROFILE_GRPSZ)
 39
 40static atomic_t *prof_buffer;
 41static unsigned long prof_len, prof_shift;
 42
 43int prof_on __read_mostly;
 44EXPORT_SYMBOL_GPL(prof_on);
 45
 46static cpumask_var_t prof_cpu_mask;
 47#if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
 48static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
 49static DEFINE_PER_CPU(int, cpu_profile_flip);
 50static DEFINE_MUTEX(profile_flip_mutex);
 51#endif /* CONFIG_SMP */
 52
 53int profile_setup(char *str)
 54{
 55	static const char schedstr[] = "schedule";
 56	static const char sleepstr[] = "sleep";
 57	static const char kvmstr[] = "kvm";
 58	int par;
 59
 60	if (!strncmp(str, sleepstr, strlen(sleepstr))) {
 61#ifdef CONFIG_SCHEDSTATS
 62		force_schedstat_enabled();
 63		prof_on = SLEEP_PROFILING;
 64		if (str[strlen(sleepstr)] == ',')
 65			str += strlen(sleepstr) + 1;
 66		if (get_option(&str, &par))
 67			prof_shift = par;
 68		pr_info("kernel sleep profiling enabled (shift: %ld)\n",
 69			prof_shift);
 70#else
 71		pr_warn("kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
 72#endif /* CONFIG_SCHEDSTATS */
 73	} else if (!strncmp(str, schedstr, strlen(schedstr))) {
 74		prof_on = SCHED_PROFILING;
 75		if (str[strlen(schedstr)] == ',')
 76			str += strlen(schedstr) + 1;
 77		if (get_option(&str, &par))
 78			prof_shift = par;
 79		pr_info("kernel schedule profiling enabled (shift: %ld)\n",
 80			prof_shift);
 81	} else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
 82		prof_on = KVM_PROFILING;
 83		if (str[strlen(kvmstr)] == ',')
 84			str += strlen(kvmstr) + 1;
 85		if (get_option(&str, &par))
 86			prof_shift = par;
 87		pr_info("kernel KVM profiling enabled (shift: %ld)\n",
 88			prof_shift);
 89	} else if (get_option(&str, &par)) {
 90		prof_shift = par;
 91		prof_on = CPU_PROFILING;
 92		pr_info("kernel profiling enabled (shift: %ld)\n",
 93			prof_shift);
 94	}
 95	return 1;
 96}
 97__setup("profile=", profile_setup);
 98
 99
100int __ref profile_init(void)
101{
102	int buffer_bytes;
103	if (!prof_on)
104		return 0;
105
106	/* only text is profiled */
107	prof_len = (_etext - _stext) >> prof_shift;
108	buffer_bytes = prof_len*sizeof(atomic_t);
109
110	if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
111		return -ENOMEM;
112
113	cpumask_copy(prof_cpu_mask, cpu_possible_mask);
114
115	prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN);
116	if (prof_buffer)
117		return 0;
118
119	prof_buffer = alloc_pages_exact(buffer_bytes,
120					GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN);
121	if (prof_buffer)
122		return 0;
123
124	prof_buffer = vzalloc(buffer_bytes);
125	if (prof_buffer)
126		return 0;
127
128	free_cpumask_var(prof_cpu_mask);
129	return -ENOMEM;
130}
131
132/* Profile event notifications */
133
134static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
135static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
136static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
137
138void profile_task_exit(struct task_struct *task)
139{
140	blocking_notifier_call_chain(&task_exit_notifier, 0, task);
141}
142
143int profile_handoff_task(struct task_struct *task)
144{
145	int ret;
146	ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
147	return (ret == NOTIFY_OK) ? 1 : 0;
148}
149
150void profile_munmap(unsigned long addr)
151{
152	blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
153}
154
155int task_handoff_register(struct notifier_block *n)
156{
157	return atomic_notifier_chain_register(&task_free_notifier, n);
158}
159EXPORT_SYMBOL_GPL(task_handoff_register);
160
161int task_handoff_unregister(struct notifier_block *n)
162{
163	return atomic_notifier_chain_unregister(&task_free_notifier, n);
164}
165EXPORT_SYMBOL_GPL(task_handoff_unregister);
166
167int profile_event_register(enum profile_type type, struct notifier_block *n)
168{
169	int err = -EINVAL;
170
171	switch (type) {
172	case PROFILE_TASK_EXIT:
173		err = blocking_notifier_chain_register(
174				&task_exit_notifier, n);
175		break;
176	case PROFILE_MUNMAP:
177		err = blocking_notifier_chain_register(
178				&munmap_notifier, n);
179		break;
180	}
181
182	return err;
183}
184EXPORT_SYMBOL_GPL(profile_event_register);
185
186int profile_event_unregister(enum profile_type type, struct notifier_block *n)
187{
188	int err = -EINVAL;
189
190	switch (type) {
191	case PROFILE_TASK_EXIT:
192		err = blocking_notifier_chain_unregister(
193				&task_exit_notifier, n);
194		break;
195	case PROFILE_MUNMAP:
196		err = blocking_notifier_chain_unregister(
197				&munmap_notifier, n);
198		break;
199	}
200
201	return err;
202}
203EXPORT_SYMBOL_GPL(profile_event_unregister);
204
205#if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
206/*
207 * Each cpu has a pair of open-addressed hashtables for pending
208 * profile hits. read_profile() IPI's all cpus to request them
209 * to flip buffers and flushes their contents to prof_buffer itself.
210 * Flip requests are serialized by the profile_flip_mutex. The sole
211 * use of having a second hashtable is for avoiding cacheline
212 * contention that would otherwise happen during flushes of pending
213 * profile hits required for the accuracy of reported profile hits
214 * and so resurrect the interrupt livelock issue.
215 *
216 * The open-addressed hashtables are indexed by profile buffer slot
217 * and hold the number of pending hits to that profile buffer slot on
218 * a cpu in an entry. When the hashtable overflows, all pending hits
219 * are accounted to their corresponding profile buffer slots with
220 * atomic_add() and the hashtable emptied. As numerous pending hits
221 * may be accounted to a profile buffer slot in a hashtable entry,
222 * this amortizes a number of atomic profile buffer increments likely
223 * to be far larger than the number of entries in the hashtable,
224 * particularly given that the number of distinct profile buffer
225 * positions to which hits are accounted during short intervals (e.g.
226 * several seconds) is usually very small. Exclusion from buffer
227 * flipping is provided by interrupt disablement (note that for
228 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
229 * process context).
230 * The hash function is meant to be lightweight as opposed to strong,
231 * and was vaguely inspired by ppc64 firmware-supported inverted
232 * pagetable hash functions, but uses a full hashtable full of finite
233 * collision chains, not just pairs of them.
234 *
235 * -- nyc
236 */
237static void __profile_flip_buffers(void *unused)
238{
239	int cpu = smp_processor_id();
240
241	per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
242}
243
244static void profile_flip_buffers(void)
245{
246	int i, j, cpu;
247
248	mutex_lock(&profile_flip_mutex);
249	j = per_cpu(cpu_profile_flip, get_cpu());
250	put_cpu();
251	on_each_cpu(__profile_flip_buffers, NULL, 1);
252	for_each_online_cpu(cpu) {
253		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
254		for (i = 0; i < NR_PROFILE_HIT; ++i) {
255			if (!hits[i].hits) {
256				if (hits[i].pc)
257					hits[i].pc = 0;
258				continue;
259			}
260			atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
261			hits[i].hits = hits[i].pc = 0;
262		}
263	}
264	mutex_unlock(&profile_flip_mutex);
265}
266
267static void profile_discard_flip_buffers(void)
268{
269	int i, cpu;
270
271	mutex_lock(&profile_flip_mutex);
272	i = per_cpu(cpu_profile_flip, get_cpu());
273	put_cpu();
274	on_each_cpu(__profile_flip_buffers, NULL, 1);
275	for_each_online_cpu(cpu) {
276		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
277		memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
278	}
279	mutex_unlock(&profile_flip_mutex);
280}
281
282static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
283{
284	unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
285	int i, j, cpu;
286	struct profile_hit *hits;
287
288	pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
289	i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
290	secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
291	cpu = get_cpu();
292	hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
293	if (!hits) {
294		put_cpu();
295		return;
296	}
297	/*
298	 * We buffer the global profiler buffer into a per-CPU
299	 * queue and thus reduce the number of global (and possibly
300	 * NUMA-alien) accesses. The write-queue is self-coalescing:
301	 */
302	local_irq_save(flags);
303	do {
304		for (j = 0; j < PROFILE_GRPSZ; ++j) {
305			if (hits[i + j].pc == pc) {
306				hits[i + j].hits += nr_hits;
307				goto out;
308			} else if (!hits[i + j].hits) {
309				hits[i + j].pc = pc;
310				hits[i + j].hits = nr_hits;
311				goto out;
312			}
313		}
314		i = (i + secondary) & (NR_PROFILE_HIT - 1);
315	} while (i != primary);
316
317	/*
318	 * Add the current hit(s) and flush the write-queue out
319	 * to the global buffer:
320	 */
321	atomic_add(nr_hits, &prof_buffer[pc]);
322	for (i = 0; i < NR_PROFILE_HIT; ++i) {
323		atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
324		hits[i].pc = hits[i].hits = 0;
325	}
326out:
327	local_irq_restore(flags);
328	put_cpu();
329}
330
331static int profile_cpu_callback(struct notifier_block *info,
332					unsigned long action, void *__cpu)
333{
334	int node, cpu = (unsigned long)__cpu;
335	struct page *page;
 
 
 
 
336
337	switch (action) {
338	case CPU_UP_PREPARE:
339	case CPU_UP_PREPARE_FROZEN:
340		node = cpu_to_mem(cpu);
341		per_cpu(cpu_profile_flip, cpu) = 0;
342		if (!per_cpu(cpu_profile_hits, cpu)[1]) {
343			page = __alloc_pages_node(node,
344					GFP_KERNEL | __GFP_ZERO,
345					0);
346			if (!page)
347				return notifier_from_errno(-ENOMEM);
348			per_cpu(cpu_profile_hits, cpu)[1] = page_address(page);
349		}
350		if (!per_cpu(cpu_profile_hits, cpu)[0]) {
351			page = __alloc_pages_node(node,
352					GFP_KERNEL | __GFP_ZERO,
353					0);
354			if (!page)
355				goto out_free;
356			per_cpu(cpu_profile_hits, cpu)[0] = page_address(page);
357		}
358		break;
359out_free:
360		page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
361		per_cpu(cpu_profile_hits, cpu)[1] = NULL;
362		__free_page(page);
363		return notifier_from_errno(-ENOMEM);
364	case CPU_ONLINE:
365	case CPU_ONLINE_FROZEN:
366		if (prof_cpu_mask != NULL)
367			cpumask_set_cpu(cpu, prof_cpu_mask);
368		break;
369	case CPU_UP_CANCELED:
370	case CPU_UP_CANCELED_FROZEN:
371	case CPU_DEAD:
372	case CPU_DEAD_FROZEN:
373		if (prof_cpu_mask != NULL)
374			cpumask_clear_cpu(cpu, prof_cpu_mask);
375		if (per_cpu(cpu_profile_hits, cpu)[0]) {
376			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
377			per_cpu(cpu_profile_hits, cpu)[0] = NULL;
378			__free_page(page);
379		}
380		if (per_cpu(cpu_profile_hits, cpu)[1]) {
381			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
382			per_cpu(cpu_profile_hits, cpu)[1] = NULL;
383			__free_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
384		}
385		break;
 
386	}
387	return NOTIFY_OK;
 
 
 
 
 
 
 
 
388}
 
389#else /* !CONFIG_SMP */
390#define profile_flip_buffers()		do { } while (0)
391#define profile_discard_flip_buffers()	do { } while (0)
392#define profile_cpu_callback		NULL
393
394static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
395{
396	unsigned long pc;
397	pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
398	atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
399}
400#endif /* !CONFIG_SMP */
401
402void profile_hits(int type, void *__pc, unsigned int nr_hits)
403{
404	if (prof_on != type || !prof_buffer)
405		return;
406	do_profile_hits(type, __pc, nr_hits);
407}
408EXPORT_SYMBOL_GPL(profile_hits);
409
410void profile_tick(int type)
411{
412	struct pt_regs *regs = get_irq_regs();
413
414	if (!user_mode(regs) && prof_cpu_mask != NULL &&
415	    cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
416		profile_hit(type, (void *)profile_pc(regs));
417}
418
419#ifdef CONFIG_PROC_FS
420#include <linux/proc_fs.h>
421#include <linux/seq_file.h>
422#include <asm/uaccess.h>
423
424static int prof_cpu_mask_proc_show(struct seq_file *m, void *v)
425{
426	seq_printf(m, "%*pb\n", cpumask_pr_args(prof_cpu_mask));
427	return 0;
428}
429
430static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file)
431{
432	return single_open(file, prof_cpu_mask_proc_show, NULL);
433}
434
435static ssize_t prof_cpu_mask_proc_write(struct file *file,
436	const char __user *buffer, size_t count, loff_t *pos)
437{
438	cpumask_var_t new_value;
439	int err;
440
441	if (!alloc_cpumask_var(&new_value, GFP_KERNEL))
442		return -ENOMEM;
443
444	err = cpumask_parse_user(buffer, count, new_value);
445	if (!err) {
446		cpumask_copy(prof_cpu_mask, new_value);
447		err = count;
448	}
449	free_cpumask_var(new_value);
450	return err;
451}
452
453static const struct file_operations prof_cpu_mask_proc_fops = {
454	.open		= prof_cpu_mask_proc_open,
455	.read		= seq_read,
456	.llseek		= seq_lseek,
457	.release	= single_release,
458	.write		= prof_cpu_mask_proc_write,
459};
460
461void create_prof_cpu_mask(void)
462{
463	/* create /proc/irq/prof_cpu_mask */
464	proc_create("irq/prof_cpu_mask", 0600, NULL, &prof_cpu_mask_proc_fops);
465}
466
467/*
468 * This function accesses profiling information. The returned data is
469 * binary: the sampling step and the actual contents of the profile
470 * buffer. Use of the program readprofile is recommended in order to
471 * get meaningful info out of these data.
472 */
473static ssize_t
474read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
475{
476	unsigned long p = *ppos;
477	ssize_t read;
478	char *pnt;
479	unsigned int sample_step = 1 << prof_shift;
480
481	profile_flip_buffers();
482	if (p >= (prof_len+1)*sizeof(unsigned int))
483		return 0;
484	if (count > (prof_len+1)*sizeof(unsigned int) - p)
485		count = (prof_len+1)*sizeof(unsigned int) - p;
486	read = 0;
487
488	while (p < sizeof(unsigned int) && count > 0) {
489		if (put_user(*((char *)(&sample_step)+p), buf))
490			return -EFAULT;
491		buf++; p++; count--; read++;
492	}
493	pnt = (char *)prof_buffer + p - sizeof(atomic_t);
494	if (copy_to_user(buf, (void *)pnt, count))
495		return -EFAULT;
496	read += count;
497	*ppos += read;
498	return read;
499}
500
501/*
502 * Writing to /proc/profile resets the counters
503 *
504 * Writing a 'profiling multiplier' value into it also re-sets the profiling
505 * interrupt frequency, on architectures that support this.
506 */
507static ssize_t write_profile(struct file *file, const char __user *buf,
508			     size_t count, loff_t *ppos)
509{
510#ifdef CONFIG_SMP
511	extern int setup_profiling_timer(unsigned int multiplier);
512
513	if (count == sizeof(int)) {
514		unsigned int multiplier;
515
516		if (copy_from_user(&multiplier, buf, sizeof(int)))
517			return -EFAULT;
518
519		if (setup_profiling_timer(multiplier))
520			return -EINVAL;
521	}
522#endif
523	profile_discard_flip_buffers();
524	memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
525	return count;
526}
527
528static const struct file_operations proc_profile_operations = {
529	.read		= read_profile,
530	.write		= write_profile,
531	.llseek		= default_llseek,
532};
533
 
 
 
534#ifdef CONFIG_SMP
535static void profile_nop(void *unused)
536{
537}
538
539static int create_hash_tables(void)
540{
541	int cpu;
542
543	for_each_online_cpu(cpu) {
544		int node = cpu_to_mem(cpu);
545		struct page *page;
546
547		page = __alloc_pages_node(node,
548				GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE,
549				0);
550		if (!page)
551			goto out_cleanup;
552		per_cpu(cpu_profile_hits, cpu)[1]
553				= (struct profile_hit *)page_address(page);
554		page = __alloc_pages_node(node,
555				GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE,
556				0);
557		if (!page)
558			goto out_cleanup;
559		per_cpu(cpu_profile_hits, cpu)[0]
560				= (struct profile_hit *)page_address(page);
561	}
562	return 0;
563out_cleanup:
564	prof_on = 0;
565	smp_mb();
566	on_each_cpu(profile_nop, NULL, 1);
567	for_each_online_cpu(cpu) {
568		struct page *page;
569
570		if (per_cpu(cpu_profile_hits, cpu)[0]) {
571			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
572			per_cpu(cpu_profile_hits, cpu)[0] = NULL;
573			__free_page(page);
574		}
575		if (per_cpu(cpu_profile_hits, cpu)[1]) {
576			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
577			per_cpu(cpu_profile_hits, cpu)[1] = NULL;
578			__free_page(page);
579		}
580	}
581	return -1;
582}
583#else
584#define create_hash_tables()			({ 0; })
585#endif
586
587int __ref create_proc_profile(void) /* false positive from hotcpu_notifier */
588{
589	struct proc_dir_entry *entry;
590	int err = 0;
591
592	if (!prof_on)
593		return 0;
594
595	cpu_notifier_register_begin();
596
597	if (create_hash_tables()) {
598		err = -ENOMEM;
599		goto out;
600	}
601
 
 
 
 
 
602	entry = proc_create("profile", S_IWUSR | S_IRUGO,
603			    NULL, &proc_profile_operations);
604	if (!entry)
605		goto out;
606	proc_set_size(entry, (1 + prof_len) * sizeof(atomic_t));
607	__hotcpu_notifier(profile_cpu_callback, 0);
608
609out:
610	cpu_notifier_register_done();
 
 
 
 
 
611	return err;
612}
613subsys_initcall(create_proc_profile);
614#endif /* CONFIG_PROC_FS */