Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/kernel/profile.c
  4 *  Simple profiling. Manages a direct-mapped profile hit count buffer,
  5 *  with configurable resolution, support for restricting the cpus on
  6 *  which profiling is done, and switching between cpu time and
  7 *  schedule() calls via kernel command line parameters passed at boot.
  8 *
  9 *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
 10 *	Red Hat, July 2004
 11 *  Consolidation of architecture support code for profiling,
 12 *	Nadia Yvette Chambers, Oracle, July 2004
 13 *  Amortized hit count accounting via per-cpu open-addressed hashtables
 14 *	to resolve timer interrupt livelocks, Nadia Yvette Chambers,
 15 *	Oracle, 2004
 16 */
 17
 18#include <linux/export.h>
 19#include <linux/profile.h>
 20#include <linux/memblock.h>
 21#include <linux/notifier.h>
 22#include <linux/mm.h>
 23#include <linux/cpumask.h>
 24#include <linux/cpu.h>
 25#include <linux/highmem.h>
 26#include <linux/mutex.h>
 27#include <linux/slab.h>
 28#include <linux/vmalloc.h>
 29#include <linux/sched/stat.h>
 30
 31#include <asm/sections.h>
 32#include <asm/irq_regs.h>
 33#include <asm/ptrace.h>
 34
 35struct profile_hit {
 36	u32 pc, hits;
 37};
 38#define PROFILE_GRPSHIFT	3
 39#define PROFILE_GRPSZ		(1 << PROFILE_GRPSHIFT)
 40#define NR_PROFILE_HIT		(PAGE_SIZE/sizeof(struct profile_hit))
 41#define NR_PROFILE_GRP		(NR_PROFILE_HIT/PROFILE_GRPSZ)
 42
 43static atomic_t *prof_buffer;
 44static unsigned long prof_len, prof_shift;
 
 45
 46int prof_on __read_mostly;
 47EXPORT_SYMBOL_GPL(prof_on);
 48
 49static cpumask_var_t prof_cpu_mask;
 50#if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
 51static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
 52static DEFINE_PER_CPU(int, cpu_profile_flip);
 53static DEFINE_MUTEX(profile_flip_mutex);
 54#endif /* CONFIG_SMP */
 55
 56int profile_setup(char *str)
 57{
 58	static const char schedstr[] = "schedule";
 59	static const char sleepstr[] = "sleep";
 60	static const char kvmstr[] = "kvm";
 61	int par;
 62
 63	if (!strncmp(str, sleepstr, strlen(sleepstr))) {
 64#ifdef CONFIG_SCHEDSTATS
 65		force_schedstat_enabled();
 66		prof_on = SLEEP_PROFILING;
 67		if (str[strlen(sleepstr)] == ',')
 68			str += strlen(sleepstr) + 1;
 69		if (get_option(&str, &par))
 70			prof_shift = par;
 71		pr_info("kernel sleep profiling enabled (shift: %ld)\n",
 72			prof_shift);
 73#else
 74		pr_warn("kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
 75#endif /* CONFIG_SCHEDSTATS */
 76	} else if (!strncmp(str, schedstr, strlen(schedstr))) {
 77		prof_on = SCHED_PROFILING;
 78		if (str[strlen(schedstr)] == ',')
 79			str += strlen(schedstr) + 1;
 80		if (get_option(&str, &par))
 81			prof_shift = par;
 82		pr_info("kernel schedule profiling enabled (shift: %ld)\n",
 83			prof_shift);
 84	} else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
 85		prof_on = KVM_PROFILING;
 86		if (str[strlen(kvmstr)] == ',')
 87			str += strlen(kvmstr) + 1;
 88		if (get_option(&str, &par))
 89			prof_shift = par;
 90		pr_info("kernel KVM profiling enabled (shift: %ld)\n",
 91			prof_shift);
 92	} else if (get_option(&str, &par)) {
 93		prof_shift = par;
 94		prof_on = CPU_PROFILING;
 95		pr_info("kernel profiling enabled (shift: %ld)\n",
 96			prof_shift);
 97	}
 98	return 1;
 99}
100__setup("profile=", profile_setup);
101
102
103int __ref profile_init(void)
104{
105	int buffer_bytes;
106	if (!prof_on)
107		return 0;
108
109	/* only text is profiled */
110	prof_len = (_etext - _stext) >> prof_shift;
111	buffer_bytes = prof_len*sizeof(atomic_t);
112
113	if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
114		return -ENOMEM;
115
116	cpumask_copy(prof_cpu_mask, cpu_possible_mask);
117
118	prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN);
119	if (prof_buffer)
120		return 0;
121
122	prof_buffer = alloc_pages_exact(buffer_bytes,
123					GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN);
124	if (prof_buffer)
125		return 0;
126
127	prof_buffer = vzalloc(buffer_bytes);
128	if (prof_buffer)
129		return 0;
130
131	free_cpumask_var(prof_cpu_mask);
132	return -ENOMEM;
133}
134
135/* Profile event notifications */
136
137static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
138static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
139static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
140
141void profile_task_exit(struct task_struct *task)
142{
143	blocking_notifier_call_chain(&task_exit_notifier, 0, task);
144}
145
146int profile_handoff_task(struct task_struct *task)
147{
148	int ret;
149	ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
150	return (ret == NOTIFY_OK) ? 1 : 0;
151}
152
153void profile_munmap(unsigned long addr)
154{
155	blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
156}
157
158int task_handoff_register(struct notifier_block *n)
159{
160	return atomic_notifier_chain_register(&task_free_notifier, n);
161}
162EXPORT_SYMBOL_GPL(task_handoff_register);
163
164int task_handoff_unregister(struct notifier_block *n)
165{
166	return atomic_notifier_chain_unregister(&task_free_notifier, n);
167}
168EXPORT_SYMBOL_GPL(task_handoff_unregister);
169
170int profile_event_register(enum profile_type type, struct notifier_block *n)
171{
172	int err = -EINVAL;
173
174	switch (type) {
175	case PROFILE_TASK_EXIT:
176		err = blocking_notifier_chain_register(
177				&task_exit_notifier, n);
178		break;
179	case PROFILE_MUNMAP:
180		err = blocking_notifier_chain_register(
181				&munmap_notifier, n);
182		break;
183	}
184
185	return err;
186}
187EXPORT_SYMBOL_GPL(profile_event_register);
188
189int profile_event_unregister(enum profile_type type, struct notifier_block *n)
190{
191	int err = -EINVAL;
192
193	switch (type) {
194	case PROFILE_TASK_EXIT:
195		err = blocking_notifier_chain_unregister(
196				&task_exit_notifier, n);
197		break;
198	case PROFILE_MUNMAP:
199		err = blocking_notifier_chain_unregister(
200				&munmap_notifier, n);
201		break;
202	}
203
204	return err;
205}
206EXPORT_SYMBOL_GPL(profile_event_unregister);
207
208#if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
209/*
210 * Each cpu has a pair of open-addressed hashtables for pending
211 * profile hits. read_profile() IPI's all cpus to request them
212 * to flip buffers and flushes their contents to prof_buffer itself.
213 * Flip requests are serialized by the profile_flip_mutex. The sole
214 * use of having a second hashtable is for avoiding cacheline
215 * contention that would otherwise happen during flushes of pending
216 * profile hits required for the accuracy of reported profile hits
217 * and so resurrect the interrupt livelock issue.
218 *
219 * The open-addressed hashtables are indexed by profile buffer slot
220 * and hold the number of pending hits to that profile buffer slot on
221 * a cpu in an entry. When the hashtable overflows, all pending hits
222 * are accounted to their corresponding profile buffer slots with
223 * atomic_add() and the hashtable emptied. As numerous pending hits
224 * may be accounted to a profile buffer slot in a hashtable entry,
225 * this amortizes a number of atomic profile buffer increments likely
226 * to be far larger than the number of entries in the hashtable,
227 * particularly given that the number of distinct profile buffer
228 * positions to which hits are accounted during short intervals (e.g.
229 * several seconds) is usually very small. Exclusion from buffer
230 * flipping is provided by interrupt disablement (note that for
231 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
232 * process context).
233 * The hash function is meant to be lightweight as opposed to strong,
234 * and was vaguely inspired by ppc64 firmware-supported inverted
235 * pagetable hash functions, but uses a full hashtable full of finite
236 * collision chains, not just pairs of them.
237 *
238 * -- nyc
239 */
240static void __profile_flip_buffers(void *unused)
241{
242	int cpu = smp_processor_id();
243
244	per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
245}
246
247static void profile_flip_buffers(void)
248{
249	int i, j, cpu;
250
251	mutex_lock(&profile_flip_mutex);
252	j = per_cpu(cpu_profile_flip, get_cpu());
253	put_cpu();
254	on_each_cpu(__profile_flip_buffers, NULL, 1);
255	for_each_online_cpu(cpu) {
256		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
257		for (i = 0; i < NR_PROFILE_HIT; ++i) {
258			if (!hits[i].hits) {
259				if (hits[i].pc)
260					hits[i].pc = 0;
261				continue;
262			}
263			atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
264			hits[i].hits = hits[i].pc = 0;
265		}
266	}
267	mutex_unlock(&profile_flip_mutex);
268}
269
270static void profile_discard_flip_buffers(void)
271{
272	int i, cpu;
273
274	mutex_lock(&profile_flip_mutex);
275	i = per_cpu(cpu_profile_flip, get_cpu());
276	put_cpu();
277	on_each_cpu(__profile_flip_buffers, NULL, 1);
278	for_each_online_cpu(cpu) {
279		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
280		memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
281	}
282	mutex_unlock(&profile_flip_mutex);
283}
284
285static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
286{
287	unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
288	int i, j, cpu;
289	struct profile_hit *hits;
290
291	pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
292	i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
293	secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
294	cpu = get_cpu();
295	hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
296	if (!hits) {
297		put_cpu();
298		return;
299	}
300	/*
301	 * We buffer the global profiler buffer into a per-CPU
302	 * queue and thus reduce the number of global (and possibly
303	 * NUMA-alien) accesses. The write-queue is self-coalescing:
304	 */
305	local_irq_save(flags);
306	do {
307		for (j = 0; j < PROFILE_GRPSZ; ++j) {
308			if (hits[i + j].pc == pc) {
309				hits[i + j].hits += nr_hits;
310				goto out;
311			} else if (!hits[i + j].hits) {
312				hits[i + j].pc = pc;
313				hits[i + j].hits = nr_hits;
314				goto out;
315			}
316		}
317		i = (i + secondary) & (NR_PROFILE_HIT - 1);
318	} while (i != primary);
319
320	/*
321	 * Add the current hit(s) and flush the write-queue out
322	 * to the global buffer:
323	 */
324	atomic_add(nr_hits, &prof_buffer[pc]);
325	for (i = 0; i < NR_PROFILE_HIT; ++i) {
326		atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
327		hits[i].pc = hits[i].hits = 0;
328	}
329out:
330	local_irq_restore(flags);
331	put_cpu();
332}
333
334static int profile_dead_cpu(unsigned int cpu)
335{
336	struct page *page;
337	int i;
338
339	if (prof_cpu_mask != NULL)
340		cpumask_clear_cpu(cpu, prof_cpu_mask);
341
342	for (i = 0; i < 2; i++) {
343		if (per_cpu(cpu_profile_hits, cpu)[i]) {
344			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[i]);
345			per_cpu(cpu_profile_hits, cpu)[i] = NULL;
346			__free_page(page);
347		}
348	}
349	return 0;
350}
351
352static int profile_prepare_cpu(unsigned int cpu)
353{
354	int i, node = cpu_to_mem(cpu);
355	struct page *page;
356
357	per_cpu(cpu_profile_flip, cpu) = 0;
358
359	for (i = 0; i < 2; i++) {
360		if (per_cpu(cpu_profile_hits, cpu)[i])
361			continue;
362
363		page = __alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
364		if (!page) {
365			profile_dead_cpu(cpu);
366			return -ENOMEM;
367		}
368		per_cpu(cpu_profile_hits, cpu)[i] = page_address(page);
369
370	}
371	return 0;
372}
373
374static int profile_online_cpu(unsigned int cpu)
375{
376	if (prof_cpu_mask != NULL)
377		cpumask_set_cpu(cpu, prof_cpu_mask);
378
379	return 0;
380}
381
382#else /* !CONFIG_SMP */
383#define profile_flip_buffers()		do { } while (0)
384#define profile_discard_flip_buffers()	do { } while (0)
385
386static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
387{
388	unsigned long pc;
389	pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
390	atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
391}
392#endif /* !CONFIG_SMP */
393
394void profile_hits(int type, void *__pc, unsigned int nr_hits)
395{
396	if (prof_on != type || !prof_buffer)
397		return;
398	do_profile_hits(type, __pc, nr_hits);
399}
400EXPORT_SYMBOL_GPL(profile_hits);
401
402void profile_tick(int type)
403{
404	struct pt_regs *regs = get_irq_regs();
405
406	if (!user_mode(regs) && prof_cpu_mask != NULL &&
407	    cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
408		profile_hit(type, (void *)profile_pc(regs));
409}
410
411#ifdef CONFIG_PROC_FS
412#include <linux/proc_fs.h>
413#include <linux/seq_file.h>
414#include <linux/uaccess.h>
415
416static int prof_cpu_mask_proc_show(struct seq_file *m, void *v)
417{
418	seq_printf(m, "%*pb\n", cpumask_pr_args(prof_cpu_mask));
419	return 0;
420}
421
422static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file)
423{
424	return single_open(file, prof_cpu_mask_proc_show, NULL);
425}
426
427static ssize_t prof_cpu_mask_proc_write(struct file *file,
428	const char __user *buffer, size_t count, loff_t *pos)
429{
430	cpumask_var_t new_value;
431	int err;
432
433	if (!alloc_cpumask_var(&new_value, GFP_KERNEL))
434		return -ENOMEM;
435
436	err = cpumask_parse_user(buffer, count, new_value);
437	if (!err) {
438		cpumask_copy(prof_cpu_mask, new_value);
439		err = count;
440	}
441	free_cpumask_var(new_value);
442	return err;
443}
444
445static const struct file_operations prof_cpu_mask_proc_fops = {
446	.open		= prof_cpu_mask_proc_open,
447	.read		= seq_read,
448	.llseek		= seq_lseek,
449	.release	= single_release,
450	.write		= prof_cpu_mask_proc_write,
451};
452
453void create_prof_cpu_mask(void)
454{
455	/* create /proc/irq/prof_cpu_mask */
456	proc_create("irq/prof_cpu_mask", 0600, NULL, &prof_cpu_mask_proc_fops);
457}
458
459/*
460 * This function accesses profiling information. The returned data is
461 * binary: the sampling step and the actual contents of the profile
462 * buffer. Use of the program readprofile is recommended in order to
463 * get meaningful info out of these data.
464 */
465static ssize_t
466read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
467{
468	unsigned long p = *ppos;
469	ssize_t read;
470	char *pnt;
471	unsigned int sample_step = 1 << prof_shift;
472
473	profile_flip_buffers();
474	if (p >= (prof_len+1)*sizeof(unsigned int))
475		return 0;
476	if (count > (prof_len+1)*sizeof(unsigned int) - p)
477		count = (prof_len+1)*sizeof(unsigned int) - p;
478	read = 0;
479
480	while (p < sizeof(unsigned int) && count > 0) {
481		if (put_user(*((char *)(&sample_step)+p), buf))
482			return -EFAULT;
483		buf++; p++; count--; read++;
484	}
485	pnt = (char *)prof_buffer + p - sizeof(atomic_t);
486	if (copy_to_user(buf, (void *)pnt, count))
487		return -EFAULT;
488	read += count;
489	*ppos += read;
490	return read;
491}
492
493/*
494 * Writing to /proc/profile resets the counters
495 *
496 * Writing a 'profiling multiplier' value into it also re-sets the profiling
497 * interrupt frequency, on architectures that support this.
498 */
499static ssize_t write_profile(struct file *file, const char __user *buf,
500			     size_t count, loff_t *ppos)
501{
502#ifdef CONFIG_SMP
503	extern int setup_profiling_timer(unsigned int multiplier);
504
505	if (count == sizeof(int)) {
506		unsigned int multiplier;
507
508		if (copy_from_user(&multiplier, buf, sizeof(int)))
509			return -EFAULT;
510
511		if (setup_profiling_timer(multiplier))
512			return -EINVAL;
513	}
514#endif
515	profile_discard_flip_buffers();
516	memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
517	return count;
518}
519
520static const struct file_operations proc_profile_operations = {
521	.read		= read_profile,
522	.write		= write_profile,
523	.llseek		= default_llseek,
524};
525
526int __ref create_proc_profile(void)
527{
528	struct proc_dir_entry *entry;
529#ifdef CONFIG_SMP
530	enum cpuhp_state online_state;
531#endif
532
533	int err = 0;
534
535	if (!prof_on)
536		return 0;
537#ifdef CONFIG_SMP
538	err = cpuhp_setup_state(CPUHP_PROFILE_PREPARE, "PROFILE_PREPARE",
539				profile_prepare_cpu, profile_dead_cpu);
540	if (err)
541		return err;
542
543	err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "AP_PROFILE_ONLINE",
544				profile_online_cpu, NULL);
545	if (err < 0)
546		goto err_state_prep;
547	online_state = err;
548	err = 0;
549#endif
550	entry = proc_create("profile", S_IWUSR | S_IRUGO,
551			    NULL, &proc_profile_operations);
552	if (!entry)
553		goto err_state_onl;
554	proc_set_size(entry, (1 + prof_len) * sizeof(atomic_t));
555
556	return err;
557err_state_onl:
558#ifdef CONFIG_SMP
559	cpuhp_remove_state(online_state);
560err_state_prep:
561	cpuhp_remove_state(CPUHP_PROFILE_PREPARE);
562#endif
563	return err;
564}
565subsys_initcall(create_proc_profile);
566#endif /* CONFIG_PROC_FS */
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/kernel/profile.c
  4 *  Simple profiling. Manages a direct-mapped profile hit count buffer,
  5 *  with configurable resolution, support for restricting the cpus on
  6 *  which profiling is done, and switching between cpu time and
  7 *  schedule() calls via kernel command line parameters passed at boot.
  8 *
  9 *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
 10 *	Red Hat, July 2004
 11 *  Consolidation of architecture support code for profiling,
 12 *	Nadia Yvette Chambers, Oracle, July 2004
 13 *  Amortized hit count accounting via per-cpu open-addressed hashtables
 14 *	to resolve timer interrupt livelocks, Nadia Yvette Chambers,
 15 *	Oracle, 2004
 16 */
 17
 18#include <linux/export.h>
 19#include <linux/profile.h>
 20#include <linux/memblock.h>
 21#include <linux/notifier.h>
 22#include <linux/mm.h>
 23#include <linux/cpumask.h>
 24#include <linux/cpu.h>
 25#include <linux/highmem.h>
 26#include <linux/mutex.h>
 27#include <linux/slab.h>
 28#include <linux/vmalloc.h>
 29#include <linux/sched/stat.h>
 30
 31#include <asm/sections.h>
 32#include <asm/irq_regs.h>
 33#include <asm/ptrace.h>
 34
 35struct profile_hit {
 36	u32 pc, hits;
 37};
 38#define PROFILE_GRPSHIFT	3
 39#define PROFILE_GRPSZ		(1 << PROFILE_GRPSHIFT)
 40#define NR_PROFILE_HIT		(PAGE_SIZE/sizeof(struct profile_hit))
 41#define NR_PROFILE_GRP		(NR_PROFILE_HIT/PROFILE_GRPSZ)
 42
 43static atomic_t *prof_buffer;
 44static unsigned long prof_len;
 45static unsigned short int prof_shift;
 46
 47int prof_on __read_mostly;
 48EXPORT_SYMBOL_GPL(prof_on);
 49
 50static cpumask_var_t prof_cpu_mask;
 51#if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
 52static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
 53static DEFINE_PER_CPU(int, cpu_profile_flip);
 54static DEFINE_MUTEX(profile_flip_mutex);
 55#endif /* CONFIG_SMP */
 56
 57int profile_setup(char *str)
 58{
 59	static const char schedstr[] = "schedule";
 60	static const char sleepstr[] = "sleep";
 61	static const char kvmstr[] = "kvm";
 62	int par;
 63
 64	if (!strncmp(str, sleepstr, strlen(sleepstr))) {
 65#ifdef CONFIG_SCHEDSTATS
 66		force_schedstat_enabled();
 67		prof_on = SLEEP_PROFILING;
 68		if (str[strlen(sleepstr)] == ',')
 69			str += strlen(sleepstr) + 1;
 70		if (get_option(&str, &par))
 71			prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
 72		pr_info("kernel sleep profiling enabled (shift: %u)\n",
 73			prof_shift);
 74#else
 75		pr_warn("kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
 76#endif /* CONFIG_SCHEDSTATS */
 77	} else if (!strncmp(str, schedstr, strlen(schedstr))) {
 78		prof_on = SCHED_PROFILING;
 79		if (str[strlen(schedstr)] == ',')
 80			str += strlen(schedstr) + 1;
 81		if (get_option(&str, &par))
 82			prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
 83		pr_info("kernel schedule profiling enabled (shift: %u)\n",
 84			prof_shift);
 85	} else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
 86		prof_on = KVM_PROFILING;
 87		if (str[strlen(kvmstr)] == ',')
 88			str += strlen(kvmstr) + 1;
 89		if (get_option(&str, &par))
 90			prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
 91		pr_info("kernel KVM profiling enabled (shift: %u)\n",
 92			prof_shift);
 93	} else if (get_option(&str, &par)) {
 94		prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
 95		prof_on = CPU_PROFILING;
 96		pr_info("kernel profiling enabled (shift: %u)\n",
 97			prof_shift);
 98	}
 99	return 1;
100}
101__setup("profile=", profile_setup);
102
103
104int __ref profile_init(void)
105{
106	int buffer_bytes;
107	if (!prof_on)
108		return 0;
109
110	/* only text is profiled */
111	prof_len = (_etext - _stext) >> prof_shift;
112	buffer_bytes = prof_len*sizeof(atomic_t);
113
114	if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
115		return -ENOMEM;
116
117	cpumask_copy(prof_cpu_mask, cpu_possible_mask);
118
119	prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN);
120	if (prof_buffer)
121		return 0;
122
123	prof_buffer = alloc_pages_exact(buffer_bytes,
124					GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN);
125	if (prof_buffer)
126		return 0;
127
128	prof_buffer = vzalloc(buffer_bytes);
129	if (prof_buffer)
130		return 0;
131
132	free_cpumask_var(prof_cpu_mask);
133	return -ENOMEM;
134}
135
136/* Profile event notifications */
137
138static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
139static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
140static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
141
142void profile_task_exit(struct task_struct *task)
143{
144	blocking_notifier_call_chain(&task_exit_notifier, 0, task);
145}
146
147int profile_handoff_task(struct task_struct *task)
148{
149	int ret;
150	ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
151	return (ret == NOTIFY_OK) ? 1 : 0;
152}
153
154void profile_munmap(unsigned long addr)
155{
156	blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
157}
158
159int task_handoff_register(struct notifier_block *n)
160{
161	return atomic_notifier_chain_register(&task_free_notifier, n);
162}
163EXPORT_SYMBOL_GPL(task_handoff_register);
164
165int task_handoff_unregister(struct notifier_block *n)
166{
167	return atomic_notifier_chain_unregister(&task_free_notifier, n);
168}
169EXPORT_SYMBOL_GPL(task_handoff_unregister);
170
171int profile_event_register(enum profile_type type, struct notifier_block *n)
172{
173	int err = -EINVAL;
174
175	switch (type) {
176	case PROFILE_TASK_EXIT:
177		err = blocking_notifier_chain_register(
178				&task_exit_notifier, n);
179		break;
180	case PROFILE_MUNMAP:
181		err = blocking_notifier_chain_register(
182				&munmap_notifier, n);
183		break;
184	}
185
186	return err;
187}
188EXPORT_SYMBOL_GPL(profile_event_register);
189
190int profile_event_unregister(enum profile_type type, struct notifier_block *n)
191{
192	int err = -EINVAL;
193
194	switch (type) {
195	case PROFILE_TASK_EXIT:
196		err = blocking_notifier_chain_unregister(
197				&task_exit_notifier, n);
198		break;
199	case PROFILE_MUNMAP:
200		err = blocking_notifier_chain_unregister(
201				&munmap_notifier, n);
202		break;
203	}
204
205	return err;
206}
207EXPORT_SYMBOL_GPL(profile_event_unregister);
208
209#if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
210/*
211 * Each cpu has a pair of open-addressed hashtables for pending
212 * profile hits. read_profile() IPI's all cpus to request them
213 * to flip buffers and flushes their contents to prof_buffer itself.
214 * Flip requests are serialized by the profile_flip_mutex. The sole
215 * use of having a second hashtable is for avoiding cacheline
216 * contention that would otherwise happen during flushes of pending
217 * profile hits required for the accuracy of reported profile hits
218 * and so resurrect the interrupt livelock issue.
219 *
220 * The open-addressed hashtables are indexed by profile buffer slot
221 * and hold the number of pending hits to that profile buffer slot on
222 * a cpu in an entry. When the hashtable overflows, all pending hits
223 * are accounted to their corresponding profile buffer slots with
224 * atomic_add() and the hashtable emptied. As numerous pending hits
225 * may be accounted to a profile buffer slot in a hashtable entry,
226 * this amortizes a number of atomic profile buffer increments likely
227 * to be far larger than the number of entries in the hashtable,
228 * particularly given that the number of distinct profile buffer
229 * positions to which hits are accounted during short intervals (e.g.
230 * several seconds) is usually very small. Exclusion from buffer
231 * flipping is provided by interrupt disablement (note that for
232 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
233 * process context).
234 * The hash function is meant to be lightweight as opposed to strong,
235 * and was vaguely inspired by ppc64 firmware-supported inverted
236 * pagetable hash functions, but uses a full hashtable full of finite
237 * collision chains, not just pairs of them.
238 *
239 * -- nyc
240 */
241static void __profile_flip_buffers(void *unused)
242{
243	int cpu = smp_processor_id();
244
245	per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
246}
247
248static void profile_flip_buffers(void)
249{
250	int i, j, cpu;
251
252	mutex_lock(&profile_flip_mutex);
253	j = per_cpu(cpu_profile_flip, get_cpu());
254	put_cpu();
255	on_each_cpu(__profile_flip_buffers, NULL, 1);
256	for_each_online_cpu(cpu) {
257		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
258		for (i = 0; i < NR_PROFILE_HIT; ++i) {
259			if (!hits[i].hits) {
260				if (hits[i].pc)
261					hits[i].pc = 0;
262				continue;
263			}
264			atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
265			hits[i].hits = hits[i].pc = 0;
266		}
267	}
268	mutex_unlock(&profile_flip_mutex);
269}
270
271static void profile_discard_flip_buffers(void)
272{
273	int i, cpu;
274
275	mutex_lock(&profile_flip_mutex);
276	i = per_cpu(cpu_profile_flip, get_cpu());
277	put_cpu();
278	on_each_cpu(__profile_flip_buffers, NULL, 1);
279	for_each_online_cpu(cpu) {
280		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
281		memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
282	}
283	mutex_unlock(&profile_flip_mutex);
284}
285
286static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
287{
288	unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
289	int i, j, cpu;
290	struct profile_hit *hits;
291
292	pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
293	i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
294	secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
295	cpu = get_cpu();
296	hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
297	if (!hits) {
298		put_cpu();
299		return;
300	}
301	/*
302	 * We buffer the global profiler buffer into a per-CPU
303	 * queue and thus reduce the number of global (and possibly
304	 * NUMA-alien) accesses. The write-queue is self-coalescing:
305	 */
306	local_irq_save(flags);
307	do {
308		for (j = 0; j < PROFILE_GRPSZ; ++j) {
309			if (hits[i + j].pc == pc) {
310				hits[i + j].hits += nr_hits;
311				goto out;
312			} else if (!hits[i + j].hits) {
313				hits[i + j].pc = pc;
314				hits[i + j].hits = nr_hits;
315				goto out;
316			}
317		}
318		i = (i + secondary) & (NR_PROFILE_HIT - 1);
319	} while (i != primary);
320
321	/*
322	 * Add the current hit(s) and flush the write-queue out
323	 * to the global buffer:
324	 */
325	atomic_add(nr_hits, &prof_buffer[pc]);
326	for (i = 0; i < NR_PROFILE_HIT; ++i) {
327		atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
328		hits[i].pc = hits[i].hits = 0;
329	}
330out:
331	local_irq_restore(flags);
332	put_cpu();
333}
334
335static int profile_dead_cpu(unsigned int cpu)
336{
337	struct page *page;
338	int i;
339
340	if (cpumask_available(prof_cpu_mask))
341		cpumask_clear_cpu(cpu, prof_cpu_mask);
342
343	for (i = 0; i < 2; i++) {
344		if (per_cpu(cpu_profile_hits, cpu)[i]) {
345			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[i]);
346			per_cpu(cpu_profile_hits, cpu)[i] = NULL;
347			__free_page(page);
348		}
349	}
350	return 0;
351}
352
353static int profile_prepare_cpu(unsigned int cpu)
354{
355	int i, node = cpu_to_mem(cpu);
356	struct page *page;
357
358	per_cpu(cpu_profile_flip, cpu) = 0;
359
360	for (i = 0; i < 2; i++) {
361		if (per_cpu(cpu_profile_hits, cpu)[i])
362			continue;
363
364		page = __alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
365		if (!page) {
366			profile_dead_cpu(cpu);
367			return -ENOMEM;
368		}
369		per_cpu(cpu_profile_hits, cpu)[i] = page_address(page);
370
371	}
372	return 0;
373}
374
375static int profile_online_cpu(unsigned int cpu)
376{
377	if (cpumask_available(prof_cpu_mask))
378		cpumask_set_cpu(cpu, prof_cpu_mask);
379
380	return 0;
381}
382
383#else /* !CONFIG_SMP */
384#define profile_flip_buffers()		do { } while (0)
385#define profile_discard_flip_buffers()	do { } while (0)
386
387static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
388{
389	unsigned long pc;
390	pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
391	atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
392}
393#endif /* !CONFIG_SMP */
394
395void profile_hits(int type, void *__pc, unsigned int nr_hits)
396{
397	if (prof_on != type || !prof_buffer)
398		return;
399	do_profile_hits(type, __pc, nr_hits);
400}
401EXPORT_SYMBOL_GPL(profile_hits);
402
403void profile_tick(int type)
404{
405	struct pt_regs *regs = get_irq_regs();
406
407	if (!user_mode(regs) && cpumask_available(prof_cpu_mask) &&
408	    cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
409		profile_hit(type, (void *)profile_pc(regs));
410}
411
412#ifdef CONFIG_PROC_FS
413#include <linux/proc_fs.h>
414#include <linux/seq_file.h>
415#include <linux/uaccess.h>
416
417static int prof_cpu_mask_proc_show(struct seq_file *m, void *v)
418{
419	seq_printf(m, "%*pb\n", cpumask_pr_args(prof_cpu_mask));
420	return 0;
421}
422
423static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file)
424{
425	return single_open(file, prof_cpu_mask_proc_show, NULL);
426}
427
428static ssize_t prof_cpu_mask_proc_write(struct file *file,
429	const char __user *buffer, size_t count, loff_t *pos)
430{
431	cpumask_var_t new_value;
432	int err;
433
434	if (!zalloc_cpumask_var(&new_value, GFP_KERNEL))
435		return -ENOMEM;
436
437	err = cpumask_parse_user(buffer, count, new_value);
438	if (!err) {
439		cpumask_copy(prof_cpu_mask, new_value);
440		err = count;
441	}
442	free_cpumask_var(new_value);
443	return err;
444}
445
446static const struct proc_ops prof_cpu_mask_proc_ops = {
447	.proc_open	= prof_cpu_mask_proc_open,
448	.proc_read	= seq_read,
449	.proc_lseek	= seq_lseek,
450	.proc_release	= single_release,
451	.proc_write	= prof_cpu_mask_proc_write,
452};
453
454void create_prof_cpu_mask(void)
455{
456	/* create /proc/irq/prof_cpu_mask */
457	proc_create("irq/prof_cpu_mask", 0600, NULL, &prof_cpu_mask_proc_ops);
458}
459
460/*
461 * This function accesses profiling information. The returned data is
462 * binary: the sampling step and the actual contents of the profile
463 * buffer. Use of the program readprofile is recommended in order to
464 * get meaningful info out of these data.
465 */
466static ssize_t
467read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
468{
469	unsigned long p = *ppos;
470	ssize_t read;
471	char *pnt;
472	unsigned long sample_step = 1UL << prof_shift;
473
474	profile_flip_buffers();
475	if (p >= (prof_len+1)*sizeof(unsigned int))
476		return 0;
477	if (count > (prof_len+1)*sizeof(unsigned int) - p)
478		count = (prof_len+1)*sizeof(unsigned int) - p;
479	read = 0;
480
481	while (p < sizeof(unsigned int) && count > 0) {
482		if (put_user(*((char *)(&sample_step)+p), buf))
483			return -EFAULT;
484		buf++; p++; count--; read++;
485	}
486	pnt = (char *)prof_buffer + p - sizeof(atomic_t);
487	if (copy_to_user(buf, (void *)pnt, count))
488		return -EFAULT;
489	read += count;
490	*ppos += read;
491	return read;
492}
493
494/*
495 * Writing to /proc/profile resets the counters
496 *
497 * Writing a 'profiling multiplier' value into it also re-sets the profiling
498 * interrupt frequency, on architectures that support this.
499 */
500static ssize_t write_profile(struct file *file, const char __user *buf,
501			     size_t count, loff_t *ppos)
502{
503#ifdef CONFIG_SMP
504	extern int setup_profiling_timer(unsigned int multiplier);
505
506	if (count == sizeof(int)) {
507		unsigned int multiplier;
508
509		if (copy_from_user(&multiplier, buf, sizeof(int)))
510			return -EFAULT;
511
512		if (setup_profiling_timer(multiplier))
513			return -EINVAL;
514	}
515#endif
516	profile_discard_flip_buffers();
517	memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
518	return count;
519}
520
521static const struct proc_ops profile_proc_ops = {
522	.proc_read	= read_profile,
523	.proc_write	= write_profile,
524	.proc_lseek	= default_llseek,
525};
526
527int __ref create_proc_profile(void)
528{
529	struct proc_dir_entry *entry;
530#ifdef CONFIG_SMP
531	enum cpuhp_state online_state;
532#endif
533
534	int err = 0;
535
536	if (!prof_on)
537		return 0;
538#ifdef CONFIG_SMP
539	err = cpuhp_setup_state(CPUHP_PROFILE_PREPARE, "PROFILE_PREPARE",
540				profile_prepare_cpu, profile_dead_cpu);
541	if (err)
542		return err;
543
544	err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "AP_PROFILE_ONLINE",
545				profile_online_cpu, NULL);
546	if (err < 0)
547		goto err_state_prep;
548	online_state = err;
549	err = 0;
550#endif
551	entry = proc_create("profile", S_IWUSR | S_IRUGO,
552			    NULL, &profile_proc_ops);
553	if (!entry)
554		goto err_state_onl;
555	proc_set_size(entry, (1 + prof_len) * sizeof(atomic_t));
556
557	return err;
558err_state_onl:
559#ifdef CONFIG_SMP
560	cpuhp_remove_state(online_state);
561err_state_prep:
562	cpuhp_remove_state(CPUHP_PROFILE_PREPARE);
563#endif
564	return err;
565}
566subsys_initcall(create_proc_profile);
567#endif /* CONFIG_PROC_FS */