Linux Audio

Check our new training course

Loading...
v5.4
  1/*
  2 * kmod - the kernel module loader
  3 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  4#include <linux/module.h>
  5#include <linux/sched.h>
  6#include <linux/sched/task.h>
  7#include <linux/binfmts.h>
  8#include <linux/syscalls.h>
  9#include <linux/unistd.h>
 10#include <linux/kmod.h>
 11#include <linux/slab.h>
 12#include <linux/completion.h>
 13#include <linux/cred.h>
 14#include <linux/file.h>
 15#include <linux/fdtable.h>
 16#include <linux/workqueue.h>
 17#include <linux/security.h>
 18#include <linux/mount.h>
 19#include <linux/kernel.h>
 20#include <linux/init.h>
 21#include <linux/resource.h>
 22#include <linux/notifier.h>
 23#include <linux/suspend.h>
 24#include <linux/rwsem.h>
 25#include <linux/ptrace.h>
 26#include <linux/async.h>
 27#include <linux/uaccess.h>
 28
 29#include <trace/events/module.h>
 30
 31/*
 32 * Assuming:
 33 *
 34 * threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
 35 *		       (u64) THREAD_SIZE * 8UL);
 36 *
 37 * If you need less than 50 threads would mean we're dealing with systems
 38 * smaller than 3200 pages. This assuems you are capable of having ~13M memory,
 39 * and this would only be an be an upper limit, after which the OOM killer
 40 * would take effect. Systems like these are very unlikely if modules are
 41 * enabled.
 42 */
 43#define MAX_KMOD_CONCURRENT 50
 44static atomic_t kmod_concurrent_max = ATOMIC_INIT(MAX_KMOD_CONCURRENT);
 45static DECLARE_WAIT_QUEUE_HEAD(kmod_wq);
 46
 47/*
 48 * This is a restriction on having *all* MAX_KMOD_CONCURRENT threads
 49 * running at the same time without returning. When this happens we
 50 * believe you've somehow ended up with a recursive module dependency
 51 * creating a loop.
 52 *
 53 * We have no option but to fail.
 54 *
 55 * Userspace should proactively try to detect and prevent these.
 56 */
 57#define MAX_KMOD_ALL_BUSY_TIMEOUT 5
 58
 59/*
 60	modprobe_path is set via /proc/sys.
 61*/
 62char modprobe_path[KMOD_PATH_LEN] = "/sbin/modprobe";
 63
 64static void free_modprobe_argv(struct subprocess_info *info)
 65{
 66	kfree(info->argv[3]); /* check call_modprobe() */
 67	kfree(info->argv);
 68}
 69
 70static int call_modprobe(char *module_name, int wait)
 71{
 72	struct subprocess_info *info;
 73	static char *envp[] = {
 74		"HOME=/",
 75		"TERM=linux",
 76		"PATH=/sbin:/usr/sbin:/bin:/usr/bin",
 77		NULL
 78	};
 79
 80	char **argv = kmalloc(sizeof(char *[5]), GFP_KERNEL);
 81	if (!argv)
 82		goto out;
 83
 84	module_name = kstrdup(module_name, GFP_KERNEL);
 85	if (!module_name)
 86		goto free_argv;
 87
 88	argv[0] = modprobe_path;
 89	argv[1] = "-q";
 90	argv[2] = "--";
 91	argv[3] = module_name;	/* check free_modprobe_argv() */
 92	argv[4] = NULL;
 93
 94	info = call_usermodehelper_setup(modprobe_path, argv, envp, GFP_KERNEL,
 95					 NULL, free_modprobe_argv, NULL);
 96	if (!info)
 97		goto free_module_name;
 98
 99	return call_usermodehelper_exec(info, wait | UMH_KILLABLE);
100
101free_module_name:
102	kfree(module_name);
103free_argv:
104	kfree(argv);
105out:
106	return -ENOMEM;
107}
108
109/**
110 * __request_module - try to load a kernel module
111 * @wait: wait (or not) for the operation to complete
112 * @fmt: printf style format string for the name of the module
113 * @...: arguments as specified in the format string
114 *
115 * Load a module using the user mode module loader. The function returns
116 * zero on success or a negative errno code or positive exit code from
117 * "modprobe" on failure. Note that a successful module load does not mean
118 * the module did not then unload and exit on an error of its own. Callers
119 * must check that the service they requested is now available not blindly
120 * invoke it.
121 *
122 * If module auto-loading support is disabled then this function
123 * becomes a no-operation.
124 */
125int __request_module(bool wait, const char *fmt, ...)
126{
127	va_list args;
128	char module_name[MODULE_NAME_LEN];
 
129	int ret;
 
 
 
130
131	/*
132	 * We don't allow synchronous module loading from async.  Module
133	 * init may invoke async_synchronize_full() which will end up
134	 * waiting for this task which already is waiting for the module
135	 * loading to complete, leading to a deadlock.
136	 */
137	WARN_ON_ONCE(wait && current_is_async());
138
139	if (!modprobe_path[0])
140		return 0;
141
142	va_start(args, fmt);
143	ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args);
144	va_end(args);
145	if (ret >= MODULE_NAME_LEN)
146		return -ENAMETOOLONG;
147
148	ret = security_kernel_module_request(module_name);
149	if (ret)
150		return ret;
151
152	if (atomic_dec_if_positive(&kmod_concurrent_max) < 0) {
153		pr_warn_ratelimited("request_module: kmod_concurrent_max (%u) close to 0 (max_modprobes: %u), for module %s, throttling...",
154				    atomic_read(&kmod_concurrent_max),
155				    MAX_KMOD_CONCURRENT, module_name);
156		ret = wait_event_killable_timeout(kmod_wq,
157						  atomic_dec_if_positive(&kmod_concurrent_max) >= 0,
158						  MAX_KMOD_ALL_BUSY_TIMEOUT * HZ);
159		if (!ret) {
160			pr_warn_ratelimited("request_module: modprobe %s cannot be processed, kmod busy with %d threads for more than %d seconds now",
161					    module_name, MAX_KMOD_CONCURRENT, MAX_KMOD_ALL_BUSY_TIMEOUT);
162			return -ETIME;
163		} else if (ret == -ERESTARTSYS) {
164			pr_warn_ratelimited("request_module: sigkill sent for modprobe %s, giving up", module_name);
165			return ret;
 
 
 
 
 
 
 
166		}
 
 
167	}
168
169	trace_module_request(module_name, wait, _RET_IP_);
170
171	ret = call_modprobe(module_name, wait ? UMH_WAIT_PROC : UMH_WAIT_EXEC);
172
173	atomic_inc(&kmod_concurrent_max);
174	wake_up(&kmod_wq);
175
176	return ret;
177}
178EXPORT_SYMBOL(__request_module);
v4.6
  1/*
  2	kmod, the new module loader (replaces kerneld)
  3	Kirk Petersen
  4
  5	Reorganized not to be a daemon by Adam Richter, with guidance
  6	from Greg Zornetzer.
  7
  8	Modified to avoid chroot and file sharing problems.
  9	Mikael Pettersson
 10
 11	Limit the concurrent number of kmod modprobes to catch loops from
 12	"modprobe needs a service that is in a module".
 13	Keith Owens <kaos@ocs.com.au> December 1999
 14
 15	Unblock all signals when we exec a usermode process.
 16	Shuu Yamaguchi <shuu@wondernetworkresources.com> December 2000
 17
 18	call_usermodehelper wait flag, and remove exec_usermodehelper.
 19	Rusty Russell <rusty@rustcorp.com.au>  Jan 2003
 20*/
 21#include <linux/module.h>
 22#include <linux/sched.h>
 
 
 23#include <linux/syscalls.h>
 24#include <linux/unistd.h>
 25#include <linux/kmod.h>
 26#include <linux/slab.h>
 27#include <linux/completion.h>
 28#include <linux/cred.h>
 29#include <linux/file.h>
 30#include <linux/fdtable.h>
 31#include <linux/workqueue.h>
 32#include <linux/security.h>
 33#include <linux/mount.h>
 34#include <linux/kernel.h>
 35#include <linux/init.h>
 36#include <linux/resource.h>
 37#include <linux/notifier.h>
 38#include <linux/suspend.h>
 39#include <linux/rwsem.h>
 40#include <linux/ptrace.h>
 41#include <linux/async.h>
 42#include <asm/uaccess.h>
 43
 44#include <trace/events/module.h>
 45
 46extern int max_threads;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 47
 48#define CAP_BSET	(void *)1
 49#define CAP_PI		(void *)2
 50
 51static kernel_cap_t usermodehelper_bset = CAP_FULL_SET;
 52static kernel_cap_t usermodehelper_inheritable = CAP_FULL_SET;
 53static DEFINE_SPINLOCK(umh_sysctl_lock);
 54static DECLARE_RWSEM(umhelper_sem);
 55
 56#ifdef CONFIG_MODULES
 
 
 57
 58/*
 59	modprobe_path is set via /proc/sys.
 60*/
 61char modprobe_path[KMOD_PATH_LEN] = "/sbin/modprobe";
 62
 63static void free_modprobe_argv(struct subprocess_info *info)
 64{
 65	kfree(info->argv[3]); /* check call_modprobe() */
 66	kfree(info->argv);
 67}
 68
 69static int call_modprobe(char *module_name, int wait)
 70{
 71	struct subprocess_info *info;
 72	static char *envp[] = {
 73		"HOME=/",
 74		"TERM=linux",
 75		"PATH=/sbin:/usr/sbin:/bin:/usr/bin",
 76		NULL
 77	};
 78
 79	char **argv = kmalloc(sizeof(char *[5]), GFP_KERNEL);
 80	if (!argv)
 81		goto out;
 82
 83	module_name = kstrdup(module_name, GFP_KERNEL);
 84	if (!module_name)
 85		goto free_argv;
 86
 87	argv[0] = modprobe_path;
 88	argv[1] = "-q";
 89	argv[2] = "--";
 90	argv[3] = module_name;	/* check free_modprobe_argv() */
 91	argv[4] = NULL;
 92
 93	info = call_usermodehelper_setup(modprobe_path, argv, envp, GFP_KERNEL,
 94					 NULL, free_modprobe_argv, NULL);
 95	if (!info)
 96		goto free_module_name;
 97
 98	return call_usermodehelper_exec(info, wait | UMH_KILLABLE);
 99
100free_module_name:
101	kfree(module_name);
102free_argv:
103	kfree(argv);
104out:
105	return -ENOMEM;
106}
107
108/**
109 * __request_module - try to load a kernel module
110 * @wait: wait (or not) for the operation to complete
111 * @fmt: printf style format string for the name of the module
112 * @...: arguments as specified in the format string
113 *
114 * Load a module using the user mode module loader. The function returns
115 * zero on success or a negative errno code or positive exit code from
116 * "modprobe" on failure. Note that a successful module load does not mean
117 * the module did not then unload and exit on an error of its own. Callers
118 * must check that the service they requested is now available not blindly
119 * invoke it.
120 *
121 * If module auto-loading support is disabled then this function
122 * becomes a no-operation.
123 */
124int __request_module(bool wait, const char *fmt, ...)
125{
126	va_list args;
127	char module_name[MODULE_NAME_LEN];
128	unsigned int max_modprobes;
129	int ret;
130	static atomic_t kmod_concurrent = ATOMIC_INIT(0);
131#define MAX_KMOD_CONCURRENT 50	/* Completely arbitrary value - KAO */
132	static int kmod_loop_msg;
133
134	/*
135	 * We don't allow synchronous module loading from async.  Module
136	 * init may invoke async_synchronize_full() which will end up
137	 * waiting for this task which already is waiting for the module
138	 * loading to complete, leading to a deadlock.
139	 */
140	WARN_ON_ONCE(wait && current_is_async());
141
142	if (!modprobe_path[0])
143		return 0;
144
145	va_start(args, fmt);
146	ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args);
147	va_end(args);
148	if (ret >= MODULE_NAME_LEN)
149		return -ENAMETOOLONG;
150
151	ret = security_kernel_module_request(module_name);
152	if (ret)
153		return ret;
154
155	/* If modprobe needs a service that is in a module, we get a recursive
156	 * loop.  Limit the number of running kmod threads to max_threads/2 or
157	 * MAX_KMOD_CONCURRENT, whichever is the smaller.  A cleaner method
158	 * would be to run the parents of this process, counting how many times
159	 * kmod was invoked.  That would mean accessing the internals of the
160	 * process tables to get the command line, proc_pid_cmdline is static
161	 * and it is not worth changing the proc code just to handle this case. 
162	 * KAO.
163	 *
164	 * "trace the ppid" is simple, but will fail if someone's
165	 * parent exits.  I think this is as good as it gets. --RR
166	 */
167	max_modprobes = min(max_threads/2, MAX_KMOD_CONCURRENT);
168	atomic_inc(&kmod_concurrent);
169	if (atomic_read(&kmod_concurrent) > max_modprobes) {
170		/* We may be blaming an innocent here, but unlikely */
171		if (kmod_loop_msg < 5) {
172			printk(KERN_ERR
173			       "request_module: runaway loop modprobe %s\n",
174			       module_name);
175			kmod_loop_msg++;
176		}
177		atomic_dec(&kmod_concurrent);
178		return -ENOMEM;
179	}
180
181	trace_module_request(module_name, wait, _RET_IP_);
182
183	ret = call_modprobe(module_name, wait ? UMH_WAIT_PROC : UMH_WAIT_EXEC);
184
185	atomic_dec(&kmod_concurrent);
 
 
186	return ret;
187}
188EXPORT_SYMBOL(__request_module);
189#endif /* CONFIG_MODULES */
190
191static void call_usermodehelper_freeinfo(struct subprocess_info *info)
192{
193	if (info->cleanup)
194		(*info->cleanup)(info);
195	kfree(info);
196}
197
198static void umh_complete(struct subprocess_info *sub_info)
199{
200	struct completion *comp = xchg(&sub_info->complete, NULL);
201	/*
202	 * See call_usermodehelper_exec(). If xchg() returns NULL
203	 * we own sub_info, the UMH_KILLABLE caller has gone away
204	 * or the caller used UMH_NO_WAIT.
205	 */
206	if (comp)
207		complete(comp);
208	else
209		call_usermodehelper_freeinfo(sub_info);
210}
211
212/*
213 * This is the task which runs the usermode application
214 */
215static int call_usermodehelper_exec_async(void *data)
216{
217	struct subprocess_info *sub_info = data;
218	struct cred *new;
219	int retval;
220
221	spin_lock_irq(&current->sighand->siglock);
222	flush_signal_handlers(current, 1);
223	spin_unlock_irq(&current->sighand->siglock);
224
225	/*
226	 * Our parent (unbound workqueue) runs with elevated scheduling
227	 * priority. Avoid propagating that into the userspace child.
228	 */
229	set_user_nice(current, 0);
230
231	retval = -ENOMEM;
232	new = prepare_kernel_cred(current);
233	if (!new)
234		goto out;
235
236	spin_lock(&umh_sysctl_lock);
237	new->cap_bset = cap_intersect(usermodehelper_bset, new->cap_bset);
238	new->cap_inheritable = cap_intersect(usermodehelper_inheritable,
239					     new->cap_inheritable);
240	spin_unlock(&umh_sysctl_lock);
241
242	if (sub_info->init) {
243		retval = sub_info->init(sub_info, new);
244		if (retval) {
245			abort_creds(new);
246			goto out;
247		}
248	}
249
250	commit_creds(new);
251
252	retval = do_execve(getname_kernel(sub_info->path),
253			   (const char __user *const __user *)sub_info->argv,
254			   (const char __user *const __user *)sub_info->envp);
255out:
256	sub_info->retval = retval;
257	/*
258	 * call_usermodehelper_exec_sync() will call umh_complete
259	 * if UHM_WAIT_PROC.
260	 */
261	if (!(sub_info->wait & UMH_WAIT_PROC))
262		umh_complete(sub_info);
263	if (!retval)
264		return 0;
265	do_exit(0);
266}
267
268/* Handles UMH_WAIT_PROC.  */
269static void call_usermodehelper_exec_sync(struct subprocess_info *sub_info)
270{
271	pid_t pid;
272
273	/* If SIGCLD is ignored sys_wait4 won't populate the status. */
274	kernel_sigaction(SIGCHLD, SIG_DFL);
275	pid = kernel_thread(call_usermodehelper_exec_async, sub_info, SIGCHLD);
276	if (pid < 0) {
277		sub_info->retval = pid;
278	} else {
279		int ret = -ECHILD;
280		/*
281		 * Normally it is bogus to call wait4() from in-kernel because
282		 * wait4() wants to write the exit code to a userspace address.
283		 * But call_usermodehelper_exec_sync() always runs as kernel
284		 * thread (workqueue) and put_user() to a kernel address works
285		 * OK for kernel threads, due to their having an mm_segment_t
286		 * which spans the entire address space.
287		 *
288		 * Thus the __user pointer cast is valid here.
289		 */
290		sys_wait4(pid, (int __user *)&ret, 0, NULL);
291
292		/*
293		 * If ret is 0, either call_usermodehelper_exec_async failed and
294		 * the real error code is already in sub_info->retval or
295		 * sub_info->retval is 0 anyway, so don't mess with it then.
296		 */
297		if (ret)
298			sub_info->retval = ret;
299	}
300
301	/* Restore default kernel sig handler */
302	kernel_sigaction(SIGCHLD, SIG_IGN);
303
304	umh_complete(sub_info);
305}
306
307/*
308 * We need to create the usermodehelper kernel thread from a task that is affine
309 * to an optimized set of CPUs (or nohz housekeeping ones) such that they
310 * inherit a widest affinity irrespective of call_usermodehelper() callers with
311 * possibly reduced affinity (eg: per-cpu workqueues). We don't want
312 * usermodehelper targets to contend a busy CPU.
313 *
314 * Unbound workqueues provide such wide affinity and allow to block on
315 * UMH_WAIT_PROC requests without blocking pending request (up to some limit).
316 *
317 * Besides, workqueues provide the privilege level that caller might not have
318 * to perform the usermodehelper request.
319 *
320 */
321static void call_usermodehelper_exec_work(struct work_struct *work)
322{
323	struct subprocess_info *sub_info =
324		container_of(work, struct subprocess_info, work);
325
326	if (sub_info->wait & UMH_WAIT_PROC) {
327		call_usermodehelper_exec_sync(sub_info);
328	} else {
329		pid_t pid;
330		/*
331		 * Use CLONE_PARENT to reparent it to kthreadd; we do not
332		 * want to pollute current->children, and we need a parent
333		 * that always ignores SIGCHLD to ensure auto-reaping.
334		 */
335		pid = kernel_thread(call_usermodehelper_exec_async, sub_info,
336				    CLONE_PARENT | SIGCHLD);
337		if (pid < 0) {
338			sub_info->retval = pid;
339			umh_complete(sub_info);
340		}
341	}
342}
343
344/*
345 * If set, call_usermodehelper_exec() will exit immediately returning -EBUSY
346 * (used for preventing user land processes from being created after the user
347 * land has been frozen during a system-wide hibernation or suspend operation).
348 * Should always be manipulated under umhelper_sem acquired for write.
349 */
350static enum umh_disable_depth usermodehelper_disabled = UMH_DISABLED;
351
352/* Number of helpers running */
353static atomic_t running_helpers = ATOMIC_INIT(0);
354
355/*
356 * Wait queue head used by usermodehelper_disable() to wait for all running
357 * helpers to finish.
358 */
359static DECLARE_WAIT_QUEUE_HEAD(running_helpers_waitq);
360
361/*
362 * Used by usermodehelper_read_lock_wait() to wait for usermodehelper_disabled
363 * to become 'false'.
364 */
365static DECLARE_WAIT_QUEUE_HEAD(usermodehelper_disabled_waitq);
366
367/*
368 * Time to wait for running_helpers to become zero before the setting of
369 * usermodehelper_disabled in usermodehelper_disable() fails
370 */
371#define RUNNING_HELPERS_TIMEOUT	(5 * HZ)
372
373int usermodehelper_read_trylock(void)
374{
375	DEFINE_WAIT(wait);
376	int ret = 0;
377
378	down_read(&umhelper_sem);
379	for (;;) {
380		prepare_to_wait(&usermodehelper_disabled_waitq, &wait,
381				TASK_INTERRUPTIBLE);
382		if (!usermodehelper_disabled)
383			break;
384
385		if (usermodehelper_disabled == UMH_DISABLED)
386			ret = -EAGAIN;
387
388		up_read(&umhelper_sem);
389
390		if (ret)
391			break;
392
393		schedule();
394		try_to_freeze();
395
396		down_read(&umhelper_sem);
397	}
398	finish_wait(&usermodehelper_disabled_waitq, &wait);
399	return ret;
400}
401EXPORT_SYMBOL_GPL(usermodehelper_read_trylock);
402
403long usermodehelper_read_lock_wait(long timeout)
404{
405	DEFINE_WAIT(wait);
406
407	if (timeout < 0)
408		return -EINVAL;
409
410	down_read(&umhelper_sem);
411	for (;;) {
412		prepare_to_wait(&usermodehelper_disabled_waitq, &wait,
413				TASK_UNINTERRUPTIBLE);
414		if (!usermodehelper_disabled)
415			break;
416
417		up_read(&umhelper_sem);
418
419		timeout = schedule_timeout(timeout);
420		if (!timeout)
421			break;
422
423		down_read(&umhelper_sem);
424	}
425	finish_wait(&usermodehelper_disabled_waitq, &wait);
426	return timeout;
427}
428EXPORT_SYMBOL_GPL(usermodehelper_read_lock_wait);
429
430void usermodehelper_read_unlock(void)
431{
432	up_read(&umhelper_sem);
433}
434EXPORT_SYMBOL_GPL(usermodehelper_read_unlock);
435
436/**
437 * __usermodehelper_set_disable_depth - Modify usermodehelper_disabled.
438 * @depth: New value to assign to usermodehelper_disabled.
439 *
440 * Change the value of usermodehelper_disabled (under umhelper_sem locked for
441 * writing) and wakeup tasks waiting for it to change.
442 */
443void __usermodehelper_set_disable_depth(enum umh_disable_depth depth)
444{
445	down_write(&umhelper_sem);
446	usermodehelper_disabled = depth;
447	wake_up(&usermodehelper_disabled_waitq);
448	up_write(&umhelper_sem);
449}
450
451/**
452 * __usermodehelper_disable - Prevent new helpers from being started.
453 * @depth: New value to assign to usermodehelper_disabled.
454 *
455 * Set usermodehelper_disabled to @depth and wait for running helpers to exit.
456 */
457int __usermodehelper_disable(enum umh_disable_depth depth)
458{
459	long retval;
460
461	if (!depth)
462		return -EINVAL;
463
464	down_write(&umhelper_sem);
465	usermodehelper_disabled = depth;
466	up_write(&umhelper_sem);
467
468	/*
469	 * From now on call_usermodehelper_exec() won't start any new
470	 * helpers, so it is sufficient if running_helpers turns out to
471	 * be zero at one point (it may be increased later, but that
472	 * doesn't matter).
473	 */
474	retval = wait_event_timeout(running_helpers_waitq,
475					atomic_read(&running_helpers) == 0,
476					RUNNING_HELPERS_TIMEOUT);
477	if (retval)
478		return 0;
479
480	__usermodehelper_set_disable_depth(UMH_ENABLED);
481	return -EAGAIN;
482}
483
484static void helper_lock(void)
485{
486	atomic_inc(&running_helpers);
487	smp_mb__after_atomic();
488}
489
490static void helper_unlock(void)
491{
492	if (atomic_dec_and_test(&running_helpers))
493		wake_up(&running_helpers_waitq);
494}
495
496/**
497 * call_usermodehelper_setup - prepare to call a usermode helper
498 * @path: path to usermode executable
499 * @argv: arg vector for process
500 * @envp: environment for process
501 * @gfp_mask: gfp mask for memory allocation
502 * @cleanup: a cleanup function
503 * @init: an init function
504 * @data: arbitrary context sensitive data
505 *
506 * Returns either %NULL on allocation failure, or a subprocess_info
507 * structure.  This should be passed to call_usermodehelper_exec to
508 * exec the process and free the structure.
509 *
510 * The init function is used to customize the helper process prior to
511 * exec.  A non-zero return code causes the process to error out, exit,
512 * and return the failure to the calling process
513 *
514 * The cleanup function is just before ethe subprocess_info is about to
515 * be freed.  This can be used for freeing the argv and envp.  The
516 * Function must be runnable in either a process context or the
517 * context in which call_usermodehelper_exec is called.
518 */
519struct subprocess_info *call_usermodehelper_setup(char *path, char **argv,
520		char **envp, gfp_t gfp_mask,
521		int (*init)(struct subprocess_info *info, struct cred *new),
522		void (*cleanup)(struct subprocess_info *info),
523		void *data)
524{
525	struct subprocess_info *sub_info;
526	sub_info = kzalloc(sizeof(struct subprocess_info), gfp_mask);
527	if (!sub_info)
528		goto out;
529
530	INIT_WORK(&sub_info->work, call_usermodehelper_exec_work);
531	sub_info->path = path;
532	sub_info->argv = argv;
533	sub_info->envp = envp;
534
535	sub_info->cleanup = cleanup;
536	sub_info->init = init;
537	sub_info->data = data;
538  out:
539	return sub_info;
540}
541EXPORT_SYMBOL(call_usermodehelper_setup);
542
543/**
544 * call_usermodehelper_exec - start a usermode application
545 * @sub_info: information about the subprocessa
546 * @wait: wait for the application to finish and return status.
547 *        when UMH_NO_WAIT don't wait at all, but you get no useful error back
548 *        when the program couldn't be exec'ed. This makes it safe to call
549 *        from interrupt context.
550 *
551 * Runs a user-space application.  The application is started
552 * asynchronously if wait is not set, and runs as a child of system workqueues.
553 * (ie. it runs with full root capabilities and optimized affinity).
554 */
555int call_usermodehelper_exec(struct subprocess_info *sub_info, int wait)
556{
557	DECLARE_COMPLETION_ONSTACK(done);
558	int retval = 0;
559
560	if (!sub_info->path) {
561		call_usermodehelper_freeinfo(sub_info);
562		return -EINVAL;
563	}
564	helper_lock();
565	if (usermodehelper_disabled) {
566		retval = -EBUSY;
567		goto out;
568	}
569	/*
570	 * Set the completion pointer only if there is a waiter.
571	 * This makes it possible to use umh_complete to free
572	 * the data structure in case of UMH_NO_WAIT.
573	 */
574	sub_info->complete = (wait == UMH_NO_WAIT) ? NULL : &done;
575	sub_info->wait = wait;
576
577	queue_work(system_unbound_wq, &sub_info->work);
578	if (wait == UMH_NO_WAIT)	/* task has freed sub_info */
579		goto unlock;
580
581	if (wait & UMH_KILLABLE) {
582		retval = wait_for_completion_killable(&done);
583		if (!retval)
584			goto wait_done;
585
586		/* umh_complete() will see NULL and free sub_info */
587		if (xchg(&sub_info->complete, NULL))
588			goto unlock;
589		/* fallthrough, umh_complete() was already called */
590	}
591
592	wait_for_completion(&done);
593wait_done:
594	retval = sub_info->retval;
595out:
596	call_usermodehelper_freeinfo(sub_info);
597unlock:
598	helper_unlock();
599	return retval;
600}
601EXPORT_SYMBOL(call_usermodehelper_exec);
602
603/**
604 * call_usermodehelper() - prepare and start a usermode application
605 * @path: path to usermode executable
606 * @argv: arg vector for process
607 * @envp: environment for process
608 * @wait: wait for the application to finish and return status.
609 *        when UMH_NO_WAIT don't wait at all, but you get no useful error back
610 *        when the program couldn't be exec'ed. This makes it safe to call
611 *        from interrupt context.
612 *
613 * This function is the equivalent to use call_usermodehelper_setup() and
614 * call_usermodehelper_exec().
615 */
616int call_usermodehelper(char *path, char **argv, char **envp, int wait)
617{
618	struct subprocess_info *info;
619	gfp_t gfp_mask = (wait == UMH_NO_WAIT) ? GFP_ATOMIC : GFP_KERNEL;
620
621	info = call_usermodehelper_setup(path, argv, envp, gfp_mask,
622					 NULL, NULL, NULL);
623	if (info == NULL)
624		return -ENOMEM;
625
626	return call_usermodehelper_exec(info, wait);
627}
628EXPORT_SYMBOL(call_usermodehelper);
629
630static int proc_cap_handler(struct ctl_table *table, int write,
631			 void __user *buffer, size_t *lenp, loff_t *ppos)
632{
633	struct ctl_table t;
634	unsigned long cap_array[_KERNEL_CAPABILITY_U32S];
635	kernel_cap_t new_cap;
636	int err, i;
637
638	if (write && (!capable(CAP_SETPCAP) ||
639		      !capable(CAP_SYS_MODULE)))
640		return -EPERM;
641
642	/*
643	 * convert from the global kernel_cap_t to the ulong array to print to
644	 * userspace if this is a read.
645	 */
646	spin_lock(&umh_sysctl_lock);
647	for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++)  {
648		if (table->data == CAP_BSET)
649			cap_array[i] = usermodehelper_bset.cap[i];
650		else if (table->data == CAP_PI)
651			cap_array[i] = usermodehelper_inheritable.cap[i];
652		else
653			BUG();
654	}
655	spin_unlock(&umh_sysctl_lock);
656
657	t = *table;
658	t.data = &cap_array;
659
660	/*
661	 * actually read or write and array of ulongs from userspace.  Remember
662	 * these are least significant 32 bits first
663	 */
664	err = proc_doulongvec_minmax(&t, write, buffer, lenp, ppos);
665	if (err < 0)
666		return err;
667
668	/*
669	 * convert from the sysctl array of ulongs to the kernel_cap_t
670	 * internal representation
671	 */
672	for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++)
673		new_cap.cap[i] = cap_array[i];
674
675	/*
676	 * Drop everything not in the new_cap (but don't add things)
677	 */
678	spin_lock(&umh_sysctl_lock);
679	if (write) {
680		if (table->data == CAP_BSET)
681			usermodehelper_bset = cap_intersect(usermodehelper_bset, new_cap);
682		if (table->data == CAP_PI)
683			usermodehelper_inheritable = cap_intersect(usermodehelper_inheritable, new_cap);
684	}
685	spin_unlock(&umh_sysctl_lock);
686
687	return 0;
688}
689
690struct ctl_table usermodehelper_table[] = {
691	{
692		.procname	= "bset",
693		.data		= CAP_BSET,
694		.maxlen		= _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
695		.mode		= 0600,
696		.proc_handler	= proc_cap_handler,
697	},
698	{
699		.procname	= "inheritable",
700		.data		= CAP_PI,
701		.maxlen		= _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
702		.mode		= 0600,
703		.proc_handler	= proc_cap_handler,
704	},
705	{ }
706};