Linux Audio

Check our new training course

Loading...
v5.4
  1/*
  2 * kmod - the kernel module loader
  3 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  4#include <linux/module.h>
  5#include <linux/sched.h>
  6#include <linux/sched/task.h>
  7#include <linux/binfmts.h>
  8#include <linux/syscalls.h>
  9#include <linux/unistd.h>
 10#include <linux/kmod.h>
 11#include <linux/slab.h>
 12#include <linux/completion.h>
 13#include <linux/cred.h>
 14#include <linux/file.h>
 15#include <linux/fdtable.h>
 16#include <linux/workqueue.h>
 17#include <linux/security.h>
 18#include <linux/mount.h>
 19#include <linux/kernel.h>
 20#include <linux/init.h>
 21#include <linux/resource.h>
 22#include <linux/notifier.h>
 23#include <linux/suspend.h>
 24#include <linux/rwsem.h>
 25#include <linux/ptrace.h>
 26#include <linux/async.h>
 27#include <linux/uaccess.h>
 28
 29#include <trace/events/module.h>
 30
 31/*
 32 * Assuming:
 33 *
 34 * threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
 35 *		       (u64) THREAD_SIZE * 8UL);
 36 *
 37 * If you need less than 50 threads would mean we're dealing with systems
 38 * smaller than 3200 pages. This assuems you are capable of having ~13M memory,
 39 * and this would only be an be an upper limit, after which the OOM killer
 40 * would take effect. Systems like these are very unlikely if modules are
 41 * enabled.
 42 */
 43#define MAX_KMOD_CONCURRENT 50
 44static atomic_t kmod_concurrent_max = ATOMIC_INIT(MAX_KMOD_CONCURRENT);
 45static DECLARE_WAIT_QUEUE_HEAD(kmod_wq);
 46
 47/*
 48 * This is a restriction on having *all* MAX_KMOD_CONCURRENT threads
 49 * running at the same time without returning. When this happens we
 50 * believe you've somehow ended up with a recursive module dependency
 51 * creating a loop.
 52 *
 53 * We have no option but to fail.
 54 *
 55 * Userspace should proactively try to detect and prevent these.
 56 */
 57#define MAX_KMOD_ALL_BUSY_TIMEOUT 5
 58
 59/*
 60	modprobe_path is set via /proc/sys.
 61*/
 62char modprobe_path[KMOD_PATH_LEN] = "/sbin/modprobe";
 63
 64static void free_modprobe_argv(struct subprocess_info *info)
 65{
 66	kfree(info->argv[3]); /* check call_modprobe() */
 67	kfree(info->argv);
 68}
 69
 70static int call_modprobe(char *module_name, int wait)
 71{
 72	struct subprocess_info *info;
 73	static char *envp[] = {
 74		"HOME=/",
 75		"TERM=linux",
 76		"PATH=/sbin:/usr/sbin:/bin:/usr/bin",
 77		NULL
 78	};
 79
 80	char **argv = kmalloc(sizeof(char *[5]), GFP_KERNEL);
 81	if (!argv)
 82		goto out;
 83
 84	module_name = kstrdup(module_name, GFP_KERNEL);
 85	if (!module_name)
 86		goto free_argv;
 87
 88	argv[0] = modprobe_path;
 89	argv[1] = "-q";
 90	argv[2] = "--";
 91	argv[3] = module_name;	/* check free_modprobe_argv() */
 92	argv[4] = NULL;
 93
 94	info = call_usermodehelper_setup(modprobe_path, argv, envp, GFP_KERNEL,
 95					 NULL, free_modprobe_argv, NULL);
 96	if (!info)
 97		goto free_module_name;
 98
 99	return call_usermodehelper_exec(info, wait | UMH_KILLABLE);
100
101free_module_name:
102	kfree(module_name);
103free_argv:
104	kfree(argv);
105out:
106	return -ENOMEM;
107}
108
109/**
110 * __request_module - try to load a kernel module
111 * @wait: wait (or not) for the operation to complete
112 * @fmt: printf style format string for the name of the module
113 * @...: arguments as specified in the format string
114 *
115 * Load a module using the user mode module loader. The function returns
116 * zero on success or a negative errno code or positive exit code from
117 * "modprobe" on failure. Note that a successful module load does not mean
118 * the module did not then unload and exit on an error of its own. Callers
119 * must check that the service they requested is now available not blindly
120 * invoke it.
121 *
122 * If module auto-loading support is disabled then this function
123 * becomes a no-operation.
124 */
125int __request_module(bool wait, const char *fmt, ...)
126{
127	va_list args;
128	char module_name[MODULE_NAME_LEN];
 
129	int ret;
130
131	/*
132	 * We don't allow synchronous module loading from async.  Module
133	 * init may invoke async_synchronize_full() which will end up
134	 * waiting for this task which already is waiting for the module
135	 * loading to complete, leading to a deadlock.
136	 */
137	WARN_ON_ONCE(wait && current_is_async());
138
139	if (!modprobe_path[0])
140		return 0;
141
142	va_start(args, fmt);
143	ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args);
144	va_end(args);
145	if (ret >= MODULE_NAME_LEN)
146		return -ENAMETOOLONG;
147
148	ret = security_kernel_module_request(module_name);
149	if (ret)
150		return ret;
151
152	if (atomic_dec_if_positive(&kmod_concurrent_max) < 0) {
153		pr_warn_ratelimited("request_module: kmod_concurrent_max (%u) close to 0 (max_modprobes: %u), for module %s, throttling...",
154				    atomic_read(&kmod_concurrent_max),
155				    MAX_KMOD_CONCURRENT, module_name);
156		ret = wait_event_killable_timeout(kmod_wq,
157						  atomic_dec_if_positive(&kmod_concurrent_max) >= 0,
158						  MAX_KMOD_ALL_BUSY_TIMEOUT * HZ);
159		if (!ret) {
160			pr_warn_ratelimited("request_module: modprobe %s cannot be processed, kmod busy with %d threads for more than %d seconds now",
161					    module_name, MAX_KMOD_CONCURRENT, MAX_KMOD_ALL_BUSY_TIMEOUT);
162			return -ETIME;
163		} else if (ret == -ERESTARTSYS) {
164			pr_warn_ratelimited("request_module: sigkill sent for modprobe %s, giving up", module_name);
165			return ret;
166		}
 
 
 
 
 
 
 
167	}
168
169	trace_module_request(module_name, wait, _RET_IP_);
170
171	ret = call_modprobe(module_name, wait ? UMH_WAIT_PROC : UMH_WAIT_EXEC);
172
173	atomic_inc(&kmod_concurrent_max);
174	wake_up(&kmod_wq);
175
 
176	return ret;
177}
178EXPORT_SYMBOL(__request_module);
v3.1
  1/*
  2	kmod, the new module loader (replaces kerneld)
  3	Kirk Petersen
  4
  5	Reorganized not to be a daemon by Adam Richter, with guidance
  6	from Greg Zornetzer.
  7
  8	Modified to avoid chroot and file sharing problems.
  9	Mikael Pettersson
 10
 11	Limit the concurrent number of kmod modprobes to catch loops from
 12	"modprobe needs a service that is in a module".
 13	Keith Owens <kaos@ocs.com.au> December 1999
 14
 15	Unblock all signals when we exec a usermode process.
 16	Shuu Yamaguchi <shuu@wondernetworkresources.com> December 2000
 17
 18	call_usermodehelper wait flag, and remove exec_usermodehelper.
 19	Rusty Russell <rusty@rustcorp.com.au>  Jan 2003
 20*/
 21#include <linux/module.h>
 22#include <linux/sched.h>
 
 
 23#include <linux/syscalls.h>
 24#include <linux/unistd.h>
 25#include <linux/kmod.h>
 26#include <linux/slab.h>
 27#include <linux/completion.h>
 28#include <linux/cred.h>
 29#include <linux/file.h>
 30#include <linux/fdtable.h>
 31#include <linux/workqueue.h>
 32#include <linux/security.h>
 33#include <linux/mount.h>
 34#include <linux/kernel.h>
 35#include <linux/init.h>
 36#include <linux/resource.h>
 37#include <linux/notifier.h>
 38#include <linux/suspend.h>
 39#include <asm/uaccess.h>
 
 
 
 40
 41#include <trace/events/module.h>
 42
 43extern int max_threads;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 44
 45static struct workqueue_struct *khelper_wq;
 46
 47#define CAP_BSET	(void *)1
 48#define CAP_PI		(void *)2
 49
 50static kernel_cap_t usermodehelper_bset = CAP_FULL_SET;
 51static kernel_cap_t usermodehelper_inheritable = CAP_FULL_SET;
 52static DEFINE_SPINLOCK(umh_sysctl_lock);
 53
 54#ifdef CONFIG_MODULES
 
 55
 56/*
 57	modprobe_path is set via /proc/sys.
 58*/
 59char modprobe_path[KMOD_PATH_LEN] = "/sbin/modprobe";
 60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 61/**
 62 * __request_module - try to load a kernel module
 63 * @wait: wait (or not) for the operation to complete
 64 * @fmt: printf style format string for the name of the module
 65 * @...: arguments as specified in the format string
 66 *
 67 * Load a module using the user mode module loader. The function returns
 68 * zero on success or a negative errno code on failure. Note that a
 69 * successful module load does not mean the module did not then unload
 70 * and exit on an error of its own. Callers must check that the service
 71 * they requested is now available not blindly invoke it.
 
 72 *
 73 * If module auto-loading support is disabled then this function
 74 * becomes a no-operation.
 75 */
 76int __request_module(bool wait, const char *fmt, ...)
 77{
 78	va_list args;
 79	char module_name[MODULE_NAME_LEN];
 80	unsigned int max_modprobes;
 81	int ret;
 82	char *argv[] = { modprobe_path, "-q", "--", module_name, NULL };
 83	static char *envp[] = { "HOME=/",
 84				"TERM=linux",
 85				"PATH=/sbin:/usr/sbin:/bin:/usr/bin",
 86				NULL };
 87	static atomic_t kmod_concurrent = ATOMIC_INIT(0);
 88#define MAX_KMOD_CONCURRENT 50	/* Completely arbitrary value - KAO */
 89	static int kmod_loop_msg;
 
 
 
 90
 91	va_start(args, fmt);
 92	ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args);
 93	va_end(args);
 94	if (ret >= MODULE_NAME_LEN)
 95		return -ENAMETOOLONG;
 96
 97	ret = security_kernel_module_request(module_name);
 98	if (ret)
 99		return ret;
100
101	/* If modprobe needs a service that is in a module, we get a recursive
102	 * loop.  Limit the number of running kmod threads to max_threads/2 or
103	 * MAX_KMOD_CONCURRENT, whichever is the smaller.  A cleaner method
104	 * would be to run the parents of this process, counting how many times
105	 * kmod was invoked.  That would mean accessing the internals of the
106	 * process tables to get the command line, proc_pid_cmdline is static
107	 * and it is not worth changing the proc code just to handle this case. 
108	 * KAO.
109	 *
110	 * "trace the ppid" is simple, but will fail if someone's
111	 * parent exits.  I think this is as good as it gets. --RR
112	 */
113	max_modprobes = min(max_threads/2, MAX_KMOD_CONCURRENT);
114	atomic_inc(&kmod_concurrent);
115	if (atomic_read(&kmod_concurrent) > max_modprobes) {
116		/* We may be blaming an innocent here, but unlikely */
117		if (kmod_loop_msg++ < 5)
118			printk(KERN_ERR
119			       "request_module: runaway loop modprobe %s\n",
120			       module_name);
121		atomic_dec(&kmod_concurrent);
122		return -ENOMEM;
123	}
124
125	trace_module_request(module_name, wait, _RET_IP_);
126
127	ret = call_usermodehelper_fns(modprobe_path, argv, envp,
128			wait ? UMH_WAIT_PROC : UMH_WAIT_EXEC,
129			NULL, NULL, NULL);
 
130
131	atomic_dec(&kmod_concurrent);
132	return ret;
133}
134EXPORT_SYMBOL(__request_module);
135#endif /* CONFIG_MODULES */
136
137/*
138 * This is the task which runs the usermode application
139 */
140static int ____call_usermodehelper(void *data)
141{
142	struct subprocess_info *sub_info = data;
143	struct cred *new;
144	int retval;
145
146	spin_lock_irq(&current->sighand->siglock);
147	flush_signal_handlers(current, 1);
148	spin_unlock_irq(&current->sighand->siglock);
149
150	/* We can run anywhere, unlike our parent keventd(). */
151	set_cpus_allowed_ptr(current, cpu_all_mask);
152
153	/*
154	 * Our parent is keventd, which runs with elevated scheduling priority.
155	 * Avoid propagating that into the userspace child.
156	 */
157	set_user_nice(current, 0);
158
159	retval = -ENOMEM;
160	new = prepare_kernel_cred(current);
161	if (!new)
162		goto fail;
163
164	spin_lock(&umh_sysctl_lock);
165	new->cap_bset = cap_intersect(usermodehelper_bset, new->cap_bset);
166	new->cap_inheritable = cap_intersect(usermodehelper_inheritable,
167					     new->cap_inheritable);
168	spin_unlock(&umh_sysctl_lock);
169
170	if (sub_info->init) {
171		retval = sub_info->init(sub_info, new);
172		if (retval) {
173			abort_creds(new);
174			goto fail;
175		}
176	}
177
178	commit_creds(new);
179
180	retval = kernel_execve(sub_info->path,
181			       (const char *const *)sub_info->argv,
182			       (const char *const *)sub_info->envp);
183
184	/* Exec failed? */
185fail:
186	sub_info->retval = retval;
187	do_exit(0);
188}
189
190void call_usermodehelper_freeinfo(struct subprocess_info *info)
191{
192	if (info->cleanup)
193		(*info->cleanup)(info);
194	kfree(info);
195}
196EXPORT_SYMBOL(call_usermodehelper_freeinfo);
197
198/* Keventd can't block, but this (a child) can. */
199static int wait_for_helper(void *data)
200{
201	struct subprocess_info *sub_info = data;
202	pid_t pid;
203
204	/* If SIGCLD is ignored sys_wait4 won't populate the status. */
205	spin_lock_irq(&current->sighand->siglock);
206	current->sighand->action[SIGCHLD-1].sa.sa_handler = SIG_DFL;
207	spin_unlock_irq(&current->sighand->siglock);
208
209	pid = kernel_thread(____call_usermodehelper, sub_info, SIGCHLD);
210	if (pid < 0) {
211		sub_info->retval = pid;
212	} else {
213		int ret = -ECHILD;
214		/*
215		 * Normally it is bogus to call wait4() from in-kernel because
216		 * wait4() wants to write the exit code to a userspace address.
217		 * But wait_for_helper() always runs as keventd, and put_user()
218		 * to a kernel address works OK for kernel threads, due to their
219		 * having an mm_segment_t which spans the entire address space.
220		 *
221		 * Thus the __user pointer cast is valid here.
222		 */
223		sys_wait4(pid, (int __user *)&ret, 0, NULL);
224
225		/*
226		 * If ret is 0, either ____call_usermodehelper failed and the
227		 * real error code is already in sub_info->retval or
228		 * sub_info->retval is 0 anyway, so don't mess with it then.
229		 */
230		if (ret)
231			sub_info->retval = ret;
232	}
233
234	complete(sub_info->complete);
235	return 0;
236}
237
238/* This is run by khelper thread  */
239static void __call_usermodehelper(struct work_struct *work)
240{
241	struct subprocess_info *sub_info =
242		container_of(work, struct subprocess_info, work);
243	enum umh_wait wait = sub_info->wait;
244	pid_t pid;
245
246	/* CLONE_VFORK: wait until the usermode helper has execve'd
247	 * successfully We need the data structures to stay around
248	 * until that is done.  */
249	if (wait == UMH_WAIT_PROC)
250		pid = kernel_thread(wait_for_helper, sub_info,
251				    CLONE_FS | CLONE_FILES | SIGCHLD);
252	else
253		pid = kernel_thread(____call_usermodehelper, sub_info,
254				    CLONE_VFORK | SIGCHLD);
255
256	switch (wait) {
257	case UMH_NO_WAIT:
258		call_usermodehelper_freeinfo(sub_info);
259		break;
260
261	case UMH_WAIT_PROC:
262		if (pid > 0)
263			break;
264		/* FALLTHROUGH */
265	case UMH_WAIT_EXEC:
266		if (pid < 0)
267			sub_info->retval = pid;
268		complete(sub_info->complete);
269	}
270}
271
272/*
273 * If set, call_usermodehelper_exec() will exit immediately returning -EBUSY
274 * (used for preventing user land processes from being created after the user
275 * land has been frozen during a system-wide hibernation or suspend operation).
276 */
277static int usermodehelper_disabled = 1;
278
279/* Number of helpers running */
280static atomic_t running_helpers = ATOMIC_INIT(0);
281
282/*
283 * Wait queue head used by usermodehelper_pm_callback() to wait for all running
284 * helpers to finish.
285 */
286static DECLARE_WAIT_QUEUE_HEAD(running_helpers_waitq);
287
288/*
289 * Time to wait for running_helpers to become zero before the setting of
290 * usermodehelper_disabled in usermodehelper_pm_callback() fails
291 */
292#define RUNNING_HELPERS_TIMEOUT	(5 * HZ)
293
294/**
295 * usermodehelper_disable - prevent new helpers from being started
296 */
297int usermodehelper_disable(void)
298{
299	long retval;
300
301	usermodehelper_disabled = 1;
302	smp_mb();
303	/*
304	 * From now on call_usermodehelper_exec() won't start any new
305	 * helpers, so it is sufficient if running_helpers turns out to
306	 * be zero at one point (it may be increased later, but that
307	 * doesn't matter).
308	 */
309	retval = wait_event_timeout(running_helpers_waitq,
310					atomic_read(&running_helpers) == 0,
311					RUNNING_HELPERS_TIMEOUT);
312	if (retval)
313		return 0;
314
315	usermodehelper_disabled = 0;
316	return -EAGAIN;
317}
318
319/**
320 * usermodehelper_enable - allow new helpers to be started again
321 */
322void usermodehelper_enable(void)
323{
324	usermodehelper_disabled = 0;
325}
326
327/**
328 * usermodehelper_is_disabled - check if new helpers are allowed to be started
329 */
330bool usermodehelper_is_disabled(void)
331{
332	return usermodehelper_disabled;
333}
334EXPORT_SYMBOL_GPL(usermodehelper_is_disabled);
335
336static void helper_lock(void)
337{
338	atomic_inc(&running_helpers);
339	smp_mb__after_atomic_inc();
340}
341
342static void helper_unlock(void)
343{
344	if (atomic_dec_and_test(&running_helpers))
345		wake_up(&running_helpers_waitq);
346}
347
348/**
349 * call_usermodehelper_setup - prepare to call a usermode helper
350 * @path: path to usermode executable
351 * @argv: arg vector for process
352 * @envp: environment for process
353 * @gfp_mask: gfp mask for memory allocation
354 *
355 * Returns either %NULL on allocation failure, or a subprocess_info
356 * structure.  This should be passed to call_usermodehelper_exec to
357 * exec the process and free the structure.
358 */
359struct subprocess_info *call_usermodehelper_setup(char *path, char **argv,
360						  char **envp, gfp_t gfp_mask)
361{
362	struct subprocess_info *sub_info;
363	sub_info = kzalloc(sizeof(struct subprocess_info), gfp_mask);
364	if (!sub_info)
365		goto out;
366
367	INIT_WORK(&sub_info->work, __call_usermodehelper);
368	sub_info->path = path;
369	sub_info->argv = argv;
370	sub_info->envp = envp;
371  out:
372	return sub_info;
373}
374EXPORT_SYMBOL(call_usermodehelper_setup);
375
376/**
377 * call_usermodehelper_setfns - set a cleanup/init function
378 * @info: a subprocess_info returned by call_usermodehelper_setup
379 * @cleanup: a cleanup function
380 * @init: an init function
381 * @data: arbitrary context sensitive data
382 *
383 * The init function is used to customize the helper process prior to
384 * exec.  A non-zero return code causes the process to error out, exit,
385 * and return the failure to the calling process
386 *
387 * The cleanup function is just before ethe subprocess_info is about to
388 * be freed.  This can be used for freeing the argv and envp.  The
389 * Function must be runnable in either a process context or the
390 * context in which call_usermodehelper_exec is called.
391 */
392void call_usermodehelper_setfns(struct subprocess_info *info,
393		    int (*init)(struct subprocess_info *info, struct cred *new),
394		    void (*cleanup)(struct subprocess_info *info),
395		    void *data)
396{
397	info->cleanup = cleanup;
398	info->init = init;
399	info->data = data;
400}
401EXPORT_SYMBOL(call_usermodehelper_setfns);
402
403/**
404 * call_usermodehelper_exec - start a usermode application
405 * @sub_info: information about the subprocessa
406 * @wait: wait for the application to finish and return status.
407 *        when -1 don't wait at all, but you get no useful error back when
408 *        the program couldn't be exec'ed. This makes it safe to call
409 *        from interrupt context.
410 *
411 * Runs a user-space application.  The application is started
412 * asynchronously if wait is not set, and runs as a child of keventd.
413 * (ie. it runs with full root capabilities).
414 */
415int call_usermodehelper_exec(struct subprocess_info *sub_info,
416			     enum umh_wait wait)
417{
418	DECLARE_COMPLETION_ONSTACK(done);
419	int retval = 0;
420
421	helper_lock();
422	if (sub_info->path[0] == '\0')
423		goto out;
424
425	if (!khelper_wq || usermodehelper_disabled) {
426		retval = -EBUSY;
427		goto out;
428	}
429
430	sub_info->complete = &done;
431	sub_info->wait = wait;
432
433	queue_work(khelper_wq, &sub_info->work);
434	if (wait == UMH_NO_WAIT)	/* task has freed sub_info */
435		goto unlock;
436	wait_for_completion(&done);
437	retval = sub_info->retval;
438
439out:
440	call_usermodehelper_freeinfo(sub_info);
441unlock:
442	helper_unlock();
443	return retval;
444}
445EXPORT_SYMBOL(call_usermodehelper_exec);
446
447static int proc_cap_handler(struct ctl_table *table, int write,
448			 void __user *buffer, size_t *lenp, loff_t *ppos)
449{
450	struct ctl_table t;
451	unsigned long cap_array[_KERNEL_CAPABILITY_U32S];
452	kernel_cap_t new_cap;
453	int err, i;
454
455	if (write && (!capable(CAP_SETPCAP) ||
456		      !capable(CAP_SYS_MODULE)))
457		return -EPERM;
458
459	/*
460	 * convert from the global kernel_cap_t to the ulong array to print to
461	 * userspace if this is a read.
462	 */
463	spin_lock(&umh_sysctl_lock);
464	for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++)  {
465		if (table->data == CAP_BSET)
466			cap_array[i] = usermodehelper_bset.cap[i];
467		else if (table->data == CAP_PI)
468			cap_array[i] = usermodehelper_inheritable.cap[i];
469		else
470			BUG();
471	}
472	spin_unlock(&umh_sysctl_lock);
473
474	t = *table;
475	t.data = &cap_array;
476
477	/*
478	 * actually read or write and array of ulongs from userspace.  Remember
479	 * these are least significant 32 bits first
480	 */
481	err = proc_doulongvec_minmax(&t, write, buffer, lenp, ppos);
482	if (err < 0)
483		return err;
484
485	/*
486	 * convert from the sysctl array of ulongs to the kernel_cap_t
487	 * internal representation
488	 */
489	for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++)
490		new_cap.cap[i] = cap_array[i];
491
492	/*
493	 * Drop everything not in the new_cap (but don't add things)
494	 */
495	spin_lock(&umh_sysctl_lock);
496	if (write) {
497		if (table->data == CAP_BSET)
498			usermodehelper_bset = cap_intersect(usermodehelper_bset, new_cap);
499		if (table->data == CAP_PI)
500			usermodehelper_inheritable = cap_intersect(usermodehelper_inheritable, new_cap);
501	}
502	spin_unlock(&umh_sysctl_lock);
503
504	return 0;
505}
506
507struct ctl_table usermodehelper_table[] = {
508	{
509		.procname	= "bset",
510		.data		= CAP_BSET,
511		.maxlen		= _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
512		.mode		= 0600,
513		.proc_handler	= proc_cap_handler,
514	},
515	{
516		.procname	= "inheritable",
517		.data		= CAP_PI,
518		.maxlen		= _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
519		.mode		= 0600,
520		.proc_handler	= proc_cap_handler,
521	},
522	{ }
523};
524
525void __init usermodehelper_init(void)
526{
527	khelper_wq = create_singlethread_workqueue("khelper");
528	BUG_ON(!khelper_wq);
529}