Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * bpf_jit_comp.c: BPF JIT compiler
4 *
5 * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
6 * Internal BPF Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
7 */
8#include <linux/netdevice.h>
9#include <linux/filter.h>
10#include <linux/if_vlan.h>
11#include <linux/bpf.h>
12
13#include <asm/set_memory.h>
14#include <asm/nospec-branch.h>
15
16static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
17{
18 if (len == 1)
19 *ptr = bytes;
20 else if (len == 2)
21 *(u16 *)ptr = bytes;
22 else {
23 *(u32 *)ptr = bytes;
24 barrier();
25 }
26 return ptr + len;
27}
28
29#define EMIT(bytes, len) \
30 do { prog = emit_code(prog, bytes, len); cnt += len; } while (0)
31
32#define EMIT1(b1) EMIT(b1, 1)
33#define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2)
34#define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
35#define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
36
37#define EMIT1_off32(b1, off) \
38 do { EMIT1(b1); EMIT(off, 4); } while (0)
39#define EMIT2_off32(b1, b2, off) \
40 do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
41#define EMIT3_off32(b1, b2, b3, off) \
42 do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
43#define EMIT4_off32(b1, b2, b3, b4, off) \
44 do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
45
46static bool is_imm8(int value)
47{
48 return value <= 127 && value >= -128;
49}
50
51static bool is_simm32(s64 value)
52{
53 return value == (s64)(s32)value;
54}
55
56static bool is_uimm32(u64 value)
57{
58 return value == (u64)(u32)value;
59}
60
61/* mov dst, src */
62#define EMIT_mov(DST, SRC) \
63 do { \
64 if (DST != SRC) \
65 EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
66 } while (0)
67
68static int bpf_size_to_x86_bytes(int bpf_size)
69{
70 if (bpf_size == BPF_W)
71 return 4;
72 else if (bpf_size == BPF_H)
73 return 2;
74 else if (bpf_size == BPF_B)
75 return 1;
76 else if (bpf_size == BPF_DW)
77 return 4; /* imm32 */
78 else
79 return 0;
80}
81
82/*
83 * List of x86 cond jumps opcodes (. + s8)
84 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
85 */
86#define X86_JB 0x72
87#define X86_JAE 0x73
88#define X86_JE 0x74
89#define X86_JNE 0x75
90#define X86_JBE 0x76
91#define X86_JA 0x77
92#define X86_JL 0x7C
93#define X86_JGE 0x7D
94#define X86_JLE 0x7E
95#define X86_JG 0x7F
96
97/* Pick a register outside of BPF range for JIT internal work */
98#define AUX_REG (MAX_BPF_JIT_REG + 1)
99
100/*
101 * The following table maps BPF registers to x86-64 registers.
102 *
103 * x86-64 register R12 is unused, since if used as base address
104 * register in load/store instructions, it always needs an
105 * extra byte of encoding and is callee saved.
106 *
107 * Also x86-64 register R9 is unused. x86-64 register R10 is
108 * used for blinding (if enabled).
109 */
110static const int reg2hex[] = {
111 [BPF_REG_0] = 0, /* RAX */
112 [BPF_REG_1] = 7, /* RDI */
113 [BPF_REG_2] = 6, /* RSI */
114 [BPF_REG_3] = 2, /* RDX */
115 [BPF_REG_4] = 1, /* RCX */
116 [BPF_REG_5] = 0, /* R8 */
117 [BPF_REG_6] = 3, /* RBX callee saved */
118 [BPF_REG_7] = 5, /* R13 callee saved */
119 [BPF_REG_8] = 6, /* R14 callee saved */
120 [BPF_REG_9] = 7, /* R15 callee saved */
121 [BPF_REG_FP] = 5, /* RBP readonly */
122 [BPF_REG_AX] = 2, /* R10 temp register */
123 [AUX_REG] = 3, /* R11 temp register */
124};
125
126/*
127 * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
128 * which need extra byte of encoding.
129 * rax,rcx,...,rbp have simpler encoding
130 */
131static bool is_ereg(u32 reg)
132{
133 return (1 << reg) & (BIT(BPF_REG_5) |
134 BIT(AUX_REG) |
135 BIT(BPF_REG_7) |
136 BIT(BPF_REG_8) |
137 BIT(BPF_REG_9) |
138 BIT(BPF_REG_AX));
139}
140
141static bool is_axreg(u32 reg)
142{
143 return reg == BPF_REG_0;
144}
145
146/* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
147static u8 add_1mod(u8 byte, u32 reg)
148{
149 if (is_ereg(reg))
150 byte |= 1;
151 return byte;
152}
153
154static u8 add_2mod(u8 byte, u32 r1, u32 r2)
155{
156 if (is_ereg(r1))
157 byte |= 1;
158 if (is_ereg(r2))
159 byte |= 4;
160 return byte;
161}
162
163/* Encode 'dst_reg' register into x86-64 opcode 'byte' */
164static u8 add_1reg(u8 byte, u32 dst_reg)
165{
166 return byte + reg2hex[dst_reg];
167}
168
169/* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
170static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
171{
172 return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
173}
174
175static void jit_fill_hole(void *area, unsigned int size)
176{
177 /* Fill whole space with INT3 instructions */
178 memset(area, 0xcc, size);
179}
180
181struct jit_context {
182 int cleanup_addr; /* Epilogue code offset */
183};
184
185/* Maximum number of bytes emitted while JITing one eBPF insn */
186#define BPF_MAX_INSN_SIZE 128
187#define BPF_INSN_SAFETY 64
188
189#define PROLOGUE_SIZE 20
190
191/*
192 * Emit x86-64 prologue code for BPF program and check its size.
193 * bpf_tail_call helper will skip it while jumping into another program
194 */
195static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf)
196{
197 u8 *prog = *pprog;
198 int cnt = 0;
199
200 EMIT1(0x55); /* push rbp */
201 EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
202 /* sub rsp, rounded_stack_depth */
203 EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
204 EMIT1(0x53); /* push rbx */
205 EMIT2(0x41, 0x55); /* push r13 */
206 EMIT2(0x41, 0x56); /* push r14 */
207 EMIT2(0x41, 0x57); /* push r15 */
208 if (!ebpf_from_cbpf) {
209 /* zero init tail_call_cnt */
210 EMIT2(0x6a, 0x00);
211 BUILD_BUG_ON(cnt != PROLOGUE_SIZE);
212 }
213 *pprog = prog;
214}
215
216/*
217 * Generate the following code:
218 *
219 * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
220 * if (index >= array->map.max_entries)
221 * goto out;
222 * if (++tail_call_cnt > MAX_TAIL_CALL_CNT)
223 * goto out;
224 * prog = array->ptrs[index];
225 * if (prog == NULL)
226 * goto out;
227 * goto *(prog->bpf_func + prologue_size);
228 * out:
229 */
230static void emit_bpf_tail_call(u8 **pprog)
231{
232 u8 *prog = *pprog;
233 int label1, label2, label3;
234 int cnt = 0;
235
236 /*
237 * rdi - pointer to ctx
238 * rsi - pointer to bpf_array
239 * rdx - index in bpf_array
240 */
241
242 /*
243 * if (index >= array->map.max_entries)
244 * goto out;
245 */
246 EMIT2(0x89, 0xD2); /* mov edx, edx */
247 EMIT3(0x39, 0x56, /* cmp dword ptr [rsi + 16], edx */
248 offsetof(struct bpf_array, map.max_entries));
249#define OFFSET1 (41 + RETPOLINE_RAX_BPF_JIT_SIZE) /* Number of bytes to jump */
250 EMIT2(X86_JBE, OFFSET1); /* jbe out */
251 label1 = cnt;
252
253 /*
254 * if (tail_call_cnt > MAX_TAIL_CALL_CNT)
255 * goto out;
256 */
257 EMIT2_off32(0x8B, 0x85, -36 - MAX_BPF_STACK); /* mov eax, dword ptr [rbp - 548] */
258 EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT); /* cmp eax, MAX_TAIL_CALL_CNT */
259#define OFFSET2 (30 + RETPOLINE_RAX_BPF_JIT_SIZE)
260 EMIT2(X86_JA, OFFSET2); /* ja out */
261 label2 = cnt;
262 EMIT3(0x83, 0xC0, 0x01); /* add eax, 1 */
263 EMIT2_off32(0x89, 0x85, -36 - MAX_BPF_STACK); /* mov dword ptr [rbp -548], eax */
264
265 /* prog = array->ptrs[index]; */
266 EMIT4_off32(0x48, 0x8B, 0x84, 0xD6, /* mov rax, [rsi + rdx * 8 + offsetof(...)] */
267 offsetof(struct bpf_array, ptrs));
268
269 /*
270 * if (prog == NULL)
271 * goto out;
272 */
273 EMIT3(0x48, 0x85, 0xC0); /* test rax,rax */
274#define OFFSET3 (8 + RETPOLINE_RAX_BPF_JIT_SIZE)
275 EMIT2(X86_JE, OFFSET3); /* je out */
276 label3 = cnt;
277
278 /* goto *(prog->bpf_func + prologue_size); */
279 EMIT4(0x48, 0x8B, 0x40, /* mov rax, qword ptr [rax + 32] */
280 offsetof(struct bpf_prog, bpf_func));
281 EMIT4(0x48, 0x83, 0xC0, PROLOGUE_SIZE); /* add rax, prologue_size */
282
283 /*
284 * Wow we're ready to jump into next BPF program
285 * rdi == ctx (1st arg)
286 * rax == prog->bpf_func + prologue_size
287 */
288 RETPOLINE_RAX_BPF_JIT();
289
290 /* out: */
291 BUILD_BUG_ON(cnt - label1 != OFFSET1);
292 BUILD_BUG_ON(cnt - label2 != OFFSET2);
293 BUILD_BUG_ON(cnt - label3 != OFFSET3);
294 *pprog = prog;
295}
296
297static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
298 u32 dst_reg, const u32 imm32)
299{
300 u8 *prog = *pprog;
301 u8 b1, b2, b3;
302 int cnt = 0;
303
304 /*
305 * Optimization: if imm32 is positive, use 'mov %eax, imm32'
306 * (which zero-extends imm32) to save 2 bytes.
307 */
308 if (sign_propagate && (s32)imm32 < 0) {
309 /* 'mov %rax, imm32' sign extends imm32 */
310 b1 = add_1mod(0x48, dst_reg);
311 b2 = 0xC7;
312 b3 = 0xC0;
313 EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
314 goto done;
315 }
316
317 /*
318 * Optimization: if imm32 is zero, use 'xor %eax, %eax'
319 * to save 3 bytes.
320 */
321 if (imm32 == 0) {
322 if (is_ereg(dst_reg))
323 EMIT1(add_2mod(0x40, dst_reg, dst_reg));
324 b2 = 0x31; /* xor */
325 b3 = 0xC0;
326 EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
327 goto done;
328 }
329
330 /* mov %eax, imm32 */
331 if (is_ereg(dst_reg))
332 EMIT1(add_1mod(0x40, dst_reg));
333 EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
334done:
335 *pprog = prog;
336}
337
338static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
339 const u32 imm32_hi, const u32 imm32_lo)
340{
341 u8 *prog = *pprog;
342 int cnt = 0;
343
344 if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) {
345 /*
346 * For emitting plain u32, where sign bit must not be
347 * propagated LLVM tends to load imm64 over mov32
348 * directly, so save couple of bytes by just doing
349 * 'mov %eax, imm32' instead.
350 */
351 emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
352 } else {
353 /* movabsq %rax, imm64 */
354 EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
355 EMIT(imm32_lo, 4);
356 EMIT(imm32_hi, 4);
357 }
358
359 *pprog = prog;
360}
361
362static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
363{
364 u8 *prog = *pprog;
365 int cnt = 0;
366
367 if (is64) {
368 /* mov dst, src */
369 EMIT_mov(dst_reg, src_reg);
370 } else {
371 /* mov32 dst, src */
372 if (is_ereg(dst_reg) || is_ereg(src_reg))
373 EMIT1(add_2mod(0x40, dst_reg, src_reg));
374 EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
375 }
376
377 *pprog = prog;
378}
379
380static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image,
381 int oldproglen, struct jit_context *ctx)
382{
383 struct bpf_insn *insn = bpf_prog->insnsi;
384 int insn_cnt = bpf_prog->len;
385 bool seen_exit = false;
386 u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
387 int i, cnt = 0;
388 int proglen = 0;
389 u8 *prog = temp;
390
391 emit_prologue(&prog, bpf_prog->aux->stack_depth,
392 bpf_prog_was_classic(bpf_prog));
393 addrs[0] = prog - temp;
394
395 for (i = 1; i <= insn_cnt; i++, insn++) {
396 const s32 imm32 = insn->imm;
397 u32 dst_reg = insn->dst_reg;
398 u32 src_reg = insn->src_reg;
399 u8 b2 = 0, b3 = 0;
400 s64 jmp_offset;
401 u8 jmp_cond;
402 int ilen;
403 u8 *func;
404
405 switch (insn->code) {
406 /* ALU */
407 case BPF_ALU | BPF_ADD | BPF_X:
408 case BPF_ALU | BPF_SUB | BPF_X:
409 case BPF_ALU | BPF_AND | BPF_X:
410 case BPF_ALU | BPF_OR | BPF_X:
411 case BPF_ALU | BPF_XOR | BPF_X:
412 case BPF_ALU64 | BPF_ADD | BPF_X:
413 case BPF_ALU64 | BPF_SUB | BPF_X:
414 case BPF_ALU64 | BPF_AND | BPF_X:
415 case BPF_ALU64 | BPF_OR | BPF_X:
416 case BPF_ALU64 | BPF_XOR | BPF_X:
417 switch (BPF_OP(insn->code)) {
418 case BPF_ADD: b2 = 0x01; break;
419 case BPF_SUB: b2 = 0x29; break;
420 case BPF_AND: b2 = 0x21; break;
421 case BPF_OR: b2 = 0x09; break;
422 case BPF_XOR: b2 = 0x31; break;
423 }
424 if (BPF_CLASS(insn->code) == BPF_ALU64)
425 EMIT1(add_2mod(0x48, dst_reg, src_reg));
426 else if (is_ereg(dst_reg) || is_ereg(src_reg))
427 EMIT1(add_2mod(0x40, dst_reg, src_reg));
428 EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
429 break;
430
431 case BPF_ALU64 | BPF_MOV | BPF_X:
432 case BPF_ALU | BPF_MOV | BPF_X:
433 emit_mov_reg(&prog,
434 BPF_CLASS(insn->code) == BPF_ALU64,
435 dst_reg, src_reg);
436 break;
437
438 /* neg dst */
439 case BPF_ALU | BPF_NEG:
440 case BPF_ALU64 | BPF_NEG:
441 if (BPF_CLASS(insn->code) == BPF_ALU64)
442 EMIT1(add_1mod(0x48, dst_reg));
443 else if (is_ereg(dst_reg))
444 EMIT1(add_1mod(0x40, dst_reg));
445 EMIT2(0xF7, add_1reg(0xD8, dst_reg));
446 break;
447
448 case BPF_ALU | BPF_ADD | BPF_K:
449 case BPF_ALU | BPF_SUB | BPF_K:
450 case BPF_ALU | BPF_AND | BPF_K:
451 case BPF_ALU | BPF_OR | BPF_K:
452 case BPF_ALU | BPF_XOR | BPF_K:
453 case BPF_ALU64 | BPF_ADD | BPF_K:
454 case BPF_ALU64 | BPF_SUB | BPF_K:
455 case BPF_ALU64 | BPF_AND | BPF_K:
456 case BPF_ALU64 | BPF_OR | BPF_K:
457 case BPF_ALU64 | BPF_XOR | BPF_K:
458 if (BPF_CLASS(insn->code) == BPF_ALU64)
459 EMIT1(add_1mod(0x48, dst_reg));
460 else if (is_ereg(dst_reg))
461 EMIT1(add_1mod(0x40, dst_reg));
462
463 /*
464 * b3 holds 'normal' opcode, b2 short form only valid
465 * in case dst is eax/rax.
466 */
467 switch (BPF_OP(insn->code)) {
468 case BPF_ADD:
469 b3 = 0xC0;
470 b2 = 0x05;
471 break;
472 case BPF_SUB:
473 b3 = 0xE8;
474 b2 = 0x2D;
475 break;
476 case BPF_AND:
477 b3 = 0xE0;
478 b2 = 0x25;
479 break;
480 case BPF_OR:
481 b3 = 0xC8;
482 b2 = 0x0D;
483 break;
484 case BPF_XOR:
485 b3 = 0xF0;
486 b2 = 0x35;
487 break;
488 }
489
490 if (is_imm8(imm32))
491 EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
492 else if (is_axreg(dst_reg))
493 EMIT1_off32(b2, imm32);
494 else
495 EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
496 break;
497
498 case BPF_ALU64 | BPF_MOV | BPF_K:
499 case BPF_ALU | BPF_MOV | BPF_K:
500 emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
501 dst_reg, imm32);
502 break;
503
504 case BPF_LD | BPF_IMM | BPF_DW:
505 emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
506 insn++;
507 i++;
508 break;
509
510 /* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
511 case BPF_ALU | BPF_MOD | BPF_X:
512 case BPF_ALU | BPF_DIV | BPF_X:
513 case BPF_ALU | BPF_MOD | BPF_K:
514 case BPF_ALU | BPF_DIV | BPF_K:
515 case BPF_ALU64 | BPF_MOD | BPF_X:
516 case BPF_ALU64 | BPF_DIV | BPF_X:
517 case BPF_ALU64 | BPF_MOD | BPF_K:
518 case BPF_ALU64 | BPF_DIV | BPF_K:
519 EMIT1(0x50); /* push rax */
520 EMIT1(0x52); /* push rdx */
521
522 if (BPF_SRC(insn->code) == BPF_X)
523 /* mov r11, src_reg */
524 EMIT_mov(AUX_REG, src_reg);
525 else
526 /* mov r11, imm32 */
527 EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
528
529 /* mov rax, dst_reg */
530 EMIT_mov(BPF_REG_0, dst_reg);
531
532 /*
533 * xor edx, edx
534 * equivalent to 'xor rdx, rdx', but one byte less
535 */
536 EMIT2(0x31, 0xd2);
537
538 if (BPF_CLASS(insn->code) == BPF_ALU64)
539 /* div r11 */
540 EMIT3(0x49, 0xF7, 0xF3);
541 else
542 /* div r11d */
543 EMIT3(0x41, 0xF7, 0xF3);
544
545 if (BPF_OP(insn->code) == BPF_MOD)
546 /* mov r11, rdx */
547 EMIT3(0x49, 0x89, 0xD3);
548 else
549 /* mov r11, rax */
550 EMIT3(0x49, 0x89, 0xC3);
551
552 EMIT1(0x5A); /* pop rdx */
553 EMIT1(0x58); /* pop rax */
554
555 /* mov dst_reg, r11 */
556 EMIT_mov(dst_reg, AUX_REG);
557 break;
558
559 case BPF_ALU | BPF_MUL | BPF_K:
560 case BPF_ALU | BPF_MUL | BPF_X:
561 case BPF_ALU64 | BPF_MUL | BPF_K:
562 case BPF_ALU64 | BPF_MUL | BPF_X:
563 {
564 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
565
566 if (dst_reg != BPF_REG_0)
567 EMIT1(0x50); /* push rax */
568 if (dst_reg != BPF_REG_3)
569 EMIT1(0x52); /* push rdx */
570
571 /* mov r11, dst_reg */
572 EMIT_mov(AUX_REG, dst_reg);
573
574 if (BPF_SRC(insn->code) == BPF_X)
575 emit_mov_reg(&prog, is64, BPF_REG_0, src_reg);
576 else
577 emit_mov_imm32(&prog, is64, BPF_REG_0, imm32);
578
579 if (is64)
580 EMIT1(add_1mod(0x48, AUX_REG));
581 else if (is_ereg(AUX_REG))
582 EMIT1(add_1mod(0x40, AUX_REG));
583 /* mul(q) r11 */
584 EMIT2(0xF7, add_1reg(0xE0, AUX_REG));
585
586 if (dst_reg != BPF_REG_3)
587 EMIT1(0x5A); /* pop rdx */
588 if (dst_reg != BPF_REG_0) {
589 /* mov dst_reg, rax */
590 EMIT_mov(dst_reg, BPF_REG_0);
591 EMIT1(0x58); /* pop rax */
592 }
593 break;
594 }
595 /* Shifts */
596 case BPF_ALU | BPF_LSH | BPF_K:
597 case BPF_ALU | BPF_RSH | BPF_K:
598 case BPF_ALU | BPF_ARSH | BPF_K:
599 case BPF_ALU64 | BPF_LSH | BPF_K:
600 case BPF_ALU64 | BPF_RSH | BPF_K:
601 case BPF_ALU64 | BPF_ARSH | BPF_K:
602 if (BPF_CLASS(insn->code) == BPF_ALU64)
603 EMIT1(add_1mod(0x48, dst_reg));
604 else if (is_ereg(dst_reg))
605 EMIT1(add_1mod(0x40, dst_reg));
606
607 switch (BPF_OP(insn->code)) {
608 case BPF_LSH: b3 = 0xE0; break;
609 case BPF_RSH: b3 = 0xE8; break;
610 case BPF_ARSH: b3 = 0xF8; break;
611 }
612
613 if (imm32 == 1)
614 EMIT2(0xD1, add_1reg(b3, dst_reg));
615 else
616 EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
617 break;
618
619 case BPF_ALU | BPF_LSH | BPF_X:
620 case BPF_ALU | BPF_RSH | BPF_X:
621 case BPF_ALU | BPF_ARSH | BPF_X:
622 case BPF_ALU64 | BPF_LSH | BPF_X:
623 case BPF_ALU64 | BPF_RSH | BPF_X:
624 case BPF_ALU64 | BPF_ARSH | BPF_X:
625
626 /* Check for bad case when dst_reg == rcx */
627 if (dst_reg == BPF_REG_4) {
628 /* mov r11, dst_reg */
629 EMIT_mov(AUX_REG, dst_reg);
630 dst_reg = AUX_REG;
631 }
632
633 if (src_reg != BPF_REG_4) { /* common case */
634 EMIT1(0x51); /* push rcx */
635
636 /* mov rcx, src_reg */
637 EMIT_mov(BPF_REG_4, src_reg);
638 }
639
640 /* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
641 if (BPF_CLASS(insn->code) == BPF_ALU64)
642 EMIT1(add_1mod(0x48, dst_reg));
643 else if (is_ereg(dst_reg))
644 EMIT1(add_1mod(0x40, dst_reg));
645
646 switch (BPF_OP(insn->code)) {
647 case BPF_LSH: b3 = 0xE0; break;
648 case BPF_RSH: b3 = 0xE8; break;
649 case BPF_ARSH: b3 = 0xF8; break;
650 }
651 EMIT2(0xD3, add_1reg(b3, dst_reg));
652
653 if (src_reg != BPF_REG_4)
654 EMIT1(0x59); /* pop rcx */
655
656 if (insn->dst_reg == BPF_REG_4)
657 /* mov dst_reg, r11 */
658 EMIT_mov(insn->dst_reg, AUX_REG);
659 break;
660
661 case BPF_ALU | BPF_END | BPF_FROM_BE:
662 switch (imm32) {
663 case 16:
664 /* Emit 'ror %ax, 8' to swap lower 2 bytes */
665 EMIT1(0x66);
666 if (is_ereg(dst_reg))
667 EMIT1(0x41);
668 EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
669
670 /* Emit 'movzwl eax, ax' */
671 if (is_ereg(dst_reg))
672 EMIT3(0x45, 0x0F, 0xB7);
673 else
674 EMIT2(0x0F, 0xB7);
675 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
676 break;
677 case 32:
678 /* Emit 'bswap eax' to swap lower 4 bytes */
679 if (is_ereg(dst_reg))
680 EMIT2(0x41, 0x0F);
681 else
682 EMIT1(0x0F);
683 EMIT1(add_1reg(0xC8, dst_reg));
684 break;
685 case 64:
686 /* Emit 'bswap rax' to swap 8 bytes */
687 EMIT3(add_1mod(0x48, dst_reg), 0x0F,
688 add_1reg(0xC8, dst_reg));
689 break;
690 }
691 break;
692
693 case BPF_ALU | BPF_END | BPF_FROM_LE:
694 switch (imm32) {
695 case 16:
696 /*
697 * Emit 'movzwl eax, ax' to zero extend 16-bit
698 * into 64 bit
699 */
700 if (is_ereg(dst_reg))
701 EMIT3(0x45, 0x0F, 0xB7);
702 else
703 EMIT2(0x0F, 0xB7);
704 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
705 break;
706 case 32:
707 /* Emit 'mov eax, eax' to clear upper 32-bits */
708 if (is_ereg(dst_reg))
709 EMIT1(0x45);
710 EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
711 break;
712 case 64:
713 /* nop */
714 break;
715 }
716 break;
717
718 /* ST: *(u8*)(dst_reg + off) = imm */
719 case BPF_ST | BPF_MEM | BPF_B:
720 if (is_ereg(dst_reg))
721 EMIT2(0x41, 0xC6);
722 else
723 EMIT1(0xC6);
724 goto st;
725 case BPF_ST | BPF_MEM | BPF_H:
726 if (is_ereg(dst_reg))
727 EMIT3(0x66, 0x41, 0xC7);
728 else
729 EMIT2(0x66, 0xC7);
730 goto st;
731 case BPF_ST | BPF_MEM | BPF_W:
732 if (is_ereg(dst_reg))
733 EMIT2(0x41, 0xC7);
734 else
735 EMIT1(0xC7);
736 goto st;
737 case BPF_ST | BPF_MEM | BPF_DW:
738 EMIT2(add_1mod(0x48, dst_reg), 0xC7);
739
740st: if (is_imm8(insn->off))
741 EMIT2(add_1reg(0x40, dst_reg), insn->off);
742 else
743 EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
744
745 EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
746 break;
747
748 /* STX: *(u8*)(dst_reg + off) = src_reg */
749 case BPF_STX | BPF_MEM | BPF_B:
750 /* Emit 'mov byte ptr [rax + off], al' */
751 if (is_ereg(dst_reg) || is_ereg(src_reg) ||
752 /* We have to add extra byte for x86 SIL, DIL regs */
753 src_reg == BPF_REG_1 || src_reg == BPF_REG_2)
754 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
755 else
756 EMIT1(0x88);
757 goto stx;
758 case BPF_STX | BPF_MEM | BPF_H:
759 if (is_ereg(dst_reg) || is_ereg(src_reg))
760 EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
761 else
762 EMIT2(0x66, 0x89);
763 goto stx;
764 case BPF_STX | BPF_MEM | BPF_W:
765 if (is_ereg(dst_reg) || is_ereg(src_reg))
766 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
767 else
768 EMIT1(0x89);
769 goto stx;
770 case BPF_STX | BPF_MEM | BPF_DW:
771 EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
772stx: if (is_imm8(insn->off))
773 EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
774 else
775 EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
776 insn->off);
777 break;
778
779 /* LDX: dst_reg = *(u8*)(src_reg + off) */
780 case BPF_LDX | BPF_MEM | BPF_B:
781 /* Emit 'movzx rax, byte ptr [rax + off]' */
782 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
783 goto ldx;
784 case BPF_LDX | BPF_MEM | BPF_H:
785 /* Emit 'movzx rax, word ptr [rax + off]' */
786 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
787 goto ldx;
788 case BPF_LDX | BPF_MEM | BPF_W:
789 /* Emit 'mov eax, dword ptr [rax+0x14]' */
790 if (is_ereg(dst_reg) || is_ereg(src_reg))
791 EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
792 else
793 EMIT1(0x8B);
794 goto ldx;
795 case BPF_LDX | BPF_MEM | BPF_DW:
796 /* Emit 'mov rax, qword ptr [rax+0x14]' */
797 EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
798ldx: /*
799 * If insn->off == 0 we can save one extra byte, but
800 * special case of x86 R13 which always needs an offset
801 * is not worth the hassle
802 */
803 if (is_imm8(insn->off))
804 EMIT2(add_2reg(0x40, src_reg, dst_reg), insn->off);
805 else
806 EMIT1_off32(add_2reg(0x80, src_reg, dst_reg),
807 insn->off);
808 break;
809
810 /* STX XADD: lock *(u32*)(dst_reg + off) += src_reg */
811 case BPF_STX | BPF_XADD | BPF_W:
812 /* Emit 'lock add dword ptr [rax + off], eax' */
813 if (is_ereg(dst_reg) || is_ereg(src_reg))
814 EMIT3(0xF0, add_2mod(0x40, dst_reg, src_reg), 0x01);
815 else
816 EMIT2(0xF0, 0x01);
817 goto xadd;
818 case BPF_STX | BPF_XADD | BPF_DW:
819 EMIT3(0xF0, add_2mod(0x48, dst_reg, src_reg), 0x01);
820xadd: if (is_imm8(insn->off))
821 EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
822 else
823 EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
824 insn->off);
825 break;
826
827 /* call */
828 case BPF_JMP | BPF_CALL:
829 func = (u8 *) __bpf_call_base + imm32;
830 jmp_offset = func - (image + addrs[i]);
831 if (!imm32 || !is_simm32(jmp_offset)) {
832 pr_err("unsupported BPF func %d addr %p image %p\n",
833 imm32, func, image);
834 return -EINVAL;
835 }
836 EMIT1_off32(0xE8, jmp_offset);
837 break;
838
839 case BPF_JMP | BPF_TAIL_CALL:
840 emit_bpf_tail_call(&prog);
841 break;
842
843 /* cond jump */
844 case BPF_JMP | BPF_JEQ | BPF_X:
845 case BPF_JMP | BPF_JNE | BPF_X:
846 case BPF_JMP | BPF_JGT | BPF_X:
847 case BPF_JMP | BPF_JLT | BPF_X:
848 case BPF_JMP | BPF_JGE | BPF_X:
849 case BPF_JMP | BPF_JLE | BPF_X:
850 case BPF_JMP | BPF_JSGT | BPF_X:
851 case BPF_JMP | BPF_JSLT | BPF_X:
852 case BPF_JMP | BPF_JSGE | BPF_X:
853 case BPF_JMP | BPF_JSLE | BPF_X:
854 case BPF_JMP32 | BPF_JEQ | BPF_X:
855 case BPF_JMP32 | BPF_JNE | BPF_X:
856 case BPF_JMP32 | BPF_JGT | BPF_X:
857 case BPF_JMP32 | BPF_JLT | BPF_X:
858 case BPF_JMP32 | BPF_JGE | BPF_X:
859 case BPF_JMP32 | BPF_JLE | BPF_X:
860 case BPF_JMP32 | BPF_JSGT | BPF_X:
861 case BPF_JMP32 | BPF_JSLT | BPF_X:
862 case BPF_JMP32 | BPF_JSGE | BPF_X:
863 case BPF_JMP32 | BPF_JSLE | BPF_X:
864 /* cmp dst_reg, src_reg */
865 if (BPF_CLASS(insn->code) == BPF_JMP)
866 EMIT1(add_2mod(0x48, dst_reg, src_reg));
867 else if (is_ereg(dst_reg) || is_ereg(src_reg))
868 EMIT1(add_2mod(0x40, dst_reg, src_reg));
869 EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
870 goto emit_cond_jmp;
871
872 case BPF_JMP | BPF_JSET | BPF_X:
873 case BPF_JMP32 | BPF_JSET | BPF_X:
874 /* test dst_reg, src_reg */
875 if (BPF_CLASS(insn->code) == BPF_JMP)
876 EMIT1(add_2mod(0x48, dst_reg, src_reg));
877 else if (is_ereg(dst_reg) || is_ereg(src_reg))
878 EMIT1(add_2mod(0x40, dst_reg, src_reg));
879 EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
880 goto emit_cond_jmp;
881
882 case BPF_JMP | BPF_JSET | BPF_K:
883 case BPF_JMP32 | BPF_JSET | BPF_K:
884 /* test dst_reg, imm32 */
885 if (BPF_CLASS(insn->code) == BPF_JMP)
886 EMIT1(add_1mod(0x48, dst_reg));
887 else if (is_ereg(dst_reg))
888 EMIT1(add_1mod(0x40, dst_reg));
889 EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
890 goto emit_cond_jmp;
891
892 case BPF_JMP | BPF_JEQ | BPF_K:
893 case BPF_JMP | BPF_JNE | BPF_K:
894 case BPF_JMP | BPF_JGT | BPF_K:
895 case BPF_JMP | BPF_JLT | BPF_K:
896 case BPF_JMP | BPF_JGE | BPF_K:
897 case BPF_JMP | BPF_JLE | BPF_K:
898 case BPF_JMP | BPF_JSGT | BPF_K:
899 case BPF_JMP | BPF_JSLT | BPF_K:
900 case BPF_JMP | BPF_JSGE | BPF_K:
901 case BPF_JMP | BPF_JSLE | BPF_K:
902 case BPF_JMP32 | BPF_JEQ | BPF_K:
903 case BPF_JMP32 | BPF_JNE | BPF_K:
904 case BPF_JMP32 | BPF_JGT | BPF_K:
905 case BPF_JMP32 | BPF_JLT | BPF_K:
906 case BPF_JMP32 | BPF_JGE | BPF_K:
907 case BPF_JMP32 | BPF_JLE | BPF_K:
908 case BPF_JMP32 | BPF_JSGT | BPF_K:
909 case BPF_JMP32 | BPF_JSLT | BPF_K:
910 case BPF_JMP32 | BPF_JSGE | BPF_K:
911 case BPF_JMP32 | BPF_JSLE | BPF_K:
912 /* cmp dst_reg, imm8/32 */
913 if (BPF_CLASS(insn->code) == BPF_JMP)
914 EMIT1(add_1mod(0x48, dst_reg));
915 else if (is_ereg(dst_reg))
916 EMIT1(add_1mod(0x40, dst_reg));
917
918 if (is_imm8(imm32))
919 EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
920 else
921 EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
922
923emit_cond_jmp: /* Convert BPF opcode to x86 */
924 switch (BPF_OP(insn->code)) {
925 case BPF_JEQ:
926 jmp_cond = X86_JE;
927 break;
928 case BPF_JSET:
929 case BPF_JNE:
930 jmp_cond = X86_JNE;
931 break;
932 case BPF_JGT:
933 /* GT is unsigned '>', JA in x86 */
934 jmp_cond = X86_JA;
935 break;
936 case BPF_JLT:
937 /* LT is unsigned '<', JB in x86 */
938 jmp_cond = X86_JB;
939 break;
940 case BPF_JGE:
941 /* GE is unsigned '>=', JAE in x86 */
942 jmp_cond = X86_JAE;
943 break;
944 case BPF_JLE:
945 /* LE is unsigned '<=', JBE in x86 */
946 jmp_cond = X86_JBE;
947 break;
948 case BPF_JSGT:
949 /* Signed '>', GT in x86 */
950 jmp_cond = X86_JG;
951 break;
952 case BPF_JSLT:
953 /* Signed '<', LT in x86 */
954 jmp_cond = X86_JL;
955 break;
956 case BPF_JSGE:
957 /* Signed '>=', GE in x86 */
958 jmp_cond = X86_JGE;
959 break;
960 case BPF_JSLE:
961 /* Signed '<=', LE in x86 */
962 jmp_cond = X86_JLE;
963 break;
964 default: /* to silence GCC warning */
965 return -EFAULT;
966 }
967 jmp_offset = addrs[i + insn->off] - addrs[i];
968 if (is_imm8(jmp_offset)) {
969 EMIT2(jmp_cond, jmp_offset);
970 } else if (is_simm32(jmp_offset)) {
971 EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
972 } else {
973 pr_err("cond_jmp gen bug %llx\n", jmp_offset);
974 return -EFAULT;
975 }
976
977 break;
978
979 case BPF_JMP | BPF_JA:
980 if (insn->off == -1)
981 /* -1 jmp instructions will always jump
982 * backwards two bytes. Explicitly handling
983 * this case avoids wasting too many passes
984 * when there are long sequences of replaced
985 * dead code.
986 */
987 jmp_offset = -2;
988 else
989 jmp_offset = addrs[i + insn->off] - addrs[i];
990
991 if (!jmp_offset)
992 /* Optimize out nop jumps */
993 break;
994emit_jmp:
995 if (is_imm8(jmp_offset)) {
996 EMIT2(0xEB, jmp_offset);
997 } else if (is_simm32(jmp_offset)) {
998 EMIT1_off32(0xE9, jmp_offset);
999 } else {
1000 pr_err("jmp gen bug %llx\n", jmp_offset);
1001 return -EFAULT;
1002 }
1003 break;
1004
1005 case BPF_JMP | BPF_EXIT:
1006 if (seen_exit) {
1007 jmp_offset = ctx->cleanup_addr - addrs[i];
1008 goto emit_jmp;
1009 }
1010 seen_exit = true;
1011 /* Update cleanup_addr */
1012 ctx->cleanup_addr = proglen;
1013 if (!bpf_prog_was_classic(bpf_prog))
1014 EMIT1(0x5B); /* get rid of tail_call_cnt */
1015 EMIT2(0x41, 0x5F); /* pop r15 */
1016 EMIT2(0x41, 0x5E); /* pop r14 */
1017 EMIT2(0x41, 0x5D); /* pop r13 */
1018 EMIT1(0x5B); /* pop rbx */
1019 EMIT1(0xC9); /* leave */
1020 EMIT1(0xC3); /* ret */
1021 break;
1022
1023 default:
1024 /*
1025 * By design x86-64 JIT should support all BPF instructions.
1026 * This error will be seen if new instruction was added
1027 * to the interpreter, but not to the JIT, or if there is
1028 * junk in bpf_prog.
1029 */
1030 pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
1031 return -EINVAL;
1032 }
1033
1034 ilen = prog - temp;
1035 if (ilen > BPF_MAX_INSN_SIZE) {
1036 pr_err("bpf_jit: fatal insn size error\n");
1037 return -EFAULT;
1038 }
1039
1040 if (image) {
1041 if (unlikely(proglen + ilen > oldproglen)) {
1042 pr_err("bpf_jit: fatal error\n");
1043 return -EFAULT;
1044 }
1045 memcpy(image + proglen, temp, ilen);
1046 }
1047 proglen += ilen;
1048 addrs[i] = proglen;
1049 prog = temp;
1050 }
1051 return proglen;
1052}
1053
1054struct x64_jit_data {
1055 struct bpf_binary_header *header;
1056 int *addrs;
1057 u8 *image;
1058 int proglen;
1059 struct jit_context ctx;
1060};
1061
1062struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1063{
1064 struct bpf_binary_header *header = NULL;
1065 struct bpf_prog *tmp, *orig_prog = prog;
1066 struct x64_jit_data *jit_data;
1067 int proglen, oldproglen = 0;
1068 struct jit_context ctx = {};
1069 bool tmp_blinded = false;
1070 bool extra_pass = false;
1071 u8 *image = NULL;
1072 int *addrs;
1073 int pass;
1074 int i;
1075
1076 if (!prog->jit_requested)
1077 return orig_prog;
1078
1079 tmp = bpf_jit_blind_constants(prog);
1080 /*
1081 * If blinding was requested and we failed during blinding,
1082 * we must fall back to the interpreter.
1083 */
1084 if (IS_ERR(tmp))
1085 return orig_prog;
1086 if (tmp != prog) {
1087 tmp_blinded = true;
1088 prog = tmp;
1089 }
1090
1091 jit_data = prog->aux->jit_data;
1092 if (!jit_data) {
1093 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1094 if (!jit_data) {
1095 prog = orig_prog;
1096 goto out;
1097 }
1098 prog->aux->jit_data = jit_data;
1099 }
1100 addrs = jit_data->addrs;
1101 if (addrs) {
1102 ctx = jit_data->ctx;
1103 oldproglen = jit_data->proglen;
1104 image = jit_data->image;
1105 header = jit_data->header;
1106 extra_pass = true;
1107 goto skip_init_addrs;
1108 }
1109 addrs = kmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
1110 if (!addrs) {
1111 prog = orig_prog;
1112 goto out_addrs;
1113 }
1114
1115 /*
1116 * Before first pass, make a rough estimation of addrs[]
1117 * each BPF instruction is translated to less than 64 bytes
1118 */
1119 for (proglen = 0, i = 0; i <= prog->len; i++) {
1120 proglen += 64;
1121 addrs[i] = proglen;
1122 }
1123 ctx.cleanup_addr = proglen;
1124skip_init_addrs:
1125
1126 /*
1127 * JITed image shrinks with every pass and the loop iterates
1128 * until the image stops shrinking. Very large BPF programs
1129 * may converge on the last pass. In such case do one more
1130 * pass to emit the final image.
1131 */
1132 for (pass = 0; pass < 20 || image; pass++) {
1133 proglen = do_jit(prog, addrs, image, oldproglen, &ctx);
1134 if (proglen <= 0) {
1135out_image:
1136 image = NULL;
1137 if (header)
1138 bpf_jit_binary_free(header);
1139 prog = orig_prog;
1140 goto out_addrs;
1141 }
1142 if (image) {
1143 if (proglen != oldproglen) {
1144 pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
1145 proglen, oldproglen);
1146 goto out_image;
1147 }
1148 break;
1149 }
1150 if (proglen == oldproglen) {
1151 header = bpf_jit_binary_alloc(proglen, &image,
1152 1, jit_fill_hole);
1153 if (!header) {
1154 prog = orig_prog;
1155 goto out_addrs;
1156 }
1157 }
1158 oldproglen = proglen;
1159 cond_resched();
1160 }
1161
1162 if (bpf_jit_enable > 1)
1163 bpf_jit_dump(prog->len, proglen, pass + 1, image);
1164
1165 if (image) {
1166 if (!prog->is_func || extra_pass) {
1167 bpf_jit_binary_lock_ro(header);
1168 } else {
1169 jit_data->addrs = addrs;
1170 jit_data->ctx = ctx;
1171 jit_data->proglen = proglen;
1172 jit_data->image = image;
1173 jit_data->header = header;
1174 }
1175 prog->bpf_func = (void *)image;
1176 prog->jited = 1;
1177 prog->jited_len = proglen;
1178 } else {
1179 prog = orig_prog;
1180 }
1181
1182 if (!image || !prog->is_func || extra_pass) {
1183 if (image)
1184 bpf_prog_fill_jited_linfo(prog, addrs + 1);
1185out_addrs:
1186 kfree(addrs);
1187 kfree(jit_data);
1188 prog->aux->jit_data = NULL;
1189 }
1190out:
1191 if (tmp_blinded)
1192 bpf_jit_prog_release_other(prog, prog == orig_prog ?
1193 tmp : orig_prog);
1194 return prog;
1195}
1/* bpf_jit_comp.c : BPF JIT compiler
2 *
3 * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
4 * Internal BPF Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; version 2
9 * of the License.
10 */
11#include <linux/netdevice.h>
12#include <linux/filter.h>
13#include <linux/if_vlan.h>
14#include <asm/cacheflush.h>
15#include <linux/bpf.h>
16
17int bpf_jit_enable __read_mostly;
18
19/*
20 * assembly code in arch/x86/net/bpf_jit.S
21 */
22extern u8 sk_load_word[], sk_load_half[], sk_load_byte[];
23extern u8 sk_load_word_positive_offset[], sk_load_half_positive_offset[];
24extern u8 sk_load_byte_positive_offset[];
25extern u8 sk_load_word_negative_offset[], sk_load_half_negative_offset[];
26extern u8 sk_load_byte_negative_offset[];
27
28static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
29{
30 if (len == 1)
31 *ptr = bytes;
32 else if (len == 2)
33 *(u16 *)ptr = bytes;
34 else {
35 *(u32 *)ptr = bytes;
36 barrier();
37 }
38 return ptr + len;
39}
40
41#define EMIT(bytes, len) \
42 do { prog = emit_code(prog, bytes, len); cnt += len; } while (0)
43
44#define EMIT1(b1) EMIT(b1, 1)
45#define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2)
46#define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
47#define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
48#define EMIT1_off32(b1, off) \
49 do {EMIT1(b1); EMIT(off, 4); } while (0)
50#define EMIT2_off32(b1, b2, off) \
51 do {EMIT2(b1, b2); EMIT(off, 4); } while (0)
52#define EMIT3_off32(b1, b2, b3, off) \
53 do {EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
54#define EMIT4_off32(b1, b2, b3, b4, off) \
55 do {EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
56
57static bool is_imm8(int value)
58{
59 return value <= 127 && value >= -128;
60}
61
62static bool is_simm32(s64 value)
63{
64 return value == (s64) (s32) value;
65}
66
67/* mov dst, src */
68#define EMIT_mov(DST, SRC) \
69 do {if (DST != SRC) \
70 EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
71 } while (0)
72
73static int bpf_size_to_x86_bytes(int bpf_size)
74{
75 if (bpf_size == BPF_W)
76 return 4;
77 else if (bpf_size == BPF_H)
78 return 2;
79 else if (bpf_size == BPF_B)
80 return 1;
81 else if (bpf_size == BPF_DW)
82 return 4; /* imm32 */
83 else
84 return 0;
85}
86
87/* list of x86 cond jumps opcodes (. + s8)
88 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
89 */
90#define X86_JB 0x72
91#define X86_JAE 0x73
92#define X86_JE 0x74
93#define X86_JNE 0x75
94#define X86_JBE 0x76
95#define X86_JA 0x77
96#define X86_JGE 0x7D
97#define X86_JG 0x7F
98
99static void bpf_flush_icache(void *start, void *end)
100{
101 mm_segment_t old_fs = get_fs();
102
103 set_fs(KERNEL_DS);
104 smp_wmb();
105 flush_icache_range((unsigned long)start, (unsigned long)end);
106 set_fs(old_fs);
107}
108
109#define CHOOSE_LOAD_FUNC(K, func) \
110 ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
111
112/* pick a register outside of BPF range for JIT internal work */
113#define AUX_REG (MAX_BPF_REG + 1)
114
115/* the following table maps BPF registers to x64 registers.
116 * x64 register r12 is unused, since if used as base address register
117 * in load/store instructions, it always needs an extra byte of encoding
118 */
119static const int reg2hex[] = {
120 [BPF_REG_0] = 0, /* rax */
121 [BPF_REG_1] = 7, /* rdi */
122 [BPF_REG_2] = 6, /* rsi */
123 [BPF_REG_3] = 2, /* rdx */
124 [BPF_REG_4] = 1, /* rcx */
125 [BPF_REG_5] = 0, /* r8 */
126 [BPF_REG_6] = 3, /* rbx callee saved */
127 [BPF_REG_7] = 5, /* r13 callee saved */
128 [BPF_REG_8] = 6, /* r14 callee saved */
129 [BPF_REG_9] = 7, /* r15 callee saved */
130 [BPF_REG_FP] = 5, /* rbp readonly */
131 [AUX_REG] = 3, /* r11 temp register */
132};
133
134/* is_ereg() == true if BPF register 'reg' maps to x64 r8..r15
135 * which need extra byte of encoding.
136 * rax,rcx,...,rbp have simpler encoding
137 */
138static bool is_ereg(u32 reg)
139{
140 return (1 << reg) & (BIT(BPF_REG_5) |
141 BIT(AUX_REG) |
142 BIT(BPF_REG_7) |
143 BIT(BPF_REG_8) |
144 BIT(BPF_REG_9));
145}
146
147/* add modifiers if 'reg' maps to x64 registers r8..r15 */
148static u8 add_1mod(u8 byte, u32 reg)
149{
150 if (is_ereg(reg))
151 byte |= 1;
152 return byte;
153}
154
155static u8 add_2mod(u8 byte, u32 r1, u32 r2)
156{
157 if (is_ereg(r1))
158 byte |= 1;
159 if (is_ereg(r2))
160 byte |= 4;
161 return byte;
162}
163
164/* encode 'dst_reg' register into x64 opcode 'byte' */
165static u8 add_1reg(u8 byte, u32 dst_reg)
166{
167 return byte + reg2hex[dst_reg];
168}
169
170/* encode 'dst_reg' and 'src_reg' registers into x64 opcode 'byte' */
171static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
172{
173 return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
174}
175
176static void jit_fill_hole(void *area, unsigned int size)
177{
178 /* fill whole space with int3 instructions */
179 memset(area, 0xcc, size);
180}
181
182struct jit_context {
183 int cleanup_addr; /* epilogue code offset */
184 bool seen_ld_abs;
185};
186
187/* maximum number of bytes emitted while JITing one eBPF insn */
188#define BPF_MAX_INSN_SIZE 128
189#define BPF_INSN_SAFETY 64
190
191#define STACKSIZE \
192 (MAX_BPF_STACK + \
193 32 /* space for rbx, r13, r14, r15 */ + \
194 8 /* space for skb_copy_bits() buffer */)
195
196#define PROLOGUE_SIZE 48
197
198/* emit x64 prologue code for BPF program and check it's size.
199 * bpf_tail_call helper will skip it while jumping into another program
200 */
201static void emit_prologue(u8 **pprog)
202{
203 u8 *prog = *pprog;
204 int cnt = 0;
205
206 EMIT1(0x55); /* push rbp */
207 EMIT3(0x48, 0x89, 0xE5); /* mov rbp,rsp */
208
209 /* sub rsp, STACKSIZE */
210 EMIT3_off32(0x48, 0x81, 0xEC, STACKSIZE);
211
212 /* all classic BPF filters use R6(rbx) save it */
213
214 /* mov qword ptr [rbp-X],rbx */
215 EMIT3_off32(0x48, 0x89, 0x9D, -STACKSIZE);
216
217 /* bpf_convert_filter() maps classic BPF register X to R7 and uses R8
218 * as temporary, so all tcpdump filters need to spill/fill R7(r13) and
219 * R8(r14). R9(r15) spill could be made conditional, but there is only
220 * one 'bpf_error' return path out of helper functions inside bpf_jit.S
221 * The overhead of extra spill is negligible for any filter other
222 * than synthetic ones. Therefore not worth adding complexity.
223 */
224
225 /* mov qword ptr [rbp-X],r13 */
226 EMIT3_off32(0x4C, 0x89, 0xAD, -STACKSIZE + 8);
227 /* mov qword ptr [rbp-X],r14 */
228 EMIT3_off32(0x4C, 0x89, 0xB5, -STACKSIZE + 16);
229 /* mov qword ptr [rbp-X],r15 */
230 EMIT3_off32(0x4C, 0x89, 0xBD, -STACKSIZE + 24);
231
232 /* Clear the tail call counter (tail_call_cnt): for eBPF tail calls
233 * we need to reset the counter to 0. It's done in two instructions,
234 * resetting rax register to 0 (xor on eax gets 0 extended), and
235 * moving it to the counter location.
236 */
237
238 /* xor eax, eax */
239 EMIT2(0x31, 0xc0);
240 /* mov qword ptr [rbp-X], rax */
241 EMIT3_off32(0x48, 0x89, 0x85, -STACKSIZE + 32);
242
243 BUILD_BUG_ON(cnt != PROLOGUE_SIZE);
244 *pprog = prog;
245}
246
247/* generate the following code:
248 * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
249 * if (index >= array->map.max_entries)
250 * goto out;
251 * if (++tail_call_cnt > MAX_TAIL_CALL_CNT)
252 * goto out;
253 * prog = array->ptrs[index];
254 * if (prog == NULL)
255 * goto out;
256 * goto *(prog->bpf_func + prologue_size);
257 * out:
258 */
259static void emit_bpf_tail_call(u8 **pprog)
260{
261 u8 *prog = *pprog;
262 int label1, label2, label3;
263 int cnt = 0;
264
265 /* rdi - pointer to ctx
266 * rsi - pointer to bpf_array
267 * rdx - index in bpf_array
268 */
269
270 /* if (index >= array->map.max_entries)
271 * goto out;
272 */
273 EMIT4(0x48, 0x8B, 0x46, /* mov rax, qword ptr [rsi + 16] */
274 offsetof(struct bpf_array, map.max_entries));
275 EMIT3(0x48, 0x39, 0xD0); /* cmp rax, rdx */
276#define OFFSET1 47 /* number of bytes to jump */
277 EMIT2(X86_JBE, OFFSET1); /* jbe out */
278 label1 = cnt;
279
280 /* if (tail_call_cnt > MAX_TAIL_CALL_CNT)
281 * goto out;
282 */
283 EMIT2_off32(0x8B, 0x85, -STACKSIZE + 36); /* mov eax, dword ptr [rbp - 516] */
284 EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT); /* cmp eax, MAX_TAIL_CALL_CNT */
285#define OFFSET2 36
286 EMIT2(X86_JA, OFFSET2); /* ja out */
287 label2 = cnt;
288 EMIT3(0x83, 0xC0, 0x01); /* add eax, 1 */
289 EMIT2_off32(0x89, 0x85, -STACKSIZE + 36); /* mov dword ptr [rbp - 516], eax */
290
291 /* prog = array->ptrs[index]; */
292 EMIT4_off32(0x48, 0x8D, 0x84, 0xD6, /* lea rax, [rsi + rdx * 8 + offsetof(...)] */
293 offsetof(struct bpf_array, ptrs));
294 EMIT3(0x48, 0x8B, 0x00); /* mov rax, qword ptr [rax] */
295
296 /* if (prog == NULL)
297 * goto out;
298 */
299 EMIT4(0x48, 0x83, 0xF8, 0x00); /* cmp rax, 0 */
300#define OFFSET3 10
301 EMIT2(X86_JE, OFFSET3); /* je out */
302 label3 = cnt;
303
304 /* goto *(prog->bpf_func + prologue_size); */
305 EMIT4(0x48, 0x8B, 0x40, /* mov rax, qword ptr [rax + 32] */
306 offsetof(struct bpf_prog, bpf_func));
307 EMIT4(0x48, 0x83, 0xC0, PROLOGUE_SIZE); /* add rax, prologue_size */
308
309 /* now we're ready to jump into next BPF program
310 * rdi == ctx (1st arg)
311 * rax == prog->bpf_func + prologue_size
312 */
313 EMIT2(0xFF, 0xE0); /* jmp rax */
314
315 /* out: */
316 BUILD_BUG_ON(cnt - label1 != OFFSET1);
317 BUILD_BUG_ON(cnt - label2 != OFFSET2);
318 BUILD_BUG_ON(cnt - label3 != OFFSET3);
319 *pprog = prog;
320}
321
322
323static void emit_load_skb_data_hlen(u8 **pprog)
324{
325 u8 *prog = *pprog;
326 int cnt = 0;
327
328 /* r9d = skb->len - skb->data_len (headlen)
329 * r10 = skb->data
330 */
331 /* mov %r9d, off32(%rdi) */
332 EMIT3_off32(0x44, 0x8b, 0x8f, offsetof(struct sk_buff, len));
333
334 /* sub %r9d, off32(%rdi) */
335 EMIT3_off32(0x44, 0x2b, 0x8f, offsetof(struct sk_buff, data_len));
336
337 /* mov %r10, off32(%rdi) */
338 EMIT3_off32(0x4c, 0x8b, 0x97, offsetof(struct sk_buff, data));
339 *pprog = prog;
340}
341
342static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image,
343 int oldproglen, struct jit_context *ctx)
344{
345 struct bpf_insn *insn = bpf_prog->insnsi;
346 int insn_cnt = bpf_prog->len;
347 bool seen_ld_abs = ctx->seen_ld_abs | (oldproglen == 0);
348 bool seen_exit = false;
349 u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
350 int i, cnt = 0;
351 int proglen = 0;
352 u8 *prog = temp;
353
354 emit_prologue(&prog);
355
356 if (seen_ld_abs)
357 emit_load_skb_data_hlen(&prog);
358
359 for (i = 0; i < insn_cnt; i++, insn++) {
360 const s32 imm32 = insn->imm;
361 u32 dst_reg = insn->dst_reg;
362 u32 src_reg = insn->src_reg;
363 u8 b1 = 0, b2 = 0, b3 = 0;
364 s64 jmp_offset;
365 u8 jmp_cond;
366 bool reload_skb_data;
367 int ilen;
368 u8 *func;
369
370 switch (insn->code) {
371 /* ALU */
372 case BPF_ALU | BPF_ADD | BPF_X:
373 case BPF_ALU | BPF_SUB | BPF_X:
374 case BPF_ALU | BPF_AND | BPF_X:
375 case BPF_ALU | BPF_OR | BPF_X:
376 case BPF_ALU | BPF_XOR | BPF_X:
377 case BPF_ALU64 | BPF_ADD | BPF_X:
378 case BPF_ALU64 | BPF_SUB | BPF_X:
379 case BPF_ALU64 | BPF_AND | BPF_X:
380 case BPF_ALU64 | BPF_OR | BPF_X:
381 case BPF_ALU64 | BPF_XOR | BPF_X:
382 switch (BPF_OP(insn->code)) {
383 case BPF_ADD: b2 = 0x01; break;
384 case BPF_SUB: b2 = 0x29; break;
385 case BPF_AND: b2 = 0x21; break;
386 case BPF_OR: b2 = 0x09; break;
387 case BPF_XOR: b2 = 0x31; break;
388 }
389 if (BPF_CLASS(insn->code) == BPF_ALU64)
390 EMIT1(add_2mod(0x48, dst_reg, src_reg));
391 else if (is_ereg(dst_reg) || is_ereg(src_reg))
392 EMIT1(add_2mod(0x40, dst_reg, src_reg));
393 EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
394 break;
395
396 /* mov dst, src */
397 case BPF_ALU64 | BPF_MOV | BPF_X:
398 EMIT_mov(dst_reg, src_reg);
399 break;
400
401 /* mov32 dst, src */
402 case BPF_ALU | BPF_MOV | BPF_X:
403 if (is_ereg(dst_reg) || is_ereg(src_reg))
404 EMIT1(add_2mod(0x40, dst_reg, src_reg));
405 EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
406 break;
407
408 /* neg dst */
409 case BPF_ALU | BPF_NEG:
410 case BPF_ALU64 | BPF_NEG:
411 if (BPF_CLASS(insn->code) == BPF_ALU64)
412 EMIT1(add_1mod(0x48, dst_reg));
413 else if (is_ereg(dst_reg))
414 EMIT1(add_1mod(0x40, dst_reg));
415 EMIT2(0xF7, add_1reg(0xD8, dst_reg));
416 break;
417
418 case BPF_ALU | BPF_ADD | BPF_K:
419 case BPF_ALU | BPF_SUB | BPF_K:
420 case BPF_ALU | BPF_AND | BPF_K:
421 case BPF_ALU | BPF_OR | BPF_K:
422 case BPF_ALU | BPF_XOR | BPF_K:
423 case BPF_ALU64 | BPF_ADD | BPF_K:
424 case BPF_ALU64 | BPF_SUB | BPF_K:
425 case BPF_ALU64 | BPF_AND | BPF_K:
426 case BPF_ALU64 | BPF_OR | BPF_K:
427 case BPF_ALU64 | BPF_XOR | BPF_K:
428 if (BPF_CLASS(insn->code) == BPF_ALU64)
429 EMIT1(add_1mod(0x48, dst_reg));
430 else if (is_ereg(dst_reg))
431 EMIT1(add_1mod(0x40, dst_reg));
432
433 switch (BPF_OP(insn->code)) {
434 case BPF_ADD: b3 = 0xC0; break;
435 case BPF_SUB: b3 = 0xE8; break;
436 case BPF_AND: b3 = 0xE0; break;
437 case BPF_OR: b3 = 0xC8; break;
438 case BPF_XOR: b3 = 0xF0; break;
439 }
440
441 if (is_imm8(imm32))
442 EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
443 else
444 EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
445 break;
446
447 case BPF_ALU64 | BPF_MOV | BPF_K:
448 /* optimization: if imm32 is positive,
449 * use 'mov eax, imm32' (which zero-extends imm32)
450 * to save 2 bytes
451 */
452 if (imm32 < 0) {
453 /* 'mov rax, imm32' sign extends imm32 */
454 b1 = add_1mod(0x48, dst_reg);
455 b2 = 0xC7;
456 b3 = 0xC0;
457 EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
458 break;
459 }
460
461 case BPF_ALU | BPF_MOV | BPF_K:
462 /* optimization: if imm32 is zero, use 'xor <dst>,<dst>'
463 * to save 3 bytes.
464 */
465 if (imm32 == 0) {
466 if (is_ereg(dst_reg))
467 EMIT1(add_2mod(0x40, dst_reg, dst_reg));
468 b2 = 0x31; /* xor */
469 b3 = 0xC0;
470 EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
471 break;
472 }
473
474 /* mov %eax, imm32 */
475 if (is_ereg(dst_reg))
476 EMIT1(add_1mod(0x40, dst_reg));
477 EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
478 break;
479
480 case BPF_LD | BPF_IMM | BPF_DW:
481 if (insn[1].code != 0 || insn[1].src_reg != 0 ||
482 insn[1].dst_reg != 0 || insn[1].off != 0) {
483 /* verifier must catch invalid insns */
484 pr_err("invalid BPF_LD_IMM64 insn\n");
485 return -EINVAL;
486 }
487
488 /* optimization: if imm64 is zero, use 'xor <dst>,<dst>'
489 * to save 7 bytes.
490 */
491 if (insn[0].imm == 0 && insn[1].imm == 0) {
492 b1 = add_2mod(0x48, dst_reg, dst_reg);
493 b2 = 0x31; /* xor */
494 b3 = 0xC0;
495 EMIT3(b1, b2, add_2reg(b3, dst_reg, dst_reg));
496
497 insn++;
498 i++;
499 break;
500 }
501
502 /* movabsq %rax, imm64 */
503 EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
504 EMIT(insn[0].imm, 4);
505 EMIT(insn[1].imm, 4);
506
507 insn++;
508 i++;
509 break;
510
511 /* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
512 case BPF_ALU | BPF_MOD | BPF_X:
513 case BPF_ALU | BPF_DIV | BPF_X:
514 case BPF_ALU | BPF_MOD | BPF_K:
515 case BPF_ALU | BPF_DIV | BPF_K:
516 case BPF_ALU64 | BPF_MOD | BPF_X:
517 case BPF_ALU64 | BPF_DIV | BPF_X:
518 case BPF_ALU64 | BPF_MOD | BPF_K:
519 case BPF_ALU64 | BPF_DIV | BPF_K:
520 EMIT1(0x50); /* push rax */
521 EMIT1(0x52); /* push rdx */
522
523 if (BPF_SRC(insn->code) == BPF_X)
524 /* mov r11, src_reg */
525 EMIT_mov(AUX_REG, src_reg);
526 else
527 /* mov r11, imm32 */
528 EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
529
530 /* mov rax, dst_reg */
531 EMIT_mov(BPF_REG_0, dst_reg);
532
533 /* xor edx, edx
534 * equivalent to 'xor rdx, rdx', but one byte less
535 */
536 EMIT2(0x31, 0xd2);
537
538 if (BPF_SRC(insn->code) == BPF_X) {
539 /* if (src_reg == 0) return 0 */
540
541 /* cmp r11, 0 */
542 EMIT4(0x49, 0x83, 0xFB, 0x00);
543
544 /* jne .+9 (skip over pop, pop, xor and jmp) */
545 EMIT2(X86_JNE, 1 + 1 + 2 + 5);
546 EMIT1(0x5A); /* pop rdx */
547 EMIT1(0x58); /* pop rax */
548 EMIT2(0x31, 0xc0); /* xor eax, eax */
549
550 /* jmp cleanup_addr
551 * addrs[i] - 11, because there are 11 bytes
552 * after this insn: div, mov, pop, pop, mov
553 */
554 jmp_offset = ctx->cleanup_addr - (addrs[i] - 11);
555 EMIT1_off32(0xE9, jmp_offset);
556 }
557
558 if (BPF_CLASS(insn->code) == BPF_ALU64)
559 /* div r11 */
560 EMIT3(0x49, 0xF7, 0xF3);
561 else
562 /* div r11d */
563 EMIT3(0x41, 0xF7, 0xF3);
564
565 if (BPF_OP(insn->code) == BPF_MOD)
566 /* mov r11, rdx */
567 EMIT3(0x49, 0x89, 0xD3);
568 else
569 /* mov r11, rax */
570 EMIT3(0x49, 0x89, 0xC3);
571
572 EMIT1(0x5A); /* pop rdx */
573 EMIT1(0x58); /* pop rax */
574
575 /* mov dst_reg, r11 */
576 EMIT_mov(dst_reg, AUX_REG);
577 break;
578
579 case BPF_ALU | BPF_MUL | BPF_K:
580 case BPF_ALU | BPF_MUL | BPF_X:
581 case BPF_ALU64 | BPF_MUL | BPF_K:
582 case BPF_ALU64 | BPF_MUL | BPF_X:
583 EMIT1(0x50); /* push rax */
584 EMIT1(0x52); /* push rdx */
585
586 /* mov r11, dst_reg */
587 EMIT_mov(AUX_REG, dst_reg);
588
589 if (BPF_SRC(insn->code) == BPF_X)
590 /* mov rax, src_reg */
591 EMIT_mov(BPF_REG_0, src_reg);
592 else
593 /* mov rax, imm32 */
594 EMIT3_off32(0x48, 0xC7, 0xC0, imm32);
595
596 if (BPF_CLASS(insn->code) == BPF_ALU64)
597 EMIT1(add_1mod(0x48, AUX_REG));
598 else if (is_ereg(AUX_REG))
599 EMIT1(add_1mod(0x40, AUX_REG));
600 /* mul(q) r11 */
601 EMIT2(0xF7, add_1reg(0xE0, AUX_REG));
602
603 /* mov r11, rax */
604 EMIT_mov(AUX_REG, BPF_REG_0);
605
606 EMIT1(0x5A); /* pop rdx */
607 EMIT1(0x58); /* pop rax */
608
609 /* mov dst_reg, r11 */
610 EMIT_mov(dst_reg, AUX_REG);
611 break;
612
613 /* shifts */
614 case BPF_ALU | BPF_LSH | BPF_K:
615 case BPF_ALU | BPF_RSH | BPF_K:
616 case BPF_ALU | BPF_ARSH | BPF_K:
617 case BPF_ALU64 | BPF_LSH | BPF_K:
618 case BPF_ALU64 | BPF_RSH | BPF_K:
619 case BPF_ALU64 | BPF_ARSH | BPF_K:
620 if (BPF_CLASS(insn->code) == BPF_ALU64)
621 EMIT1(add_1mod(0x48, dst_reg));
622 else if (is_ereg(dst_reg))
623 EMIT1(add_1mod(0x40, dst_reg));
624
625 switch (BPF_OP(insn->code)) {
626 case BPF_LSH: b3 = 0xE0; break;
627 case BPF_RSH: b3 = 0xE8; break;
628 case BPF_ARSH: b3 = 0xF8; break;
629 }
630 EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
631 break;
632
633 case BPF_ALU | BPF_LSH | BPF_X:
634 case BPF_ALU | BPF_RSH | BPF_X:
635 case BPF_ALU | BPF_ARSH | BPF_X:
636 case BPF_ALU64 | BPF_LSH | BPF_X:
637 case BPF_ALU64 | BPF_RSH | BPF_X:
638 case BPF_ALU64 | BPF_ARSH | BPF_X:
639
640 /* check for bad case when dst_reg == rcx */
641 if (dst_reg == BPF_REG_4) {
642 /* mov r11, dst_reg */
643 EMIT_mov(AUX_REG, dst_reg);
644 dst_reg = AUX_REG;
645 }
646
647 if (src_reg != BPF_REG_4) { /* common case */
648 EMIT1(0x51); /* push rcx */
649
650 /* mov rcx, src_reg */
651 EMIT_mov(BPF_REG_4, src_reg);
652 }
653
654 /* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
655 if (BPF_CLASS(insn->code) == BPF_ALU64)
656 EMIT1(add_1mod(0x48, dst_reg));
657 else if (is_ereg(dst_reg))
658 EMIT1(add_1mod(0x40, dst_reg));
659
660 switch (BPF_OP(insn->code)) {
661 case BPF_LSH: b3 = 0xE0; break;
662 case BPF_RSH: b3 = 0xE8; break;
663 case BPF_ARSH: b3 = 0xF8; break;
664 }
665 EMIT2(0xD3, add_1reg(b3, dst_reg));
666
667 if (src_reg != BPF_REG_4)
668 EMIT1(0x59); /* pop rcx */
669
670 if (insn->dst_reg == BPF_REG_4)
671 /* mov dst_reg, r11 */
672 EMIT_mov(insn->dst_reg, AUX_REG);
673 break;
674
675 case BPF_ALU | BPF_END | BPF_FROM_BE:
676 switch (imm32) {
677 case 16:
678 /* emit 'ror %ax, 8' to swap lower 2 bytes */
679 EMIT1(0x66);
680 if (is_ereg(dst_reg))
681 EMIT1(0x41);
682 EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
683
684 /* emit 'movzwl eax, ax' */
685 if (is_ereg(dst_reg))
686 EMIT3(0x45, 0x0F, 0xB7);
687 else
688 EMIT2(0x0F, 0xB7);
689 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
690 break;
691 case 32:
692 /* emit 'bswap eax' to swap lower 4 bytes */
693 if (is_ereg(dst_reg))
694 EMIT2(0x41, 0x0F);
695 else
696 EMIT1(0x0F);
697 EMIT1(add_1reg(0xC8, dst_reg));
698 break;
699 case 64:
700 /* emit 'bswap rax' to swap 8 bytes */
701 EMIT3(add_1mod(0x48, dst_reg), 0x0F,
702 add_1reg(0xC8, dst_reg));
703 break;
704 }
705 break;
706
707 case BPF_ALU | BPF_END | BPF_FROM_LE:
708 switch (imm32) {
709 case 16:
710 /* emit 'movzwl eax, ax' to zero extend 16-bit
711 * into 64 bit
712 */
713 if (is_ereg(dst_reg))
714 EMIT3(0x45, 0x0F, 0xB7);
715 else
716 EMIT2(0x0F, 0xB7);
717 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
718 break;
719 case 32:
720 /* emit 'mov eax, eax' to clear upper 32-bits */
721 if (is_ereg(dst_reg))
722 EMIT1(0x45);
723 EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
724 break;
725 case 64:
726 /* nop */
727 break;
728 }
729 break;
730
731 /* ST: *(u8*)(dst_reg + off) = imm */
732 case BPF_ST | BPF_MEM | BPF_B:
733 if (is_ereg(dst_reg))
734 EMIT2(0x41, 0xC6);
735 else
736 EMIT1(0xC6);
737 goto st;
738 case BPF_ST | BPF_MEM | BPF_H:
739 if (is_ereg(dst_reg))
740 EMIT3(0x66, 0x41, 0xC7);
741 else
742 EMIT2(0x66, 0xC7);
743 goto st;
744 case BPF_ST | BPF_MEM | BPF_W:
745 if (is_ereg(dst_reg))
746 EMIT2(0x41, 0xC7);
747 else
748 EMIT1(0xC7);
749 goto st;
750 case BPF_ST | BPF_MEM | BPF_DW:
751 EMIT2(add_1mod(0x48, dst_reg), 0xC7);
752
753st: if (is_imm8(insn->off))
754 EMIT2(add_1reg(0x40, dst_reg), insn->off);
755 else
756 EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
757
758 EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
759 break;
760
761 /* STX: *(u8*)(dst_reg + off) = src_reg */
762 case BPF_STX | BPF_MEM | BPF_B:
763 /* emit 'mov byte ptr [rax + off], al' */
764 if (is_ereg(dst_reg) || is_ereg(src_reg) ||
765 /* have to add extra byte for x86 SIL, DIL regs */
766 src_reg == BPF_REG_1 || src_reg == BPF_REG_2)
767 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
768 else
769 EMIT1(0x88);
770 goto stx;
771 case BPF_STX | BPF_MEM | BPF_H:
772 if (is_ereg(dst_reg) || is_ereg(src_reg))
773 EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
774 else
775 EMIT2(0x66, 0x89);
776 goto stx;
777 case BPF_STX | BPF_MEM | BPF_W:
778 if (is_ereg(dst_reg) || is_ereg(src_reg))
779 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
780 else
781 EMIT1(0x89);
782 goto stx;
783 case BPF_STX | BPF_MEM | BPF_DW:
784 EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
785stx: if (is_imm8(insn->off))
786 EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
787 else
788 EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
789 insn->off);
790 break;
791
792 /* LDX: dst_reg = *(u8*)(src_reg + off) */
793 case BPF_LDX | BPF_MEM | BPF_B:
794 /* emit 'movzx rax, byte ptr [rax + off]' */
795 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
796 goto ldx;
797 case BPF_LDX | BPF_MEM | BPF_H:
798 /* emit 'movzx rax, word ptr [rax + off]' */
799 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
800 goto ldx;
801 case BPF_LDX | BPF_MEM | BPF_W:
802 /* emit 'mov eax, dword ptr [rax+0x14]' */
803 if (is_ereg(dst_reg) || is_ereg(src_reg))
804 EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
805 else
806 EMIT1(0x8B);
807 goto ldx;
808 case BPF_LDX | BPF_MEM | BPF_DW:
809 /* emit 'mov rax, qword ptr [rax+0x14]' */
810 EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
811ldx: /* if insn->off == 0 we can save one extra byte, but
812 * special case of x86 r13 which always needs an offset
813 * is not worth the hassle
814 */
815 if (is_imm8(insn->off))
816 EMIT2(add_2reg(0x40, src_reg, dst_reg), insn->off);
817 else
818 EMIT1_off32(add_2reg(0x80, src_reg, dst_reg),
819 insn->off);
820 break;
821
822 /* STX XADD: lock *(u32*)(dst_reg + off) += src_reg */
823 case BPF_STX | BPF_XADD | BPF_W:
824 /* emit 'lock add dword ptr [rax + off], eax' */
825 if (is_ereg(dst_reg) || is_ereg(src_reg))
826 EMIT3(0xF0, add_2mod(0x40, dst_reg, src_reg), 0x01);
827 else
828 EMIT2(0xF0, 0x01);
829 goto xadd;
830 case BPF_STX | BPF_XADD | BPF_DW:
831 EMIT3(0xF0, add_2mod(0x48, dst_reg, src_reg), 0x01);
832xadd: if (is_imm8(insn->off))
833 EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
834 else
835 EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
836 insn->off);
837 break;
838
839 /* call */
840 case BPF_JMP | BPF_CALL:
841 func = (u8 *) __bpf_call_base + imm32;
842 jmp_offset = func - (image + addrs[i]);
843 if (seen_ld_abs) {
844 reload_skb_data = bpf_helper_changes_skb_data(func);
845 if (reload_skb_data) {
846 EMIT1(0x57); /* push %rdi */
847 jmp_offset += 22; /* pop, mov, sub, mov */
848 } else {
849 EMIT2(0x41, 0x52); /* push %r10 */
850 EMIT2(0x41, 0x51); /* push %r9 */
851 /* need to adjust jmp offset, since
852 * pop %r9, pop %r10 take 4 bytes after call insn
853 */
854 jmp_offset += 4;
855 }
856 }
857 if (!imm32 || !is_simm32(jmp_offset)) {
858 pr_err("unsupported bpf func %d addr %p image %p\n",
859 imm32, func, image);
860 return -EINVAL;
861 }
862 EMIT1_off32(0xE8, jmp_offset);
863 if (seen_ld_abs) {
864 if (reload_skb_data) {
865 EMIT1(0x5F); /* pop %rdi */
866 emit_load_skb_data_hlen(&prog);
867 } else {
868 EMIT2(0x41, 0x59); /* pop %r9 */
869 EMIT2(0x41, 0x5A); /* pop %r10 */
870 }
871 }
872 break;
873
874 case BPF_JMP | BPF_CALL | BPF_X:
875 emit_bpf_tail_call(&prog);
876 break;
877
878 /* cond jump */
879 case BPF_JMP | BPF_JEQ | BPF_X:
880 case BPF_JMP | BPF_JNE | BPF_X:
881 case BPF_JMP | BPF_JGT | BPF_X:
882 case BPF_JMP | BPF_JGE | BPF_X:
883 case BPF_JMP | BPF_JSGT | BPF_X:
884 case BPF_JMP | BPF_JSGE | BPF_X:
885 /* cmp dst_reg, src_reg */
886 EMIT3(add_2mod(0x48, dst_reg, src_reg), 0x39,
887 add_2reg(0xC0, dst_reg, src_reg));
888 goto emit_cond_jmp;
889
890 case BPF_JMP | BPF_JSET | BPF_X:
891 /* test dst_reg, src_reg */
892 EMIT3(add_2mod(0x48, dst_reg, src_reg), 0x85,
893 add_2reg(0xC0, dst_reg, src_reg));
894 goto emit_cond_jmp;
895
896 case BPF_JMP | BPF_JSET | BPF_K:
897 /* test dst_reg, imm32 */
898 EMIT1(add_1mod(0x48, dst_reg));
899 EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
900 goto emit_cond_jmp;
901
902 case BPF_JMP | BPF_JEQ | BPF_K:
903 case BPF_JMP | BPF_JNE | BPF_K:
904 case BPF_JMP | BPF_JGT | BPF_K:
905 case BPF_JMP | BPF_JGE | BPF_K:
906 case BPF_JMP | BPF_JSGT | BPF_K:
907 case BPF_JMP | BPF_JSGE | BPF_K:
908 /* cmp dst_reg, imm8/32 */
909 EMIT1(add_1mod(0x48, dst_reg));
910
911 if (is_imm8(imm32))
912 EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
913 else
914 EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
915
916emit_cond_jmp: /* convert BPF opcode to x86 */
917 switch (BPF_OP(insn->code)) {
918 case BPF_JEQ:
919 jmp_cond = X86_JE;
920 break;
921 case BPF_JSET:
922 case BPF_JNE:
923 jmp_cond = X86_JNE;
924 break;
925 case BPF_JGT:
926 /* GT is unsigned '>', JA in x86 */
927 jmp_cond = X86_JA;
928 break;
929 case BPF_JGE:
930 /* GE is unsigned '>=', JAE in x86 */
931 jmp_cond = X86_JAE;
932 break;
933 case BPF_JSGT:
934 /* signed '>', GT in x86 */
935 jmp_cond = X86_JG;
936 break;
937 case BPF_JSGE:
938 /* signed '>=', GE in x86 */
939 jmp_cond = X86_JGE;
940 break;
941 default: /* to silence gcc warning */
942 return -EFAULT;
943 }
944 jmp_offset = addrs[i + insn->off] - addrs[i];
945 if (is_imm8(jmp_offset)) {
946 EMIT2(jmp_cond, jmp_offset);
947 } else if (is_simm32(jmp_offset)) {
948 EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
949 } else {
950 pr_err("cond_jmp gen bug %llx\n", jmp_offset);
951 return -EFAULT;
952 }
953
954 break;
955
956 case BPF_JMP | BPF_JA:
957 jmp_offset = addrs[i + insn->off] - addrs[i];
958 if (!jmp_offset)
959 /* optimize out nop jumps */
960 break;
961emit_jmp:
962 if (is_imm8(jmp_offset)) {
963 EMIT2(0xEB, jmp_offset);
964 } else if (is_simm32(jmp_offset)) {
965 EMIT1_off32(0xE9, jmp_offset);
966 } else {
967 pr_err("jmp gen bug %llx\n", jmp_offset);
968 return -EFAULT;
969 }
970 break;
971
972 case BPF_LD | BPF_IND | BPF_W:
973 func = sk_load_word;
974 goto common_load;
975 case BPF_LD | BPF_ABS | BPF_W:
976 func = CHOOSE_LOAD_FUNC(imm32, sk_load_word);
977common_load:
978 ctx->seen_ld_abs = seen_ld_abs = true;
979 jmp_offset = func - (image + addrs[i]);
980 if (!func || !is_simm32(jmp_offset)) {
981 pr_err("unsupported bpf func %d addr %p image %p\n",
982 imm32, func, image);
983 return -EINVAL;
984 }
985 if (BPF_MODE(insn->code) == BPF_ABS) {
986 /* mov %esi, imm32 */
987 EMIT1_off32(0xBE, imm32);
988 } else {
989 /* mov %rsi, src_reg */
990 EMIT_mov(BPF_REG_2, src_reg);
991 if (imm32) {
992 if (is_imm8(imm32))
993 /* add %esi, imm8 */
994 EMIT3(0x83, 0xC6, imm32);
995 else
996 /* add %esi, imm32 */
997 EMIT2_off32(0x81, 0xC6, imm32);
998 }
999 }
1000 /* skb pointer is in R6 (%rbx), it will be copied into
1001 * %rdi if skb_copy_bits() call is necessary.
1002 * sk_load_* helpers also use %r10 and %r9d.
1003 * See bpf_jit.S
1004 */
1005 EMIT1_off32(0xE8, jmp_offset); /* call */
1006 break;
1007
1008 case BPF_LD | BPF_IND | BPF_H:
1009 func = sk_load_half;
1010 goto common_load;
1011 case BPF_LD | BPF_ABS | BPF_H:
1012 func = CHOOSE_LOAD_FUNC(imm32, sk_load_half);
1013 goto common_load;
1014 case BPF_LD | BPF_IND | BPF_B:
1015 func = sk_load_byte;
1016 goto common_load;
1017 case BPF_LD | BPF_ABS | BPF_B:
1018 func = CHOOSE_LOAD_FUNC(imm32, sk_load_byte);
1019 goto common_load;
1020
1021 case BPF_JMP | BPF_EXIT:
1022 if (seen_exit) {
1023 jmp_offset = ctx->cleanup_addr - addrs[i];
1024 goto emit_jmp;
1025 }
1026 seen_exit = true;
1027 /* update cleanup_addr */
1028 ctx->cleanup_addr = proglen;
1029 /* mov rbx, qword ptr [rbp-X] */
1030 EMIT3_off32(0x48, 0x8B, 0x9D, -STACKSIZE);
1031 /* mov r13, qword ptr [rbp-X] */
1032 EMIT3_off32(0x4C, 0x8B, 0xAD, -STACKSIZE + 8);
1033 /* mov r14, qword ptr [rbp-X] */
1034 EMIT3_off32(0x4C, 0x8B, 0xB5, -STACKSIZE + 16);
1035 /* mov r15, qword ptr [rbp-X] */
1036 EMIT3_off32(0x4C, 0x8B, 0xBD, -STACKSIZE + 24);
1037
1038 EMIT1(0xC9); /* leave */
1039 EMIT1(0xC3); /* ret */
1040 break;
1041
1042 default:
1043 /* By design x64 JIT should support all BPF instructions
1044 * This error will be seen if new instruction was added
1045 * to interpreter, but not to JIT
1046 * or if there is junk in bpf_prog
1047 */
1048 pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
1049 return -EINVAL;
1050 }
1051
1052 ilen = prog - temp;
1053 if (ilen > BPF_MAX_INSN_SIZE) {
1054 pr_err("bpf_jit_compile fatal insn size error\n");
1055 return -EFAULT;
1056 }
1057
1058 if (image) {
1059 if (unlikely(proglen + ilen > oldproglen)) {
1060 pr_err("bpf_jit_compile fatal error\n");
1061 return -EFAULT;
1062 }
1063 memcpy(image + proglen, temp, ilen);
1064 }
1065 proglen += ilen;
1066 addrs[i] = proglen;
1067 prog = temp;
1068 }
1069 return proglen;
1070}
1071
1072void bpf_jit_compile(struct bpf_prog *prog)
1073{
1074}
1075
1076void bpf_int_jit_compile(struct bpf_prog *prog)
1077{
1078 struct bpf_binary_header *header = NULL;
1079 int proglen, oldproglen = 0;
1080 struct jit_context ctx = {};
1081 u8 *image = NULL;
1082 int *addrs;
1083 int pass;
1084 int i;
1085
1086 if (!bpf_jit_enable)
1087 return;
1088
1089 if (!prog || !prog->len)
1090 return;
1091
1092 addrs = kmalloc(prog->len * sizeof(*addrs), GFP_KERNEL);
1093 if (!addrs)
1094 return;
1095
1096 /* Before first pass, make a rough estimation of addrs[]
1097 * each bpf instruction is translated to less than 64 bytes
1098 */
1099 for (proglen = 0, i = 0; i < prog->len; i++) {
1100 proglen += 64;
1101 addrs[i] = proglen;
1102 }
1103 ctx.cleanup_addr = proglen;
1104
1105 /* JITed image shrinks with every pass and the loop iterates
1106 * until the image stops shrinking. Very large bpf programs
1107 * may converge on the last pass. In such case do one more
1108 * pass to emit the final image
1109 */
1110 for (pass = 0; pass < 10 || image; pass++) {
1111 proglen = do_jit(prog, addrs, image, oldproglen, &ctx);
1112 if (proglen <= 0) {
1113 image = NULL;
1114 if (header)
1115 bpf_jit_binary_free(header);
1116 goto out;
1117 }
1118 if (image) {
1119 if (proglen != oldproglen) {
1120 pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
1121 proglen, oldproglen);
1122 goto out;
1123 }
1124 break;
1125 }
1126 if (proglen == oldproglen) {
1127 header = bpf_jit_binary_alloc(proglen, &image,
1128 1, jit_fill_hole);
1129 if (!header)
1130 goto out;
1131 }
1132 oldproglen = proglen;
1133 }
1134
1135 if (bpf_jit_enable > 1)
1136 bpf_jit_dump(prog->len, proglen, pass + 1, image);
1137
1138 if (image) {
1139 bpf_flush_icache(header, image + proglen);
1140 set_memory_ro((unsigned long)header, header->pages);
1141 prog->bpf_func = (void *)image;
1142 prog->jited = 1;
1143 }
1144out:
1145 kfree(addrs);
1146}
1147
1148void bpf_jit_free(struct bpf_prog *fp)
1149{
1150 unsigned long addr = (unsigned long)fp->bpf_func & PAGE_MASK;
1151 struct bpf_binary_header *header = (void *)addr;
1152
1153 if (!fp->jited)
1154 goto free_filter;
1155
1156 set_memory_rw(addr, header->pages);
1157 bpf_jit_binary_free(header);
1158
1159free_filter:
1160 bpf_prog_unlock_free(fp);
1161}