Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 1995 Linus Torvalds
4 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6 */
7#include <linux/sched.h> /* test_thread_flag(), ... */
8#include <linux/sched/task_stack.h> /* task_stack_*(), ... */
9#include <linux/kdebug.h> /* oops_begin/end, ... */
10#include <linux/extable.h> /* search_exception_tables */
11#include <linux/memblock.h> /* max_low_pfn */
12#include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
13#include <linux/mmiotrace.h> /* kmmio_handler, ... */
14#include <linux/perf_event.h> /* perf_sw_event */
15#include <linux/hugetlb.h> /* hstate_index_to_shift */
16#include <linux/prefetch.h> /* prefetchw */
17#include <linux/context_tracking.h> /* exception_enter(), ... */
18#include <linux/uaccess.h> /* faulthandler_disabled() */
19#include <linux/efi.h> /* efi_recover_from_page_fault()*/
20#include <linux/mm_types.h>
21
22#include <asm/cpufeature.h> /* boot_cpu_has, ... */
23#include <asm/traps.h> /* dotraplinkage, ... */
24#include <asm/pgalloc.h> /* pgd_*(), ... */
25#include <asm/fixmap.h> /* VSYSCALL_ADDR */
26#include <asm/vsyscall.h> /* emulate_vsyscall */
27#include <asm/vm86.h> /* struct vm86 */
28#include <asm/mmu_context.h> /* vma_pkey() */
29#include <asm/efi.h> /* efi_recover_from_page_fault()*/
30#include <asm/desc.h> /* store_idt(), ... */
31#include <asm/cpu_entry_area.h> /* exception stack */
32
33#define CREATE_TRACE_POINTS
34#include <asm/trace/exceptions.h>
35
36/*
37 * Returns 0 if mmiotrace is disabled, or if the fault is not
38 * handled by mmiotrace:
39 */
40static nokprobe_inline int
41kmmio_fault(struct pt_regs *regs, unsigned long addr)
42{
43 if (unlikely(is_kmmio_active()))
44 if (kmmio_handler(regs, addr) == 1)
45 return -1;
46 return 0;
47}
48
49/*
50 * Prefetch quirks:
51 *
52 * 32-bit mode:
53 *
54 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
55 * Check that here and ignore it.
56 *
57 * 64-bit mode:
58 *
59 * Sometimes the CPU reports invalid exceptions on prefetch.
60 * Check that here and ignore it.
61 *
62 * Opcode checker based on code by Richard Brunner.
63 */
64static inline int
65check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
66 unsigned char opcode, int *prefetch)
67{
68 unsigned char instr_hi = opcode & 0xf0;
69 unsigned char instr_lo = opcode & 0x0f;
70
71 switch (instr_hi) {
72 case 0x20:
73 case 0x30:
74 /*
75 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
76 * In X86_64 long mode, the CPU will signal invalid
77 * opcode if some of these prefixes are present so
78 * X86_64 will never get here anyway
79 */
80 return ((instr_lo & 7) == 0x6);
81#ifdef CONFIG_X86_64
82 case 0x40:
83 /*
84 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
85 * Need to figure out under what instruction mode the
86 * instruction was issued. Could check the LDT for lm,
87 * but for now it's good enough to assume that long
88 * mode only uses well known segments or kernel.
89 */
90 return (!user_mode(regs) || user_64bit_mode(regs));
91#endif
92 case 0x60:
93 /* 0x64 thru 0x67 are valid prefixes in all modes. */
94 return (instr_lo & 0xC) == 0x4;
95 case 0xF0:
96 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
97 return !instr_lo || (instr_lo>>1) == 1;
98 case 0x00:
99 /* Prefetch instruction is 0x0F0D or 0x0F18 */
100 if (probe_kernel_address(instr, opcode))
101 return 0;
102
103 *prefetch = (instr_lo == 0xF) &&
104 (opcode == 0x0D || opcode == 0x18);
105 return 0;
106 default:
107 return 0;
108 }
109}
110
111static int
112is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
113{
114 unsigned char *max_instr;
115 unsigned char *instr;
116 int prefetch = 0;
117
118 /*
119 * If it was a exec (instruction fetch) fault on NX page, then
120 * do not ignore the fault:
121 */
122 if (error_code & X86_PF_INSTR)
123 return 0;
124
125 instr = (void *)convert_ip_to_linear(current, regs);
126 max_instr = instr + 15;
127
128 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
129 return 0;
130
131 while (instr < max_instr) {
132 unsigned char opcode;
133
134 if (probe_kernel_address(instr, opcode))
135 break;
136
137 instr++;
138
139 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
140 break;
141 }
142 return prefetch;
143}
144
145DEFINE_SPINLOCK(pgd_lock);
146LIST_HEAD(pgd_list);
147
148#ifdef CONFIG_X86_32
149static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
150{
151 unsigned index = pgd_index(address);
152 pgd_t *pgd_k;
153 p4d_t *p4d, *p4d_k;
154 pud_t *pud, *pud_k;
155 pmd_t *pmd, *pmd_k;
156
157 pgd += index;
158 pgd_k = init_mm.pgd + index;
159
160 if (!pgd_present(*pgd_k))
161 return NULL;
162
163 /*
164 * set_pgd(pgd, *pgd_k); here would be useless on PAE
165 * and redundant with the set_pmd() on non-PAE. As would
166 * set_p4d/set_pud.
167 */
168 p4d = p4d_offset(pgd, address);
169 p4d_k = p4d_offset(pgd_k, address);
170 if (!p4d_present(*p4d_k))
171 return NULL;
172
173 pud = pud_offset(p4d, address);
174 pud_k = pud_offset(p4d_k, address);
175 if (!pud_present(*pud_k))
176 return NULL;
177
178 pmd = pmd_offset(pud, address);
179 pmd_k = pmd_offset(pud_k, address);
180
181 if (pmd_present(*pmd) != pmd_present(*pmd_k))
182 set_pmd(pmd, *pmd_k);
183
184 if (!pmd_present(*pmd_k))
185 return NULL;
186 else
187 BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
188
189 return pmd_k;
190}
191
192void vmalloc_sync_all(void)
193{
194 unsigned long address;
195
196 if (SHARED_KERNEL_PMD)
197 return;
198
199 for (address = VMALLOC_START & PMD_MASK;
200 address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
201 address += PMD_SIZE) {
202 struct page *page;
203
204 spin_lock(&pgd_lock);
205 list_for_each_entry(page, &pgd_list, lru) {
206 spinlock_t *pgt_lock;
207
208 /* the pgt_lock only for Xen */
209 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
210
211 spin_lock(pgt_lock);
212 vmalloc_sync_one(page_address(page), address);
213 spin_unlock(pgt_lock);
214 }
215 spin_unlock(&pgd_lock);
216 }
217}
218
219/*
220 * 32-bit:
221 *
222 * Handle a fault on the vmalloc or module mapping area
223 */
224static noinline int vmalloc_fault(unsigned long address)
225{
226 unsigned long pgd_paddr;
227 pmd_t *pmd_k;
228 pte_t *pte_k;
229
230 /* Make sure we are in vmalloc area: */
231 if (!(address >= VMALLOC_START && address < VMALLOC_END))
232 return -1;
233
234 /*
235 * Synchronize this task's top level page-table
236 * with the 'reference' page table.
237 *
238 * Do _not_ use "current" here. We might be inside
239 * an interrupt in the middle of a task switch..
240 */
241 pgd_paddr = read_cr3_pa();
242 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
243 if (!pmd_k)
244 return -1;
245
246 if (pmd_large(*pmd_k))
247 return 0;
248
249 pte_k = pte_offset_kernel(pmd_k, address);
250 if (!pte_present(*pte_k))
251 return -1;
252
253 return 0;
254}
255NOKPROBE_SYMBOL(vmalloc_fault);
256
257/*
258 * Did it hit the DOS screen memory VA from vm86 mode?
259 */
260static inline void
261check_v8086_mode(struct pt_regs *regs, unsigned long address,
262 struct task_struct *tsk)
263{
264#ifdef CONFIG_VM86
265 unsigned long bit;
266
267 if (!v8086_mode(regs) || !tsk->thread.vm86)
268 return;
269
270 bit = (address - 0xA0000) >> PAGE_SHIFT;
271 if (bit < 32)
272 tsk->thread.vm86->screen_bitmap |= 1 << bit;
273#endif
274}
275
276static bool low_pfn(unsigned long pfn)
277{
278 return pfn < max_low_pfn;
279}
280
281static void dump_pagetable(unsigned long address)
282{
283 pgd_t *base = __va(read_cr3_pa());
284 pgd_t *pgd = &base[pgd_index(address)];
285 p4d_t *p4d;
286 pud_t *pud;
287 pmd_t *pmd;
288 pte_t *pte;
289
290#ifdef CONFIG_X86_PAE
291 pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
292 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
293 goto out;
294#define pr_pde pr_cont
295#else
296#define pr_pde pr_info
297#endif
298 p4d = p4d_offset(pgd, address);
299 pud = pud_offset(p4d, address);
300 pmd = pmd_offset(pud, address);
301 pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
302#undef pr_pde
303
304 /*
305 * We must not directly access the pte in the highpte
306 * case if the page table is located in highmem.
307 * And let's rather not kmap-atomic the pte, just in case
308 * it's allocated already:
309 */
310 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
311 goto out;
312
313 pte = pte_offset_kernel(pmd, address);
314 pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
315out:
316 pr_cont("\n");
317}
318
319#else /* CONFIG_X86_64: */
320
321void vmalloc_sync_all(void)
322{
323 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
324}
325
326/*
327 * 64-bit:
328 *
329 * Handle a fault on the vmalloc area
330 */
331static noinline int vmalloc_fault(unsigned long address)
332{
333 pgd_t *pgd, *pgd_k;
334 p4d_t *p4d, *p4d_k;
335 pud_t *pud;
336 pmd_t *pmd;
337 pte_t *pte;
338
339 /* Make sure we are in vmalloc area: */
340 if (!(address >= VMALLOC_START && address < VMALLOC_END))
341 return -1;
342
343 /*
344 * Copy kernel mappings over when needed. This can also
345 * happen within a race in page table update. In the later
346 * case just flush:
347 */
348 pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address);
349 pgd_k = pgd_offset_k(address);
350 if (pgd_none(*pgd_k))
351 return -1;
352
353 if (pgtable_l5_enabled()) {
354 if (pgd_none(*pgd)) {
355 set_pgd(pgd, *pgd_k);
356 arch_flush_lazy_mmu_mode();
357 } else {
358 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_k));
359 }
360 }
361
362 /* With 4-level paging, copying happens on the p4d level. */
363 p4d = p4d_offset(pgd, address);
364 p4d_k = p4d_offset(pgd_k, address);
365 if (p4d_none(*p4d_k))
366 return -1;
367
368 if (p4d_none(*p4d) && !pgtable_l5_enabled()) {
369 set_p4d(p4d, *p4d_k);
370 arch_flush_lazy_mmu_mode();
371 } else {
372 BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_k));
373 }
374
375 BUILD_BUG_ON(CONFIG_PGTABLE_LEVELS < 4);
376
377 pud = pud_offset(p4d, address);
378 if (pud_none(*pud))
379 return -1;
380
381 if (pud_large(*pud))
382 return 0;
383
384 pmd = pmd_offset(pud, address);
385 if (pmd_none(*pmd))
386 return -1;
387
388 if (pmd_large(*pmd))
389 return 0;
390
391 pte = pte_offset_kernel(pmd, address);
392 if (!pte_present(*pte))
393 return -1;
394
395 return 0;
396}
397NOKPROBE_SYMBOL(vmalloc_fault);
398
399#ifdef CONFIG_CPU_SUP_AMD
400static const char errata93_warning[] =
401KERN_ERR
402"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
403"******* Working around it, but it may cause SEGVs or burn power.\n"
404"******* Please consider a BIOS update.\n"
405"******* Disabling USB legacy in the BIOS may also help.\n";
406#endif
407
408/*
409 * No vm86 mode in 64-bit mode:
410 */
411static inline void
412check_v8086_mode(struct pt_regs *regs, unsigned long address,
413 struct task_struct *tsk)
414{
415}
416
417static int bad_address(void *p)
418{
419 unsigned long dummy;
420
421 return probe_kernel_address((unsigned long *)p, dummy);
422}
423
424static void dump_pagetable(unsigned long address)
425{
426 pgd_t *base = __va(read_cr3_pa());
427 pgd_t *pgd = base + pgd_index(address);
428 p4d_t *p4d;
429 pud_t *pud;
430 pmd_t *pmd;
431 pte_t *pte;
432
433 if (bad_address(pgd))
434 goto bad;
435
436 pr_info("PGD %lx ", pgd_val(*pgd));
437
438 if (!pgd_present(*pgd))
439 goto out;
440
441 p4d = p4d_offset(pgd, address);
442 if (bad_address(p4d))
443 goto bad;
444
445 pr_cont("P4D %lx ", p4d_val(*p4d));
446 if (!p4d_present(*p4d) || p4d_large(*p4d))
447 goto out;
448
449 pud = pud_offset(p4d, address);
450 if (bad_address(pud))
451 goto bad;
452
453 pr_cont("PUD %lx ", pud_val(*pud));
454 if (!pud_present(*pud) || pud_large(*pud))
455 goto out;
456
457 pmd = pmd_offset(pud, address);
458 if (bad_address(pmd))
459 goto bad;
460
461 pr_cont("PMD %lx ", pmd_val(*pmd));
462 if (!pmd_present(*pmd) || pmd_large(*pmd))
463 goto out;
464
465 pte = pte_offset_kernel(pmd, address);
466 if (bad_address(pte))
467 goto bad;
468
469 pr_cont("PTE %lx", pte_val(*pte));
470out:
471 pr_cont("\n");
472 return;
473bad:
474 pr_info("BAD\n");
475}
476
477#endif /* CONFIG_X86_64 */
478
479/*
480 * Workaround for K8 erratum #93 & buggy BIOS.
481 *
482 * BIOS SMM functions are required to use a specific workaround
483 * to avoid corruption of the 64bit RIP register on C stepping K8.
484 *
485 * A lot of BIOS that didn't get tested properly miss this.
486 *
487 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
488 * Try to work around it here.
489 *
490 * Note we only handle faults in kernel here.
491 * Does nothing on 32-bit.
492 */
493static int is_errata93(struct pt_regs *regs, unsigned long address)
494{
495#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
496 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
497 || boot_cpu_data.x86 != 0xf)
498 return 0;
499
500 if (address != regs->ip)
501 return 0;
502
503 if ((address >> 32) != 0)
504 return 0;
505
506 address |= 0xffffffffUL << 32;
507 if ((address >= (u64)_stext && address <= (u64)_etext) ||
508 (address >= MODULES_VADDR && address <= MODULES_END)) {
509 printk_once(errata93_warning);
510 regs->ip = address;
511 return 1;
512 }
513#endif
514 return 0;
515}
516
517/*
518 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
519 * to illegal addresses >4GB.
520 *
521 * We catch this in the page fault handler because these addresses
522 * are not reachable. Just detect this case and return. Any code
523 * segment in LDT is compatibility mode.
524 */
525static int is_errata100(struct pt_regs *regs, unsigned long address)
526{
527#ifdef CONFIG_X86_64
528 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
529 return 1;
530#endif
531 return 0;
532}
533
534static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
535{
536#ifdef CONFIG_X86_F00F_BUG
537 unsigned long nr;
538
539 /*
540 * Pentium F0 0F C7 C8 bug workaround:
541 */
542 if (boot_cpu_has_bug(X86_BUG_F00F)) {
543 nr = (address - idt_descr.address) >> 3;
544
545 if (nr == 6) {
546 do_invalid_op(regs, 0);
547 return 1;
548 }
549 }
550#endif
551 return 0;
552}
553
554static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
555{
556 u32 offset = (index >> 3) * sizeof(struct desc_struct);
557 unsigned long addr;
558 struct ldttss_desc desc;
559
560 if (index == 0) {
561 pr_alert("%s: NULL\n", name);
562 return;
563 }
564
565 if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
566 pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
567 return;
568 }
569
570 if (probe_kernel_read(&desc, (void *)(gdt->address + offset),
571 sizeof(struct ldttss_desc))) {
572 pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
573 name, index);
574 return;
575 }
576
577 addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
578#ifdef CONFIG_X86_64
579 addr |= ((u64)desc.base3 << 32);
580#endif
581 pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
582 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
583}
584
585static void
586show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
587{
588 if (!oops_may_print())
589 return;
590
591 if (error_code & X86_PF_INSTR) {
592 unsigned int level;
593 pgd_t *pgd;
594 pte_t *pte;
595
596 pgd = __va(read_cr3_pa());
597 pgd += pgd_index(address);
598
599 pte = lookup_address_in_pgd(pgd, address, &level);
600
601 if (pte && pte_present(*pte) && !pte_exec(*pte))
602 pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
603 from_kuid(&init_user_ns, current_uid()));
604 if (pte && pte_present(*pte) && pte_exec(*pte) &&
605 (pgd_flags(*pgd) & _PAGE_USER) &&
606 (__read_cr4() & X86_CR4_SMEP))
607 pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
608 from_kuid(&init_user_ns, current_uid()));
609 }
610
611 if (address < PAGE_SIZE && !user_mode(regs))
612 pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
613 (void *)address);
614 else
615 pr_alert("BUG: unable to handle page fault for address: %px\n",
616 (void *)address);
617
618 pr_alert("#PF: %s %s in %s mode\n",
619 (error_code & X86_PF_USER) ? "user" : "supervisor",
620 (error_code & X86_PF_INSTR) ? "instruction fetch" :
621 (error_code & X86_PF_WRITE) ? "write access" :
622 "read access",
623 user_mode(regs) ? "user" : "kernel");
624 pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
625 !(error_code & X86_PF_PROT) ? "not-present page" :
626 (error_code & X86_PF_RSVD) ? "reserved bit violation" :
627 (error_code & X86_PF_PK) ? "protection keys violation" :
628 "permissions violation");
629
630 if (!(error_code & X86_PF_USER) && user_mode(regs)) {
631 struct desc_ptr idt, gdt;
632 u16 ldtr, tr;
633
634 /*
635 * This can happen for quite a few reasons. The more obvious
636 * ones are faults accessing the GDT, or LDT. Perhaps
637 * surprisingly, if the CPU tries to deliver a benign or
638 * contributory exception from user code and gets a page fault
639 * during delivery, the page fault can be delivered as though
640 * it originated directly from user code. This could happen
641 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
642 * kernel or IST stack.
643 */
644 store_idt(&idt);
645
646 /* Usable even on Xen PV -- it's just slow. */
647 native_store_gdt(&gdt);
648
649 pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
650 idt.address, idt.size, gdt.address, gdt.size);
651
652 store_ldt(ldtr);
653 show_ldttss(&gdt, "LDTR", ldtr);
654
655 store_tr(tr);
656 show_ldttss(&gdt, "TR", tr);
657 }
658
659 dump_pagetable(address);
660}
661
662static noinline void
663pgtable_bad(struct pt_regs *regs, unsigned long error_code,
664 unsigned long address)
665{
666 struct task_struct *tsk;
667 unsigned long flags;
668 int sig;
669
670 flags = oops_begin();
671 tsk = current;
672 sig = SIGKILL;
673
674 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
675 tsk->comm, address);
676 dump_pagetable(address);
677
678 if (__die("Bad pagetable", regs, error_code))
679 sig = 0;
680
681 oops_end(flags, regs, sig);
682}
683
684static void set_signal_archinfo(unsigned long address,
685 unsigned long error_code)
686{
687 struct task_struct *tsk = current;
688
689 /*
690 * To avoid leaking information about the kernel page
691 * table layout, pretend that user-mode accesses to
692 * kernel addresses are always protection faults.
693 *
694 * NB: This means that failed vsyscalls with vsyscall=none
695 * will have the PROT bit. This doesn't leak any
696 * information and does not appear to cause any problems.
697 */
698 if (address >= TASK_SIZE_MAX)
699 error_code |= X86_PF_PROT;
700
701 tsk->thread.trap_nr = X86_TRAP_PF;
702 tsk->thread.error_code = error_code | X86_PF_USER;
703 tsk->thread.cr2 = address;
704}
705
706static noinline void
707no_context(struct pt_regs *regs, unsigned long error_code,
708 unsigned long address, int signal, int si_code)
709{
710 struct task_struct *tsk = current;
711 unsigned long flags;
712 int sig;
713
714 if (user_mode(regs)) {
715 /*
716 * This is an implicit supervisor-mode access from user
717 * mode. Bypass all the kernel-mode recovery code and just
718 * OOPS.
719 */
720 goto oops;
721 }
722
723 /* Are we prepared to handle this kernel fault? */
724 if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) {
725 /*
726 * Any interrupt that takes a fault gets the fixup. This makes
727 * the below recursive fault logic only apply to a faults from
728 * task context.
729 */
730 if (in_interrupt())
731 return;
732
733 /*
734 * Per the above we're !in_interrupt(), aka. task context.
735 *
736 * In this case we need to make sure we're not recursively
737 * faulting through the emulate_vsyscall() logic.
738 */
739 if (current->thread.sig_on_uaccess_err && signal) {
740 set_signal_archinfo(address, error_code);
741
742 /* XXX: hwpoison faults will set the wrong code. */
743 force_sig_fault(signal, si_code, (void __user *)address);
744 }
745
746 /*
747 * Barring that, we can do the fixup and be happy.
748 */
749 return;
750 }
751
752#ifdef CONFIG_VMAP_STACK
753 /*
754 * Stack overflow? During boot, we can fault near the initial
755 * stack in the direct map, but that's not an overflow -- check
756 * that we're in vmalloc space to avoid this.
757 */
758 if (is_vmalloc_addr((void *)address) &&
759 (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
760 address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
761 unsigned long stack = __this_cpu_ist_top_va(DF) - sizeof(void *);
762 /*
763 * We're likely to be running with very little stack space
764 * left. It's plausible that we'd hit this condition but
765 * double-fault even before we get this far, in which case
766 * we're fine: the double-fault handler will deal with it.
767 *
768 * We don't want to make it all the way into the oops code
769 * and then double-fault, though, because we're likely to
770 * break the console driver and lose most of the stack dump.
771 */
772 asm volatile ("movq %[stack], %%rsp\n\t"
773 "call handle_stack_overflow\n\t"
774 "1: jmp 1b"
775 : ASM_CALL_CONSTRAINT
776 : "D" ("kernel stack overflow (page fault)"),
777 "S" (regs), "d" (address),
778 [stack] "rm" (stack));
779 unreachable();
780 }
781#endif
782
783 /*
784 * 32-bit:
785 *
786 * Valid to do another page fault here, because if this fault
787 * had been triggered by is_prefetch fixup_exception would have
788 * handled it.
789 *
790 * 64-bit:
791 *
792 * Hall of shame of CPU/BIOS bugs.
793 */
794 if (is_prefetch(regs, error_code, address))
795 return;
796
797 if (is_errata93(regs, address))
798 return;
799
800 /*
801 * Buggy firmware could access regions which might page fault, try to
802 * recover from such faults.
803 */
804 if (IS_ENABLED(CONFIG_EFI))
805 efi_recover_from_page_fault(address);
806
807oops:
808 /*
809 * Oops. The kernel tried to access some bad page. We'll have to
810 * terminate things with extreme prejudice:
811 */
812 flags = oops_begin();
813
814 show_fault_oops(regs, error_code, address);
815
816 if (task_stack_end_corrupted(tsk))
817 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
818
819 sig = SIGKILL;
820 if (__die("Oops", regs, error_code))
821 sig = 0;
822
823 /* Executive summary in case the body of the oops scrolled away */
824 printk(KERN_DEFAULT "CR2: %016lx\n", address);
825
826 oops_end(flags, regs, sig);
827}
828
829/*
830 * Print out info about fatal segfaults, if the show_unhandled_signals
831 * sysctl is set:
832 */
833static inline void
834show_signal_msg(struct pt_regs *regs, unsigned long error_code,
835 unsigned long address, struct task_struct *tsk)
836{
837 const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
838
839 if (!unhandled_signal(tsk, SIGSEGV))
840 return;
841
842 if (!printk_ratelimit())
843 return;
844
845 printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
846 loglvl, tsk->comm, task_pid_nr(tsk), address,
847 (void *)regs->ip, (void *)regs->sp, error_code);
848
849 print_vma_addr(KERN_CONT " in ", regs->ip);
850
851 printk(KERN_CONT "\n");
852
853 show_opcodes(regs, loglvl);
854}
855
856/*
857 * The (legacy) vsyscall page is the long page in the kernel portion
858 * of the address space that has user-accessible permissions.
859 */
860static bool is_vsyscall_vaddr(unsigned long vaddr)
861{
862 return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR);
863}
864
865static void
866__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
867 unsigned long address, u32 pkey, int si_code)
868{
869 struct task_struct *tsk = current;
870
871 /* User mode accesses just cause a SIGSEGV */
872 if (user_mode(regs) && (error_code & X86_PF_USER)) {
873 /*
874 * It's possible to have interrupts off here:
875 */
876 local_irq_enable();
877
878 /*
879 * Valid to do another page fault here because this one came
880 * from user space:
881 */
882 if (is_prefetch(regs, error_code, address))
883 return;
884
885 if (is_errata100(regs, address))
886 return;
887
888 /*
889 * To avoid leaking information about the kernel page table
890 * layout, pretend that user-mode accesses to kernel addresses
891 * are always protection faults.
892 */
893 if (address >= TASK_SIZE_MAX)
894 error_code |= X86_PF_PROT;
895
896 if (likely(show_unhandled_signals))
897 show_signal_msg(regs, error_code, address, tsk);
898
899 set_signal_archinfo(address, error_code);
900
901 if (si_code == SEGV_PKUERR)
902 force_sig_pkuerr((void __user *)address, pkey);
903
904 force_sig_fault(SIGSEGV, si_code, (void __user *)address);
905
906 return;
907 }
908
909 if (is_f00f_bug(regs, address))
910 return;
911
912 no_context(regs, error_code, address, SIGSEGV, si_code);
913}
914
915static noinline void
916bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
917 unsigned long address)
918{
919 __bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
920}
921
922static void
923__bad_area(struct pt_regs *regs, unsigned long error_code,
924 unsigned long address, u32 pkey, int si_code)
925{
926 struct mm_struct *mm = current->mm;
927 /*
928 * Something tried to access memory that isn't in our memory map..
929 * Fix it, but check if it's kernel or user first..
930 */
931 up_read(&mm->mmap_sem);
932
933 __bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
934}
935
936static noinline void
937bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
938{
939 __bad_area(regs, error_code, address, 0, SEGV_MAPERR);
940}
941
942static inline bool bad_area_access_from_pkeys(unsigned long error_code,
943 struct vm_area_struct *vma)
944{
945 /* This code is always called on the current mm */
946 bool foreign = false;
947
948 if (!boot_cpu_has(X86_FEATURE_OSPKE))
949 return false;
950 if (error_code & X86_PF_PK)
951 return true;
952 /* this checks permission keys on the VMA: */
953 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
954 (error_code & X86_PF_INSTR), foreign))
955 return true;
956 return false;
957}
958
959static noinline void
960bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
961 unsigned long address, struct vm_area_struct *vma)
962{
963 /*
964 * This OSPKE check is not strictly necessary at runtime.
965 * But, doing it this way allows compiler optimizations
966 * if pkeys are compiled out.
967 */
968 if (bad_area_access_from_pkeys(error_code, vma)) {
969 /*
970 * A protection key fault means that the PKRU value did not allow
971 * access to some PTE. Userspace can figure out what PKRU was
972 * from the XSAVE state. This function captures the pkey from
973 * the vma and passes it to userspace so userspace can discover
974 * which protection key was set on the PTE.
975 *
976 * If we get here, we know that the hardware signaled a X86_PF_PK
977 * fault and that there was a VMA once we got in the fault
978 * handler. It does *not* guarantee that the VMA we find here
979 * was the one that we faulted on.
980 *
981 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
982 * 2. T1 : set PKRU to deny access to pkey=4, touches page
983 * 3. T1 : faults...
984 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
985 * 5. T1 : enters fault handler, takes mmap_sem, etc...
986 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
987 * faulted on a pte with its pkey=4.
988 */
989 u32 pkey = vma_pkey(vma);
990
991 __bad_area(regs, error_code, address, pkey, SEGV_PKUERR);
992 } else {
993 __bad_area(regs, error_code, address, 0, SEGV_ACCERR);
994 }
995}
996
997static void
998do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
999 vm_fault_t fault)
1000{
1001 /* Kernel mode? Handle exceptions or die: */
1002 if (!(error_code & X86_PF_USER)) {
1003 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1004 return;
1005 }
1006
1007 /* User-space => ok to do another page fault: */
1008 if (is_prefetch(regs, error_code, address))
1009 return;
1010
1011 set_signal_archinfo(address, error_code);
1012
1013#ifdef CONFIG_MEMORY_FAILURE
1014 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
1015 struct task_struct *tsk = current;
1016 unsigned lsb = 0;
1017
1018 pr_err(
1019 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
1020 tsk->comm, tsk->pid, address);
1021 if (fault & VM_FAULT_HWPOISON_LARGE)
1022 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
1023 if (fault & VM_FAULT_HWPOISON)
1024 lsb = PAGE_SHIFT;
1025 force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
1026 return;
1027 }
1028#endif
1029 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
1030}
1031
1032static noinline void
1033mm_fault_error(struct pt_regs *regs, unsigned long error_code,
1034 unsigned long address, vm_fault_t fault)
1035{
1036 if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) {
1037 no_context(regs, error_code, address, 0, 0);
1038 return;
1039 }
1040
1041 if (fault & VM_FAULT_OOM) {
1042 /* Kernel mode? Handle exceptions or die: */
1043 if (!(error_code & X86_PF_USER)) {
1044 no_context(regs, error_code, address,
1045 SIGSEGV, SEGV_MAPERR);
1046 return;
1047 }
1048
1049 /*
1050 * We ran out of memory, call the OOM killer, and return the
1051 * userspace (which will retry the fault, or kill us if we got
1052 * oom-killed):
1053 */
1054 pagefault_out_of_memory();
1055 } else {
1056 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1057 VM_FAULT_HWPOISON_LARGE))
1058 do_sigbus(regs, error_code, address, fault);
1059 else if (fault & VM_FAULT_SIGSEGV)
1060 bad_area_nosemaphore(regs, error_code, address);
1061 else
1062 BUG();
1063 }
1064}
1065
1066static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
1067{
1068 if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
1069 return 0;
1070
1071 if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
1072 return 0;
1073
1074 return 1;
1075}
1076
1077/*
1078 * Handle a spurious fault caused by a stale TLB entry.
1079 *
1080 * This allows us to lazily refresh the TLB when increasing the
1081 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
1082 * eagerly is very expensive since that implies doing a full
1083 * cross-processor TLB flush, even if no stale TLB entries exist
1084 * on other processors.
1085 *
1086 * Spurious faults may only occur if the TLB contains an entry with
1087 * fewer permission than the page table entry. Non-present (P = 0)
1088 * and reserved bit (R = 1) faults are never spurious.
1089 *
1090 * There are no security implications to leaving a stale TLB when
1091 * increasing the permissions on a page.
1092 *
1093 * Returns non-zero if a spurious fault was handled, zero otherwise.
1094 *
1095 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1096 * (Optional Invalidation).
1097 */
1098static noinline int
1099spurious_kernel_fault(unsigned long error_code, unsigned long address)
1100{
1101 pgd_t *pgd;
1102 p4d_t *p4d;
1103 pud_t *pud;
1104 pmd_t *pmd;
1105 pte_t *pte;
1106 int ret;
1107
1108 /*
1109 * Only writes to RO or instruction fetches from NX may cause
1110 * spurious faults.
1111 *
1112 * These could be from user or supervisor accesses but the TLB
1113 * is only lazily flushed after a kernel mapping protection
1114 * change, so user accesses are not expected to cause spurious
1115 * faults.
1116 */
1117 if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1118 error_code != (X86_PF_INSTR | X86_PF_PROT))
1119 return 0;
1120
1121 pgd = init_mm.pgd + pgd_index(address);
1122 if (!pgd_present(*pgd))
1123 return 0;
1124
1125 p4d = p4d_offset(pgd, address);
1126 if (!p4d_present(*p4d))
1127 return 0;
1128
1129 if (p4d_large(*p4d))
1130 return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1131
1132 pud = pud_offset(p4d, address);
1133 if (!pud_present(*pud))
1134 return 0;
1135
1136 if (pud_large(*pud))
1137 return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1138
1139 pmd = pmd_offset(pud, address);
1140 if (!pmd_present(*pmd))
1141 return 0;
1142
1143 if (pmd_large(*pmd))
1144 return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1145
1146 pte = pte_offset_kernel(pmd, address);
1147 if (!pte_present(*pte))
1148 return 0;
1149
1150 ret = spurious_kernel_fault_check(error_code, pte);
1151 if (!ret)
1152 return 0;
1153
1154 /*
1155 * Make sure we have permissions in PMD.
1156 * If not, then there's a bug in the page tables:
1157 */
1158 ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1159 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1160
1161 return ret;
1162}
1163NOKPROBE_SYMBOL(spurious_kernel_fault);
1164
1165int show_unhandled_signals = 1;
1166
1167static inline int
1168access_error(unsigned long error_code, struct vm_area_struct *vma)
1169{
1170 /* This is only called for the current mm, so: */
1171 bool foreign = false;
1172
1173 /*
1174 * Read or write was blocked by protection keys. This is
1175 * always an unconditional error and can never result in
1176 * a follow-up action to resolve the fault, like a COW.
1177 */
1178 if (error_code & X86_PF_PK)
1179 return 1;
1180
1181 /*
1182 * Make sure to check the VMA so that we do not perform
1183 * faults just to hit a X86_PF_PK as soon as we fill in a
1184 * page.
1185 */
1186 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1187 (error_code & X86_PF_INSTR), foreign))
1188 return 1;
1189
1190 if (error_code & X86_PF_WRITE) {
1191 /* write, present and write, not present: */
1192 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1193 return 1;
1194 return 0;
1195 }
1196
1197 /* read, present: */
1198 if (unlikely(error_code & X86_PF_PROT))
1199 return 1;
1200
1201 /* read, not present: */
1202 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1203 return 1;
1204
1205 return 0;
1206}
1207
1208static int fault_in_kernel_space(unsigned long address)
1209{
1210 /*
1211 * On 64-bit systems, the vsyscall page is at an address above
1212 * TASK_SIZE_MAX, but is not considered part of the kernel
1213 * address space.
1214 */
1215 if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1216 return false;
1217
1218 return address >= TASK_SIZE_MAX;
1219}
1220
1221/*
1222 * Called for all faults where 'address' is part of the kernel address
1223 * space. Might get called for faults that originate from *code* that
1224 * ran in userspace or the kernel.
1225 */
1226static void
1227do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1228 unsigned long address)
1229{
1230 /*
1231 * Protection keys exceptions only happen on user pages. We
1232 * have no user pages in the kernel portion of the address
1233 * space, so do not expect them here.
1234 */
1235 WARN_ON_ONCE(hw_error_code & X86_PF_PK);
1236
1237 /*
1238 * We can fault-in kernel-space virtual memory on-demand. The
1239 * 'reference' page table is init_mm.pgd.
1240 *
1241 * NOTE! We MUST NOT take any locks for this case. We may
1242 * be in an interrupt or a critical region, and should
1243 * only copy the information from the master page table,
1244 * nothing more.
1245 *
1246 * Before doing this on-demand faulting, ensure that the
1247 * fault is not any of the following:
1248 * 1. A fault on a PTE with a reserved bit set.
1249 * 2. A fault caused by a user-mode access. (Do not demand-
1250 * fault kernel memory due to user-mode accesses).
1251 * 3. A fault caused by a page-level protection violation.
1252 * (A demand fault would be on a non-present page which
1253 * would have X86_PF_PROT==0).
1254 */
1255 if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1256 if (vmalloc_fault(address) >= 0)
1257 return;
1258 }
1259
1260 /* Was the fault spurious, caused by lazy TLB invalidation? */
1261 if (spurious_kernel_fault(hw_error_code, address))
1262 return;
1263
1264 /* kprobes don't want to hook the spurious faults: */
1265 if (kprobe_page_fault(regs, X86_TRAP_PF))
1266 return;
1267
1268 /*
1269 * Note, despite being a "bad area", there are quite a few
1270 * acceptable reasons to get here, such as erratum fixups
1271 * and handling kernel code that can fault, like get_user().
1272 *
1273 * Don't take the mm semaphore here. If we fixup a prefetch
1274 * fault we could otherwise deadlock:
1275 */
1276 bad_area_nosemaphore(regs, hw_error_code, address);
1277}
1278NOKPROBE_SYMBOL(do_kern_addr_fault);
1279
1280/* Handle faults in the user portion of the address space */
1281static inline
1282void do_user_addr_fault(struct pt_regs *regs,
1283 unsigned long hw_error_code,
1284 unsigned long address)
1285{
1286 struct vm_area_struct *vma;
1287 struct task_struct *tsk;
1288 struct mm_struct *mm;
1289 vm_fault_t fault, major = 0;
1290 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1291
1292 tsk = current;
1293 mm = tsk->mm;
1294
1295 /* kprobes don't want to hook the spurious faults: */
1296 if (unlikely(kprobe_page_fault(regs, X86_TRAP_PF)))
1297 return;
1298
1299 /*
1300 * Reserved bits are never expected to be set on
1301 * entries in the user portion of the page tables.
1302 */
1303 if (unlikely(hw_error_code & X86_PF_RSVD))
1304 pgtable_bad(regs, hw_error_code, address);
1305
1306 /*
1307 * If SMAP is on, check for invalid kernel (supervisor) access to user
1308 * pages in the user address space. The odd case here is WRUSS,
1309 * which, according to the preliminary documentation, does not respect
1310 * SMAP and will have the USER bit set so, in all cases, SMAP
1311 * enforcement appears to be consistent with the USER bit.
1312 */
1313 if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1314 !(hw_error_code & X86_PF_USER) &&
1315 !(regs->flags & X86_EFLAGS_AC)))
1316 {
1317 bad_area_nosemaphore(regs, hw_error_code, address);
1318 return;
1319 }
1320
1321 /*
1322 * If we're in an interrupt, have no user context or are running
1323 * in a region with pagefaults disabled then we must not take the fault
1324 */
1325 if (unlikely(faulthandler_disabled() || !mm)) {
1326 bad_area_nosemaphore(regs, hw_error_code, address);
1327 return;
1328 }
1329
1330 /*
1331 * It's safe to allow irq's after cr2 has been saved and the
1332 * vmalloc fault has been handled.
1333 *
1334 * User-mode registers count as a user access even for any
1335 * potential system fault or CPU buglet:
1336 */
1337 if (user_mode(regs)) {
1338 local_irq_enable();
1339 flags |= FAULT_FLAG_USER;
1340 } else {
1341 if (regs->flags & X86_EFLAGS_IF)
1342 local_irq_enable();
1343 }
1344
1345 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1346
1347 if (hw_error_code & X86_PF_WRITE)
1348 flags |= FAULT_FLAG_WRITE;
1349 if (hw_error_code & X86_PF_INSTR)
1350 flags |= FAULT_FLAG_INSTRUCTION;
1351
1352#ifdef CONFIG_X86_64
1353 /*
1354 * Faults in the vsyscall page might need emulation. The
1355 * vsyscall page is at a high address (>PAGE_OFFSET), but is
1356 * considered to be part of the user address space.
1357 *
1358 * The vsyscall page does not have a "real" VMA, so do this
1359 * emulation before we go searching for VMAs.
1360 *
1361 * PKRU never rejects instruction fetches, so we don't need
1362 * to consider the PF_PK bit.
1363 */
1364 if (is_vsyscall_vaddr(address)) {
1365 if (emulate_vsyscall(hw_error_code, regs, address))
1366 return;
1367 }
1368#endif
1369
1370 /*
1371 * Kernel-mode access to the user address space should only occur
1372 * on well-defined single instructions listed in the exception
1373 * tables. But, an erroneous kernel fault occurring outside one of
1374 * those areas which also holds mmap_sem might deadlock attempting
1375 * to validate the fault against the address space.
1376 *
1377 * Only do the expensive exception table search when we might be at
1378 * risk of a deadlock. This happens if we
1379 * 1. Failed to acquire mmap_sem, and
1380 * 2. The access did not originate in userspace.
1381 */
1382 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1383 if (!user_mode(regs) && !search_exception_tables(regs->ip)) {
1384 /*
1385 * Fault from code in kernel from
1386 * which we do not expect faults.
1387 */
1388 bad_area_nosemaphore(regs, hw_error_code, address);
1389 return;
1390 }
1391retry:
1392 down_read(&mm->mmap_sem);
1393 } else {
1394 /*
1395 * The above down_read_trylock() might have succeeded in
1396 * which case we'll have missed the might_sleep() from
1397 * down_read():
1398 */
1399 might_sleep();
1400 }
1401
1402 vma = find_vma(mm, address);
1403 if (unlikely(!vma)) {
1404 bad_area(regs, hw_error_code, address);
1405 return;
1406 }
1407 if (likely(vma->vm_start <= address))
1408 goto good_area;
1409 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1410 bad_area(regs, hw_error_code, address);
1411 return;
1412 }
1413 if (unlikely(expand_stack(vma, address))) {
1414 bad_area(regs, hw_error_code, address);
1415 return;
1416 }
1417
1418 /*
1419 * Ok, we have a good vm_area for this memory access, so
1420 * we can handle it..
1421 */
1422good_area:
1423 if (unlikely(access_error(hw_error_code, vma))) {
1424 bad_area_access_error(regs, hw_error_code, address, vma);
1425 return;
1426 }
1427
1428 /*
1429 * If for any reason at all we couldn't handle the fault,
1430 * make sure we exit gracefully rather than endlessly redo
1431 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1432 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1433 *
1434 * Note that handle_userfault() may also release and reacquire mmap_sem
1435 * (and not return with VM_FAULT_RETRY), when returning to userland to
1436 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1437 * (potentially after handling any pending signal during the return to
1438 * userland). The return to userland is identified whenever
1439 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1440 */
1441 fault = handle_mm_fault(vma, address, flags);
1442 major |= fault & VM_FAULT_MAJOR;
1443
1444 /*
1445 * If we need to retry the mmap_sem has already been released,
1446 * and if there is a fatal signal pending there is no guarantee
1447 * that we made any progress. Handle this case first.
1448 */
1449 if (unlikely(fault & VM_FAULT_RETRY)) {
1450 /* Retry at most once */
1451 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1452 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1453 flags |= FAULT_FLAG_TRIED;
1454 if (!fatal_signal_pending(tsk))
1455 goto retry;
1456 }
1457
1458 /* User mode? Just return to handle the fatal exception */
1459 if (flags & FAULT_FLAG_USER)
1460 return;
1461
1462 /* Not returning to user mode? Handle exceptions or die: */
1463 no_context(regs, hw_error_code, address, SIGBUS, BUS_ADRERR);
1464 return;
1465 }
1466
1467 up_read(&mm->mmap_sem);
1468 if (unlikely(fault & VM_FAULT_ERROR)) {
1469 mm_fault_error(regs, hw_error_code, address, fault);
1470 return;
1471 }
1472
1473 /*
1474 * Major/minor page fault accounting. If any of the events
1475 * returned VM_FAULT_MAJOR, we account it as a major fault.
1476 */
1477 if (major) {
1478 tsk->maj_flt++;
1479 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1480 } else {
1481 tsk->min_flt++;
1482 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1483 }
1484
1485 check_v8086_mode(regs, address, tsk);
1486}
1487NOKPROBE_SYMBOL(do_user_addr_fault);
1488
1489/*
1490 * Explicitly marked noinline such that the function tracer sees this as the
1491 * page_fault entry point.
1492 */
1493static noinline void
1494__do_page_fault(struct pt_regs *regs, unsigned long hw_error_code,
1495 unsigned long address)
1496{
1497 prefetchw(¤t->mm->mmap_sem);
1498
1499 if (unlikely(kmmio_fault(regs, address)))
1500 return;
1501
1502 /* Was the fault on kernel-controlled part of the address space? */
1503 if (unlikely(fault_in_kernel_space(address)))
1504 do_kern_addr_fault(regs, hw_error_code, address);
1505 else
1506 do_user_addr_fault(regs, hw_error_code, address);
1507}
1508NOKPROBE_SYMBOL(__do_page_fault);
1509
1510static __always_inline void
1511trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
1512 unsigned long address)
1513{
1514 if (!trace_pagefault_enabled())
1515 return;
1516
1517 if (user_mode(regs))
1518 trace_page_fault_user(address, regs, error_code);
1519 else
1520 trace_page_fault_kernel(address, regs, error_code);
1521}
1522
1523dotraplinkage void
1524do_page_fault(struct pt_regs *regs, unsigned long error_code, unsigned long address)
1525{
1526 enum ctx_state prev_state;
1527
1528 prev_state = exception_enter();
1529 trace_page_fault_entries(regs, error_code, address);
1530 __do_page_fault(regs, error_code, address);
1531 exception_exit(prev_state);
1532}
1533NOKPROBE_SYMBOL(do_page_fault);
1/*
2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
5 */
6#include <linux/sched.h> /* test_thread_flag(), ... */
7#include <linux/kdebug.h> /* oops_begin/end, ... */
8#include <linux/module.h> /* search_exception_table */
9#include <linux/bootmem.h> /* max_low_pfn */
10#include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
11#include <linux/mmiotrace.h> /* kmmio_handler, ... */
12#include <linux/perf_event.h> /* perf_sw_event */
13#include <linux/hugetlb.h> /* hstate_index_to_shift */
14#include <linux/prefetch.h> /* prefetchw */
15#include <linux/context_tracking.h> /* exception_enter(), ... */
16#include <linux/uaccess.h> /* faulthandler_disabled() */
17
18#include <asm/cpufeature.h> /* boot_cpu_has, ... */
19#include <asm/traps.h> /* dotraplinkage, ... */
20#include <asm/pgalloc.h> /* pgd_*(), ... */
21#include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
22#include <asm/fixmap.h> /* VSYSCALL_ADDR */
23#include <asm/vsyscall.h> /* emulate_vsyscall */
24#include <asm/vm86.h> /* struct vm86 */
25#include <asm/mmu_context.h> /* vma_pkey() */
26
27#define CREATE_TRACE_POINTS
28#include <asm/trace/exceptions.h>
29
30/*
31 * Page fault error code bits:
32 *
33 * bit 0 == 0: no page found 1: protection fault
34 * bit 1 == 0: read access 1: write access
35 * bit 2 == 0: kernel-mode access 1: user-mode access
36 * bit 3 == 1: use of reserved bit detected
37 * bit 4 == 1: fault was an instruction fetch
38 * bit 5 == 1: protection keys block access
39 */
40enum x86_pf_error_code {
41
42 PF_PROT = 1 << 0,
43 PF_WRITE = 1 << 1,
44 PF_USER = 1 << 2,
45 PF_RSVD = 1 << 3,
46 PF_INSTR = 1 << 4,
47 PF_PK = 1 << 5,
48};
49
50/*
51 * Returns 0 if mmiotrace is disabled, or if the fault is not
52 * handled by mmiotrace:
53 */
54static nokprobe_inline int
55kmmio_fault(struct pt_regs *regs, unsigned long addr)
56{
57 if (unlikely(is_kmmio_active()))
58 if (kmmio_handler(regs, addr) == 1)
59 return -1;
60 return 0;
61}
62
63static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
64{
65 int ret = 0;
66
67 /* kprobe_running() needs smp_processor_id() */
68 if (kprobes_built_in() && !user_mode(regs)) {
69 preempt_disable();
70 if (kprobe_running() && kprobe_fault_handler(regs, 14))
71 ret = 1;
72 preempt_enable();
73 }
74
75 return ret;
76}
77
78/*
79 * Prefetch quirks:
80 *
81 * 32-bit mode:
82 *
83 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
84 * Check that here and ignore it.
85 *
86 * 64-bit mode:
87 *
88 * Sometimes the CPU reports invalid exceptions on prefetch.
89 * Check that here and ignore it.
90 *
91 * Opcode checker based on code by Richard Brunner.
92 */
93static inline int
94check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
95 unsigned char opcode, int *prefetch)
96{
97 unsigned char instr_hi = opcode & 0xf0;
98 unsigned char instr_lo = opcode & 0x0f;
99
100 switch (instr_hi) {
101 case 0x20:
102 case 0x30:
103 /*
104 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
105 * In X86_64 long mode, the CPU will signal invalid
106 * opcode if some of these prefixes are present so
107 * X86_64 will never get here anyway
108 */
109 return ((instr_lo & 7) == 0x6);
110#ifdef CONFIG_X86_64
111 case 0x40:
112 /*
113 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
114 * Need to figure out under what instruction mode the
115 * instruction was issued. Could check the LDT for lm,
116 * but for now it's good enough to assume that long
117 * mode only uses well known segments or kernel.
118 */
119 return (!user_mode(regs) || user_64bit_mode(regs));
120#endif
121 case 0x60:
122 /* 0x64 thru 0x67 are valid prefixes in all modes. */
123 return (instr_lo & 0xC) == 0x4;
124 case 0xF0:
125 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
126 return !instr_lo || (instr_lo>>1) == 1;
127 case 0x00:
128 /* Prefetch instruction is 0x0F0D or 0x0F18 */
129 if (probe_kernel_address(instr, opcode))
130 return 0;
131
132 *prefetch = (instr_lo == 0xF) &&
133 (opcode == 0x0D || opcode == 0x18);
134 return 0;
135 default:
136 return 0;
137 }
138}
139
140static int
141is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
142{
143 unsigned char *max_instr;
144 unsigned char *instr;
145 int prefetch = 0;
146
147 /*
148 * If it was a exec (instruction fetch) fault on NX page, then
149 * do not ignore the fault:
150 */
151 if (error_code & PF_INSTR)
152 return 0;
153
154 instr = (void *)convert_ip_to_linear(current, regs);
155 max_instr = instr + 15;
156
157 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
158 return 0;
159
160 while (instr < max_instr) {
161 unsigned char opcode;
162
163 if (probe_kernel_address(instr, opcode))
164 break;
165
166 instr++;
167
168 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
169 break;
170 }
171 return prefetch;
172}
173
174/*
175 * A protection key fault means that the PKRU value did not allow
176 * access to some PTE. Userspace can figure out what PKRU was
177 * from the XSAVE state, and this function fills out a field in
178 * siginfo so userspace can discover which protection key was set
179 * on the PTE.
180 *
181 * If we get here, we know that the hardware signaled a PF_PK
182 * fault and that there was a VMA once we got in the fault
183 * handler. It does *not* guarantee that the VMA we find here
184 * was the one that we faulted on.
185 *
186 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
187 * 2. T1 : set PKRU to deny access to pkey=4, touches page
188 * 3. T1 : faults...
189 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
190 * 5. T1 : enters fault handler, takes mmap_sem, etc...
191 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
192 * faulted on a pte with its pkey=4.
193 */
194static void fill_sig_info_pkey(int si_code, siginfo_t *info,
195 struct vm_area_struct *vma)
196{
197 /* This is effectively an #ifdef */
198 if (!boot_cpu_has(X86_FEATURE_OSPKE))
199 return;
200
201 /* Fault not from Protection Keys: nothing to do */
202 if (si_code != SEGV_PKUERR)
203 return;
204 /*
205 * force_sig_info_fault() is called from a number of
206 * contexts, some of which have a VMA and some of which
207 * do not. The PF_PK handing happens after we have a
208 * valid VMA, so we should never reach this without a
209 * valid VMA.
210 */
211 if (!vma) {
212 WARN_ONCE(1, "PKU fault with no VMA passed in");
213 info->si_pkey = 0;
214 return;
215 }
216 /*
217 * si_pkey should be thought of as a strong hint, but not
218 * absolutely guranteed to be 100% accurate because of
219 * the race explained above.
220 */
221 info->si_pkey = vma_pkey(vma);
222}
223
224static void
225force_sig_info_fault(int si_signo, int si_code, unsigned long address,
226 struct task_struct *tsk, struct vm_area_struct *vma,
227 int fault)
228{
229 unsigned lsb = 0;
230 siginfo_t info;
231
232 info.si_signo = si_signo;
233 info.si_errno = 0;
234 info.si_code = si_code;
235 info.si_addr = (void __user *)address;
236 if (fault & VM_FAULT_HWPOISON_LARGE)
237 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
238 if (fault & VM_FAULT_HWPOISON)
239 lsb = PAGE_SHIFT;
240 info.si_addr_lsb = lsb;
241
242 fill_sig_info_pkey(si_code, &info, vma);
243
244 force_sig_info(si_signo, &info, tsk);
245}
246
247DEFINE_SPINLOCK(pgd_lock);
248LIST_HEAD(pgd_list);
249
250#ifdef CONFIG_X86_32
251static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
252{
253 unsigned index = pgd_index(address);
254 pgd_t *pgd_k;
255 pud_t *pud, *pud_k;
256 pmd_t *pmd, *pmd_k;
257
258 pgd += index;
259 pgd_k = init_mm.pgd + index;
260
261 if (!pgd_present(*pgd_k))
262 return NULL;
263
264 /*
265 * set_pgd(pgd, *pgd_k); here would be useless on PAE
266 * and redundant with the set_pmd() on non-PAE. As would
267 * set_pud.
268 */
269 pud = pud_offset(pgd, address);
270 pud_k = pud_offset(pgd_k, address);
271 if (!pud_present(*pud_k))
272 return NULL;
273
274 pmd = pmd_offset(pud, address);
275 pmd_k = pmd_offset(pud_k, address);
276 if (!pmd_present(*pmd_k))
277 return NULL;
278
279 if (!pmd_present(*pmd))
280 set_pmd(pmd, *pmd_k);
281 else
282 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
283
284 return pmd_k;
285}
286
287void vmalloc_sync_all(void)
288{
289 unsigned long address;
290
291 if (SHARED_KERNEL_PMD)
292 return;
293
294 for (address = VMALLOC_START & PMD_MASK;
295 address >= TASK_SIZE && address < FIXADDR_TOP;
296 address += PMD_SIZE) {
297 struct page *page;
298
299 spin_lock(&pgd_lock);
300 list_for_each_entry(page, &pgd_list, lru) {
301 spinlock_t *pgt_lock;
302 pmd_t *ret;
303
304 /* the pgt_lock only for Xen */
305 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
306
307 spin_lock(pgt_lock);
308 ret = vmalloc_sync_one(page_address(page), address);
309 spin_unlock(pgt_lock);
310
311 if (!ret)
312 break;
313 }
314 spin_unlock(&pgd_lock);
315 }
316}
317
318/*
319 * 32-bit:
320 *
321 * Handle a fault on the vmalloc or module mapping area
322 */
323static noinline int vmalloc_fault(unsigned long address)
324{
325 unsigned long pgd_paddr;
326 pmd_t *pmd_k;
327 pte_t *pte_k;
328
329 /* Make sure we are in vmalloc area: */
330 if (!(address >= VMALLOC_START && address < VMALLOC_END))
331 return -1;
332
333 WARN_ON_ONCE(in_nmi());
334
335 /*
336 * Synchronize this task's top level page-table
337 * with the 'reference' page table.
338 *
339 * Do _not_ use "current" here. We might be inside
340 * an interrupt in the middle of a task switch..
341 */
342 pgd_paddr = read_cr3();
343 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
344 if (!pmd_k)
345 return -1;
346
347 if (pmd_huge(*pmd_k))
348 return 0;
349
350 pte_k = pte_offset_kernel(pmd_k, address);
351 if (!pte_present(*pte_k))
352 return -1;
353
354 return 0;
355}
356NOKPROBE_SYMBOL(vmalloc_fault);
357
358/*
359 * Did it hit the DOS screen memory VA from vm86 mode?
360 */
361static inline void
362check_v8086_mode(struct pt_regs *regs, unsigned long address,
363 struct task_struct *tsk)
364{
365#ifdef CONFIG_VM86
366 unsigned long bit;
367
368 if (!v8086_mode(regs) || !tsk->thread.vm86)
369 return;
370
371 bit = (address - 0xA0000) >> PAGE_SHIFT;
372 if (bit < 32)
373 tsk->thread.vm86->screen_bitmap |= 1 << bit;
374#endif
375}
376
377static bool low_pfn(unsigned long pfn)
378{
379 return pfn < max_low_pfn;
380}
381
382static void dump_pagetable(unsigned long address)
383{
384 pgd_t *base = __va(read_cr3());
385 pgd_t *pgd = &base[pgd_index(address)];
386 pmd_t *pmd;
387 pte_t *pte;
388
389#ifdef CONFIG_X86_PAE
390 printk("*pdpt = %016Lx ", pgd_val(*pgd));
391 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
392 goto out;
393#endif
394 pmd = pmd_offset(pud_offset(pgd, address), address);
395 printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
396
397 /*
398 * We must not directly access the pte in the highpte
399 * case if the page table is located in highmem.
400 * And let's rather not kmap-atomic the pte, just in case
401 * it's allocated already:
402 */
403 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
404 goto out;
405
406 pte = pte_offset_kernel(pmd, address);
407 printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
408out:
409 printk("\n");
410}
411
412#else /* CONFIG_X86_64: */
413
414void vmalloc_sync_all(void)
415{
416 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END, 0);
417}
418
419/*
420 * 64-bit:
421 *
422 * Handle a fault on the vmalloc area
423 */
424static noinline int vmalloc_fault(unsigned long address)
425{
426 pgd_t *pgd, *pgd_ref;
427 pud_t *pud, *pud_ref;
428 pmd_t *pmd, *pmd_ref;
429 pte_t *pte, *pte_ref;
430
431 /* Make sure we are in vmalloc area: */
432 if (!(address >= VMALLOC_START && address < VMALLOC_END))
433 return -1;
434
435 WARN_ON_ONCE(in_nmi());
436
437 /*
438 * Copy kernel mappings over when needed. This can also
439 * happen within a race in page table update. In the later
440 * case just flush:
441 */
442 pgd = pgd_offset(current->active_mm, address);
443 pgd_ref = pgd_offset_k(address);
444 if (pgd_none(*pgd_ref))
445 return -1;
446
447 if (pgd_none(*pgd)) {
448 set_pgd(pgd, *pgd_ref);
449 arch_flush_lazy_mmu_mode();
450 } else {
451 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
452 }
453
454 /*
455 * Below here mismatches are bugs because these lower tables
456 * are shared:
457 */
458
459 pud = pud_offset(pgd, address);
460 pud_ref = pud_offset(pgd_ref, address);
461 if (pud_none(*pud_ref))
462 return -1;
463
464 if (pud_none(*pud) || pud_pfn(*pud) != pud_pfn(*pud_ref))
465 BUG();
466
467 if (pud_huge(*pud))
468 return 0;
469
470 pmd = pmd_offset(pud, address);
471 pmd_ref = pmd_offset(pud_ref, address);
472 if (pmd_none(*pmd_ref))
473 return -1;
474
475 if (pmd_none(*pmd) || pmd_pfn(*pmd) != pmd_pfn(*pmd_ref))
476 BUG();
477
478 if (pmd_huge(*pmd))
479 return 0;
480
481 pte_ref = pte_offset_kernel(pmd_ref, address);
482 if (!pte_present(*pte_ref))
483 return -1;
484
485 pte = pte_offset_kernel(pmd, address);
486
487 /*
488 * Don't use pte_page here, because the mappings can point
489 * outside mem_map, and the NUMA hash lookup cannot handle
490 * that:
491 */
492 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
493 BUG();
494
495 return 0;
496}
497NOKPROBE_SYMBOL(vmalloc_fault);
498
499#ifdef CONFIG_CPU_SUP_AMD
500static const char errata93_warning[] =
501KERN_ERR
502"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
503"******* Working around it, but it may cause SEGVs or burn power.\n"
504"******* Please consider a BIOS update.\n"
505"******* Disabling USB legacy in the BIOS may also help.\n";
506#endif
507
508/*
509 * No vm86 mode in 64-bit mode:
510 */
511static inline void
512check_v8086_mode(struct pt_regs *regs, unsigned long address,
513 struct task_struct *tsk)
514{
515}
516
517static int bad_address(void *p)
518{
519 unsigned long dummy;
520
521 return probe_kernel_address((unsigned long *)p, dummy);
522}
523
524static void dump_pagetable(unsigned long address)
525{
526 pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
527 pgd_t *pgd = base + pgd_index(address);
528 pud_t *pud;
529 pmd_t *pmd;
530 pte_t *pte;
531
532 if (bad_address(pgd))
533 goto bad;
534
535 printk("PGD %lx ", pgd_val(*pgd));
536
537 if (!pgd_present(*pgd))
538 goto out;
539
540 pud = pud_offset(pgd, address);
541 if (bad_address(pud))
542 goto bad;
543
544 printk("PUD %lx ", pud_val(*pud));
545 if (!pud_present(*pud) || pud_large(*pud))
546 goto out;
547
548 pmd = pmd_offset(pud, address);
549 if (bad_address(pmd))
550 goto bad;
551
552 printk("PMD %lx ", pmd_val(*pmd));
553 if (!pmd_present(*pmd) || pmd_large(*pmd))
554 goto out;
555
556 pte = pte_offset_kernel(pmd, address);
557 if (bad_address(pte))
558 goto bad;
559
560 printk("PTE %lx", pte_val(*pte));
561out:
562 printk("\n");
563 return;
564bad:
565 printk("BAD\n");
566}
567
568#endif /* CONFIG_X86_64 */
569
570/*
571 * Workaround for K8 erratum #93 & buggy BIOS.
572 *
573 * BIOS SMM functions are required to use a specific workaround
574 * to avoid corruption of the 64bit RIP register on C stepping K8.
575 *
576 * A lot of BIOS that didn't get tested properly miss this.
577 *
578 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
579 * Try to work around it here.
580 *
581 * Note we only handle faults in kernel here.
582 * Does nothing on 32-bit.
583 */
584static int is_errata93(struct pt_regs *regs, unsigned long address)
585{
586#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
587 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
588 || boot_cpu_data.x86 != 0xf)
589 return 0;
590
591 if (address != regs->ip)
592 return 0;
593
594 if ((address >> 32) != 0)
595 return 0;
596
597 address |= 0xffffffffUL << 32;
598 if ((address >= (u64)_stext && address <= (u64)_etext) ||
599 (address >= MODULES_VADDR && address <= MODULES_END)) {
600 printk_once(errata93_warning);
601 regs->ip = address;
602 return 1;
603 }
604#endif
605 return 0;
606}
607
608/*
609 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
610 * to illegal addresses >4GB.
611 *
612 * We catch this in the page fault handler because these addresses
613 * are not reachable. Just detect this case and return. Any code
614 * segment in LDT is compatibility mode.
615 */
616static int is_errata100(struct pt_regs *regs, unsigned long address)
617{
618#ifdef CONFIG_X86_64
619 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
620 return 1;
621#endif
622 return 0;
623}
624
625static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
626{
627#ifdef CONFIG_X86_F00F_BUG
628 unsigned long nr;
629
630 /*
631 * Pentium F0 0F C7 C8 bug workaround:
632 */
633 if (boot_cpu_has_bug(X86_BUG_F00F)) {
634 nr = (address - idt_descr.address) >> 3;
635
636 if (nr == 6) {
637 do_invalid_op(regs, 0);
638 return 1;
639 }
640 }
641#endif
642 return 0;
643}
644
645static const char nx_warning[] = KERN_CRIT
646"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
647static const char smep_warning[] = KERN_CRIT
648"unable to execute userspace code (SMEP?) (uid: %d)\n";
649
650static void
651show_fault_oops(struct pt_regs *regs, unsigned long error_code,
652 unsigned long address)
653{
654 if (!oops_may_print())
655 return;
656
657 if (error_code & PF_INSTR) {
658 unsigned int level;
659 pgd_t *pgd;
660 pte_t *pte;
661
662 pgd = __va(read_cr3() & PHYSICAL_PAGE_MASK);
663 pgd += pgd_index(address);
664
665 pte = lookup_address_in_pgd(pgd, address, &level);
666
667 if (pte && pte_present(*pte) && !pte_exec(*pte))
668 printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
669 if (pte && pte_present(*pte) && pte_exec(*pte) &&
670 (pgd_flags(*pgd) & _PAGE_USER) &&
671 (__read_cr4() & X86_CR4_SMEP))
672 printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
673 }
674
675 printk(KERN_ALERT "BUG: unable to handle kernel ");
676 if (address < PAGE_SIZE)
677 printk(KERN_CONT "NULL pointer dereference");
678 else
679 printk(KERN_CONT "paging request");
680
681 printk(KERN_CONT " at %p\n", (void *) address);
682 printk(KERN_ALERT "IP:");
683 printk_address(regs->ip);
684
685 dump_pagetable(address);
686}
687
688static noinline void
689pgtable_bad(struct pt_regs *regs, unsigned long error_code,
690 unsigned long address)
691{
692 struct task_struct *tsk;
693 unsigned long flags;
694 int sig;
695
696 flags = oops_begin();
697 tsk = current;
698 sig = SIGKILL;
699
700 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
701 tsk->comm, address);
702 dump_pagetable(address);
703
704 tsk->thread.cr2 = address;
705 tsk->thread.trap_nr = X86_TRAP_PF;
706 tsk->thread.error_code = error_code;
707
708 if (__die("Bad pagetable", regs, error_code))
709 sig = 0;
710
711 oops_end(flags, regs, sig);
712}
713
714static noinline void
715no_context(struct pt_regs *regs, unsigned long error_code,
716 unsigned long address, int signal, int si_code)
717{
718 struct task_struct *tsk = current;
719 unsigned long flags;
720 int sig;
721 /* No context means no VMA to pass down */
722 struct vm_area_struct *vma = NULL;
723
724 /* Are we prepared to handle this kernel fault? */
725 if (fixup_exception(regs, X86_TRAP_PF)) {
726 /*
727 * Any interrupt that takes a fault gets the fixup. This makes
728 * the below recursive fault logic only apply to a faults from
729 * task context.
730 */
731 if (in_interrupt())
732 return;
733
734 /*
735 * Per the above we're !in_interrupt(), aka. task context.
736 *
737 * In this case we need to make sure we're not recursively
738 * faulting through the emulate_vsyscall() logic.
739 */
740 if (current_thread_info()->sig_on_uaccess_error && signal) {
741 tsk->thread.trap_nr = X86_TRAP_PF;
742 tsk->thread.error_code = error_code | PF_USER;
743 tsk->thread.cr2 = address;
744
745 /* XXX: hwpoison faults will set the wrong code. */
746 force_sig_info_fault(signal, si_code, address,
747 tsk, vma, 0);
748 }
749
750 /*
751 * Barring that, we can do the fixup and be happy.
752 */
753 return;
754 }
755
756 /*
757 * 32-bit:
758 *
759 * Valid to do another page fault here, because if this fault
760 * had been triggered by is_prefetch fixup_exception would have
761 * handled it.
762 *
763 * 64-bit:
764 *
765 * Hall of shame of CPU/BIOS bugs.
766 */
767 if (is_prefetch(regs, error_code, address))
768 return;
769
770 if (is_errata93(regs, address))
771 return;
772
773 /*
774 * Oops. The kernel tried to access some bad page. We'll have to
775 * terminate things with extreme prejudice:
776 */
777 flags = oops_begin();
778
779 show_fault_oops(regs, error_code, address);
780
781 if (task_stack_end_corrupted(tsk))
782 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
783
784 tsk->thread.cr2 = address;
785 tsk->thread.trap_nr = X86_TRAP_PF;
786 tsk->thread.error_code = error_code;
787
788 sig = SIGKILL;
789 if (__die("Oops", regs, error_code))
790 sig = 0;
791
792 /* Executive summary in case the body of the oops scrolled away */
793 printk(KERN_DEFAULT "CR2: %016lx\n", address);
794
795 oops_end(flags, regs, sig);
796}
797
798/*
799 * Print out info about fatal segfaults, if the show_unhandled_signals
800 * sysctl is set:
801 */
802static inline void
803show_signal_msg(struct pt_regs *regs, unsigned long error_code,
804 unsigned long address, struct task_struct *tsk)
805{
806 if (!unhandled_signal(tsk, SIGSEGV))
807 return;
808
809 if (!printk_ratelimit())
810 return;
811
812 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
813 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
814 tsk->comm, task_pid_nr(tsk), address,
815 (void *)regs->ip, (void *)regs->sp, error_code);
816
817 print_vma_addr(KERN_CONT " in ", regs->ip);
818
819 printk(KERN_CONT "\n");
820}
821
822static void
823__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
824 unsigned long address, struct vm_area_struct *vma,
825 int si_code)
826{
827 struct task_struct *tsk = current;
828
829 /* User mode accesses just cause a SIGSEGV */
830 if (error_code & PF_USER) {
831 /*
832 * It's possible to have interrupts off here:
833 */
834 local_irq_enable();
835
836 /*
837 * Valid to do another page fault here because this one came
838 * from user space:
839 */
840 if (is_prefetch(regs, error_code, address))
841 return;
842
843 if (is_errata100(regs, address))
844 return;
845
846#ifdef CONFIG_X86_64
847 /*
848 * Instruction fetch faults in the vsyscall page might need
849 * emulation.
850 */
851 if (unlikely((error_code & PF_INSTR) &&
852 ((address & ~0xfff) == VSYSCALL_ADDR))) {
853 if (emulate_vsyscall(regs, address))
854 return;
855 }
856#endif
857 /* Kernel addresses are always protection faults: */
858 if (address >= TASK_SIZE)
859 error_code |= PF_PROT;
860
861 if (likely(show_unhandled_signals))
862 show_signal_msg(regs, error_code, address, tsk);
863
864 tsk->thread.cr2 = address;
865 tsk->thread.error_code = error_code;
866 tsk->thread.trap_nr = X86_TRAP_PF;
867
868 force_sig_info_fault(SIGSEGV, si_code, address, tsk, vma, 0);
869
870 return;
871 }
872
873 if (is_f00f_bug(regs, address))
874 return;
875
876 no_context(regs, error_code, address, SIGSEGV, si_code);
877}
878
879static noinline void
880bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
881 unsigned long address, struct vm_area_struct *vma)
882{
883 __bad_area_nosemaphore(regs, error_code, address, vma, SEGV_MAPERR);
884}
885
886static void
887__bad_area(struct pt_regs *regs, unsigned long error_code,
888 unsigned long address, struct vm_area_struct *vma, int si_code)
889{
890 struct mm_struct *mm = current->mm;
891
892 /*
893 * Something tried to access memory that isn't in our memory map..
894 * Fix it, but check if it's kernel or user first..
895 */
896 up_read(&mm->mmap_sem);
897
898 __bad_area_nosemaphore(regs, error_code, address, vma, si_code);
899}
900
901static noinline void
902bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
903{
904 __bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
905}
906
907static inline bool bad_area_access_from_pkeys(unsigned long error_code,
908 struct vm_area_struct *vma)
909{
910 /* This code is always called on the current mm */
911 bool foreign = false;
912
913 if (!boot_cpu_has(X86_FEATURE_OSPKE))
914 return false;
915 if (error_code & PF_PK)
916 return true;
917 /* this checks permission keys on the VMA: */
918 if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
919 (error_code & PF_INSTR), foreign))
920 return true;
921 return false;
922}
923
924static noinline void
925bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
926 unsigned long address, struct vm_area_struct *vma)
927{
928 /*
929 * This OSPKE check is not strictly necessary at runtime.
930 * But, doing it this way allows compiler optimizations
931 * if pkeys are compiled out.
932 */
933 if (bad_area_access_from_pkeys(error_code, vma))
934 __bad_area(regs, error_code, address, vma, SEGV_PKUERR);
935 else
936 __bad_area(regs, error_code, address, vma, SEGV_ACCERR);
937}
938
939static void
940do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
941 struct vm_area_struct *vma, unsigned int fault)
942{
943 struct task_struct *tsk = current;
944 int code = BUS_ADRERR;
945
946 /* Kernel mode? Handle exceptions or die: */
947 if (!(error_code & PF_USER)) {
948 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
949 return;
950 }
951
952 /* User-space => ok to do another page fault: */
953 if (is_prefetch(regs, error_code, address))
954 return;
955
956 tsk->thread.cr2 = address;
957 tsk->thread.error_code = error_code;
958 tsk->thread.trap_nr = X86_TRAP_PF;
959
960#ifdef CONFIG_MEMORY_FAILURE
961 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
962 printk(KERN_ERR
963 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
964 tsk->comm, tsk->pid, address);
965 code = BUS_MCEERR_AR;
966 }
967#endif
968 force_sig_info_fault(SIGBUS, code, address, tsk, vma, fault);
969}
970
971static noinline void
972mm_fault_error(struct pt_regs *regs, unsigned long error_code,
973 unsigned long address, struct vm_area_struct *vma,
974 unsigned int fault)
975{
976 if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
977 no_context(regs, error_code, address, 0, 0);
978 return;
979 }
980
981 if (fault & VM_FAULT_OOM) {
982 /* Kernel mode? Handle exceptions or die: */
983 if (!(error_code & PF_USER)) {
984 no_context(regs, error_code, address,
985 SIGSEGV, SEGV_MAPERR);
986 return;
987 }
988
989 /*
990 * We ran out of memory, call the OOM killer, and return the
991 * userspace (which will retry the fault, or kill us if we got
992 * oom-killed):
993 */
994 pagefault_out_of_memory();
995 } else {
996 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
997 VM_FAULT_HWPOISON_LARGE))
998 do_sigbus(regs, error_code, address, vma, fault);
999 else if (fault & VM_FAULT_SIGSEGV)
1000 bad_area_nosemaphore(regs, error_code, address, vma);
1001 else
1002 BUG();
1003 }
1004}
1005
1006static int spurious_fault_check(unsigned long error_code, pte_t *pte)
1007{
1008 if ((error_code & PF_WRITE) && !pte_write(*pte))
1009 return 0;
1010
1011 if ((error_code & PF_INSTR) && !pte_exec(*pte))
1012 return 0;
1013 /*
1014 * Note: We do not do lazy flushing on protection key
1015 * changes, so no spurious fault will ever set PF_PK.
1016 */
1017 if ((error_code & PF_PK))
1018 return 1;
1019
1020 return 1;
1021}
1022
1023/*
1024 * Handle a spurious fault caused by a stale TLB entry.
1025 *
1026 * This allows us to lazily refresh the TLB when increasing the
1027 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
1028 * eagerly is very expensive since that implies doing a full
1029 * cross-processor TLB flush, even if no stale TLB entries exist
1030 * on other processors.
1031 *
1032 * Spurious faults may only occur if the TLB contains an entry with
1033 * fewer permission than the page table entry. Non-present (P = 0)
1034 * and reserved bit (R = 1) faults are never spurious.
1035 *
1036 * There are no security implications to leaving a stale TLB when
1037 * increasing the permissions on a page.
1038 *
1039 * Returns non-zero if a spurious fault was handled, zero otherwise.
1040 *
1041 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1042 * (Optional Invalidation).
1043 */
1044static noinline int
1045spurious_fault(unsigned long error_code, unsigned long address)
1046{
1047 pgd_t *pgd;
1048 pud_t *pud;
1049 pmd_t *pmd;
1050 pte_t *pte;
1051 int ret;
1052
1053 /*
1054 * Only writes to RO or instruction fetches from NX may cause
1055 * spurious faults.
1056 *
1057 * These could be from user or supervisor accesses but the TLB
1058 * is only lazily flushed after a kernel mapping protection
1059 * change, so user accesses are not expected to cause spurious
1060 * faults.
1061 */
1062 if (error_code != (PF_WRITE | PF_PROT)
1063 && error_code != (PF_INSTR | PF_PROT))
1064 return 0;
1065
1066 pgd = init_mm.pgd + pgd_index(address);
1067 if (!pgd_present(*pgd))
1068 return 0;
1069
1070 pud = pud_offset(pgd, address);
1071 if (!pud_present(*pud))
1072 return 0;
1073
1074 if (pud_large(*pud))
1075 return spurious_fault_check(error_code, (pte_t *) pud);
1076
1077 pmd = pmd_offset(pud, address);
1078 if (!pmd_present(*pmd))
1079 return 0;
1080
1081 if (pmd_large(*pmd))
1082 return spurious_fault_check(error_code, (pte_t *) pmd);
1083
1084 pte = pte_offset_kernel(pmd, address);
1085 if (!pte_present(*pte))
1086 return 0;
1087
1088 ret = spurious_fault_check(error_code, pte);
1089 if (!ret)
1090 return 0;
1091
1092 /*
1093 * Make sure we have permissions in PMD.
1094 * If not, then there's a bug in the page tables:
1095 */
1096 ret = spurious_fault_check(error_code, (pte_t *) pmd);
1097 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1098
1099 return ret;
1100}
1101NOKPROBE_SYMBOL(spurious_fault);
1102
1103int show_unhandled_signals = 1;
1104
1105static inline int
1106access_error(unsigned long error_code, struct vm_area_struct *vma)
1107{
1108 /* This is only called for the current mm, so: */
1109 bool foreign = false;
1110 /*
1111 * Make sure to check the VMA so that we do not perform
1112 * faults just to hit a PF_PK as soon as we fill in a
1113 * page.
1114 */
1115 if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
1116 (error_code & PF_INSTR), foreign))
1117 return 1;
1118
1119 if (error_code & PF_WRITE) {
1120 /* write, present and write, not present: */
1121 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1122 return 1;
1123 return 0;
1124 }
1125
1126 /* read, present: */
1127 if (unlikely(error_code & PF_PROT))
1128 return 1;
1129
1130 /* read, not present: */
1131 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1132 return 1;
1133
1134 return 0;
1135}
1136
1137static int fault_in_kernel_space(unsigned long address)
1138{
1139 return address >= TASK_SIZE_MAX;
1140}
1141
1142static inline bool smap_violation(int error_code, struct pt_regs *regs)
1143{
1144 if (!IS_ENABLED(CONFIG_X86_SMAP))
1145 return false;
1146
1147 if (!static_cpu_has(X86_FEATURE_SMAP))
1148 return false;
1149
1150 if (error_code & PF_USER)
1151 return false;
1152
1153 if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
1154 return false;
1155
1156 return true;
1157}
1158
1159/*
1160 * This routine handles page faults. It determines the address,
1161 * and the problem, and then passes it off to one of the appropriate
1162 * routines.
1163 *
1164 * This function must have noinline because both callers
1165 * {,trace_}do_page_fault() have notrace on. Having this an actual function
1166 * guarantees there's a function trace entry.
1167 */
1168static noinline void
1169__do_page_fault(struct pt_regs *regs, unsigned long error_code,
1170 unsigned long address)
1171{
1172 struct vm_area_struct *vma;
1173 struct task_struct *tsk;
1174 struct mm_struct *mm;
1175 int fault, major = 0;
1176 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1177
1178 tsk = current;
1179 mm = tsk->mm;
1180
1181 /*
1182 * Detect and handle instructions that would cause a page fault for
1183 * both a tracked kernel page and a userspace page.
1184 */
1185 if (kmemcheck_active(regs))
1186 kmemcheck_hide(regs);
1187 prefetchw(&mm->mmap_sem);
1188
1189 if (unlikely(kmmio_fault(regs, address)))
1190 return;
1191
1192 /*
1193 * We fault-in kernel-space virtual memory on-demand. The
1194 * 'reference' page table is init_mm.pgd.
1195 *
1196 * NOTE! We MUST NOT take any locks for this case. We may
1197 * be in an interrupt or a critical region, and should
1198 * only copy the information from the master page table,
1199 * nothing more.
1200 *
1201 * This verifies that the fault happens in kernel space
1202 * (error_code & 4) == 0, and that the fault was not a
1203 * protection error (error_code & 9) == 0.
1204 */
1205 if (unlikely(fault_in_kernel_space(address))) {
1206 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1207 if (vmalloc_fault(address) >= 0)
1208 return;
1209
1210 if (kmemcheck_fault(regs, address, error_code))
1211 return;
1212 }
1213
1214 /* Can handle a stale RO->RW TLB: */
1215 if (spurious_fault(error_code, address))
1216 return;
1217
1218 /* kprobes don't want to hook the spurious faults: */
1219 if (kprobes_fault(regs))
1220 return;
1221 /*
1222 * Don't take the mm semaphore here. If we fixup a prefetch
1223 * fault we could otherwise deadlock:
1224 */
1225 bad_area_nosemaphore(regs, error_code, address, NULL);
1226
1227 return;
1228 }
1229
1230 /* kprobes don't want to hook the spurious faults: */
1231 if (unlikely(kprobes_fault(regs)))
1232 return;
1233
1234 if (unlikely(error_code & PF_RSVD))
1235 pgtable_bad(regs, error_code, address);
1236
1237 if (unlikely(smap_violation(error_code, regs))) {
1238 bad_area_nosemaphore(regs, error_code, address, NULL);
1239 return;
1240 }
1241
1242 /*
1243 * If we're in an interrupt, have no user context or are running
1244 * in a region with pagefaults disabled then we must not take the fault
1245 */
1246 if (unlikely(faulthandler_disabled() || !mm)) {
1247 bad_area_nosemaphore(regs, error_code, address, NULL);
1248 return;
1249 }
1250
1251 /*
1252 * It's safe to allow irq's after cr2 has been saved and the
1253 * vmalloc fault has been handled.
1254 *
1255 * User-mode registers count as a user access even for any
1256 * potential system fault or CPU buglet:
1257 */
1258 if (user_mode(regs)) {
1259 local_irq_enable();
1260 error_code |= PF_USER;
1261 flags |= FAULT_FLAG_USER;
1262 } else {
1263 if (regs->flags & X86_EFLAGS_IF)
1264 local_irq_enable();
1265 }
1266
1267 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1268
1269 if (error_code & PF_WRITE)
1270 flags |= FAULT_FLAG_WRITE;
1271 if (error_code & PF_INSTR)
1272 flags |= FAULT_FLAG_INSTRUCTION;
1273
1274 /*
1275 * When running in the kernel we expect faults to occur only to
1276 * addresses in user space. All other faults represent errors in
1277 * the kernel and should generate an OOPS. Unfortunately, in the
1278 * case of an erroneous fault occurring in a code path which already
1279 * holds mmap_sem we will deadlock attempting to validate the fault
1280 * against the address space. Luckily the kernel only validly
1281 * references user space from well defined areas of code, which are
1282 * listed in the exceptions table.
1283 *
1284 * As the vast majority of faults will be valid we will only perform
1285 * the source reference check when there is a possibility of a
1286 * deadlock. Attempt to lock the address space, if we cannot we then
1287 * validate the source. If this is invalid we can skip the address
1288 * space check, thus avoiding the deadlock:
1289 */
1290 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1291 if ((error_code & PF_USER) == 0 &&
1292 !search_exception_tables(regs->ip)) {
1293 bad_area_nosemaphore(regs, error_code, address, NULL);
1294 return;
1295 }
1296retry:
1297 down_read(&mm->mmap_sem);
1298 } else {
1299 /*
1300 * The above down_read_trylock() might have succeeded in
1301 * which case we'll have missed the might_sleep() from
1302 * down_read():
1303 */
1304 might_sleep();
1305 }
1306
1307 vma = find_vma(mm, address);
1308 if (unlikely(!vma)) {
1309 bad_area(regs, error_code, address);
1310 return;
1311 }
1312 if (likely(vma->vm_start <= address))
1313 goto good_area;
1314 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1315 bad_area(regs, error_code, address);
1316 return;
1317 }
1318 if (error_code & PF_USER) {
1319 /*
1320 * Accessing the stack below %sp is always a bug.
1321 * The large cushion allows instructions like enter
1322 * and pusha to work. ("enter $65535, $31" pushes
1323 * 32 pointers and then decrements %sp by 65535.)
1324 */
1325 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1326 bad_area(regs, error_code, address);
1327 return;
1328 }
1329 }
1330 if (unlikely(expand_stack(vma, address))) {
1331 bad_area(regs, error_code, address);
1332 return;
1333 }
1334
1335 /*
1336 * Ok, we have a good vm_area for this memory access, so
1337 * we can handle it..
1338 */
1339good_area:
1340 if (unlikely(access_error(error_code, vma))) {
1341 bad_area_access_error(regs, error_code, address, vma);
1342 return;
1343 }
1344
1345 /*
1346 * If for any reason at all we couldn't handle the fault,
1347 * make sure we exit gracefully rather than endlessly redo
1348 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1349 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1350 */
1351 fault = handle_mm_fault(mm, vma, address, flags);
1352 major |= fault & VM_FAULT_MAJOR;
1353
1354 /*
1355 * If we need to retry the mmap_sem has already been released,
1356 * and if there is a fatal signal pending there is no guarantee
1357 * that we made any progress. Handle this case first.
1358 */
1359 if (unlikely(fault & VM_FAULT_RETRY)) {
1360 /* Retry at most once */
1361 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1362 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1363 flags |= FAULT_FLAG_TRIED;
1364 if (!fatal_signal_pending(tsk))
1365 goto retry;
1366 }
1367
1368 /* User mode? Just return to handle the fatal exception */
1369 if (flags & FAULT_FLAG_USER)
1370 return;
1371
1372 /* Not returning to user mode? Handle exceptions or die: */
1373 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1374 return;
1375 }
1376
1377 up_read(&mm->mmap_sem);
1378 if (unlikely(fault & VM_FAULT_ERROR)) {
1379 mm_fault_error(regs, error_code, address, vma, fault);
1380 return;
1381 }
1382
1383 /*
1384 * Major/minor page fault accounting. If any of the events
1385 * returned VM_FAULT_MAJOR, we account it as a major fault.
1386 */
1387 if (major) {
1388 tsk->maj_flt++;
1389 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1390 } else {
1391 tsk->min_flt++;
1392 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1393 }
1394
1395 check_v8086_mode(regs, address, tsk);
1396}
1397NOKPROBE_SYMBOL(__do_page_fault);
1398
1399dotraplinkage void notrace
1400do_page_fault(struct pt_regs *regs, unsigned long error_code)
1401{
1402 unsigned long address = read_cr2(); /* Get the faulting address */
1403 enum ctx_state prev_state;
1404
1405 /*
1406 * We must have this function tagged with __kprobes, notrace and call
1407 * read_cr2() before calling anything else. To avoid calling any kind
1408 * of tracing machinery before we've observed the CR2 value.
1409 *
1410 * exception_{enter,exit}() contain all sorts of tracepoints.
1411 */
1412
1413 prev_state = exception_enter();
1414 __do_page_fault(regs, error_code, address);
1415 exception_exit(prev_state);
1416}
1417NOKPROBE_SYMBOL(do_page_fault);
1418
1419#ifdef CONFIG_TRACING
1420static nokprobe_inline void
1421trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1422 unsigned long error_code)
1423{
1424 if (user_mode(regs))
1425 trace_page_fault_user(address, regs, error_code);
1426 else
1427 trace_page_fault_kernel(address, regs, error_code);
1428}
1429
1430dotraplinkage void notrace
1431trace_do_page_fault(struct pt_regs *regs, unsigned long error_code)
1432{
1433 /*
1434 * The exception_enter and tracepoint processing could
1435 * trigger another page faults (user space callchain
1436 * reading) and destroy the original cr2 value, so read
1437 * the faulting address now.
1438 */
1439 unsigned long address = read_cr2();
1440 enum ctx_state prev_state;
1441
1442 prev_state = exception_enter();
1443 trace_page_fault_entries(address, regs, error_code);
1444 __do_page_fault(regs, error_code, address);
1445 exception_exit(prev_state);
1446}
1447NOKPROBE_SYMBOL(trace_do_page_fault);
1448#endif /* CONFIG_TRACING */