Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4 * Authors: Rusty Russell <rusty@rustcorp.com.au>
5 * Christoffer Dall <c.dall@virtualopensystems.com>
6 */
7
8#include <linux/bsearch.h>
9#include <linux/mm.h>
10#include <linux/kvm_host.h>
11#include <linux/uaccess.h>
12#include <asm/kvm_arm.h>
13#include <asm/kvm_host.h>
14#include <asm/kvm_emulate.h>
15#include <asm/kvm_coproc.h>
16#include <asm/kvm_mmu.h>
17#include <asm/cacheflush.h>
18#include <asm/cputype.h>
19#include <trace/events/kvm.h>
20#include <asm/vfp.h>
21#include "../vfp/vfpinstr.h"
22
23#define CREATE_TRACE_POINTS
24#include "trace.h"
25#include "coproc.h"
26
27
28/******************************************************************************
29 * Co-processor emulation
30 *****************************************************************************/
31
32static bool write_to_read_only(struct kvm_vcpu *vcpu,
33 const struct coproc_params *params)
34{
35 WARN_ONCE(1, "CP15 write to read-only register\n");
36 print_cp_instr(params);
37 kvm_inject_undefined(vcpu);
38 return false;
39}
40
41static bool read_from_write_only(struct kvm_vcpu *vcpu,
42 const struct coproc_params *params)
43{
44 WARN_ONCE(1, "CP15 read to write-only register\n");
45 print_cp_instr(params);
46 kvm_inject_undefined(vcpu);
47 return false;
48}
49
50/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
51static u32 cache_levels;
52
53/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
54#define CSSELR_MAX 12
55
56/*
57 * kvm_vcpu_arch.cp15 holds cp15 registers as an array of u32, but some
58 * of cp15 registers can be viewed either as couple of two u32 registers
59 * or one u64 register. Current u64 register encoding is that least
60 * significant u32 word is followed by most significant u32 word.
61 */
62static inline void vcpu_cp15_reg64_set(struct kvm_vcpu *vcpu,
63 const struct coproc_reg *r,
64 u64 val)
65{
66 vcpu_cp15(vcpu, r->reg) = val & 0xffffffff;
67 vcpu_cp15(vcpu, r->reg + 1) = val >> 32;
68}
69
70static inline u64 vcpu_cp15_reg64_get(struct kvm_vcpu *vcpu,
71 const struct coproc_reg *r)
72{
73 u64 val;
74
75 val = vcpu_cp15(vcpu, r->reg + 1);
76 val = val << 32;
77 val = val | vcpu_cp15(vcpu, r->reg);
78 return val;
79}
80
81int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
82{
83 kvm_inject_undefined(vcpu);
84 return 1;
85}
86
87int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
88{
89 /*
90 * We can get here, if the host has been built without VFPv3 support,
91 * but the guest attempted a floating point operation.
92 */
93 kvm_inject_undefined(vcpu);
94 return 1;
95}
96
97int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
98{
99 kvm_inject_undefined(vcpu);
100 return 1;
101}
102
103static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
104{
105 /*
106 * Compute guest MPIDR. We build a virtual cluster out of the
107 * vcpu_id, but we read the 'U' bit from the underlying
108 * hardware directly.
109 */
110 vcpu_cp15(vcpu, c0_MPIDR) = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) |
111 ((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) |
112 (vcpu->vcpu_id & 3));
113}
114
115/* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
116static bool access_actlr(struct kvm_vcpu *vcpu,
117 const struct coproc_params *p,
118 const struct coproc_reg *r)
119{
120 if (p->is_write)
121 return ignore_write(vcpu, p);
122
123 *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c1_ACTLR);
124 return true;
125}
126
127/* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
128static bool access_cbar(struct kvm_vcpu *vcpu,
129 const struct coproc_params *p,
130 const struct coproc_reg *r)
131{
132 if (p->is_write)
133 return write_to_read_only(vcpu, p);
134 return read_zero(vcpu, p);
135}
136
137/* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
138static bool access_l2ctlr(struct kvm_vcpu *vcpu,
139 const struct coproc_params *p,
140 const struct coproc_reg *r)
141{
142 if (p->is_write)
143 return ignore_write(vcpu, p);
144
145 *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c9_L2CTLR);
146 return true;
147}
148
149static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
150{
151 u32 l2ctlr, ncores;
152
153 asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr));
154 l2ctlr &= ~(3 << 24);
155 ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1;
156 /* How many cores in the current cluster and the next ones */
157 ncores -= (vcpu->vcpu_id & ~3);
158 /* Cap it to the maximum number of cores in a single cluster */
159 ncores = min(ncores, 3U);
160 l2ctlr |= (ncores & 3) << 24;
161
162 vcpu_cp15(vcpu, c9_L2CTLR) = l2ctlr;
163}
164
165static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
166{
167 u32 actlr;
168
169 /* ACTLR contains SMP bit: make sure you create all cpus first! */
170 asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
171 /* Make the SMP bit consistent with the guest configuration */
172 if (atomic_read(&vcpu->kvm->online_vcpus) > 1)
173 actlr |= 1U << 6;
174 else
175 actlr &= ~(1U << 6);
176
177 vcpu_cp15(vcpu, c1_ACTLR) = actlr;
178}
179
180/*
181 * TRM entries: A7:4.3.50, A15:4.3.49
182 * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
183 */
184static bool access_l2ectlr(struct kvm_vcpu *vcpu,
185 const struct coproc_params *p,
186 const struct coproc_reg *r)
187{
188 if (p->is_write)
189 return ignore_write(vcpu, p);
190
191 *vcpu_reg(vcpu, p->Rt1) = 0;
192 return true;
193}
194
195/*
196 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
197 */
198static bool access_dcsw(struct kvm_vcpu *vcpu,
199 const struct coproc_params *p,
200 const struct coproc_reg *r)
201{
202 if (!p->is_write)
203 return read_from_write_only(vcpu, p);
204
205 kvm_set_way_flush(vcpu);
206 return true;
207}
208
209/*
210 * Generic accessor for VM registers. Only called as long as HCR_TVM
211 * is set. If the guest enables the MMU, we stop trapping the VM
212 * sys_regs and leave it in complete control of the caches.
213 *
214 * Used by the cpu-specific code.
215 */
216bool access_vm_reg(struct kvm_vcpu *vcpu,
217 const struct coproc_params *p,
218 const struct coproc_reg *r)
219{
220 bool was_enabled = vcpu_has_cache_enabled(vcpu);
221
222 BUG_ON(!p->is_write);
223
224 vcpu_cp15(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt1);
225 if (p->is_64bit)
226 vcpu_cp15(vcpu, r->reg + 1) = *vcpu_reg(vcpu, p->Rt2);
227
228 kvm_toggle_cache(vcpu, was_enabled);
229 return true;
230}
231
232static bool access_gic_sgi(struct kvm_vcpu *vcpu,
233 const struct coproc_params *p,
234 const struct coproc_reg *r)
235{
236 u64 reg;
237 bool g1;
238
239 if (!p->is_write)
240 return read_from_write_only(vcpu, p);
241
242 reg = (u64)*vcpu_reg(vcpu, p->Rt2) << 32;
243 reg |= *vcpu_reg(vcpu, p->Rt1) ;
244
245 /*
246 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R access generates
247 * Group0 SGIs only, while ICC_SGI1R can generate either group,
248 * depending on the SGI configuration. ICC_ASGI1R is effectively
249 * equivalent to ICC_SGI0R, as there is no "alternative" secure
250 * group.
251 */
252 switch (p->Op1) {
253 default: /* Keep GCC quiet */
254 case 0: /* ICC_SGI1R */
255 g1 = true;
256 break;
257 case 1: /* ICC_ASGI1R */
258 case 2: /* ICC_SGI0R */
259 g1 = false;
260 break;
261 }
262
263 vgic_v3_dispatch_sgi(vcpu, reg, g1);
264
265 return true;
266}
267
268static bool access_gic_sre(struct kvm_vcpu *vcpu,
269 const struct coproc_params *p,
270 const struct coproc_reg *r)
271{
272 if (p->is_write)
273 return ignore_write(vcpu, p);
274
275 *vcpu_reg(vcpu, p->Rt1) = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
276
277 return true;
278}
279
280static bool access_cntp_tval(struct kvm_vcpu *vcpu,
281 const struct coproc_params *p,
282 const struct coproc_reg *r)
283{
284 u32 val;
285
286 if (p->is_write) {
287 val = *vcpu_reg(vcpu, p->Rt1);
288 kvm_arm_timer_write_sysreg(vcpu,
289 TIMER_PTIMER, TIMER_REG_TVAL, val);
290 } else {
291 val = kvm_arm_timer_read_sysreg(vcpu,
292 TIMER_PTIMER, TIMER_REG_TVAL);
293 *vcpu_reg(vcpu, p->Rt1) = val;
294 }
295
296 return true;
297}
298
299static bool access_cntp_ctl(struct kvm_vcpu *vcpu,
300 const struct coproc_params *p,
301 const struct coproc_reg *r)
302{
303 u32 val;
304
305 if (p->is_write) {
306 val = *vcpu_reg(vcpu, p->Rt1);
307 kvm_arm_timer_write_sysreg(vcpu,
308 TIMER_PTIMER, TIMER_REG_CTL, val);
309 } else {
310 val = kvm_arm_timer_read_sysreg(vcpu,
311 TIMER_PTIMER, TIMER_REG_CTL);
312 *vcpu_reg(vcpu, p->Rt1) = val;
313 }
314
315 return true;
316}
317
318static bool access_cntp_cval(struct kvm_vcpu *vcpu,
319 const struct coproc_params *p,
320 const struct coproc_reg *r)
321{
322 u64 val;
323
324 if (p->is_write) {
325 val = (u64)*vcpu_reg(vcpu, p->Rt2) << 32;
326 val |= *vcpu_reg(vcpu, p->Rt1);
327 kvm_arm_timer_write_sysreg(vcpu,
328 TIMER_PTIMER, TIMER_REG_CVAL, val);
329 } else {
330 val = kvm_arm_timer_read_sysreg(vcpu,
331 TIMER_PTIMER, TIMER_REG_CVAL);
332 *vcpu_reg(vcpu, p->Rt1) = val;
333 *vcpu_reg(vcpu, p->Rt2) = val >> 32;
334 }
335
336 return true;
337}
338
339/*
340 * We could trap ID_DFR0 and tell the guest we don't support performance
341 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
342 * NAKed, so it will read the PMCR anyway.
343 *
344 * Therefore we tell the guest we have 0 counters. Unfortunately, we
345 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
346 * all PM registers, which doesn't crash the guest kernel at least.
347 */
348static bool trap_raz_wi(struct kvm_vcpu *vcpu,
349 const struct coproc_params *p,
350 const struct coproc_reg *r)
351{
352 if (p->is_write)
353 return ignore_write(vcpu, p);
354 else
355 return read_zero(vcpu, p);
356}
357
358#define access_pmcr trap_raz_wi
359#define access_pmcntenset trap_raz_wi
360#define access_pmcntenclr trap_raz_wi
361#define access_pmovsr trap_raz_wi
362#define access_pmselr trap_raz_wi
363#define access_pmceid0 trap_raz_wi
364#define access_pmceid1 trap_raz_wi
365#define access_pmccntr trap_raz_wi
366#define access_pmxevtyper trap_raz_wi
367#define access_pmxevcntr trap_raz_wi
368#define access_pmuserenr trap_raz_wi
369#define access_pmintenset trap_raz_wi
370#define access_pmintenclr trap_raz_wi
371
372/* Architected CP15 registers.
373 * CRn denotes the primary register number, but is copied to the CRm in the
374 * user space API for 64-bit register access in line with the terminology used
375 * in the ARM ARM.
376 * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
377 * registers preceding 32-bit ones.
378 */
379static const struct coproc_reg cp15_regs[] = {
380 /* MPIDR: we use VMPIDR for guest access. */
381 { CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32,
382 NULL, reset_mpidr, c0_MPIDR },
383
384 /* CSSELR: swapped by interrupt.S. */
385 { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
386 NULL, reset_unknown, c0_CSSELR },
387
388 /* ACTLR: trapped by HCR.TAC bit. */
389 { CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32,
390 access_actlr, reset_actlr, c1_ACTLR },
391
392 /* CPACR: swapped by interrupt.S. */
393 { CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32,
394 NULL, reset_val, c1_CPACR, 0x00000000 },
395
396 /* TTBR0/TTBR1/TTBCR: swapped by interrupt.S. */
397 { CRm64( 2), Op1( 0), is64, access_vm_reg, reset_unknown64, c2_TTBR0 },
398 { CRn(2), CRm( 0), Op1( 0), Op2( 0), is32,
399 access_vm_reg, reset_unknown, c2_TTBR0 },
400 { CRn(2), CRm( 0), Op1( 0), Op2( 1), is32,
401 access_vm_reg, reset_unknown, c2_TTBR1 },
402 { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
403 access_vm_reg, reset_val, c2_TTBCR, 0x00000000 },
404 { CRm64( 2), Op1( 1), is64, access_vm_reg, reset_unknown64, c2_TTBR1 },
405
406
407 /* DACR: swapped by interrupt.S. */
408 { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
409 access_vm_reg, reset_unknown, c3_DACR },
410
411 /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
412 { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
413 access_vm_reg, reset_unknown, c5_DFSR },
414 { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
415 access_vm_reg, reset_unknown, c5_IFSR },
416 { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
417 access_vm_reg, reset_unknown, c5_ADFSR },
418 { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
419 access_vm_reg, reset_unknown, c5_AIFSR },
420
421 /* DFAR/IFAR: swapped by interrupt.S. */
422 { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
423 access_vm_reg, reset_unknown, c6_DFAR },
424 { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
425 access_vm_reg, reset_unknown, c6_IFAR },
426
427 /* PAR swapped by interrupt.S */
428 { CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
429
430 /*
431 * DC{C,I,CI}SW operations:
432 */
433 { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
434 { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
435 { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
436 /*
437 * L2CTLR access (guest wants to know #CPUs).
438 */
439 { CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32,
440 access_l2ctlr, reset_l2ctlr, c9_L2CTLR },
441 { CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr},
442
443 /*
444 * Dummy performance monitor implementation.
445 */
446 { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
447 { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
448 { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
449 { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
450 { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
451 { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
452 { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
453 { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
454 { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
455 { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
456 { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
457 { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
458 { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
459
460 /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
461 { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
462 access_vm_reg, reset_unknown, c10_PRRR},
463 { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
464 access_vm_reg, reset_unknown, c10_NMRR},
465
466 /* AMAIR0/AMAIR1: swapped by interrupt.S. */
467 { CRn(10), CRm( 3), Op1( 0), Op2( 0), is32,
468 access_vm_reg, reset_unknown, c10_AMAIR0},
469 { CRn(10), CRm( 3), Op1( 0), Op2( 1), is32,
470 access_vm_reg, reset_unknown, c10_AMAIR1},
471
472 /* ICC_SGI1R */
473 { CRm64(12), Op1( 0), is64, access_gic_sgi},
474
475 /* VBAR: swapped by interrupt.S. */
476 { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
477 NULL, reset_val, c12_VBAR, 0x00000000 },
478
479 /* ICC_ASGI1R */
480 { CRm64(12), Op1( 1), is64, access_gic_sgi},
481 /* ICC_SGI0R */
482 { CRm64(12), Op1( 2), is64, access_gic_sgi},
483 /* ICC_SRE */
484 { CRn(12), CRm(12), Op1( 0), Op2(5), is32, access_gic_sre },
485
486 /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
487 { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
488 access_vm_reg, reset_val, c13_CID, 0x00000000 },
489 { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
490 NULL, reset_unknown, c13_TID_URW },
491 { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
492 NULL, reset_unknown, c13_TID_URO },
493 { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
494 NULL, reset_unknown, c13_TID_PRIV },
495
496 /* CNTP */
497 { CRm64(14), Op1( 2), is64, access_cntp_cval},
498
499 /* CNTKCTL: swapped by interrupt.S. */
500 { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
501 NULL, reset_val, c14_CNTKCTL, 0x00000000 },
502
503 /* CNTP */
504 { CRn(14), CRm( 2), Op1( 0), Op2( 0), is32, access_cntp_tval },
505 { CRn(14), CRm( 2), Op1( 0), Op2( 1), is32, access_cntp_ctl },
506
507 /* The Configuration Base Address Register. */
508 { CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar},
509};
510
511static int check_reg_table(const struct coproc_reg *table, unsigned int n)
512{
513 unsigned int i;
514
515 for (i = 1; i < n; i++) {
516 if (cmp_reg(&table[i-1], &table[i]) >= 0) {
517 kvm_err("reg table %p out of order (%d)\n", table, i - 1);
518 return 1;
519 }
520 }
521
522 return 0;
523}
524
525/* Target specific emulation tables */
526static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
527
528void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
529{
530 BUG_ON(check_reg_table(table->table, table->num));
531 target_tables[table->target] = table;
532}
533
534/* Get specific register table for this target. */
535static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
536{
537 struct kvm_coproc_target_table *table;
538
539 table = target_tables[target];
540 *num = table->num;
541 return table->table;
542}
543
544#define reg_to_match_value(x) \
545 ({ \
546 unsigned long val; \
547 val = (x)->CRn << 11; \
548 val |= (x)->CRm << 7; \
549 val |= (x)->Op1 << 4; \
550 val |= (x)->Op2 << 1; \
551 val |= !(x)->is_64bit; \
552 val; \
553 })
554
555static int match_reg(const void *key, const void *elt)
556{
557 const unsigned long pval = (unsigned long)key;
558 const struct coproc_reg *r = elt;
559
560 return pval - reg_to_match_value(r);
561}
562
563static const struct coproc_reg *find_reg(const struct coproc_params *params,
564 const struct coproc_reg table[],
565 unsigned int num)
566{
567 unsigned long pval = reg_to_match_value(params);
568
569 return bsearch((void *)pval, table, num, sizeof(table[0]), match_reg);
570}
571
572static int emulate_cp15(struct kvm_vcpu *vcpu,
573 const struct coproc_params *params)
574{
575 size_t num;
576 const struct coproc_reg *table, *r;
577
578 trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
579 params->CRm, params->Op2, params->is_write);
580
581 table = get_target_table(vcpu->arch.target, &num);
582
583 /* Search target-specific then generic table. */
584 r = find_reg(params, table, num);
585 if (!r)
586 r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
587
588 if (likely(r)) {
589 /* If we don't have an accessor, we should never get here! */
590 BUG_ON(!r->access);
591
592 if (likely(r->access(vcpu, params, r))) {
593 /* Skip instruction, since it was emulated */
594 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
595 }
596 } else {
597 /* If access function fails, it should complain. */
598 kvm_err("Unsupported guest CP15 access at: %08lx [%08lx]\n",
599 *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
600 print_cp_instr(params);
601 kvm_inject_undefined(vcpu);
602 }
603
604 return 1;
605}
606
607static struct coproc_params decode_64bit_hsr(struct kvm_vcpu *vcpu)
608{
609 struct coproc_params params;
610
611 params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
612 params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
613 params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
614 params.is_64bit = true;
615
616 params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
617 params.Op2 = 0;
618 params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
619 params.CRm = 0;
620
621 return params;
622}
623
624/**
625 * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
626 * @vcpu: The VCPU pointer
627 * @run: The kvm_run struct
628 */
629int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
630{
631 struct coproc_params params = decode_64bit_hsr(vcpu);
632
633 return emulate_cp15(vcpu, ¶ms);
634}
635
636/**
637 * kvm_handle_cp14_64 -- handles a mrrc/mcrr trap on a guest CP14 access
638 * @vcpu: The VCPU pointer
639 * @run: The kvm_run struct
640 */
641int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
642{
643 struct coproc_params params = decode_64bit_hsr(vcpu);
644
645 /* raz_wi cp14 */
646 trap_raz_wi(vcpu, ¶ms, NULL);
647
648 /* handled */
649 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
650 return 1;
651}
652
653static void reset_coproc_regs(struct kvm_vcpu *vcpu,
654 const struct coproc_reg *table, size_t num,
655 unsigned long *bmap)
656{
657 unsigned long i;
658
659 for (i = 0; i < num; i++)
660 if (table[i].reset) {
661 int reg = table[i].reg;
662
663 table[i].reset(vcpu, &table[i]);
664 if (reg > 0 && reg < NR_CP15_REGS) {
665 set_bit(reg, bmap);
666 if (table[i].is_64bit)
667 set_bit(reg + 1, bmap);
668 }
669 }
670}
671
672static struct coproc_params decode_32bit_hsr(struct kvm_vcpu *vcpu)
673{
674 struct coproc_params params;
675
676 params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
677 params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
678 params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
679 params.is_64bit = false;
680
681 params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
682 params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
683 params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
684 params.Rt2 = 0;
685
686 return params;
687}
688
689/**
690 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
691 * @vcpu: The VCPU pointer
692 * @run: The kvm_run struct
693 */
694int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
695{
696 struct coproc_params params = decode_32bit_hsr(vcpu);
697 return emulate_cp15(vcpu, ¶ms);
698}
699
700/**
701 * kvm_handle_cp14_32 -- handles a mrc/mcr trap on a guest CP14 access
702 * @vcpu: The VCPU pointer
703 * @run: The kvm_run struct
704 */
705int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
706{
707 struct coproc_params params = decode_32bit_hsr(vcpu);
708
709 /* raz_wi cp14 */
710 trap_raz_wi(vcpu, ¶ms, NULL);
711
712 /* handled */
713 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
714 return 1;
715}
716
717/******************************************************************************
718 * Userspace API
719 *****************************************************************************/
720
721static bool index_to_params(u64 id, struct coproc_params *params)
722{
723 switch (id & KVM_REG_SIZE_MASK) {
724 case KVM_REG_SIZE_U32:
725 /* Any unused index bits means it's not valid. */
726 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
727 | KVM_REG_ARM_COPROC_MASK
728 | KVM_REG_ARM_32_CRN_MASK
729 | KVM_REG_ARM_CRM_MASK
730 | KVM_REG_ARM_OPC1_MASK
731 | KVM_REG_ARM_32_OPC2_MASK))
732 return false;
733
734 params->is_64bit = false;
735 params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
736 >> KVM_REG_ARM_32_CRN_SHIFT);
737 params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
738 >> KVM_REG_ARM_CRM_SHIFT);
739 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
740 >> KVM_REG_ARM_OPC1_SHIFT);
741 params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
742 >> KVM_REG_ARM_32_OPC2_SHIFT);
743 return true;
744 case KVM_REG_SIZE_U64:
745 /* Any unused index bits means it's not valid. */
746 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
747 | KVM_REG_ARM_COPROC_MASK
748 | KVM_REG_ARM_CRM_MASK
749 | KVM_REG_ARM_OPC1_MASK))
750 return false;
751 params->is_64bit = true;
752 /* CRm to CRn: see cp15_to_index for details */
753 params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
754 >> KVM_REG_ARM_CRM_SHIFT);
755 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
756 >> KVM_REG_ARM_OPC1_SHIFT);
757 params->Op2 = 0;
758 params->CRm = 0;
759 return true;
760 default:
761 return false;
762 }
763}
764
765/* Decode an index value, and find the cp15 coproc_reg entry. */
766static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
767 u64 id)
768{
769 size_t num;
770 const struct coproc_reg *table, *r;
771 struct coproc_params params;
772
773 /* We only do cp15 for now. */
774 if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
775 return NULL;
776
777 if (!index_to_params(id, ¶ms))
778 return NULL;
779
780 table = get_target_table(vcpu->arch.target, &num);
781 r = find_reg(¶ms, table, num);
782 if (!r)
783 r = find_reg(¶ms, cp15_regs, ARRAY_SIZE(cp15_regs));
784
785 /* Not saved in the cp15 array? */
786 if (r && !r->reg)
787 r = NULL;
788
789 return r;
790}
791
792/*
793 * These are the invariant cp15 registers: we let the guest see the host
794 * versions of these, so they're part of the guest state.
795 *
796 * A future CPU may provide a mechanism to present different values to
797 * the guest, or a future kvm may trap them.
798 */
799/* Unfortunately, there's no register-argument for mrc, so generate. */
800#define FUNCTION_FOR32(crn, crm, op1, op2, name) \
801 static void get_##name(struct kvm_vcpu *v, \
802 const struct coproc_reg *r) \
803 { \
804 u32 val; \
805 \
806 asm volatile("mrc p15, " __stringify(op1) \
807 ", %0, c" __stringify(crn) \
808 ", c" __stringify(crm) \
809 ", " __stringify(op2) "\n" : "=r" (val)); \
810 ((struct coproc_reg *)r)->val = val; \
811 }
812
813FUNCTION_FOR32(0, 0, 0, 0, MIDR)
814FUNCTION_FOR32(0, 0, 0, 1, CTR)
815FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
816FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
817FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
818FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
819FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
820FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
821FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
822FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
823FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
824FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
825FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
826FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
827FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
828FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
829FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
830FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
831FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
832FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
833FUNCTION_FOR32(0, 0, 1, 7, AIDR)
834
835/* ->val is filled in by kvm_invariant_coproc_table_init() */
836static struct coproc_reg invariant_cp15[] = {
837 { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
838 { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
839 { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
840 { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
841 { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
842
843 { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
844 { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
845
846 { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
847 { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
848 { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
849 { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
850 { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
851 { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
852 { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
853 { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
854
855 { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
856 { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
857 { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
858 { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
859 { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
860 { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
861};
862
863/*
864 * Reads a register value from a userspace address to a kernel
865 * variable. Make sure that register size matches sizeof(*__val).
866 */
867static int reg_from_user(void *val, const void __user *uaddr, u64 id)
868{
869 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
870 return -EFAULT;
871 return 0;
872}
873
874/*
875 * Writes a register value to a userspace address from a kernel variable.
876 * Make sure that register size matches sizeof(*__val).
877 */
878static int reg_to_user(void __user *uaddr, const void *val, u64 id)
879{
880 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
881 return -EFAULT;
882 return 0;
883}
884
885static int get_invariant_cp15(u64 id, void __user *uaddr)
886{
887 struct coproc_params params;
888 const struct coproc_reg *r;
889 int ret;
890
891 if (!index_to_params(id, ¶ms))
892 return -ENOENT;
893
894 r = find_reg(¶ms, invariant_cp15, ARRAY_SIZE(invariant_cp15));
895 if (!r)
896 return -ENOENT;
897
898 ret = -ENOENT;
899 if (KVM_REG_SIZE(id) == 4) {
900 u32 val = r->val;
901
902 ret = reg_to_user(uaddr, &val, id);
903 } else if (KVM_REG_SIZE(id) == 8) {
904 ret = reg_to_user(uaddr, &r->val, id);
905 }
906 return ret;
907}
908
909static int set_invariant_cp15(u64 id, void __user *uaddr)
910{
911 struct coproc_params params;
912 const struct coproc_reg *r;
913 int err;
914 u64 val;
915
916 if (!index_to_params(id, ¶ms))
917 return -ENOENT;
918 r = find_reg(¶ms, invariant_cp15, ARRAY_SIZE(invariant_cp15));
919 if (!r)
920 return -ENOENT;
921
922 err = -ENOENT;
923 if (KVM_REG_SIZE(id) == 4) {
924 u32 val32;
925
926 err = reg_from_user(&val32, uaddr, id);
927 if (!err)
928 val = val32;
929 } else if (KVM_REG_SIZE(id) == 8) {
930 err = reg_from_user(&val, uaddr, id);
931 }
932 if (err)
933 return err;
934
935 /* This is what we mean by invariant: you can't change it. */
936 if (r->val != val)
937 return -EINVAL;
938
939 return 0;
940}
941
942static bool is_valid_cache(u32 val)
943{
944 u32 level, ctype;
945
946 if (val >= CSSELR_MAX)
947 return false;
948
949 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
950 level = (val >> 1);
951 ctype = (cache_levels >> (level * 3)) & 7;
952
953 switch (ctype) {
954 case 0: /* No cache */
955 return false;
956 case 1: /* Instruction cache only */
957 return (val & 1);
958 case 2: /* Data cache only */
959 case 4: /* Unified cache */
960 return !(val & 1);
961 case 3: /* Separate instruction and data caches */
962 return true;
963 default: /* Reserved: we can't know instruction or data. */
964 return false;
965 }
966}
967
968/* Which cache CCSIDR represents depends on CSSELR value. */
969static u32 get_ccsidr(u32 csselr)
970{
971 u32 ccsidr;
972
973 /* Make sure noone else changes CSSELR during this! */
974 local_irq_disable();
975 /* Put value into CSSELR */
976 asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
977 isb();
978 /* Read result out of CCSIDR */
979 asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
980 local_irq_enable();
981
982 return ccsidr;
983}
984
985static int demux_c15_get(u64 id, void __user *uaddr)
986{
987 u32 val;
988 u32 __user *uval = uaddr;
989
990 /* Fail if we have unknown bits set. */
991 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
992 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
993 return -ENOENT;
994
995 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
996 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
997 if (KVM_REG_SIZE(id) != 4)
998 return -ENOENT;
999 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1000 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1001 if (!is_valid_cache(val))
1002 return -ENOENT;
1003
1004 return put_user(get_ccsidr(val), uval);
1005 default:
1006 return -ENOENT;
1007 }
1008}
1009
1010static int demux_c15_set(u64 id, void __user *uaddr)
1011{
1012 u32 val, newval;
1013 u32 __user *uval = uaddr;
1014
1015 /* Fail if we have unknown bits set. */
1016 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1017 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1018 return -ENOENT;
1019
1020 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1021 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1022 if (KVM_REG_SIZE(id) != 4)
1023 return -ENOENT;
1024 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1025 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1026 if (!is_valid_cache(val))
1027 return -ENOENT;
1028
1029 if (get_user(newval, uval))
1030 return -EFAULT;
1031
1032 /* This is also invariant: you can't change it. */
1033 if (newval != get_ccsidr(val))
1034 return -EINVAL;
1035 return 0;
1036 default:
1037 return -ENOENT;
1038 }
1039}
1040
1041#ifdef CONFIG_VFPv3
1042static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
1043 KVM_REG_ARM_VFP_FPSCR,
1044 KVM_REG_ARM_VFP_FPINST,
1045 KVM_REG_ARM_VFP_FPINST2,
1046 KVM_REG_ARM_VFP_MVFR0,
1047 KVM_REG_ARM_VFP_MVFR1,
1048 KVM_REG_ARM_VFP_FPSID };
1049
1050static unsigned int num_fp_regs(void)
1051{
1052 if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
1053 return 32;
1054 else
1055 return 16;
1056}
1057
1058static unsigned int num_vfp_regs(void)
1059{
1060 /* Normal FP regs + control regs. */
1061 return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
1062}
1063
1064static int copy_vfp_regids(u64 __user *uindices)
1065{
1066 unsigned int i;
1067 const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
1068 const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
1069
1070 for (i = 0; i < num_fp_regs(); i++) {
1071 if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
1072 uindices))
1073 return -EFAULT;
1074 uindices++;
1075 }
1076
1077 for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
1078 if (put_user(u32reg | vfp_sysregs[i], uindices))
1079 return -EFAULT;
1080 uindices++;
1081 }
1082
1083 return num_vfp_regs();
1084}
1085
1086static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
1087{
1088 u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
1089 u32 val;
1090
1091 /* Fail if we have unknown bits set. */
1092 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1093 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1094 return -ENOENT;
1095
1096 if (vfpid < num_fp_regs()) {
1097 if (KVM_REG_SIZE(id) != 8)
1098 return -ENOENT;
1099 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpregs[vfpid],
1100 id);
1101 }
1102
1103 /* FP control registers are all 32 bit. */
1104 if (KVM_REG_SIZE(id) != 4)
1105 return -ENOENT;
1106
1107 switch (vfpid) {
1108 case KVM_REG_ARM_VFP_FPEXC:
1109 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpexc, id);
1110 case KVM_REG_ARM_VFP_FPSCR:
1111 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpscr, id);
1112 case KVM_REG_ARM_VFP_FPINST:
1113 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst, id);
1114 case KVM_REG_ARM_VFP_FPINST2:
1115 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst2, id);
1116 case KVM_REG_ARM_VFP_MVFR0:
1117 val = fmrx(MVFR0);
1118 return reg_to_user(uaddr, &val, id);
1119 case KVM_REG_ARM_VFP_MVFR1:
1120 val = fmrx(MVFR1);
1121 return reg_to_user(uaddr, &val, id);
1122 case KVM_REG_ARM_VFP_FPSID:
1123 val = fmrx(FPSID);
1124 return reg_to_user(uaddr, &val, id);
1125 default:
1126 return -ENOENT;
1127 }
1128}
1129
1130static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
1131{
1132 u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
1133 u32 val;
1134
1135 /* Fail if we have unknown bits set. */
1136 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1137 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1138 return -ENOENT;
1139
1140 if (vfpid < num_fp_regs()) {
1141 if (KVM_REG_SIZE(id) != 8)
1142 return -ENOENT;
1143 return reg_from_user(&vcpu->arch.ctxt.vfp.fpregs[vfpid],
1144 uaddr, id);
1145 }
1146
1147 /* FP control registers are all 32 bit. */
1148 if (KVM_REG_SIZE(id) != 4)
1149 return -ENOENT;
1150
1151 switch (vfpid) {
1152 case KVM_REG_ARM_VFP_FPEXC:
1153 return reg_from_user(&vcpu->arch.ctxt.vfp.fpexc, uaddr, id);
1154 case KVM_REG_ARM_VFP_FPSCR:
1155 return reg_from_user(&vcpu->arch.ctxt.vfp.fpscr, uaddr, id);
1156 case KVM_REG_ARM_VFP_FPINST:
1157 return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst, uaddr, id);
1158 case KVM_REG_ARM_VFP_FPINST2:
1159 return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst2, uaddr, id);
1160 /* These are invariant. */
1161 case KVM_REG_ARM_VFP_MVFR0:
1162 if (reg_from_user(&val, uaddr, id))
1163 return -EFAULT;
1164 if (val != fmrx(MVFR0))
1165 return -EINVAL;
1166 return 0;
1167 case KVM_REG_ARM_VFP_MVFR1:
1168 if (reg_from_user(&val, uaddr, id))
1169 return -EFAULT;
1170 if (val != fmrx(MVFR1))
1171 return -EINVAL;
1172 return 0;
1173 case KVM_REG_ARM_VFP_FPSID:
1174 if (reg_from_user(&val, uaddr, id))
1175 return -EFAULT;
1176 if (val != fmrx(FPSID))
1177 return -EINVAL;
1178 return 0;
1179 default:
1180 return -ENOENT;
1181 }
1182}
1183#else /* !CONFIG_VFPv3 */
1184static unsigned int num_vfp_regs(void)
1185{
1186 return 0;
1187}
1188
1189static int copy_vfp_regids(u64 __user *uindices)
1190{
1191 return 0;
1192}
1193
1194static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
1195{
1196 return -ENOENT;
1197}
1198
1199static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
1200{
1201 return -ENOENT;
1202}
1203#endif /* !CONFIG_VFPv3 */
1204
1205int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1206{
1207 const struct coproc_reg *r;
1208 void __user *uaddr = (void __user *)(long)reg->addr;
1209 int ret;
1210
1211 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1212 return demux_c15_get(reg->id, uaddr);
1213
1214 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1215 return vfp_get_reg(vcpu, reg->id, uaddr);
1216
1217 r = index_to_coproc_reg(vcpu, reg->id);
1218 if (!r)
1219 return get_invariant_cp15(reg->id, uaddr);
1220
1221 ret = -ENOENT;
1222 if (KVM_REG_SIZE(reg->id) == 8) {
1223 u64 val;
1224
1225 val = vcpu_cp15_reg64_get(vcpu, r);
1226 ret = reg_to_user(uaddr, &val, reg->id);
1227 } else if (KVM_REG_SIZE(reg->id) == 4) {
1228 ret = reg_to_user(uaddr, &vcpu_cp15(vcpu, r->reg), reg->id);
1229 }
1230
1231 return ret;
1232}
1233
1234int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1235{
1236 const struct coproc_reg *r;
1237 void __user *uaddr = (void __user *)(long)reg->addr;
1238 int ret;
1239
1240 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1241 return demux_c15_set(reg->id, uaddr);
1242
1243 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1244 return vfp_set_reg(vcpu, reg->id, uaddr);
1245
1246 r = index_to_coproc_reg(vcpu, reg->id);
1247 if (!r)
1248 return set_invariant_cp15(reg->id, uaddr);
1249
1250 ret = -ENOENT;
1251 if (KVM_REG_SIZE(reg->id) == 8) {
1252 u64 val;
1253
1254 ret = reg_from_user(&val, uaddr, reg->id);
1255 if (!ret)
1256 vcpu_cp15_reg64_set(vcpu, r, val);
1257 } else if (KVM_REG_SIZE(reg->id) == 4) {
1258 ret = reg_from_user(&vcpu_cp15(vcpu, r->reg), uaddr, reg->id);
1259 }
1260
1261 return ret;
1262}
1263
1264static unsigned int num_demux_regs(void)
1265{
1266 unsigned int i, count = 0;
1267
1268 for (i = 0; i < CSSELR_MAX; i++)
1269 if (is_valid_cache(i))
1270 count++;
1271
1272 return count;
1273}
1274
1275static int write_demux_regids(u64 __user *uindices)
1276{
1277 u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
1278 unsigned int i;
1279
1280 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1281 for (i = 0; i < CSSELR_MAX; i++) {
1282 if (!is_valid_cache(i))
1283 continue;
1284 if (put_user(val | i, uindices))
1285 return -EFAULT;
1286 uindices++;
1287 }
1288 return 0;
1289}
1290
1291static u64 cp15_to_index(const struct coproc_reg *reg)
1292{
1293 u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
1294 if (reg->is_64bit) {
1295 val |= KVM_REG_SIZE_U64;
1296 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1297 /*
1298 * CRn always denotes the primary coproc. reg. nr. for the
1299 * in-kernel representation, but the user space API uses the
1300 * CRm for the encoding, because it is modelled after the
1301 * MRRC/MCRR instructions: see the ARM ARM rev. c page
1302 * B3-1445
1303 */
1304 val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
1305 } else {
1306 val |= KVM_REG_SIZE_U32;
1307 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1308 val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
1309 val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
1310 val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
1311 }
1312 return val;
1313}
1314
1315static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
1316{
1317 if (!*uind)
1318 return true;
1319
1320 if (put_user(cp15_to_index(reg), *uind))
1321 return false;
1322
1323 (*uind)++;
1324 return true;
1325}
1326
1327/* Assumed ordered tables, see kvm_coproc_table_init. */
1328static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
1329{
1330 const struct coproc_reg *i1, *i2, *end1, *end2;
1331 unsigned int total = 0;
1332 size_t num;
1333
1334 /* We check for duplicates here, to allow arch-specific overrides. */
1335 i1 = get_target_table(vcpu->arch.target, &num);
1336 end1 = i1 + num;
1337 i2 = cp15_regs;
1338 end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
1339
1340 BUG_ON(i1 == end1 || i2 == end2);
1341
1342 /* Walk carefully, as both tables may refer to the same register. */
1343 while (i1 || i2) {
1344 int cmp = cmp_reg(i1, i2);
1345 /* target-specific overrides generic entry. */
1346 if (cmp <= 0) {
1347 /* Ignore registers we trap but don't save. */
1348 if (i1->reg) {
1349 if (!copy_reg_to_user(i1, &uind))
1350 return -EFAULT;
1351 total++;
1352 }
1353 } else {
1354 /* Ignore registers we trap but don't save. */
1355 if (i2->reg) {
1356 if (!copy_reg_to_user(i2, &uind))
1357 return -EFAULT;
1358 total++;
1359 }
1360 }
1361
1362 if (cmp <= 0 && ++i1 == end1)
1363 i1 = NULL;
1364 if (cmp >= 0 && ++i2 == end2)
1365 i2 = NULL;
1366 }
1367 return total;
1368}
1369
1370unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
1371{
1372 return ARRAY_SIZE(invariant_cp15)
1373 + num_demux_regs()
1374 + num_vfp_regs()
1375 + walk_cp15(vcpu, (u64 __user *)NULL);
1376}
1377
1378int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1379{
1380 unsigned int i;
1381 int err;
1382
1383 /* Then give them all the invariant registers' indices. */
1384 for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
1385 if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
1386 return -EFAULT;
1387 uindices++;
1388 }
1389
1390 err = walk_cp15(vcpu, uindices);
1391 if (err < 0)
1392 return err;
1393 uindices += err;
1394
1395 err = copy_vfp_regids(uindices);
1396 if (err < 0)
1397 return err;
1398 uindices += err;
1399
1400 return write_demux_regids(uindices);
1401}
1402
1403void kvm_coproc_table_init(void)
1404{
1405 unsigned int i;
1406
1407 /* Make sure tables are unique and in order. */
1408 BUG_ON(check_reg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
1409 BUG_ON(check_reg_table(invariant_cp15, ARRAY_SIZE(invariant_cp15)));
1410
1411 /* We abuse the reset function to overwrite the table itself. */
1412 for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
1413 invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
1414
1415 /*
1416 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1417 *
1418 * If software reads the Cache Type fields from Ctype1
1419 * upwards, once it has seen a value of 0b000, no caches
1420 * exist at further-out levels of the hierarchy. So, for
1421 * example, if Ctype3 is the first Cache Type field with a
1422 * value of 0b000, the values of Ctype4 to Ctype7 must be
1423 * ignored.
1424 */
1425 asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
1426 for (i = 0; i < 7; i++)
1427 if (((cache_levels >> (i*3)) & 7) == 0)
1428 break;
1429 /* Clear all higher bits. */
1430 cache_levels &= (1 << (i*3))-1;
1431}
1432
1433/**
1434 * kvm_reset_coprocs - sets cp15 registers to reset value
1435 * @vcpu: The VCPU pointer
1436 *
1437 * This function finds the right table above and sets the registers on the
1438 * virtual CPU struct to their architecturally defined reset values.
1439 */
1440void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
1441{
1442 size_t num;
1443 const struct coproc_reg *table;
1444 DECLARE_BITMAP(bmap, NR_CP15_REGS) = { 0, };
1445
1446 /* Generic chip reset first (so target could override). */
1447 reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs), bmap);
1448
1449 table = get_target_table(vcpu->arch.target, &num);
1450 reset_coproc_regs(vcpu, table, num, bmap);
1451
1452 for (num = 1; num < NR_CP15_REGS; num++)
1453 WARN(!test_bit(num, bmap),
1454 "Didn't reset vcpu_cp15(vcpu, %zi)", num);
1455}
1/*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Authors: Rusty Russell <rusty@rustcorp.com.au>
4 * Christoffer Dall <c.dall@virtualopensystems.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2, as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
18 */
19
20#include <linux/bsearch.h>
21#include <linux/mm.h>
22#include <linux/kvm_host.h>
23#include <linux/uaccess.h>
24#include <asm/kvm_arm.h>
25#include <asm/kvm_host.h>
26#include <asm/kvm_emulate.h>
27#include <asm/kvm_coproc.h>
28#include <asm/kvm_mmu.h>
29#include <asm/cacheflush.h>
30#include <asm/cputype.h>
31#include <trace/events/kvm.h>
32#include <asm/vfp.h>
33#include "../vfp/vfpinstr.h"
34
35#include "trace.h"
36#include "coproc.h"
37
38
39/******************************************************************************
40 * Co-processor emulation
41 *****************************************************************************/
42
43/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
44static u32 cache_levels;
45
46/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
47#define CSSELR_MAX 12
48
49/*
50 * kvm_vcpu_arch.cp15 holds cp15 registers as an array of u32, but some
51 * of cp15 registers can be viewed either as couple of two u32 registers
52 * or one u64 register. Current u64 register encoding is that least
53 * significant u32 word is followed by most significant u32 word.
54 */
55static inline void vcpu_cp15_reg64_set(struct kvm_vcpu *vcpu,
56 const struct coproc_reg *r,
57 u64 val)
58{
59 vcpu_cp15(vcpu, r->reg) = val & 0xffffffff;
60 vcpu_cp15(vcpu, r->reg + 1) = val >> 32;
61}
62
63static inline u64 vcpu_cp15_reg64_get(struct kvm_vcpu *vcpu,
64 const struct coproc_reg *r)
65{
66 u64 val;
67
68 val = vcpu_cp15(vcpu, r->reg + 1);
69 val = val << 32;
70 val = val | vcpu_cp15(vcpu, r->reg);
71 return val;
72}
73
74int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
75{
76 kvm_inject_undefined(vcpu);
77 return 1;
78}
79
80int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
81{
82 /*
83 * We can get here, if the host has been built without VFPv3 support,
84 * but the guest attempted a floating point operation.
85 */
86 kvm_inject_undefined(vcpu);
87 return 1;
88}
89
90int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
91{
92 kvm_inject_undefined(vcpu);
93 return 1;
94}
95
96int kvm_handle_cp14_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
97{
98 kvm_inject_undefined(vcpu);
99 return 1;
100}
101
102static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
103{
104 /*
105 * Compute guest MPIDR. We build a virtual cluster out of the
106 * vcpu_id, but we read the 'U' bit from the underlying
107 * hardware directly.
108 */
109 vcpu_cp15(vcpu, c0_MPIDR) = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) |
110 ((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) |
111 (vcpu->vcpu_id & 3));
112}
113
114/* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
115static bool access_actlr(struct kvm_vcpu *vcpu,
116 const struct coproc_params *p,
117 const struct coproc_reg *r)
118{
119 if (p->is_write)
120 return ignore_write(vcpu, p);
121
122 *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c1_ACTLR);
123 return true;
124}
125
126/* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
127static bool access_cbar(struct kvm_vcpu *vcpu,
128 const struct coproc_params *p,
129 const struct coproc_reg *r)
130{
131 if (p->is_write)
132 return write_to_read_only(vcpu, p);
133 return read_zero(vcpu, p);
134}
135
136/* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
137static bool access_l2ctlr(struct kvm_vcpu *vcpu,
138 const struct coproc_params *p,
139 const struct coproc_reg *r)
140{
141 if (p->is_write)
142 return ignore_write(vcpu, p);
143
144 *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c9_L2CTLR);
145 return true;
146}
147
148static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
149{
150 u32 l2ctlr, ncores;
151
152 asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr));
153 l2ctlr &= ~(3 << 24);
154 ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1;
155 /* How many cores in the current cluster and the next ones */
156 ncores -= (vcpu->vcpu_id & ~3);
157 /* Cap it to the maximum number of cores in a single cluster */
158 ncores = min(ncores, 3U);
159 l2ctlr |= (ncores & 3) << 24;
160
161 vcpu_cp15(vcpu, c9_L2CTLR) = l2ctlr;
162}
163
164static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
165{
166 u32 actlr;
167
168 /* ACTLR contains SMP bit: make sure you create all cpus first! */
169 asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
170 /* Make the SMP bit consistent with the guest configuration */
171 if (atomic_read(&vcpu->kvm->online_vcpus) > 1)
172 actlr |= 1U << 6;
173 else
174 actlr &= ~(1U << 6);
175
176 vcpu_cp15(vcpu, c1_ACTLR) = actlr;
177}
178
179/*
180 * TRM entries: A7:4.3.50, A15:4.3.49
181 * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
182 */
183static bool access_l2ectlr(struct kvm_vcpu *vcpu,
184 const struct coproc_params *p,
185 const struct coproc_reg *r)
186{
187 if (p->is_write)
188 return ignore_write(vcpu, p);
189
190 *vcpu_reg(vcpu, p->Rt1) = 0;
191 return true;
192}
193
194/*
195 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
196 */
197static bool access_dcsw(struct kvm_vcpu *vcpu,
198 const struct coproc_params *p,
199 const struct coproc_reg *r)
200{
201 if (!p->is_write)
202 return read_from_write_only(vcpu, p);
203
204 kvm_set_way_flush(vcpu);
205 return true;
206}
207
208/*
209 * Generic accessor for VM registers. Only called as long as HCR_TVM
210 * is set. If the guest enables the MMU, we stop trapping the VM
211 * sys_regs and leave it in complete control of the caches.
212 *
213 * Used by the cpu-specific code.
214 */
215bool access_vm_reg(struct kvm_vcpu *vcpu,
216 const struct coproc_params *p,
217 const struct coproc_reg *r)
218{
219 bool was_enabled = vcpu_has_cache_enabled(vcpu);
220
221 BUG_ON(!p->is_write);
222
223 vcpu_cp15(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt1);
224 if (p->is_64bit)
225 vcpu_cp15(vcpu, r->reg + 1) = *vcpu_reg(vcpu, p->Rt2);
226
227 kvm_toggle_cache(vcpu, was_enabled);
228 return true;
229}
230
231/*
232 * We could trap ID_DFR0 and tell the guest we don't support performance
233 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
234 * NAKed, so it will read the PMCR anyway.
235 *
236 * Therefore we tell the guest we have 0 counters. Unfortunately, we
237 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
238 * all PM registers, which doesn't crash the guest kernel at least.
239 */
240static bool pm_fake(struct kvm_vcpu *vcpu,
241 const struct coproc_params *p,
242 const struct coproc_reg *r)
243{
244 if (p->is_write)
245 return ignore_write(vcpu, p);
246 else
247 return read_zero(vcpu, p);
248}
249
250#define access_pmcr pm_fake
251#define access_pmcntenset pm_fake
252#define access_pmcntenclr pm_fake
253#define access_pmovsr pm_fake
254#define access_pmselr pm_fake
255#define access_pmceid0 pm_fake
256#define access_pmceid1 pm_fake
257#define access_pmccntr pm_fake
258#define access_pmxevtyper pm_fake
259#define access_pmxevcntr pm_fake
260#define access_pmuserenr pm_fake
261#define access_pmintenset pm_fake
262#define access_pmintenclr pm_fake
263
264/* Architected CP15 registers.
265 * CRn denotes the primary register number, but is copied to the CRm in the
266 * user space API for 64-bit register access in line with the terminology used
267 * in the ARM ARM.
268 * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
269 * registers preceding 32-bit ones.
270 */
271static const struct coproc_reg cp15_regs[] = {
272 /* MPIDR: we use VMPIDR for guest access. */
273 { CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32,
274 NULL, reset_mpidr, c0_MPIDR },
275
276 /* CSSELR: swapped by interrupt.S. */
277 { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
278 NULL, reset_unknown, c0_CSSELR },
279
280 /* ACTLR: trapped by HCR.TAC bit. */
281 { CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32,
282 access_actlr, reset_actlr, c1_ACTLR },
283
284 /* CPACR: swapped by interrupt.S. */
285 { CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32,
286 NULL, reset_val, c1_CPACR, 0x00000000 },
287
288 /* TTBR0/TTBR1/TTBCR: swapped by interrupt.S. */
289 { CRm64( 2), Op1( 0), is64, access_vm_reg, reset_unknown64, c2_TTBR0 },
290 { CRn(2), CRm( 0), Op1( 0), Op2( 0), is32,
291 access_vm_reg, reset_unknown, c2_TTBR0 },
292 { CRn(2), CRm( 0), Op1( 0), Op2( 1), is32,
293 access_vm_reg, reset_unknown, c2_TTBR1 },
294 { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
295 access_vm_reg, reset_val, c2_TTBCR, 0x00000000 },
296 { CRm64( 2), Op1( 1), is64, access_vm_reg, reset_unknown64, c2_TTBR1 },
297
298
299 /* DACR: swapped by interrupt.S. */
300 { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
301 access_vm_reg, reset_unknown, c3_DACR },
302
303 /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
304 { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
305 access_vm_reg, reset_unknown, c5_DFSR },
306 { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
307 access_vm_reg, reset_unknown, c5_IFSR },
308 { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
309 access_vm_reg, reset_unknown, c5_ADFSR },
310 { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
311 access_vm_reg, reset_unknown, c5_AIFSR },
312
313 /* DFAR/IFAR: swapped by interrupt.S. */
314 { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
315 access_vm_reg, reset_unknown, c6_DFAR },
316 { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
317 access_vm_reg, reset_unknown, c6_IFAR },
318
319 /* PAR swapped by interrupt.S */
320 { CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
321
322 /*
323 * DC{C,I,CI}SW operations:
324 */
325 { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
326 { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
327 { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
328 /*
329 * L2CTLR access (guest wants to know #CPUs).
330 */
331 { CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32,
332 access_l2ctlr, reset_l2ctlr, c9_L2CTLR },
333 { CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr},
334
335 /*
336 * Dummy performance monitor implementation.
337 */
338 { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
339 { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
340 { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
341 { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
342 { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
343 { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
344 { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
345 { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
346 { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
347 { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
348 { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
349 { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
350 { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
351
352 /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
353 { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
354 access_vm_reg, reset_unknown, c10_PRRR},
355 { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
356 access_vm_reg, reset_unknown, c10_NMRR},
357
358 /* AMAIR0/AMAIR1: swapped by interrupt.S. */
359 { CRn(10), CRm( 3), Op1( 0), Op2( 0), is32,
360 access_vm_reg, reset_unknown, c10_AMAIR0},
361 { CRn(10), CRm( 3), Op1( 0), Op2( 1), is32,
362 access_vm_reg, reset_unknown, c10_AMAIR1},
363
364 /* VBAR: swapped by interrupt.S. */
365 { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
366 NULL, reset_val, c12_VBAR, 0x00000000 },
367
368 /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
369 { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
370 access_vm_reg, reset_val, c13_CID, 0x00000000 },
371 { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
372 NULL, reset_unknown, c13_TID_URW },
373 { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
374 NULL, reset_unknown, c13_TID_URO },
375 { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
376 NULL, reset_unknown, c13_TID_PRIV },
377
378 /* CNTKCTL: swapped by interrupt.S. */
379 { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
380 NULL, reset_val, c14_CNTKCTL, 0x00000000 },
381
382 /* The Configuration Base Address Register. */
383 { CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar},
384};
385
386static int check_reg_table(const struct coproc_reg *table, unsigned int n)
387{
388 unsigned int i;
389
390 for (i = 1; i < n; i++) {
391 if (cmp_reg(&table[i-1], &table[i]) >= 0) {
392 kvm_err("reg table %p out of order (%d)\n", table, i - 1);
393 return 1;
394 }
395 }
396
397 return 0;
398}
399
400/* Target specific emulation tables */
401static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
402
403void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
404{
405 BUG_ON(check_reg_table(table->table, table->num));
406 target_tables[table->target] = table;
407}
408
409/* Get specific register table for this target. */
410static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
411{
412 struct kvm_coproc_target_table *table;
413
414 table = target_tables[target];
415 *num = table->num;
416 return table->table;
417}
418
419#define reg_to_match_value(x) \
420 ({ \
421 unsigned long val; \
422 val = (x)->CRn << 11; \
423 val |= (x)->CRm << 7; \
424 val |= (x)->Op1 << 4; \
425 val |= (x)->Op2 << 1; \
426 val |= !(x)->is_64bit; \
427 val; \
428 })
429
430static int match_reg(const void *key, const void *elt)
431{
432 const unsigned long pval = (unsigned long)key;
433 const struct coproc_reg *r = elt;
434
435 return pval - reg_to_match_value(r);
436}
437
438static const struct coproc_reg *find_reg(const struct coproc_params *params,
439 const struct coproc_reg table[],
440 unsigned int num)
441{
442 unsigned long pval = reg_to_match_value(params);
443
444 return bsearch((void *)pval, table, num, sizeof(table[0]), match_reg);
445}
446
447static int emulate_cp15(struct kvm_vcpu *vcpu,
448 const struct coproc_params *params)
449{
450 size_t num;
451 const struct coproc_reg *table, *r;
452
453 trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
454 params->CRm, params->Op2, params->is_write);
455
456 table = get_target_table(vcpu->arch.target, &num);
457
458 /* Search target-specific then generic table. */
459 r = find_reg(params, table, num);
460 if (!r)
461 r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
462
463 if (likely(r)) {
464 /* If we don't have an accessor, we should never get here! */
465 BUG_ON(!r->access);
466
467 if (likely(r->access(vcpu, params, r))) {
468 /* Skip instruction, since it was emulated */
469 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
470 return 1;
471 }
472 /* If access function fails, it should complain. */
473 } else {
474 kvm_err("Unsupported guest CP15 access at: %08lx\n",
475 *vcpu_pc(vcpu));
476 print_cp_instr(params);
477 }
478 kvm_inject_undefined(vcpu);
479 return 1;
480}
481
482/**
483 * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
484 * @vcpu: The VCPU pointer
485 * @run: The kvm_run struct
486 */
487int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
488{
489 struct coproc_params params;
490
491 params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
492 params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
493 params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
494 params.is_64bit = true;
495
496 params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
497 params.Op2 = 0;
498 params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
499 params.CRm = 0;
500
501 return emulate_cp15(vcpu, ¶ms);
502}
503
504static void reset_coproc_regs(struct kvm_vcpu *vcpu,
505 const struct coproc_reg *table, size_t num)
506{
507 unsigned long i;
508
509 for (i = 0; i < num; i++)
510 if (table[i].reset)
511 table[i].reset(vcpu, &table[i]);
512}
513
514/**
515 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
516 * @vcpu: The VCPU pointer
517 * @run: The kvm_run struct
518 */
519int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
520{
521 struct coproc_params params;
522
523 params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
524 params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
525 params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
526 params.is_64bit = false;
527
528 params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
529 params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
530 params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
531 params.Rt2 = 0;
532
533 return emulate_cp15(vcpu, ¶ms);
534}
535
536/******************************************************************************
537 * Userspace API
538 *****************************************************************************/
539
540static bool index_to_params(u64 id, struct coproc_params *params)
541{
542 switch (id & KVM_REG_SIZE_MASK) {
543 case KVM_REG_SIZE_U32:
544 /* Any unused index bits means it's not valid. */
545 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
546 | KVM_REG_ARM_COPROC_MASK
547 | KVM_REG_ARM_32_CRN_MASK
548 | KVM_REG_ARM_CRM_MASK
549 | KVM_REG_ARM_OPC1_MASK
550 | KVM_REG_ARM_32_OPC2_MASK))
551 return false;
552
553 params->is_64bit = false;
554 params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
555 >> KVM_REG_ARM_32_CRN_SHIFT);
556 params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
557 >> KVM_REG_ARM_CRM_SHIFT);
558 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
559 >> KVM_REG_ARM_OPC1_SHIFT);
560 params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
561 >> KVM_REG_ARM_32_OPC2_SHIFT);
562 return true;
563 case KVM_REG_SIZE_U64:
564 /* Any unused index bits means it's not valid. */
565 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
566 | KVM_REG_ARM_COPROC_MASK
567 | KVM_REG_ARM_CRM_MASK
568 | KVM_REG_ARM_OPC1_MASK))
569 return false;
570 params->is_64bit = true;
571 /* CRm to CRn: see cp15_to_index for details */
572 params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
573 >> KVM_REG_ARM_CRM_SHIFT);
574 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
575 >> KVM_REG_ARM_OPC1_SHIFT);
576 params->Op2 = 0;
577 params->CRm = 0;
578 return true;
579 default:
580 return false;
581 }
582}
583
584/* Decode an index value, and find the cp15 coproc_reg entry. */
585static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
586 u64 id)
587{
588 size_t num;
589 const struct coproc_reg *table, *r;
590 struct coproc_params params;
591
592 /* We only do cp15 for now. */
593 if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
594 return NULL;
595
596 if (!index_to_params(id, ¶ms))
597 return NULL;
598
599 table = get_target_table(vcpu->arch.target, &num);
600 r = find_reg(¶ms, table, num);
601 if (!r)
602 r = find_reg(¶ms, cp15_regs, ARRAY_SIZE(cp15_regs));
603
604 /* Not saved in the cp15 array? */
605 if (r && !r->reg)
606 r = NULL;
607
608 return r;
609}
610
611/*
612 * These are the invariant cp15 registers: we let the guest see the host
613 * versions of these, so they're part of the guest state.
614 *
615 * A future CPU may provide a mechanism to present different values to
616 * the guest, or a future kvm may trap them.
617 */
618/* Unfortunately, there's no register-argument for mrc, so generate. */
619#define FUNCTION_FOR32(crn, crm, op1, op2, name) \
620 static void get_##name(struct kvm_vcpu *v, \
621 const struct coproc_reg *r) \
622 { \
623 u32 val; \
624 \
625 asm volatile("mrc p15, " __stringify(op1) \
626 ", %0, c" __stringify(crn) \
627 ", c" __stringify(crm) \
628 ", " __stringify(op2) "\n" : "=r" (val)); \
629 ((struct coproc_reg *)r)->val = val; \
630 }
631
632FUNCTION_FOR32(0, 0, 0, 0, MIDR)
633FUNCTION_FOR32(0, 0, 0, 1, CTR)
634FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
635FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
636FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
637FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
638FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
639FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
640FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
641FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
642FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
643FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
644FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
645FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
646FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
647FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
648FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
649FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
650FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
651FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
652FUNCTION_FOR32(0, 0, 1, 7, AIDR)
653
654/* ->val is filled in by kvm_invariant_coproc_table_init() */
655static struct coproc_reg invariant_cp15[] = {
656 { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
657 { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
658 { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
659 { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
660 { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
661
662 { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
663 { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
664
665 { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
666 { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
667 { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
668 { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
669 { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
670 { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
671 { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
672 { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
673
674 { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
675 { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
676 { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
677 { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
678 { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
679 { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
680};
681
682/*
683 * Reads a register value from a userspace address to a kernel
684 * variable. Make sure that register size matches sizeof(*__val).
685 */
686static int reg_from_user(void *val, const void __user *uaddr, u64 id)
687{
688 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
689 return -EFAULT;
690 return 0;
691}
692
693/*
694 * Writes a register value to a userspace address from a kernel variable.
695 * Make sure that register size matches sizeof(*__val).
696 */
697static int reg_to_user(void __user *uaddr, const void *val, u64 id)
698{
699 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
700 return -EFAULT;
701 return 0;
702}
703
704static int get_invariant_cp15(u64 id, void __user *uaddr)
705{
706 struct coproc_params params;
707 const struct coproc_reg *r;
708 int ret;
709
710 if (!index_to_params(id, ¶ms))
711 return -ENOENT;
712
713 r = find_reg(¶ms, invariant_cp15, ARRAY_SIZE(invariant_cp15));
714 if (!r)
715 return -ENOENT;
716
717 ret = -ENOENT;
718 if (KVM_REG_SIZE(id) == 4) {
719 u32 val = r->val;
720
721 ret = reg_to_user(uaddr, &val, id);
722 } else if (KVM_REG_SIZE(id) == 8) {
723 ret = reg_to_user(uaddr, &r->val, id);
724 }
725 return ret;
726}
727
728static int set_invariant_cp15(u64 id, void __user *uaddr)
729{
730 struct coproc_params params;
731 const struct coproc_reg *r;
732 int err;
733 u64 val;
734
735 if (!index_to_params(id, ¶ms))
736 return -ENOENT;
737 r = find_reg(¶ms, invariant_cp15, ARRAY_SIZE(invariant_cp15));
738 if (!r)
739 return -ENOENT;
740
741 err = -ENOENT;
742 if (KVM_REG_SIZE(id) == 4) {
743 u32 val32;
744
745 err = reg_from_user(&val32, uaddr, id);
746 if (!err)
747 val = val32;
748 } else if (KVM_REG_SIZE(id) == 8) {
749 err = reg_from_user(&val, uaddr, id);
750 }
751 if (err)
752 return err;
753
754 /* This is what we mean by invariant: you can't change it. */
755 if (r->val != val)
756 return -EINVAL;
757
758 return 0;
759}
760
761static bool is_valid_cache(u32 val)
762{
763 u32 level, ctype;
764
765 if (val >= CSSELR_MAX)
766 return false;
767
768 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
769 level = (val >> 1);
770 ctype = (cache_levels >> (level * 3)) & 7;
771
772 switch (ctype) {
773 case 0: /* No cache */
774 return false;
775 case 1: /* Instruction cache only */
776 return (val & 1);
777 case 2: /* Data cache only */
778 case 4: /* Unified cache */
779 return !(val & 1);
780 case 3: /* Separate instruction and data caches */
781 return true;
782 default: /* Reserved: we can't know instruction or data. */
783 return false;
784 }
785}
786
787/* Which cache CCSIDR represents depends on CSSELR value. */
788static u32 get_ccsidr(u32 csselr)
789{
790 u32 ccsidr;
791
792 /* Make sure noone else changes CSSELR during this! */
793 local_irq_disable();
794 /* Put value into CSSELR */
795 asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
796 isb();
797 /* Read result out of CCSIDR */
798 asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
799 local_irq_enable();
800
801 return ccsidr;
802}
803
804static int demux_c15_get(u64 id, void __user *uaddr)
805{
806 u32 val;
807 u32 __user *uval = uaddr;
808
809 /* Fail if we have unknown bits set. */
810 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
811 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
812 return -ENOENT;
813
814 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
815 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
816 if (KVM_REG_SIZE(id) != 4)
817 return -ENOENT;
818 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
819 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
820 if (!is_valid_cache(val))
821 return -ENOENT;
822
823 return put_user(get_ccsidr(val), uval);
824 default:
825 return -ENOENT;
826 }
827}
828
829static int demux_c15_set(u64 id, void __user *uaddr)
830{
831 u32 val, newval;
832 u32 __user *uval = uaddr;
833
834 /* Fail if we have unknown bits set. */
835 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
836 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
837 return -ENOENT;
838
839 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
840 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
841 if (KVM_REG_SIZE(id) != 4)
842 return -ENOENT;
843 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
844 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
845 if (!is_valid_cache(val))
846 return -ENOENT;
847
848 if (get_user(newval, uval))
849 return -EFAULT;
850
851 /* This is also invariant: you can't change it. */
852 if (newval != get_ccsidr(val))
853 return -EINVAL;
854 return 0;
855 default:
856 return -ENOENT;
857 }
858}
859
860#ifdef CONFIG_VFPv3
861static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
862 KVM_REG_ARM_VFP_FPSCR,
863 KVM_REG_ARM_VFP_FPINST,
864 KVM_REG_ARM_VFP_FPINST2,
865 KVM_REG_ARM_VFP_MVFR0,
866 KVM_REG_ARM_VFP_MVFR1,
867 KVM_REG_ARM_VFP_FPSID };
868
869static unsigned int num_fp_regs(void)
870{
871 if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
872 return 32;
873 else
874 return 16;
875}
876
877static unsigned int num_vfp_regs(void)
878{
879 /* Normal FP regs + control regs. */
880 return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
881}
882
883static int copy_vfp_regids(u64 __user *uindices)
884{
885 unsigned int i;
886 const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
887 const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
888
889 for (i = 0; i < num_fp_regs(); i++) {
890 if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
891 uindices))
892 return -EFAULT;
893 uindices++;
894 }
895
896 for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
897 if (put_user(u32reg | vfp_sysregs[i], uindices))
898 return -EFAULT;
899 uindices++;
900 }
901
902 return num_vfp_regs();
903}
904
905static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
906{
907 u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
908 u32 val;
909
910 /* Fail if we have unknown bits set. */
911 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
912 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
913 return -ENOENT;
914
915 if (vfpid < num_fp_regs()) {
916 if (KVM_REG_SIZE(id) != 8)
917 return -ENOENT;
918 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpregs[vfpid],
919 id);
920 }
921
922 /* FP control registers are all 32 bit. */
923 if (KVM_REG_SIZE(id) != 4)
924 return -ENOENT;
925
926 switch (vfpid) {
927 case KVM_REG_ARM_VFP_FPEXC:
928 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpexc, id);
929 case KVM_REG_ARM_VFP_FPSCR:
930 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpscr, id);
931 case KVM_REG_ARM_VFP_FPINST:
932 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst, id);
933 case KVM_REG_ARM_VFP_FPINST2:
934 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst2, id);
935 case KVM_REG_ARM_VFP_MVFR0:
936 val = fmrx(MVFR0);
937 return reg_to_user(uaddr, &val, id);
938 case KVM_REG_ARM_VFP_MVFR1:
939 val = fmrx(MVFR1);
940 return reg_to_user(uaddr, &val, id);
941 case KVM_REG_ARM_VFP_FPSID:
942 val = fmrx(FPSID);
943 return reg_to_user(uaddr, &val, id);
944 default:
945 return -ENOENT;
946 }
947}
948
949static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
950{
951 u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
952 u32 val;
953
954 /* Fail if we have unknown bits set. */
955 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
956 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
957 return -ENOENT;
958
959 if (vfpid < num_fp_regs()) {
960 if (KVM_REG_SIZE(id) != 8)
961 return -ENOENT;
962 return reg_from_user(&vcpu->arch.ctxt.vfp.fpregs[vfpid],
963 uaddr, id);
964 }
965
966 /* FP control registers are all 32 bit. */
967 if (KVM_REG_SIZE(id) != 4)
968 return -ENOENT;
969
970 switch (vfpid) {
971 case KVM_REG_ARM_VFP_FPEXC:
972 return reg_from_user(&vcpu->arch.ctxt.vfp.fpexc, uaddr, id);
973 case KVM_REG_ARM_VFP_FPSCR:
974 return reg_from_user(&vcpu->arch.ctxt.vfp.fpscr, uaddr, id);
975 case KVM_REG_ARM_VFP_FPINST:
976 return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst, uaddr, id);
977 case KVM_REG_ARM_VFP_FPINST2:
978 return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst2, uaddr, id);
979 /* These are invariant. */
980 case KVM_REG_ARM_VFP_MVFR0:
981 if (reg_from_user(&val, uaddr, id))
982 return -EFAULT;
983 if (val != fmrx(MVFR0))
984 return -EINVAL;
985 return 0;
986 case KVM_REG_ARM_VFP_MVFR1:
987 if (reg_from_user(&val, uaddr, id))
988 return -EFAULT;
989 if (val != fmrx(MVFR1))
990 return -EINVAL;
991 return 0;
992 case KVM_REG_ARM_VFP_FPSID:
993 if (reg_from_user(&val, uaddr, id))
994 return -EFAULT;
995 if (val != fmrx(FPSID))
996 return -EINVAL;
997 return 0;
998 default:
999 return -ENOENT;
1000 }
1001}
1002#else /* !CONFIG_VFPv3 */
1003static unsigned int num_vfp_regs(void)
1004{
1005 return 0;
1006}
1007
1008static int copy_vfp_regids(u64 __user *uindices)
1009{
1010 return 0;
1011}
1012
1013static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
1014{
1015 return -ENOENT;
1016}
1017
1018static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
1019{
1020 return -ENOENT;
1021}
1022#endif /* !CONFIG_VFPv3 */
1023
1024int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1025{
1026 const struct coproc_reg *r;
1027 void __user *uaddr = (void __user *)(long)reg->addr;
1028 int ret;
1029
1030 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1031 return demux_c15_get(reg->id, uaddr);
1032
1033 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1034 return vfp_get_reg(vcpu, reg->id, uaddr);
1035
1036 r = index_to_coproc_reg(vcpu, reg->id);
1037 if (!r)
1038 return get_invariant_cp15(reg->id, uaddr);
1039
1040 ret = -ENOENT;
1041 if (KVM_REG_SIZE(reg->id) == 8) {
1042 u64 val;
1043
1044 val = vcpu_cp15_reg64_get(vcpu, r);
1045 ret = reg_to_user(uaddr, &val, reg->id);
1046 } else if (KVM_REG_SIZE(reg->id) == 4) {
1047 ret = reg_to_user(uaddr, &vcpu_cp15(vcpu, r->reg), reg->id);
1048 }
1049
1050 return ret;
1051}
1052
1053int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1054{
1055 const struct coproc_reg *r;
1056 void __user *uaddr = (void __user *)(long)reg->addr;
1057 int ret;
1058
1059 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1060 return demux_c15_set(reg->id, uaddr);
1061
1062 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1063 return vfp_set_reg(vcpu, reg->id, uaddr);
1064
1065 r = index_to_coproc_reg(vcpu, reg->id);
1066 if (!r)
1067 return set_invariant_cp15(reg->id, uaddr);
1068
1069 ret = -ENOENT;
1070 if (KVM_REG_SIZE(reg->id) == 8) {
1071 u64 val;
1072
1073 ret = reg_from_user(&val, uaddr, reg->id);
1074 if (!ret)
1075 vcpu_cp15_reg64_set(vcpu, r, val);
1076 } else if (KVM_REG_SIZE(reg->id) == 4) {
1077 ret = reg_from_user(&vcpu_cp15(vcpu, r->reg), uaddr, reg->id);
1078 }
1079
1080 return ret;
1081}
1082
1083static unsigned int num_demux_regs(void)
1084{
1085 unsigned int i, count = 0;
1086
1087 for (i = 0; i < CSSELR_MAX; i++)
1088 if (is_valid_cache(i))
1089 count++;
1090
1091 return count;
1092}
1093
1094static int write_demux_regids(u64 __user *uindices)
1095{
1096 u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
1097 unsigned int i;
1098
1099 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1100 for (i = 0; i < CSSELR_MAX; i++) {
1101 if (!is_valid_cache(i))
1102 continue;
1103 if (put_user(val | i, uindices))
1104 return -EFAULT;
1105 uindices++;
1106 }
1107 return 0;
1108}
1109
1110static u64 cp15_to_index(const struct coproc_reg *reg)
1111{
1112 u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
1113 if (reg->is_64bit) {
1114 val |= KVM_REG_SIZE_U64;
1115 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1116 /*
1117 * CRn always denotes the primary coproc. reg. nr. for the
1118 * in-kernel representation, but the user space API uses the
1119 * CRm for the encoding, because it is modelled after the
1120 * MRRC/MCRR instructions: see the ARM ARM rev. c page
1121 * B3-1445
1122 */
1123 val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
1124 } else {
1125 val |= KVM_REG_SIZE_U32;
1126 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1127 val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
1128 val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
1129 val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
1130 }
1131 return val;
1132}
1133
1134static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
1135{
1136 if (!*uind)
1137 return true;
1138
1139 if (put_user(cp15_to_index(reg), *uind))
1140 return false;
1141
1142 (*uind)++;
1143 return true;
1144}
1145
1146/* Assumed ordered tables, see kvm_coproc_table_init. */
1147static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
1148{
1149 const struct coproc_reg *i1, *i2, *end1, *end2;
1150 unsigned int total = 0;
1151 size_t num;
1152
1153 /* We check for duplicates here, to allow arch-specific overrides. */
1154 i1 = get_target_table(vcpu->arch.target, &num);
1155 end1 = i1 + num;
1156 i2 = cp15_regs;
1157 end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
1158
1159 BUG_ON(i1 == end1 || i2 == end2);
1160
1161 /* Walk carefully, as both tables may refer to the same register. */
1162 while (i1 || i2) {
1163 int cmp = cmp_reg(i1, i2);
1164 /* target-specific overrides generic entry. */
1165 if (cmp <= 0) {
1166 /* Ignore registers we trap but don't save. */
1167 if (i1->reg) {
1168 if (!copy_reg_to_user(i1, &uind))
1169 return -EFAULT;
1170 total++;
1171 }
1172 } else {
1173 /* Ignore registers we trap but don't save. */
1174 if (i2->reg) {
1175 if (!copy_reg_to_user(i2, &uind))
1176 return -EFAULT;
1177 total++;
1178 }
1179 }
1180
1181 if (cmp <= 0 && ++i1 == end1)
1182 i1 = NULL;
1183 if (cmp >= 0 && ++i2 == end2)
1184 i2 = NULL;
1185 }
1186 return total;
1187}
1188
1189unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
1190{
1191 return ARRAY_SIZE(invariant_cp15)
1192 + num_demux_regs()
1193 + num_vfp_regs()
1194 + walk_cp15(vcpu, (u64 __user *)NULL);
1195}
1196
1197int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1198{
1199 unsigned int i;
1200 int err;
1201
1202 /* Then give them all the invariant registers' indices. */
1203 for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
1204 if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
1205 return -EFAULT;
1206 uindices++;
1207 }
1208
1209 err = walk_cp15(vcpu, uindices);
1210 if (err < 0)
1211 return err;
1212 uindices += err;
1213
1214 err = copy_vfp_regids(uindices);
1215 if (err < 0)
1216 return err;
1217 uindices += err;
1218
1219 return write_demux_regids(uindices);
1220}
1221
1222void kvm_coproc_table_init(void)
1223{
1224 unsigned int i;
1225
1226 /* Make sure tables are unique and in order. */
1227 BUG_ON(check_reg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
1228 BUG_ON(check_reg_table(invariant_cp15, ARRAY_SIZE(invariant_cp15)));
1229
1230 /* We abuse the reset function to overwrite the table itself. */
1231 for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
1232 invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
1233
1234 /*
1235 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1236 *
1237 * If software reads the Cache Type fields from Ctype1
1238 * upwards, once it has seen a value of 0b000, no caches
1239 * exist at further-out levels of the hierarchy. So, for
1240 * example, if Ctype3 is the first Cache Type field with a
1241 * value of 0b000, the values of Ctype4 to Ctype7 must be
1242 * ignored.
1243 */
1244 asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
1245 for (i = 0; i < 7; i++)
1246 if (((cache_levels >> (i*3)) & 7) == 0)
1247 break;
1248 /* Clear all higher bits. */
1249 cache_levels &= (1 << (i*3))-1;
1250}
1251
1252/**
1253 * kvm_reset_coprocs - sets cp15 registers to reset value
1254 * @vcpu: The VCPU pointer
1255 *
1256 * This function finds the right table above and sets the registers on the
1257 * virtual CPU struct to their architecturally defined reset values.
1258 */
1259void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
1260{
1261 size_t num;
1262 const struct coproc_reg *table;
1263
1264 /* Catch someone adding a register without putting in reset entry. */
1265 memset(vcpu->arch.ctxt.cp15, 0x42, sizeof(vcpu->arch.ctxt.cp15));
1266
1267 /* Generic chip reset first (so target could override). */
1268 reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
1269
1270 table = get_target_table(vcpu->arch.target, &num);
1271 reset_coproc_regs(vcpu, table, num);
1272
1273 for (num = 1; num < NR_CP15_REGS; num++)
1274 if (vcpu_cp15(vcpu, num) == 0x42424242)
1275 panic("Didn't reset vcpu_cp15(vcpu, %zi)", num);
1276}