Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4 * Authors: Rusty Russell <rusty@rustcorp.com.au>
5 * Christoffer Dall <c.dall@virtualopensystems.com>
6 */
7
8#include <linux/bsearch.h>
9#include <linux/mm.h>
10#include <linux/kvm_host.h>
11#include <linux/uaccess.h>
12#include <asm/kvm_arm.h>
13#include <asm/kvm_host.h>
14#include <asm/kvm_emulate.h>
15#include <asm/kvm_coproc.h>
16#include <asm/kvm_mmu.h>
17#include <asm/cacheflush.h>
18#include <asm/cputype.h>
19#include <trace/events/kvm.h>
20#include <asm/vfp.h>
21#include "../vfp/vfpinstr.h"
22
23#define CREATE_TRACE_POINTS
24#include "trace.h"
25#include "coproc.h"
26
27
28/******************************************************************************
29 * Co-processor emulation
30 *****************************************************************************/
31
32static bool write_to_read_only(struct kvm_vcpu *vcpu,
33 const struct coproc_params *params)
34{
35 WARN_ONCE(1, "CP15 write to read-only register\n");
36 print_cp_instr(params);
37 kvm_inject_undefined(vcpu);
38 return false;
39}
40
41static bool read_from_write_only(struct kvm_vcpu *vcpu,
42 const struct coproc_params *params)
43{
44 WARN_ONCE(1, "CP15 read to write-only register\n");
45 print_cp_instr(params);
46 kvm_inject_undefined(vcpu);
47 return false;
48}
49
50/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
51static u32 cache_levels;
52
53/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
54#define CSSELR_MAX 12
55
56/*
57 * kvm_vcpu_arch.cp15 holds cp15 registers as an array of u32, but some
58 * of cp15 registers can be viewed either as couple of two u32 registers
59 * or one u64 register. Current u64 register encoding is that least
60 * significant u32 word is followed by most significant u32 word.
61 */
62static inline void vcpu_cp15_reg64_set(struct kvm_vcpu *vcpu,
63 const struct coproc_reg *r,
64 u64 val)
65{
66 vcpu_cp15(vcpu, r->reg) = val & 0xffffffff;
67 vcpu_cp15(vcpu, r->reg + 1) = val >> 32;
68}
69
70static inline u64 vcpu_cp15_reg64_get(struct kvm_vcpu *vcpu,
71 const struct coproc_reg *r)
72{
73 u64 val;
74
75 val = vcpu_cp15(vcpu, r->reg + 1);
76 val = val << 32;
77 val = val | vcpu_cp15(vcpu, r->reg);
78 return val;
79}
80
81int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
82{
83 kvm_inject_undefined(vcpu);
84 return 1;
85}
86
87int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
88{
89 /*
90 * We can get here, if the host has been built without VFPv3 support,
91 * but the guest attempted a floating point operation.
92 */
93 kvm_inject_undefined(vcpu);
94 return 1;
95}
96
97int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
98{
99 kvm_inject_undefined(vcpu);
100 return 1;
101}
102
103static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
104{
105 /*
106 * Compute guest MPIDR. We build a virtual cluster out of the
107 * vcpu_id, but we read the 'U' bit from the underlying
108 * hardware directly.
109 */
110 vcpu_cp15(vcpu, c0_MPIDR) = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) |
111 ((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) |
112 (vcpu->vcpu_id & 3));
113}
114
115/* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
116static bool access_actlr(struct kvm_vcpu *vcpu,
117 const struct coproc_params *p,
118 const struct coproc_reg *r)
119{
120 if (p->is_write)
121 return ignore_write(vcpu, p);
122
123 *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c1_ACTLR);
124 return true;
125}
126
127/* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
128static bool access_cbar(struct kvm_vcpu *vcpu,
129 const struct coproc_params *p,
130 const struct coproc_reg *r)
131{
132 if (p->is_write)
133 return write_to_read_only(vcpu, p);
134 return read_zero(vcpu, p);
135}
136
137/* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
138static bool access_l2ctlr(struct kvm_vcpu *vcpu,
139 const struct coproc_params *p,
140 const struct coproc_reg *r)
141{
142 if (p->is_write)
143 return ignore_write(vcpu, p);
144
145 *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c9_L2CTLR);
146 return true;
147}
148
149static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
150{
151 u32 l2ctlr, ncores;
152
153 asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr));
154 l2ctlr &= ~(3 << 24);
155 ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1;
156 /* How many cores in the current cluster and the next ones */
157 ncores -= (vcpu->vcpu_id & ~3);
158 /* Cap it to the maximum number of cores in a single cluster */
159 ncores = min(ncores, 3U);
160 l2ctlr |= (ncores & 3) << 24;
161
162 vcpu_cp15(vcpu, c9_L2CTLR) = l2ctlr;
163}
164
165static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
166{
167 u32 actlr;
168
169 /* ACTLR contains SMP bit: make sure you create all cpus first! */
170 asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
171 /* Make the SMP bit consistent with the guest configuration */
172 if (atomic_read(&vcpu->kvm->online_vcpus) > 1)
173 actlr |= 1U << 6;
174 else
175 actlr &= ~(1U << 6);
176
177 vcpu_cp15(vcpu, c1_ACTLR) = actlr;
178}
179
180/*
181 * TRM entries: A7:4.3.50, A15:4.3.49
182 * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
183 */
184static bool access_l2ectlr(struct kvm_vcpu *vcpu,
185 const struct coproc_params *p,
186 const struct coproc_reg *r)
187{
188 if (p->is_write)
189 return ignore_write(vcpu, p);
190
191 *vcpu_reg(vcpu, p->Rt1) = 0;
192 return true;
193}
194
195/*
196 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
197 */
198static bool access_dcsw(struct kvm_vcpu *vcpu,
199 const struct coproc_params *p,
200 const struct coproc_reg *r)
201{
202 if (!p->is_write)
203 return read_from_write_only(vcpu, p);
204
205 kvm_set_way_flush(vcpu);
206 return true;
207}
208
209/*
210 * Generic accessor for VM registers. Only called as long as HCR_TVM
211 * is set. If the guest enables the MMU, we stop trapping the VM
212 * sys_regs and leave it in complete control of the caches.
213 *
214 * Used by the cpu-specific code.
215 */
216bool access_vm_reg(struct kvm_vcpu *vcpu,
217 const struct coproc_params *p,
218 const struct coproc_reg *r)
219{
220 bool was_enabled = vcpu_has_cache_enabled(vcpu);
221
222 BUG_ON(!p->is_write);
223
224 vcpu_cp15(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt1);
225 if (p->is_64bit)
226 vcpu_cp15(vcpu, r->reg + 1) = *vcpu_reg(vcpu, p->Rt2);
227
228 kvm_toggle_cache(vcpu, was_enabled);
229 return true;
230}
231
232static bool access_gic_sgi(struct kvm_vcpu *vcpu,
233 const struct coproc_params *p,
234 const struct coproc_reg *r)
235{
236 u64 reg;
237 bool g1;
238
239 if (!p->is_write)
240 return read_from_write_only(vcpu, p);
241
242 reg = (u64)*vcpu_reg(vcpu, p->Rt2) << 32;
243 reg |= *vcpu_reg(vcpu, p->Rt1) ;
244
245 /*
246 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R access generates
247 * Group0 SGIs only, while ICC_SGI1R can generate either group,
248 * depending on the SGI configuration. ICC_ASGI1R is effectively
249 * equivalent to ICC_SGI0R, as there is no "alternative" secure
250 * group.
251 */
252 switch (p->Op1) {
253 default: /* Keep GCC quiet */
254 case 0: /* ICC_SGI1R */
255 g1 = true;
256 break;
257 case 1: /* ICC_ASGI1R */
258 case 2: /* ICC_SGI0R */
259 g1 = false;
260 break;
261 }
262
263 vgic_v3_dispatch_sgi(vcpu, reg, g1);
264
265 return true;
266}
267
268static bool access_gic_sre(struct kvm_vcpu *vcpu,
269 const struct coproc_params *p,
270 const struct coproc_reg *r)
271{
272 if (p->is_write)
273 return ignore_write(vcpu, p);
274
275 *vcpu_reg(vcpu, p->Rt1) = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
276
277 return true;
278}
279
280static bool access_cntp_tval(struct kvm_vcpu *vcpu,
281 const struct coproc_params *p,
282 const struct coproc_reg *r)
283{
284 u32 val;
285
286 if (p->is_write) {
287 val = *vcpu_reg(vcpu, p->Rt1);
288 kvm_arm_timer_write_sysreg(vcpu,
289 TIMER_PTIMER, TIMER_REG_TVAL, val);
290 } else {
291 val = kvm_arm_timer_read_sysreg(vcpu,
292 TIMER_PTIMER, TIMER_REG_TVAL);
293 *vcpu_reg(vcpu, p->Rt1) = val;
294 }
295
296 return true;
297}
298
299static bool access_cntp_ctl(struct kvm_vcpu *vcpu,
300 const struct coproc_params *p,
301 const struct coproc_reg *r)
302{
303 u32 val;
304
305 if (p->is_write) {
306 val = *vcpu_reg(vcpu, p->Rt1);
307 kvm_arm_timer_write_sysreg(vcpu,
308 TIMER_PTIMER, TIMER_REG_CTL, val);
309 } else {
310 val = kvm_arm_timer_read_sysreg(vcpu,
311 TIMER_PTIMER, TIMER_REG_CTL);
312 *vcpu_reg(vcpu, p->Rt1) = val;
313 }
314
315 return true;
316}
317
318static bool access_cntp_cval(struct kvm_vcpu *vcpu,
319 const struct coproc_params *p,
320 const struct coproc_reg *r)
321{
322 u64 val;
323
324 if (p->is_write) {
325 val = (u64)*vcpu_reg(vcpu, p->Rt2) << 32;
326 val |= *vcpu_reg(vcpu, p->Rt1);
327 kvm_arm_timer_write_sysreg(vcpu,
328 TIMER_PTIMER, TIMER_REG_CVAL, val);
329 } else {
330 val = kvm_arm_timer_read_sysreg(vcpu,
331 TIMER_PTIMER, TIMER_REG_CVAL);
332 *vcpu_reg(vcpu, p->Rt1) = val;
333 *vcpu_reg(vcpu, p->Rt2) = val >> 32;
334 }
335
336 return true;
337}
338
339/*
340 * We could trap ID_DFR0 and tell the guest we don't support performance
341 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
342 * NAKed, so it will read the PMCR anyway.
343 *
344 * Therefore we tell the guest we have 0 counters. Unfortunately, we
345 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
346 * all PM registers, which doesn't crash the guest kernel at least.
347 */
348static bool trap_raz_wi(struct kvm_vcpu *vcpu,
349 const struct coproc_params *p,
350 const struct coproc_reg *r)
351{
352 if (p->is_write)
353 return ignore_write(vcpu, p);
354 else
355 return read_zero(vcpu, p);
356}
357
358#define access_pmcr trap_raz_wi
359#define access_pmcntenset trap_raz_wi
360#define access_pmcntenclr trap_raz_wi
361#define access_pmovsr trap_raz_wi
362#define access_pmselr trap_raz_wi
363#define access_pmceid0 trap_raz_wi
364#define access_pmceid1 trap_raz_wi
365#define access_pmccntr trap_raz_wi
366#define access_pmxevtyper trap_raz_wi
367#define access_pmxevcntr trap_raz_wi
368#define access_pmuserenr trap_raz_wi
369#define access_pmintenset trap_raz_wi
370#define access_pmintenclr trap_raz_wi
371
372/* Architected CP15 registers.
373 * CRn denotes the primary register number, but is copied to the CRm in the
374 * user space API for 64-bit register access in line with the terminology used
375 * in the ARM ARM.
376 * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
377 * registers preceding 32-bit ones.
378 */
379static const struct coproc_reg cp15_regs[] = {
380 /* MPIDR: we use VMPIDR for guest access. */
381 { CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32,
382 NULL, reset_mpidr, c0_MPIDR },
383
384 /* CSSELR: swapped by interrupt.S. */
385 { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
386 NULL, reset_unknown, c0_CSSELR },
387
388 /* ACTLR: trapped by HCR.TAC bit. */
389 { CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32,
390 access_actlr, reset_actlr, c1_ACTLR },
391
392 /* CPACR: swapped by interrupt.S. */
393 { CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32,
394 NULL, reset_val, c1_CPACR, 0x00000000 },
395
396 /* TTBR0/TTBR1/TTBCR: swapped by interrupt.S. */
397 { CRm64( 2), Op1( 0), is64, access_vm_reg, reset_unknown64, c2_TTBR0 },
398 { CRn(2), CRm( 0), Op1( 0), Op2( 0), is32,
399 access_vm_reg, reset_unknown, c2_TTBR0 },
400 { CRn(2), CRm( 0), Op1( 0), Op2( 1), is32,
401 access_vm_reg, reset_unknown, c2_TTBR1 },
402 { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
403 access_vm_reg, reset_val, c2_TTBCR, 0x00000000 },
404 { CRm64( 2), Op1( 1), is64, access_vm_reg, reset_unknown64, c2_TTBR1 },
405
406
407 /* DACR: swapped by interrupt.S. */
408 { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
409 access_vm_reg, reset_unknown, c3_DACR },
410
411 /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
412 { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
413 access_vm_reg, reset_unknown, c5_DFSR },
414 { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
415 access_vm_reg, reset_unknown, c5_IFSR },
416 { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
417 access_vm_reg, reset_unknown, c5_ADFSR },
418 { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
419 access_vm_reg, reset_unknown, c5_AIFSR },
420
421 /* DFAR/IFAR: swapped by interrupt.S. */
422 { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
423 access_vm_reg, reset_unknown, c6_DFAR },
424 { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
425 access_vm_reg, reset_unknown, c6_IFAR },
426
427 /* PAR swapped by interrupt.S */
428 { CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
429
430 /*
431 * DC{C,I,CI}SW operations:
432 */
433 { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
434 { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
435 { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
436 /*
437 * L2CTLR access (guest wants to know #CPUs).
438 */
439 { CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32,
440 access_l2ctlr, reset_l2ctlr, c9_L2CTLR },
441 { CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr},
442
443 /*
444 * Dummy performance monitor implementation.
445 */
446 { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
447 { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
448 { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
449 { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
450 { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
451 { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
452 { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
453 { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
454 { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
455 { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
456 { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
457 { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
458 { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
459
460 /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
461 { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
462 access_vm_reg, reset_unknown, c10_PRRR},
463 { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
464 access_vm_reg, reset_unknown, c10_NMRR},
465
466 /* AMAIR0/AMAIR1: swapped by interrupt.S. */
467 { CRn(10), CRm( 3), Op1( 0), Op2( 0), is32,
468 access_vm_reg, reset_unknown, c10_AMAIR0},
469 { CRn(10), CRm( 3), Op1( 0), Op2( 1), is32,
470 access_vm_reg, reset_unknown, c10_AMAIR1},
471
472 /* ICC_SGI1R */
473 { CRm64(12), Op1( 0), is64, access_gic_sgi},
474
475 /* VBAR: swapped by interrupt.S. */
476 { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
477 NULL, reset_val, c12_VBAR, 0x00000000 },
478
479 /* ICC_ASGI1R */
480 { CRm64(12), Op1( 1), is64, access_gic_sgi},
481 /* ICC_SGI0R */
482 { CRm64(12), Op1( 2), is64, access_gic_sgi},
483 /* ICC_SRE */
484 { CRn(12), CRm(12), Op1( 0), Op2(5), is32, access_gic_sre },
485
486 /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
487 { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
488 access_vm_reg, reset_val, c13_CID, 0x00000000 },
489 { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
490 NULL, reset_unknown, c13_TID_URW },
491 { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
492 NULL, reset_unknown, c13_TID_URO },
493 { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
494 NULL, reset_unknown, c13_TID_PRIV },
495
496 /* CNTP */
497 { CRm64(14), Op1( 2), is64, access_cntp_cval},
498
499 /* CNTKCTL: swapped by interrupt.S. */
500 { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
501 NULL, reset_val, c14_CNTKCTL, 0x00000000 },
502
503 /* CNTP */
504 { CRn(14), CRm( 2), Op1( 0), Op2( 0), is32, access_cntp_tval },
505 { CRn(14), CRm( 2), Op1( 0), Op2( 1), is32, access_cntp_ctl },
506
507 /* The Configuration Base Address Register. */
508 { CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar},
509};
510
511static int check_reg_table(const struct coproc_reg *table, unsigned int n)
512{
513 unsigned int i;
514
515 for (i = 1; i < n; i++) {
516 if (cmp_reg(&table[i-1], &table[i]) >= 0) {
517 kvm_err("reg table %p out of order (%d)\n", table, i - 1);
518 return 1;
519 }
520 }
521
522 return 0;
523}
524
525/* Target specific emulation tables */
526static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
527
528void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
529{
530 BUG_ON(check_reg_table(table->table, table->num));
531 target_tables[table->target] = table;
532}
533
534/* Get specific register table for this target. */
535static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
536{
537 struct kvm_coproc_target_table *table;
538
539 table = target_tables[target];
540 *num = table->num;
541 return table->table;
542}
543
544#define reg_to_match_value(x) \
545 ({ \
546 unsigned long val; \
547 val = (x)->CRn << 11; \
548 val |= (x)->CRm << 7; \
549 val |= (x)->Op1 << 4; \
550 val |= (x)->Op2 << 1; \
551 val |= !(x)->is_64bit; \
552 val; \
553 })
554
555static int match_reg(const void *key, const void *elt)
556{
557 const unsigned long pval = (unsigned long)key;
558 const struct coproc_reg *r = elt;
559
560 return pval - reg_to_match_value(r);
561}
562
563static const struct coproc_reg *find_reg(const struct coproc_params *params,
564 const struct coproc_reg table[],
565 unsigned int num)
566{
567 unsigned long pval = reg_to_match_value(params);
568
569 return bsearch((void *)pval, table, num, sizeof(table[0]), match_reg);
570}
571
572static int emulate_cp15(struct kvm_vcpu *vcpu,
573 const struct coproc_params *params)
574{
575 size_t num;
576 const struct coproc_reg *table, *r;
577
578 trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
579 params->CRm, params->Op2, params->is_write);
580
581 table = get_target_table(vcpu->arch.target, &num);
582
583 /* Search target-specific then generic table. */
584 r = find_reg(params, table, num);
585 if (!r)
586 r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
587
588 if (likely(r)) {
589 /* If we don't have an accessor, we should never get here! */
590 BUG_ON(!r->access);
591
592 if (likely(r->access(vcpu, params, r))) {
593 /* Skip instruction, since it was emulated */
594 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
595 }
596 } else {
597 /* If access function fails, it should complain. */
598 kvm_err("Unsupported guest CP15 access at: %08lx [%08lx]\n",
599 *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
600 print_cp_instr(params);
601 kvm_inject_undefined(vcpu);
602 }
603
604 return 1;
605}
606
607static struct coproc_params decode_64bit_hsr(struct kvm_vcpu *vcpu)
608{
609 struct coproc_params params;
610
611 params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
612 params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
613 params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
614 params.is_64bit = true;
615
616 params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
617 params.Op2 = 0;
618 params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
619 params.CRm = 0;
620
621 return params;
622}
623
624/**
625 * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
626 * @vcpu: The VCPU pointer
627 * @run: The kvm_run struct
628 */
629int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
630{
631 struct coproc_params params = decode_64bit_hsr(vcpu);
632
633 return emulate_cp15(vcpu, ¶ms);
634}
635
636/**
637 * kvm_handle_cp14_64 -- handles a mrrc/mcrr trap on a guest CP14 access
638 * @vcpu: The VCPU pointer
639 * @run: The kvm_run struct
640 */
641int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
642{
643 struct coproc_params params = decode_64bit_hsr(vcpu);
644
645 /* raz_wi cp14 */
646 trap_raz_wi(vcpu, ¶ms, NULL);
647
648 /* handled */
649 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
650 return 1;
651}
652
653static void reset_coproc_regs(struct kvm_vcpu *vcpu,
654 const struct coproc_reg *table, size_t num,
655 unsigned long *bmap)
656{
657 unsigned long i;
658
659 for (i = 0; i < num; i++)
660 if (table[i].reset) {
661 int reg = table[i].reg;
662
663 table[i].reset(vcpu, &table[i]);
664 if (reg > 0 && reg < NR_CP15_REGS) {
665 set_bit(reg, bmap);
666 if (table[i].is_64bit)
667 set_bit(reg + 1, bmap);
668 }
669 }
670}
671
672static struct coproc_params decode_32bit_hsr(struct kvm_vcpu *vcpu)
673{
674 struct coproc_params params;
675
676 params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
677 params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
678 params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
679 params.is_64bit = false;
680
681 params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
682 params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
683 params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
684 params.Rt2 = 0;
685
686 return params;
687}
688
689/**
690 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
691 * @vcpu: The VCPU pointer
692 * @run: The kvm_run struct
693 */
694int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
695{
696 struct coproc_params params = decode_32bit_hsr(vcpu);
697 return emulate_cp15(vcpu, ¶ms);
698}
699
700/**
701 * kvm_handle_cp14_32 -- handles a mrc/mcr trap on a guest CP14 access
702 * @vcpu: The VCPU pointer
703 * @run: The kvm_run struct
704 */
705int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
706{
707 struct coproc_params params = decode_32bit_hsr(vcpu);
708
709 /* raz_wi cp14 */
710 trap_raz_wi(vcpu, ¶ms, NULL);
711
712 /* handled */
713 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
714 return 1;
715}
716
717/******************************************************************************
718 * Userspace API
719 *****************************************************************************/
720
721static bool index_to_params(u64 id, struct coproc_params *params)
722{
723 switch (id & KVM_REG_SIZE_MASK) {
724 case KVM_REG_SIZE_U32:
725 /* Any unused index bits means it's not valid. */
726 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
727 | KVM_REG_ARM_COPROC_MASK
728 | KVM_REG_ARM_32_CRN_MASK
729 | KVM_REG_ARM_CRM_MASK
730 | KVM_REG_ARM_OPC1_MASK
731 | KVM_REG_ARM_32_OPC2_MASK))
732 return false;
733
734 params->is_64bit = false;
735 params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
736 >> KVM_REG_ARM_32_CRN_SHIFT);
737 params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
738 >> KVM_REG_ARM_CRM_SHIFT);
739 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
740 >> KVM_REG_ARM_OPC1_SHIFT);
741 params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
742 >> KVM_REG_ARM_32_OPC2_SHIFT);
743 return true;
744 case KVM_REG_SIZE_U64:
745 /* Any unused index bits means it's not valid. */
746 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
747 | KVM_REG_ARM_COPROC_MASK
748 | KVM_REG_ARM_CRM_MASK
749 | KVM_REG_ARM_OPC1_MASK))
750 return false;
751 params->is_64bit = true;
752 /* CRm to CRn: see cp15_to_index for details */
753 params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
754 >> KVM_REG_ARM_CRM_SHIFT);
755 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
756 >> KVM_REG_ARM_OPC1_SHIFT);
757 params->Op2 = 0;
758 params->CRm = 0;
759 return true;
760 default:
761 return false;
762 }
763}
764
765/* Decode an index value, and find the cp15 coproc_reg entry. */
766static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
767 u64 id)
768{
769 size_t num;
770 const struct coproc_reg *table, *r;
771 struct coproc_params params;
772
773 /* We only do cp15 for now. */
774 if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
775 return NULL;
776
777 if (!index_to_params(id, ¶ms))
778 return NULL;
779
780 table = get_target_table(vcpu->arch.target, &num);
781 r = find_reg(¶ms, table, num);
782 if (!r)
783 r = find_reg(¶ms, cp15_regs, ARRAY_SIZE(cp15_regs));
784
785 /* Not saved in the cp15 array? */
786 if (r && !r->reg)
787 r = NULL;
788
789 return r;
790}
791
792/*
793 * These are the invariant cp15 registers: we let the guest see the host
794 * versions of these, so they're part of the guest state.
795 *
796 * A future CPU may provide a mechanism to present different values to
797 * the guest, or a future kvm may trap them.
798 */
799/* Unfortunately, there's no register-argument for mrc, so generate. */
800#define FUNCTION_FOR32(crn, crm, op1, op2, name) \
801 static void get_##name(struct kvm_vcpu *v, \
802 const struct coproc_reg *r) \
803 { \
804 u32 val; \
805 \
806 asm volatile("mrc p15, " __stringify(op1) \
807 ", %0, c" __stringify(crn) \
808 ", c" __stringify(crm) \
809 ", " __stringify(op2) "\n" : "=r" (val)); \
810 ((struct coproc_reg *)r)->val = val; \
811 }
812
813FUNCTION_FOR32(0, 0, 0, 0, MIDR)
814FUNCTION_FOR32(0, 0, 0, 1, CTR)
815FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
816FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
817FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
818FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
819FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
820FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
821FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
822FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
823FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
824FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
825FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
826FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
827FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
828FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
829FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
830FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
831FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
832FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
833FUNCTION_FOR32(0, 0, 1, 7, AIDR)
834
835/* ->val is filled in by kvm_invariant_coproc_table_init() */
836static struct coproc_reg invariant_cp15[] = {
837 { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
838 { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
839 { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
840 { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
841 { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
842
843 { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
844 { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
845
846 { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
847 { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
848 { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
849 { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
850 { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
851 { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
852 { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
853 { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
854
855 { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
856 { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
857 { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
858 { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
859 { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
860 { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
861};
862
863/*
864 * Reads a register value from a userspace address to a kernel
865 * variable. Make sure that register size matches sizeof(*__val).
866 */
867static int reg_from_user(void *val, const void __user *uaddr, u64 id)
868{
869 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
870 return -EFAULT;
871 return 0;
872}
873
874/*
875 * Writes a register value to a userspace address from a kernel variable.
876 * Make sure that register size matches sizeof(*__val).
877 */
878static int reg_to_user(void __user *uaddr, const void *val, u64 id)
879{
880 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
881 return -EFAULT;
882 return 0;
883}
884
885static int get_invariant_cp15(u64 id, void __user *uaddr)
886{
887 struct coproc_params params;
888 const struct coproc_reg *r;
889 int ret;
890
891 if (!index_to_params(id, ¶ms))
892 return -ENOENT;
893
894 r = find_reg(¶ms, invariant_cp15, ARRAY_SIZE(invariant_cp15));
895 if (!r)
896 return -ENOENT;
897
898 ret = -ENOENT;
899 if (KVM_REG_SIZE(id) == 4) {
900 u32 val = r->val;
901
902 ret = reg_to_user(uaddr, &val, id);
903 } else if (KVM_REG_SIZE(id) == 8) {
904 ret = reg_to_user(uaddr, &r->val, id);
905 }
906 return ret;
907}
908
909static int set_invariant_cp15(u64 id, void __user *uaddr)
910{
911 struct coproc_params params;
912 const struct coproc_reg *r;
913 int err;
914 u64 val;
915
916 if (!index_to_params(id, ¶ms))
917 return -ENOENT;
918 r = find_reg(¶ms, invariant_cp15, ARRAY_SIZE(invariant_cp15));
919 if (!r)
920 return -ENOENT;
921
922 err = -ENOENT;
923 if (KVM_REG_SIZE(id) == 4) {
924 u32 val32;
925
926 err = reg_from_user(&val32, uaddr, id);
927 if (!err)
928 val = val32;
929 } else if (KVM_REG_SIZE(id) == 8) {
930 err = reg_from_user(&val, uaddr, id);
931 }
932 if (err)
933 return err;
934
935 /* This is what we mean by invariant: you can't change it. */
936 if (r->val != val)
937 return -EINVAL;
938
939 return 0;
940}
941
942static bool is_valid_cache(u32 val)
943{
944 u32 level, ctype;
945
946 if (val >= CSSELR_MAX)
947 return false;
948
949 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
950 level = (val >> 1);
951 ctype = (cache_levels >> (level * 3)) & 7;
952
953 switch (ctype) {
954 case 0: /* No cache */
955 return false;
956 case 1: /* Instruction cache only */
957 return (val & 1);
958 case 2: /* Data cache only */
959 case 4: /* Unified cache */
960 return !(val & 1);
961 case 3: /* Separate instruction and data caches */
962 return true;
963 default: /* Reserved: we can't know instruction or data. */
964 return false;
965 }
966}
967
968/* Which cache CCSIDR represents depends on CSSELR value. */
969static u32 get_ccsidr(u32 csselr)
970{
971 u32 ccsidr;
972
973 /* Make sure noone else changes CSSELR during this! */
974 local_irq_disable();
975 /* Put value into CSSELR */
976 asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
977 isb();
978 /* Read result out of CCSIDR */
979 asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
980 local_irq_enable();
981
982 return ccsidr;
983}
984
985static int demux_c15_get(u64 id, void __user *uaddr)
986{
987 u32 val;
988 u32 __user *uval = uaddr;
989
990 /* Fail if we have unknown bits set. */
991 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
992 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
993 return -ENOENT;
994
995 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
996 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
997 if (KVM_REG_SIZE(id) != 4)
998 return -ENOENT;
999 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1000 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1001 if (!is_valid_cache(val))
1002 return -ENOENT;
1003
1004 return put_user(get_ccsidr(val), uval);
1005 default:
1006 return -ENOENT;
1007 }
1008}
1009
1010static int demux_c15_set(u64 id, void __user *uaddr)
1011{
1012 u32 val, newval;
1013 u32 __user *uval = uaddr;
1014
1015 /* Fail if we have unknown bits set. */
1016 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1017 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1018 return -ENOENT;
1019
1020 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1021 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1022 if (KVM_REG_SIZE(id) != 4)
1023 return -ENOENT;
1024 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1025 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1026 if (!is_valid_cache(val))
1027 return -ENOENT;
1028
1029 if (get_user(newval, uval))
1030 return -EFAULT;
1031
1032 /* This is also invariant: you can't change it. */
1033 if (newval != get_ccsidr(val))
1034 return -EINVAL;
1035 return 0;
1036 default:
1037 return -ENOENT;
1038 }
1039}
1040
1041#ifdef CONFIG_VFPv3
1042static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
1043 KVM_REG_ARM_VFP_FPSCR,
1044 KVM_REG_ARM_VFP_FPINST,
1045 KVM_REG_ARM_VFP_FPINST2,
1046 KVM_REG_ARM_VFP_MVFR0,
1047 KVM_REG_ARM_VFP_MVFR1,
1048 KVM_REG_ARM_VFP_FPSID };
1049
1050static unsigned int num_fp_regs(void)
1051{
1052 if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
1053 return 32;
1054 else
1055 return 16;
1056}
1057
1058static unsigned int num_vfp_regs(void)
1059{
1060 /* Normal FP regs + control regs. */
1061 return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
1062}
1063
1064static int copy_vfp_regids(u64 __user *uindices)
1065{
1066 unsigned int i;
1067 const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
1068 const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
1069
1070 for (i = 0; i < num_fp_regs(); i++) {
1071 if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
1072 uindices))
1073 return -EFAULT;
1074 uindices++;
1075 }
1076
1077 for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
1078 if (put_user(u32reg | vfp_sysregs[i], uindices))
1079 return -EFAULT;
1080 uindices++;
1081 }
1082
1083 return num_vfp_regs();
1084}
1085
1086static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
1087{
1088 u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
1089 u32 val;
1090
1091 /* Fail if we have unknown bits set. */
1092 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1093 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1094 return -ENOENT;
1095
1096 if (vfpid < num_fp_regs()) {
1097 if (KVM_REG_SIZE(id) != 8)
1098 return -ENOENT;
1099 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpregs[vfpid],
1100 id);
1101 }
1102
1103 /* FP control registers are all 32 bit. */
1104 if (KVM_REG_SIZE(id) != 4)
1105 return -ENOENT;
1106
1107 switch (vfpid) {
1108 case KVM_REG_ARM_VFP_FPEXC:
1109 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpexc, id);
1110 case KVM_REG_ARM_VFP_FPSCR:
1111 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpscr, id);
1112 case KVM_REG_ARM_VFP_FPINST:
1113 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst, id);
1114 case KVM_REG_ARM_VFP_FPINST2:
1115 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst2, id);
1116 case KVM_REG_ARM_VFP_MVFR0:
1117 val = fmrx(MVFR0);
1118 return reg_to_user(uaddr, &val, id);
1119 case KVM_REG_ARM_VFP_MVFR1:
1120 val = fmrx(MVFR1);
1121 return reg_to_user(uaddr, &val, id);
1122 case KVM_REG_ARM_VFP_FPSID:
1123 val = fmrx(FPSID);
1124 return reg_to_user(uaddr, &val, id);
1125 default:
1126 return -ENOENT;
1127 }
1128}
1129
1130static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
1131{
1132 u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
1133 u32 val;
1134
1135 /* Fail if we have unknown bits set. */
1136 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1137 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1138 return -ENOENT;
1139
1140 if (vfpid < num_fp_regs()) {
1141 if (KVM_REG_SIZE(id) != 8)
1142 return -ENOENT;
1143 return reg_from_user(&vcpu->arch.ctxt.vfp.fpregs[vfpid],
1144 uaddr, id);
1145 }
1146
1147 /* FP control registers are all 32 bit. */
1148 if (KVM_REG_SIZE(id) != 4)
1149 return -ENOENT;
1150
1151 switch (vfpid) {
1152 case KVM_REG_ARM_VFP_FPEXC:
1153 return reg_from_user(&vcpu->arch.ctxt.vfp.fpexc, uaddr, id);
1154 case KVM_REG_ARM_VFP_FPSCR:
1155 return reg_from_user(&vcpu->arch.ctxt.vfp.fpscr, uaddr, id);
1156 case KVM_REG_ARM_VFP_FPINST:
1157 return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst, uaddr, id);
1158 case KVM_REG_ARM_VFP_FPINST2:
1159 return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst2, uaddr, id);
1160 /* These are invariant. */
1161 case KVM_REG_ARM_VFP_MVFR0:
1162 if (reg_from_user(&val, uaddr, id))
1163 return -EFAULT;
1164 if (val != fmrx(MVFR0))
1165 return -EINVAL;
1166 return 0;
1167 case KVM_REG_ARM_VFP_MVFR1:
1168 if (reg_from_user(&val, uaddr, id))
1169 return -EFAULT;
1170 if (val != fmrx(MVFR1))
1171 return -EINVAL;
1172 return 0;
1173 case KVM_REG_ARM_VFP_FPSID:
1174 if (reg_from_user(&val, uaddr, id))
1175 return -EFAULT;
1176 if (val != fmrx(FPSID))
1177 return -EINVAL;
1178 return 0;
1179 default:
1180 return -ENOENT;
1181 }
1182}
1183#else /* !CONFIG_VFPv3 */
1184static unsigned int num_vfp_regs(void)
1185{
1186 return 0;
1187}
1188
1189static int copy_vfp_regids(u64 __user *uindices)
1190{
1191 return 0;
1192}
1193
1194static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
1195{
1196 return -ENOENT;
1197}
1198
1199static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
1200{
1201 return -ENOENT;
1202}
1203#endif /* !CONFIG_VFPv3 */
1204
1205int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1206{
1207 const struct coproc_reg *r;
1208 void __user *uaddr = (void __user *)(long)reg->addr;
1209 int ret;
1210
1211 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1212 return demux_c15_get(reg->id, uaddr);
1213
1214 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1215 return vfp_get_reg(vcpu, reg->id, uaddr);
1216
1217 r = index_to_coproc_reg(vcpu, reg->id);
1218 if (!r)
1219 return get_invariant_cp15(reg->id, uaddr);
1220
1221 ret = -ENOENT;
1222 if (KVM_REG_SIZE(reg->id) == 8) {
1223 u64 val;
1224
1225 val = vcpu_cp15_reg64_get(vcpu, r);
1226 ret = reg_to_user(uaddr, &val, reg->id);
1227 } else if (KVM_REG_SIZE(reg->id) == 4) {
1228 ret = reg_to_user(uaddr, &vcpu_cp15(vcpu, r->reg), reg->id);
1229 }
1230
1231 return ret;
1232}
1233
1234int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1235{
1236 const struct coproc_reg *r;
1237 void __user *uaddr = (void __user *)(long)reg->addr;
1238 int ret;
1239
1240 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1241 return demux_c15_set(reg->id, uaddr);
1242
1243 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1244 return vfp_set_reg(vcpu, reg->id, uaddr);
1245
1246 r = index_to_coproc_reg(vcpu, reg->id);
1247 if (!r)
1248 return set_invariant_cp15(reg->id, uaddr);
1249
1250 ret = -ENOENT;
1251 if (KVM_REG_SIZE(reg->id) == 8) {
1252 u64 val;
1253
1254 ret = reg_from_user(&val, uaddr, reg->id);
1255 if (!ret)
1256 vcpu_cp15_reg64_set(vcpu, r, val);
1257 } else if (KVM_REG_SIZE(reg->id) == 4) {
1258 ret = reg_from_user(&vcpu_cp15(vcpu, r->reg), uaddr, reg->id);
1259 }
1260
1261 return ret;
1262}
1263
1264static unsigned int num_demux_regs(void)
1265{
1266 unsigned int i, count = 0;
1267
1268 for (i = 0; i < CSSELR_MAX; i++)
1269 if (is_valid_cache(i))
1270 count++;
1271
1272 return count;
1273}
1274
1275static int write_demux_regids(u64 __user *uindices)
1276{
1277 u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
1278 unsigned int i;
1279
1280 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1281 for (i = 0; i < CSSELR_MAX; i++) {
1282 if (!is_valid_cache(i))
1283 continue;
1284 if (put_user(val | i, uindices))
1285 return -EFAULT;
1286 uindices++;
1287 }
1288 return 0;
1289}
1290
1291static u64 cp15_to_index(const struct coproc_reg *reg)
1292{
1293 u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
1294 if (reg->is_64bit) {
1295 val |= KVM_REG_SIZE_U64;
1296 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1297 /*
1298 * CRn always denotes the primary coproc. reg. nr. for the
1299 * in-kernel representation, but the user space API uses the
1300 * CRm for the encoding, because it is modelled after the
1301 * MRRC/MCRR instructions: see the ARM ARM rev. c page
1302 * B3-1445
1303 */
1304 val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
1305 } else {
1306 val |= KVM_REG_SIZE_U32;
1307 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1308 val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
1309 val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
1310 val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
1311 }
1312 return val;
1313}
1314
1315static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
1316{
1317 if (!*uind)
1318 return true;
1319
1320 if (put_user(cp15_to_index(reg), *uind))
1321 return false;
1322
1323 (*uind)++;
1324 return true;
1325}
1326
1327/* Assumed ordered tables, see kvm_coproc_table_init. */
1328static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
1329{
1330 const struct coproc_reg *i1, *i2, *end1, *end2;
1331 unsigned int total = 0;
1332 size_t num;
1333
1334 /* We check for duplicates here, to allow arch-specific overrides. */
1335 i1 = get_target_table(vcpu->arch.target, &num);
1336 end1 = i1 + num;
1337 i2 = cp15_regs;
1338 end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
1339
1340 BUG_ON(i1 == end1 || i2 == end2);
1341
1342 /* Walk carefully, as both tables may refer to the same register. */
1343 while (i1 || i2) {
1344 int cmp = cmp_reg(i1, i2);
1345 /* target-specific overrides generic entry. */
1346 if (cmp <= 0) {
1347 /* Ignore registers we trap but don't save. */
1348 if (i1->reg) {
1349 if (!copy_reg_to_user(i1, &uind))
1350 return -EFAULT;
1351 total++;
1352 }
1353 } else {
1354 /* Ignore registers we trap but don't save. */
1355 if (i2->reg) {
1356 if (!copy_reg_to_user(i2, &uind))
1357 return -EFAULT;
1358 total++;
1359 }
1360 }
1361
1362 if (cmp <= 0 && ++i1 == end1)
1363 i1 = NULL;
1364 if (cmp >= 0 && ++i2 == end2)
1365 i2 = NULL;
1366 }
1367 return total;
1368}
1369
1370unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
1371{
1372 return ARRAY_SIZE(invariant_cp15)
1373 + num_demux_regs()
1374 + num_vfp_regs()
1375 + walk_cp15(vcpu, (u64 __user *)NULL);
1376}
1377
1378int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1379{
1380 unsigned int i;
1381 int err;
1382
1383 /* Then give them all the invariant registers' indices. */
1384 for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
1385 if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
1386 return -EFAULT;
1387 uindices++;
1388 }
1389
1390 err = walk_cp15(vcpu, uindices);
1391 if (err < 0)
1392 return err;
1393 uindices += err;
1394
1395 err = copy_vfp_regids(uindices);
1396 if (err < 0)
1397 return err;
1398 uindices += err;
1399
1400 return write_demux_regids(uindices);
1401}
1402
1403void kvm_coproc_table_init(void)
1404{
1405 unsigned int i;
1406
1407 /* Make sure tables are unique and in order. */
1408 BUG_ON(check_reg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
1409 BUG_ON(check_reg_table(invariant_cp15, ARRAY_SIZE(invariant_cp15)));
1410
1411 /* We abuse the reset function to overwrite the table itself. */
1412 for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
1413 invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
1414
1415 /*
1416 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1417 *
1418 * If software reads the Cache Type fields from Ctype1
1419 * upwards, once it has seen a value of 0b000, no caches
1420 * exist at further-out levels of the hierarchy. So, for
1421 * example, if Ctype3 is the first Cache Type field with a
1422 * value of 0b000, the values of Ctype4 to Ctype7 must be
1423 * ignored.
1424 */
1425 asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
1426 for (i = 0; i < 7; i++)
1427 if (((cache_levels >> (i*3)) & 7) == 0)
1428 break;
1429 /* Clear all higher bits. */
1430 cache_levels &= (1 << (i*3))-1;
1431}
1432
1433/**
1434 * kvm_reset_coprocs - sets cp15 registers to reset value
1435 * @vcpu: The VCPU pointer
1436 *
1437 * This function finds the right table above and sets the registers on the
1438 * virtual CPU struct to their architecturally defined reset values.
1439 */
1440void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
1441{
1442 size_t num;
1443 const struct coproc_reg *table;
1444 DECLARE_BITMAP(bmap, NR_CP15_REGS) = { 0, };
1445
1446 /* Generic chip reset first (so target could override). */
1447 reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs), bmap);
1448
1449 table = get_target_table(vcpu->arch.target, &num);
1450 reset_coproc_regs(vcpu, table, num, bmap);
1451
1452 for (num = 1; num < NR_CP15_REGS; num++)
1453 WARN(!test_bit(num, bmap),
1454 "Didn't reset vcpu_cp15(vcpu, %zi)", num);
1455}
1/*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Authors: Rusty Russell <rusty@rustcorp.com.au>
4 * Christoffer Dall <c.dall@virtualopensystems.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2, as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
18 */
19
20#include <linux/bsearch.h>
21#include <linux/mm.h>
22#include <linux/kvm_host.h>
23#include <linux/uaccess.h>
24#include <asm/kvm_arm.h>
25#include <asm/kvm_host.h>
26#include <asm/kvm_emulate.h>
27#include <asm/kvm_coproc.h>
28#include <asm/kvm_mmu.h>
29#include <asm/cacheflush.h>
30#include <asm/cputype.h>
31#include <trace/events/kvm.h>
32#include <asm/vfp.h>
33#include "../vfp/vfpinstr.h"
34
35#include "trace.h"
36#include "coproc.h"
37
38
39/******************************************************************************
40 * Co-processor emulation
41 *****************************************************************************/
42
43/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
44static u32 cache_levels;
45
46/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
47#define CSSELR_MAX 12
48
49/*
50 * kvm_vcpu_arch.cp15 holds cp15 registers as an array of u32, but some
51 * of cp15 registers can be viewed either as couple of two u32 registers
52 * or one u64 register. Current u64 register encoding is that least
53 * significant u32 word is followed by most significant u32 word.
54 */
55static inline void vcpu_cp15_reg64_set(struct kvm_vcpu *vcpu,
56 const struct coproc_reg *r,
57 u64 val)
58{
59 vcpu_cp15(vcpu, r->reg) = val & 0xffffffff;
60 vcpu_cp15(vcpu, r->reg + 1) = val >> 32;
61}
62
63static inline u64 vcpu_cp15_reg64_get(struct kvm_vcpu *vcpu,
64 const struct coproc_reg *r)
65{
66 u64 val;
67
68 val = vcpu_cp15(vcpu, r->reg + 1);
69 val = val << 32;
70 val = val | vcpu_cp15(vcpu, r->reg);
71 return val;
72}
73
74int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
75{
76 kvm_inject_undefined(vcpu);
77 return 1;
78}
79
80int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
81{
82 /*
83 * We can get here, if the host has been built without VFPv3 support,
84 * but the guest attempted a floating point operation.
85 */
86 kvm_inject_undefined(vcpu);
87 return 1;
88}
89
90int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
91{
92 kvm_inject_undefined(vcpu);
93 return 1;
94}
95
96int kvm_handle_cp14_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
97{
98 kvm_inject_undefined(vcpu);
99 return 1;
100}
101
102static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
103{
104 /*
105 * Compute guest MPIDR. We build a virtual cluster out of the
106 * vcpu_id, but we read the 'U' bit from the underlying
107 * hardware directly.
108 */
109 vcpu_cp15(vcpu, c0_MPIDR) = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) |
110 ((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) |
111 (vcpu->vcpu_id & 3));
112}
113
114/* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
115static bool access_actlr(struct kvm_vcpu *vcpu,
116 const struct coproc_params *p,
117 const struct coproc_reg *r)
118{
119 if (p->is_write)
120 return ignore_write(vcpu, p);
121
122 *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c1_ACTLR);
123 return true;
124}
125
126/* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
127static bool access_cbar(struct kvm_vcpu *vcpu,
128 const struct coproc_params *p,
129 const struct coproc_reg *r)
130{
131 if (p->is_write)
132 return write_to_read_only(vcpu, p);
133 return read_zero(vcpu, p);
134}
135
136/* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
137static bool access_l2ctlr(struct kvm_vcpu *vcpu,
138 const struct coproc_params *p,
139 const struct coproc_reg *r)
140{
141 if (p->is_write)
142 return ignore_write(vcpu, p);
143
144 *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c9_L2CTLR);
145 return true;
146}
147
148static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
149{
150 u32 l2ctlr, ncores;
151
152 asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr));
153 l2ctlr &= ~(3 << 24);
154 ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1;
155 /* How many cores in the current cluster and the next ones */
156 ncores -= (vcpu->vcpu_id & ~3);
157 /* Cap it to the maximum number of cores in a single cluster */
158 ncores = min(ncores, 3U);
159 l2ctlr |= (ncores & 3) << 24;
160
161 vcpu_cp15(vcpu, c9_L2CTLR) = l2ctlr;
162}
163
164static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
165{
166 u32 actlr;
167
168 /* ACTLR contains SMP bit: make sure you create all cpus first! */
169 asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
170 /* Make the SMP bit consistent with the guest configuration */
171 if (atomic_read(&vcpu->kvm->online_vcpus) > 1)
172 actlr |= 1U << 6;
173 else
174 actlr &= ~(1U << 6);
175
176 vcpu_cp15(vcpu, c1_ACTLR) = actlr;
177}
178
179/*
180 * TRM entries: A7:4.3.50, A15:4.3.49
181 * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
182 */
183static bool access_l2ectlr(struct kvm_vcpu *vcpu,
184 const struct coproc_params *p,
185 const struct coproc_reg *r)
186{
187 if (p->is_write)
188 return ignore_write(vcpu, p);
189
190 *vcpu_reg(vcpu, p->Rt1) = 0;
191 return true;
192}
193
194/*
195 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
196 */
197static bool access_dcsw(struct kvm_vcpu *vcpu,
198 const struct coproc_params *p,
199 const struct coproc_reg *r)
200{
201 if (!p->is_write)
202 return read_from_write_only(vcpu, p);
203
204 kvm_set_way_flush(vcpu);
205 return true;
206}
207
208/*
209 * Generic accessor for VM registers. Only called as long as HCR_TVM
210 * is set. If the guest enables the MMU, we stop trapping the VM
211 * sys_regs and leave it in complete control of the caches.
212 *
213 * Used by the cpu-specific code.
214 */
215bool access_vm_reg(struct kvm_vcpu *vcpu,
216 const struct coproc_params *p,
217 const struct coproc_reg *r)
218{
219 bool was_enabled = vcpu_has_cache_enabled(vcpu);
220
221 BUG_ON(!p->is_write);
222
223 vcpu_cp15(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt1);
224 if (p->is_64bit)
225 vcpu_cp15(vcpu, r->reg + 1) = *vcpu_reg(vcpu, p->Rt2);
226
227 kvm_toggle_cache(vcpu, was_enabled);
228 return true;
229}
230
231static bool access_gic_sgi(struct kvm_vcpu *vcpu,
232 const struct coproc_params *p,
233 const struct coproc_reg *r)
234{
235 u64 reg;
236
237 if (!p->is_write)
238 return read_from_write_only(vcpu, p);
239
240 reg = (u64)*vcpu_reg(vcpu, p->Rt2) << 32;
241 reg |= *vcpu_reg(vcpu, p->Rt1) ;
242
243 vgic_v3_dispatch_sgi(vcpu, reg);
244
245 return true;
246}
247
248static bool access_gic_sre(struct kvm_vcpu *vcpu,
249 const struct coproc_params *p,
250 const struct coproc_reg *r)
251{
252 if (p->is_write)
253 return ignore_write(vcpu, p);
254
255 *vcpu_reg(vcpu, p->Rt1) = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
256
257 return true;
258}
259
260/*
261 * We could trap ID_DFR0 and tell the guest we don't support performance
262 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
263 * NAKed, so it will read the PMCR anyway.
264 *
265 * Therefore we tell the guest we have 0 counters. Unfortunately, we
266 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
267 * all PM registers, which doesn't crash the guest kernel at least.
268 */
269static bool pm_fake(struct kvm_vcpu *vcpu,
270 const struct coproc_params *p,
271 const struct coproc_reg *r)
272{
273 if (p->is_write)
274 return ignore_write(vcpu, p);
275 else
276 return read_zero(vcpu, p);
277}
278
279#define access_pmcr pm_fake
280#define access_pmcntenset pm_fake
281#define access_pmcntenclr pm_fake
282#define access_pmovsr pm_fake
283#define access_pmselr pm_fake
284#define access_pmceid0 pm_fake
285#define access_pmceid1 pm_fake
286#define access_pmccntr pm_fake
287#define access_pmxevtyper pm_fake
288#define access_pmxevcntr pm_fake
289#define access_pmuserenr pm_fake
290#define access_pmintenset pm_fake
291#define access_pmintenclr pm_fake
292
293/* Architected CP15 registers.
294 * CRn denotes the primary register number, but is copied to the CRm in the
295 * user space API for 64-bit register access in line with the terminology used
296 * in the ARM ARM.
297 * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
298 * registers preceding 32-bit ones.
299 */
300static const struct coproc_reg cp15_regs[] = {
301 /* MPIDR: we use VMPIDR for guest access. */
302 { CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32,
303 NULL, reset_mpidr, c0_MPIDR },
304
305 /* CSSELR: swapped by interrupt.S. */
306 { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
307 NULL, reset_unknown, c0_CSSELR },
308
309 /* ACTLR: trapped by HCR.TAC bit. */
310 { CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32,
311 access_actlr, reset_actlr, c1_ACTLR },
312
313 /* CPACR: swapped by interrupt.S. */
314 { CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32,
315 NULL, reset_val, c1_CPACR, 0x00000000 },
316
317 /* TTBR0/TTBR1/TTBCR: swapped by interrupt.S. */
318 { CRm64( 2), Op1( 0), is64, access_vm_reg, reset_unknown64, c2_TTBR0 },
319 { CRn(2), CRm( 0), Op1( 0), Op2( 0), is32,
320 access_vm_reg, reset_unknown, c2_TTBR0 },
321 { CRn(2), CRm( 0), Op1( 0), Op2( 1), is32,
322 access_vm_reg, reset_unknown, c2_TTBR1 },
323 { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
324 access_vm_reg, reset_val, c2_TTBCR, 0x00000000 },
325 { CRm64( 2), Op1( 1), is64, access_vm_reg, reset_unknown64, c2_TTBR1 },
326
327
328 /* DACR: swapped by interrupt.S. */
329 { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
330 access_vm_reg, reset_unknown, c3_DACR },
331
332 /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
333 { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
334 access_vm_reg, reset_unknown, c5_DFSR },
335 { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
336 access_vm_reg, reset_unknown, c5_IFSR },
337 { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
338 access_vm_reg, reset_unknown, c5_ADFSR },
339 { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
340 access_vm_reg, reset_unknown, c5_AIFSR },
341
342 /* DFAR/IFAR: swapped by interrupt.S. */
343 { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
344 access_vm_reg, reset_unknown, c6_DFAR },
345 { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
346 access_vm_reg, reset_unknown, c6_IFAR },
347
348 /* PAR swapped by interrupt.S */
349 { CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
350
351 /*
352 * DC{C,I,CI}SW operations:
353 */
354 { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
355 { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
356 { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
357 /*
358 * L2CTLR access (guest wants to know #CPUs).
359 */
360 { CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32,
361 access_l2ctlr, reset_l2ctlr, c9_L2CTLR },
362 { CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr},
363
364 /*
365 * Dummy performance monitor implementation.
366 */
367 { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
368 { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
369 { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
370 { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
371 { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
372 { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
373 { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
374 { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
375 { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
376 { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
377 { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
378 { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
379 { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
380
381 /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
382 { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
383 access_vm_reg, reset_unknown, c10_PRRR},
384 { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
385 access_vm_reg, reset_unknown, c10_NMRR},
386
387 /* AMAIR0/AMAIR1: swapped by interrupt.S. */
388 { CRn(10), CRm( 3), Op1( 0), Op2( 0), is32,
389 access_vm_reg, reset_unknown, c10_AMAIR0},
390 { CRn(10), CRm( 3), Op1( 0), Op2( 1), is32,
391 access_vm_reg, reset_unknown, c10_AMAIR1},
392
393 /* ICC_SGI1R */
394 { CRm64(12), Op1( 0), is64, access_gic_sgi},
395
396 /* VBAR: swapped by interrupt.S. */
397 { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
398 NULL, reset_val, c12_VBAR, 0x00000000 },
399
400 /* ICC_SRE */
401 { CRn(12), CRm(12), Op1( 0), Op2(5), is32, access_gic_sre },
402
403 /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
404 { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
405 access_vm_reg, reset_val, c13_CID, 0x00000000 },
406 { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
407 NULL, reset_unknown, c13_TID_URW },
408 { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
409 NULL, reset_unknown, c13_TID_URO },
410 { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
411 NULL, reset_unknown, c13_TID_PRIV },
412
413 /* CNTKCTL: swapped by interrupt.S. */
414 { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
415 NULL, reset_val, c14_CNTKCTL, 0x00000000 },
416
417 /* The Configuration Base Address Register. */
418 { CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar},
419};
420
421static int check_reg_table(const struct coproc_reg *table, unsigned int n)
422{
423 unsigned int i;
424
425 for (i = 1; i < n; i++) {
426 if (cmp_reg(&table[i-1], &table[i]) >= 0) {
427 kvm_err("reg table %p out of order (%d)\n", table, i - 1);
428 return 1;
429 }
430 }
431
432 return 0;
433}
434
435/* Target specific emulation tables */
436static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
437
438void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
439{
440 BUG_ON(check_reg_table(table->table, table->num));
441 target_tables[table->target] = table;
442}
443
444/* Get specific register table for this target. */
445static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
446{
447 struct kvm_coproc_target_table *table;
448
449 table = target_tables[target];
450 *num = table->num;
451 return table->table;
452}
453
454#define reg_to_match_value(x) \
455 ({ \
456 unsigned long val; \
457 val = (x)->CRn << 11; \
458 val |= (x)->CRm << 7; \
459 val |= (x)->Op1 << 4; \
460 val |= (x)->Op2 << 1; \
461 val |= !(x)->is_64bit; \
462 val; \
463 })
464
465static int match_reg(const void *key, const void *elt)
466{
467 const unsigned long pval = (unsigned long)key;
468 const struct coproc_reg *r = elt;
469
470 return pval - reg_to_match_value(r);
471}
472
473static const struct coproc_reg *find_reg(const struct coproc_params *params,
474 const struct coproc_reg table[],
475 unsigned int num)
476{
477 unsigned long pval = reg_to_match_value(params);
478
479 return bsearch((void *)pval, table, num, sizeof(table[0]), match_reg);
480}
481
482static int emulate_cp15(struct kvm_vcpu *vcpu,
483 const struct coproc_params *params)
484{
485 size_t num;
486 const struct coproc_reg *table, *r;
487
488 trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
489 params->CRm, params->Op2, params->is_write);
490
491 table = get_target_table(vcpu->arch.target, &num);
492
493 /* Search target-specific then generic table. */
494 r = find_reg(params, table, num);
495 if (!r)
496 r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
497
498 if (likely(r)) {
499 /* If we don't have an accessor, we should never get here! */
500 BUG_ON(!r->access);
501
502 if (likely(r->access(vcpu, params, r))) {
503 /* Skip instruction, since it was emulated */
504 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
505 return 1;
506 }
507 /* If access function fails, it should complain. */
508 } else {
509 kvm_err("Unsupported guest CP15 access at: %08lx\n",
510 *vcpu_pc(vcpu));
511 print_cp_instr(params);
512 }
513 kvm_inject_undefined(vcpu);
514 return 1;
515}
516
517/**
518 * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
519 * @vcpu: The VCPU pointer
520 * @run: The kvm_run struct
521 */
522int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
523{
524 struct coproc_params params;
525
526 params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
527 params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
528 params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
529 params.is_64bit = true;
530
531 params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
532 params.Op2 = 0;
533 params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
534 params.CRm = 0;
535
536 return emulate_cp15(vcpu, ¶ms);
537}
538
539static void reset_coproc_regs(struct kvm_vcpu *vcpu,
540 const struct coproc_reg *table, size_t num)
541{
542 unsigned long i;
543
544 for (i = 0; i < num; i++)
545 if (table[i].reset)
546 table[i].reset(vcpu, &table[i]);
547}
548
549/**
550 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
551 * @vcpu: The VCPU pointer
552 * @run: The kvm_run struct
553 */
554int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
555{
556 struct coproc_params params;
557
558 params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
559 params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
560 params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
561 params.is_64bit = false;
562
563 params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
564 params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
565 params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
566 params.Rt2 = 0;
567
568 return emulate_cp15(vcpu, ¶ms);
569}
570
571/******************************************************************************
572 * Userspace API
573 *****************************************************************************/
574
575static bool index_to_params(u64 id, struct coproc_params *params)
576{
577 switch (id & KVM_REG_SIZE_MASK) {
578 case KVM_REG_SIZE_U32:
579 /* Any unused index bits means it's not valid. */
580 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
581 | KVM_REG_ARM_COPROC_MASK
582 | KVM_REG_ARM_32_CRN_MASK
583 | KVM_REG_ARM_CRM_MASK
584 | KVM_REG_ARM_OPC1_MASK
585 | KVM_REG_ARM_32_OPC2_MASK))
586 return false;
587
588 params->is_64bit = false;
589 params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
590 >> KVM_REG_ARM_32_CRN_SHIFT);
591 params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
592 >> KVM_REG_ARM_CRM_SHIFT);
593 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
594 >> KVM_REG_ARM_OPC1_SHIFT);
595 params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
596 >> KVM_REG_ARM_32_OPC2_SHIFT);
597 return true;
598 case KVM_REG_SIZE_U64:
599 /* Any unused index bits means it's not valid. */
600 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
601 | KVM_REG_ARM_COPROC_MASK
602 | KVM_REG_ARM_CRM_MASK
603 | KVM_REG_ARM_OPC1_MASK))
604 return false;
605 params->is_64bit = true;
606 /* CRm to CRn: see cp15_to_index for details */
607 params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
608 >> KVM_REG_ARM_CRM_SHIFT);
609 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
610 >> KVM_REG_ARM_OPC1_SHIFT);
611 params->Op2 = 0;
612 params->CRm = 0;
613 return true;
614 default:
615 return false;
616 }
617}
618
619/* Decode an index value, and find the cp15 coproc_reg entry. */
620static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
621 u64 id)
622{
623 size_t num;
624 const struct coproc_reg *table, *r;
625 struct coproc_params params;
626
627 /* We only do cp15 for now. */
628 if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
629 return NULL;
630
631 if (!index_to_params(id, ¶ms))
632 return NULL;
633
634 table = get_target_table(vcpu->arch.target, &num);
635 r = find_reg(¶ms, table, num);
636 if (!r)
637 r = find_reg(¶ms, cp15_regs, ARRAY_SIZE(cp15_regs));
638
639 /* Not saved in the cp15 array? */
640 if (r && !r->reg)
641 r = NULL;
642
643 return r;
644}
645
646/*
647 * These are the invariant cp15 registers: we let the guest see the host
648 * versions of these, so they're part of the guest state.
649 *
650 * A future CPU may provide a mechanism to present different values to
651 * the guest, or a future kvm may trap them.
652 */
653/* Unfortunately, there's no register-argument for mrc, so generate. */
654#define FUNCTION_FOR32(crn, crm, op1, op2, name) \
655 static void get_##name(struct kvm_vcpu *v, \
656 const struct coproc_reg *r) \
657 { \
658 u32 val; \
659 \
660 asm volatile("mrc p15, " __stringify(op1) \
661 ", %0, c" __stringify(crn) \
662 ", c" __stringify(crm) \
663 ", " __stringify(op2) "\n" : "=r" (val)); \
664 ((struct coproc_reg *)r)->val = val; \
665 }
666
667FUNCTION_FOR32(0, 0, 0, 0, MIDR)
668FUNCTION_FOR32(0, 0, 0, 1, CTR)
669FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
670FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
671FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
672FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
673FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
674FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
675FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
676FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
677FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
678FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
679FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
680FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
681FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
682FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
683FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
684FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
685FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
686FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
687FUNCTION_FOR32(0, 0, 1, 7, AIDR)
688
689/* ->val is filled in by kvm_invariant_coproc_table_init() */
690static struct coproc_reg invariant_cp15[] = {
691 { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
692 { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
693 { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
694 { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
695 { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
696
697 { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
698 { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
699
700 { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
701 { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
702 { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
703 { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
704 { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
705 { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
706 { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
707 { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
708
709 { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
710 { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
711 { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
712 { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
713 { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
714 { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
715};
716
717/*
718 * Reads a register value from a userspace address to a kernel
719 * variable. Make sure that register size matches sizeof(*__val).
720 */
721static int reg_from_user(void *val, const void __user *uaddr, u64 id)
722{
723 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
724 return -EFAULT;
725 return 0;
726}
727
728/*
729 * Writes a register value to a userspace address from a kernel variable.
730 * Make sure that register size matches sizeof(*__val).
731 */
732static int reg_to_user(void __user *uaddr, const void *val, u64 id)
733{
734 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
735 return -EFAULT;
736 return 0;
737}
738
739static int get_invariant_cp15(u64 id, void __user *uaddr)
740{
741 struct coproc_params params;
742 const struct coproc_reg *r;
743 int ret;
744
745 if (!index_to_params(id, ¶ms))
746 return -ENOENT;
747
748 r = find_reg(¶ms, invariant_cp15, ARRAY_SIZE(invariant_cp15));
749 if (!r)
750 return -ENOENT;
751
752 ret = -ENOENT;
753 if (KVM_REG_SIZE(id) == 4) {
754 u32 val = r->val;
755
756 ret = reg_to_user(uaddr, &val, id);
757 } else if (KVM_REG_SIZE(id) == 8) {
758 ret = reg_to_user(uaddr, &r->val, id);
759 }
760 return ret;
761}
762
763static int set_invariant_cp15(u64 id, void __user *uaddr)
764{
765 struct coproc_params params;
766 const struct coproc_reg *r;
767 int err;
768 u64 val;
769
770 if (!index_to_params(id, ¶ms))
771 return -ENOENT;
772 r = find_reg(¶ms, invariant_cp15, ARRAY_SIZE(invariant_cp15));
773 if (!r)
774 return -ENOENT;
775
776 err = -ENOENT;
777 if (KVM_REG_SIZE(id) == 4) {
778 u32 val32;
779
780 err = reg_from_user(&val32, uaddr, id);
781 if (!err)
782 val = val32;
783 } else if (KVM_REG_SIZE(id) == 8) {
784 err = reg_from_user(&val, uaddr, id);
785 }
786 if (err)
787 return err;
788
789 /* This is what we mean by invariant: you can't change it. */
790 if (r->val != val)
791 return -EINVAL;
792
793 return 0;
794}
795
796static bool is_valid_cache(u32 val)
797{
798 u32 level, ctype;
799
800 if (val >= CSSELR_MAX)
801 return false;
802
803 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
804 level = (val >> 1);
805 ctype = (cache_levels >> (level * 3)) & 7;
806
807 switch (ctype) {
808 case 0: /* No cache */
809 return false;
810 case 1: /* Instruction cache only */
811 return (val & 1);
812 case 2: /* Data cache only */
813 case 4: /* Unified cache */
814 return !(val & 1);
815 case 3: /* Separate instruction and data caches */
816 return true;
817 default: /* Reserved: we can't know instruction or data. */
818 return false;
819 }
820}
821
822/* Which cache CCSIDR represents depends on CSSELR value. */
823static u32 get_ccsidr(u32 csselr)
824{
825 u32 ccsidr;
826
827 /* Make sure noone else changes CSSELR during this! */
828 local_irq_disable();
829 /* Put value into CSSELR */
830 asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
831 isb();
832 /* Read result out of CCSIDR */
833 asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
834 local_irq_enable();
835
836 return ccsidr;
837}
838
839static int demux_c15_get(u64 id, void __user *uaddr)
840{
841 u32 val;
842 u32 __user *uval = uaddr;
843
844 /* Fail if we have unknown bits set. */
845 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
846 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
847 return -ENOENT;
848
849 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
850 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
851 if (KVM_REG_SIZE(id) != 4)
852 return -ENOENT;
853 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
854 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
855 if (!is_valid_cache(val))
856 return -ENOENT;
857
858 return put_user(get_ccsidr(val), uval);
859 default:
860 return -ENOENT;
861 }
862}
863
864static int demux_c15_set(u64 id, void __user *uaddr)
865{
866 u32 val, newval;
867 u32 __user *uval = uaddr;
868
869 /* Fail if we have unknown bits set. */
870 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
871 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
872 return -ENOENT;
873
874 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
875 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
876 if (KVM_REG_SIZE(id) != 4)
877 return -ENOENT;
878 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
879 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
880 if (!is_valid_cache(val))
881 return -ENOENT;
882
883 if (get_user(newval, uval))
884 return -EFAULT;
885
886 /* This is also invariant: you can't change it. */
887 if (newval != get_ccsidr(val))
888 return -EINVAL;
889 return 0;
890 default:
891 return -ENOENT;
892 }
893}
894
895#ifdef CONFIG_VFPv3
896static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
897 KVM_REG_ARM_VFP_FPSCR,
898 KVM_REG_ARM_VFP_FPINST,
899 KVM_REG_ARM_VFP_FPINST2,
900 KVM_REG_ARM_VFP_MVFR0,
901 KVM_REG_ARM_VFP_MVFR1,
902 KVM_REG_ARM_VFP_FPSID };
903
904static unsigned int num_fp_regs(void)
905{
906 if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
907 return 32;
908 else
909 return 16;
910}
911
912static unsigned int num_vfp_regs(void)
913{
914 /* Normal FP regs + control regs. */
915 return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
916}
917
918static int copy_vfp_regids(u64 __user *uindices)
919{
920 unsigned int i;
921 const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
922 const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
923
924 for (i = 0; i < num_fp_regs(); i++) {
925 if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
926 uindices))
927 return -EFAULT;
928 uindices++;
929 }
930
931 for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
932 if (put_user(u32reg | vfp_sysregs[i], uindices))
933 return -EFAULT;
934 uindices++;
935 }
936
937 return num_vfp_regs();
938}
939
940static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
941{
942 u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
943 u32 val;
944
945 /* Fail if we have unknown bits set. */
946 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
947 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
948 return -ENOENT;
949
950 if (vfpid < num_fp_regs()) {
951 if (KVM_REG_SIZE(id) != 8)
952 return -ENOENT;
953 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpregs[vfpid],
954 id);
955 }
956
957 /* FP control registers are all 32 bit. */
958 if (KVM_REG_SIZE(id) != 4)
959 return -ENOENT;
960
961 switch (vfpid) {
962 case KVM_REG_ARM_VFP_FPEXC:
963 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpexc, id);
964 case KVM_REG_ARM_VFP_FPSCR:
965 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpscr, id);
966 case KVM_REG_ARM_VFP_FPINST:
967 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst, id);
968 case KVM_REG_ARM_VFP_FPINST2:
969 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst2, id);
970 case KVM_REG_ARM_VFP_MVFR0:
971 val = fmrx(MVFR0);
972 return reg_to_user(uaddr, &val, id);
973 case KVM_REG_ARM_VFP_MVFR1:
974 val = fmrx(MVFR1);
975 return reg_to_user(uaddr, &val, id);
976 case KVM_REG_ARM_VFP_FPSID:
977 val = fmrx(FPSID);
978 return reg_to_user(uaddr, &val, id);
979 default:
980 return -ENOENT;
981 }
982}
983
984static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
985{
986 u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
987 u32 val;
988
989 /* Fail if we have unknown bits set. */
990 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
991 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
992 return -ENOENT;
993
994 if (vfpid < num_fp_regs()) {
995 if (KVM_REG_SIZE(id) != 8)
996 return -ENOENT;
997 return reg_from_user(&vcpu->arch.ctxt.vfp.fpregs[vfpid],
998 uaddr, id);
999 }
1000
1001 /* FP control registers are all 32 bit. */
1002 if (KVM_REG_SIZE(id) != 4)
1003 return -ENOENT;
1004
1005 switch (vfpid) {
1006 case KVM_REG_ARM_VFP_FPEXC:
1007 return reg_from_user(&vcpu->arch.ctxt.vfp.fpexc, uaddr, id);
1008 case KVM_REG_ARM_VFP_FPSCR:
1009 return reg_from_user(&vcpu->arch.ctxt.vfp.fpscr, uaddr, id);
1010 case KVM_REG_ARM_VFP_FPINST:
1011 return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst, uaddr, id);
1012 case KVM_REG_ARM_VFP_FPINST2:
1013 return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst2, uaddr, id);
1014 /* These are invariant. */
1015 case KVM_REG_ARM_VFP_MVFR0:
1016 if (reg_from_user(&val, uaddr, id))
1017 return -EFAULT;
1018 if (val != fmrx(MVFR0))
1019 return -EINVAL;
1020 return 0;
1021 case KVM_REG_ARM_VFP_MVFR1:
1022 if (reg_from_user(&val, uaddr, id))
1023 return -EFAULT;
1024 if (val != fmrx(MVFR1))
1025 return -EINVAL;
1026 return 0;
1027 case KVM_REG_ARM_VFP_FPSID:
1028 if (reg_from_user(&val, uaddr, id))
1029 return -EFAULT;
1030 if (val != fmrx(FPSID))
1031 return -EINVAL;
1032 return 0;
1033 default:
1034 return -ENOENT;
1035 }
1036}
1037#else /* !CONFIG_VFPv3 */
1038static unsigned int num_vfp_regs(void)
1039{
1040 return 0;
1041}
1042
1043static int copy_vfp_regids(u64 __user *uindices)
1044{
1045 return 0;
1046}
1047
1048static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
1049{
1050 return -ENOENT;
1051}
1052
1053static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
1054{
1055 return -ENOENT;
1056}
1057#endif /* !CONFIG_VFPv3 */
1058
1059int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1060{
1061 const struct coproc_reg *r;
1062 void __user *uaddr = (void __user *)(long)reg->addr;
1063 int ret;
1064
1065 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1066 return demux_c15_get(reg->id, uaddr);
1067
1068 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1069 return vfp_get_reg(vcpu, reg->id, uaddr);
1070
1071 r = index_to_coproc_reg(vcpu, reg->id);
1072 if (!r)
1073 return get_invariant_cp15(reg->id, uaddr);
1074
1075 ret = -ENOENT;
1076 if (KVM_REG_SIZE(reg->id) == 8) {
1077 u64 val;
1078
1079 val = vcpu_cp15_reg64_get(vcpu, r);
1080 ret = reg_to_user(uaddr, &val, reg->id);
1081 } else if (KVM_REG_SIZE(reg->id) == 4) {
1082 ret = reg_to_user(uaddr, &vcpu_cp15(vcpu, r->reg), reg->id);
1083 }
1084
1085 return ret;
1086}
1087
1088int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1089{
1090 const struct coproc_reg *r;
1091 void __user *uaddr = (void __user *)(long)reg->addr;
1092 int ret;
1093
1094 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1095 return demux_c15_set(reg->id, uaddr);
1096
1097 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1098 return vfp_set_reg(vcpu, reg->id, uaddr);
1099
1100 r = index_to_coproc_reg(vcpu, reg->id);
1101 if (!r)
1102 return set_invariant_cp15(reg->id, uaddr);
1103
1104 ret = -ENOENT;
1105 if (KVM_REG_SIZE(reg->id) == 8) {
1106 u64 val;
1107
1108 ret = reg_from_user(&val, uaddr, reg->id);
1109 if (!ret)
1110 vcpu_cp15_reg64_set(vcpu, r, val);
1111 } else if (KVM_REG_SIZE(reg->id) == 4) {
1112 ret = reg_from_user(&vcpu_cp15(vcpu, r->reg), uaddr, reg->id);
1113 }
1114
1115 return ret;
1116}
1117
1118static unsigned int num_demux_regs(void)
1119{
1120 unsigned int i, count = 0;
1121
1122 for (i = 0; i < CSSELR_MAX; i++)
1123 if (is_valid_cache(i))
1124 count++;
1125
1126 return count;
1127}
1128
1129static int write_demux_regids(u64 __user *uindices)
1130{
1131 u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
1132 unsigned int i;
1133
1134 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1135 for (i = 0; i < CSSELR_MAX; i++) {
1136 if (!is_valid_cache(i))
1137 continue;
1138 if (put_user(val | i, uindices))
1139 return -EFAULT;
1140 uindices++;
1141 }
1142 return 0;
1143}
1144
1145static u64 cp15_to_index(const struct coproc_reg *reg)
1146{
1147 u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
1148 if (reg->is_64bit) {
1149 val |= KVM_REG_SIZE_U64;
1150 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1151 /*
1152 * CRn always denotes the primary coproc. reg. nr. for the
1153 * in-kernel representation, but the user space API uses the
1154 * CRm for the encoding, because it is modelled after the
1155 * MRRC/MCRR instructions: see the ARM ARM rev. c page
1156 * B3-1445
1157 */
1158 val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
1159 } else {
1160 val |= KVM_REG_SIZE_U32;
1161 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1162 val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
1163 val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
1164 val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
1165 }
1166 return val;
1167}
1168
1169static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
1170{
1171 if (!*uind)
1172 return true;
1173
1174 if (put_user(cp15_to_index(reg), *uind))
1175 return false;
1176
1177 (*uind)++;
1178 return true;
1179}
1180
1181/* Assumed ordered tables, see kvm_coproc_table_init. */
1182static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
1183{
1184 const struct coproc_reg *i1, *i2, *end1, *end2;
1185 unsigned int total = 0;
1186 size_t num;
1187
1188 /* We check for duplicates here, to allow arch-specific overrides. */
1189 i1 = get_target_table(vcpu->arch.target, &num);
1190 end1 = i1 + num;
1191 i2 = cp15_regs;
1192 end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
1193
1194 BUG_ON(i1 == end1 || i2 == end2);
1195
1196 /* Walk carefully, as both tables may refer to the same register. */
1197 while (i1 || i2) {
1198 int cmp = cmp_reg(i1, i2);
1199 /* target-specific overrides generic entry. */
1200 if (cmp <= 0) {
1201 /* Ignore registers we trap but don't save. */
1202 if (i1->reg) {
1203 if (!copy_reg_to_user(i1, &uind))
1204 return -EFAULT;
1205 total++;
1206 }
1207 } else {
1208 /* Ignore registers we trap but don't save. */
1209 if (i2->reg) {
1210 if (!copy_reg_to_user(i2, &uind))
1211 return -EFAULT;
1212 total++;
1213 }
1214 }
1215
1216 if (cmp <= 0 && ++i1 == end1)
1217 i1 = NULL;
1218 if (cmp >= 0 && ++i2 == end2)
1219 i2 = NULL;
1220 }
1221 return total;
1222}
1223
1224unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
1225{
1226 return ARRAY_SIZE(invariant_cp15)
1227 + num_demux_regs()
1228 + num_vfp_regs()
1229 + walk_cp15(vcpu, (u64 __user *)NULL);
1230}
1231
1232int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1233{
1234 unsigned int i;
1235 int err;
1236
1237 /* Then give them all the invariant registers' indices. */
1238 for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
1239 if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
1240 return -EFAULT;
1241 uindices++;
1242 }
1243
1244 err = walk_cp15(vcpu, uindices);
1245 if (err < 0)
1246 return err;
1247 uindices += err;
1248
1249 err = copy_vfp_regids(uindices);
1250 if (err < 0)
1251 return err;
1252 uindices += err;
1253
1254 return write_demux_regids(uindices);
1255}
1256
1257void kvm_coproc_table_init(void)
1258{
1259 unsigned int i;
1260
1261 /* Make sure tables are unique and in order. */
1262 BUG_ON(check_reg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
1263 BUG_ON(check_reg_table(invariant_cp15, ARRAY_SIZE(invariant_cp15)));
1264
1265 /* We abuse the reset function to overwrite the table itself. */
1266 for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
1267 invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
1268
1269 /*
1270 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1271 *
1272 * If software reads the Cache Type fields from Ctype1
1273 * upwards, once it has seen a value of 0b000, no caches
1274 * exist at further-out levels of the hierarchy. So, for
1275 * example, if Ctype3 is the first Cache Type field with a
1276 * value of 0b000, the values of Ctype4 to Ctype7 must be
1277 * ignored.
1278 */
1279 asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
1280 for (i = 0; i < 7; i++)
1281 if (((cache_levels >> (i*3)) & 7) == 0)
1282 break;
1283 /* Clear all higher bits. */
1284 cache_levels &= (1 << (i*3))-1;
1285}
1286
1287/**
1288 * kvm_reset_coprocs - sets cp15 registers to reset value
1289 * @vcpu: The VCPU pointer
1290 *
1291 * This function finds the right table above and sets the registers on the
1292 * virtual CPU struct to their architecturally defined reset values.
1293 */
1294void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
1295{
1296 size_t num;
1297 const struct coproc_reg *table;
1298
1299 /* Catch someone adding a register without putting in reset entry. */
1300 memset(vcpu->arch.ctxt.cp15, 0x42, sizeof(vcpu->arch.ctxt.cp15));
1301
1302 /* Generic chip reset first (so target could override). */
1303 reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
1304
1305 table = get_target_table(vcpu->arch.target, &num);
1306 reset_coproc_regs(vcpu, table, num);
1307
1308 for (num = 1; num < NR_CP15_REGS; num++)
1309 if (vcpu_cp15(vcpu, num) == 0x42424242)
1310 panic("Didn't reset vcpu_cp15(vcpu, %zi)", num);
1311}