Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (C) 2012 Google, Inc.
 
 
 
 
 
 
 
 
 
 
  4 */
  5
  6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  7
  8#include <linux/device.h>
  9#include <linux/err.h>
 10#include <linux/errno.h>
 
 11#include <linux/init.h>
 12#include <linux/io.h>
 13#include <linux/kernel.h>
 14#include <linux/list.h>
 15#include <linux/memblock.h>
 16#include <linux/pstore_ram.h>
 17#include <linux/rslib.h>
 18#include <linux/slab.h>
 19#include <linux/uaccess.h>
 20#include <linux/vmalloc.h>
 
 21#include <asm/page.h>
 22
 23/**
 24 * struct persistent_ram_buffer - persistent circular RAM buffer
 25 *
 26 * @sig:
 27 *	signature to indicate header (PERSISTENT_RAM_SIG xor PRZ-type value)
 28 * @start:
 29 *	offset into @data where the beginning of the stored bytes begin
 30 * @size:
 31 *	number of valid bytes stored in @data
 32 */
 33struct persistent_ram_buffer {
 34	uint32_t    sig;
 35	atomic_t    start;
 36	atomic_t    size;
 37	uint8_t     data[0];
 38};
 39
 40#define PERSISTENT_RAM_SIG (0x43474244) /* DBGC */
 41
 42static inline size_t buffer_size(struct persistent_ram_zone *prz)
 43{
 44	return atomic_read(&prz->buffer->size);
 45}
 46
 47static inline size_t buffer_start(struct persistent_ram_zone *prz)
 48{
 49	return atomic_read(&prz->buffer->start);
 50}
 51
 52/* increase and wrap the start pointer, returning the old value */
 53static size_t buffer_start_add(struct persistent_ram_zone *prz, size_t a)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 54{
 55	int old;
 56	int new;
 57	unsigned long flags = 0;
 58
 59	if (!(prz->flags & PRZ_FLAG_NO_LOCK))
 60		raw_spin_lock_irqsave(&prz->buffer_lock, flags);
 61
 62	old = atomic_read(&prz->buffer->start);
 63	new = old + a;
 64	while (unlikely(new >= prz->buffer_size))
 65		new -= prz->buffer_size;
 66	atomic_set(&prz->buffer->start, new);
 67
 68	if (!(prz->flags & PRZ_FLAG_NO_LOCK))
 69		raw_spin_unlock_irqrestore(&prz->buffer_lock, flags);
 70
 71	return old;
 72}
 73
 74/* increase the size counter until it hits the max size */
 75static void buffer_size_add(struct persistent_ram_zone *prz, size_t a)
 76{
 77	size_t old;
 78	size_t new;
 79	unsigned long flags = 0;
 80
 81	if (!(prz->flags & PRZ_FLAG_NO_LOCK))
 82		raw_spin_lock_irqsave(&prz->buffer_lock, flags);
 83
 84	old = atomic_read(&prz->buffer->size);
 85	if (old == prz->buffer_size)
 86		goto exit;
 87
 88	new = old + a;
 89	if (new > prz->buffer_size)
 90		new = prz->buffer_size;
 91	atomic_set(&prz->buffer->size, new);
 92
 93exit:
 94	if (!(prz->flags & PRZ_FLAG_NO_LOCK))
 95		raw_spin_unlock_irqrestore(&prz->buffer_lock, flags);
 96}
 97
 
 
 
 98static void notrace persistent_ram_encode_rs8(struct persistent_ram_zone *prz,
 99	uint8_t *data, size_t len, uint8_t *ecc)
100{
101	int i;
 
102
103	/* Initialize the parity buffer */
104	memset(prz->ecc_info.par, 0,
105	       prz->ecc_info.ecc_size * sizeof(prz->ecc_info.par[0]));
106	encode_rs8(prz->rs_decoder, data, len, prz->ecc_info.par, 0);
107	for (i = 0; i < prz->ecc_info.ecc_size; i++)
108		ecc[i] = prz->ecc_info.par[i];
109}
110
111static int persistent_ram_decode_rs8(struct persistent_ram_zone *prz,
112	void *data, size_t len, uint8_t *ecc)
113{
114	int i;
 
115
116	for (i = 0; i < prz->ecc_info.ecc_size; i++)
117		prz->ecc_info.par[i] = ecc[i];
118	return decode_rs8(prz->rs_decoder, data, prz->ecc_info.par, len,
119				NULL, 0, NULL, 0, NULL);
120}
121
122static void notrace persistent_ram_update_ecc(struct persistent_ram_zone *prz,
123	unsigned int start, unsigned int count)
124{
125	struct persistent_ram_buffer *buffer = prz->buffer;
126	uint8_t *buffer_end = buffer->data + prz->buffer_size;
127	uint8_t *block;
128	uint8_t *par;
129	int ecc_block_size = prz->ecc_info.block_size;
130	int ecc_size = prz->ecc_info.ecc_size;
131	int size = ecc_block_size;
132
133	if (!ecc_size)
134		return;
135
136	block = buffer->data + (start & ~(ecc_block_size - 1));
137	par = prz->par_buffer + (start / ecc_block_size) * ecc_size;
138
139	do {
140		if (block + ecc_block_size > buffer_end)
141			size = buffer_end - block;
142		persistent_ram_encode_rs8(prz, block, size, par);
143		block += ecc_block_size;
144		par += ecc_size;
145	} while (block < buffer->data + start + count);
146}
147
148static void persistent_ram_update_header_ecc(struct persistent_ram_zone *prz)
149{
150	struct persistent_ram_buffer *buffer = prz->buffer;
151
152	if (!prz->ecc_info.ecc_size)
153		return;
154
155	persistent_ram_encode_rs8(prz, (uint8_t *)buffer, sizeof(*buffer),
156				  prz->par_header);
157}
158
159static void persistent_ram_ecc_old(struct persistent_ram_zone *prz)
160{
161	struct persistent_ram_buffer *buffer = prz->buffer;
162	uint8_t *block;
163	uint8_t *par;
164
165	if (!prz->ecc_info.ecc_size)
166		return;
167
168	block = buffer->data;
169	par = prz->par_buffer;
170	while (block < buffer->data + buffer_size(prz)) {
171		int numerr;
172		int size = prz->ecc_info.block_size;
173		if (block + size > buffer->data + prz->buffer_size)
174			size = buffer->data + prz->buffer_size - block;
175		numerr = persistent_ram_decode_rs8(prz, block, size, par);
176		if (numerr > 0) {
177			pr_devel("error in block %p, %d\n", block, numerr);
178			prz->corrected_bytes += numerr;
179		} else if (numerr < 0) {
180			pr_devel("uncorrectable error in block %p\n", block);
181			prz->bad_blocks++;
182		}
183		block += prz->ecc_info.block_size;
184		par += prz->ecc_info.ecc_size;
185	}
186}
187
188static int persistent_ram_init_ecc(struct persistent_ram_zone *prz,
189				   struct persistent_ram_ecc_info *ecc_info)
190{
191	int numerr;
192	struct persistent_ram_buffer *buffer = prz->buffer;
193	int ecc_blocks;
194	size_t ecc_total;
195
196	if (!ecc_info || !ecc_info->ecc_size)
197		return 0;
198
199	prz->ecc_info.block_size = ecc_info->block_size ?: 128;
200	prz->ecc_info.ecc_size = ecc_info->ecc_size ?: 16;
201	prz->ecc_info.symsize = ecc_info->symsize ?: 8;
202	prz->ecc_info.poly = ecc_info->poly ?: 0x11d;
203
204	ecc_blocks = DIV_ROUND_UP(prz->buffer_size - prz->ecc_info.ecc_size,
205				  prz->ecc_info.block_size +
206				  prz->ecc_info.ecc_size);
207	ecc_total = (ecc_blocks + 1) * prz->ecc_info.ecc_size;
208	if (ecc_total >= prz->buffer_size) {
209		pr_err("%s: invalid ecc_size %u (total %zu, buffer size %zu)\n",
210		       __func__, prz->ecc_info.ecc_size,
211		       ecc_total, prz->buffer_size);
212		return -EINVAL;
213	}
214
215	prz->buffer_size -= ecc_total;
216	prz->par_buffer = buffer->data + prz->buffer_size;
217	prz->par_header = prz->par_buffer +
218			  ecc_blocks * prz->ecc_info.ecc_size;
219
220	/*
221	 * first consecutive root is 0
222	 * primitive element to generate roots = 1
223	 */
224	prz->rs_decoder = init_rs(prz->ecc_info.symsize, prz->ecc_info.poly,
225				  0, 1, prz->ecc_info.ecc_size);
226	if (prz->rs_decoder == NULL) {
227		pr_info("init_rs failed\n");
228		return -EINVAL;
229	}
230
231	/* allocate workspace instead of using stack VLA */
232	prz->ecc_info.par = kmalloc_array(prz->ecc_info.ecc_size,
233					  sizeof(*prz->ecc_info.par),
234					  GFP_KERNEL);
235	if (!prz->ecc_info.par) {
236		pr_err("cannot allocate ECC parity workspace\n");
237		return -ENOMEM;
238	}
239
240	prz->corrected_bytes = 0;
241	prz->bad_blocks = 0;
242
243	numerr = persistent_ram_decode_rs8(prz, buffer, sizeof(*buffer),
244					   prz->par_header);
245	if (numerr > 0) {
246		pr_info("error in header, %d\n", numerr);
247		prz->corrected_bytes += numerr;
248	} else if (numerr < 0) {
249		pr_info("uncorrectable error in header\n");
250		prz->bad_blocks++;
251	}
252
253	return 0;
254}
255
256ssize_t persistent_ram_ecc_string(struct persistent_ram_zone *prz,
257	char *str, size_t len)
258{
259	ssize_t ret;
260
261	if (!prz->ecc_info.ecc_size)
262		return 0;
263
264	if (prz->corrected_bytes || prz->bad_blocks)
265		ret = snprintf(str, len, ""
266			"\n%d Corrected bytes, %d unrecoverable blocks\n",
267			prz->corrected_bytes, prz->bad_blocks);
268	else
269		ret = snprintf(str, len, "\nNo errors detected\n");
270
271	return ret;
272}
273
274static void notrace persistent_ram_update(struct persistent_ram_zone *prz,
275	const void *s, unsigned int start, unsigned int count)
276{
277	struct persistent_ram_buffer *buffer = prz->buffer;
278	memcpy_toio(buffer->data + start, s, count);
279	persistent_ram_update_ecc(prz, start, count);
280}
281
282static int notrace persistent_ram_update_user(struct persistent_ram_zone *prz,
283	const void __user *s, unsigned int start, unsigned int count)
284{
285	struct persistent_ram_buffer *buffer = prz->buffer;
286	int ret = unlikely(__copy_from_user(buffer->data + start, s, count)) ?
287		-EFAULT : 0;
288	persistent_ram_update_ecc(prz, start, count);
289	return ret;
290}
291
292void persistent_ram_save_old(struct persistent_ram_zone *prz)
293{
294	struct persistent_ram_buffer *buffer = prz->buffer;
295	size_t size = buffer_size(prz);
296	size_t start = buffer_start(prz);
297
298	if (!size)
299		return;
300
301	if (!prz->old_log) {
302		persistent_ram_ecc_old(prz);
303		prz->old_log = kmalloc(size, GFP_KERNEL);
304	}
305	if (!prz->old_log) {
306		pr_err("failed to allocate buffer\n");
307		return;
308	}
309
310	prz->old_log_size = size;
311	memcpy_fromio(prz->old_log, &buffer->data[start], size - start);
312	memcpy_fromio(prz->old_log + size - start, &buffer->data[0], start);
313}
314
315int notrace persistent_ram_write(struct persistent_ram_zone *prz,
316	const void *s, unsigned int count)
317{
318	int rem;
319	int c = count;
320	size_t start;
321
322	if (unlikely(c > prz->buffer_size)) {
323		s += c - prz->buffer_size;
324		c = prz->buffer_size;
325	}
326
327	buffer_size_add(prz, c);
328
329	start = buffer_start_add(prz, c);
330
331	rem = prz->buffer_size - start;
332	if (unlikely(rem < c)) {
333		persistent_ram_update(prz, s, start, rem);
334		s += rem;
335		c -= rem;
336		start = 0;
337	}
338	persistent_ram_update(prz, s, start, c);
339
340	persistent_ram_update_header_ecc(prz);
341
342	return count;
343}
344
345int notrace persistent_ram_write_user(struct persistent_ram_zone *prz,
346	const void __user *s, unsigned int count)
347{
348	int rem, ret = 0, c = count;
349	size_t start;
350
351	if (unlikely(!access_ok(s, count)))
352		return -EFAULT;
353	if (unlikely(c > prz->buffer_size)) {
354		s += c - prz->buffer_size;
355		c = prz->buffer_size;
356	}
357
358	buffer_size_add(prz, c);
359
360	start = buffer_start_add(prz, c);
361
362	rem = prz->buffer_size - start;
363	if (unlikely(rem < c)) {
364		ret = persistent_ram_update_user(prz, s, start, rem);
365		s += rem;
366		c -= rem;
367		start = 0;
368	}
369	if (likely(!ret))
370		ret = persistent_ram_update_user(prz, s, start, c);
371
372	persistent_ram_update_header_ecc(prz);
373
374	return unlikely(ret) ? ret : count;
375}
376
377size_t persistent_ram_old_size(struct persistent_ram_zone *prz)
378{
379	return prz->old_log_size;
380}
381
382void *persistent_ram_old(struct persistent_ram_zone *prz)
383{
384	return prz->old_log;
385}
386
387void persistent_ram_free_old(struct persistent_ram_zone *prz)
388{
389	kfree(prz->old_log);
390	prz->old_log = NULL;
391	prz->old_log_size = 0;
392}
393
394void persistent_ram_zap(struct persistent_ram_zone *prz)
395{
396	atomic_set(&prz->buffer->start, 0);
397	atomic_set(&prz->buffer->size, 0);
398	persistent_ram_update_header_ecc(prz);
399}
400
401static void *persistent_ram_vmap(phys_addr_t start, size_t size,
402		unsigned int memtype)
403{
404	struct page **pages;
405	phys_addr_t page_start;
406	unsigned int page_count;
407	pgprot_t prot;
408	unsigned int i;
409	void *vaddr;
410
411	page_start = start - offset_in_page(start);
412	page_count = DIV_ROUND_UP(size + offset_in_page(start), PAGE_SIZE);
413
414	if (memtype)
415		prot = pgprot_noncached(PAGE_KERNEL);
416	else
417		prot = pgprot_writecombine(PAGE_KERNEL);
418
419	pages = kmalloc_array(page_count, sizeof(struct page *), GFP_KERNEL);
420	if (!pages) {
421		pr_err("%s: Failed to allocate array for %u pages\n",
422		       __func__, page_count);
423		return NULL;
424	}
425
426	for (i = 0; i < page_count; i++) {
427		phys_addr_t addr = page_start + i * PAGE_SIZE;
428		pages[i] = pfn_to_page(addr >> PAGE_SHIFT);
429	}
430	vaddr = vmap(pages, page_count, VM_MAP, prot);
431	kfree(pages);
432
433	/*
434	 * Since vmap() uses page granularity, we must add the offset
435	 * into the page here, to get the byte granularity address
436	 * into the mapping to represent the actual "start" location.
437	 */
438	return vaddr + offset_in_page(start);
439}
440
441static void *persistent_ram_iomap(phys_addr_t start, size_t size,
442		unsigned int memtype, char *label)
443{
444	void *va;
445
446	if (!request_mem_region(start, size, label ?: "ramoops")) {
447		pr_err("request mem region (%s 0x%llx@0x%llx) failed\n",
448			label ?: "ramoops",
449			(unsigned long long)size, (unsigned long long)start);
450		return NULL;
451	}
452
 
 
 
453	if (memtype)
454		va = ioremap(start, size);
455	else
456		va = ioremap_wc(start, size);
457
458	/*
459	 * Since request_mem_region() and ioremap() are byte-granularity
460	 * there is no need handle anything special like we do when the
461	 * vmap() case in persistent_ram_vmap() above.
462	 */
463	return va;
464}
465
466static int persistent_ram_buffer_map(phys_addr_t start, phys_addr_t size,
467		struct persistent_ram_zone *prz, int memtype)
468{
469	prz->paddr = start;
470	prz->size = size;
471
472	if (pfn_valid(start >> PAGE_SHIFT))
473		prz->vaddr = persistent_ram_vmap(start, size, memtype);
474	else
475		prz->vaddr = persistent_ram_iomap(start, size, memtype,
476						  prz->label);
477
478	if (!prz->vaddr) {
479		pr_err("%s: Failed to map 0x%llx pages at 0x%llx\n", __func__,
480			(unsigned long long)size, (unsigned long long)start);
481		return -ENOMEM;
482	}
483
484	prz->buffer = prz->vaddr;
485	prz->buffer_size = size - sizeof(struct persistent_ram_buffer);
486
487	return 0;
488}
489
490static int persistent_ram_post_init(struct persistent_ram_zone *prz, u32 sig,
491				    struct persistent_ram_ecc_info *ecc_info)
492{
493	int ret;
494	bool zap = !!(prz->flags & PRZ_FLAG_ZAP_OLD);
495
496	ret = persistent_ram_init_ecc(prz, ecc_info);
497	if (ret) {
498		pr_warn("ECC failed %s\n", prz->label);
499		return ret;
500	}
501
502	sig ^= PERSISTENT_RAM_SIG;
503
504	if (prz->buffer->sig == sig) {
505		if (buffer_size(prz) == 0) {
506			pr_debug("found existing empty buffer\n");
507			return 0;
508		}
509
510		if (buffer_size(prz) > prz->buffer_size ||
511		    buffer_start(prz) > buffer_size(prz)) {
512			pr_info("found existing invalid buffer, size %zu, start %zu\n",
513				buffer_size(prz), buffer_start(prz));
514			zap = true;
515		} else {
516			pr_debug("found existing buffer, size %zu, start %zu\n",
517				 buffer_size(prz), buffer_start(prz));
518			persistent_ram_save_old(prz);
 
519		}
520	} else {
521		pr_debug("no valid data in buffer (sig = 0x%08x)\n",
522			 prz->buffer->sig);
523		prz->buffer->sig = sig;
524		zap = true;
525	}
526
527	/* Reset missing, invalid, or single-use memory area. */
528	if (zap)
529		persistent_ram_zap(prz);
530
531	return 0;
532}
533
534void persistent_ram_free(struct persistent_ram_zone *prz)
535{
536	if (!prz)
537		return;
538
539	if (prz->vaddr) {
540		if (pfn_valid(prz->paddr >> PAGE_SHIFT)) {
541			/* We must vunmap() at page-granularity. */
542			vunmap(prz->vaddr - offset_in_page(prz->paddr));
543		} else {
544			iounmap(prz->vaddr);
545			release_mem_region(prz->paddr, prz->size);
546		}
547		prz->vaddr = NULL;
548	}
549	if (prz->rs_decoder) {
550		free_rs(prz->rs_decoder);
551		prz->rs_decoder = NULL;
552	}
553	kfree(prz->ecc_info.par);
554	prz->ecc_info.par = NULL;
555
556	persistent_ram_free_old(prz);
557	kfree(prz->label);
558	kfree(prz);
559}
560
561struct persistent_ram_zone *persistent_ram_new(phys_addr_t start, size_t size,
562			u32 sig, struct persistent_ram_ecc_info *ecc_info,
563			unsigned int memtype, u32 flags, char *label)
564{
565	struct persistent_ram_zone *prz;
566	int ret = -ENOMEM;
567
568	prz = kzalloc(sizeof(struct persistent_ram_zone), GFP_KERNEL);
569	if (!prz) {
570		pr_err("failed to allocate persistent ram zone\n");
571		goto err;
572	}
573
574	/* Initialize general buffer state. */
575	raw_spin_lock_init(&prz->buffer_lock);
576	prz->flags = flags;
577	prz->label = label;
578
579	ret = persistent_ram_buffer_map(start, size, prz, memtype);
580	if (ret)
581		goto err;
582
583	ret = persistent_ram_post_init(prz, sig, ecc_info);
584	if (ret)
585		goto err;
586
587	pr_debug("attached %s 0x%zx@0x%llx: %zu header, %zu data, %zu ecc (%d/%d)\n",
588		prz->label, prz->size, (unsigned long long)prz->paddr,
589		sizeof(*prz->buffer), prz->buffer_size,
590		prz->size - sizeof(*prz->buffer) - prz->buffer_size,
591		prz->ecc_info.ecc_size, prz->ecc_info.block_size);
592
593	return prz;
594err:
595	persistent_ram_free(prz);
596	return ERR_PTR(ret);
597}
v4.6
 
  1/*
  2 * Copyright (C) 2012 Google, Inc.
  3 *
  4 * This software is licensed under the terms of the GNU General Public
  5 * License version 2, as published by the Free Software Foundation, and
  6 * may be copied, distributed, and modified under those terms.
  7 *
  8 * This program is distributed in the hope that it will be useful,
  9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 11 * GNU General Public License for more details.
 12 *
 13 */
 14
 15#define pr_fmt(fmt) "persistent_ram: " fmt
 16
 17#include <linux/device.h>
 18#include <linux/err.h>
 19#include <linux/errno.h>
 20#include <linux/kernel.h>
 21#include <linux/init.h>
 22#include <linux/io.h>
 
 23#include <linux/list.h>
 24#include <linux/memblock.h>
 
 25#include <linux/rslib.h>
 26#include <linux/slab.h>
 
 27#include <linux/vmalloc.h>
 28#include <linux/pstore_ram.h>
 29#include <asm/page.h>
 30
 
 
 
 
 
 
 
 
 
 
 31struct persistent_ram_buffer {
 32	uint32_t    sig;
 33	atomic_t    start;
 34	atomic_t    size;
 35	uint8_t     data[0];
 36};
 37
 38#define PERSISTENT_RAM_SIG (0x43474244) /* DBGC */
 39
 40static inline size_t buffer_size(struct persistent_ram_zone *prz)
 41{
 42	return atomic_read(&prz->buffer->size);
 43}
 44
 45static inline size_t buffer_start(struct persistent_ram_zone *prz)
 46{
 47	return atomic_read(&prz->buffer->start);
 48}
 49
 50/* increase and wrap the start pointer, returning the old value */
 51static size_t buffer_start_add_atomic(struct persistent_ram_zone *prz, size_t a)
 52{
 53	int old;
 54	int new;
 55
 56	do {
 57		old = atomic_read(&prz->buffer->start);
 58		new = old + a;
 59		while (unlikely(new >= prz->buffer_size))
 60			new -= prz->buffer_size;
 61	} while (atomic_cmpxchg(&prz->buffer->start, old, new) != old);
 62
 63	return old;
 64}
 65
 66/* increase the size counter until it hits the max size */
 67static void buffer_size_add_atomic(struct persistent_ram_zone *prz, size_t a)
 68{
 69	size_t old;
 70	size_t new;
 71
 72	if (atomic_read(&prz->buffer->size) == prz->buffer_size)
 73		return;
 74
 75	do {
 76		old = atomic_read(&prz->buffer->size);
 77		new = old + a;
 78		if (new > prz->buffer_size)
 79			new = prz->buffer_size;
 80	} while (atomic_cmpxchg(&prz->buffer->size, old, new) != old);
 81}
 82
 83static DEFINE_RAW_SPINLOCK(buffer_lock);
 84
 85/* increase and wrap the start pointer, returning the old value */
 86static size_t buffer_start_add_locked(struct persistent_ram_zone *prz, size_t a)
 87{
 88	int old;
 89	int new;
 90	unsigned long flags;
 91
 92	raw_spin_lock_irqsave(&buffer_lock, flags);
 
 93
 94	old = atomic_read(&prz->buffer->start);
 95	new = old + a;
 96	while (unlikely(new >= prz->buffer_size))
 97		new -= prz->buffer_size;
 98	atomic_set(&prz->buffer->start, new);
 99
100	raw_spin_unlock_irqrestore(&buffer_lock, flags);
 
101
102	return old;
103}
104
105/* increase the size counter until it hits the max size */
106static void buffer_size_add_locked(struct persistent_ram_zone *prz, size_t a)
107{
108	size_t old;
109	size_t new;
110	unsigned long flags;
111
112	raw_spin_lock_irqsave(&buffer_lock, flags);
 
113
114	old = atomic_read(&prz->buffer->size);
115	if (old == prz->buffer_size)
116		goto exit;
117
118	new = old + a;
119	if (new > prz->buffer_size)
120		new = prz->buffer_size;
121	atomic_set(&prz->buffer->size, new);
122
123exit:
124	raw_spin_unlock_irqrestore(&buffer_lock, flags);
 
125}
126
127static size_t (*buffer_start_add)(struct persistent_ram_zone *, size_t) = buffer_start_add_atomic;
128static void (*buffer_size_add)(struct persistent_ram_zone *, size_t) = buffer_size_add_atomic;
129
130static void notrace persistent_ram_encode_rs8(struct persistent_ram_zone *prz,
131	uint8_t *data, size_t len, uint8_t *ecc)
132{
133	int i;
134	uint16_t par[prz->ecc_info.ecc_size];
135
136	/* Initialize the parity buffer */
137	memset(par, 0, sizeof(par));
138	encode_rs8(prz->rs_decoder, data, len, par, 0);
 
139	for (i = 0; i < prz->ecc_info.ecc_size; i++)
140		ecc[i] = par[i];
141}
142
143static int persistent_ram_decode_rs8(struct persistent_ram_zone *prz,
144	void *data, size_t len, uint8_t *ecc)
145{
146	int i;
147	uint16_t par[prz->ecc_info.ecc_size];
148
149	for (i = 0; i < prz->ecc_info.ecc_size; i++)
150		par[i] = ecc[i];
151	return decode_rs8(prz->rs_decoder, data, par, len,
152				NULL, 0, NULL, 0, NULL);
153}
154
155static void notrace persistent_ram_update_ecc(struct persistent_ram_zone *prz,
156	unsigned int start, unsigned int count)
157{
158	struct persistent_ram_buffer *buffer = prz->buffer;
159	uint8_t *buffer_end = buffer->data + prz->buffer_size;
160	uint8_t *block;
161	uint8_t *par;
162	int ecc_block_size = prz->ecc_info.block_size;
163	int ecc_size = prz->ecc_info.ecc_size;
164	int size = ecc_block_size;
165
166	if (!ecc_size)
167		return;
168
169	block = buffer->data + (start & ~(ecc_block_size - 1));
170	par = prz->par_buffer + (start / ecc_block_size) * ecc_size;
171
172	do {
173		if (block + ecc_block_size > buffer_end)
174			size = buffer_end - block;
175		persistent_ram_encode_rs8(prz, block, size, par);
176		block += ecc_block_size;
177		par += ecc_size;
178	} while (block < buffer->data + start + count);
179}
180
181static void persistent_ram_update_header_ecc(struct persistent_ram_zone *prz)
182{
183	struct persistent_ram_buffer *buffer = prz->buffer;
184
185	if (!prz->ecc_info.ecc_size)
186		return;
187
188	persistent_ram_encode_rs8(prz, (uint8_t *)buffer, sizeof(*buffer),
189				  prz->par_header);
190}
191
192static void persistent_ram_ecc_old(struct persistent_ram_zone *prz)
193{
194	struct persistent_ram_buffer *buffer = prz->buffer;
195	uint8_t *block;
196	uint8_t *par;
197
198	if (!prz->ecc_info.ecc_size)
199		return;
200
201	block = buffer->data;
202	par = prz->par_buffer;
203	while (block < buffer->data + buffer_size(prz)) {
204		int numerr;
205		int size = prz->ecc_info.block_size;
206		if (block + size > buffer->data + prz->buffer_size)
207			size = buffer->data + prz->buffer_size - block;
208		numerr = persistent_ram_decode_rs8(prz, block, size, par);
209		if (numerr > 0) {
210			pr_devel("error in block %p, %d\n", block, numerr);
211			prz->corrected_bytes += numerr;
212		} else if (numerr < 0) {
213			pr_devel("uncorrectable error in block %p\n", block);
214			prz->bad_blocks++;
215		}
216		block += prz->ecc_info.block_size;
217		par += prz->ecc_info.ecc_size;
218	}
219}
220
221static int persistent_ram_init_ecc(struct persistent_ram_zone *prz,
222				   struct persistent_ram_ecc_info *ecc_info)
223{
224	int numerr;
225	struct persistent_ram_buffer *buffer = prz->buffer;
226	int ecc_blocks;
227	size_t ecc_total;
228
229	if (!ecc_info || !ecc_info->ecc_size)
230		return 0;
231
232	prz->ecc_info.block_size = ecc_info->block_size ?: 128;
233	prz->ecc_info.ecc_size = ecc_info->ecc_size ?: 16;
234	prz->ecc_info.symsize = ecc_info->symsize ?: 8;
235	prz->ecc_info.poly = ecc_info->poly ?: 0x11d;
236
237	ecc_blocks = DIV_ROUND_UP(prz->buffer_size - prz->ecc_info.ecc_size,
238				  prz->ecc_info.block_size +
239				  prz->ecc_info.ecc_size);
240	ecc_total = (ecc_blocks + 1) * prz->ecc_info.ecc_size;
241	if (ecc_total >= prz->buffer_size) {
242		pr_err("%s: invalid ecc_size %u (total %zu, buffer size %zu)\n",
243		       __func__, prz->ecc_info.ecc_size,
244		       ecc_total, prz->buffer_size);
245		return -EINVAL;
246	}
247
248	prz->buffer_size -= ecc_total;
249	prz->par_buffer = buffer->data + prz->buffer_size;
250	prz->par_header = prz->par_buffer +
251			  ecc_blocks * prz->ecc_info.ecc_size;
252
253	/*
254	 * first consecutive root is 0
255	 * primitive element to generate roots = 1
256	 */
257	prz->rs_decoder = init_rs(prz->ecc_info.symsize, prz->ecc_info.poly,
258				  0, 1, prz->ecc_info.ecc_size);
259	if (prz->rs_decoder == NULL) {
260		pr_info("init_rs failed\n");
261		return -EINVAL;
262	}
263
 
 
 
 
 
 
 
 
 
264	prz->corrected_bytes = 0;
265	prz->bad_blocks = 0;
266
267	numerr = persistent_ram_decode_rs8(prz, buffer, sizeof(*buffer),
268					   prz->par_header);
269	if (numerr > 0) {
270		pr_info("error in header, %d\n", numerr);
271		prz->corrected_bytes += numerr;
272	} else if (numerr < 0) {
273		pr_info("uncorrectable error in header\n");
274		prz->bad_blocks++;
275	}
276
277	return 0;
278}
279
280ssize_t persistent_ram_ecc_string(struct persistent_ram_zone *prz,
281	char *str, size_t len)
282{
283	ssize_t ret;
284
285	if (!prz->ecc_info.ecc_size)
286		return 0;
287
288	if (prz->corrected_bytes || prz->bad_blocks)
289		ret = snprintf(str, len, ""
290			"\n%d Corrected bytes, %d unrecoverable blocks\n",
291			prz->corrected_bytes, prz->bad_blocks);
292	else
293		ret = snprintf(str, len, "\nNo errors detected\n");
294
295	return ret;
296}
297
298static void notrace persistent_ram_update(struct persistent_ram_zone *prz,
299	const void *s, unsigned int start, unsigned int count)
300{
301	struct persistent_ram_buffer *buffer = prz->buffer;
302	memcpy(buffer->data + start, s, count);
 
 
 
 
 
 
 
 
 
303	persistent_ram_update_ecc(prz, start, count);
 
304}
305
306void persistent_ram_save_old(struct persistent_ram_zone *prz)
307{
308	struct persistent_ram_buffer *buffer = prz->buffer;
309	size_t size = buffer_size(prz);
310	size_t start = buffer_start(prz);
311
312	if (!size)
313		return;
314
315	if (!prz->old_log) {
316		persistent_ram_ecc_old(prz);
317		prz->old_log = kmalloc(size, GFP_KERNEL);
318	}
319	if (!prz->old_log) {
320		pr_err("failed to allocate buffer\n");
321		return;
322	}
323
324	prz->old_log_size = size;
325	memcpy(prz->old_log, &buffer->data[start], size - start);
326	memcpy(prz->old_log + size - start, &buffer->data[0], start);
327}
328
329int notrace persistent_ram_write(struct persistent_ram_zone *prz,
330	const void *s, unsigned int count)
331{
332	int rem;
333	int c = count;
334	size_t start;
335
336	if (unlikely(c > prz->buffer_size)) {
337		s += c - prz->buffer_size;
338		c = prz->buffer_size;
339	}
340
341	buffer_size_add(prz, c);
342
343	start = buffer_start_add(prz, c);
344
345	rem = prz->buffer_size - start;
346	if (unlikely(rem < c)) {
347		persistent_ram_update(prz, s, start, rem);
348		s += rem;
349		c -= rem;
350		start = 0;
351	}
352	persistent_ram_update(prz, s, start, c);
353
354	persistent_ram_update_header_ecc(prz);
355
356	return count;
357}
358
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
359size_t persistent_ram_old_size(struct persistent_ram_zone *prz)
360{
361	return prz->old_log_size;
362}
363
364void *persistent_ram_old(struct persistent_ram_zone *prz)
365{
366	return prz->old_log;
367}
368
369void persistent_ram_free_old(struct persistent_ram_zone *prz)
370{
371	kfree(prz->old_log);
372	prz->old_log = NULL;
373	prz->old_log_size = 0;
374}
375
376void persistent_ram_zap(struct persistent_ram_zone *prz)
377{
378	atomic_set(&prz->buffer->start, 0);
379	atomic_set(&prz->buffer->size, 0);
380	persistent_ram_update_header_ecc(prz);
381}
382
383static void *persistent_ram_vmap(phys_addr_t start, size_t size,
384		unsigned int memtype)
385{
386	struct page **pages;
387	phys_addr_t page_start;
388	unsigned int page_count;
389	pgprot_t prot;
390	unsigned int i;
391	void *vaddr;
392
393	page_start = start - offset_in_page(start);
394	page_count = DIV_ROUND_UP(size + offset_in_page(start), PAGE_SIZE);
395
396	if (memtype)
397		prot = pgprot_noncached(PAGE_KERNEL);
398	else
399		prot = pgprot_writecombine(PAGE_KERNEL);
400
401	pages = kmalloc_array(page_count, sizeof(struct page *), GFP_KERNEL);
402	if (!pages) {
403		pr_err("%s: Failed to allocate array for %u pages\n",
404		       __func__, page_count);
405		return NULL;
406	}
407
408	for (i = 0; i < page_count; i++) {
409		phys_addr_t addr = page_start + i * PAGE_SIZE;
410		pages[i] = pfn_to_page(addr >> PAGE_SHIFT);
411	}
412	vaddr = vmap(pages, page_count, VM_MAP, prot);
413	kfree(pages);
414
415	return vaddr;
 
 
 
 
 
416}
417
418static void *persistent_ram_iomap(phys_addr_t start, size_t size,
419		unsigned int memtype)
420{
421	void *va;
422
423	if (!request_mem_region(start, size, "persistent_ram")) {
424		pr_err("request mem region (0x%llx@0x%llx) failed\n",
 
425			(unsigned long long)size, (unsigned long long)start);
426		return NULL;
427	}
428
429	buffer_start_add = buffer_start_add_locked;
430	buffer_size_add = buffer_size_add_locked;
431
432	if (memtype)
433		va = ioremap(start, size);
434	else
435		va = ioremap_wc(start, size);
436
 
 
 
 
 
437	return va;
438}
439
440static int persistent_ram_buffer_map(phys_addr_t start, phys_addr_t size,
441		struct persistent_ram_zone *prz, int memtype)
442{
443	prz->paddr = start;
444	prz->size = size;
445
446	if (pfn_valid(start >> PAGE_SHIFT))
447		prz->vaddr = persistent_ram_vmap(start, size, memtype);
448	else
449		prz->vaddr = persistent_ram_iomap(start, size, memtype);
 
450
451	if (!prz->vaddr) {
452		pr_err("%s: Failed to map 0x%llx pages at 0x%llx\n", __func__,
453			(unsigned long long)size, (unsigned long long)start);
454		return -ENOMEM;
455	}
456
457	prz->buffer = prz->vaddr + offset_in_page(start);
458	prz->buffer_size = size - sizeof(struct persistent_ram_buffer);
459
460	return 0;
461}
462
463static int persistent_ram_post_init(struct persistent_ram_zone *prz, u32 sig,
464				    struct persistent_ram_ecc_info *ecc_info)
465{
466	int ret;
 
467
468	ret = persistent_ram_init_ecc(prz, ecc_info);
469	if (ret)
 
470		return ret;
 
471
472	sig ^= PERSISTENT_RAM_SIG;
473
474	if (prz->buffer->sig == sig) {
 
 
 
 
 
475		if (buffer_size(prz) > prz->buffer_size ||
476		    buffer_start(prz) > buffer_size(prz))
477			pr_info("found existing invalid buffer, size %zu, start %zu\n",
478				buffer_size(prz), buffer_start(prz));
479		else {
 
480			pr_debug("found existing buffer, size %zu, start %zu\n",
481				 buffer_size(prz), buffer_start(prz));
482			persistent_ram_save_old(prz);
483			return 0;
484		}
485	} else {
486		pr_debug("no valid data in buffer (sig = 0x%08x)\n",
487			 prz->buffer->sig);
 
 
488	}
489
490	prz->buffer->sig = sig;
491	persistent_ram_zap(prz);
 
492
493	return 0;
494}
495
496void persistent_ram_free(struct persistent_ram_zone *prz)
497{
498	if (!prz)
499		return;
500
501	if (prz->vaddr) {
502		if (pfn_valid(prz->paddr >> PAGE_SHIFT)) {
503			vunmap(prz->vaddr);
 
504		} else {
505			iounmap(prz->vaddr);
506			release_mem_region(prz->paddr, prz->size);
507		}
508		prz->vaddr = NULL;
509	}
 
 
 
 
 
 
 
510	persistent_ram_free_old(prz);
 
511	kfree(prz);
512}
513
514struct persistent_ram_zone *persistent_ram_new(phys_addr_t start, size_t size,
515			u32 sig, struct persistent_ram_ecc_info *ecc_info,
516			unsigned int memtype)
517{
518	struct persistent_ram_zone *prz;
519	int ret = -ENOMEM;
520
521	prz = kzalloc(sizeof(struct persistent_ram_zone), GFP_KERNEL);
522	if (!prz) {
523		pr_err("failed to allocate persistent ram zone\n");
524		goto err;
525	}
526
 
 
 
 
 
527	ret = persistent_ram_buffer_map(start, size, prz, memtype);
528	if (ret)
529		goto err;
530
531	ret = persistent_ram_post_init(prz, sig, ecc_info);
532	if (ret)
533		goto err;
 
 
 
 
 
 
534
535	return prz;
536err:
537	persistent_ram_free(prz);
538	return ERR_PTR(ret);
539}