Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (C) 2012 Google, Inc.
 
 
 
 
 
 
 
 
 
 
  4 */
  5
  6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  7
  8#include <linux/device.h>
  9#include <linux/err.h>
 10#include <linux/errno.h>
 
 11#include <linux/init.h>
 12#include <linux/io.h>
 13#include <linux/kernel.h>
 14#include <linux/list.h>
 15#include <linux/memblock.h>
 16#include <linux/pstore_ram.h>
 17#include <linux/rslib.h>
 18#include <linux/slab.h>
 19#include <linux/uaccess.h>
 20#include <linux/vmalloc.h>
 
 21#include <asm/page.h>
 22
 23/**
 24 * struct persistent_ram_buffer - persistent circular RAM buffer
 25 *
 26 * @sig:
 27 *	signature to indicate header (PERSISTENT_RAM_SIG xor PRZ-type value)
 28 * @start:
 29 *	offset into @data where the beginning of the stored bytes begin
 30 * @size:
 31 *	number of valid bytes stored in @data
 32 */
 33struct persistent_ram_buffer {
 34	uint32_t    sig;
 35	atomic_t    start;
 36	atomic_t    size;
 37	uint8_t     data[0];
 38};
 39
 40#define PERSISTENT_RAM_SIG (0x43474244) /* DBGC */
 41
 
 
 42static inline size_t buffer_size(struct persistent_ram_zone *prz)
 43{
 44	return atomic_read(&prz->buffer->size);
 45}
 46
 47static inline size_t buffer_start(struct persistent_ram_zone *prz)
 48{
 49	return atomic_read(&prz->buffer->start);
 50}
 51
 52/* increase and wrap the start pointer, returning the old value */
 53static size_t buffer_start_add(struct persistent_ram_zone *prz, size_t a)
 54{
 55	int old;
 56	int new;
 57	unsigned long flags = 0;
 58
 59	if (!(prz->flags & PRZ_FLAG_NO_LOCK))
 60		raw_spin_lock_irqsave(&prz->buffer_lock, flags);
 61
 62	old = atomic_read(&prz->buffer->start);
 63	new = old + a;
 64	while (unlikely(new >= prz->buffer_size))
 65		new -= prz->buffer_size;
 66	atomic_set(&prz->buffer->start, new);
 67
 68	if (!(prz->flags & PRZ_FLAG_NO_LOCK))
 69		raw_spin_unlock_irqrestore(&prz->buffer_lock, flags);
 70
 71	return old;
 72}
 73
 74/* increase the size counter until it hits the max size */
 75static void buffer_size_add(struct persistent_ram_zone *prz, size_t a)
 76{
 77	size_t old;
 78	size_t new;
 79	unsigned long flags = 0;
 80
 81	if (!(prz->flags & PRZ_FLAG_NO_LOCK))
 82		raw_spin_lock_irqsave(&prz->buffer_lock, flags);
 83
 84	old = atomic_read(&prz->buffer->size);
 85	if (old == prz->buffer_size)
 86		goto exit;
 87
 88	new = old + a;
 89	if (new > prz->buffer_size)
 90		new = prz->buffer_size;
 91	atomic_set(&prz->buffer->size, new);
 92
 93exit:
 94	if (!(prz->flags & PRZ_FLAG_NO_LOCK))
 95		raw_spin_unlock_irqrestore(&prz->buffer_lock, flags);
 96}
 97
 98static void notrace persistent_ram_encode_rs8(struct persistent_ram_zone *prz,
 99	uint8_t *data, size_t len, uint8_t *ecc)
100{
101	int i;
 
102
103	/* Initialize the parity buffer */
104	memset(prz->ecc_info.par, 0,
105	       prz->ecc_info.ecc_size * sizeof(prz->ecc_info.par[0]));
106	encode_rs8(prz->rs_decoder, data, len, prz->ecc_info.par, 0);
107	for (i = 0; i < prz->ecc_info.ecc_size; i++)
108		ecc[i] = prz->ecc_info.par[i];
109}
110
111static int persistent_ram_decode_rs8(struct persistent_ram_zone *prz,
112	void *data, size_t len, uint8_t *ecc)
113{
114	int i;
 
115
116	for (i = 0; i < prz->ecc_info.ecc_size; i++)
117		prz->ecc_info.par[i] = ecc[i];
118	return decode_rs8(prz->rs_decoder, data, prz->ecc_info.par, len,
119				NULL, 0, NULL, 0, NULL);
120}
121
122static void notrace persistent_ram_update_ecc(struct persistent_ram_zone *prz,
123	unsigned int start, unsigned int count)
124{
125	struct persistent_ram_buffer *buffer = prz->buffer;
126	uint8_t *buffer_end = buffer->data + prz->buffer_size;
127	uint8_t *block;
128	uint8_t *par;
129	int ecc_block_size = prz->ecc_info.block_size;
130	int ecc_size = prz->ecc_info.ecc_size;
131	int size = ecc_block_size;
132
133	if (!ecc_size)
134		return;
135
136	block = buffer->data + (start & ~(ecc_block_size - 1));
137	par = prz->par_buffer + (start / ecc_block_size) * ecc_size;
138
139	do {
140		if (block + ecc_block_size > buffer_end)
141			size = buffer_end - block;
142		persistent_ram_encode_rs8(prz, block, size, par);
143		block += ecc_block_size;
144		par += ecc_size;
145	} while (block < buffer->data + start + count);
146}
147
148static void persistent_ram_update_header_ecc(struct persistent_ram_zone *prz)
149{
150	struct persistent_ram_buffer *buffer = prz->buffer;
151
152	if (!prz->ecc_info.ecc_size)
153		return;
154
155	persistent_ram_encode_rs8(prz, (uint8_t *)buffer, sizeof(*buffer),
156				  prz->par_header);
157}
158
159static void persistent_ram_ecc_old(struct persistent_ram_zone *prz)
160{
161	struct persistent_ram_buffer *buffer = prz->buffer;
162	uint8_t *block;
163	uint8_t *par;
164
165	if (!prz->ecc_info.ecc_size)
166		return;
167
168	block = buffer->data;
169	par = prz->par_buffer;
170	while (block < buffer->data + buffer_size(prz)) {
171		int numerr;
172		int size = prz->ecc_info.block_size;
173		if (block + size > buffer->data + prz->buffer_size)
174			size = buffer->data + prz->buffer_size - block;
175		numerr = persistent_ram_decode_rs8(prz, block, size, par);
176		if (numerr > 0) {
177			pr_devel("error in block %p, %d\n", block, numerr);
 
178			prz->corrected_bytes += numerr;
179		} else if (numerr < 0) {
180			pr_devel("uncorrectable error in block %p\n", block);
 
181			prz->bad_blocks++;
182		}
183		block += prz->ecc_info.block_size;
184		par += prz->ecc_info.ecc_size;
185	}
186}
187
188static int persistent_ram_init_ecc(struct persistent_ram_zone *prz,
189				   struct persistent_ram_ecc_info *ecc_info)
190{
191	int numerr;
192	struct persistent_ram_buffer *buffer = prz->buffer;
193	int ecc_blocks;
194	size_t ecc_total;
195
196	if (!ecc_info || !ecc_info->ecc_size)
197		return 0;
198
199	prz->ecc_info.block_size = ecc_info->block_size ?: 128;
200	prz->ecc_info.ecc_size = ecc_info->ecc_size ?: 16;
201	prz->ecc_info.symsize = ecc_info->symsize ?: 8;
202	prz->ecc_info.poly = ecc_info->poly ?: 0x11d;
203
204	ecc_blocks = DIV_ROUND_UP(prz->buffer_size - prz->ecc_info.ecc_size,
205				  prz->ecc_info.block_size +
206				  prz->ecc_info.ecc_size);
207	ecc_total = (ecc_blocks + 1) * prz->ecc_info.ecc_size;
208	if (ecc_total >= prz->buffer_size) {
209		pr_err("%s: invalid ecc_size %u (total %zu, buffer size %zu)\n",
210		       __func__, prz->ecc_info.ecc_size,
211		       ecc_total, prz->buffer_size);
212		return -EINVAL;
213	}
214
215	prz->buffer_size -= ecc_total;
216	prz->par_buffer = buffer->data + prz->buffer_size;
217	prz->par_header = prz->par_buffer +
218			  ecc_blocks * prz->ecc_info.ecc_size;
219
220	/*
221	 * first consecutive root is 0
222	 * primitive element to generate roots = 1
223	 */
224	prz->rs_decoder = init_rs(prz->ecc_info.symsize, prz->ecc_info.poly,
225				  0, 1, prz->ecc_info.ecc_size);
226	if (prz->rs_decoder == NULL) {
227		pr_info("init_rs failed\n");
228		return -EINVAL;
229	}
230
231	/* allocate workspace instead of using stack VLA */
232	prz->ecc_info.par = kmalloc_array(prz->ecc_info.ecc_size,
233					  sizeof(*prz->ecc_info.par),
234					  GFP_KERNEL);
235	if (!prz->ecc_info.par) {
236		pr_err("cannot allocate ECC parity workspace\n");
237		return -ENOMEM;
238	}
239
240	prz->corrected_bytes = 0;
241	prz->bad_blocks = 0;
242
243	numerr = persistent_ram_decode_rs8(prz, buffer, sizeof(*buffer),
244					   prz->par_header);
245	if (numerr > 0) {
246		pr_info("error in header, %d\n", numerr);
247		prz->corrected_bytes += numerr;
248	} else if (numerr < 0) {
249		pr_info("uncorrectable error in header\n");
250		prz->bad_blocks++;
251	}
252
253	return 0;
254}
255
256ssize_t persistent_ram_ecc_string(struct persistent_ram_zone *prz,
257	char *str, size_t len)
258{
259	ssize_t ret;
260
261	if (!prz->ecc_info.ecc_size)
262		return 0;
263
264	if (prz->corrected_bytes || prz->bad_blocks)
265		ret = snprintf(str, len, ""
266			"\n%d Corrected bytes, %d unrecoverable blocks\n",
267			prz->corrected_bytes, prz->bad_blocks);
268	else
269		ret = snprintf(str, len, "\nNo errors detected\n");
270
271	return ret;
272}
273
274static void notrace persistent_ram_update(struct persistent_ram_zone *prz,
275	const void *s, unsigned int start, unsigned int count)
276{
277	struct persistent_ram_buffer *buffer = prz->buffer;
278	memcpy_toio(buffer->data + start, s, count);
279	persistent_ram_update_ecc(prz, start, count);
280}
281
282static int notrace persistent_ram_update_user(struct persistent_ram_zone *prz,
283	const void __user *s, unsigned int start, unsigned int count)
284{
285	struct persistent_ram_buffer *buffer = prz->buffer;
286	int ret = unlikely(__copy_from_user(buffer->data + start, s, count)) ?
287		-EFAULT : 0;
288	persistent_ram_update_ecc(prz, start, count);
289	return ret;
290}
291
292void persistent_ram_save_old(struct persistent_ram_zone *prz)
293{
294	struct persistent_ram_buffer *buffer = prz->buffer;
295	size_t size = buffer_size(prz);
296	size_t start = buffer_start(prz);
297
298	if (!size)
299		return;
300
301	if (!prz->old_log) {
302		persistent_ram_ecc_old(prz);
303		prz->old_log = kmalloc(size, GFP_KERNEL);
304	}
305	if (!prz->old_log) {
306		pr_err("failed to allocate buffer\n");
307		return;
308	}
309
310	prz->old_log_size = size;
311	memcpy_fromio(prz->old_log, &buffer->data[start], size - start);
312	memcpy_fromio(prz->old_log + size - start, &buffer->data[0], start);
313}
314
315int notrace persistent_ram_write(struct persistent_ram_zone *prz,
316	const void *s, unsigned int count)
317{
318	int rem;
319	int c = count;
320	size_t start;
321
322	if (unlikely(c > prz->buffer_size)) {
323		s += c - prz->buffer_size;
324		c = prz->buffer_size;
325	}
326
327	buffer_size_add(prz, c);
328
329	start = buffer_start_add(prz, c);
330
331	rem = prz->buffer_size - start;
332	if (unlikely(rem < c)) {
333		persistent_ram_update(prz, s, start, rem);
334		s += rem;
335		c -= rem;
336		start = 0;
337	}
338	persistent_ram_update(prz, s, start, c);
339
340	persistent_ram_update_header_ecc(prz);
341
342	return count;
343}
344
345int notrace persistent_ram_write_user(struct persistent_ram_zone *prz,
346	const void __user *s, unsigned int count)
347{
348	int rem, ret = 0, c = count;
349	size_t start;
350
351	if (unlikely(!access_ok(s, count)))
352		return -EFAULT;
353	if (unlikely(c > prz->buffer_size)) {
354		s += c - prz->buffer_size;
355		c = prz->buffer_size;
356	}
357
358	buffer_size_add(prz, c);
359
360	start = buffer_start_add(prz, c);
361
362	rem = prz->buffer_size - start;
363	if (unlikely(rem < c)) {
364		ret = persistent_ram_update_user(prz, s, start, rem);
365		s += rem;
366		c -= rem;
367		start = 0;
368	}
369	if (likely(!ret))
370		ret = persistent_ram_update_user(prz, s, start, c);
371
372	persistent_ram_update_header_ecc(prz);
373
374	return unlikely(ret) ? ret : count;
375}
376
377size_t persistent_ram_old_size(struct persistent_ram_zone *prz)
378{
379	return prz->old_log_size;
380}
381
382void *persistent_ram_old(struct persistent_ram_zone *prz)
383{
384	return prz->old_log;
385}
386
387void persistent_ram_free_old(struct persistent_ram_zone *prz)
388{
389	kfree(prz->old_log);
390	prz->old_log = NULL;
391	prz->old_log_size = 0;
392}
393
394void persistent_ram_zap(struct persistent_ram_zone *prz)
395{
396	atomic_set(&prz->buffer->start, 0);
397	atomic_set(&prz->buffer->size, 0);
398	persistent_ram_update_header_ecc(prz);
399}
400
401static void *persistent_ram_vmap(phys_addr_t start, size_t size,
402		unsigned int memtype)
403{
404	struct page **pages;
405	phys_addr_t page_start;
406	unsigned int page_count;
407	pgprot_t prot;
408	unsigned int i;
409	void *vaddr;
410
411	page_start = start - offset_in_page(start);
412	page_count = DIV_ROUND_UP(size + offset_in_page(start), PAGE_SIZE);
413
414	if (memtype)
415		prot = pgprot_noncached(PAGE_KERNEL);
416	else
417		prot = pgprot_writecombine(PAGE_KERNEL);
418
419	pages = kmalloc_array(page_count, sizeof(struct page *), GFP_KERNEL);
420	if (!pages) {
421		pr_err("%s: Failed to allocate array for %u pages\n",
422		       __func__, page_count);
423		return NULL;
424	}
425
426	for (i = 0; i < page_count; i++) {
427		phys_addr_t addr = page_start + i * PAGE_SIZE;
428		pages[i] = pfn_to_page(addr >> PAGE_SHIFT);
429	}
430	vaddr = vmap(pages, page_count, VM_MAP, prot);
431	kfree(pages);
432
433	/*
434	 * Since vmap() uses page granularity, we must add the offset
435	 * into the page here, to get the byte granularity address
436	 * into the mapping to represent the actual "start" location.
437	 */
438	return vaddr + offset_in_page(start);
439}
440
441static void *persistent_ram_iomap(phys_addr_t start, size_t size,
442		unsigned int memtype, char *label)
443{
444	void *va;
445
446	if (!request_mem_region(start, size, label ?: "ramoops")) {
447		pr_err("request mem region (%s 0x%llx@0x%llx) failed\n",
448			label ?: "ramoops",
449			(unsigned long long)size, (unsigned long long)start);
450		return NULL;
451	}
452
453	if (memtype)
454		va = ioremap(start, size);
455	else
456		va = ioremap_wc(start, size);
457
458	/*
459	 * Since request_mem_region() and ioremap() are byte-granularity
460	 * there is no need handle anything special like we do when the
461	 * vmap() case in persistent_ram_vmap() above.
462	 */
463	return va;
464}
465
466static int persistent_ram_buffer_map(phys_addr_t start, phys_addr_t size,
467		struct persistent_ram_zone *prz, int memtype)
468{
469	prz->paddr = start;
470	prz->size = size;
471
472	if (pfn_valid(start >> PAGE_SHIFT))
473		prz->vaddr = persistent_ram_vmap(start, size, memtype);
474	else
475		prz->vaddr = persistent_ram_iomap(start, size, memtype,
476						  prz->label);
477
478	if (!prz->vaddr) {
479		pr_err("%s: Failed to map 0x%llx pages at 0x%llx\n", __func__,
480			(unsigned long long)size, (unsigned long long)start);
481		return -ENOMEM;
482	}
483
484	prz->buffer = prz->vaddr;
485	prz->buffer_size = size - sizeof(struct persistent_ram_buffer);
486
487	return 0;
488}
489
490static int persistent_ram_post_init(struct persistent_ram_zone *prz, u32 sig,
491				    struct persistent_ram_ecc_info *ecc_info)
492{
493	int ret;
494	bool zap = !!(prz->flags & PRZ_FLAG_ZAP_OLD);
495
496	ret = persistent_ram_init_ecc(prz, ecc_info);
497	if (ret) {
498		pr_warn("ECC failed %s\n", prz->label);
499		return ret;
500	}
501
502	sig ^= PERSISTENT_RAM_SIG;
503
504	if (prz->buffer->sig == sig) {
505		if (buffer_size(prz) == 0) {
506			pr_debug("found existing empty buffer\n");
507			return 0;
508		}
509
 
510		if (buffer_size(prz) > prz->buffer_size ||
511		    buffer_start(prz) > buffer_size(prz)) {
512			pr_info("found existing invalid buffer, size %zu, start %zu\n",
513				buffer_size(prz), buffer_start(prz));
514			zap = true;
515		} else {
516			pr_debug("found existing buffer, size %zu, start %zu\n",
517				 buffer_size(prz), buffer_start(prz));
 
518			persistent_ram_save_old(prz);
 
519		}
520	} else {
521		pr_debug("no valid data in buffer (sig = 0x%08x)\n",
522			 prz->buffer->sig);
523		prz->buffer->sig = sig;
524		zap = true;
525	}
526
527	/* Reset missing, invalid, or single-use memory area. */
528	if (zap)
529		persistent_ram_zap(prz);
530
531	return 0;
532}
533
534void persistent_ram_free(struct persistent_ram_zone *prz)
535{
536	if (!prz)
537		return;
538
539	if (prz->vaddr) {
540		if (pfn_valid(prz->paddr >> PAGE_SHIFT)) {
541			/* We must vunmap() at page-granularity. */
542			vunmap(prz->vaddr - offset_in_page(prz->paddr));
543		} else {
544			iounmap(prz->vaddr);
545			release_mem_region(prz->paddr, prz->size);
546		}
547		prz->vaddr = NULL;
548	}
549	if (prz->rs_decoder) {
550		free_rs(prz->rs_decoder);
551		prz->rs_decoder = NULL;
552	}
553	kfree(prz->ecc_info.par);
554	prz->ecc_info.par = NULL;
555
556	persistent_ram_free_old(prz);
557	kfree(prz->label);
558	kfree(prz);
559}
560
561struct persistent_ram_zone *persistent_ram_new(phys_addr_t start, size_t size,
562			u32 sig, struct persistent_ram_ecc_info *ecc_info,
563			unsigned int memtype, u32 flags, char *label)
564{
565	struct persistent_ram_zone *prz;
566	int ret = -ENOMEM;
567
568	prz = kzalloc(sizeof(struct persistent_ram_zone), GFP_KERNEL);
569	if (!prz) {
570		pr_err("failed to allocate persistent ram zone\n");
571		goto err;
572	}
573
574	/* Initialize general buffer state. */
575	raw_spin_lock_init(&prz->buffer_lock);
576	prz->flags = flags;
577	prz->label = label;
578
579	ret = persistent_ram_buffer_map(start, size, prz, memtype);
580	if (ret)
581		goto err;
582
583	ret = persistent_ram_post_init(prz, sig, ecc_info);
584	if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
585		goto err;
 
586
587	pr_debug("attached %s 0x%zx@0x%llx: %zu header, %zu data, %zu ecc (%d/%d)\n",
588		prz->label, prz->size, (unsigned long long)prz->paddr,
589		sizeof(*prz->buffer), prz->buffer_size,
590		prz->size - sizeof(*prz->buffer) - prz->buffer_size,
591		prz->ecc_info.ecc_size, prz->ecc_info.block_size);
 
 
592
593	return prz;
594err:
595	persistent_ram_free(prz);
596	return ERR_PTR(ret);
597}
v3.5.6
 
  1/*
  2 * Copyright (C) 2012 Google, Inc.
  3 *
  4 * This software is licensed under the terms of the GNU General Public
  5 * License version 2, as published by the Free Software Foundation, and
  6 * may be copied, distributed, and modified under those terms.
  7 *
  8 * This program is distributed in the hope that it will be useful,
  9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 11 * GNU General Public License for more details.
 12 *
 13 */
 14
 
 
 15#include <linux/device.h>
 16#include <linux/err.h>
 17#include <linux/errno.h>
 18#include <linux/kernel.h>
 19#include <linux/init.h>
 20#include <linux/io.h>
 
 21#include <linux/list.h>
 22#include <linux/memblock.h>
 
 23#include <linux/rslib.h>
 24#include <linux/slab.h>
 
 25#include <linux/vmalloc.h>
 26#include <linux/pstore_ram.h>
 27#include <asm/page.h>
 28
 
 
 
 
 
 
 
 
 
 
 29struct persistent_ram_buffer {
 30	uint32_t    sig;
 31	atomic_t    start;
 32	atomic_t    size;
 33	uint8_t     data[0];
 34};
 35
 36#define PERSISTENT_RAM_SIG (0x43474244) /* DBGC */
 37
 38static __initdata LIST_HEAD(persistent_ram_list);
 39
 40static inline size_t buffer_size(struct persistent_ram_zone *prz)
 41{
 42	return atomic_read(&prz->buffer->size);
 43}
 44
 45static inline size_t buffer_start(struct persistent_ram_zone *prz)
 46{
 47	return atomic_read(&prz->buffer->start);
 48}
 49
 50/* increase and wrap the start pointer, returning the old value */
 51static inline size_t buffer_start_add(struct persistent_ram_zone *prz, size_t a)
 52{
 53	int old;
 54	int new;
 
 
 
 
 55
 56	do {
 57		old = atomic_read(&prz->buffer->start);
 58		new = old + a;
 59		while (unlikely(new > prz->buffer_size))
 60			new -= prz->buffer_size;
 61	} while (atomic_cmpxchg(&prz->buffer->start, old, new) != old);
 
 
 62
 63	return old;
 64}
 65
 66/* increase the size counter until it hits the max size */
 67static inline void buffer_size_add(struct persistent_ram_zone *prz, size_t a)
 68{
 69	size_t old;
 70	size_t new;
 
 71
 72	if (atomic_read(&prz->buffer->size) == prz->buffer_size)
 73		return;
 74
 75	do {
 76		old = atomic_read(&prz->buffer->size);
 77		new = old + a;
 78		if (new > prz->buffer_size)
 79			new = prz->buffer_size;
 80	} while (atomic_cmpxchg(&prz->buffer->size, old, new) != old);
 
 
 
 
 
 
 81}
 82
 83static void notrace persistent_ram_encode_rs8(struct persistent_ram_zone *prz,
 84	uint8_t *data, size_t len, uint8_t *ecc)
 85{
 86	int i;
 87	uint16_t par[prz->ecc_size];
 88
 89	/* Initialize the parity buffer */
 90	memset(par, 0, sizeof(par));
 91	encode_rs8(prz->rs_decoder, data, len, par, 0);
 92	for (i = 0; i < prz->ecc_size; i++)
 93		ecc[i] = par[i];
 
 94}
 95
 96static int persistent_ram_decode_rs8(struct persistent_ram_zone *prz,
 97	void *data, size_t len, uint8_t *ecc)
 98{
 99	int i;
100	uint16_t par[prz->ecc_size];
101
102	for (i = 0; i < prz->ecc_size; i++)
103		par[i] = ecc[i];
104	return decode_rs8(prz->rs_decoder, data, par, len,
105				NULL, 0, NULL, 0, NULL);
106}
107
108static void notrace persistent_ram_update_ecc(struct persistent_ram_zone *prz,
109	unsigned int start, unsigned int count)
110{
111	struct persistent_ram_buffer *buffer = prz->buffer;
112	uint8_t *buffer_end = buffer->data + prz->buffer_size;
113	uint8_t *block;
114	uint8_t *par;
115	int ecc_block_size = prz->ecc_block_size;
116	int ecc_size = prz->ecc_size;
117	int size = prz->ecc_block_size;
118
119	if (!prz->ecc)
120		return;
121
122	block = buffer->data + (start & ~(ecc_block_size - 1));
123	par = prz->par_buffer + (start / ecc_block_size) * prz->ecc_size;
124
125	do {
126		if (block + ecc_block_size > buffer_end)
127			size = buffer_end - block;
128		persistent_ram_encode_rs8(prz, block, size, par);
129		block += ecc_block_size;
130		par += ecc_size;
131	} while (block < buffer->data + start + count);
132}
133
134static void persistent_ram_update_header_ecc(struct persistent_ram_zone *prz)
135{
136	struct persistent_ram_buffer *buffer = prz->buffer;
137
138	if (!prz->ecc)
139		return;
140
141	persistent_ram_encode_rs8(prz, (uint8_t *)buffer, sizeof(*buffer),
142				  prz->par_header);
143}
144
145static void persistent_ram_ecc_old(struct persistent_ram_zone *prz)
146{
147	struct persistent_ram_buffer *buffer = prz->buffer;
148	uint8_t *block;
149	uint8_t *par;
150
151	if (!prz->ecc)
152		return;
153
154	block = buffer->data;
155	par = prz->par_buffer;
156	while (block < buffer->data + buffer_size(prz)) {
157		int numerr;
158		int size = prz->ecc_block_size;
159		if (block + size > buffer->data + prz->buffer_size)
160			size = buffer->data + prz->buffer_size - block;
161		numerr = persistent_ram_decode_rs8(prz, block, size, par);
162		if (numerr > 0) {
163			pr_devel("persistent_ram: error in block %p, %d\n",
164			       block, numerr);
165			prz->corrected_bytes += numerr;
166		} else if (numerr < 0) {
167			pr_devel("persistent_ram: uncorrectable error in block %p\n",
168				block);
169			prz->bad_blocks++;
170		}
171		block += prz->ecc_block_size;
172		par += prz->ecc_size;
173	}
174}
175
176static int persistent_ram_init_ecc(struct persistent_ram_zone *prz,
177	size_t buffer_size)
178{
179	int numerr;
180	struct persistent_ram_buffer *buffer = prz->buffer;
181	int ecc_blocks;
 
182
183	if (!prz->ecc)
184		return 0;
185
186	prz->ecc_block_size = 128;
187	prz->ecc_size = 16;
188	prz->ecc_symsize = 8;
189	prz->ecc_poly = 0x11d;
190
191	ecc_blocks = DIV_ROUND_UP(prz->buffer_size, prz->ecc_block_size);
192	prz->buffer_size -= (ecc_blocks + 1) * prz->ecc_size;
193
194	if (prz->buffer_size > buffer_size) {
195		pr_err("persistent_ram: invalid size %zu, non-ecc datasize %zu\n",
196		       buffer_size, prz->buffer_size);
 
 
197		return -EINVAL;
198	}
199
 
200	prz->par_buffer = buffer->data + prz->buffer_size;
201	prz->par_header = prz->par_buffer + ecc_blocks * prz->ecc_size;
 
202
203	/*
204	 * first consecutive root is 0
205	 * primitive element to generate roots = 1
206	 */
207	prz->rs_decoder = init_rs(prz->ecc_symsize, prz->ecc_poly, 0, 1,
208				  prz->ecc_size);
209	if (prz->rs_decoder == NULL) {
210		pr_info("persistent_ram: init_rs failed\n");
211		return -EINVAL;
212	}
213
 
 
 
 
 
 
 
 
 
214	prz->corrected_bytes = 0;
215	prz->bad_blocks = 0;
216
217	numerr = persistent_ram_decode_rs8(prz, buffer, sizeof(*buffer),
218					   prz->par_header);
219	if (numerr > 0) {
220		pr_info("persistent_ram: error in header, %d\n", numerr);
221		prz->corrected_bytes += numerr;
222	} else if (numerr < 0) {
223		pr_info("persistent_ram: uncorrectable error in header\n");
224		prz->bad_blocks++;
225	}
226
227	return 0;
228}
229
230ssize_t persistent_ram_ecc_string(struct persistent_ram_zone *prz,
231	char *str, size_t len)
232{
233	ssize_t ret;
234
 
 
 
235	if (prz->corrected_bytes || prz->bad_blocks)
236		ret = snprintf(str, len, ""
237			"\n%d Corrected bytes, %d unrecoverable blocks\n",
238			prz->corrected_bytes, prz->bad_blocks);
239	else
240		ret = snprintf(str, len, "\nNo errors detected\n");
241
242	return ret;
243}
244
245static void notrace persistent_ram_update(struct persistent_ram_zone *prz,
246	const void *s, unsigned int start, unsigned int count)
247{
248	struct persistent_ram_buffer *buffer = prz->buffer;
249	memcpy(buffer->data + start, s, count);
 
 
 
 
 
 
 
 
 
250	persistent_ram_update_ecc(prz, start, count);
 
251}
252
253void persistent_ram_save_old(struct persistent_ram_zone *prz)
254{
255	struct persistent_ram_buffer *buffer = prz->buffer;
256	size_t size = buffer_size(prz);
257	size_t start = buffer_start(prz);
258
259	if (!size)
260		return;
261
262	if (!prz->old_log) {
263		persistent_ram_ecc_old(prz);
264		prz->old_log = kmalloc(size, GFP_KERNEL);
265	}
266	if (!prz->old_log) {
267		pr_err("persistent_ram: failed to allocate buffer\n");
268		return;
269	}
270
271	prz->old_log_size = size;
272	memcpy(prz->old_log, &buffer->data[start], size - start);
273	memcpy(prz->old_log + size - start, &buffer->data[0], start);
274}
275
276int notrace persistent_ram_write(struct persistent_ram_zone *prz,
277	const void *s, unsigned int count)
278{
279	int rem;
280	int c = count;
281	size_t start;
282
283	if (unlikely(c > prz->buffer_size)) {
284		s += c - prz->buffer_size;
285		c = prz->buffer_size;
286	}
287
288	buffer_size_add(prz, c);
289
290	start = buffer_start_add(prz, c);
291
292	rem = prz->buffer_size - start;
293	if (unlikely(rem < c)) {
294		persistent_ram_update(prz, s, start, rem);
295		s += rem;
296		c -= rem;
297		start = 0;
298	}
299	persistent_ram_update(prz, s, start, c);
300
301	persistent_ram_update_header_ecc(prz);
302
303	return count;
304}
305
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
306size_t persistent_ram_old_size(struct persistent_ram_zone *prz)
307{
308	return prz->old_log_size;
309}
310
311void *persistent_ram_old(struct persistent_ram_zone *prz)
312{
313	return prz->old_log;
314}
315
316void persistent_ram_free_old(struct persistent_ram_zone *prz)
317{
318	kfree(prz->old_log);
319	prz->old_log = NULL;
320	prz->old_log_size = 0;
321}
322
323void persistent_ram_zap(struct persistent_ram_zone *prz)
324{
325	atomic_set(&prz->buffer->start, 0);
326	atomic_set(&prz->buffer->size, 0);
327	persistent_ram_update_header_ecc(prz);
328}
329
330static void *persistent_ram_vmap(phys_addr_t start, size_t size)
 
331{
332	struct page **pages;
333	phys_addr_t page_start;
334	unsigned int page_count;
335	pgprot_t prot;
336	unsigned int i;
337	void *vaddr;
338
339	page_start = start - offset_in_page(start);
340	page_count = DIV_ROUND_UP(size + offset_in_page(start), PAGE_SIZE);
341
342	prot = pgprot_noncached(PAGE_KERNEL);
 
 
 
343
344	pages = kmalloc(sizeof(struct page *) * page_count, GFP_KERNEL);
345	if (!pages) {
346		pr_err("%s: Failed to allocate array for %u pages\n", __func__,
347			page_count);
348		return NULL;
349	}
350
351	for (i = 0; i < page_count; i++) {
352		phys_addr_t addr = page_start + i * PAGE_SIZE;
353		pages[i] = pfn_to_page(addr >> PAGE_SHIFT);
354	}
355	vaddr = vmap(pages, page_count, VM_MAP, prot);
356	kfree(pages);
357
358	return vaddr;
 
 
 
 
 
359}
360
361static void *persistent_ram_iomap(phys_addr_t start, size_t size)
 
362{
363	if (!request_mem_region(start, size, "persistent_ram")) {
364		pr_err("request mem region (0x%llx@0x%llx) failed\n",
 
 
 
365			(unsigned long long)size, (unsigned long long)start);
366		return NULL;
367	}
368
369	return ioremap(start, size);
 
 
 
 
 
 
 
 
 
 
370}
371
372static int persistent_ram_buffer_map(phys_addr_t start, phys_addr_t size,
373		struct persistent_ram_zone *prz)
374{
375	prz->paddr = start;
376	prz->size = size;
377
378	if (pfn_valid(start >> PAGE_SHIFT))
379		prz->vaddr = persistent_ram_vmap(start, size);
380	else
381		prz->vaddr = persistent_ram_iomap(start, size);
 
382
383	if (!prz->vaddr) {
384		pr_err("%s: Failed to map 0x%llx pages at 0x%llx\n", __func__,
385			(unsigned long long)size, (unsigned long long)start);
386		return -ENOMEM;
387	}
388
389	prz->buffer = prz->vaddr + offset_in_page(start);
390	prz->buffer_size = size - sizeof(struct persistent_ram_buffer);
391
392	return 0;
393}
394
395static int __init persistent_ram_post_init(struct persistent_ram_zone *prz, bool ecc)
 
396{
397	int ret;
 
398
399	prz->ecc = ecc;
 
 
 
 
 
 
400
401	ret = persistent_ram_init_ecc(prz, prz->buffer_size);
402	if (ret)
403		return ret;
 
 
404
405	if (prz->buffer->sig == PERSISTENT_RAM_SIG) {
406		if (buffer_size(prz) > prz->buffer_size ||
407		    buffer_start(prz) > buffer_size(prz))
408			pr_info("persistent_ram: found existing invalid buffer,"
409				" size %zu, start %zu\n",
410			       buffer_size(prz), buffer_start(prz));
411		else {
412			pr_info("persistent_ram: found existing buffer,"
413				" size %zu, start %zu\n",
414			       buffer_size(prz), buffer_start(prz));
415			persistent_ram_save_old(prz);
416			return 0;
417		}
418	} else {
419		pr_info("persistent_ram: no valid data in buffer"
420			" (sig = 0x%08x)\n", prz->buffer->sig);
 
 
421	}
422
423	prz->buffer->sig = PERSISTENT_RAM_SIG;
424	persistent_ram_zap(prz);
 
425
426	return 0;
427}
428
429void persistent_ram_free(struct persistent_ram_zone *prz)
430{
431	if (pfn_valid(prz->paddr >> PAGE_SHIFT)) {
432		vunmap(prz->vaddr);
433	} else {
434		iounmap(prz->vaddr);
435		release_mem_region(prz->paddr, prz->size);
 
 
 
 
 
 
 
 
 
 
 
436	}
 
 
 
437	persistent_ram_free_old(prz);
 
438	kfree(prz);
439}
440
441struct persistent_ram_zone * __init persistent_ram_new(phys_addr_t start,
442						       size_t size,
443						       bool ecc)
444{
445	struct persistent_ram_zone *prz;
446	int ret = -ENOMEM;
447
448	prz = kzalloc(sizeof(struct persistent_ram_zone), GFP_KERNEL);
449	if (!prz) {
450		pr_err("persistent_ram: failed to allocate persistent ram zone\n");
451		goto err;
452	}
453
454	ret = persistent_ram_buffer_map(start, size, prz);
 
 
 
 
 
455	if (ret)
456		goto err;
457
458	persistent_ram_post_init(prz, ecc);
459
460	return prz;
461err:
462	kfree(prz);
463	return ERR_PTR(ret);
464}
465
466#ifndef MODULE
467static int __init persistent_ram_buffer_init(const char *name,
468		struct persistent_ram_zone *prz)
469{
470	int i;
471	struct persistent_ram *ram;
472	struct persistent_ram_descriptor *desc;
473	phys_addr_t start;
474
475	list_for_each_entry(ram, &persistent_ram_list, node) {
476		start = ram->start;
477		for (i = 0; i < ram->num_descs; i++) {
478			desc = &ram->descs[i];
479			if (!strcmp(desc->name, name))
480				return persistent_ram_buffer_map(start,
481						desc->size, prz);
482			start += desc->size;
483		}
484	}
485
486	return -EINVAL;
487}
488
489static  __init
490struct persistent_ram_zone *__persistent_ram_init(struct device *dev, bool ecc)
491{
492	struct persistent_ram_zone *prz;
493	int ret = -ENOMEM;
494
495	prz = kzalloc(sizeof(struct persistent_ram_zone), GFP_KERNEL);
496	if (!prz) {
497		pr_err("persistent_ram: failed to allocate persistent ram zone\n");
498		goto err;
499	}
500
501	ret = persistent_ram_buffer_init(dev_name(dev), prz);
502	if (ret) {
503		pr_err("persistent_ram: failed to initialize buffer\n");
504		goto err;
505	}
506
507	persistent_ram_post_init(prz, ecc);
508
509	return prz;
510err:
511	kfree(prz);
512	return ERR_PTR(ret);
513}
514
515struct persistent_ram_zone * __init
516persistent_ram_init_ringbuffer(struct device *dev, bool ecc)
517{
518	return __persistent_ram_init(dev, ecc);
519}
520
521int __init persistent_ram_early_init(struct persistent_ram *ram)
522{
523	int ret;
524
525	ret = memblock_reserve(ram->start, ram->size);
526	if (ret) {
527		pr_err("Failed to reserve persistent memory from %08lx-%08lx\n",
528			(long)ram->start, (long)(ram->start + ram->size - 1));
529		return ret;
530	}
531
532	list_add_tail(&ram->node, &persistent_ram_list);
533
534	pr_info("Initialized persistent memory from %08lx-%08lx\n",
535		(long)ram->start, (long)(ram->start + ram->size - 1));
536
537	return 0;
538}
539#endif