Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) STRATO AG 2011.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6/*
   7 * This module can be used to catch cases when the btrfs kernel
   8 * code executes write requests to the disk that bring the file
   9 * system in an inconsistent state. In such a state, a power-loss
  10 * or kernel panic event would cause that the data on disk is
  11 * lost or at least damaged.
  12 *
  13 * Code is added that examines all block write requests during
  14 * runtime (including writes of the super block). Three rules
  15 * are verified and an error is printed on violation of the
  16 * rules:
  17 * 1. It is not allowed to write a disk block which is
  18 *    currently referenced by the super block (either directly
  19 *    or indirectly).
  20 * 2. When a super block is written, it is verified that all
  21 *    referenced (directly or indirectly) blocks fulfill the
  22 *    following requirements:
  23 *    2a. All referenced blocks have either been present when
  24 *        the file system was mounted, (i.e., they have been
  25 *        referenced by the super block) or they have been
  26 *        written since then and the write completion callback
  27 *        was called and no write error was indicated and a
  28 *        FLUSH request to the device where these blocks are
  29 *        located was received and completed.
  30 *    2b. All referenced blocks need to have a generation
  31 *        number which is equal to the parent's number.
  32 *
  33 * One issue that was found using this module was that the log
  34 * tree on disk became temporarily corrupted because disk blocks
  35 * that had been in use for the log tree had been freed and
  36 * reused too early, while being referenced by the written super
  37 * block.
  38 *
  39 * The search term in the kernel log that can be used to filter
  40 * on the existence of detected integrity issues is
  41 * "btrfs: attempt".
  42 *
  43 * The integrity check is enabled via mount options. These
  44 * mount options are only supported if the integrity check
  45 * tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY.
  46 *
  47 * Example #1, apply integrity checks to all metadata:
  48 * mount /dev/sdb1 /mnt -o check_int
  49 *
  50 * Example #2, apply integrity checks to all metadata and
  51 * to data extents:
  52 * mount /dev/sdb1 /mnt -o check_int_data
  53 *
  54 * Example #3, apply integrity checks to all metadata and dump
  55 * the tree that the super block references to kernel messages
  56 * each time after a super block was written:
  57 * mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263
  58 *
  59 * If the integrity check tool is included and activated in
  60 * the mount options, plenty of kernel memory is used, and
  61 * plenty of additional CPU cycles are spent. Enabling this
  62 * functionality is not intended for normal use. In most
  63 * cases, unless you are a btrfs developer who needs to verify
  64 * the integrity of (super)-block write requests, do not
  65 * enable the config option BTRFS_FS_CHECK_INTEGRITY to
  66 * include and compile the integrity check tool.
  67 *
  68 * Expect millions of lines of information in the kernel log with an
  69 * enabled check_int_print_mask. Therefore set LOG_BUF_SHIFT in the
  70 * kernel config to at least 26 (which is 64MB). Usually the value is
  71 * limited to 21 (which is 2MB) in init/Kconfig. The file needs to be
  72 * changed like this before LOG_BUF_SHIFT can be set to a high value:
  73 * config LOG_BUF_SHIFT
  74 *       int "Kernel log buffer size (16 => 64KB, 17 => 128KB)"
  75 *       range 12 30
  76 */
  77
  78#include <linux/sched.h>
  79#include <linux/slab.h>
  80#include <linux/buffer_head.h>
  81#include <linux/mutex.h>
  82#include <linux/genhd.h>
  83#include <linux/blkdev.h>
  84#include <linux/mm.h>
  85#include <linux/string.h>
  86#include <crypto/hash.h>
  87#include "ctree.h"
  88#include "disk-io.h"
 
  89#include "transaction.h"
  90#include "extent_io.h"
  91#include "volumes.h"
  92#include "print-tree.h"
  93#include "locking.h"
  94#include "check-integrity.h"
  95#include "rcu-string.h"
  96#include "compression.h"
  97
  98#define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000
  99#define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000
 100#define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100
 101#define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051
 102#define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807
 103#define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530
 104#define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300
 105#define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6)	/* in characters,
 106							 * excluding " [...]" */
 107#define BTRFSIC_GENERATION_UNKNOWN ((u64)-1)
 108
 109/*
 110 * The definition of the bitmask fields for the print_mask.
 111 * They are specified with the mount option check_integrity_print_mask.
 112 */
 113#define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE			0x00000001
 114#define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION		0x00000002
 115#define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE			0x00000004
 116#define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE			0x00000008
 117#define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH			0x00000010
 118#define BTRFSIC_PRINT_MASK_END_IO_BIO_BH			0x00000020
 119#define BTRFSIC_PRINT_MASK_VERBOSE				0x00000040
 120#define BTRFSIC_PRINT_MASK_VERY_VERBOSE				0x00000080
 121#define BTRFSIC_PRINT_MASK_INITIAL_TREE				0x00000100
 122#define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES			0x00000200
 123#define BTRFSIC_PRINT_MASK_INITIAL_DATABASE			0x00000400
 124#define BTRFSIC_PRINT_MASK_NUM_COPIES				0x00000800
 125#define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS		0x00001000
 126#define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE		0x00002000
 127
 128struct btrfsic_dev_state;
 129struct btrfsic_state;
 130
 131struct btrfsic_block {
 132	u32 magic_num;		/* only used for debug purposes */
 133	unsigned int is_metadata:1;	/* if it is meta-data, not data-data */
 134	unsigned int is_superblock:1;	/* if it is one of the superblocks */
 135	unsigned int is_iodone:1;	/* if is done by lower subsystem */
 136	unsigned int iodone_w_error:1;	/* error was indicated to endio */
 137	unsigned int never_written:1;	/* block was added because it was
 138					 * referenced, not because it was
 139					 * written */
 140	unsigned int mirror_num;	/* large enough to hold
 141					 * BTRFS_SUPER_MIRROR_MAX */
 142	struct btrfsic_dev_state *dev_state;
 143	u64 dev_bytenr;		/* key, physical byte num on disk */
 144	u64 logical_bytenr;	/* logical byte num on disk */
 145	u64 generation;
 146	struct btrfs_disk_key disk_key;	/* extra info to print in case of
 147					 * issues, will not always be correct */
 148	struct list_head collision_resolving_node;	/* list node */
 149	struct list_head all_blocks_node;	/* list node */
 150
 151	/* the following two lists contain block_link items */
 152	struct list_head ref_to_list;	/* list */
 153	struct list_head ref_from_list;	/* list */
 154	struct btrfsic_block *next_in_same_bio;
 155	void *orig_bio_bh_private;
 156	union {
 157		bio_end_io_t *bio;
 158		bh_end_io_t *bh;
 159	} orig_bio_bh_end_io;
 160	int submit_bio_bh_rw;
 161	u64 flush_gen; /* only valid if !never_written */
 162};
 163
 164/*
 165 * Elements of this type are allocated dynamically and required because
 166 * each block object can refer to and can be ref from multiple blocks.
 167 * The key to lookup them in the hashtable is the dev_bytenr of
 168 * the block ref to plus the one from the block referred from.
 169 * The fact that they are searchable via a hashtable and that a
 170 * ref_cnt is maintained is not required for the btrfs integrity
 171 * check algorithm itself, it is only used to make the output more
 172 * beautiful in case that an error is detected (an error is defined
 173 * as a write operation to a block while that block is still referenced).
 174 */
 175struct btrfsic_block_link {
 176	u32 magic_num;		/* only used for debug purposes */
 177	u32 ref_cnt;
 178	struct list_head node_ref_to;	/* list node */
 179	struct list_head node_ref_from;	/* list node */
 180	struct list_head collision_resolving_node;	/* list node */
 181	struct btrfsic_block *block_ref_to;
 182	struct btrfsic_block *block_ref_from;
 183	u64 parent_generation;
 184};
 185
 186struct btrfsic_dev_state {
 187	u32 magic_num;		/* only used for debug purposes */
 188	struct block_device *bdev;
 189	struct btrfsic_state *state;
 190	struct list_head collision_resolving_node;	/* list node */
 191	struct btrfsic_block dummy_block_for_bio_bh_flush;
 192	u64 last_flush_gen;
 193	char name[BDEVNAME_SIZE];
 194};
 195
 196struct btrfsic_block_hashtable {
 197	struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE];
 198};
 199
 200struct btrfsic_block_link_hashtable {
 201	struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE];
 202};
 203
 204struct btrfsic_dev_state_hashtable {
 205	struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE];
 206};
 207
 208struct btrfsic_block_data_ctx {
 209	u64 start;		/* virtual bytenr */
 210	u64 dev_bytenr;		/* physical bytenr on device */
 211	u32 len;
 212	struct btrfsic_dev_state *dev;
 213	char **datav;
 214	struct page **pagev;
 215	void *mem_to_free;
 216};
 217
 218/* This structure is used to implement recursion without occupying
 219 * any stack space, refer to btrfsic_process_metablock() */
 220struct btrfsic_stack_frame {
 221	u32 magic;
 222	u32 nr;
 223	int error;
 224	int i;
 225	int limit_nesting;
 226	int num_copies;
 227	int mirror_num;
 228	struct btrfsic_block *block;
 229	struct btrfsic_block_data_ctx *block_ctx;
 230	struct btrfsic_block *next_block;
 231	struct btrfsic_block_data_ctx next_block_ctx;
 232	struct btrfs_header *hdr;
 233	struct btrfsic_stack_frame *prev;
 234};
 235
 236/* Some state per mounted filesystem */
 237struct btrfsic_state {
 238	u32 print_mask;
 239	int include_extent_data;
 240	int csum_size;
 241	struct list_head all_blocks_list;
 242	struct btrfsic_block_hashtable block_hashtable;
 243	struct btrfsic_block_link_hashtable block_link_hashtable;
 244	struct btrfs_fs_info *fs_info;
 245	u64 max_superblock_generation;
 246	struct btrfsic_block *latest_superblock;
 247	u32 metablock_size;
 248	u32 datablock_size;
 249};
 250
 251static void btrfsic_block_init(struct btrfsic_block *b);
 252static struct btrfsic_block *btrfsic_block_alloc(void);
 253static void btrfsic_block_free(struct btrfsic_block *b);
 254static void btrfsic_block_link_init(struct btrfsic_block_link *n);
 255static struct btrfsic_block_link *btrfsic_block_link_alloc(void);
 256static void btrfsic_block_link_free(struct btrfsic_block_link *n);
 257static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds);
 258static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void);
 259static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds);
 260static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h);
 261static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
 262					struct btrfsic_block_hashtable *h);
 263static void btrfsic_block_hashtable_remove(struct btrfsic_block *b);
 264static struct btrfsic_block *btrfsic_block_hashtable_lookup(
 265		struct block_device *bdev,
 266		u64 dev_bytenr,
 267		struct btrfsic_block_hashtable *h);
 268static void btrfsic_block_link_hashtable_init(
 269		struct btrfsic_block_link_hashtable *h);
 270static void btrfsic_block_link_hashtable_add(
 271		struct btrfsic_block_link *l,
 272		struct btrfsic_block_link_hashtable *h);
 273static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l);
 274static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
 275		struct block_device *bdev_ref_to,
 276		u64 dev_bytenr_ref_to,
 277		struct block_device *bdev_ref_from,
 278		u64 dev_bytenr_ref_from,
 279		struct btrfsic_block_link_hashtable *h);
 280static void btrfsic_dev_state_hashtable_init(
 281		struct btrfsic_dev_state_hashtable *h);
 282static void btrfsic_dev_state_hashtable_add(
 283		struct btrfsic_dev_state *ds,
 284		struct btrfsic_dev_state_hashtable *h);
 285static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds);
 286static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(dev_t dev,
 
 287		struct btrfsic_dev_state_hashtable *h);
 288static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void);
 289static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf);
 290static int btrfsic_process_superblock(struct btrfsic_state *state,
 291				      struct btrfs_fs_devices *fs_devices);
 292static int btrfsic_process_metablock(struct btrfsic_state *state,
 293				     struct btrfsic_block *block,
 294				     struct btrfsic_block_data_ctx *block_ctx,
 295				     int limit_nesting, int force_iodone_flag);
 296static void btrfsic_read_from_block_data(
 297	struct btrfsic_block_data_ctx *block_ctx,
 298	void *dst, u32 offset, size_t len);
 299static int btrfsic_create_link_to_next_block(
 300		struct btrfsic_state *state,
 301		struct btrfsic_block *block,
 302		struct btrfsic_block_data_ctx
 303		*block_ctx, u64 next_bytenr,
 304		int limit_nesting,
 305		struct btrfsic_block_data_ctx *next_block_ctx,
 306		struct btrfsic_block **next_blockp,
 307		int force_iodone_flag,
 308		int *num_copiesp, int *mirror_nump,
 309		struct btrfs_disk_key *disk_key,
 310		u64 parent_generation);
 311static int btrfsic_handle_extent_data(struct btrfsic_state *state,
 312				      struct btrfsic_block *block,
 313				      struct btrfsic_block_data_ctx *block_ctx,
 314				      u32 item_offset, int force_iodone_flag);
 315static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
 316			     struct btrfsic_block_data_ctx *block_ctx_out,
 317			     int mirror_num);
 318static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx);
 319static int btrfsic_read_block(struct btrfsic_state *state,
 320			      struct btrfsic_block_data_ctx *block_ctx);
 321static void btrfsic_dump_database(struct btrfsic_state *state);
 322static int btrfsic_test_for_metadata(struct btrfsic_state *state,
 323				     char **datav, unsigned int num_pages);
 324static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
 325					  u64 dev_bytenr, char **mapped_datav,
 326					  unsigned int num_pages,
 327					  struct bio *bio, int *bio_is_patched,
 328					  struct buffer_head *bh,
 329					  int submit_bio_bh_rw);
 330static int btrfsic_process_written_superblock(
 331		struct btrfsic_state *state,
 332		struct btrfsic_block *const block,
 333		struct btrfs_super_block *const super_hdr);
 334static void btrfsic_bio_end_io(struct bio *bp);
 335static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate);
 336static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state,
 337					      const struct btrfsic_block *block,
 338					      int recursion_level);
 339static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
 340					struct btrfsic_block *const block,
 341					int recursion_level);
 342static void btrfsic_print_add_link(const struct btrfsic_state *state,
 343				   const struct btrfsic_block_link *l);
 344static void btrfsic_print_rem_link(const struct btrfsic_state *state,
 345				   const struct btrfsic_block_link *l);
 346static char btrfsic_get_block_type(const struct btrfsic_state *state,
 347				   const struct btrfsic_block *block);
 348static void btrfsic_dump_tree(const struct btrfsic_state *state);
 349static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
 350				  const struct btrfsic_block *block,
 351				  int indent_level);
 352static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
 353		struct btrfsic_state *state,
 354		struct btrfsic_block_data_ctx *next_block_ctx,
 355		struct btrfsic_block *next_block,
 356		struct btrfsic_block *from_block,
 357		u64 parent_generation);
 358static struct btrfsic_block *btrfsic_block_lookup_or_add(
 359		struct btrfsic_state *state,
 360		struct btrfsic_block_data_ctx *block_ctx,
 361		const char *additional_string,
 362		int is_metadata,
 363		int is_iodone,
 364		int never_written,
 365		int mirror_num,
 366		int *was_created);
 367static int btrfsic_process_superblock_dev_mirror(
 368		struct btrfsic_state *state,
 369		struct btrfsic_dev_state *dev_state,
 370		struct btrfs_device *device,
 371		int superblock_mirror_num,
 372		struct btrfsic_dev_state **selected_dev_state,
 373		struct btrfs_super_block *selected_super);
 374static struct btrfsic_dev_state *btrfsic_dev_state_lookup(dev_t dev);
 
 375static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
 376					   u64 bytenr,
 377					   struct btrfsic_dev_state *dev_state,
 378					   u64 dev_bytenr);
 379
 380static struct mutex btrfsic_mutex;
 381static int btrfsic_is_initialized;
 382static struct btrfsic_dev_state_hashtable btrfsic_dev_state_hashtable;
 383
 384
 385static void btrfsic_block_init(struct btrfsic_block *b)
 386{
 387	b->magic_num = BTRFSIC_BLOCK_MAGIC_NUMBER;
 388	b->dev_state = NULL;
 389	b->dev_bytenr = 0;
 390	b->logical_bytenr = 0;
 391	b->generation = BTRFSIC_GENERATION_UNKNOWN;
 392	b->disk_key.objectid = 0;
 393	b->disk_key.type = 0;
 394	b->disk_key.offset = 0;
 395	b->is_metadata = 0;
 396	b->is_superblock = 0;
 397	b->is_iodone = 0;
 398	b->iodone_w_error = 0;
 399	b->never_written = 0;
 400	b->mirror_num = 0;
 401	b->next_in_same_bio = NULL;
 402	b->orig_bio_bh_private = NULL;
 403	b->orig_bio_bh_end_io.bio = NULL;
 404	INIT_LIST_HEAD(&b->collision_resolving_node);
 405	INIT_LIST_HEAD(&b->all_blocks_node);
 406	INIT_LIST_HEAD(&b->ref_to_list);
 407	INIT_LIST_HEAD(&b->ref_from_list);
 408	b->submit_bio_bh_rw = 0;
 409	b->flush_gen = 0;
 410}
 411
 412static struct btrfsic_block *btrfsic_block_alloc(void)
 413{
 414	struct btrfsic_block *b;
 415
 416	b = kzalloc(sizeof(*b), GFP_NOFS);
 417	if (NULL != b)
 418		btrfsic_block_init(b);
 419
 420	return b;
 421}
 422
 423static void btrfsic_block_free(struct btrfsic_block *b)
 424{
 425	BUG_ON(!(NULL == b || BTRFSIC_BLOCK_MAGIC_NUMBER == b->magic_num));
 426	kfree(b);
 427}
 428
 429static void btrfsic_block_link_init(struct btrfsic_block_link *l)
 430{
 431	l->magic_num = BTRFSIC_BLOCK_LINK_MAGIC_NUMBER;
 432	l->ref_cnt = 1;
 433	INIT_LIST_HEAD(&l->node_ref_to);
 434	INIT_LIST_HEAD(&l->node_ref_from);
 435	INIT_LIST_HEAD(&l->collision_resolving_node);
 436	l->block_ref_to = NULL;
 437	l->block_ref_from = NULL;
 438}
 439
 440static struct btrfsic_block_link *btrfsic_block_link_alloc(void)
 441{
 442	struct btrfsic_block_link *l;
 443
 444	l = kzalloc(sizeof(*l), GFP_NOFS);
 445	if (NULL != l)
 446		btrfsic_block_link_init(l);
 447
 448	return l;
 449}
 450
 451static void btrfsic_block_link_free(struct btrfsic_block_link *l)
 452{
 453	BUG_ON(!(NULL == l || BTRFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num));
 454	kfree(l);
 455}
 456
 457static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds)
 458{
 459	ds->magic_num = BTRFSIC_DEV2STATE_MAGIC_NUMBER;
 460	ds->bdev = NULL;
 461	ds->state = NULL;
 462	ds->name[0] = '\0';
 463	INIT_LIST_HEAD(&ds->collision_resolving_node);
 464	ds->last_flush_gen = 0;
 465	btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush);
 466	ds->dummy_block_for_bio_bh_flush.is_iodone = 1;
 467	ds->dummy_block_for_bio_bh_flush.dev_state = ds;
 468}
 469
 470static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void)
 471{
 472	struct btrfsic_dev_state *ds;
 473
 474	ds = kzalloc(sizeof(*ds), GFP_NOFS);
 475	if (NULL != ds)
 476		btrfsic_dev_state_init(ds);
 477
 478	return ds;
 479}
 480
 481static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds)
 482{
 483	BUG_ON(!(NULL == ds ||
 484		 BTRFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num));
 485	kfree(ds);
 486}
 487
 488static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h)
 489{
 490	int i;
 491
 492	for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++)
 493		INIT_LIST_HEAD(h->table + i);
 494}
 495
 496static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
 497					struct btrfsic_block_hashtable *h)
 498{
 499	const unsigned int hashval =
 500	    (((unsigned int)(b->dev_bytenr >> 16)) ^
 501	     ((unsigned int)((uintptr_t)b->dev_state->bdev))) &
 502	     (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
 503
 504	list_add(&b->collision_resolving_node, h->table + hashval);
 505}
 506
 507static void btrfsic_block_hashtable_remove(struct btrfsic_block *b)
 508{
 509	list_del(&b->collision_resolving_node);
 510}
 511
 512static struct btrfsic_block *btrfsic_block_hashtable_lookup(
 513		struct block_device *bdev,
 514		u64 dev_bytenr,
 515		struct btrfsic_block_hashtable *h)
 516{
 517	const unsigned int hashval =
 518	    (((unsigned int)(dev_bytenr >> 16)) ^
 519	     ((unsigned int)((uintptr_t)bdev))) &
 520	     (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
 521	struct btrfsic_block *b;
 522
 523	list_for_each_entry(b, h->table + hashval, collision_resolving_node) {
 524		if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr)
 525			return b;
 526	}
 527
 528	return NULL;
 529}
 530
 531static void btrfsic_block_link_hashtable_init(
 532		struct btrfsic_block_link_hashtable *h)
 533{
 534	int i;
 535
 536	for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++)
 537		INIT_LIST_HEAD(h->table + i);
 538}
 539
 540static void btrfsic_block_link_hashtable_add(
 541		struct btrfsic_block_link *l,
 542		struct btrfsic_block_link_hashtable *h)
 543{
 544	const unsigned int hashval =
 545	    (((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^
 546	     ((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^
 547	     ((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^
 548	     ((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev)))
 549	     & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
 550
 551	BUG_ON(NULL == l->block_ref_to);
 552	BUG_ON(NULL == l->block_ref_from);
 553	list_add(&l->collision_resolving_node, h->table + hashval);
 554}
 555
 556static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l)
 557{
 558	list_del(&l->collision_resolving_node);
 559}
 560
 561static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
 562		struct block_device *bdev_ref_to,
 563		u64 dev_bytenr_ref_to,
 564		struct block_device *bdev_ref_from,
 565		u64 dev_bytenr_ref_from,
 566		struct btrfsic_block_link_hashtable *h)
 567{
 568	const unsigned int hashval =
 569	    (((unsigned int)(dev_bytenr_ref_to >> 16)) ^
 570	     ((unsigned int)(dev_bytenr_ref_from >> 16)) ^
 571	     ((unsigned int)((uintptr_t)bdev_ref_to)) ^
 572	     ((unsigned int)((uintptr_t)bdev_ref_from))) &
 573	     (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
 574	struct btrfsic_block_link *l;
 575
 576	list_for_each_entry(l, h->table + hashval, collision_resolving_node) {
 577		BUG_ON(NULL == l->block_ref_to);
 578		BUG_ON(NULL == l->block_ref_from);
 579		if (l->block_ref_to->dev_state->bdev == bdev_ref_to &&
 580		    l->block_ref_to->dev_bytenr == dev_bytenr_ref_to &&
 581		    l->block_ref_from->dev_state->bdev == bdev_ref_from &&
 582		    l->block_ref_from->dev_bytenr == dev_bytenr_ref_from)
 583			return l;
 584	}
 585
 586	return NULL;
 587}
 588
 589static void btrfsic_dev_state_hashtable_init(
 590		struct btrfsic_dev_state_hashtable *h)
 591{
 592	int i;
 593
 594	for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++)
 595		INIT_LIST_HEAD(h->table + i);
 596}
 597
 598static void btrfsic_dev_state_hashtable_add(
 599		struct btrfsic_dev_state *ds,
 600		struct btrfsic_dev_state_hashtable *h)
 601{
 602	const unsigned int hashval =
 603	    (((unsigned int)((uintptr_t)ds->bdev->bd_dev)) &
 604	     (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
 605
 606	list_add(&ds->collision_resolving_node, h->table + hashval);
 607}
 608
 609static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds)
 610{
 611	list_del(&ds->collision_resolving_node);
 612}
 613
 614static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(dev_t dev,
 
 615		struct btrfsic_dev_state_hashtable *h)
 616{
 617	const unsigned int hashval =
 618		dev & (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1);
 
 619	struct btrfsic_dev_state *ds;
 620
 621	list_for_each_entry(ds, h->table + hashval, collision_resolving_node) {
 622		if (ds->bdev->bd_dev == dev)
 623			return ds;
 624	}
 625
 626	return NULL;
 627}
 628
 629static int btrfsic_process_superblock(struct btrfsic_state *state,
 630				      struct btrfs_fs_devices *fs_devices)
 631{
 632	struct btrfs_fs_info *fs_info = state->fs_info;
 633	struct btrfs_super_block *selected_super;
 634	struct list_head *dev_head = &fs_devices->devices;
 635	struct btrfs_device *device;
 636	struct btrfsic_dev_state *selected_dev_state = NULL;
 637	int ret = 0;
 638	int pass;
 639
 640	BUG_ON(NULL == state);
 641	selected_super = kzalloc(sizeof(*selected_super), GFP_NOFS);
 642	if (NULL == selected_super) {
 643		pr_info("btrfsic: error, kmalloc failed!\n");
 644		return -ENOMEM;
 645	}
 646
 647	list_for_each_entry(device, dev_head, dev_list) {
 648		int i;
 649		struct btrfsic_dev_state *dev_state;
 650
 651		if (!device->bdev || !device->name)
 652			continue;
 653
 654		dev_state = btrfsic_dev_state_lookup(device->bdev->bd_dev);
 655		BUG_ON(NULL == dev_state);
 656		for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
 657			ret = btrfsic_process_superblock_dev_mirror(
 658					state, dev_state, device, i,
 659					&selected_dev_state, selected_super);
 660			if (0 != ret && 0 == i) {
 661				kfree(selected_super);
 662				return ret;
 663			}
 664		}
 665	}
 666
 667	if (NULL == state->latest_superblock) {
 668		pr_info("btrfsic: no superblock found!\n");
 669		kfree(selected_super);
 670		return -1;
 671	}
 672
 673	state->csum_size = btrfs_super_csum_size(selected_super);
 674
 675	for (pass = 0; pass < 3; pass++) {
 676		int num_copies;
 677		int mirror_num;
 678		u64 next_bytenr;
 679
 680		switch (pass) {
 681		case 0:
 682			next_bytenr = btrfs_super_root(selected_super);
 683			if (state->print_mask &
 684			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
 685				pr_info("root@%llu\n", next_bytenr);
 686			break;
 687		case 1:
 688			next_bytenr = btrfs_super_chunk_root(selected_super);
 689			if (state->print_mask &
 690			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
 691				pr_info("chunk@%llu\n", next_bytenr);
 692			break;
 693		case 2:
 694			next_bytenr = btrfs_super_log_root(selected_super);
 695			if (0 == next_bytenr)
 696				continue;
 697			if (state->print_mask &
 698			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
 699				pr_info("log@%llu\n", next_bytenr);
 700			break;
 701		}
 702
 703		num_copies = btrfs_num_copies(fs_info, next_bytenr,
 704					      state->metablock_size);
 
 705		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
 706			pr_info("num_copies(log_bytenr=%llu) = %d\n",
 707			       next_bytenr, num_copies);
 708
 709		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
 710			struct btrfsic_block *next_block;
 711			struct btrfsic_block_data_ctx tmp_next_block_ctx;
 712			struct btrfsic_block_link *l;
 713
 714			ret = btrfsic_map_block(state, next_bytenr,
 715						state->metablock_size,
 716						&tmp_next_block_ctx,
 717						mirror_num);
 718			if (ret) {
 719				pr_info("btrfsic: btrfsic_map_block(root @%llu, mirror %d) failed!\n",
 
 
 720				       next_bytenr, mirror_num);
 721				kfree(selected_super);
 722				return -1;
 723			}
 724
 725			next_block = btrfsic_block_hashtable_lookup(
 726					tmp_next_block_ctx.dev->bdev,
 727					tmp_next_block_ctx.dev_bytenr,
 728					&state->block_hashtable);
 729			BUG_ON(NULL == next_block);
 730
 731			l = btrfsic_block_link_hashtable_lookup(
 732					tmp_next_block_ctx.dev->bdev,
 733					tmp_next_block_ctx.dev_bytenr,
 734					state->latest_superblock->dev_state->
 735					bdev,
 736					state->latest_superblock->dev_bytenr,
 737					&state->block_link_hashtable);
 738			BUG_ON(NULL == l);
 739
 740			ret = btrfsic_read_block(state, &tmp_next_block_ctx);
 741			if (ret < (int)PAGE_SIZE) {
 742				pr_info("btrfsic: read @logical %llu failed!\n",
 
 743				       tmp_next_block_ctx.start);
 744				btrfsic_release_block_ctx(&tmp_next_block_ctx);
 745				kfree(selected_super);
 746				return -1;
 747			}
 748
 749			ret = btrfsic_process_metablock(state,
 750							next_block,
 751							&tmp_next_block_ctx,
 752							BTRFS_MAX_LEVEL + 3, 1);
 753			btrfsic_release_block_ctx(&tmp_next_block_ctx);
 754		}
 755	}
 756
 757	kfree(selected_super);
 758	return ret;
 759}
 760
 761static int btrfsic_process_superblock_dev_mirror(
 762		struct btrfsic_state *state,
 763		struct btrfsic_dev_state *dev_state,
 764		struct btrfs_device *device,
 765		int superblock_mirror_num,
 766		struct btrfsic_dev_state **selected_dev_state,
 767		struct btrfs_super_block *selected_super)
 768{
 769	struct btrfs_fs_info *fs_info = state->fs_info;
 770	struct btrfs_super_block *super_tmp;
 771	u64 dev_bytenr;
 772	struct buffer_head *bh;
 773	struct btrfsic_block *superblock_tmp;
 774	int pass;
 775	struct block_device *const superblock_bdev = device->bdev;
 776
 777	/* super block bytenr is always the unmapped device bytenr */
 778	dev_bytenr = btrfs_sb_offset(superblock_mirror_num);
 779	if (dev_bytenr + BTRFS_SUPER_INFO_SIZE > device->commit_total_bytes)
 780		return -1;
 781	bh = __bread(superblock_bdev, dev_bytenr / BTRFS_BDEV_BLOCKSIZE,
 782		     BTRFS_SUPER_INFO_SIZE);
 783	if (NULL == bh)
 784		return -1;
 785	super_tmp = (struct btrfs_super_block *)
 786	    (bh->b_data + (dev_bytenr & (BTRFS_BDEV_BLOCKSIZE - 1)));
 787
 788	if (btrfs_super_bytenr(super_tmp) != dev_bytenr ||
 789	    btrfs_super_magic(super_tmp) != BTRFS_MAGIC ||
 790	    memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE) ||
 791	    btrfs_super_nodesize(super_tmp) != state->metablock_size ||
 792	    btrfs_super_sectorsize(super_tmp) != state->datablock_size) {
 793		brelse(bh);
 794		return 0;
 795	}
 796
 797	superblock_tmp =
 798	    btrfsic_block_hashtable_lookup(superblock_bdev,
 799					   dev_bytenr,
 800					   &state->block_hashtable);
 801	if (NULL == superblock_tmp) {
 802		superblock_tmp = btrfsic_block_alloc();
 803		if (NULL == superblock_tmp) {
 804			pr_info("btrfsic: error, kmalloc failed!\n");
 805			brelse(bh);
 806			return -1;
 807		}
 808		/* for superblock, only the dev_bytenr makes sense */
 809		superblock_tmp->dev_bytenr = dev_bytenr;
 810		superblock_tmp->dev_state = dev_state;
 811		superblock_tmp->logical_bytenr = dev_bytenr;
 812		superblock_tmp->generation = btrfs_super_generation(super_tmp);
 813		superblock_tmp->is_metadata = 1;
 814		superblock_tmp->is_superblock = 1;
 815		superblock_tmp->is_iodone = 1;
 816		superblock_tmp->never_written = 0;
 817		superblock_tmp->mirror_num = 1 + superblock_mirror_num;
 818		if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
 819			btrfs_info_in_rcu(fs_info,
 820				"new initial S-block (bdev %p, %s) @%llu (%s/%llu/%d)",
 821				     superblock_bdev,
 822				     rcu_str_deref(device->name), dev_bytenr,
 823				     dev_state->name, dev_bytenr,
 824				     superblock_mirror_num);
 825		list_add(&superblock_tmp->all_blocks_node,
 826			 &state->all_blocks_list);
 827		btrfsic_block_hashtable_add(superblock_tmp,
 828					    &state->block_hashtable);
 829	}
 830
 831	/* select the one with the highest generation field */
 832	if (btrfs_super_generation(super_tmp) >
 833	    state->max_superblock_generation ||
 834	    0 == state->max_superblock_generation) {
 835		memcpy(selected_super, super_tmp, sizeof(*selected_super));
 836		*selected_dev_state = dev_state;
 837		state->max_superblock_generation =
 838		    btrfs_super_generation(super_tmp);
 839		state->latest_superblock = superblock_tmp;
 840	}
 841
 842	for (pass = 0; pass < 3; pass++) {
 843		u64 next_bytenr;
 844		int num_copies;
 845		int mirror_num;
 846		const char *additional_string = NULL;
 847		struct btrfs_disk_key tmp_disk_key;
 848
 849		tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
 850		tmp_disk_key.offset = 0;
 851		switch (pass) {
 852		case 0:
 853			btrfs_set_disk_key_objectid(&tmp_disk_key,
 854						    BTRFS_ROOT_TREE_OBJECTID);
 855			additional_string = "initial root ";
 856			next_bytenr = btrfs_super_root(super_tmp);
 857			break;
 858		case 1:
 859			btrfs_set_disk_key_objectid(&tmp_disk_key,
 860						    BTRFS_CHUNK_TREE_OBJECTID);
 861			additional_string = "initial chunk ";
 862			next_bytenr = btrfs_super_chunk_root(super_tmp);
 863			break;
 864		case 2:
 865			btrfs_set_disk_key_objectid(&tmp_disk_key,
 866						    BTRFS_TREE_LOG_OBJECTID);
 867			additional_string = "initial log ";
 868			next_bytenr = btrfs_super_log_root(super_tmp);
 869			if (0 == next_bytenr)
 870				continue;
 871			break;
 872		}
 873
 874		num_copies = btrfs_num_copies(fs_info, next_bytenr,
 875					      state->metablock_size);
 
 876		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
 877			pr_info("num_copies(log_bytenr=%llu) = %d\n",
 878			       next_bytenr, num_copies);
 879		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
 880			struct btrfsic_block *next_block;
 881			struct btrfsic_block_data_ctx tmp_next_block_ctx;
 882			struct btrfsic_block_link *l;
 883
 884			if (btrfsic_map_block(state, next_bytenr,
 885					      state->metablock_size,
 886					      &tmp_next_block_ctx,
 887					      mirror_num)) {
 888				pr_info("btrfsic: btrfsic_map_block(bytenr @%llu, mirror %d) failed!\n",
 
 889				       next_bytenr, mirror_num);
 890				brelse(bh);
 891				return -1;
 892			}
 893
 894			next_block = btrfsic_block_lookup_or_add(
 895					state, &tmp_next_block_ctx,
 896					additional_string, 1, 1, 0,
 897					mirror_num, NULL);
 898			if (NULL == next_block) {
 899				btrfsic_release_block_ctx(&tmp_next_block_ctx);
 900				brelse(bh);
 901				return -1;
 902			}
 903
 904			next_block->disk_key = tmp_disk_key;
 905			next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
 906			l = btrfsic_block_link_lookup_or_add(
 907					state, &tmp_next_block_ctx,
 908					next_block, superblock_tmp,
 909					BTRFSIC_GENERATION_UNKNOWN);
 910			btrfsic_release_block_ctx(&tmp_next_block_ctx);
 911			if (NULL == l) {
 912				brelse(bh);
 913				return -1;
 914			}
 915		}
 916	}
 917	if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES)
 918		btrfsic_dump_tree_sub(state, superblock_tmp, 0);
 919
 920	brelse(bh);
 921	return 0;
 922}
 923
 924static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void)
 925{
 926	struct btrfsic_stack_frame *sf;
 927
 928	sf = kzalloc(sizeof(*sf), GFP_NOFS);
 929	if (NULL == sf)
 930		pr_info("btrfsic: alloc memory failed!\n");
 931	else
 932		sf->magic = BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER;
 933	return sf;
 934}
 935
 936static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf)
 937{
 938	BUG_ON(!(NULL == sf ||
 939		 BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic));
 940	kfree(sf);
 941}
 942
 943static noinline_for_stack int btrfsic_process_metablock(
 944		struct btrfsic_state *state,
 945		struct btrfsic_block *const first_block,
 946		struct btrfsic_block_data_ctx *const first_block_ctx,
 947		int first_limit_nesting, int force_iodone_flag)
 948{
 949	struct btrfsic_stack_frame initial_stack_frame = { 0 };
 950	struct btrfsic_stack_frame *sf;
 951	struct btrfsic_stack_frame *next_stack;
 952	struct btrfs_header *const first_hdr =
 953		(struct btrfs_header *)first_block_ctx->datav[0];
 954
 955	BUG_ON(!first_hdr);
 956	sf = &initial_stack_frame;
 957	sf->error = 0;
 958	sf->i = -1;
 959	sf->limit_nesting = first_limit_nesting;
 960	sf->block = first_block;
 961	sf->block_ctx = first_block_ctx;
 962	sf->next_block = NULL;
 963	sf->hdr = first_hdr;
 964	sf->prev = NULL;
 965
 966continue_with_new_stack_frame:
 967	sf->block->generation = le64_to_cpu(sf->hdr->generation);
 968	if (0 == sf->hdr->level) {
 969		struct btrfs_leaf *const leafhdr =
 970		    (struct btrfs_leaf *)sf->hdr;
 971
 972		if (-1 == sf->i) {
 973			sf->nr = btrfs_stack_header_nritems(&leafhdr->header);
 974
 975			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
 976				pr_info("leaf %llu items %d generation %llu owner %llu\n",
 
 
 977				       sf->block_ctx->start, sf->nr,
 978				       btrfs_stack_header_generation(
 979					       &leafhdr->header),
 980				       btrfs_stack_header_owner(
 981					       &leafhdr->header));
 982		}
 983
 984continue_with_current_leaf_stack_frame:
 985		if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
 986			sf->i++;
 987			sf->num_copies = 0;
 988		}
 989
 990		if (sf->i < sf->nr) {
 991			struct btrfs_item disk_item;
 992			u32 disk_item_offset =
 993				(uintptr_t)(leafhdr->items + sf->i) -
 994				(uintptr_t)leafhdr;
 995			struct btrfs_disk_key *disk_key;
 996			u8 type;
 997			u32 item_offset;
 998			u32 item_size;
 999
1000			if (disk_item_offset + sizeof(struct btrfs_item) >
1001			    sf->block_ctx->len) {
1002leaf_item_out_of_bounce_error:
1003				pr_info("btrfsic: leaf item out of bounce at logical %llu, dev %s\n",
 
1004				       sf->block_ctx->start,
1005				       sf->block_ctx->dev->name);
1006				goto one_stack_frame_backwards;
1007			}
1008			btrfsic_read_from_block_data(sf->block_ctx,
1009						     &disk_item,
1010						     disk_item_offset,
1011						     sizeof(struct btrfs_item));
1012			item_offset = btrfs_stack_item_offset(&disk_item);
1013			item_size = btrfs_stack_item_size(&disk_item);
1014			disk_key = &disk_item.key;
1015			type = btrfs_disk_key_type(disk_key);
1016
1017			if (BTRFS_ROOT_ITEM_KEY == type) {
1018				struct btrfs_root_item root_item;
1019				u32 root_item_offset;
1020				u64 next_bytenr;
1021
1022				root_item_offset = item_offset +
1023					offsetof(struct btrfs_leaf, items);
1024				if (root_item_offset + item_size >
1025				    sf->block_ctx->len)
1026					goto leaf_item_out_of_bounce_error;
1027				btrfsic_read_from_block_data(
1028					sf->block_ctx, &root_item,
1029					root_item_offset,
1030					item_size);
1031				next_bytenr = btrfs_root_bytenr(&root_item);
1032
1033				sf->error =
1034				    btrfsic_create_link_to_next_block(
1035						state,
1036						sf->block,
1037						sf->block_ctx,
1038						next_bytenr,
1039						sf->limit_nesting,
1040						&sf->next_block_ctx,
1041						&sf->next_block,
1042						force_iodone_flag,
1043						&sf->num_copies,
1044						&sf->mirror_num,
1045						disk_key,
1046						btrfs_root_generation(
1047						&root_item));
1048				if (sf->error)
1049					goto one_stack_frame_backwards;
1050
1051				if (NULL != sf->next_block) {
1052					struct btrfs_header *const next_hdr =
1053					    (struct btrfs_header *)
1054					    sf->next_block_ctx.datav[0];
1055
1056					next_stack =
1057					    btrfsic_stack_frame_alloc();
1058					if (NULL == next_stack) {
1059						sf->error = -1;
1060						btrfsic_release_block_ctx(
1061								&sf->
1062								next_block_ctx);
1063						goto one_stack_frame_backwards;
1064					}
1065
1066					next_stack->i = -1;
1067					next_stack->block = sf->next_block;
1068					next_stack->block_ctx =
1069					    &sf->next_block_ctx;
1070					next_stack->next_block = NULL;
1071					next_stack->hdr = next_hdr;
1072					next_stack->limit_nesting =
1073					    sf->limit_nesting - 1;
1074					next_stack->prev = sf;
1075					sf = next_stack;
1076					goto continue_with_new_stack_frame;
1077				}
1078			} else if (BTRFS_EXTENT_DATA_KEY == type &&
1079				   state->include_extent_data) {
1080				sf->error = btrfsic_handle_extent_data(
1081						state,
1082						sf->block,
1083						sf->block_ctx,
1084						item_offset,
1085						force_iodone_flag);
1086				if (sf->error)
1087					goto one_stack_frame_backwards;
1088			}
1089
1090			goto continue_with_current_leaf_stack_frame;
1091		}
1092	} else {
1093		struct btrfs_node *const nodehdr = (struct btrfs_node *)sf->hdr;
1094
1095		if (-1 == sf->i) {
1096			sf->nr = btrfs_stack_header_nritems(&nodehdr->header);
1097
1098			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1099				pr_info("node %llu level %d items %d generation %llu owner %llu\n",
 
1100				       sf->block_ctx->start,
1101				       nodehdr->header.level, sf->nr,
1102				       btrfs_stack_header_generation(
1103				       &nodehdr->header),
1104				       btrfs_stack_header_owner(
1105				       &nodehdr->header));
1106		}
1107
1108continue_with_current_node_stack_frame:
1109		if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1110			sf->i++;
1111			sf->num_copies = 0;
1112		}
1113
1114		if (sf->i < sf->nr) {
1115			struct btrfs_key_ptr key_ptr;
1116			u32 key_ptr_offset;
1117			u64 next_bytenr;
1118
1119			key_ptr_offset = (uintptr_t)(nodehdr->ptrs + sf->i) -
1120					  (uintptr_t)nodehdr;
1121			if (key_ptr_offset + sizeof(struct btrfs_key_ptr) >
1122			    sf->block_ctx->len) {
1123				pr_info("btrfsic: node item out of bounce at logical %llu, dev %s\n",
 
1124				       sf->block_ctx->start,
1125				       sf->block_ctx->dev->name);
1126				goto one_stack_frame_backwards;
1127			}
1128			btrfsic_read_from_block_data(
1129				sf->block_ctx, &key_ptr, key_ptr_offset,
1130				sizeof(struct btrfs_key_ptr));
1131			next_bytenr = btrfs_stack_key_blockptr(&key_ptr);
1132
1133			sf->error = btrfsic_create_link_to_next_block(
1134					state,
1135					sf->block,
1136					sf->block_ctx,
1137					next_bytenr,
1138					sf->limit_nesting,
1139					&sf->next_block_ctx,
1140					&sf->next_block,
1141					force_iodone_flag,
1142					&sf->num_copies,
1143					&sf->mirror_num,
1144					&key_ptr.key,
1145					btrfs_stack_key_generation(&key_ptr));
1146			if (sf->error)
1147				goto one_stack_frame_backwards;
1148
1149			if (NULL != sf->next_block) {
1150				struct btrfs_header *const next_hdr =
1151				    (struct btrfs_header *)
1152				    sf->next_block_ctx.datav[0];
1153
1154				next_stack = btrfsic_stack_frame_alloc();
1155				if (NULL == next_stack) {
1156					sf->error = -1;
1157					goto one_stack_frame_backwards;
1158				}
1159
1160				next_stack->i = -1;
1161				next_stack->block = sf->next_block;
1162				next_stack->block_ctx = &sf->next_block_ctx;
1163				next_stack->next_block = NULL;
1164				next_stack->hdr = next_hdr;
1165				next_stack->limit_nesting =
1166				    sf->limit_nesting - 1;
1167				next_stack->prev = sf;
1168				sf = next_stack;
1169				goto continue_with_new_stack_frame;
1170			}
1171
1172			goto continue_with_current_node_stack_frame;
1173		}
1174	}
1175
1176one_stack_frame_backwards:
1177	if (NULL != sf->prev) {
1178		struct btrfsic_stack_frame *const prev = sf->prev;
1179
1180		/* the one for the initial block is freed in the caller */
1181		btrfsic_release_block_ctx(sf->block_ctx);
1182
1183		if (sf->error) {
1184			prev->error = sf->error;
1185			btrfsic_stack_frame_free(sf);
1186			sf = prev;
1187			goto one_stack_frame_backwards;
1188		}
1189
1190		btrfsic_stack_frame_free(sf);
1191		sf = prev;
1192		goto continue_with_new_stack_frame;
1193	} else {
1194		BUG_ON(&initial_stack_frame != sf);
1195	}
1196
1197	return sf->error;
1198}
1199
1200static void btrfsic_read_from_block_data(
1201	struct btrfsic_block_data_ctx *block_ctx,
1202	void *dstv, u32 offset, size_t len)
1203{
1204	size_t cur;
1205	size_t pgoff;
1206	char *kaddr;
1207	char *dst = (char *)dstv;
1208	size_t start_offset = offset_in_page(block_ctx->start);
1209	unsigned long i = (start_offset + offset) >> PAGE_SHIFT;
1210
1211	WARN_ON(offset + len > block_ctx->len);
1212	pgoff = offset_in_page(start_offset + offset);
1213
1214	while (len > 0) {
1215		cur = min(len, ((size_t)PAGE_SIZE - pgoff));
1216		BUG_ON(i >= DIV_ROUND_UP(block_ctx->len, PAGE_SIZE));
1217		kaddr = block_ctx->datav[i];
1218		memcpy(dst, kaddr + pgoff, cur);
1219
1220		dst += cur;
1221		len -= cur;
1222		pgoff = 0;
1223		i++;
1224	}
1225}
1226
1227static int btrfsic_create_link_to_next_block(
1228		struct btrfsic_state *state,
1229		struct btrfsic_block *block,
1230		struct btrfsic_block_data_ctx *block_ctx,
1231		u64 next_bytenr,
1232		int limit_nesting,
1233		struct btrfsic_block_data_ctx *next_block_ctx,
1234		struct btrfsic_block **next_blockp,
1235		int force_iodone_flag,
1236		int *num_copiesp, int *mirror_nump,
1237		struct btrfs_disk_key *disk_key,
1238		u64 parent_generation)
1239{
1240	struct btrfs_fs_info *fs_info = state->fs_info;
1241	struct btrfsic_block *next_block = NULL;
1242	int ret;
1243	struct btrfsic_block_link *l;
1244	int did_alloc_block_link;
1245	int block_was_created;
1246
1247	*next_blockp = NULL;
1248	if (0 == *num_copiesp) {
1249		*num_copiesp = btrfs_num_copies(fs_info, next_bytenr,
1250						state->metablock_size);
 
1251		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1252			pr_info("num_copies(log_bytenr=%llu) = %d\n",
1253			       next_bytenr, *num_copiesp);
1254		*mirror_nump = 1;
1255	}
1256
1257	if (*mirror_nump > *num_copiesp)
1258		return 0;
1259
1260	if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1261		pr_info("btrfsic_create_link_to_next_block(mirror_num=%d)\n",
 
1262		       *mirror_nump);
1263	ret = btrfsic_map_block(state, next_bytenr,
1264				state->metablock_size,
1265				next_block_ctx, *mirror_nump);
1266	if (ret) {
1267		pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
 
1268		       next_bytenr, *mirror_nump);
1269		btrfsic_release_block_ctx(next_block_ctx);
1270		*next_blockp = NULL;
1271		return -1;
1272	}
1273
1274	next_block = btrfsic_block_lookup_or_add(state,
1275						 next_block_ctx, "referenced ",
1276						 1, force_iodone_flag,
1277						 !force_iodone_flag,
1278						 *mirror_nump,
1279						 &block_was_created);
1280	if (NULL == next_block) {
1281		btrfsic_release_block_ctx(next_block_ctx);
1282		*next_blockp = NULL;
1283		return -1;
1284	}
1285	if (block_was_created) {
1286		l = NULL;
1287		next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
1288	} else {
1289		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) {
1290			if (next_block->logical_bytenr != next_bytenr &&
1291			    !(!next_block->is_metadata &&
1292			      0 == next_block->logical_bytenr))
1293				pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n",
 
1294				       next_bytenr, next_block_ctx->dev->name,
1295				       next_block_ctx->dev_bytenr, *mirror_nump,
1296				       btrfsic_get_block_type(state,
1297							      next_block),
1298				       next_block->logical_bytenr);
1299			else
1300				pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, %c.\n",
 
1301				       next_bytenr, next_block_ctx->dev->name,
1302				       next_block_ctx->dev_bytenr, *mirror_nump,
1303				       btrfsic_get_block_type(state,
1304							      next_block));
1305		}
1306		next_block->logical_bytenr = next_bytenr;
1307
1308		next_block->mirror_num = *mirror_nump;
1309		l = btrfsic_block_link_hashtable_lookup(
1310				next_block_ctx->dev->bdev,
1311				next_block_ctx->dev_bytenr,
1312				block_ctx->dev->bdev,
1313				block_ctx->dev_bytenr,
1314				&state->block_link_hashtable);
1315	}
1316
1317	next_block->disk_key = *disk_key;
1318	if (NULL == l) {
1319		l = btrfsic_block_link_alloc();
1320		if (NULL == l) {
1321			pr_info("btrfsic: error, kmalloc failed!\n");
1322			btrfsic_release_block_ctx(next_block_ctx);
1323			*next_blockp = NULL;
1324			return -1;
1325		}
1326
1327		did_alloc_block_link = 1;
1328		l->block_ref_to = next_block;
1329		l->block_ref_from = block;
1330		l->ref_cnt = 1;
1331		l->parent_generation = parent_generation;
1332
1333		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1334			btrfsic_print_add_link(state, l);
1335
1336		list_add(&l->node_ref_to, &block->ref_to_list);
1337		list_add(&l->node_ref_from, &next_block->ref_from_list);
1338
1339		btrfsic_block_link_hashtable_add(l,
1340						 &state->block_link_hashtable);
1341	} else {
1342		did_alloc_block_link = 0;
1343		if (0 == limit_nesting) {
1344			l->ref_cnt++;
1345			l->parent_generation = parent_generation;
1346			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1347				btrfsic_print_add_link(state, l);
1348		}
1349	}
1350
1351	if (limit_nesting > 0 && did_alloc_block_link) {
1352		ret = btrfsic_read_block(state, next_block_ctx);
1353		if (ret < (int)next_block_ctx->len) {
1354			pr_info("btrfsic: read block @logical %llu failed!\n",
 
1355			       next_bytenr);
1356			btrfsic_release_block_ctx(next_block_ctx);
1357			*next_blockp = NULL;
1358			return -1;
1359		}
1360
1361		*next_blockp = next_block;
1362	} else {
1363		*next_blockp = NULL;
1364	}
1365	(*mirror_nump)++;
1366
1367	return 0;
1368}
1369
1370static int btrfsic_handle_extent_data(
1371		struct btrfsic_state *state,
1372		struct btrfsic_block *block,
1373		struct btrfsic_block_data_ctx *block_ctx,
1374		u32 item_offset, int force_iodone_flag)
1375{
1376	struct btrfs_fs_info *fs_info = state->fs_info;
1377	struct btrfs_file_extent_item file_extent_item;
1378	u64 file_extent_item_offset;
1379	u64 next_bytenr;
1380	u64 num_bytes;
1381	u64 generation;
1382	struct btrfsic_block_link *l;
1383	int ret;
1384
1385	file_extent_item_offset = offsetof(struct btrfs_leaf, items) +
1386				  item_offset;
1387	if (file_extent_item_offset +
1388	    offsetof(struct btrfs_file_extent_item, disk_num_bytes) >
1389	    block_ctx->len) {
1390		pr_info("btrfsic: file item out of bounce at logical %llu, dev %s\n",
 
1391		       block_ctx->start, block_ctx->dev->name);
1392		return -1;
1393	}
1394
1395	btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1396		file_extent_item_offset,
1397		offsetof(struct btrfs_file_extent_item, disk_num_bytes));
1398	if (BTRFS_FILE_EXTENT_REG != file_extent_item.type ||
1399	    btrfs_stack_file_extent_disk_bytenr(&file_extent_item) == 0) {
1400		if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1401			pr_info("extent_data: type %u, disk_bytenr = %llu\n",
1402			       file_extent_item.type,
1403			       btrfs_stack_file_extent_disk_bytenr(
1404			       &file_extent_item));
1405		return 0;
1406	}
1407
1408	if (file_extent_item_offset + sizeof(struct btrfs_file_extent_item) >
1409	    block_ctx->len) {
1410		pr_info("btrfsic: file item out of bounce at logical %llu, dev %s\n",
 
1411		       block_ctx->start, block_ctx->dev->name);
1412		return -1;
1413	}
1414	btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1415				     file_extent_item_offset,
1416				     sizeof(struct btrfs_file_extent_item));
1417	next_bytenr = btrfs_stack_file_extent_disk_bytenr(&file_extent_item);
1418	if (btrfs_stack_file_extent_compression(&file_extent_item) ==
1419	    BTRFS_COMPRESS_NONE) {
1420		next_bytenr += btrfs_stack_file_extent_offset(&file_extent_item);
1421		num_bytes = btrfs_stack_file_extent_num_bytes(&file_extent_item);
1422	} else {
1423		num_bytes = btrfs_stack_file_extent_disk_num_bytes(&file_extent_item);
1424	}
1425	generation = btrfs_stack_file_extent_generation(&file_extent_item);
1426
1427	if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1428		pr_info("extent_data: type %u, disk_bytenr = %llu, offset = %llu, num_bytes = %llu\n",
 
1429		       file_extent_item.type,
1430		       btrfs_stack_file_extent_disk_bytenr(&file_extent_item),
1431		       btrfs_stack_file_extent_offset(&file_extent_item),
1432		       num_bytes);
1433	while (num_bytes > 0) {
1434		u32 chunk_len;
1435		int num_copies;
1436		int mirror_num;
1437
1438		if (num_bytes > state->datablock_size)
1439			chunk_len = state->datablock_size;
1440		else
1441			chunk_len = num_bytes;
1442
1443		num_copies = btrfs_num_copies(fs_info, next_bytenr,
1444					      state->datablock_size);
 
1445		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1446			pr_info("num_copies(log_bytenr=%llu) = %d\n",
1447			       next_bytenr, num_copies);
1448		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
1449			struct btrfsic_block_data_ctx next_block_ctx;
1450			struct btrfsic_block *next_block;
1451			int block_was_created;
1452
1453			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1454				pr_info("btrfsic_handle_extent_data(mirror_num=%d)\n",
1455					mirror_num);
1456			if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1457				pr_info("\tdisk_bytenr = %llu, num_bytes %u\n",
 
1458				       next_bytenr, chunk_len);
1459			ret = btrfsic_map_block(state, next_bytenr,
1460						chunk_len, &next_block_ctx,
1461						mirror_num);
1462			if (ret) {
1463				pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
 
 
1464				       next_bytenr, mirror_num);
1465				return -1;
1466			}
1467
1468			next_block = btrfsic_block_lookup_or_add(
1469					state,
1470					&next_block_ctx,
1471					"referenced ",
1472					0,
1473					force_iodone_flag,
1474					!force_iodone_flag,
1475					mirror_num,
1476					&block_was_created);
1477			if (NULL == next_block) {
1478				pr_info("btrfsic: error, kmalloc failed!\n");
 
1479				btrfsic_release_block_ctx(&next_block_ctx);
1480				return -1;
1481			}
1482			if (!block_was_created) {
1483				if ((state->print_mask &
1484				     BTRFSIC_PRINT_MASK_VERBOSE) &&
1485				    next_block->logical_bytenr != next_bytenr &&
1486				    !(!next_block->is_metadata &&
1487				      0 == next_block->logical_bytenr)) {
1488					pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, D, bytenr mismatch (!= stored %llu).\n",
 
 
 
 
 
1489					       next_bytenr,
1490					       next_block_ctx.dev->name,
1491					       next_block_ctx.dev_bytenr,
1492					       mirror_num,
1493					       next_block->logical_bytenr);
1494				}
1495				next_block->logical_bytenr = next_bytenr;
1496				next_block->mirror_num = mirror_num;
1497			}
1498
1499			l = btrfsic_block_link_lookup_or_add(state,
1500							     &next_block_ctx,
1501							     next_block, block,
1502							     generation);
1503			btrfsic_release_block_ctx(&next_block_ctx);
1504			if (NULL == l)
1505				return -1;
1506		}
1507
1508		next_bytenr += chunk_len;
1509		num_bytes -= chunk_len;
1510	}
1511
1512	return 0;
1513}
1514
1515static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
1516			     struct btrfsic_block_data_ctx *block_ctx_out,
1517			     int mirror_num)
1518{
1519	struct btrfs_fs_info *fs_info = state->fs_info;
1520	int ret;
1521	u64 length;
1522	struct btrfs_bio *multi = NULL;
1523	struct btrfs_device *device;
1524
1525	length = len;
1526	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
1527			      bytenr, &length, &multi, mirror_num);
1528
1529	if (ret) {
1530		block_ctx_out->start = 0;
1531		block_ctx_out->dev_bytenr = 0;
1532		block_ctx_out->len = 0;
1533		block_ctx_out->dev = NULL;
1534		block_ctx_out->datav = NULL;
1535		block_ctx_out->pagev = NULL;
1536		block_ctx_out->mem_to_free = NULL;
1537
1538		return ret;
1539	}
1540
1541	device = multi->stripes[0].dev;
1542	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state) ||
1543	    !device->bdev || !device->name)
1544		block_ctx_out->dev = NULL;
1545	else
1546		block_ctx_out->dev = btrfsic_dev_state_lookup(
1547							device->bdev->bd_dev);
1548	block_ctx_out->dev_bytenr = multi->stripes[0].physical;
1549	block_ctx_out->start = bytenr;
1550	block_ctx_out->len = len;
1551	block_ctx_out->datav = NULL;
1552	block_ctx_out->pagev = NULL;
1553	block_ctx_out->mem_to_free = NULL;
1554
1555	kfree(multi);
1556	if (NULL == block_ctx_out->dev) {
1557		ret = -ENXIO;
1558		pr_info("btrfsic: error, cannot lookup dev (#1)!\n");
1559	}
1560
1561	return ret;
1562}
1563
1564static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx)
1565{
1566	if (block_ctx->mem_to_free) {
1567		unsigned int num_pages;
1568
1569		BUG_ON(!block_ctx->datav);
1570		BUG_ON(!block_ctx->pagev);
1571		num_pages = (block_ctx->len + (u64)PAGE_SIZE - 1) >>
1572			    PAGE_SHIFT;
1573		while (num_pages > 0) {
1574			num_pages--;
1575			if (block_ctx->datav[num_pages]) {
1576				kunmap(block_ctx->pagev[num_pages]);
1577				block_ctx->datav[num_pages] = NULL;
1578			}
1579			if (block_ctx->pagev[num_pages]) {
1580				__free_page(block_ctx->pagev[num_pages]);
1581				block_ctx->pagev[num_pages] = NULL;
1582			}
1583		}
1584
1585		kfree(block_ctx->mem_to_free);
1586		block_ctx->mem_to_free = NULL;
1587		block_ctx->pagev = NULL;
1588		block_ctx->datav = NULL;
1589	}
1590}
1591
1592static int btrfsic_read_block(struct btrfsic_state *state,
1593			      struct btrfsic_block_data_ctx *block_ctx)
1594{
1595	unsigned int num_pages;
1596	unsigned int i;
1597	size_t size;
1598	u64 dev_bytenr;
1599	int ret;
1600
1601	BUG_ON(block_ctx->datav);
1602	BUG_ON(block_ctx->pagev);
1603	BUG_ON(block_ctx->mem_to_free);
1604	if (!PAGE_ALIGNED(block_ctx->dev_bytenr)) {
1605		pr_info("btrfsic: read_block() with unaligned bytenr %llu\n",
 
1606		       block_ctx->dev_bytenr);
1607		return -1;
1608	}
1609
1610	num_pages = (block_ctx->len + (u64)PAGE_SIZE - 1) >>
1611		    PAGE_SHIFT;
1612	size = sizeof(*block_ctx->datav) + sizeof(*block_ctx->pagev);
1613	block_ctx->mem_to_free = kcalloc(num_pages, size, GFP_NOFS);
 
1614	if (!block_ctx->mem_to_free)
1615		return -ENOMEM;
1616	block_ctx->datav = block_ctx->mem_to_free;
1617	block_ctx->pagev = (struct page **)(block_ctx->datav + num_pages);
1618	for (i = 0; i < num_pages; i++) {
1619		block_ctx->pagev[i] = alloc_page(GFP_NOFS);
1620		if (!block_ctx->pagev[i])
1621			return -1;
1622	}
1623
1624	dev_bytenr = block_ctx->dev_bytenr;
1625	for (i = 0; i < num_pages;) {
1626		struct bio *bio;
1627		unsigned int j;
1628
1629		bio = btrfs_io_bio_alloc(num_pages - i);
1630		bio_set_dev(bio, block_ctx->dev->bdev);
 
 
 
 
 
 
1631		bio->bi_iter.bi_sector = dev_bytenr >> 9;
1632		bio->bi_opf = REQ_OP_READ;
1633
1634		for (j = i; j < num_pages; j++) {
1635			ret = bio_add_page(bio, block_ctx->pagev[j],
1636					   PAGE_SIZE, 0);
1637			if (PAGE_SIZE != ret)
1638				break;
1639		}
1640		if (j == i) {
1641			pr_info("btrfsic: error, failed to add a single page!\n");
 
1642			return -1;
1643		}
1644		if (submit_bio_wait(bio)) {
1645			pr_info("btrfsic: read error at logical %llu dev %s!\n",
 
1646			       block_ctx->start, block_ctx->dev->name);
1647			bio_put(bio);
1648			return -1;
1649		}
1650		bio_put(bio);
1651		dev_bytenr += (j - i) * PAGE_SIZE;
1652		i = j;
1653	}
1654	for (i = 0; i < num_pages; i++)
1655		block_ctx->datav[i] = kmap(block_ctx->pagev[i]);
 
 
 
 
 
 
1656
1657	return block_ctx->len;
1658}
1659
1660static void btrfsic_dump_database(struct btrfsic_state *state)
1661{
1662	const struct btrfsic_block *b_all;
1663
1664	BUG_ON(NULL == state);
1665
1666	pr_info("all_blocks_list:\n");
1667	list_for_each_entry(b_all, &state->all_blocks_list, all_blocks_node) {
1668		const struct btrfsic_block_link *l;
1669
1670		pr_info("%c-block @%llu (%s/%llu/%d)\n",
1671		       btrfsic_get_block_type(state, b_all),
1672		       b_all->logical_bytenr, b_all->dev_state->name,
1673		       b_all->dev_bytenr, b_all->mirror_num);
1674
1675		list_for_each_entry(l, &b_all->ref_to_list, node_ref_to) {
1676			pr_info(" %c @%llu (%s/%llu/%d) refers %u* to %c @%llu (%s/%llu/%d)\n",
 
 
1677			       btrfsic_get_block_type(state, b_all),
1678			       b_all->logical_bytenr, b_all->dev_state->name,
1679			       b_all->dev_bytenr, b_all->mirror_num,
1680			       l->ref_cnt,
1681			       btrfsic_get_block_type(state, l->block_ref_to),
1682			       l->block_ref_to->logical_bytenr,
1683			       l->block_ref_to->dev_state->name,
1684			       l->block_ref_to->dev_bytenr,
1685			       l->block_ref_to->mirror_num);
1686		}
1687
1688		list_for_each_entry(l, &b_all->ref_from_list, node_ref_from) {
1689			pr_info(" %c @%llu (%s/%llu/%d) is ref %u* from %c @%llu (%s/%llu/%d)\n",
 
 
1690			       btrfsic_get_block_type(state, b_all),
1691			       b_all->logical_bytenr, b_all->dev_state->name,
1692			       b_all->dev_bytenr, b_all->mirror_num,
1693			       l->ref_cnt,
1694			       btrfsic_get_block_type(state, l->block_ref_from),
1695			       l->block_ref_from->logical_bytenr,
1696			       l->block_ref_from->dev_state->name,
1697			       l->block_ref_from->dev_bytenr,
1698			       l->block_ref_from->mirror_num);
1699		}
1700
1701		pr_info("\n");
1702	}
1703}
1704
1705/*
1706 * Test whether the disk block contains a tree block (leaf or node)
1707 * (note that this test fails for the super block)
1708 */
1709static noinline_for_stack int btrfsic_test_for_metadata(
1710		struct btrfsic_state *state,
1711		char **datav, unsigned int num_pages)
1712{
1713	struct btrfs_fs_info *fs_info = state->fs_info;
1714	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1715	struct btrfs_header *h;
1716	u8 csum[BTRFS_CSUM_SIZE];
 
1717	unsigned int i;
1718
1719	if (num_pages * PAGE_SIZE < state->metablock_size)
1720		return 1; /* not metadata */
1721	num_pages = state->metablock_size >> PAGE_SHIFT;
1722	h = (struct btrfs_header *)datav[0];
1723
1724	if (memcmp(h->fsid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE))
1725		return 1;
1726
1727	shash->tfm = fs_info->csum_shash;
1728	crypto_shash_init(shash);
1729
1730	for (i = 0; i < num_pages; i++) {
1731		u8 *data = i ? datav[i] : (datav[i] + BTRFS_CSUM_SIZE);
1732		size_t sublen = i ? PAGE_SIZE :
1733				    (PAGE_SIZE - BTRFS_CSUM_SIZE);
1734
1735		crypto_shash_update(shash, data, sublen);
1736	}
1737	crypto_shash_final(shash, csum);
1738	if (memcmp(csum, h->csum, state->csum_size))
1739		return 1;
1740
1741	return 0; /* is metadata */
1742}
1743
1744static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
1745					  u64 dev_bytenr, char **mapped_datav,
1746					  unsigned int num_pages,
1747					  struct bio *bio, int *bio_is_patched,
1748					  struct buffer_head *bh,
1749					  int submit_bio_bh_rw)
1750{
1751	int is_metadata;
1752	struct btrfsic_block *block;
1753	struct btrfsic_block_data_ctx block_ctx;
1754	int ret;
1755	struct btrfsic_state *state = dev_state->state;
1756	struct block_device *bdev = dev_state->bdev;
1757	unsigned int processed_len;
1758
1759	if (NULL != bio_is_patched)
1760		*bio_is_patched = 0;
1761
1762again:
1763	if (num_pages == 0)
1764		return;
1765
1766	processed_len = 0;
1767	is_metadata = (0 == btrfsic_test_for_metadata(state, mapped_datav,
1768						      num_pages));
1769
1770	block = btrfsic_block_hashtable_lookup(bdev, dev_bytenr,
1771					       &state->block_hashtable);
1772	if (NULL != block) {
1773		u64 bytenr = 0;
1774		struct btrfsic_block_link *l, *tmp;
1775
1776		if (block->is_superblock) {
1777			bytenr = btrfs_super_bytenr((struct btrfs_super_block *)
1778						    mapped_datav[0]);
1779			if (num_pages * PAGE_SIZE <
1780			    BTRFS_SUPER_INFO_SIZE) {
1781				pr_info("btrfsic: cannot work with too short bios!\n");
 
1782				return;
1783			}
1784			is_metadata = 1;
1785			BUG_ON(!PAGE_ALIGNED(BTRFS_SUPER_INFO_SIZE));
1786			processed_len = BTRFS_SUPER_INFO_SIZE;
1787			if (state->print_mask &
1788			    BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE) {
1789				pr_info("[before new superblock is written]:\n");
 
1790				btrfsic_dump_tree_sub(state, block, 0);
1791			}
1792		}
1793		if (is_metadata) {
1794			if (!block->is_superblock) {
1795				if (num_pages * PAGE_SIZE <
1796				    state->metablock_size) {
1797					pr_info("btrfsic: cannot work with too short bios!\n");
 
1798					return;
1799				}
1800				processed_len = state->metablock_size;
1801				bytenr = btrfs_stack_header_bytenr(
1802						(struct btrfs_header *)
1803						mapped_datav[0]);
1804				btrfsic_cmp_log_and_dev_bytenr(state, bytenr,
1805							       dev_state,
1806							       dev_bytenr);
1807			}
1808			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) {
1809				if (block->logical_bytenr != bytenr &&
1810				    !(!block->is_metadata &&
1811				      block->logical_bytenr == 0))
1812					pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n",
 
1813					       bytenr, dev_state->name,
1814					       dev_bytenr,
1815					       block->mirror_num,
1816					       btrfsic_get_block_type(state,
1817								      block),
1818					       block->logical_bytenr);
1819				else
1820					pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c.\n",
 
1821					       bytenr, dev_state->name,
1822					       dev_bytenr, block->mirror_num,
1823					       btrfsic_get_block_type(state,
1824								      block));
1825			}
1826			block->logical_bytenr = bytenr;
1827		} else {
1828			if (num_pages * PAGE_SIZE <
1829			    state->datablock_size) {
1830				pr_info("btrfsic: cannot work with too short bios!\n");
 
1831				return;
1832			}
1833			processed_len = state->datablock_size;
1834			bytenr = block->logical_bytenr;
1835			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1836				pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c.\n",
 
 
1837				       bytenr, dev_state->name, dev_bytenr,
1838				       block->mirror_num,
1839				       btrfsic_get_block_type(state, block));
1840		}
1841
1842		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1843			pr_info("ref_to_list: %cE, ref_from_list: %cE\n",
 
1844			       list_empty(&block->ref_to_list) ? ' ' : '!',
1845			       list_empty(&block->ref_from_list) ? ' ' : '!');
1846		if (btrfsic_is_block_ref_by_superblock(state, block, 0)) {
1847			pr_info("btrfs: attempt to overwrite %c-block @%llu (%s/%llu/%d), old(gen=%llu, objectid=%llu, type=%d, offset=%llu), new(gen=%llu), which is referenced by most recent superblock (superblockgen=%llu)!\n",
 
 
 
 
 
1848			       btrfsic_get_block_type(state, block), bytenr,
1849			       dev_state->name, dev_bytenr, block->mirror_num,
1850			       block->generation,
1851			       btrfs_disk_key_objectid(&block->disk_key),
1852			       block->disk_key.type,
1853			       btrfs_disk_key_offset(&block->disk_key),
1854			       btrfs_stack_header_generation(
1855				       (struct btrfs_header *) mapped_datav[0]),
1856			       state->max_superblock_generation);
1857			btrfsic_dump_tree(state);
1858		}
1859
1860		if (!block->is_iodone && !block->never_written) {
1861			pr_info("btrfs: attempt to overwrite %c-block @%llu (%s/%llu/%d), oldgen=%llu, newgen=%llu, which is not yet iodone!\n",
 
 
1862			       btrfsic_get_block_type(state, block), bytenr,
1863			       dev_state->name, dev_bytenr, block->mirror_num,
1864			       block->generation,
1865			       btrfs_stack_header_generation(
1866				       (struct btrfs_header *)
1867				       mapped_datav[0]));
1868			/* it would not be safe to go on */
1869			btrfsic_dump_tree(state);
1870			goto continue_loop;
1871		}
1872
1873		/*
1874		 * Clear all references of this block. Do not free
1875		 * the block itself even if is not referenced anymore
1876		 * because it still carries valuable information
1877		 * like whether it was ever written and IO completed.
1878		 */
1879		list_for_each_entry_safe(l, tmp, &block->ref_to_list,
1880					 node_ref_to) {
1881			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1882				btrfsic_print_rem_link(state, l);
1883			l->ref_cnt--;
1884			if (0 == l->ref_cnt) {
1885				list_del(&l->node_ref_to);
1886				list_del(&l->node_ref_from);
1887				btrfsic_block_link_hashtable_remove(l);
1888				btrfsic_block_link_free(l);
1889			}
1890		}
1891
1892		block_ctx.dev = dev_state;
1893		block_ctx.dev_bytenr = dev_bytenr;
1894		block_ctx.start = bytenr;
1895		block_ctx.len = processed_len;
1896		block_ctx.pagev = NULL;
1897		block_ctx.mem_to_free = NULL;
1898		block_ctx.datav = mapped_datav;
1899
1900		if (is_metadata || state->include_extent_data) {
1901			block->never_written = 0;
1902			block->iodone_w_error = 0;
1903			if (NULL != bio) {
1904				block->is_iodone = 0;
1905				BUG_ON(NULL == bio_is_patched);
1906				if (!*bio_is_patched) {
1907					block->orig_bio_bh_private =
1908					    bio->bi_private;
1909					block->orig_bio_bh_end_io.bio =
1910					    bio->bi_end_io;
1911					block->next_in_same_bio = NULL;
1912					bio->bi_private = block;
1913					bio->bi_end_io = btrfsic_bio_end_io;
1914					*bio_is_patched = 1;
1915				} else {
1916					struct btrfsic_block *chained_block =
1917					    (struct btrfsic_block *)
1918					    bio->bi_private;
1919
1920					BUG_ON(NULL == chained_block);
1921					block->orig_bio_bh_private =
1922					    chained_block->orig_bio_bh_private;
1923					block->orig_bio_bh_end_io.bio =
1924					    chained_block->orig_bio_bh_end_io.
1925					    bio;
1926					block->next_in_same_bio = chained_block;
1927					bio->bi_private = block;
1928				}
1929			} else if (NULL != bh) {
1930				block->is_iodone = 0;
1931				block->orig_bio_bh_private = bh->b_private;
1932				block->orig_bio_bh_end_io.bh = bh->b_end_io;
1933				block->next_in_same_bio = NULL;
1934				bh->b_private = block;
1935				bh->b_end_io = btrfsic_bh_end_io;
1936			} else {
1937				block->is_iodone = 1;
1938				block->orig_bio_bh_private = NULL;
1939				block->orig_bio_bh_end_io.bio = NULL;
1940				block->next_in_same_bio = NULL;
1941			}
1942		}
1943
1944		block->flush_gen = dev_state->last_flush_gen + 1;
1945		block->submit_bio_bh_rw = submit_bio_bh_rw;
1946		if (is_metadata) {
1947			block->logical_bytenr = bytenr;
1948			block->is_metadata = 1;
1949			if (block->is_superblock) {
1950				BUG_ON(PAGE_SIZE !=
1951				       BTRFS_SUPER_INFO_SIZE);
1952				ret = btrfsic_process_written_superblock(
1953						state,
1954						block,
1955						(struct btrfs_super_block *)
1956						mapped_datav[0]);
1957				if (state->print_mask &
1958				    BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE) {
1959					pr_info("[after new superblock is written]:\n");
 
1960					btrfsic_dump_tree_sub(state, block, 0);
1961				}
1962			} else {
1963				block->mirror_num = 0;	/* unknown */
1964				ret = btrfsic_process_metablock(
1965						state,
1966						block,
1967						&block_ctx,
1968						0, 0);
1969			}
1970			if (ret)
1971				pr_info("btrfsic: btrfsic_process_metablock(root @%llu) failed!\n",
 
 
1972				       dev_bytenr);
1973		} else {
1974			block->is_metadata = 0;
1975			block->mirror_num = 0;	/* unknown */
1976			block->generation = BTRFSIC_GENERATION_UNKNOWN;
1977			if (!state->include_extent_data
1978			    && list_empty(&block->ref_from_list)) {
1979				/*
1980				 * disk block is overwritten with extent
1981				 * data (not meta data) and we are configured
1982				 * to not include extent data: take the
1983				 * chance and free the block's memory
1984				 */
1985				btrfsic_block_hashtable_remove(block);
1986				list_del(&block->all_blocks_node);
1987				btrfsic_block_free(block);
1988			}
1989		}
1990		btrfsic_release_block_ctx(&block_ctx);
1991	} else {
1992		/* block has not been found in hash table */
1993		u64 bytenr;
1994
1995		if (!is_metadata) {
1996			processed_len = state->datablock_size;
1997			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1998				pr_info("Written block (%s/%llu/?) !found in hash table, D.\n",
 
1999				       dev_state->name, dev_bytenr);
2000			if (!state->include_extent_data) {
2001				/* ignore that written D block */
2002				goto continue_loop;
2003			}
2004
2005			/* this is getting ugly for the
2006			 * include_extent_data case... */
2007			bytenr = 0;	/* unknown */
2008		} else {
2009			processed_len = state->metablock_size;
2010			bytenr = btrfs_stack_header_bytenr(
2011					(struct btrfs_header *)
2012					mapped_datav[0]);
2013			btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state,
2014						       dev_bytenr);
2015			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2016				pr_info("Written block @%llu (%s/%llu/?) !found in hash table, M.\n",
 
 
2017				       bytenr, dev_state->name, dev_bytenr);
2018		}
2019
2020		block_ctx.dev = dev_state;
2021		block_ctx.dev_bytenr = dev_bytenr;
2022		block_ctx.start = bytenr;
2023		block_ctx.len = processed_len;
2024		block_ctx.pagev = NULL;
2025		block_ctx.mem_to_free = NULL;
2026		block_ctx.datav = mapped_datav;
2027
2028		block = btrfsic_block_alloc();
2029		if (NULL == block) {
2030			pr_info("btrfsic: error, kmalloc failed!\n");
2031			btrfsic_release_block_ctx(&block_ctx);
2032			goto continue_loop;
2033		}
2034		block->dev_state = dev_state;
2035		block->dev_bytenr = dev_bytenr;
2036		block->logical_bytenr = bytenr;
2037		block->is_metadata = is_metadata;
2038		block->never_written = 0;
2039		block->iodone_w_error = 0;
2040		block->mirror_num = 0;	/* unknown */
2041		block->flush_gen = dev_state->last_flush_gen + 1;
2042		block->submit_bio_bh_rw = submit_bio_bh_rw;
2043		if (NULL != bio) {
2044			block->is_iodone = 0;
2045			BUG_ON(NULL == bio_is_patched);
2046			if (!*bio_is_patched) {
2047				block->orig_bio_bh_private = bio->bi_private;
2048				block->orig_bio_bh_end_io.bio = bio->bi_end_io;
2049				block->next_in_same_bio = NULL;
2050				bio->bi_private = block;
2051				bio->bi_end_io = btrfsic_bio_end_io;
2052				*bio_is_patched = 1;
2053			} else {
2054				struct btrfsic_block *chained_block =
2055				    (struct btrfsic_block *)
2056				    bio->bi_private;
2057
2058				BUG_ON(NULL == chained_block);
2059				block->orig_bio_bh_private =
2060				    chained_block->orig_bio_bh_private;
2061				block->orig_bio_bh_end_io.bio =
2062				    chained_block->orig_bio_bh_end_io.bio;
2063				block->next_in_same_bio = chained_block;
2064				bio->bi_private = block;
2065			}
2066		} else if (NULL != bh) {
2067			block->is_iodone = 0;
2068			block->orig_bio_bh_private = bh->b_private;
2069			block->orig_bio_bh_end_io.bh = bh->b_end_io;
2070			block->next_in_same_bio = NULL;
2071			bh->b_private = block;
2072			bh->b_end_io = btrfsic_bh_end_io;
2073		} else {
2074			block->is_iodone = 1;
2075			block->orig_bio_bh_private = NULL;
2076			block->orig_bio_bh_end_io.bio = NULL;
2077			block->next_in_same_bio = NULL;
2078		}
2079		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2080			pr_info("New written %c-block @%llu (%s/%llu/%d)\n",
 
2081			       is_metadata ? 'M' : 'D',
2082			       block->logical_bytenr, block->dev_state->name,
2083			       block->dev_bytenr, block->mirror_num);
2084		list_add(&block->all_blocks_node, &state->all_blocks_list);
2085		btrfsic_block_hashtable_add(block, &state->block_hashtable);
2086
2087		if (is_metadata) {
2088			ret = btrfsic_process_metablock(state, block,
2089							&block_ctx, 0, 0);
2090			if (ret)
2091				pr_info("btrfsic: process_metablock(root @%llu) failed!\n",
 
 
2092				       dev_bytenr);
2093		}
2094		btrfsic_release_block_ctx(&block_ctx);
2095	}
2096
2097continue_loop:
2098	BUG_ON(!processed_len);
2099	dev_bytenr += processed_len;
2100	mapped_datav += processed_len >> PAGE_SHIFT;
2101	num_pages -= processed_len >> PAGE_SHIFT;
2102	goto again;
2103}
2104
2105static void btrfsic_bio_end_io(struct bio *bp)
2106{
2107	struct btrfsic_block *block = (struct btrfsic_block *)bp->bi_private;
2108	int iodone_w_error;
2109
2110	/* mutex is not held! This is not save if IO is not yet completed
2111	 * on umount */
2112	iodone_w_error = 0;
2113	if (bp->bi_status)
2114		iodone_w_error = 1;
2115
2116	BUG_ON(NULL == block);
2117	bp->bi_private = block->orig_bio_bh_private;
2118	bp->bi_end_io = block->orig_bio_bh_end_io.bio;
2119
2120	do {
2121		struct btrfsic_block *next_block;
2122		struct btrfsic_dev_state *const dev_state = block->dev_state;
2123
2124		if ((dev_state->state->print_mask &
2125		     BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2126			pr_info("bio_end_io(err=%d) for %c @%llu (%s/%llu/%d)\n",
2127			       bp->bi_status,
 
2128			       btrfsic_get_block_type(dev_state->state, block),
2129			       block->logical_bytenr, dev_state->name,
2130			       block->dev_bytenr, block->mirror_num);
2131		next_block = block->next_in_same_bio;
2132		block->iodone_w_error = iodone_w_error;
2133		if (block->submit_bio_bh_rw & REQ_PREFLUSH) {
2134			dev_state->last_flush_gen++;
2135			if ((dev_state->state->print_mask &
2136			     BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2137				pr_info("bio_end_io() new %s flush_gen=%llu\n",
 
2138				       dev_state->name,
2139				       dev_state->last_flush_gen);
2140		}
2141		if (block->submit_bio_bh_rw & REQ_FUA)
2142			block->flush_gen = 0; /* FUA completed means block is
2143					       * on disk */
2144		block->is_iodone = 1; /* for FLUSH, this releases the block */
2145		block = next_block;
2146	} while (NULL != block);
2147
2148	bp->bi_end_io(bp);
2149}
2150
2151static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate)
2152{
2153	struct btrfsic_block *block = (struct btrfsic_block *)bh->b_private;
2154	int iodone_w_error = !uptodate;
2155	struct btrfsic_dev_state *dev_state;
2156
2157	BUG_ON(NULL == block);
2158	dev_state = block->dev_state;
2159	if ((dev_state->state->print_mask & BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2160		pr_info("bh_end_io(error=%d) for %c @%llu (%s/%llu/%d)\n",
 
2161		       iodone_w_error,
2162		       btrfsic_get_block_type(dev_state->state, block),
2163		       block->logical_bytenr, block->dev_state->name,
2164		       block->dev_bytenr, block->mirror_num);
2165
2166	block->iodone_w_error = iodone_w_error;
2167	if (block->submit_bio_bh_rw & REQ_PREFLUSH) {
2168		dev_state->last_flush_gen++;
2169		if ((dev_state->state->print_mask &
2170		     BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2171			pr_info("bh_end_io() new %s flush_gen=%llu\n",
 
2172			       dev_state->name, dev_state->last_flush_gen);
2173	}
2174	if (block->submit_bio_bh_rw & REQ_FUA)
2175		block->flush_gen = 0; /* FUA completed means block is on disk */
2176
2177	bh->b_private = block->orig_bio_bh_private;
2178	bh->b_end_io = block->orig_bio_bh_end_io.bh;
2179	block->is_iodone = 1; /* for FLUSH, this releases the block */
2180	bh->b_end_io(bh, uptodate);
2181}
2182
2183static int btrfsic_process_written_superblock(
2184		struct btrfsic_state *state,
2185		struct btrfsic_block *const superblock,
2186		struct btrfs_super_block *const super_hdr)
2187{
2188	struct btrfs_fs_info *fs_info = state->fs_info;
2189	int pass;
2190
2191	superblock->generation = btrfs_super_generation(super_hdr);
2192	if (!(superblock->generation > state->max_superblock_generation ||
2193	      0 == state->max_superblock_generation)) {
2194		if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2195			pr_info("btrfsic: superblock @%llu (%s/%llu/%d) with old gen %llu <= %llu\n",
 
 
2196			       superblock->logical_bytenr,
2197			       superblock->dev_state->name,
2198			       superblock->dev_bytenr, superblock->mirror_num,
2199			       btrfs_super_generation(super_hdr),
2200			       state->max_superblock_generation);
2201	} else {
2202		if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2203			pr_info("btrfsic: got new superblock @%llu (%s/%llu/%d) with new gen %llu > %llu\n",
 
 
2204			       superblock->logical_bytenr,
2205			       superblock->dev_state->name,
2206			       superblock->dev_bytenr, superblock->mirror_num,
2207			       btrfs_super_generation(super_hdr),
2208			       state->max_superblock_generation);
2209
2210		state->max_superblock_generation =
2211		    btrfs_super_generation(super_hdr);
2212		state->latest_superblock = superblock;
2213	}
2214
2215	for (pass = 0; pass < 3; pass++) {
2216		int ret;
2217		u64 next_bytenr;
2218		struct btrfsic_block *next_block;
2219		struct btrfsic_block_data_ctx tmp_next_block_ctx;
2220		struct btrfsic_block_link *l;
2221		int num_copies;
2222		int mirror_num;
2223		const char *additional_string = NULL;
2224		struct btrfs_disk_key tmp_disk_key = {0};
2225
2226		btrfs_set_disk_key_objectid(&tmp_disk_key,
2227					    BTRFS_ROOT_ITEM_KEY);
2228		btrfs_set_disk_key_objectid(&tmp_disk_key, 0);
2229
2230		switch (pass) {
2231		case 0:
2232			btrfs_set_disk_key_objectid(&tmp_disk_key,
2233						    BTRFS_ROOT_TREE_OBJECTID);
2234			additional_string = "root ";
2235			next_bytenr = btrfs_super_root(super_hdr);
2236			if (state->print_mask &
2237			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2238				pr_info("root@%llu\n", next_bytenr);
2239			break;
2240		case 1:
2241			btrfs_set_disk_key_objectid(&tmp_disk_key,
2242						    BTRFS_CHUNK_TREE_OBJECTID);
2243			additional_string = "chunk ";
2244			next_bytenr = btrfs_super_chunk_root(super_hdr);
2245			if (state->print_mask &
2246			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2247				pr_info("chunk@%llu\n", next_bytenr);
2248			break;
2249		case 2:
2250			btrfs_set_disk_key_objectid(&tmp_disk_key,
2251						    BTRFS_TREE_LOG_OBJECTID);
2252			additional_string = "log ";
2253			next_bytenr = btrfs_super_log_root(super_hdr);
2254			if (0 == next_bytenr)
2255				continue;
2256			if (state->print_mask &
2257			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2258				pr_info("log@%llu\n", next_bytenr);
2259			break;
2260		}
2261
2262		num_copies = btrfs_num_copies(fs_info, next_bytenr,
2263					      BTRFS_SUPER_INFO_SIZE);
 
2264		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
2265			pr_info("num_copies(log_bytenr=%llu) = %d\n",
2266			       next_bytenr, num_copies);
2267		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2268			int was_created;
2269
2270			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2271				pr_info("btrfsic_process_written_superblock(mirror_num=%d)\n", mirror_num);
 
 
2272			ret = btrfsic_map_block(state, next_bytenr,
2273						BTRFS_SUPER_INFO_SIZE,
2274						&tmp_next_block_ctx,
2275						mirror_num);
2276			if (ret) {
2277				pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
 
 
2278				       next_bytenr, mirror_num);
2279				return -1;
2280			}
2281
2282			next_block = btrfsic_block_lookup_or_add(
2283					state,
2284					&tmp_next_block_ctx,
2285					additional_string,
2286					1, 0, 1,
2287					mirror_num,
2288					&was_created);
2289			if (NULL == next_block) {
2290				pr_info("btrfsic: error, kmalloc failed!\n");
 
2291				btrfsic_release_block_ctx(&tmp_next_block_ctx);
2292				return -1;
2293			}
2294
2295			next_block->disk_key = tmp_disk_key;
2296			if (was_created)
2297				next_block->generation =
2298				    BTRFSIC_GENERATION_UNKNOWN;
2299			l = btrfsic_block_link_lookup_or_add(
2300					state,
2301					&tmp_next_block_ctx,
2302					next_block,
2303					superblock,
2304					BTRFSIC_GENERATION_UNKNOWN);
2305			btrfsic_release_block_ctx(&tmp_next_block_ctx);
2306			if (NULL == l)
2307				return -1;
2308		}
2309	}
2310
2311	if (WARN_ON(-1 == btrfsic_check_all_ref_blocks(state, superblock, 0)))
2312		btrfsic_dump_tree(state);
2313
2314	return 0;
2315}
2316
2317static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
2318					struct btrfsic_block *const block,
2319					int recursion_level)
2320{
2321	const struct btrfsic_block_link *l;
2322	int ret = 0;
2323
2324	if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2325		/*
2326		 * Note that this situation can happen and does not
2327		 * indicate an error in regular cases. It happens
2328		 * when disk blocks are freed and later reused.
2329		 * The check-integrity module is not aware of any
2330		 * block free operations, it just recognizes block
2331		 * write operations. Therefore it keeps the linkage
2332		 * information for a block until a block is
2333		 * rewritten. This can temporarily cause incorrect
2334		 * and even circular linkage information. This
2335		 * causes no harm unless such blocks are referenced
2336		 * by the most recent super block.
2337		 */
2338		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2339			pr_info("btrfsic: abort cyclic linkage (case 1).\n");
 
2340
2341		return ret;
2342	}
2343
2344	/*
2345	 * This algorithm is recursive because the amount of used stack
2346	 * space is very small and the max recursion depth is limited.
2347	 */
2348	list_for_each_entry(l, &block->ref_to_list, node_ref_to) {
2349		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2350			pr_info("rl=%d, %c @%llu (%s/%llu/%d) %u* refers to %c @%llu (%s/%llu/%d)\n",
 
 
2351			       recursion_level,
2352			       btrfsic_get_block_type(state, block),
2353			       block->logical_bytenr, block->dev_state->name,
2354			       block->dev_bytenr, block->mirror_num,
2355			       l->ref_cnt,
2356			       btrfsic_get_block_type(state, l->block_ref_to),
2357			       l->block_ref_to->logical_bytenr,
2358			       l->block_ref_to->dev_state->name,
2359			       l->block_ref_to->dev_bytenr,
2360			       l->block_ref_to->mirror_num);
2361		if (l->block_ref_to->never_written) {
2362			pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is never written!\n",
 
 
2363			       btrfsic_get_block_type(state, l->block_ref_to),
2364			       l->block_ref_to->logical_bytenr,
2365			       l->block_ref_to->dev_state->name,
2366			       l->block_ref_to->dev_bytenr,
2367			       l->block_ref_to->mirror_num);
2368			ret = -1;
2369		} else if (!l->block_ref_to->is_iodone) {
2370			pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is not yet iodone!\n",
 
 
2371			       btrfsic_get_block_type(state, l->block_ref_to),
2372			       l->block_ref_to->logical_bytenr,
2373			       l->block_ref_to->dev_state->name,
2374			       l->block_ref_to->dev_bytenr,
2375			       l->block_ref_to->mirror_num);
2376			ret = -1;
2377		} else if (l->block_ref_to->iodone_w_error) {
2378			pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which has write error!\n",
 
 
2379			       btrfsic_get_block_type(state, l->block_ref_to),
2380			       l->block_ref_to->logical_bytenr,
2381			       l->block_ref_to->dev_state->name,
2382			       l->block_ref_to->dev_bytenr,
2383			       l->block_ref_to->mirror_num);
2384			ret = -1;
2385		} else if (l->parent_generation !=
2386			   l->block_ref_to->generation &&
2387			   BTRFSIC_GENERATION_UNKNOWN !=
2388			   l->parent_generation &&
2389			   BTRFSIC_GENERATION_UNKNOWN !=
2390			   l->block_ref_to->generation) {
2391			pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) with generation %llu != parent generation %llu!\n",
 
 
 
2392			       btrfsic_get_block_type(state, l->block_ref_to),
2393			       l->block_ref_to->logical_bytenr,
2394			       l->block_ref_to->dev_state->name,
2395			       l->block_ref_to->dev_bytenr,
2396			       l->block_ref_to->mirror_num,
2397			       l->block_ref_to->generation,
2398			       l->parent_generation);
2399			ret = -1;
2400		} else if (l->block_ref_to->flush_gen >
2401			   l->block_ref_to->dev_state->last_flush_gen) {
2402			pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is not flushed out of disk's write cache (block flush_gen=%llu, dev->flush_gen=%llu)!\n",
 
 
 
 
2403			       btrfsic_get_block_type(state, l->block_ref_to),
2404			       l->block_ref_to->logical_bytenr,
2405			       l->block_ref_to->dev_state->name,
2406			       l->block_ref_to->dev_bytenr,
2407			       l->block_ref_to->mirror_num, block->flush_gen,
2408			       l->block_ref_to->dev_state->last_flush_gen);
2409			ret = -1;
2410		} else if (-1 == btrfsic_check_all_ref_blocks(state,
2411							      l->block_ref_to,
2412							      recursion_level +
2413							      1)) {
2414			ret = -1;
2415		}
2416	}
2417
2418	return ret;
2419}
2420
2421static int btrfsic_is_block_ref_by_superblock(
2422		const struct btrfsic_state *state,
2423		const struct btrfsic_block *block,
2424		int recursion_level)
2425{
2426	const struct btrfsic_block_link *l;
2427
2428	if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2429		/* refer to comment at "abort cyclic linkage (case 1)" */
2430		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2431			pr_info("btrfsic: abort cyclic linkage (case 2).\n");
 
2432
2433		return 0;
2434	}
2435
2436	/*
2437	 * This algorithm is recursive because the amount of used stack space
2438	 * is very small and the max recursion depth is limited.
2439	 */
2440	list_for_each_entry(l, &block->ref_from_list, node_ref_from) {
2441		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2442			pr_info("rl=%d, %c @%llu (%s/%llu/%d) is ref %u* from %c @%llu (%s/%llu/%d)\n",
 
 
2443			       recursion_level,
2444			       btrfsic_get_block_type(state, block),
2445			       block->logical_bytenr, block->dev_state->name,
2446			       block->dev_bytenr, block->mirror_num,
2447			       l->ref_cnt,
2448			       btrfsic_get_block_type(state, l->block_ref_from),
2449			       l->block_ref_from->logical_bytenr,
2450			       l->block_ref_from->dev_state->name,
2451			       l->block_ref_from->dev_bytenr,
2452			       l->block_ref_from->mirror_num);
2453		if (l->block_ref_from->is_superblock &&
2454		    state->latest_superblock->dev_bytenr ==
2455		    l->block_ref_from->dev_bytenr &&
2456		    state->latest_superblock->dev_state->bdev ==
2457		    l->block_ref_from->dev_state->bdev)
2458			return 1;
2459		else if (btrfsic_is_block_ref_by_superblock(state,
2460							    l->block_ref_from,
2461							    recursion_level +
2462							    1))
2463			return 1;
2464	}
2465
2466	return 0;
2467}
2468
2469static void btrfsic_print_add_link(const struct btrfsic_state *state,
2470				   const struct btrfsic_block_link *l)
2471{
2472	pr_info("Add %u* link from %c @%llu (%s/%llu/%d) to %c @%llu (%s/%llu/%d).\n",
 
 
2473	       l->ref_cnt,
2474	       btrfsic_get_block_type(state, l->block_ref_from),
2475	       l->block_ref_from->logical_bytenr,
2476	       l->block_ref_from->dev_state->name,
2477	       l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2478	       btrfsic_get_block_type(state, l->block_ref_to),
2479	       l->block_ref_to->logical_bytenr,
2480	       l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2481	       l->block_ref_to->mirror_num);
2482}
2483
2484static void btrfsic_print_rem_link(const struct btrfsic_state *state,
2485				   const struct btrfsic_block_link *l)
2486{
2487	pr_info("Rem %u* link from %c @%llu (%s/%llu/%d) to %c @%llu (%s/%llu/%d).\n",
 
 
2488	       l->ref_cnt,
2489	       btrfsic_get_block_type(state, l->block_ref_from),
2490	       l->block_ref_from->logical_bytenr,
2491	       l->block_ref_from->dev_state->name,
2492	       l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2493	       btrfsic_get_block_type(state, l->block_ref_to),
2494	       l->block_ref_to->logical_bytenr,
2495	       l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2496	       l->block_ref_to->mirror_num);
2497}
2498
2499static char btrfsic_get_block_type(const struct btrfsic_state *state,
2500				   const struct btrfsic_block *block)
2501{
2502	if (block->is_superblock &&
2503	    state->latest_superblock->dev_bytenr == block->dev_bytenr &&
2504	    state->latest_superblock->dev_state->bdev == block->dev_state->bdev)
2505		return 'S';
2506	else if (block->is_superblock)
2507		return 's';
2508	else if (block->is_metadata)
2509		return 'M';
2510	else
2511		return 'D';
2512}
2513
2514static void btrfsic_dump_tree(const struct btrfsic_state *state)
2515{
2516	btrfsic_dump_tree_sub(state, state->latest_superblock, 0);
2517}
2518
2519static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
2520				  const struct btrfsic_block *block,
2521				  int indent_level)
2522{
2523	const struct btrfsic_block_link *l;
2524	int indent_add;
2525	static char buf[80];
2526	int cursor_position;
2527
2528	/*
2529	 * Should better fill an on-stack buffer with a complete line and
2530	 * dump it at once when it is time to print a newline character.
2531	 */
2532
2533	/*
2534	 * This algorithm is recursive because the amount of used stack space
2535	 * is very small and the max recursion depth is limited.
2536	 */
2537	indent_add = sprintf(buf, "%c-%llu(%s/%llu/%u)",
2538			     btrfsic_get_block_type(state, block),
2539			     block->logical_bytenr, block->dev_state->name,
2540			     block->dev_bytenr, block->mirror_num);
2541	if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2542		printk("[...]\n");
2543		return;
2544	}
2545	printk(buf);
2546	indent_level += indent_add;
2547	if (list_empty(&block->ref_to_list)) {
2548		printk("\n");
2549		return;
2550	}
2551	if (block->mirror_num > 1 &&
2552	    !(state->print_mask & BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS)) {
2553		printk(" [...]\n");
2554		return;
2555	}
2556
2557	cursor_position = indent_level;
2558	list_for_each_entry(l, &block->ref_to_list, node_ref_to) {
2559		while (cursor_position < indent_level) {
2560			printk(" ");
2561			cursor_position++;
2562		}
2563		if (l->ref_cnt > 1)
2564			indent_add = sprintf(buf, " %d*--> ", l->ref_cnt);
2565		else
2566			indent_add = sprintf(buf, " --> ");
2567		if (indent_level + indent_add >
2568		    BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2569			printk("[...]\n");
2570			cursor_position = 0;
2571			continue;
2572		}
2573
2574		printk(buf);
2575
2576		btrfsic_dump_tree_sub(state, l->block_ref_to,
2577				      indent_level + indent_add);
2578		cursor_position = 0;
2579	}
2580}
2581
2582static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
2583		struct btrfsic_state *state,
2584		struct btrfsic_block_data_ctx *next_block_ctx,
2585		struct btrfsic_block *next_block,
2586		struct btrfsic_block *from_block,
2587		u64 parent_generation)
2588{
2589	struct btrfsic_block_link *l;
2590
2591	l = btrfsic_block_link_hashtable_lookup(next_block_ctx->dev->bdev,
2592						next_block_ctx->dev_bytenr,
2593						from_block->dev_state->bdev,
2594						from_block->dev_bytenr,
2595						&state->block_link_hashtable);
2596	if (NULL == l) {
2597		l = btrfsic_block_link_alloc();
2598		if (NULL == l) {
2599			pr_info("btrfsic: error, kmalloc failed!\n");
 
2600			return NULL;
2601		}
2602
2603		l->block_ref_to = next_block;
2604		l->block_ref_from = from_block;
2605		l->ref_cnt = 1;
2606		l->parent_generation = parent_generation;
2607
2608		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2609			btrfsic_print_add_link(state, l);
2610
2611		list_add(&l->node_ref_to, &from_block->ref_to_list);
2612		list_add(&l->node_ref_from, &next_block->ref_from_list);
2613
2614		btrfsic_block_link_hashtable_add(l,
2615						 &state->block_link_hashtable);
2616	} else {
2617		l->ref_cnt++;
2618		l->parent_generation = parent_generation;
2619		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2620			btrfsic_print_add_link(state, l);
2621	}
2622
2623	return l;
2624}
2625
2626static struct btrfsic_block *btrfsic_block_lookup_or_add(
2627		struct btrfsic_state *state,
2628		struct btrfsic_block_data_ctx *block_ctx,
2629		const char *additional_string,
2630		int is_metadata,
2631		int is_iodone,
2632		int never_written,
2633		int mirror_num,
2634		int *was_created)
2635{
2636	struct btrfsic_block *block;
2637
2638	block = btrfsic_block_hashtable_lookup(block_ctx->dev->bdev,
2639					       block_ctx->dev_bytenr,
2640					       &state->block_hashtable);
2641	if (NULL == block) {
2642		struct btrfsic_dev_state *dev_state;
2643
2644		block = btrfsic_block_alloc();
2645		if (NULL == block) {
2646			pr_info("btrfsic: error, kmalloc failed!\n");
2647			return NULL;
2648		}
2649		dev_state = btrfsic_dev_state_lookup(block_ctx->dev->bdev->bd_dev);
2650		if (NULL == dev_state) {
2651			pr_info("btrfsic: error, lookup dev_state failed!\n");
 
2652			btrfsic_block_free(block);
2653			return NULL;
2654		}
2655		block->dev_state = dev_state;
2656		block->dev_bytenr = block_ctx->dev_bytenr;
2657		block->logical_bytenr = block_ctx->start;
2658		block->is_metadata = is_metadata;
2659		block->is_iodone = is_iodone;
2660		block->never_written = never_written;
2661		block->mirror_num = mirror_num;
2662		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2663			pr_info("New %s%c-block @%llu (%s/%llu/%d)\n",
 
2664			       additional_string,
2665			       btrfsic_get_block_type(state, block),
2666			       block->logical_bytenr, dev_state->name,
2667			       block->dev_bytenr, mirror_num);
2668		list_add(&block->all_blocks_node, &state->all_blocks_list);
2669		btrfsic_block_hashtable_add(block, &state->block_hashtable);
2670		if (NULL != was_created)
2671			*was_created = 1;
2672	} else {
2673		if (NULL != was_created)
2674			*was_created = 0;
2675	}
2676
2677	return block;
2678}
2679
2680static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
2681					   u64 bytenr,
2682					   struct btrfsic_dev_state *dev_state,
2683					   u64 dev_bytenr)
2684{
2685	struct btrfs_fs_info *fs_info = state->fs_info;
2686	struct btrfsic_block_data_ctx block_ctx;
2687	int num_copies;
2688	int mirror_num;
2689	int match = 0;
2690	int ret;
 
 
2691
2692	num_copies = btrfs_num_copies(fs_info, bytenr, state->metablock_size);
 
2693
2694	for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2695		ret = btrfsic_map_block(state, bytenr, state->metablock_size,
2696					&block_ctx, mirror_num);
2697		if (ret) {
2698			pr_info("btrfsic: btrfsic_map_block(logical @%llu, mirror %d) failed!\n",
 
 
2699			       bytenr, mirror_num);
2700			continue;
2701		}
2702
2703		if (dev_state->bdev == block_ctx.dev->bdev &&
2704		    dev_bytenr == block_ctx.dev_bytenr) {
2705			match++;
2706			btrfsic_release_block_ctx(&block_ctx);
2707			break;
2708		}
2709		btrfsic_release_block_ctx(&block_ctx);
2710	}
2711
2712	if (WARN_ON(!match)) {
2713		pr_info("btrfs: attempt to write M-block which contains logical bytenr that doesn't map to dev+physical bytenr of submit_bio, buffer->log_bytenr=%llu, submit_bio(bdev=%s, phys_bytenr=%llu)!\n",
 
 
2714		       bytenr, dev_state->name, dev_bytenr);
2715		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2716			ret = btrfsic_map_block(state, bytenr,
2717						state->metablock_size,
2718						&block_ctx, mirror_num);
2719			if (ret)
2720				continue;
2721
2722			pr_info("Read logical bytenr @%llu maps to (%s/%llu/%d)\n",
 
2723			       bytenr, block_ctx.dev->name,
2724			       block_ctx.dev_bytenr, mirror_num);
2725		}
2726	}
2727}
2728
2729static struct btrfsic_dev_state *btrfsic_dev_state_lookup(dev_t dev)
 
2730{
2731	return btrfsic_dev_state_hashtable_lookup(dev,
2732						  &btrfsic_dev_state_hashtable);
 
 
 
2733}
2734
2735int btrfsic_submit_bh(int op, int op_flags, struct buffer_head *bh)
2736{
2737	struct btrfsic_dev_state *dev_state;
2738
2739	if (!btrfsic_is_initialized)
2740		return submit_bh(op, op_flags, bh);
2741
2742	mutex_lock(&btrfsic_mutex);
2743	/* since btrfsic_submit_bh() might also be called before
2744	 * btrfsic_mount(), this might return NULL */
2745	dev_state = btrfsic_dev_state_lookup(bh->b_bdev->bd_dev);
2746
2747	/* Only called to write the superblock (incl. FLUSH/FUA) */
2748	if (NULL != dev_state &&
2749	    (op == REQ_OP_WRITE) && bh->b_size > 0) {
2750		u64 dev_bytenr;
2751
2752		dev_bytenr = BTRFS_BDEV_BLOCKSIZE * bh->b_blocknr;
2753		if (dev_state->state->print_mask &
2754		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2755			pr_info("submit_bh(op=0x%x,0x%x, blocknr=%llu (bytenr %llu), size=%zu, data=%p, bdev=%p)\n",
2756			       op, op_flags, (unsigned long long)bh->b_blocknr,
 
 
2757			       dev_bytenr, bh->b_size, bh->b_data, bh->b_bdev);
2758		btrfsic_process_written_block(dev_state, dev_bytenr,
2759					      &bh->b_data, 1, NULL,
2760					      NULL, bh, op_flags);
2761	} else if (NULL != dev_state && (op_flags & REQ_PREFLUSH)) {
2762		if (dev_state->state->print_mask &
2763		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2764			pr_info("submit_bh(op=0x%x,0x%x FLUSH, bdev=%p)\n",
2765			       op, op_flags, bh->b_bdev);
 
2766		if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
2767			if ((dev_state->state->print_mask &
2768			     (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2769			      BTRFSIC_PRINT_MASK_VERBOSE)))
2770				pr_info("btrfsic_submit_bh(%s) with FLUSH but dummy block already in use (ignored)!\n",
 
 
 
2771				       dev_state->name);
2772		} else {
2773			struct btrfsic_block *const block =
2774				&dev_state->dummy_block_for_bio_bh_flush;
2775
2776			block->is_iodone = 0;
2777			block->never_written = 0;
2778			block->iodone_w_error = 0;
2779			block->flush_gen = dev_state->last_flush_gen + 1;
2780			block->submit_bio_bh_rw = op_flags;
2781			block->orig_bio_bh_private = bh->b_private;
2782			block->orig_bio_bh_end_io.bh = bh->b_end_io;
2783			block->next_in_same_bio = NULL;
2784			bh->b_private = block;
2785			bh->b_end_io = btrfsic_bh_end_io;
2786		}
2787	}
2788	mutex_unlock(&btrfsic_mutex);
2789	return submit_bh(op, op_flags, bh);
2790}
2791
2792static void __btrfsic_submit_bio(struct bio *bio)
2793{
2794	struct btrfsic_dev_state *dev_state;
2795
2796	if (!btrfsic_is_initialized)
2797		return;
2798
2799	mutex_lock(&btrfsic_mutex);
2800	/* since btrfsic_submit_bio() is also called before
2801	 * btrfsic_mount(), this might return NULL */
2802	dev_state = btrfsic_dev_state_lookup(bio_dev(bio) + bio->bi_partno);
2803	if (NULL != dev_state &&
2804	    (bio_op(bio) == REQ_OP_WRITE) && bio_has_data(bio)) {
2805		unsigned int i = 0;
2806		u64 dev_bytenr;
2807		u64 cur_bytenr;
2808		struct bio_vec bvec;
2809		struct bvec_iter iter;
2810		int bio_is_patched;
2811		char **mapped_datav;
2812		unsigned int segs = bio_segments(bio);
2813
2814		dev_bytenr = 512 * bio->bi_iter.bi_sector;
2815		bio_is_patched = 0;
2816		if (dev_state->state->print_mask &
2817		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2818			pr_info("submit_bio(rw=%d,0x%x, bi_vcnt=%u, bi_sector=%llu (bytenr %llu), bi_disk=%p)\n",
2819			       bio_op(bio), bio->bi_opf, segs,
 
 
2820			       (unsigned long long)bio->bi_iter.bi_sector,
2821			       dev_bytenr, bio->bi_disk);
2822
2823		mapped_datav = kmalloc_array(segs,
2824					     sizeof(*mapped_datav), GFP_NOFS);
2825		if (!mapped_datav)
2826			goto leave;
2827		cur_bytenr = dev_bytenr;
2828
2829		bio_for_each_segment(bvec, bio, iter) {
2830			BUG_ON(bvec.bv_len != PAGE_SIZE);
2831			mapped_datav[i] = kmap(bvec.bv_page);
2832			i++;
2833
 
 
 
 
 
2834			if (dev_state->state->print_mask &
2835			    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE)
2836				pr_info("#%u: bytenr=%llu, len=%u, offset=%u\n",
2837				       i, cur_bytenr, bvec.bv_len, bvec.bv_offset);
2838			cur_bytenr += bvec.bv_len;
 
 
2839		}
2840		btrfsic_process_written_block(dev_state, dev_bytenr,
2841					      mapped_datav, segs,
2842					      bio, &bio_is_patched,
2843					      NULL, bio->bi_opf);
2844		bio_for_each_segment(bvec, bio, iter)
2845			kunmap(bvec.bv_page);
 
 
2846		kfree(mapped_datav);
2847	} else if (NULL != dev_state && (bio->bi_opf & REQ_PREFLUSH)) {
2848		if (dev_state->state->print_mask &
2849		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2850			pr_info("submit_bio(rw=%d,0x%x FLUSH, disk=%p)\n",
2851			       bio_op(bio), bio->bi_opf, bio->bi_disk);
 
2852		if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
2853			if ((dev_state->state->print_mask &
2854			     (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2855			      BTRFSIC_PRINT_MASK_VERBOSE)))
2856				pr_info("btrfsic_submit_bio(%s) with FLUSH but dummy block already in use (ignored)!\n",
 
 
 
2857				       dev_state->name);
2858		} else {
2859			struct btrfsic_block *const block =
2860				&dev_state->dummy_block_for_bio_bh_flush;
2861
2862			block->is_iodone = 0;
2863			block->never_written = 0;
2864			block->iodone_w_error = 0;
2865			block->flush_gen = dev_state->last_flush_gen + 1;
2866			block->submit_bio_bh_rw = bio->bi_opf;
2867			block->orig_bio_bh_private = bio->bi_private;
2868			block->orig_bio_bh_end_io.bio = bio->bi_end_io;
2869			block->next_in_same_bio = NULL;
2870			bio->bi_private = block;
2871			bio->bi_end_io = btrfsic_bio_end_io;
2872		}
2873	}
2874leave:
2875	mutex_unlock(&btrfsic_mutex);
2876}
2877
2878void btrfsic_submit_bio(struct bio *bio)
2879{
2880	__btrfsic_submit_bio(bio);
2881	submit_bio(bio);
2882}
2883
2884int btrfsic_submit_bio_wait(struct bio *bio)
2885{
2886	__btrfsic_submit_bio(bio);
2887	return submit_bio_wait(bio);
2888}
2889
2890int btrfsic_mount(struct btrfs_fs_info *fs_info,
2891		  struct btrfs_fs_devices *fs_devices,
2892		  int including_extent_data, u32 print_mask)
2893{
2894	int ret;
2895	struct btrfsic_state *state;
2896	struct list_head *dev_head = &fs_devices->devices;
2897	struct btrfs_device *device;
2898
2899	if (!PAGE_ALIGNED(fs_info->nodesize)) {
2900		pr_info("btrfsic: cannot handle nodesize %d not being a multiple of PAGE_SIZE %ld!\n",
2901		       fs_info->nodesize, PAGE_SIZE);
 
2902		return -1;
2903	}
2904	if (!PAGE_ALIGNED(fs_info->sectorsize)) {
2905		pr_info("btrfsic: cannot handle sectorsize %d not being a multiple of PAGE_SIZE %ld!\n",
2906		       fs_info->sectorsize, PAGE_SIZE);
 
2907		return -1;
2908	}
2909	state = kvzalloc(sizeof(*state), GFP_KERNEL);
2910	if (!state) {
2911		pr_info("btrfs check-integrity: allocation failed!\n");
2912		return -ENOMEM;
 
 
 
2913	}
2914
2915	if (!btrfsic_is_initialized) {
2916		mutex_init(&btrfsic_mutex);
2917		btrfsic_dev_state_hashtable_init(&btrfsic_dev_state_hashtable);
2918		btrfsic_is_initialized = 1;
2919	}
2920	mutex_lock(&btrfsic_mutex);
2921	state->fs_info = fs_info;
2922	state->print_mask = print_mask;
2923	state->include_extent_data = including_extent_data;
2924	state->csum_size = 0;
2925	state->metablock_size = fs_info->nodesize;
2926	state->datablock_size = fs_info->sectorsize;
2927	INIT_LIST_HEAD(&state->all_blocks_list);
2928	btrfsic_block_hashtable_init(&state->block_hashtable);
2929	btrfsic_block_link_hashtable_init(&state->block_link_hashtable);
2930	state->max_superblock_generation = 0;
2931	state->latest_superblock = NULL;
2932
2933	list_for_each_entry(device, dev_head, dev_list) {
2934		struct btrfsic_dev_state *ds;
2935		const char *p;
2936
2937		if (!device->bdev || !device->name)
2938			continue;
2939
2940		ds = btrfsic_dev_state_alloc();
2941		if (NULL == ds) {
2942			pr_info("btrfs check-integrity: kmalloc() failed!\n");
 
2943			mutex_unlock(&btrfsic_mutex);
2944			return -ENOMEM;
2945		}
2946		ds->bdev = device->bdev;
2947		ds->state = state;
2948		bdevname(ds->bdev, ds->name);
2949		ds->name[BDEVNAME_SIZE - 1] = '\0';
2950		p = kbasename(ds->name);
2951		strlcpy(ds->name, p, sizeof(ds->name));
2952		btrfsic_dev_state_hashtable_add(ds,
2953						&btrfsic_dev_state_hashtable);
2954	}
2955
2956	ret = btrfsic_process_superblock(state, fs_devices);
2957	if (0 != ret) {
2958		mutex_unlock(&btrfsic_mutex);
2959		btrfsic_unmount(fs_devices);
2960		return ret;
2961	}
2962
2963	if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_DATABASE)
2964		btrfsic_dump_database(state);
2965	if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_TREE)
2966		btrfsic_dump_tree(state);
2967
2968	mutex_unlock(&btrfsic_mutex);
2969	return 0;
2970}
2971
2972void btrfsic_unmount(struct btrfs_fs_devices *fs_devices)
 
2973{
2974	struct btrfsic_block *b_all, *tmp_all;
2975	struct btrfsic_state *state;
2976	struct list_head *dev_head = &fs_devices->devices;
2977	struct btrfs_device *device;
2978
2979	if (!btrfsic_is_initialized)
2980		return;
2981
2982	mutex_lock(&btrfsic_mutex);
2983
2984	state = NULL;
2985	list_for_each_entry(device, dev_head, dev_list) {
2986		struct btrfsic_dev_state *ds;
2987
2988		if (!device->bdev || !device->name)
2989			continue;
2990
2991		ds = btrfsic_dev_state_hashtable_lookup(
2992				device->bdev->bd_dev,
2993				&btrfsic_dev_state_hashtable);
2994		if (NULL != ds) {
2995			state = ds->state;
2996			btrfsic_dev_state_hashtable_remove(ds);
2997			btrfsic_dev_state_free(ds);
2998		}
2999	}
3000
3001	if (NULL == state) {
3002		pr_info("btrfsic: error, cannot find state information on umount!\n");
 
 
3003		mutex_unlock(&btrfsic_mutex);
3004		return;
3005	}
3006
3007	/*
3008	 * Don't care about keeping the lists' state up to date,
3009	 * just free all memory that was allocated dynamically.
3010	 * Free the blocks and the block_links.
3011	 */
3012	list_for_each_entry_safe(b_all, tmp_all, &state->all_blocks_list,
3013				 all_blocks_node) {
3014		struct btrfsic_block_link *l, *tmp;
3015
3016		list_for_each_entry_safe(l, tmp, &b_all->ref_to_list,
3017					 node_ref_to) {
3018			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
3019				btrfsic_print_rem_link(state, l);
3020
3021			l->ref_cnt--;
3022			if (0 == l->ref_cnt)
3023				btrfsic_block_link_free(l);
3024		}
3025
3026		if (b_all->is_iodone || b_all->never_written)
3027			btrfsic_block_free(b_all);
3028		else
3029			pr_info("btrfs: attempt to free %c-block @%llu (%s/%llu/%d) on umount which is not yet iodone!\n",
 
 
3030			       btrfsic_get_block_type(state, b_all),
3031			       b_all->logical_bytenr, b_all->dev_state->name,
3032			       b_all->dev_bytenr, b_all->mirror_num);
3033	}
3034
3035	mutex_unlock(&btrfsic_mutex);
3036
3037	kvfree(state);
3038}
v4.6
 
   1/*
   2 * Copyright (C) STRATO AG 2011.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19/*
  20 * This module can be used to catch cases when the btrfs kernel
  21 * code executes write requests to the disk that bring the file
  22 * system in an inconsistent state. In such a state, a power-loss
  23 * or kernel panic event would cause that the data on disk is
  24 * lost or at least damaged.
  25 *
  26 * Code is added that examines all block write requests during
  27 * runtime (including writes of the super block). Three rules
  28 * are verified and an error is printed on violation of the
  29 * rules:
  30 * 1. It is not allowed to write a disk block which is
  31 *    currently referenced by the super block (either directly
  32 *    or indirectly).
  33 * 2. When a super block is written, it is verified that all
  34 *    referenced (directly or indirectly) blocks fulfill the
  35 *    following requirements:
  36 *    2a. All referenced blocks have either been present when
  37 *        the file system was mounted, (i.e., they have been
  38 *        referenced by the super block) or they have been
  39 *        written since then and the write completion callback
  40 *        was called and no write error was indicated and a
  41 *        FLUSH request to the device where these blocks are
  42 *        located was received and completed.
  43 *    2b. All referenced blocks need to have a generation
  44 *        number which is equal to the parent's number.
  45 *
  46 * One issue that was found using this module was that the log
  47 * tree on disk became temporarily corrupted because disk blocks
  48 * that had been in use for the log tree had been freed and
  49 * reused too early, while being referenced by the written super
  50 * block.
  51 *
  52 * The search term in the kernel log that can be used to filter
  53 * on the existence of detected integrity issues is
  54 * "btrfs: attempt".
  55 *
  56 * The integrity check is enabled via mount options. These
  57 * mount options are only supported if the integrity check
  58 * tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY.
  59 *
  60 * Example #1, apply integrity checks to all metadata:
  61 * mount /dev/sdb1 /mnt -o check_int
  62 *
  63 * Example #2, apply integrity checks to all metadata and
  64 * to data extents:
  65 * mount /dev/sdb1 /mnt -o check_int_data
  66 *
  67 * Example #3, apply integrity checks to all metadata and dump
  68 * the tree that the super block references to kernel messages
  69 * each time after a super block was written:
  70 * mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263
  71 *
  72 * If the integrity check tool is included and activated in
  73 * the mount options, plenty of kernel memory is used, and
  74 * plenty of additional CPU cycles are spent. Enabling this
  75 * functionality is not intended for normal use. In most
  76 * cases, unless you are a btrfs developer who needs to verify
  77 * the integrity of (super)-block write requests, do not
  78 * enable the config option BTRFS_FS_CHECK_INTEGRITY to
  79 * include and compile the integrity check tool.
  80 *
  81 * Expect millions of lines of information in the kernel log with an
  82 * enabled check_int_print_mask. Therefore set LOG_BUF_SHIFT in the
  83 * kernel config to at least 26 (which is 64MB). Usually the value is
  84 * limited to 21 (which is 2MB) in init/Kconfig. The file needs to be
  85 * changed like this before LOG_BUF_SHIFT can be set to a high value:
  86 * config LOG_BUF_SHIFT
  87 *       int "Kernel log buffer size (16 => 64KB, 17 => 128KB)"
  88 *       range 12 30
  89 */
  90
  91#include <linux/sched.h>
  92#include <linux/slab.h>
  93#include <linux/buffer_head.h>
  94#include <linux/mutex.h>
  95#include <linux/genhd.h>
  96#include <linux/blkdev.h>
  97#include <linux/vmalloc.h>
  98#include <linux/string.h>
 
  99#include "ctree.h"
 100#include "disk-io.h"
 101#include "hash.h"
 102#include "transaction.h"
 103#include "extent_io.h"
 104#include "volumes.h"
 105#include "print-tree.h"
 106#include "locking.h"
 107#include "check-integrity.h"
 108#include "rcu-string.h"
 109#include "compression.h"
 110
 111#define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000
 112#define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000
 113#define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100
 114#define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051
 115#define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807
 116#define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530
 117#define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300
 118#define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6)	/* in characters,
 119							 * excluding " [...]" */
 120#define BTRFSIC_GENERATION_UNKNOWN ((u64)-1)
 121
 122/*
 123 * The definition of the bitmask fields for the print_mask.
 124 * They are specified with the mount option check_integrity_print_mask.
 125 */
 126#define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE			0x00000001
 127#define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION		0x00000002
 128#define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE			0x00000004
 129#define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE			0x00000008
 130#define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH			0x00000010
 131#define BTRFSIC_PRINT_MASK_END_IO_BIO_BH			0x00000020
 132#define BTRFSIC_PRINT_MASK_VERBOSE				0x00000040
 133#define BTRFSIC_PRINT_MASK_VERY_VERBOSE				0x00000080
 134#define BTRFSIC_PRINT_MASK_INITIAL_TREE				0x00000100
 135#define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES			0x00000200
 136#define BTRFSIC_PRINT_MASK_INITIAL_DATABASE			0x00000400
 137#define BTRFSIC_PRINT_MASK_NUM_COPIES				0x00000800
 138#define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS		0x00001000
 139#define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE		0x00002000
 140
 141struct btrfsic_dev_state;
 142struct btrfsic_state;
 143
 144struct btrfsic_block {
 145	u32 magic_num;		/* only used for debug purposes */
 146	unsigned int is_metadata:1;	/* if it is meta-data, not data-data */
 147	unsigned int is_superblock:1;	/* if it is one of the superblocks */
 148	unsigned int is_iodone:1;	/* if is done by lower subsystem */
 149	unsigned int iodone_w_error:1;	/* error was indicated to endio */
 150	unsigned int never_written:1;	/* block was added because it was
 151					 * referenced, not because it was
 152					 * written */
 153	unsigned int mirror_num;	/* large enough to hold
 154					 * BTRFS_SUPER_MIRROR_MAX */
 155	struct btrfsic_dev_state *dev_state;
 156	u64 dev_bytenr;		/* key, physical byte num on disk */
 157	u64 logical_bytenr;	/* logical byte num on disk */
 158	u64 generation;
 159	struct btrfs_disk_key disk_key;	/* extra info to print in case of
 160					 * issues, will not always be correct */
 161	struct list_head collision_resolving_node;	/* list node */
 162	struct list_head all_blocks_node;	/* list node */
 163
 164	/* the following two lists contain block_link items */
 165	struct list_head ref_to_list;	/* list */
 166	struct list_head ref_from_list;	/* list */
 167	struct btrfsic_block *next_in_same_bio;
 168	void *orig_bio_bh_private;
 169	union {
 170		bio_end_io_t *bio;
 171		bh_end_io_t *bh;
 172	} orig_bio_bh_end_io;
 173	int submit_bio_bh_rw;
 174	u64 flush_gen; /* only valid if !never_written */
 175};
 176
 177/*
 178 * Elements of this type are allocated dynamically and required because
 179 * each block object can refer to and can be ref from multiple blocks.
 180 * The key to lookup them in the hashtable is the dev_bytenr of
 181 * the block ref to plus the one from the block referred from.
 182 * The fact that they are searchable via a hashtable and that a
 183 * ref_cnt is maintained is not required for the btrfs integrity
 184 * check algorithm itself, it is only used to make the output more
 185 * beautiful in case that an error is detected (an error is defined
 186 * as a write operation to a block while that block is still referenced).
 187 */
 188struct btrfsic_block_link {
 189	u32 magic_num;		/* only used for debug purposes */
 190	u32 ref_cnt;
 191	struct list_head node_ref_to;	/* list node */
 192	struct list_head node_ref_from;	/* list node */
 193	struct list_head collision_resolving_node;	/* list node */
 194	struct btrfsic_block *block_ref_to;
 195	struct btrfsic_block *block_ref_from;
 196	u64 parent_generation;
 197};
 198
 199struct btrfsic_dev_state {
 200	u32 magic_num;		/* only used for debug purposes */
 201	struct block_device *bdev;
 202	struct btrfsic_state *state;
 203	struct list_head collision_resolving_node;	/* list node */
 204	struct btrfsic_block dummy_block_for_bio_bh_flush;
 205	u64 last_flush_gen;
 206	char name[BDEVNAME_SIZE];
 207};
 208
 209struct btrfsic_block_hashtable {
 210	struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE];
 211};
 212
 213struct btrfsic_block_link_hashtable {
 214	struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE];
 215};
 216
 217struct btrfsic_dev_state_hashtable {
 218	struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE];
 219};
 220
 221struct btrfsic_block_data_ctx {
 222	u64 start;		/* virtual bytenr */
 223	u64 dev_bytenr;		/* physical bytenr on device */
 224	u32 len;
 225	struct btrfsic_dev_state *dev;
 226	char **datav;
 227	struct page **pagev;
 228	void *mem_to_free;
 229};
 230
 231/* This structure is used to implement recursion without occupying
 232 * any stack space, refer to btrfsic_process_metablock() */
 233struct btrfsic_stack_frame {
 234	u32 magic;
 235	u32 nr;
 236	int error;
 237	int i;
 238	int limit_nesting;
 239	int num_copies;
 240	int mirror_num;
 241	struct btrfsic_block *block;
 242	struct btrfsic_block_data_ctx *block_ctx;
 243	struct btrfsic_block *next_block;
 244	struct btrfsic_block_data_ctx next_block_ctx;
 245	struct btrfs_header *hdr;
 246	struct btrfsic_stack_frame *prev;
 247};
 248
 249/* Some state per mounted filesystem */
 250struct btrfsic_state {
 251	u32 print_mask;
 252	int include_extent_data;
 253	int csum_size;
 254	struct list_head all_blocks_list;
 255	struct btrfsic_block_hashtable block_hashtable;
 256	struct btrfsic_block_link_hashtable block_link_hashtable;
 257	struct btrfs_root *root;
 258	u64 max_superblock_generation;
 259	struct btrfsic_block *latest_superblock;
 260	u32 metablock_size;
 261	u32 datablock_size;
 262};
 263
 264static void btrfsic_block_init(struct btrfsic_block *b);
 265static struct btrfsic_block *btrfsic_block_alloc(void);
 266static void btrfsic_block_free(struct btrfsic_block *b);
 267static void btrfsic_block_link_init(struct btrfsic_block_link *n);
 268static struct btrfsic_block_link *btrfsic_block_link_alloc(void);
 269static void btrfsic_block_link_free(struct btrfsic_block_link *n);
 270static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds);
 271static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void);
 272static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds);
 273static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h);
 274static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
 275					struct btrfsic_block_hashtable *h);
 276static void btrfsic_block_hashtable_remove(struct btrfsic_block *b);
 277static struct btrfsic_block *btrfsic_block_hashtable_lookup(
 278		struct block_device *bdev,
 279		u64 dev_bytenr,
 280		struct btrfsic_block_hashtable *h);
 281static void btrfsic_block_link_hashtable_init(
 282		struct btrfsic_block_link_hashtable *h);
 283static void btrfsic_block_link_hashtable_add(
 284		struct btrfsic_block_link *l,
 285		struct btrfsic_block_link_hashtable *h);
 286static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l);
 287static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
 288		struct block_device *bdev_ref_to,
 289		u64 dev_bytenr_ref_to,
 290		struct block_device *bdev_ref_from,
 291		u64 dev_bytenr_ref_from,
 292		struct btrfsic_block_link_hashtable *h);
 293static void btrfsic_dev_state_hashtable_init(
 294		struct btrfsic_dev_state_hashtable *h);
 295static void btrfsic_dev_state_hashtable_add(
 296		struct btrfsic_dev_state *ds,
 297		struct btrfsic_dev_state_hashtable *h);
 298static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds);
 299static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
 300		struct block_device *bdev,
 301		struct btrfsic_dev_state_hashtable *h);
 302static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void);
 303static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf);
 304static int btrfsic_process_superblock(struct btrfsic_state *state,
 305				      struct btrfs_fs_devices *fs_devices);
 306static int btrfsic_process_metablock(struct btrfsic_state *state,
 307				     struct btrfsic_block *block,
 308				     struct btrfsic_block_data_ctx *block_ctx,
 309				     int limit_nesting, int force_iodone_flag);
 310static void btrfsic_read_from_block_data(
 311	struct btrfsic_block_data_ctx *block_ctx,
 312	void *dst, u32 offset, size_t len);
 313static int btrfsic_create_link_to_next_block(
 314		struct btrfsic_state *state,
 315		struct btrfsic_block *block,
 316		struct btrfsic_block_data_ctx
 317		*block_ctx, u64 next_bytenr,
 318		int limit_nesting,
 319		struct btrfsic_block_data_ctx *next_block_ctx,
 320		struct btrfsic_block **next_blockp,
 321		int force_iodone_flag,
 322		int *num_copiesp, int *mirror_nump,
 323		struct btrfs_disk_key *disk_key,
 324		u64 parent_generation);
 325static int btrfsic_handle_extent_data(struct btrfsic_state *state,
 326				      struct btrfsic_block *block,
 327				      struct btrfsic_block_data_ctx *block_ctx,
 328				      u32 item_offset, int force_iodone_flag);
 329static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
 330			     struct btrfsic_block_data_ctx *block_ctx_out,
 331			     int mirror_num);
 332static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx);
 333static int btrfsic_read_block(struct btrfsic_state *state,
 334			      struct btrfsic_block_data_ctx *block_ctx);
 335static void btrfsic_dump_database(struct btrfsic_state *state);
 336static int btrfsic_test_for_metadata(struct btrfsic_state *state,
 337				     char **datav, unsigned int num_pages);
 338static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
 339					  u64 dev_bytenr, char **mapped_datav,
 340					  unsigned int num_pages,
 341					  struct bio *bio, int *bio_is_patched,
 342					  struct buffer_head *bh,
 343					  int submit_bio_bh_rw);
 344static int btrfsic_process_written_superblock(
 345		struct btrfsic_state *state,
 346		struct btrfsic_block *const block,
 347		struct btrfs_super_block *const super_hdr);
 348static void btrfsic_bio_end_io(struct bio *bp);
 349static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate);
 350static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state,
 351					      const struct btrfsic_block *block,
 352					      int recursion_level);
 353static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
 354					struct btrfsic_block *const block,
 355					int recursion_level);
 356static void btrfsic_print_add_link(const struct btrfsic_state *state,
 357				   const struct btrfsic_block_link *l);
 358static void btrfsic_print_rem_link(const struct btrfsic_state *state,
 359				   const struct btrfsic_block_link *l);
 360static char btrfsic_get_block_type(const struct btrfsic_state *state,
 361				   const struct btrfsic_block *block);
 362static void btrfsic_dump_tree(const struct btrfsic_state *state);
 363static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
 364				  const struct btrfsic_block *block,
 365				  int indent_level);
 366static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
 367		struct btrfsic_state *state,
 368		struct btrfsic_block_data_ctx *next_block_ctx,
 369		struct btrfsic_block *next_block,
 370		struct btrfsic_block *from_block,
 371		u64 parent_generation);
 372static struct btrfsic_block *btrfsic_block_lookup_or_add(
 373		struct btrfsic_state *state,
 374		struct btrfsic_block_data_ctx *block_ctx,
 375		const char *additional_string,
 376		int is_metadata,
 377		int is_iodone,
 378		int never_written,
 379		int mirror_num,
 380		int *was_created);
 381static int btrfsic_process_superblock_dev_mirror(
 382		struct btrfsic_state *state,
 383		struct btrfsic_dev_state *dev_state,
 384		struct btrfs_device *device,
 385		int superblock_mirror_num,
 386		struct btrfsic_dev_state **selected_dev_state,
 387		struct btrfs_super_block *selected_super);
 388static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
 389		struct block_device *bdev);
 390static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
 391					   u64 bytenr,
 392					   struct btrfsic_dev_state *dev_state,
 393					   u64 dev_bytenr);
 394
 395static struct mutex btrfsic_mutex;
 396static int btrfsic_is_initialized;
 397static struct btrfsic_dev_state_hashtable btrfsic_dev_state_hashtable;
 398
 399
 400static void btrfsic_block_init(struct btrfsic_block *b)
 401{
 402	b->magic_num = BTRFSIC_BLOCK_MAGIC_NUMBER;
 403	b->dev_state = NULL;
 404	b->dev_bytenr = 0;
 405	b->logical_bytenr = 0;
 406	b->generation = BTRFSIC_GENERATION_UNKNOWN;
 407	b->disk_key.objectid = 0;
 408	b->disk_key.type = 0;
 409	b->disk_key.offset = 0;
 410	b->is_metadata = 0;
 411	b->is_superblock = 0;
 412	b->is_iodone = 0;
 413	b->iodone_w_error = 0;
 414	b->never_written = 0;
 415	b->mirror_num = 0;
 416	b->next_in_same_bio = NULL;
 417	b->orig_bio_bh_private = NULL;
 418	b->orig_bio_bh_end_io.bio = NULL;
 419	INIT_LIST_HEAD(&b->collision_resolving_node);
 420	INIT_LIST_HEAD(&b->all_blocks_node);
 421	INIT_LIST_HEAD(&b->ref_to_list);
 422	INIT_LIST_HEAD(&b->ref_from_list);
 423	b->submit_bio_bh_rw = 0;
 424	b->flush_gen = 0;
 425}
 426
 427static struct btrfsic_block *btrfsic_block_alloc(void)
 428{
 429	struct btrfsic_block *b;
 430
 431	b = kzalloc(sizeof(*b), GFP_NOFS);
 432	if (NULL != b)
 433		btrfsic_block_init(b);
 434
 435	return b;
 436}
 437
 438static void btrfsic_block_free(struct btrfsic_block *b)
 439{
 440	BUG_ON(!(NULL == b || BTRFSIC_BLOCK_MAGIC_NUMBER == b->magic_num));
 441	kfree(b);
 442}
 443
 444static void btrfsic_block_link_init(struct btrfsic_block_link *l)
 445{
 446	l->magic_num = BTRFSIC_BLOCK_LINK_MAGIC_NUMBER;
 447	l->ref_cnt = 1;
 448	INIT_LIST_HEAD(&l->node_ref_to);
 449	INIT_LIST_HEAD(&l->node_ref_from);
 450	INIT_LIST_HEAD(&l->collision_resolving_node);
 451	l->block_ref_to = NULL;
 452	l->block_ref_from = NULL;
 453}
 454
 455static struct btrfsic_block_link *btrfsic_block_link_alloc(void)
 456{
 457	struct btrfsic_block_link *l;
 458
 459	l = kzalloc(sizeof(*l), GFP_NOFS);
 460	if (NULL != l)
 461		btrfsic_block_link_init(l);
 462
 463	return l;
 464}
 465
 466static void btrfsic_block_link_free(struct btrfsic_block_link *l)
 467{
 468	BUG_ON(!(NULL == l || BTRFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num));
 469	kfree(l);
 470}
 471
 472static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds)
 473{
 474	ds->magic_num = BTRFSIC_DEV2STATE_MAGIC_NUMBER;
 475	ds->bdev = NULL;
 476	ds->state = NULL;
 477	ds->name[0] = '\0';
 478	INIT_LIST_HEAD(&ds->collision_resolving_node);
 479	ds->last_flush_gen = 0;
 480	btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush);
 481	ds->dummy_block_for_bio_bh_flush.is_iodone = 1;
 482	ds->dummy_block_for_bio_bh_flush.dev_state = ds;
 483}
 484
 485static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void)
 486{
 487	struct btrfsic_dev_state *ds;
 488
 489	ds = kzalloc(sizeof(*ds), GFP_NOFS);
 490	if (NULL != ds)
 491		btrfsic_dev_state_init(ds);
 492
 493	return ds;
 494}
 495
 496static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds)
 497{
 498	BUG_ON(!(NULL == ds ||
 499		 BTRFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num));
 500	kfree(ds);
 501}
 502
 503static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h)
 504{
 505	int i;
 506
 507	for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++)
 508		INIT_LIST_HEAD(h->table + i);
 509}
 510
 511static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
 512					struct btrfsic_block_hashtable *h)
 513{
 514	const unsigned int hashval =
 515	    (((unsigned int)(b->dev_bytenr >> 16)) ^
 516	     ((unsigned int)((uintptr_t)b->dev_state->bdev))) &
 517	     (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
 518
 519	list_add(&b->collision_resolving_node, h->table + hashval);
 520}
 521
 522static void btrfsic_block_hashtable_remove(struct btrfsic_block *b)
 523{
 524	list_del(&b->collision_resolving_node);
 525}
 526
 527static struct btrfsic_block *btrfsic_block_hashtable_lookup(
 528		struct block_device *bdev,
 529		u64 dev_bytenr,
 530		struct btrfsic_block_hashtable *h)
 531{
 532	const unsigned int hashval =
 533	    (((unsigned int)(dev_bytenr >> 16)) ^
 534	     ((unsigned int)((uintptr_t)bdev))) &
 535	     (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
 536	struct btrfsic_block *b;
 537
 538	list_for_each_entry(b, h->table + hashval, collision_resolving_node) {
 539		if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr)
 540			return b;
 541	}
 542
 543	return NULL;
 544}
 545
 546static void btrfsic_block_link_hashtable_init(
 547		struct btrfsic_block_link_hashtable *h)
 548{
 549	int i;
 550
 551	for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++)
 552		INIT_LIST_HEAD(h->table + i);
 553}
 554
 555static void btrfsic_block_link_hashtable_add(
 556		struct btrfsic_block_link *l,
 557		struct btrfsic_block_link_hashtable *h)
 558{
 559	const unsigned int hashval =
 560	    (((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^
 561	     ((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^
 562	     ((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^
 563	     ((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev)))
 564	     & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
 565
 566	BUG_ON(NULL == l->block_ref_to);
 567	BUG_ON(NULL == l->block_ref_from);
 568	list_add(&l->collision_resolving_node, h->table + hashval);
 569}
 570
 571static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l)
 572{
 573	list_del(&l->collision_resolving_node);
 574}
 575
 576static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
 577		struct block_device *bdev_ref_to,
 578		u64 dev_bytenr_ref_to,
 579		struct block_device *bdev_ref_from,
 580		u64 dev_bytenr_ref_from,
 581		struct btrfsic_block_link_hashtable *h)
 582{
 583	const unsigned int hashval =
 584	    (((unsigned int)(dev_bytenr_ref_to >> 16)) ^
 585	     ((unsigned int)(dev_bytenr_ref_from >> 16)) ^
 586	     ((unsigned int)((uintptr_t)bdev_ref_to)) ^
 587	     ((unsigned int)((uintptr_t)bdev_ref_from))) &
 588	     (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
 589	struct btrfsic_block_link *l;
 590
 591	list_for_each_entry(l, h->table + hashval, collision_resolving_node) {
 592		BUG_ON(NULL == l->block_ref_to);
 593		BUG_ON(NULL == l->block_ref_from);
 594		if (l->block_ref_to->dev_state->bdev == bdev_ref_to &&
 595		    l->block_ref_to->dev_bytenr == dev_bytenr_ref_to &&
 596		    l->block_ref_from->dev_state->bdev == bdev_ref_from &&
 597		    l->block_ref_from->dev_bytenr == dev_bytenr_ref_from)
 598			return l;
 599	}
 600
 601	return NULL;
 602}
 603
 604static void btrfsic_dev_state_hashtable_init(
 605		struct btrfsic_dev_state_hashtable *h)
 606{
 607	int i;
 608
 609	for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++)
 610		INIT_LIST_HEAD(h->table + i);
 611}
 612
 613static void btrfsic_dev_state_hashtable_add(
 614		struct btrfsic_dev_state *ds,
 615		struct btrfsic_dev_state_hashtable *h)
 616{
 617	const unsigned int hashval =
 618	    (((unsigned int)((uintptr_t)ds->bdev)) &
 619	     (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
 620
 621	list_add(&ds->collision_resolving_node, h->table + hashval);
 622}
 623
 624static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds)
 625{
 626	list_del(&ds->collision_resolving_node);
 627}
 628
 629static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
 630		struct block_device *bdev,
 631		struct btrfsic_dev_state_hashtable *h)
 632{
 633	const unsigned int hashval =
 634	    (((unsigned int)((uintptr_t)bdev)) &
 635	     (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
 636	struct btrfsic_dev_state *ds;
 637
 638	list_for_each_entry(ds, h->table + hashval, collision_resolving_node) {
 639		if (ds->bdev == bdev)
 640			return ds;
 641	}
 642
 643	return NULL;
 644}
 645
 646static int btrfsic_process_superblock(struct btrfsic_state *state,
 647				      struct btrfs_fs_devices *fs_devices)
 648{
 649	int ret = 0;
 650	struct btrfs_super_block *selected_super;
 651	struct list_head *dev_head = &fs_devices->devices;
 652	struct btrfs_device *device;
 653	struct btrfsic_dev_state *selected_dev_state = NULL;
 
 654	int pass;
 655
 656	BUG_ON(NULL == state);
 657	selected_super = kzalloc(sizeof(*selected_super), GFP_NOFS);
 658	if (NULL == selected_super) {
 659		printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
 660		return -ENOMEM;
 661	}
 662
 663	list_for_each_entry(device, dev_head, dev_list) {
 664		int i;
 665		struct btrfsic_dev_state *dev_state;
 666
 667		if (!device->bdev || !device->name)
 668			continue;
 669
 670		dev_state = btrfsic_dev_state_lookup(device->bdev);
 671		BUG_ON(NULL == dev_state);
 672		for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
 673			ret = btrfsic_process_superblock_dev_mirror(
 674					state, dev_state, device, i,
 675					&selected_dev_state, selected_super);
 676			if (0 != ret && 0 == i) {
 677				kfree(selected_super);
 678				return ret;
 679			}
 680		}
 681	}
 682
 683	if (NULL == state->latest_superblock) {
 684		printk(KERN_INFO "btrfsic: no superblock found!\n");
 685		kfree(selected_super);
 686		return -1;
 687	}
 688
 689	state->csum_size = btrfs_super_csum_size(selected_super);
 690
 691	for (pass = 0; pass < 3; pass++) {
 692		int num_copies;
 693		int mirror_num;
 694		u64 next_bytenr;
 695
 696		switch (pass) {
 697		case 0:
 698			next_bytenr = btrfs_super_root(selected_super);
 699			if (state->print_mask &
 700			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
 701				printk(KERN_INFO "root@%llu\n", next_bytenr);
 702			break;
 703		case 1:
 704			next_bytenr = btrfs_super_chunk_root(selected_super);
 705			if (state->print_mask &
 706			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
 707				printk(KERN_INFO "chunk@%llu\n", next_bytenr);
 708			break;
 709		case 2:
 710			next_bytenr = btrfs_super_log_root(selected_super);
 711			if (0 == next_bytenr)
 712				continue;
 713			if (state->print_mask &
 714			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
 715				printk(KERN_INFO "log@%llu\n", next_bytenr);
 716			break;
 717		}
 718
 719		num_copies =
 720		    btrfs_num_copies(state->root->fs_info,
 721				     next_bytenr, state->metablock_size);
 722		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
 723			printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
 724			       next_bytenr, num_copies);
 725
 726		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
 727			struct btrfsic_block *next_block;
 728			struct btrfsic_block_data_ctx tmp_next_block_ctx;
 729			struct btrfsic_block_link *l;
 730
 731			ret = btrfsic_map_block(state, next_bytenr,
 732						state->metablock_size,
 733						&tmp_next_block_ctx,
 734						mirror_num);
 735			if (ret) {
 736				printk(KERN_INFO "btrfsic:"
 737				       " btrfsic_map_block(root @%llu,"
 738				       " mirror %d) failed!\n",
 739				       next_bytenr, mirror_num);
 740				kfree(selected_super);
 741				return -1;
 742			}
 743
 744			next_block = btrfsic_block_hashtable_lookup(
 745					tmp_next_block_ctx.dev->bdev,
 746					tmp_next_block_ctx.dev_bytenr,
 747					&state->block_hashtable);
 748			BUG_ON(NULL == next_block);
 749
 750			l = btrfsic_block_link_hashtable_lookup(
 751					tmp_next_block_ctx.dev->bdev,
 752					tmp_next_block_ctx.dev_bytenr,
 753					state->latest_superblock->dev_state->
 754					bdev,
 755					state->latest_superblock->dev_bytenr,
 756					&state->block_link_hashtable);
 757			BUG_ON(NULL == l);
 758
 759			ret = btrfsic_read_block(state, &tmp_next_block_ctx);
 760			if (ret < (int)PAGE_SIZE) {
 761				printk(KERN_INFO
 762				       "btrfsic: read @logical %llu failed!\n",
 763				       tmp_next_block_ctx.start);
 764				btrfsic_release_block_ctx(&tmp_next_block_ctx);
 765				kfree(selected_super);
 766				return -1;
 767			}
 768
 769			ret = btrfsic_process_metablock(state,
 770							next_block,
 771							&tmp_next_block_ctx,
 772							BTRFS_MAX_LEVEL + 3, 1);
 773			btrfsic_release_block_ctx(&tmp_next_block_ctx);
 774		}
 775	}
 776
 777	kfree(selected_super);
 778	return ret;
 779}
 780
 781static int btrfsic_process_superblock_dev_mirror(
 782		struct btrfsic_state *state,
 783		struct btrfsic_dev_state *dev_state,
 784		struct btrfs_device *device,
 785		int superblock_mirror_num,
 786		struct btrfsic_dev_state **selected_dev_state,
 787		struct btrfs_super_block *selected_super)
 788{
 
 789	struct btrfs_super_block *super_tmp;
 790	u64 dev_bytenr;
 791	struct buffer_head *bh;
 792	struct btrfsic_block *superblock_tmp;
 793	int pass;
 794	struct block_device *const superblock_bdev = device->bdev;
 795
 796	/* super block bytenr is always the unmapped device bytenr */
 797	dev_bytenr = btrfs_sb_offset(superblock_mirror_num);
 798	if (dev_bytenr + BTRFS_SUPER_INFO_SIZE > device->commit_total_bytes)
 799		return -1;
 800	bh = __bread(superblock_bdev, dev_bytenr / 4096,
 801		     BTRFS_SUPER_INFO_SIZE);
 802	if (NULL == bh)
 803		return -1;
 804	super_tmp = (struct btrfs_super_block *)
 805	    (bh->b_data + (dev_bytenr & 4095));
 806
 807	if (btrfs_super_bytenr(super_tmp) != dev_bytenr ||
 808	    btrfs_super_magic(super_tmp) != BTRFS_MAGIC ||
 809	    memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE) ||
 810	    btrfs_super_nodesize(super_tmp) != state->metablock_size ||
 811	    btrfs_super_sectorsize(super_tmp) != state->datablock_size) {
 812		brelse(bh);
 813		return 0;
 814	}
 815
 816	superblock_tmp =
 817	    btrfsic_block_hashtable_lookup(superblock_bdev,
 818					   dev_bytenr,
 819					   &state->block_hashtable);
 820	if (NULL == superblock_tmp) {
 821		superblock_tmp = btrfsic_block_alloc();
 822		if (NULL == superblock_tmp) {
 823			printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
 824			brelse(bh);
 825			return -1;
 826		}
 827		/* for superblock, only the dev_bytenr makes sense */
 828		superblock_tmp->dev_bytenr = dev_bytenr;
 829		superblock_tmp->dev_state = dev_state;
 830		superblock_tmp->logical_bytenr = dev_bytenr;
 831		superblock_tmp->generation = btrfs_super_generation(super_tmp);
 832		superblock_tmp->is_metadata = 1;
 833		superblock_tmp->is_superblock = 1;
 834		superblock_tmp->is_iodone = 1;
 835		superblock_tmp->never_written = 0;
 836		superblock_tmp->mirror_num = 1 + superblock_mirror_num;
 837		if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
 838			btrfs_info_in_rcu(device->dev_root->fs_info,
 839				"new initial S-block (bdev %p, %s) @%llu (%s/%llu/%d)",
 840				     superblock_bdev,
 841				     rcu_str_deref(device->name), dev_bytenr,
 842				     dev_state->name, dev_bytenr,
 843				     superblock_mirror_num);
 844		list_add(&superblock_tmp->all_blocks_node,
 845			 &state->all_blocks_list);
 846		btrfsic_block_hashtable_add(superblock_tmp,
 847					    &state->block_hashtable);
 848	}
 849
 850	/* select the one with the highest generation field */
 851	if (btrfs_super_generation(super_tmp) >
 852	    state->max_superblock_generation ||
 853	    0 == state->max_superblock_generation) {
 854		memcpy(selected_super, super_tmp, sizeof(*selected_super));
 855		*selected_dev_state = dev_state;
 856		state->max_superblock_generation =
 857		    btrfs_super_generation(super_tmp);
 858		state->latest_superblock = superblock_tmp;
 859	}
 860
 861	for (pass = 0; pass < 3; pass++) {
 862		u64 next_bytenr;
 863		int num_copies;
 864		int mirror_num;
 865		const char *additional_string = NULL;
 866		struct btrfs_disk_key tmp_disk_key;
 867
 868		tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
 869		tmp_disk_key.offset = 0;
 870		switch (pass) {
 871		case 0:
 872			btrfs_set_disk_key_objectid(&tmp_disk_key,
 873						    BTRFS_ROOT_TREE_OBJECTID);
 874			additional_string = "initial root ";
 875			next_bytenr = btrfs_super_root(super_tmp);
 876			break;
 877		case 1:
 878			btrfs_set_disk_key_objectid(&tmp_disk_key,
 879						    BTRFS_CHUNK_TREE_OBJECTID);
 880			additional_string = "initial chunk ";
 881			next_bytenr = btrfs_super_chunk_root(super_tmp);
 882			break;
 883		case 2:
 884			btrfs_set_disk_key_objectid(&tmp_disk_key,
 885						    BTRFS_TREE_LOG_OBJECTID);
 886			additional_string = "initial log ";
 887			next_bytenr = btrfs_super_log_root(super_tmp);
 888			if (0 == next_bytenr)
 889				continue;
 890			break;
 891		}
 892
 893		num_copies =
 894		    btrfs_num_copies(state->root->fs_info,
 895				     next_bytenr, state->metablock_size);
 896		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
 897			printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
 898			       next_bytenr, num_copies);
 899		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
 900			struct btrfsic_block *next_block;
 901			struct btrfsic_block_data_ctx tmp_next_block_ctx;
 902			struct btrfsic_block_link *l;
 903
 904			if (btrfsic_map_block(state, next_bytenr,
 905					      state->metablock_size,
 906					      &tmp_next_block_ctx,
 907					      mirror_num)) {
 908				printk(KERN_INFO "btrfsic: btrfsic_map_block("
 909				       "bytenr @%llu, mirror %d) failed!\n",
 910				       next_bytenr, mirror_num);
 911				brelse(bh);
 912				return -1;
 913			}
 914
 915			next_block = btrfsic_block_lookup_or_add(
 916					state, &tmp_next_block_ctx,
 917					additional_string, 1, 1, 0,
 918					mirror_num, NULL);
 919			if (NULL == next_block) {
 920				btrfsic_release_block_ctx(&tmp_next_block_ctx);
 921				brelse(bh);
 922				return -1;
 923			}
 924
 925			next_block->disk_key = tmp_disk_key;
 926			next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
 927			l = btrfsic_block_link_lookup_or_add(
 928					state, &tmp_next_block_ctx,
 929					next_block, superblock_tmp,
 930					BTRFSIC_GENERATION_UNKNOWN);
 931			btrfsic_release_block_ctx(&tmp_next_block_ctx);
 932			if (NULL == l) {
 933				brelse(bh);
 934				return -1;
 935			}
 936		}
 937	}
 938	if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES)
 939		btrfsic_dump_tree_sub(state, superblock_tmp, 0);
 940
 941	brelse(bh);
 942	return 0;
 943}
 944
 945static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void)
 946{
 947	struct btrfsic_stack_frame *sf;
 948
 949	sf = kzalloc(sizeof(*sf), GFP_NOFS);
 950	if (NULL == sf)
 951		printk(KERN_INFO "btrfsic: alloc memory failed!\n");
 952	else
 953		sf->magic = BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER;
 954	return sf;
 955}
 956
 957static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf)
 958{
 959	BUG_ON(!(NULL == sf ||
 960		 BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic));
 961	kfree(sf);
 962}
 963
 964static int btrfsic_process_metablock(
 965		struct btrfsic_state *state,
 966		struct btrfsic_block *const first_block,
 967		struct btrfsic_block_data_ctx *const first_block_ctx,
 968		int first_limit_nesting, int force_iodone_flag)
 969{
 970	struct btrfsic_stack_frame initial_stack_frame = { 0 };
 971	struct btrfsic_stack_frame *sf;
 972	struct btrfsic_stack_frame *next_stack;
 973	struct btrfs_header *const first_hdr =
 974		(struct btrfs_header *)first_block_ctx->datav[0];
 975
 976	BUG_ON(!first_hdr);
 977	sf = &initial_stack_frame;
 978	sf->error = 0;
 979	sf->i = -1;
 980	sf->limit_nesting = first_limit_nesting;
 981	sf->block = first_block;
 982	sf->block_ctx = first_block_ctx;
 983	sf->next_block = NULL;
 984	sf->hdr = first_hdr;
 985	sf->prev = NULL;
 986
 987continue_with_new_stack_frame:
 988	sf->block->generation = le64_to_cpu(sf->hdr->generation);
 989	if (0 == sf->hdr->level) {
 990		struct btrfs_leaf *const leafhdr =
 991		    (struct btrfs_leaf *)sf->hdr;
 992
 993		if (-1 == sf->i) {
 994			sf->nr = btrfs_stack_header_nritems(&leafhdr->header);
 995
 996			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
 997				printk(KERN_INFO
 998				       "leaf %llu items %d generation %llu"
 999				       " owner %llu\n",
1000				       sf->block_ctx->start, sf->nr,
1001				       btrfs_stack_header_generation(
1002					       &leafhdr->header),
1003				       btrfs_stack_header_owner(
1004					       &leafhdr->header));
1005		}
1006
1007continue_with_current_leaf_stack_frame:
1008		if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1009			sf->i++;
1010			sf->num_copies = 0;
1011		}
1012
1013		if (sf->i < sf->nr) {
1014			struct btrfs_item disk_item;
1015			u32 disk_item_offset =
1016				(uintptr_t)(leafhdr->items + sf->i) -
1017				(uintptr_t)leafhdr;
1018			struct btrfs_disk_key *disk_key;
1019			u8 type;
1020			u32 item_offset;
1021			u32 item_size;
1022
1023			if (disk_item_offset + sizeof(struct btrfs_item) >
1024			    sf->block_ctx->len) {
1025leaf_item_out_of_bounce_error:
1026				printk(KERN_INFO
1027				       "btrfsic: leaf item out of bounce at logical %llu, dev %s\n",
1028				       sf->block_ctx->start,
1029				       sf->block_ctx->dev->name);
1030				goto one_stack_frame_backwards;
1031			}
1032			btrfsic_read_from_block_data(sf->block_ctx,
1033						     &disk_item,
1034						     disk_item_offset,
1035						     sizeof(struct btrfs_item));
1036			item_offset = btrfs_stack_item_offset(&disk_item);
1037			item_size = btrfs_stack_item_size(&disk_item);
1038			disk_key = &disk_item.key;
1039			type = btrfs_disk_key_type(disk_key);
1040
1041			if (BTRFS_ROOT_ITEM_KEY == type) {
1042				struct btrfs_root_item root_item;
1043				u32 root_item_offset;
1044				u64 next_bytenr;
1045
1046				root_item_offset = item_offset +
1047					offsetof(struct btrfs_leaf, items);
1048				if (root_item_offset + item_size >
1049				    sf->block_ctx->len)
1050					goto leaf_item_out_of_bounce_error;
1051				btrfsic_read_from_block_data(
1052					sf->block_ctx, &root_item,
1053					root_item_offset,
1054					item_size);
1055				next_bytenr = btrfs_root_bytenr(&root_item);
1056
1057				sf->error =
1058				    btrfsic_create_link_to_next_block(
1059						state,
1060						sf->block,
1061						sf->block_ctx,
1062						next_bytenr,
1063						sf->limit_nesting,
1064						&sf->next_block_ctx,
1065						&sf->next_block,
1066						force_iodone_flag,
1067						&sf->num_copies,
1068						&sf->mirror_num,
1069						disk_key,
1070						btrfs_root_generation(
1071						&root_item));
1072				if (sf->error)
1073					goto one_stack_frame_backwards;
1074
1075				if (NULL != sf->next_block) {
1076					struct btrfs_header *const next_hdr =
1077					    (struct btrfs_header *)
1078					    sf->next_block_ctx.datav[0];
1079
1080					next_stack =
1081					    btrfsic_stack_frame_alloc();
1082					if (NULL == next_stack) {
1083						sf->error = -1;
1084						btrfsic_release_block_ctx(
1085								&sf->
1086								next_block_ctx);
1087						goto one_stack_frame_backwards;
1088					}
1089
1090					next_stack->i = -1;
1091					next_stack->block = sf->next_block;
1092					next_stack->block_ctx =
1093					    &sf->next_block_ctx;
1094					next_stack->next_block = NULL;
1095					next_stack->hdr = next_hdr;
1096					next_stack->limit_nesting =
1097					    sf->limit_nesting - 1;
1098					next_stack->prev = sf;
1099					sf = next_stack;
1100					goto continue_with_new_stack_frame;
1101				}
1102			} else if (BTRFS_EXTENT_DATA_KEY == type &&
1103				   state->include_extent_data) {
1104				sf->error = btrfsic_handle_extent_data(
1105						state,
1106						sf->block,
1107						sf->block_ctx,
1108						item_offset,
1109						force_iodone_flag);
1110				if (sf->error)
1111					goto one_stack_frame_backwards;
1112			}
1113
1114			goto continue_with_current_leaf_stack_frame;
1115		}
1116	} else {
1117		struct btrfs_node *const nodehdr = (struct btrfs_node *)sf->hdr;
1118
1119		if (-1 == sf->i) {
1120			sf->nr = btrfs_stack_header_nritems(&nodehdr->header);
1121
1122			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1123				printk(KERN_INFO "node %llu level %d items %d"
1124				       " generation %llu owner %llu\n",
1125				       sf->block_ctx->start,
1126				       nodehdr->header.level, sf->nr,
1127				       btrfs_stack_header_generation(
1128				       &nodehdr->header),
1129				       btrfs_stack_header_owner(
1130				       &nodehdr->header));
1131		}
1132
1133continue_with_current_node_stack_frame:
1134		if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1135			sf->i++;
1136			sf->num_copies = 0;
1137		}
1138
1139		if (sf->i < sf->nr) {
1140			struct btrfs_key_ptr key_ptr;
1141			u32 key_ptr_offset;
1142			u64 next_bytenr;
1143
1144			key_ptr_offset = (uintptr_t)(nodehdr->ptrs + sf->i) -
1145					  (uintptr_t)nodehdr;
1146			if (key_ptr_offset + sizeof(struct btrfs_key_ptr) >
1147			    sf->block_ctx->len) {
1148				printk(KERN_INFO
1149				       "btrfsic: node item out of bounce at logical %llu, dev %s\n",
1150				       sf->block_ctx->start,
1151				       sf->block_ctx->dev->name);
1152				goto one_stack_frame_backwards;
1153			}
1154			btrfsic_read_from_block_data(
1155				sf->block_ctx, &key_ptr, key_ptr_offset,
1156				sizeof(struct btrfs_key_ptr));
1157			next_bytenr = btrfs_stack_key_blockptr(&key_ptr);
1158
1159			sf->error = btrfsic_create_link_to_next_block(
1160					state,
1161					sf->block,
1162					sf->block_ctx,
1163					next_bytenr,
1164					sf->limit_nesting,
1165					&sf->next_block_ctx,
1166					&sf->next_block,
1167					force_iodone_flag,
1168					&sf->num_copies,
1169					&sf->mirror_num,
1170					&key_ptr.key,
1171					btrfs_stack_key_generation(&key_ptr));
1172			if (sf->error)
1173				goto one_stack_frame_backwards;
1174
1175			if (NULL != sf->next_block) {
1176				struct btrfs_header *const next_hdr =
1177				    (struct btrfs_header *)
1178				    sf->next_block_ctx.datav[0];
1179
1180				next_stack = btrfsic_stack_frame_alloc();
1181				if (NULL == next_stack) {
1182					sf->error = -1;
1183					goto one_stack_frame_backwards;
1184				}
1185
1186				next_stack->i = -1;
1187				next_stack->block = sf->next_block;
1188				next_stack->block_ctx = &sf->next_block_ctx;
1189				next_stack->next_block = NULL;
1190				next_stack->hdr = next_hdr;
1191				next_stack->limit_nesting =
1192				    sf->limit_nesting - 1;
1193				next_stack->prev = sf;
1194				sf = next_stack;
1195				goto continue_with_new_stack_frame;
1196			}
1197
1198			goto continue_with_current_node_stack_frame;
1199		}
1200	}
1201
1202one_stack_frame_backwards:
1203	if (NULL != sf->prev) {
1204		struct btrfsic_stack_frame *const prev = sf->prev;
1205
1206		/* the one for the initial block is freed in the caller */
1207		btrfsic_release_block_ctx(sf->block_ctx);
1208
1209		if (sf->error) {
1210			prev->error = sf->error;
1211			btrfsic_stack_frame_free(sf);
1212			sf = prev;
1213			goto one_stack_frame_backwards;
1214		}
1215
1216		btrfsic_stack_frame_free(sf);
1217		sf = prev;
1218		goto continue_with_new_stack_frame;
1219	} else {
1220		BUG_ON(&initial_stack_frame != sf);
1221	}
1222
1223	return sf->error;
1224}
1225
1226static void btrfsic_read_from_block_data(
1227	struct btrfsic_block_data_ctx *block_ctx,
1228	void *dstv, u32 offset, size_t len)
1229{
1230	size_t cur;
1231	size_t offset_in_page;
1232	char *kaddr;
1233	char *dst = (char *)dstv;
1234	size_t start_offset = block_ctx->start & ((u64)PAGE_SIZE - 1);
1235	unsigned long i = (start_offset + offset) >> PAGE_SHIFT;
1236
1237	WARN_ON(offset + len > block_ctx->len);
1238	offset_in_page = (start_offset + offset) & (PAGE_SIZE - 1);
1239
1240	while (len > 0) {
1241		cur = min(len, ((size_t)PAGE_SIZE - offset_in_page));
1242		BUG_ON(i >= DIV_ROUND_UP(block_ctx->len, PAGE_SIZE));
1243		kaddr = block_ctx->datav[i];
1244		memcpy(dst, kaddr + offset_in_page, cur);
1245
1246		dst += cur;
1247		len -= cur;
1248		offset_in_page = 0;
1249		i++;
1250	}
1251}
1252
1253static int btrfsic_create_link_to_next_block(
1254		struct btrfsic_state *state,
1255		struct btrfsic_block *block,
1256		struct btrfsic_block_data_ctx *block_ctx,
1257		u64 next_bytenr,
1258		int limit_nesting,
1259		struct btrfsic_block_data_ctx *next_block_ctx,
1260		struct btrfsic_block **next_blockp,
1261		int force_iodone_flag,
1262		int *num_copiesp, int *mirror_nump,
1263		struct btrfs_disk_key *disk_key,
1264		u64 parent_generation)
1265{
 
1266	struct btrfsic_block *next_block = NULL;
1267	int ret;
1268	struct btrfsic_block_link *l;
1269	int did_alloc_block_link;
1270	int block_was_created;
1271
1272	*next_blockp = NULL;
1273	if (0 == *num_copiesp) {
1274		*num_copiesp =
1275		    btrfs_num_copies(state->root->fs_info,
1276				     next_bytenr, state->metablock_size);
1277		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1278			printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
1279			       next_bytenr, *num_copiesp);
1280		*mirror_nump = 1;
1281	}
1282
1283	if (*mirror_nump > *num_copiesp)
1284		return 0;
1285
1286	if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1287		printk(KERN_INFO
1288		       "btrfsic_create_link_to_next_block(mirror_num=%d)\n",
1289		       *mirror_nump);
1290	ret = btrfsic_map_block(state, next_bytenr,
1291				state->metablock_size,
1292				next_block_ctx, *mirror_nump);
1293	if (ret) {
1294		printk(KERN_INFO
1295		       "btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1296		       next_bytenr, *mirror_nump);
1297		btrfsic_release_block_ctx(next_block_ctx);
1298		*next_blockp = NULL;
1299		return -1;
1300	}
1301
1302	next_block = btrfsic_block_lookup_or_add(state,
1303						 next_block_ctx, "referenced ",
1304						 1, force_iodone_flag,
1305						 !force_iodone_flag,
1306						 *mirror_nump,
1307						 &block_was_created);
1308	if (NULL == next_block) {
1309		btrfsic_release_block_ctx(next_block_ctx);
1310		*next_blockp = NULL;
1311		return -1;
1312	}
1313	if (block_was_created) {
1314		l = NULL;
1315		next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
1316	} else {
1317		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) {
1318			if (next_block->logical_bytenr != next_bytenr &&
1319			    !(!next_block->is_metadata &&
1320			      0 == next_block->logical_bytenr))
1321				printk(KERN_INFO
1322				       "Referenced block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n",
1323				       next_bytenr, next_block_ctx->dev->name,
1324				       next_block_ctx->dev_bytenr, *mirror_nump,
1325				       btrfsic_get_block_type(state,
1326							      next_block),
1327				       next_block->logical_bytenr);
1328			else
1329				printk(KERN_INFO
1330				       "Referenced block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1331				       next_bytenr, next_block_ctx->dev->name,
1332				       next_block_ctx->dev_bytenr, *mirror_nump,
1333				       btrfsic_get_block_type(state,
1334							      next_block));
1335		}
1336		next_block->logical_bytenr = next_bytenr;
1337
1338		next_block->mirror_num = *mirror_nump;
1339		l = btrfsic_block_link_hashtable_lookup(
1340				next_block_ctx->dev->bdev,
1341				next_block_ctx->dev_bytenr,
1342				block_ctx->dev->bdev,
1343				block_ctx->dev_bytenr,
1344				&state->block_link_hashtable);
1345	}
1346
1347	next_block->disk_key = *disk_key;
1348	if (NULL == l) {
1349		l = btrfsic_block_link_alloc();
1350		if (NULL == l) {
1351			printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
1352			btrfsic_release_block_ctx(next_block_ctx);
1353			*next_blockp = NULL;
1354			return -1;
1355		}
1356
1357		did_alloc_block_link = 1;
1358		l->block_ref_to = next_block;
1359		l->block_ref_from = block;
1360		l->ref_cnt = 1;
1361		l->parent_generation = parent_generation;
1362
1363		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1364			btrfsic_print_add_link(state, l);
1365
1366		list_add(&l->node_ref_to, &block->ref_to_list);
1367		list_add(&l->node_ref_from, &next_block->ref_from_list);
1368
1369		btrfsic_block_link_hashtable_add(l,
1370						 &state->block_link_hashtable);
1371	} else {
1372		did_alloc_block_link = 0;
1373		if (0 == limit_nesting) {
1374			l->ref_cnt++;
1375			l->parent_generation = parent_generation;
1376			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1377				btrfsic_print_add_link(state, l);
1378		}
1379	}
1380
1381	if (limit_nesting > 0 && did_alloc_block_link) {
1382		ret = btrfsic_read_block(state, next_block_ctx);
1383		if (ret < (int)next_block_ctx->len) {
1384			printk(KERN_INFO
1385			       "btrfsic: read block @logical %llu failed!\n",
1386			       next_bytenr);
1387			btrfsic_release_block_ctx(next_block_ctx);
1388			*next_blockp = NULL;
1389			return -1;
1390		}
1391
1392		*next_blockp = next_block;
1393	} else {
1394		*next_blockp = NULL;
1395	}
1396	(*mirror_nump)++;
1397
1398	return 0;
1399}
1400
1401static int btrfsic_handle_extent_data(
1402		struct btrfsic_state *state,
1403		struct btrfsic_block *block,
1404		struct btrfsic_block_data_ctx *block_ctx,
1405		u32 item_offset, int force_iodone_flag)
1406{
1407	int ret;
1408	struct btrfs_file_extent_item file_extent_item;
1409	u64 file_extent_item_offset;
1410	u64 next_bytenr;
1411	u64 num_bytes;
1412	u64 generation;
1413	struct btrfsic_block_link *l;
 
1414
1415	file_extent_item_offset = offsetof(struct btrfs_leaf, items) +
1416				  item_offset;
1417	if (file_extent_item_offset +
1418	    offsetof(struct btrfs_file_extent_item, disk_num_bytes) >
1419	    block_ctx->len) {
1420		printk(KERN_INFO
1421		       "btrfsic: file item out of bounce at logical %llu, dev %s\n",
1422		       block_ctx->start, block_ctx->dev->name);
1423		return -1;
1424	}
1425
1426	btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1427		file_extent_item_offset,
1428		offsetof(struct btrfs_file_extent_item, disk_num_bytes));
1429	if (BTRFS_FILE_EXTENT_REG != file_extent_item.type ||
1430	    btrfs_stack_file_extent_disk_bytenr(&file_extent_item) == 0) {
1431		if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1432			printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu\n",
1433			       file_extent_item.type,
1434			       btrfs_stack_file_extent_disk_bytenr(
1435			       &file_extent_item));
1436		return 0;
1437	}
1438
1439	if (file_extent_item_offset + sizeof(struct btrfs_file_extent_item) >
1440	    block_ctx->len) {
1441		printk(KERN_INFO
1442		       "btrfsic: file item out of bounce at logical %llu, dev %s\n",
1443		       block_ctx->start, block_ctx->dev->name);
1444		return -1;
1445	}
1446	btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1447				     file_extent_item_offset,
1448				     sizeof(struct btrfs_file_extent_item));
1449	next_bytenr = btrfs_stack_file_extent_disk_bytenr(&file_extent_item);
1450	if (btrfs_stack_file_extent_compression(&file_extent_item) ==
1451	    BTRFS_COMPRESS_NONE) {
1452		next_bytenr += btrfs_stack_file_extent_offset(&file_extent_item);
1453		num_bytes = btrfs_stack_file_extent_num_bytes(&file_extent_item);
1454	} else {
1455		num_bytes = btrfs_stack_file_extent_disk_num_bytes(&file_extent_item);
1456	}
1457	generation = btrfs_stack_file_extent_generation(&file_extent_item);
1458
1459	if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1460		printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu,"
1461		       " offset = %llu, num_bytes = %llu\n",
1462		       file_extent_item.type,
1463		       btrfs_stack_file_extent_disk_bytenr(&file_extent_item),
1464		       btrfs_stack_file_extent_offset(&file_extent_item),
1465		       num_bytes);
1466	while (num_bytes > 0) {
1467		u32 chunk_len;
1468		int num_copies;
1469		int mirror_num;
1470
1471		if (num_bytes > state->datablock_size)
1472			chunk_len = state->datablock_size;
1473		else
1474			chunk_len = num_bytes;
1475
1476		num_copies =
1477		    btrfs_num_copies(state->root->fs_info,
1478				     next_bytenr, state->datablock_size);
1479		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1480			printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
1481			       next_bytenr, num_copies);
1482		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
1483			struct btrfsic_block_data_ctx next_block_ctx;
1484			struct btrfsic_block *next_block;
1485			int block_was_created;
1486
1487			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1488				printk(KERN_INFO "btrfsic_handle_extent_data("
1489				       "mirror_num=%d)\n", mirror_num);
1490			if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1491				printk(KERN_INFO
1492				       "\tdisk_bytenr = %llu, num_bytes %u\n",
1493				       next_bytenr, chunk_len);
1494			ret = btrfsic_map_block(state, next_bytenr,
1495						chunk_len, &next_block_ctx,
1496						mirror_num);
1497			if (ret) {
1498				printk(KERN_INFO
1499				       "btrfsic: btrfsic_map_block(@%llu,"
1500				       " mirror=%d) failed!\n",
1501				       next_bytenr, mirror_num);
1502				return -1;
1503			}
1504
1505			next_block = btrfsic_block_lookup_or_add(
1506					state,
1507					&next_block_ctx,
1508					"referenced ",
1509					0,
1510					force_iodone_flag,
1511					!force_iodone_flag,
1512					mirror_num,
1513					&block_was_created);
1514			if (NULL == next_block) {
1515				printk(KERN_INFO
1516				       "btrfsic: error, kmalloc failed!\n");
1517				btrfsic_release_block_ctx(&next_block_ctx);
1518				return -1;
1519			}
1520			if (!block_was_created) {
1521				if ((state->print_mask &
1522				     BTRFSIC_PRINT_MASK_VERBOSE) &&
1523				    next_block->logical_bytenr != next_bytenr &&
1524				    !(!next_block->is_metadata &&
1525				      0 == next_block->logical_bytenr)) {
1526					printk(KERN_INFO
1527					       "Referenced block"
1528					       " @%llu (%s/%llu/%d)"
1529					       " found in hash table, D,"
1530					       " bytenr mismatch"
1531					       " (!= stored %llu).\n",
1532					       next_bytenr,
1533					       next_block_ctx.dev->name,
1534					       next_block_ctx.dev_bytenr,
1535					       mirror_num,
1536					       next_block->logical_bytenr);
1537				}
1538				next_block->logical_bytenr = next_bytenr;
1539				next_block->mirror_num = mirror_num;
1540			}
1541
1542			l = btrfsic_block_link_lookup_or_add(state,
1543							     &next_block_ctx,
1544							     next_block, block,
1545							     generation);
1546			btrfsic_release_block_ctx(&next_block_ctx);
1547			if (NULL == l)
1548				return -1;
1549		}
1550
1551		next_bytenr += chunk_len;
1552		num_bytes -= chunk_len;
1553	}
1554
1555	return 0;
1556}
1557
1558static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
1559			     struct btrfsic_block_data_ctx *block_ctx_out,
1560			     int mirror_num)
1561{
 
1562	int ret;
1563	u64 length;
1564	struct btrfs_bio *multi = NULL;
1565	struct btrfs_device *device;
1566
1567	length = len;
1568	ret = btrfs_map_block(state->root->fs_info, READ,
1569			      bytenr, &length, &multi, mirror_num);
1570
1571	if (ret) {
1572		block_ctx_out->start = 0;
1573		block_ctx_out->dev_bytenr = 0;
1574		block_ctx_out->len = 0;
1575		block_ctx_out->dev = NULL;
1576		block_ctx_out->datav = NULL;
1577		block_ctx_out->pagev = NULL;
1578		block_ctx_out->mem_to_free = NULL;
1579
1580		return ret;
1581	}
1582
1583	device = multi->stripes[0].dev;
1584	block_ctx_out->dev = btrfsic_dev_state_lookup(device->bdev);
 
 
 
 
 
1585	block_ctx_out->dev_bytenr = multi->stripes[0].physical;
1586	block_ctx_out->start = bytenr;
1587	block_ctx_out->len = len;
1588	block_ctx_out->datav = NULL;
1589	block_ctx_out->pagev = NULL;
1590	block_ctx_out->mem_to_free = NULL;
1591
1592	kfree(multi);
1593	if (NULL == block_ctx_out->dev) {
1594		ret = -ENXIO;
1595		printk(KERN_INFO "btrfsic: error, cannot lookup dev (#1)!\n");
1596	}
1597
1598	return ret;
1599}
1600
1601static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx)
1602{
1603	if (block_ctx->mem_to_free) {
1604		unsigned int num_pages;
1605
1606		BUG_ON(!block_ctx->datav);
1607		BUG_ON(!block_ctx->pagev);
1608		num_pages = (block_ctx->len + (u64)PAGE_SIZE - 1) >>
1609			    PAGE_SHIFT;
1610		while (num_pages > 0) {
1611			num_pages--;
1612			if (block_ctx->datav[num_pages]) {
1613				kunmap(block_ctx->pagev[num_pages]);
1614				block_ctx->datav[num_pages] = NULL;
1615			}
1616			if (block_ctx->pagev[num_pages]) {
1617				__free_page(block_ctx->pagev[num_pages]);
1618				block_ctx->pagev[num_pages] = NULL;
1619			}
1620		}
1621
1622		kfree(block_ctx->mem_to_free);
1623		block_ctx->mem_to_free = NULL;
1624		block_ctx->pagev = NULL;
1625		block_ctx->datav = NULL;
1626	}
1627}
1628
1629static int btrfsic_read_block(struct btrfsic_state *state,
1630			      struct btrfsic_block_data_ctx *block_ctx)
1631{
1632	unsigned int num_pages;
1633	unsigned int i;
 
1634	u64 dev_bytenr;
1635	int ret;
1636
1637	BUG_ON(block_ctx->datav);
1638	BUG_ON(block_ctx->pagev);
1639	BUG_ON(block_ctx->mem_to_free);
1640	if (block_ctx->dev_bytenr & ((u64)PAGE_SIZE - 1)) {
1641		printk(KERN_INFO
1642		       "btrfsic: read_block() with unaligned bytenr %llu\n",
1643		       block_ctx->dev_bytenr);
1644		return -1;
1645	}
1646
1647	num_pages = (block_ctx->len + (u64)PAGE_SIZE - 1) >>
1648		    PAGE_SHIFT;
1649	block_ctx->mem_to_free = kzalloc((sizeof(*block_ctx->datav) +
1650					  sizeof(*block_ctx->pagev)) *
1651					 num_pages, GFP_NOFS);
1652	if (!block_ctx->mem_to_free)
1653		return -ENOMEM;
1654	block_ctx->datav = block_ctx->mem_to_free;
1655	block_ctx->pagev = (struct page **)(block_ctx->datav + num_pages);
1656	for (i = 0; i < num_pages; i++) {
1657		block_ctx->pagev[i] = alloc_page(GFP_NOFS);
1658		if (!block_ctx->pagev[i])
1659			return -1;
1660	}
1661
1662	dev_bytenr = block_ctx->dev_bytenr;
1663	for (i = 0; i < num_pages;) {
1664		struct bio *bio;
1665		unsigned int j;
1666
1667		bio = btrfs_io_bio_alloc(GFP_NOFS, num_pages - i);
1668		if (!bio) {
1669			printk(KERN_INFO
1670			       "btrfsic: bio_alloc() for %u pages failed!\n",
1671			       num_pages - i);
1672			return -1;
1673		}
1674		bio->bi_bdev = block_ctx->dev->bdev;
1675		bio->bi_iter.bi_sector = dev_bytenr >> 9;
 
1676
1677		for (j = i; j < num_pages; j++) {
1678			ret = bio_add_page(bio, block_ctx->pagev[j],
1679					   PAGE_SIZE, 0);
1680			if (PAGE_SIZE != ret)
1681				break;
1682		}
1683		if (j == i) {
1684			printk(KERN_INFO
1685			       "btrfsic: error, failed to add a single page!\n");
1686			return -1;
1687		}
1688		if (submit_bio_wait(READ, bio)) {
1689			printk(KERN_INFO
1690			       "btrfsic: read error at logical %llu dev %s!\n",
1691			       block_ctx->start, block_ctx->dev->name);
1692			bio_put(bio);
1693			return -1;
1694		}
1695		bio_put(bio);
1696		dev_bytenr += (j - i) * PAGE_SIZE;
1697		i = j;
1698	}
1699	for (i = 0; i < num_pages; i++) {
1700		block_ctx->datav[i] = kmap(block_ctx->pagev[i]);
1701		if (!block_ctx->datav[i]) {
1702			printk(KERN_INFO "btrfsic: kmap() failed (dev %s)!\n",
1703			       block_ctx->dev->name);
1704			return -1;
1705		}
1706	}
1707
1708	return block_ctx->len;
1709}
1710
1711static void btrfsic_dump_database(struct btrfsic_state *state)
1712{
1713	const struct btrfsic_block *b_all;
1714
1715	BUG_ON(NULL == state);
1716
1717	printk(KERN_INFO "all_blocks_list:\n");
1718	list_for_each_entry(b_all, &state->all_blocks_list, all_blocks_node) {
1719		const struct btrfsic_block_link *l;
1720
1721		printk(KERN_INFO "%c-block @%llu (%s/%llu/%d)\n",
1722		       btrfsic_get_block_type(state, b_all),
1723		       b_all->logical_bytenr, b_all->dev_state->name,
1724		       b_all->dev_bytenr, b_all->mirror_num);
1725
1726		list_for_each_entry(l, &b_all->ref_to_list, node_ref_to) {
1727			printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
1728			       " refers %u* to"
1729			       " %c @%llu (%s/%llu/%d)\n",
1730			       btrfsic_get_block_type(state, b_all),
1731			       b_all->logical_bytenr, b_all->dev_state->name,
1732			       b_all->dev_bytenr, b_all->mirror_num,
1733			       l->ref_cnt,
1734			       btrfsic_get_block_type(state, l->block_ref_to),
1735			       l->block_ref_to->logical_bytenr,
1736			       l->block_ref_to->dev_state->name,
1737			       l->block_ref_to->dev_bytenr,
1738			       l->block_ref_to->mirror_num);
1739		}
1740
1741		list_for_each_entry(l, &b_all->ref_from_list, node_ref_from) {
1742			printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
1743			       " is ref %u* from"
1744			       " %c @%llu (%s/%llu/%d)\n",
1745			       btrfsic_get_block_type(state, b_all),
1746			       b_all->logical_bytenr, b_all->dev_state->name,
1747			       b_all->dev_bytenr, b_all->mirror_num,
1748			       l->ref_cnt,
1749			       btrfsic_get_block_type(state, l->block_ref_from),
1750			       l->block_ref_from->logical_bytenr,
1751			       l->block_ref_from->dev_state->name,
1752			       l->block_ref_from->dev_bytenr,
1753			       l->block_ref_from->mirror_num);
1754		}
1755
1756		printk(KERN_INFO "\n");
1757	}
1758}
1759
1760/*
1761 * Test whether the disk block contains a tree block (leaf or node)
1762 * (note that this test fails for the super block)
1763 */
1764static int btrfsic_test_for_metadata(struct btrfsic_state *state,
1765				     char **datav, unsigned int num_pages)
 
1766{
 
 
1767	struct btrfs_header *h;
1768	u8 csum[BTRFS_CSUM_SIZE];
1769	u32 crc = ~(u32)0;
1770	unsigned int i;
1771
1772	if (num_pages * PAGE_SIZE < state->metablock_size)
1773		return 1; /* not metadata */
1774	num_pages = state->metablock_size >> PAGE_SHIFT;
1775	h = (struct btrfs_header *)datav[0];
1776
1777	if (memcmp(h->fsid, state->root->fs_info->fsid, BTRFS_UUID_SIZE))
1778		return 1;
1779
 
 
 
1780	for (i = 0; i < num_pages; i++) {
1781		u8 *data = i ? datav[i] : (datav[i] + BTRFS_CSUM_SIZE);
1782		size_t sublen = i ? PAGE_SIZE :
1783				    (PAGE_SIZE - BTRFS_CSUM_SIZE);
1784
1785		crc = btrfs_crc32c(crc, data, sublen);
1786	}
1787	btrfs_csum_final(crc, csum);
1788	if (memcmp(csum, h->csum, state->csum_size))
1789		return 1;
1790
1791	return 0; /* is metadata */
1792}
1793
1794static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
1795					  u64 dev_bytenr, char **mapped_datav,
1796					  unsigned int num_pages,
1797					  struct bio *bio, int *bio_is_patched,
1798					  struct buffer_head *bh,
1799					  int submit_bio_bh_rw)
1800{
1801	int is_metadata;
1802	struct btrfsic_block *block;
1803	struct btrfsic_block_data_ctx block_ctx;
1804	int ret;
1805	struct btrfsic_state *state = dev_state->state;
1806	struct block_device *bdev = dev_state->bdev;
1807	unsigned int processed_len;
1808
1809	if (NULL != bio_is_patched)
1810		*bio_is_patched = 0;
1811
1812again:
1813	if (num_pages == 0)
1814		return;
1815
1816	processed_len = 0;
1817	is_metadata = (0 == btrfsic_test_for_metadata(state, mapped_datav,
1818						      num_pages));
1819
1820	block = btrfsic_block_hashtable_lookup(bdev, dev_bytenr,
1821					       &state->block_hashtable);
1822	if (NULL != block) {
1823		u64 bytenr = 0;
1824		struct btrfsic_block_link *l, *tmp;
1825
1826		if (block->is_superblock) {
1827			bytenr = btrfs_super_bytenr((struct btrfs_super_block *)
1828						    mapped_datav[0]);
1829			if (num_pages * PAGE_SIZE <
1830			    BTRFS_SUPER_INFO_SIZE) {
1831				printk(KERN_INFO
1832				       "btrfsic: cannot work with too short bios!\n");
1833				return;
1834			}
1835			is_metadata = 1;
1836			BUG_ON(BTRFS_SUPER_INFO_SIZE & (PAGE_SIZE - 1));
1837			processed_len = BTRFS_SUPER_INFO_SIZE;
1838			if (state->print_mask &
1839			    BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE) {
1840				printk(KERN_INFO
1841				       "[before new superblock is written]:\n");
1842				btrfsic_dump_tree_sub(state, block, 0);
1843			}
1844		}
1845		if (is_metadata) {
1846			if (!block->is_superblock) {
1847				if (num_pages * PAGE_SIZE <
1848				    state->metablock_size) {
1849					printk(KERN_INFO
1850					       "btrfsic: cannot work with too short bios!\n");
1851					return;
1852				}
1853				processed_len = state->metablock_size;
1854				bytenr = btrfs_stack_header_bytenr(
1855						(struct btrfs_header *)
1856						mapped_datav[0]);
1857				btrfsic_cmp_log_and_dev_bytenr(state, bytenr,
1858							       dev_state,
1859							       dev_bytenr);
1860			}
1861			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) {
1862				if (block->logical_bytenr != bytenr &&
1863				    !(!block->is_metadata &&
1864				      block->logical_bytenr == 0))
1865					printk(KERN_INFO
1866					       "Written block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n",
1867					       bytenr, dev_state->name,
1868					       dev_bytenr,
1869					       block->mirror_num,
1870					       btrfsic_get_block_type(state,
1871								      block),
1872					       block->logical_bytenr);
1873				else
1874					printk(KERN_INFO
1875					       "Written block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1876					       bytenr, dev_state->name,
1877					       dev_bytenr, block->mirror_num,
1878					       btrfsic_get_block_type(state,
1879								      block));
1880			}
1881			block->logical_bytenr = bytenr;
1882		} else {
1883			if (num_pages * PAGE_SIZE <
1884			    state->datablock_size) {
1885				printk(KERN_INFO
1886				       "btrfsic: cannot work with too short bios!\n");
1887				return;
1888			}
1889			processed_len = state->datablock_size;
1890			bytenr = block->logical_bytenr;
1891			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1892				printk(KERN_INFO
1893				       "Written block @%llu (%s/%llu/%d)"
1894				       " found in hash table, %c.\n",
1895				       bytenr, dev_state->name, dev_bytenr,
1896				       block->mirror_num,
1897				       btrfsic_get_block_type(state, block));
1898		}
1899
1900		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1901			printk(KERN_INFO
1902			       "ref_to_list: %cE, ref_from_list: %cE\n",
1903			       list_empty(&block->ref_to_list) ? ' ' : '!',
1904			       list_empty(&block->ref_from_list) ? ' ' : '!');
1905		if (btrfsic_is_block_ref_by_superblock(state, block, 0)) {
1906			printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
1907			       " @%llu (%s/%llu/%d), old(gen=%llu,"
1908			       " objectid=%llu, type=%d, offset=%llu),"
1909			       " new(gen=%llu),"
1910			       " which is referenced by most recent superblock"
1911			       " (superblockgen=%llu)!\n",
1912			       btrfsic_get_block_type(state, block), bytenr,
1913			       dev_state->name, dev_bytenr, block->mirror_num,
1914			       block->generation,
1915			       btrfs_disk_key_objectid(&block->disk_key),
1916			       block->disk_key.type,
1917			       btrfs_disk_key_offset(&block->disk_key),
1918			       btrfs_stack_header_generation(
1919				       (struct btrfs_header *) mapped_datav[0]),
1920			       state->max_superblock_generation);
1921			btrfsic_dump_tree(state);
1922		}
1923
1924		if (!block->is_iodone && !block->never_written) {
1925			printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
1926			       " @%llu (%s/%llu/%d), oldgen=%llu, newgen=%llu,"
1927			       " which is not yet iodone!\n",
1928			       btrfsic_get_block_type(state, block), bytenr,
1929			       dev_state->name, dev_bytenr, block->mirror_num,
1930			       block->generation,
1931			       btrfs_stack_header_generation(
1932				       (struct btrfs_header *)
1933				       mapped_datav[0]));
1934			/* it would not be safe to go on */
1935			btrfsic_dump_tree(state);
1936			goto continue_loop;
1937		}
1938
1939		/*
1940		 * Clear all references of this block. Do not free
1941		 * the block itself even if is not referenced anymore
1942		 * because it still carries valueable information
1943		 * like whether it was ever written and IO completed.
1944		 */
1945		list_for_each_entry_safe(l, tmp, &block->ref_to_list,
1946					 node_ref_to) {
1947			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1948				btrfsic_print_rem_link(state, l);
1949			l->ref_cnt--;
1950			if (0 == l->ref_cnt) {
1951				list_del(&l->node_ref_to);
1952				list_del(&l->node_ref_from);
1953				btrfsic_block_link_hashtable_remove(l);
1954				btrfsic_block_link_free(l);
1955			}
1956		}
1957
1958		block_ctx.dev = dev_state;
1959		block_ctx.dev_bytenr = dev_bytenr;
1960		block_ctx.start = bytenr;
1961		block_ctx.len = processed_len;
1962		block_ctx.pagev = NULL;
1963		block_ctx.mem_to_free = NULL;
1964		block_ctx.datav = mapped_datav;
1965
1966		if (is_metadata || state->include_extent_data) {
1967			block->never_written = 0;
1968			block->iodone_w_error = 0;
1969			if (NULL != bio) {
1970				block->is_iodone = 0;
1971				BUG_ON(NULL == bio_is_patched);
1972				if (!*bio_is_patched) {
1973					block->orig_bio_bh_private =
1974					    bio->bi_private;
1975					block->orig_bio_bh_end_io.bio =
1976					    bio->bi_end_io;
1977					block->next_in_same_bio = NULL;
1978					bio->bi_private = block;
1979					bio->bi_end_io = btrfsic_bio_end_io;
1980					*bio_is_patched = 1;
1981				} else {
1982					struct btrfsic_block *chained_block =
1983					    (struct btrfsic_block *)
1984					    bio->bi_private;
1985
1986					BUG_ON(NULL == chained_block);
1987					block->orig_bio_bh_private =
1988					    chained_block->orig_bio_bh_private;
1989					block->orig_bio_bh_end_io.bio =
1990					    chained_block->orig_bio_bh_end_io.
1991					    bio;
1992					block->next_in_same_bio = chained_block;
1993					bio->bi_private = block;
1994				}
1995			} else if (NULL != bh) {
1996				block->is_iodone = 0;
1997				block->orig_bio_bh_private = bh->b_private;
1998				block->orig_bio_bh_end_io.bh = bh->b_end_io;
1999				block->next_in_same_bio = NULL;
2000				bh->b_private = block;
2001				bh->b_end_io = btrfsic_bh_end_io;
2002			} else {
2003				block->is_iodone = 1;
2004				block->orig_bio_bh_private = NULL;
2005				block->orig_bio_bh_end_io.bio = NULL;
2006				block->next_in_same_bio = NULL;
2007			}
2008		}
2009
2010		block->flush_gen = dev_state->last_flush_gen + 1;
2011		block->submit_bio_bh_rw = submit_bio_bh_rw;
2012		if (is_metadata) {
2013			block->logical_bytenr = bytenr;
2014			block->is_metadata = 1;
2015			if (block->is_superblock) {
2016				BUG_ON(PAGE_SIZE !=
2017				       BTRFS_SUPER_INFO_SIZE);
2018				ret = btrfsic_process_written_superblock(
2019						state,
2020						block,
2021						(struct btrfs_super_block *)
2022						mapped_datav[0]);
2023				if (state->print_mask &
2024				    BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE) {
2025					printk(KERN_INFO
2026					"[after new superblock is written]:\n");
2027					btrfsic_dump_tree_sub(state, block, 0);
2028				}
2029			} else {
2030				block->mirror_num = 0;	/* unknown */
2031				ret = btrfsic_process_metablock(
2032						state,
2033						block,
2034						&block_ctx,
2035						0, 0);
2036			}
2037			if (ret)
2038				printk(KERN_INFO
2039				       "btrfsic: btrfsic_process_metablock"
2040				       "(root @%llu) failed!\n",
2041				       dev_bytenr);
2042		} else {
2043			block->is_metadata = 0;
2044			block->mirror_num = 0;	/* unknown */
2045			block->generation = BTRFSIC_GENERATION_UNKNOWN;
2046			if (!state->include_extent_data
2047			    && list_empty(&block->ref_from_list)) {
2048				/*
2049				 * disk block is overwritten with extent
2050				 * data (not meta data) and we are configured
2051				 * to not include extent data: take the
2052				 * chance and free the block's memory
2053				 */
2054				btrfsic_block_hashtable_remove(block);
2055				list_del(&block->all_blocks_node);
2056				btrfsic_block_free(block);
2057			}
2058		}
2059		btrfsic_release_block_ctx(&block_ctx);
2060	} else {
2061		/* block has not been found in hash table */
2062		u64 bytenr;
2063
2064		if (!is_metadata) {
2065			processed_len = state->datablock_size;
2066			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2067				printk(KERN_INFO "Written block (%s/%llu/?)"
2068				       " !found in hash table, D.\n",
2069				       dev_state->name, dev_bytenr);
2070			if (!state->include_extent_data) {
2071				/* ignore that written D block */
2072				goto continue_loop;
2073			}
2074
2075			/* this is getting ugly for the
2076			 * include_extent_data case... */
2077			bytenr = 0;	/* unknown */
2078		} else {
2079			processed_len = state->metablock_size;
2080			bytenr = btrfs_stack_header_bytenr(
2081					(struct btrfs_header *)
2082					mapped_datav[0]);
2083			btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state,
2084						       dev_bytenr);
2085			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2086				printk(KERN_INFO
2087				       "Written block @%llu (%s/%llu/?)"
2088				       " !found in hash table, M.\n",
2089				       bytenr, dev_state->name, dev_bytenr);
2090		}
2091
2092		block_ctx.dev = dev_state;
2093		block_ctx.dev_bytenr = dev_bytenr;
2094		block_ctx.start = bytenr;
2095		block_ctx.len = processed_len;
2096		block_ctx.pagev = NULL;
2097		block_ctx.mem_to_free = NULL;
2098		block_ctx.datav = mapped_datav;
2099
2100		block = btrfsic_block_alloc();
2101		if (NULL == block) {
2102			printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
2103			btrfsic_release_block_ctx(&block_ctx);
2104			goto continue_loop;
2105		}
2106		block->dev_state = dev_state;
2107		block->dev_bytenr = dev_bytenr;
2108		block->logical_bytenr = bytenr;
2109		block->is_metadata = is_metadata;
2110		block->never_written = 0;
2111		block->iodone_w_error = 0;
2112		block->mirror_num = 0;	/* unknown */
2113		block->flush_gen = dev_state->last_flush_gen + 1;
2114		block->submit_bio_bh_rw = submit_bio_bh_rw;
2115		if (NULL != bio) {
2116			block->is_iodone = 0;
2117			BUG_ON(NULL == bio_is_patched);
2118			if (!*bio_is_patched) {
2119				block->orig_bio_bh_private = bio->bi_private;
2120				block->orig_bio_bh_end_io.bio = bio->bi_end_io;
2121				block->next_in_same_bio = NULL;
2122				bio->bi_private = block;
2123				bio->bi_end_io = btrfsic_bio_end_io;
2124				*bio_is_patched = 1;
2125			} else {
2126				struct btrfsic_block *chained_block =
2127				    (struct btrfsic_block *)
2128				    bio->bi_private;
2129
2130				BUG_ON(NULL == chained_block);
2131				block->orig_bio_bh_private =
2132				    chained_block->orig_bio_bh_private;
2133				block->orig_bio_bh_end_io.bio =
2134				    chained_block->orig_bio_bh_end_io.bio;
2135				block->next_in_same_bio = chained_block;
2136				bio->bi_private = block;
2137			}
2138		} else if (NULL != bh) {
2139			block->is_iodone = 0;
2140			block->orig_bio_bh_private = bh->b_private;
2141			block->orig_bio_bh_end_io.bh = bh->b_end_io;
2142			block->next_in_same_bio = NULL;
2143			bh->b_private = block;
2144			bh->b_end_io = btrfsic_bh_end_io;
2145		} else {
2146			block->is_iodone = 1;
2147			block->orig_bio_bh_private = NULL;
2148			block->orig_bio_bh_end_io.bio = NULL;
2149			block->next_in_same_bio = NULL;
2150		}
2151		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2152			printk(KERN_INFO
2153			       "New written %c-block @%llu (%s/%llu/%d)\n",
2154			       is_metadata ? 'M' : 'D',
2155			       block->logical_bytenr, block->dev_state->name,
2156			       block->dev_bytenr, block->mirror_num);
2157		list_add(&block->all_blocks_node, &state->all_blocks_list);
2158		btrfsic_block_hashtable_add(block, &state->block_hashtable);
2159
2160		if (is_metadata) {
2161			ret = btrfsic_process_metablock(state, block,
2162							&block_ctx, 0, 0);
2163			if (ret)
2164				printk(KERN_INFO
2165				       "btrfsic: process_metablock(root @%llu)"
2166				       " failed!\n",
2167				       dev_bytenr);
2168		}
2169		btrfsic_release_block_ctx(&block_ctx);
2170	}
2171
2172continue_loop:
2173	BUG_ON(!processed_len);
2174	dev_bytenr += processed_len;
2175	mapped_datav += processed_len >> PAGE_SHIFT;
2176	num_pages -= processed_len >> PAGE_SHIFT;
2177	goto again;
2178}
2179
2180static void btrfsic_bio_end_io(struct bio *bp)
2181{
2182	struct btrfsic_block *block = (struct btrfsic_block *)bp->bi_private;
2183	int iodone_w_error;
2184
2185	/* mutex is not held! This is not save if IO is not yet completed
2186	 * on umount */
2187	iodone_w_error = 0;
2188	if (bp->bi_error)
2189		iodone_w_error = 1;
2190
2191	BUG_ON(NULL == block);
2192	bp->bi_private = block->orig_bio_bh_private;
2193	bp->bi_end_io = block->orig_bio_bh_end_io.bio;
2194
2195	do {
2196		struct btrfsic_block *next_block;
2197		struct btrfsic_dev_state *const dev_state = block->dev_state;
2198
2199		if ((dev_state->state->print_mask &
2200		     BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2201			printk(KERN_INFO
2202			       "bio_end_io(err=%d) for %c @%llu (%s/%llu/%d)\n",
2203			       bp->bi_error,
2204			       btrfsic_get_block_type(dev_state->state, block),
2205			       block->logical_bytenr, dev_state->name,
2206			       block->dev_bytenr, block->mirror_num);
2207		next_block = block->next_in_same_bio;
2208		block->iodone_w_error = iodone_w_error;
2209		if (block->submit_bio_bh_rw & REQ_FLUSH) {
2210			dev_state->last_flush_gen++;
2211			if ((dev_state->state->print_mask &
2212			     BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2213				printk(KERN_INFO
2214				       "bio_end_io() new %s flush_gen=%llu\n",
2215				       dev_state->name,
2216				       dev_state->last_flush_gen);
2217		}
2218		if (block->submit_bio_bh_rw & REQ_FUA)
2219			block->flush_gen = 0; /* FUA completed means block is
2220					       * on disk */
2221		block->is_iodone = 1; /* for FLUSH, this releases the block */
2222		block = next_block;
2223	} while (NULL != block);
2224
2225	bp->bi_end_io(bp);
2226}
2227
2228static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate)
2229{
2230	struct btrfsic_block *block = (struct btrfsic_block *)bh->b_private;
2231	int iodone_w_error = !uptodate;
2232	struct btrfsic_dev_state *dev_state;
2233
2234	BUG_ON(NULL == block);
2235	dev_state = block->dev_state;
2236	if ((dev_state->state->print_mask & BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2237		printk(KERN_INFO
2238		       "bh_end_io(error=%d) for %c @%llu (%s/%llu/%d)\n",
2239		       iodone_w_error,
2240		       btrfsic_get_block_type(dev_state->state, block),
2241		       block->logical_bytenr, block->dev_state->name,
2242		       block->dev_bytenr, block->mirror_num);
2243
2244	block->iodone_w_error = iodone_w_error;
2245	if (block->submit_bio_bh_rw & REQ_FLUSH) {
2246		dev_state->last_flush_gen++;
2247		if ((dev_state->state->print_mask &
2248		     BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2249			printk(KERN_INFO
2250			       "bh_end_io() new %s flush_gen=%llu\n",
2251			       dev_state->name, dev_state->last_flush_gen);
2252	}
2253	if (block->submit_bio_bh_rw & REQ_FUA)
2254		block->flush_gen = 0; /* FUA completed means block is on disk */
2255
2256	bh->b_private = block->orig_bio_bh_private;
2257	bh->b_end_io = block->orig_bio_bh_end_io.bh;
2258	block->is_iodone = 1; /* for FLUSH, this releases the block */
2259	bh->b_end_io(bh, uptodate);
2260}
2261
2262static int btrfsic_process_written_superblock(
2263		struct btrfsic_state *state,
2264		struct btrfsic_block *const superblock,
2265		struct btrfs_super_block *const super_hdr)
2266{
 
2267	int pass;
2268
2269	superblock->generation = btrfs_super_generation(super_hdr);
2270	if (!(superblock->generation > state->max_superblock_generation ||
2271	      0 == state->max_superblock_generation)) {
2272		if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2273			printk(KERN_INFO
2274			       "btrfsic: superblock @%llu (%s/%llu/%d)"
2275			       " with old gen %llu <= %llu\n",
2276			       superblock->logical_bytenr,
2277			       superblock->dev_state->name,
2278			       superblock->dev_bytenr, superblock->mirror_num,
2279			       btrfs_super_generation(super_hdr),
2280			       state->max_superblock_generation);
2281	} else {
2282		if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2283			printk(KERN_INFO
2284			       "btrfsic: got new superblock @%llu (%s/%llu/%d)"
2285			       " with new gen %llu > %llu\n",
2286			       superblock->logical_bytenr,
2287			       superblock->dev_state->name,
2288			       superblock->dev_bytenr, superblock->mirror_num,
2289			       btrfs_super_generation(super_hdr),
2290			       state->max_superblock_generation);
2291
2292		state->max_superblock_generation =
2293		    btrfs_super_generation(super_hdr);
2294		state->latest_superblock = superblock;
2295	}
2296
2297	for (pass = 0; pass < 3; pass++) {
2298		int ret;
2299		u64 next_bytenr;
2300		struct btrfsic_block *next_block;
2301		struct btrfsic_block_data_ctx tmp_next_block_ctx;
2302		struct btrfsic_block_link *l;
2303		int num_copies;
2304		int mirror_num;
2305		const char *additional_string = NULL;
2306		struct btrfs_disk_key tmp_disk_key = {0};
2307
2308		btrfs_set_disk_key_objectid(&tmp_disk_key,
2309					    BTRFS_ROOT_ITEM_KEY);
2310		btrfs_set_disk_key_objectid(&tmp_disk_key, 0);
2311
2312		switch (pass) {
2313		case 0:
2314			btrfs_set_disk_key_objectid(&tmp_disk_key,
2315						    BTRFS_ROOT_TREE_OBJECTID);
2316			additional_string = "root ";
2317			next_bytenr = btrfs_super_root(super_hdr);
2318			if (state->print_mask &
2319			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2320				printk(KERN_INFO "root@%llu\n", next_bytenr);
2321			break;
2322		case 1:
2323			btrfs_set_disk_key_objectid(&tmp_disk_key,
2324						    BTRFS_CHUNK_TREE_OBJECTID);
2325			additional_string = "chunk ";
2326			next_bytenr = btrfs_super_chunk_root(super_hdr);
2327			if (state->print_mask &
2328			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2329				printk(KERN_INFO "chunk@%llu\n", next_bytenr);
2330			break;
2331		case 2:
2332			btrfs_set_disk_key_objectid(&tmp_disk_key,
2333						    BTRFS_TREE_LOG_OBJECTID);
2334			additional_string = "log ";
2335			next_bytenr = btrfs_super_log_root(super_hdr);
2336			if (0 == next_bytenr)
2337				continue;
2338			if (state->print_mask &
2339			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2340				printk(KERN_INFO "log@%llu\n", next_bytenr);
2341			break;
2342		}
2343
2344		num_copies =
2345		    btrfs_num_copies(state->root->fs_info,
2346				     next_bytenr, BTRFS_SUPER_INFO_SIZE);
2347		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
2348			printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
2349			       next_bytenr, num_copies);
2350		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2351			int was_created;
2352
2353			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2354				printk(KERN_INFO
2355				       "btrfsic_process_written_superblock("
2356				       "mirror_num=%d)\n", mirror_num);
2357			ret = btrfsic_map_block(state, next_bytenr,
2358						BTRFS_SUPER_INFO_SIZE,
2359						&tmp_next_block_ctx,
2360						mirror_num);
2361			if (ret) {
2362				printk(KERN_INFO
2363				       "btrfsic: btrfsic_map_block(@%llu,"
2364				       " mirror=%d) failed!\n",
2365				       next_bytenr, mirror_num);
2366				return -1;
2367			}
2368
2369			next_block = btrfsic_block_lookup_or_add(
2370					state,
2371					&tmp_next_block_ctx,
2372					additional_string,
2373					1, 0, 1,
2374					mirror_num,
2375					&was_created);
2376			if (NULL == next_block) {
2377				printk(KERN_INFO
2378				       "btrfsic: error, kmalloc failed!\n");
2379				btrfsic_release_block_ctx(&tmp_next_block_ctx);
2380				return -1;
2381			}
2382
2383			next_block->disk_key = tmp_disk_key;
2384			if (was_created)
2385				next_block->generation =
2386				    BTRFSIC_GENERATION_UNKNOWN;
2387			l = btrfsic_block_link_lookup_or_add(
2388					state,
2389					&tmp_next_block_ctx,
2390					next_block,
2391					superblock,
2392					BTRFSIC_GENERATION_UNKNOWN);
2393			btrfsic_release_block_ctx(&tmp_next_block_ctx);
2394			if (NULL == l)
2395				return -1;
2396		}
2397	}
2398
2399	if (WARN_ON(-1 == btrfsic_check_all_ref_blocks(state, superblock, 0)))
2400		btrfsic_dump_tree(state);
2401
2402	return 0;
2403}
2404
2405static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
2406					struct btrfsic_block *const block,
2407					int recursion_level)
2408{
2409	const struct btrfsic_block_link *l;
2410	int ret = 0;
2411
2412	if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2413		/*
2414		 * Note that this situation can happen and does not
2415		 * indicate an error in regular cases. It happens
2416		 * when disk blocks are freed and later reused.
2417		 * The check-integrity module is not aware of any
2418		 * block free operations, it just recognizes block
2419		 * write operations. Therefore it keeps the linkage
2420		 * information for a block until a block is
2421		 * rewritten. This can temporarily cause incorrect
2422		 * and even circular linkage informations. This
2423		 * causes no harm unless such blocks are referenced
2424		 * by the most recent super block.
2425		 */
2426		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2427			printk(KERN_INFO
2428			       "btrfsic: abort cyclic linkage (case 1).\n");
2429
2430		return ret;
2431	}
2432
2433	/*
2434	 * This algorithm is recursive because the amount of used stack
2435	 * space is very small and the max recursion depth is limited.
2436	 */
2437	list_for_each_entry(l, &block->ref_to_list, node_ref_to) {
2438		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2439			printk(KERN_INFO
2440			       "rl=%d, %c @%llu (%s/%llu/%d)"
2441			       " %u* refers to %c @%llu (%s/%llu/%d)\n",
2442			       recursion_level,
2443			       btrfsic_get_block_type(state, block),
2444			       block->logical_bytenr, block->dev_state->name,
2445			       block->dev_bytenr, block->mirror_num,
2446			       l->ref_cnt,
2447			       btrfsic_get_block_type(state, l->block_ref_to),
2448			       l->block_ref_to->logical_bytenr,
2449			       l->block_ref_to->dev_state->name,
2450			       l->block_ref_to->dev_bytenr,
2451			       l->block_ref_to->mirror_num);
2452		if (l->block_ref_to->never_written) {
2453			printk(KERN_INFO "btrfs: attempt to write superblock"
2454			       " which references block %c @%llu (%s/%llu/%d)"
2455			       " which is never written!\n",
2456			       btrfsic_get_block_type(state, l->block_ref_to),
2457			       l->block_ref_to->logical_bytenr,
2458			       l->block_ref_to->dev_state->name,
2459			       l->block_ref_to->dev_bytenr,
2460			       l->block_ref_to->mirror_num);
2461			ret = -1;
2462		} else if (!l->block_ref_to->is_iodone) {
2463			printk(KERN_INFO "btrfs: attempt to write superblock"
2464			       " which references block %c @%llu (%s/%llu/%d)"
2465			       " which is not yet iodone!\n",
2466			       btrfsic_get_block_type(state, l->block_ref_to),
2467			       l->block_ref_to->logical_bytenr,
2468			       l->block_ref_to->dev_state->name,
2469			       l->block_ref_to->dev_bytenr,
2470			       l->block_ref_to->mirror_num);
2471			ret = -1;
2472		} else if (l->block_ref_to->iodone_w_error) {
2473			printk(KERN_INFO "btrfs: attempt to write superblock"
2474			       " which references block %c @%llu (%s/%llu/%d)"
2475			       " which has write error!\n",
2476			       btrfsic_get_block_type(state, l->block_ref_to),
2477			       l->block_ref_to->logical_bytenr,
2478			       l->block_ref_to->dev_state->name,
2479			       l->block_ref_to->dev_bytenr,
2480			       l->block_ref_to->mirror_num);
2481			ret = -1;
2482		} else if (l->parent_generation !=
2483			   l->block_ref_to->generation &&
2484			   BTRFSIC_GENERATION_UNKNOWN !=
2485			   l->parent_generation &&
2486			   BTRFSIC_GENERATION_UNKNOWN !=
2487			   l->block_ref_to->generation) {
2488			printk(KERN_INFO "btrfs: attempt to write superblock"
2489			       " which references block %c @%llu (%s/%llu/%d)"
2490			       " with generation %llu !="
2491			       " parent generation %llu!\n",
2492			       btrfsic_get_block_type(state, l->block_ref_to),
2493			       l->block_ref_to->logical_bytenr,
2494			       l->block_ref_to->dev_state->name,
2495			       l->block_ref_to->dev_bytenr,
2496			       l->block_ref_to->mirror_num,
2497			       l->block_ref_to->generation,
2498			       l->parent_generation);
2499			ret = -1;
2500		} else if (l->block_ref_to->flush_gen >
2501			   l->block_ref_to->dev_state->last_flush_gen) {
2502			printk(KERN_INFO "btrfs: attempt to write superblock"
2503			       " which references block %c @%llu (%s/%llu/%d)"
2504			       " which is not flushed out of disk's write cache"
2505			       " (block flush_gen=%llu,"
2506			       " dev->flush_gen=%llu)!\n",
2507			       btrfsic_get_block_type(state, l->block_ref_to),
2508			       l->block_ref_to->logical_bytenr,
2509			       l->block_ref_to->dev_state->name,
2510			       l->block_ref_to->dev_bytenr,
2511			       l->block_ref_to->mirror_num, block->flush_gen,
2512			       l->block_ref_to->dev_state->last_flush_gen);
2513			ret = -1;
2514		} else if (-1 == btrfsic_check_all_ref_blocks(state,
2515							      l->block_ref_to,
2516							      recursion_level +
2517							      1)) {
2518			ret = -1;
2519		}
2520	}
2521
2522	return ret;
2523}
2524
2525static int btrfsic_is_block_ref_by_superblock(
2526		const struct btrfsic_state *state,
2527		const struct btrfsic_block *block,
2528		int recursion_level)
2529{
2530	const struct btrfsic_block_link *l;
2531
2532	if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2533		/* refer to comment at "abort cyclic linkage (case 1)" */
2534		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2535			printk(KERN_INFO
2536			       "btrfsic: abort cyclic linkage (case 2).\n");
2537
2538		return 0;
2539	}
2540
2541	/*
2542	 * This algorithm is recursive because the amount of used stack space
2543	 * is very small and the max recursion depth is limited.
2544	 */
2545	list_for_each_entry(l, &block->ref_from_list, node_ref_from) {
2546		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2547			printk(KERN_INFO
2548			       "rl=%d, %c @%llu (%s/%llu/%d)"
2549			       " is ref %u* from %c @%llu (%s/%llu/%d)\n",
2550			       recursion_level,
2551			       btrfsic_get_block_type(state, block),
2552			       block->logical_bytenr, block->dev_state->name,
2553			       block->dev_bytenr, block->mirror_num,
2554			       l->ref_cnt,
2555			       btrfsic_get_block_type(state, l->block_ref_from),
2556			       l->block_ref_from->logical_bytenr,
2557			       l->block_ref_from->dev_state->name,
2558			       l->block_ref_from->dev_bytenr,
2559			       l->block_ref_from->mirror_num);
2560		if (l->block_ref_from->is_superblock &&
2561		    state->latest_superblock->dev_bytenr ==
2562		    l->block_ref_from->dev_bytenr &&
2563		    state->latest_superblock->dev_state->bdev ==
2564		    l->block_ref_from->dev_state->bdev)
2565			return 1;
2566		else if (btrfsic_is_block_ref_by_superblock(state,
2567							    l->block_ref_from,
2568							    recursion_level +
2569							    1))
2570			return 1;
2571	}
2572
2573	return 0;
2574}
2575
2576static void btrfsic_print_add_link(const struct btrfsic_state *state,
2577				   const struct btrfsic_block_link *l)
2578{
2579	printk(KERN_INFO
2580	       "Add %u* link from %c @%llu (%s/%llu/%d)"
2581	       " to %c @%llu (%s/%llu/%d).\n",
2582	       l->ref_cnt,
2583	       btrfsic_get_block_type(state, l->block_ref_from),
2584	       l->block_ref_from->logical_bytenr,
2585	       l->block_ref_from->dev_state->name,
2586	       l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2587	       btrfsic_get_block_type(state, l->block_ref_to),
2588	       l->block_ref_to->logical_bytenr,
2589	       l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2590	       l->block_ref_to->mirror_num);
2591}
2592
2593static void btrfsic_print_rem_link(const struct btrfsic_state *state,
2594				   const struct btrfsic_block_link *l)
2595{
2596	printk(KERN_INFO
2597	       "Rem %u* link from %c @%llu (%s/%llu/%d)"
2598	       " to %c @%llu (%s/%llu/%d).\n",
2599	       l->ref_cnt,
2600	       btrfsic_get_block_type(state, l->block_ref_from),
2601	       l->block_ref_from->logical_bytenr,
2602	       l->block_ref_from->dev_state->name,
2603	       l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2604	       btrfsic_get_block_type(state, l->block_ref_to),
2605	       l->block_ref_to->logical_bytenr,
2606	       l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2607	       l->block_ref_to->mirror_num);
2608}
2609
2610static char btrfsic_get_block_type(const struct btrfsic_state *state,
2611				   const struct btrfsic_block *block)
2612{
2613	if (block->is_superblock &&
2614	    state->latest_superblock->dev_bytenr == block->dev_bytenr &&
2615	    state->latest_superblock->dev_state->bdev == block->dev_state->bdev)
2616		return 'S';
2617	else if (block->is_superblock)
2618		return 's';
2619	else if (block->is_metadata)
2620		return 'M';
2621	else
2622		return 'D';
2623}
2624
2625static void btrfsic_dump_tree(const struct btrfsic_state *state)
2626{
2627	btrfsic_dump_tree_sub(state, state->latest_superblock, 0);
2628}
2629
2630static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
2631				  const struct btrfsic_block *block,
2632				  int indent_level)
2633{
2634	const struct btrfsic_block_link *l;
2635	int indent_add;
2636	static char buf[80];
2637	int cursor_position;
2638
2639	/*
2640	 * Should better fill an on-stack buffer with a complete line and
2641	 * dump it at once when it is time to print a newline character.
2642	 */
2643
2644	/*
2645	 * This algorithm is recursive because the amount of used stack space
2646	 * is very small and the max recursion depth is limited.
2647	 */
2648	indent_add = sprintf(buf, "%c-%llu(%s/%llu/%d)",
2649			     btrfsic_get_block_type(state, block),
2650			     block->logical_bytenr, block->dev_state->name,
2651			     block->dev_bytenr, block->mirror_num);
2652	if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2653		printk("[...]\n");
2654		return;
2655	}
2656	printk(buf);
2657	indent_level += indent_add;
2658	if (list_empty(&block->ref_to_list)) {
2659		printk("\n");
2660		return;
2661	}
2662	if (block->mirror_num > 1 &&
2663	    !(state->print_mask & BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS)) {
2664		printk(" [...]\n");
2665		return;
2666	}
2667
2668	cursor_position = indent_level;
2669	list_for_each_entry(l, &block->ref_to_list, node_ref_to) {
2670		while (cursor_position < indent_level) {
2671			printk(" ");
2672			cursor_position++;
2673		}
2674		if (l->ref_cnt > 1)
2675			indent_add = sprintf(buf, " %d*--> ", l->ref_cnt);
2676		else
2677			indent_add = sprintf(buf, " --> ");
2678		if (indent_level + indent_add >
2679		    BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2680			printk("[...]\n");
2681			cursor_position = 0;
2682			continue;
2683		}
2684
2685		printk(buf);
2686
2687		btrfsic_dump_tree_sub(state, l->block_ref_to,
2688				      indent_level + indent_add);
2689		cursor_position = 0;
2690	}
2691}
2692
2693static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
2694		struct btrfsic_state *state,
2695		struct btrfsic_block_data_ctx *next_block_ctx,
2696		struct btrfsic_block *next_block,
2697		struct btrfsic_block *from_block,
2698		u64 parent_generation)
2699{
2700	struct btrfsic_block_link *l;
2701
2702	l = btrfsic_block_link_hashtable_lookup(next_block_ctx->dev->bdev,
2703						next_block_ctx->dev_bytenr,
2704						from_block->dev_state->bdev,
2705						from_block->dev_bytenr,
2706						&state->block_link_hashtable);
2707	if (NULL == l) {
2708		l = btrfsic_block_link_alloc();
2709		if (NULL == l) {
2710			printk(KERN_INFO
2711			       "btrfsic: error, kmalloc" " failed!\n");
2712			return NULL;
2713		}
2714
2715		l->block_ref_to = next_block;
2716		l->block_ref_from = from_block;
2717		l->ref_cnt = 1;
2718		l->parent_generation = parent_generation;
2719
2720		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2721			btrfsic_print_add_link(state, l);
2722
2723		list_add(&l->node_ref_to, &from_block->ref_to_list);
2724		list_add(&l->node_ref_from, &next_block->ref_from_list);
2725
2726		btrfsic_block_link_hashtable_add(l,
2727						 &state->block_link_hashtable);
2728	} else {
2729		l->ref_cnt++;
2730		l->parent_generation = parent_generation;
2731		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2732			btrfsic_print_add_link(state, l);
2733	}
2734
2735	return l;
2736}
2737
2738static struct btrfsic_block *btrfsic_block_lookup_or_add(
2739		struct btrfsic_state *state,
2740		struct btrfsic_block_data_ctx *block_ctx,
2741		const char *additional_string,
2742		int is_metadata,
2743		int is_iodone,
2744		int never_written,
2745		int mirror_num,
2746		int *was_created)
2747{
2748	struct btrfsic_block *block;
2749
2750	block = btrfsic_block_hashtable_lookup(block_ctx->dev->bdev,
2751					       block_ctx->dev_bytenr,
2752					       &state->block_hashtable);
2753	if (NULL == block) {
2754		struct btrfsic_dev_state *dev_state;
2755
2756		block = btrfsic_block_alloc();
2757		if (NULL == block) {
2758			printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
2759			return NULL;
2760		}
2761		dev_state = btrfsic_dev_state_lookup(block_ctx->dev->bdev);
2762		if (NULL == dev_state) {
2763			printk(KERN_INFO
2764			       "btrfsic: error, lookup dev_state failed!\n");
2765			btrfsic_block_free(block);
2766			return NULL;
2767		}
2768		block->dev_state = dev_state;
2769		block->dev_bytenr = block_ctx->dev_bytenr;
2770		block->logical_bytenr = block_ctx->start;
2771		block->is_metadata = is_metadata;
2772		block->is_iodone = is_iodone;
2773		block->never_written = never_written;
2774		block->mirror_num = mirror_num;
2775		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2776			printk(KERN_INFO
2777			       "New %s%c-block @%llu (%s/%llu/%d)\n",
2778			       additional_string,
2779			       btrfsic_get_block_type(state, block),
2780			       block->logical_bytenr, dev_state->name,
2781			       block->dev_bytenr, mirror_num);
2782		list_add(&block->all_blocks_node, &state->all_blocks_list);
2783		btrfsic_block_hashtable_add(block, &state->block_hashtable);
2784		if (NULL != was_created)
2785			*was_created = 1;
2786	} else {
2787		if (NULL != was_created)
2788			*was_created = 0;
2789	}
2790
2791	return block;
2792}
2793
2794static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
2795					   u64 bytenr,
2796					   struct btrfsic_dev_state *dev_state,
2797					   u64 dev_bytenr)
2798{
 
 
2799	int num_copies;
2800	int mirror_num;
 
2801	int ret;
2802	struct btrfsic_block_data_ctx block_ctx;
2803	int match = 0;
2804
2805	num_copies = btrfs_num_copies(state->root->fs_info,
2806				      bytenr, state->metablock_size);
2807
2808	for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2809		ret = btrfsic_map_block(state, bytenr, state->metablock_size,
2810					&block_ctx, mirror_num);
2811		if (ret) {
2812			printk(KERN_INFO "btrfsic:"
2813			       " btrfsic_map_block(logical @%llu,"
2814			       " mirror %d) failed!\n",
2815			       bytenr, mirror_num);
2816			continue;
2817		}
2818
2819		if (dev_state->bdev == block_ctx.dev->bdev &&
2820		    dev_bytenr == block_ctx.dev_bytenr) {
2821			match++;
2822			btrfsic_release_block_ctx(&block_ctx);
2823			break;
2824		}
2825		btrfsic_release_block_ctx(&block_ctx);
2826	}
2827
2828	if (WARN_ON(!match)) {
2829		printk(KERN_INFO "btrfs: attempt to write M-block which contains logical bytenr that doesn't map to dev+physical bytenr of submit_bio,"
2830		       " buffer->log_bytenr=%llu, submit_bio(bdev=%s,"
2831		       " phys_bytenr=%llu)!\n",
2832		       bytenr, dev_state->name, dev_bytenr);
2833		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2834			ret = btrfsic_map_block(state, bytenr,
2835						state->metablock_size,
2836						&block_ctx, mirror_num);
2837			if (ret)
2838				continue;
2839
2840			printk(KERN_INFO "Read logical bytenr @%llu maps to"
2841			       " (%s/%llu/%d)\n",
2842			       bytenr, block_ctx.dev->name,
2843			       block_ctx.dev_bytenr, mirror_num);
2844		}
2845	}
2846}
2847
2848static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
2849		struct block_device *bdev)
2850{
2851	struct btrfsic_dev_state *ds;
2852
2853	ds = btrfsic_dev_state_hashtable_lookup(bdev,
2854						&btrfsic_dev_state_hashtable);
2855	return ds;
2856}
2857
2858int btrfsic_submit_bh(int rw, struct buffer_head *bh)
2859{
2860	struct btrfsic_dev_state *dev_state;
2861
2862	if (!btrfsic_is_initialized)
2863		return submit_bh(rw, bh);
2864
2865	mutex_lock(&btrfsic_mutex);
2866	/* since btrfsic_submit_bh() might also be called before
2867	 * btrfsic_mount(), this might return NULL */
2868	dev_state = btrfsic_dev_state_lookup(bh->b_bdev);
2869
2870	/* Only called to write the superblock (incl. FLUSH/FUA) */
2871	if (NULL != dev_state &&
2872	    (rw & WRITE) && bh->b_size > 0) {
2873		u64 dev_bytenr;
2874
2875		dev_bytenr = 4096 * bh->b_blocknr;
2876		if (dev_state->state->print_mask &
2877		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2878			printk(KERN_INFO
2879			       "submit_bh(rw=0x%x, blocknr=%llu (bytenr %llu),"
2880			       " size=%zu, data=%p, bdev=%p)\n",
2881			       rw, (unsigned long long)bh->b_blocknr,
2882			       dev_bytenr, bh->b_size, bh->b_data, bh->b_bdev);
2883		btrfsic_process_written_block(dev_state, dev_bytenr,
2884					      &bh->b_data, 1, NULL,
2885					      NULL, bh, rw);
2886	} else if (NULL != dev_state && (rw & REQ_FLUSH)) {
2887		if (dev_state->state->print_mask &
2888		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2889			printk(KERN_INFO
2890			       "submit_bh(rw=0x%x FLUSH, bdev=%p)\n",
2891			       rw, bh->b_bdev);
2892		if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
2893			if ((dev_state->state->print_mask &
2894			     (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2895			      BTRFSIC_PRINT_MASK_VERBOSE)))
2896				printk(KERN_INFO
2897				       "btrfsic_submit_bh(%s) with FLUSH"
2898				       " but dummy block already in use"
2899				       " (ignored)!\n",
2900				       dev_state->name);
2901		} else {
2902			struct btrfsic_block *const block =
2903				&dev_state->dummy_block_for_bio_bh_flush;
2904
2905			block->is_iodone = 0;
2906			block->never_written = 0;
2907			block->iodone_w_error = 0;
2908			block->flush_gen = dev_state->last_flush_gen + 1;
2909			block->submit_bio_bh_rw = rw;
2910			block->orig_bio_bh_private = bh->b_private;
2911			block->orig_bio_bh_end_io.bh = bh->b_end_io;
2912			block->next_in_same_bio = NULL;
2913			bh->b_private = block;
2914			bh->b_end_io = btrfsic_bh_end_io;
2915		}
2916	}
2917	mutex_unlock(&btrfsic_mutex);
2918	return submit_bh(rw, bh);
2919}
2920
2921static void __btrfsic_submit_bio(int rw, struct bio *bio)
2922{
2923	struct btrfsic_dev_state *dev_state;
2924
2925	if (!btrfsic_is_initialized)
2926		return;
2927
2928	mutex_lock(&btrfsic_mutex);
2929	/* since btrfsic_submit_bio() is also called before
2930	 * btrfsic_mount(), this might return NULL */
2931	dev_state = btrfsic_dev_state_lookup(bio->bi_bdev);
2932	if (NULL != dev_state &&
2933	    (rw & WRITE) && NULL != bio->bi_io_vec) {
2934		unsigned int i;
2935		u64 dev_bytenr;
2936		u64 cur_bytenr;
 
 
2937		int bio_is_patched;
2938		char **mapped_datav;
 
2939
2940		dev_bytenr = 512 * bio->bi_iter.bi_sector;
2941		bio_is_patched = 0;
2942		if (dev_state->state->print_mask &
2943		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2944			printk(KERN_INFO
2945			       "submit_bio(rw=0x%x, bi_vcnt=%u,"
2946			       " bi_sector=%llu (bytenr %llu), bi_bdev=%p)\n",
2947			       rw, bio->bi_vcnt,
2948			       (unsigned long long)bio->bi_iter.bi_sector,
2949			       dev_bytenr, bio->bi_bdev);
2950
2951		mapped_datav = kmalloc_array(bio->bi_vcnt,
2952					     sizeof(*mapped_datav), GFP_NOFS);
2953		if (!mapped_datav)
2954			goto leave;
2955		cur_bytenr = dev_bytenr;
2956		for (i = 0; i < bio->bi_vcnt; i++) {
2957			BUG_ON(bio->bi_io_vec[i].bv_len != PAGE_SIZE);
2958			mapped_datav[i] = kmap(bio->bi_io_vec[i].bv_page);
2959			if (!mapped_datav[i]) {
2960				while (i > 0) {
2961					i--;
2962					kunmap(bio->bi_io_vec[i].bv_page);
2963				}
2964				kfree(mapped_datav);
2965				goto leave;
2966			}
2967			if (dev_state->state->print_mask &
2968			    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE)
2969				printk(KERN_INFO
2970				       "#%u: bytenr=%llu, len=%u, offset=%u\n",
2971				       i, cur_bytenr, bio->bi_io_vec[i].bv_len,
2972				       bio->bi_io_vec[i].bv_offset);
2973			cur_bytenr += bio->bi_io_vec[i].bv_len;
2974		}
2975		btrfsic_process_written_block(dev_state, dev_bytenr,
2976					      mapped_datav, bio->bi_vcnt,
2977					      bio, &bio_is_patched,
2978					      NULL, rw);
2979		while (i > 0) {
2980			i--;
2981			kunmap(bio->bi_io_vec[i].bv_page);
2982		}
2983		kfree(mapped_datav);
2984	} else if (NULL != dev_state && (rw & REQ_FLUSH)) {
2985		if (dev_state->state->print_mask &
2986		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2987			printk(KERN_INFO
2988			       "submit_bio(rw=0x%x FLUSH, bdev=%p)\n",
2989			       rw, bio->bi_bdev);
2990		if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
2991			if ((dev_state->state->print_mask &
2992			     (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2993			      BTRFSIC_PRINT_MASK_VERBOSE)))
2994				printk(KERN_INFO
2995				       "btrfsic_submit_bio(%s) with FLUSH"
2996				       " but dummy block already in use"
2997				       " (ignored)!\n",
2998				       dev_state->name);
2999		} else {
3000			struct btrfsic_block *const block =
3001				&dev_state->dummy_block_for_bio_bh_flush;
3002
3003			block->is_iodone = 0;
3004			block->never_written = 0;
3005			block->iodone_w_error = 0;
3006			block->flush_gen = dev_state->last_flush_gen + 1;
3007			block->submit_bio_bh_rw = rw;
3008			block->orig_bio_bh_private = bio->bi_private;
3009			block->orig_bio_bh_end_io.bio = bio->bi_end_io;
3010			block->next_in_same_bio = NULL;
3011			bio->bi_private = block;
3012			bio->bi_end_io = btrfsic_bio_end_io;
3013		}
3014	}
3015leave:
3016	mutex_unlock(&btrfsic_mutex);
3017}
3018
3019void btrfsic_submit_bio(int rw, struct bio *bio)
3020{
3021	__btrfsic_submit_bio(rw, bio);
3022	submit_bio(rw, bio);
3023}
3024
3025int btrfsic_submit_bio_wait(int rw, struct bio *bio)
3026{
3027	__btrfsic_submit_bio(rw, bio);
3028	return submit_bio_wait(rw, bio);
3029}
3030
3031int btrfsic_mount(struct btrfs_root *root,
3032		  struct btrfs_fs_devices *fs_devices,
3033		  int including_extent_data, u32 print_mask)
3034{
3035	int ret;
3036	struct btrfsic_state *state;
3037	struct list_head *dev_head = &fs_devices->devices;
3038	struct btrfs_device *device;
3039
3040	if (root->nodesize & ((u64)PAGE_SIZE - 1)) {
3041		printk(KERN_INFO
3042		       "btrfsic: cannot handle nodesize %d not being a multiple of PAGE_SIZE %ld!\n",
3043		       root->nodesize, PAGE_SIZE);
3044		return -1;
3045	}
3046	if (root->sectorsize & ((u64)PAGE_SIZE - 1)) {
3047		printk(KERN_INFO
3048		       "btrfsic: cannot handle sectorsize %d not being a multiple of PAGE_SIZE %ld!\n",
3049		       root->sectorsize, PAGE_SIZE);
3050		return -1;
3051	}
3052	state = kzalloc(sizeof(*state), GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
3053	if (!state) {
3054		state = vzalloc(sizeof(*state));
3055		if (!state) {
3056			printk(KERN_INFO "btrfs check-integrity: vzalloc() failed!\n");
3057			return -1;
3058		}
3059	}
3060
3061	if (!btrfsic_is_initialized) {
3062		mutex_init(&btrfsic_mutex);
3063		btrfsic_dev_state_hashtable_init(&btrfsic_dev_state_hashtable);
3064		btrfsic_is_initialized = 1;
3065	}
3066	mutex_lock(&btrfsic_mutex);
3067	state->root = root;
3068	state->print_mask = print_mask;
3069	state->include_extent_data = including_extent_data;
3070	state->csum_size = 0;
3071	state->metablock_size = root->nodesize;
3072	state->datablock_size = root->sectorsize;
3073	INIT_LIST_HEAD(&state->all_blocks_list);
3074	btrfsic_block_hashtable_init(&state->block_hashtable);
3075	btrfsic_block_link_hashtable_init(&state->block_link_hashtable);
3076	state->max_superblock_generation = 0;
3077	state->latest_superblock = NULL;
3078
3079	list_for_each_entry(device, dev_head, dev_list) {
3080		struct btrfsic_dev_state *ds;
3081		const char *p;
3082
3083		if (!device->bdev || !device->name)
3084			continue;
3085
3086		ds = btrfsic_dev_state_alloc();
3087		if (NULL == ds) {
3088			printk(KERN_INFO
3089			       "btrfs check-integrity: kmalloc() failed!\n");
3090			mutex_unlock(&btrfsic_mutex);
3091			return -1;
3092		}
3093		ds->bdev = device->bdev;
3094		ds->state = state;
3095		bdevname(ds->bdev, ds->name);
3096		ds->name[BDEVNAME_SIZE - 1] = '\0';
3097		p = kbasename(ds->name);
3098		strlcpy(ds->name, p, sizeof(ds->name));
3099		btrfsic_dev_state_hashtable_add(ds,
3100						&btrfsic_dev_state_hashtable);
3101	}
3102
3103	ret = btrfsic_process_superblock(state, fs_devices);
3104	if (0 != ret) {
3105		mutex_unlock(&btrfsic_mutex);
3106		btrfsic_unmount(root, fs_devices);
3107		return ret;
3108	}
3109
3110	if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_DATABASE)
3111		btrfsic_dump_database(state);
3112	if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_TREE)
3113		btrfsic_dump_tree(state);
3114
3115	mutex_unlock(&btrfsic_mutex);
3116	return 0;
3117}
3118
3119void btrfsic_unmount(struct btrfs_root *root,
3120		     struct btrfs_fs_devices *fs_devices)
3121{
3122	struct btrfsic_block *b_all, *tmp_all;
3123	struct btrfsic_state *state;
3124	struct list_head *dev_head = &fs_devices->devices;
3125	struct btrfs_device *device;
3126
3127	if (!btrfsic_is_initialized)
3128		return;
3129
3130	mutex_lock(&btrfsic_mutex);
3131
3132	state = NULL;
3133	list_for_each_entry(device, dev_head, dev_list) {
3134		struct btrfsic_dev_state *ds;
3135
3136		if (!device->bdev || !device->name)
3137			continue;
3138
3139		ds = btrfsic_dev_state_hashtable_lookup(
3140				device->bdev,
3141				&btrfsic_dev_state_hashtable);
3142		if (NULL != ds) {
3143			state = ds->state;
3144			btrfsic_dev_state_hashtable_remove(ds);
3145			btrfsic_dev_state_free(ds);
3146		}
3147	}
3148
3149	if (NULL == state) {
3150		printk(KERN_INFO
3151		       "btrfsic: error, cannot find state information"
3152		       " on umount!\n");
3153		mutex_unlock(&btrfsic_mutex);
3154		return;
3155	}
3156
3157	/*
3158	 * Don't care about keeping the lists' state up to date,
3159	 * just free all memory that was allocated dynamically.
3160	 * Free the blocks and the block_links.
3161	 */
3162	list_for_each_entry_safe(b_all, tmp_all, &state->all_blocks_list,
3163				 all_blocks_node) {
3164		struct btrfsic_block_link *l, *tmp;
3165
3166		list_for_each_entry_safe(l, tmp, &b_all->ref_to_list,
3167					 node_ref_to) {
3168			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
3169				btrfsic_print_rem_link(state, l);
3170
3171			l->ref_cnt--;
3172			if (0 == l->ref_cnt)
3173				btrfsic_block_link_free(l);
3174		}
3175
3176		if (b_all->is_iodone || b_all->never_written)
3177			btrfsic_block_free(b_all);
3178		else
3179			printk(KERN_INFO "btrfs: attempt to free %c-block"
3180			       " @%llu (%s/%llu/%d) on umount which is"
3181			       " not yet iodone!\n",
3182			       btrfsic_get_block_type(state, b_all),
3183			       b_all->logical_bytenr, b_all->dev_state->name,
3184			       b_all->dev_bytenr, b_all->mirror_num);
3185	}
3186
3187	mutex_unlock(&btrfsic_mutex);
3188
3189	kvfree(state);
3190}