Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) STRATO AG 2011. All rights reserved.
4 */
5
6/*
7 * This module can be used to catch cases when the btrfs kernel
8 * code executes write requests to the disk that bring the file
9 * system in an inconsistent state. In such a state, a power-loss
10 * or kernel panic event would cause that the data on disk is
11 * lost or at least damaged.
12 *
13 * Code is added that examines all block write requests during
14 * runtime (including writes of the super block). Three rules
15 * are verified and an error is printed on violation of the
16 * rules:
17 * 1. It is not allowed to write a disk block which is
18 * currently referenced by the super block (either directly
19 * or indirectly).
20 * 2. When a super block is written, it is verified that all
21 * referenced (directly or indirectly) blocks fulfill the
22 * following requirements:
23 * 2a. All referenced blocks have either been present when
24 * the file system was mounted, (i.e., they have been
25 * referenced by the super block) or they have been
26 * written since then and the write completion callback
27 * was called and no write error was indicated and a
28 * FLUSH request to the device where these blocks are
29 * located was received and completed.
30 * 2b. All referenced blocks need to have a generation
31 * number which is equal to the parent's number.
32 *
33 * One issue that was found using this module was that the log
34 * tree on disk became temporarily corrupted because disk blocks
35 * that had been in use for the log tree had been freed and
36 * reused too early, while being referenced by the written super
37 * block.
38 *
39 * The search term in the kernel log that can be used to filter
40 * on the existence of detected integrity issues is
41 * "btrfs: attempt".
42 *
43 * The integrity check is enabled via mount options. These
44 * mount options are only supported if the integrity check
45 * tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY.
46 *
47 * Example #1, apply integrity checks to all metadata:
48 * mount /dev/sdb1 /mnt -o check_int
49 *
50 * Example #2, apply integrity checks to all metadata and
51 * to data extents:
52 * mount /dev/sdb1 /mnt -o check_int_data
53 *
54 * Example #3, apply integrity checks to all metadata and dump
55 * the tree that the super block references to kernel messages
56 * each time after a super block was written:
57 * mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263
58 *
59 * If the integrity check tool is included and activated in
60 * the mount options, plenty of kernel memory is used, and
61 * plenty of additional CPU cycles are spent. Enabling this
62 * functionality is not intended for normal use. In most
63 * cases, unless you are a btrfs developer who needs to verify
64 * the integrity of (super)-block write requests, do not
65 * enable the config option BTRFS_FS_CHECK_INTEGRITY to
66 * include and compile the integrity check tool.
67 *
68 * Expect millions of lines of information in the kernel log with an
69 * enabled check_int_print_mask. Therefore set LOG_BUF_SHIFT in the
70 * kernel config to at least 26 (which is 64MB). Usually the value is
71 * limited to 21 (which is 2MB) in init/Kconfig. The file needs to be
72 * changed like this before LOG_BUF_SHIFT can be set to a high value:
73 * config LOG_BUF_SHIFT
74 * int "Kernel log buffer size (16 => 64KB, 17 => 128KB)"
75 * range 12 30
76 */
77
78#include <linux/sched.h>
79#include <linux/slab.h>
80#include <linux/buffer_head.h>
81#include <linux/mutex.h>
82#include <linux/genhd.h>
83#include <linux/blkdev.h>
84#include <linux/mm.h>
85#include <linux/string.h>
86#include <crypto/hash.h>
87#include "ctree.h"
88#include "disk-io.h"
89#include "transaction.h"
90#include "extent_io.h"
91#include "volumes.h"
92#include "print-tree.h"
93#include "locking.h"
94#include "check-integrity.h"
95#include "rcu-string.h"
96#include "compression.h"
97
98#define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000
99#define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000
100#define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100
101#define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051
102#define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807
103#define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530
104#define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300
105#define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6) /* in characters,
106 * excluding " [...]" */
107#define BTRFSIC_GENERATION_UNKNOWN ((u64)-1)
108
109/*
110 * The definition of the bitmask fields for the print_mask.
111 * They are specified with the mount option check_integrity_print_mask.
112 */
113#define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE 0x00000001
114#define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION 0x00000002
115#define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE 0x00000004
116#define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE 0x00000008
117#define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH 0x00000010
118#define BTRFSIC_PRINT_MASK_END_IO_BIO_BH 0x00000020
119#define BTRFSIC_PRINT_MASK_VERBOSE 0x00000040
120#define BTRFSIC_PRINT_MASK_VERY_VERBOSE 0x00000080
121#define BTRFSIC_PRINT_MASK_INITIAL_TREE 0x00000100
122#define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES 0x00000200
123#define BTRFSIC_PRINT_MASK_INITIAL_DATABASE 0x00000400
124#define BTRFSIC_PRINT_MASK_NUM_COPIES 0x00000800
125#define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS 0x00001000
126#define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE 0x00002000
127
128struct btrfsic_dev_state;
129struct btrfsic_state;
130
131struct btrfsic_block {
132 u32 magic_num; /* only used for debug purposes */
133 unsigned int is_metadata:1; /* if it is meta-data, not data-data */
134 unsigned int is_superblock:1; /* if it is one of the superblocks */
135 unsigned int is_iodone:1; /* if is done by lower subsystem */
136 unsigned int iodone_w_error:1; /* error was indicated to endio */
137 unsigned int never_written:1; /* block was added because it was
138 * referenced, not because it was
139 * written */
140 unsigned int mirror_num; /* large enough to hold
141 * BTRFS_SUPER_MIRROR_MAX */
142 struct btrfsic_dev_state *dev_state;
143 u64 dev_bytenr; /* key, physical byte num on disk */
144 u64 logical_bytenr; /* logical byte num on disk */
145 u64 generation;
146 struct btrfs_disk_key disk_key; /* extra info to print in case of
147 * issues, will not always be correct */
148 struct list_head collision_resolving_node; /* list node */
149 struct list_head all_blocks_node; /* list node */
150
151 /* the following two lists contain block_link items */
152 struct list_head ref_to_list; /* list */
153 struct list_head ref_from_list; /* list */
154 struct btrfsic_block *next_in_same_bio;
155 void *orig_bio_bh_private;
156 union {
157 bio_end_io_t *bio;
158 bh_end_io_t *bh;
159 } orig_bio_bh_end_io;
160 int submit_bio_bh_rw;
161 u64 flush_gen; /* only valid if !never_written */
162};
163
164/*
165 * Elements of this type are allocated dynamically and required because
166 * each block object can refer to and can be ref from multiple blocks.
167 * The key to lookup them in the hashtable is the dev_bytenr of
168 * the block ref to plus the one from the block referred from.
169 * The fact that they are searchable via a hashtable and that a
170 * ref_cnt is maintained is not required for the btrfs integrity
171 * check algorithm itself, it is only used to make the output more
172 * beautiful in case that an error is detected (an error is defined
173 * as a write operation to a block while that block is still referenced).
174 */
175struct btrfsic_block_link {
176 u32 magic_num; /* only used for debug purposes */
177 u32 ref_cnt;
178 struct list_head node_ref_to; /* list node */
179 struct list_head node_ref_from; /* list node */
180 struct list_head collision_resolving_node; /* list node */
181 struct btrfsic_block *block_ref_to;
182 struct btrfsic_block *block_ref_from;
183 u64 parent_generation;
184};
185
186struct btrfsic_dev_state {
187 u32 magic_num; /* only used for debug purposes */
188 struct block_device *bdev;
189 struct btrfsic_state *state;
190 struct list_head collision_resolving_node; /* list node */
191 struct btrfsic_block dummy_block_for_bio_bh_flush;
192 u64 last_flush_gen;
193 char name[BDEVNAME_SIZE];
194};
195
196struct btrfsic_block_hashtable {
197 struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE];
198};
199
200struct btrfsic_block_link_hashtable {
201 struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE];
202};
203
204struct btrfsic_dev_state_hashtable {
205 struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE];
206};
207
208struct btrfsic_block_data_ctx {
209 u64 start; /* virtual bytenr */
210 u64 dev_bytenr; /* physical bytenr on device */
211 u32 len;
212 struct btrfsic_dev_state *dev;
213 char **datav;
214 struct page **pagev;
215 void *mem_to_free;
216};
217
218/* This structure is used to implement recursion without occupying
219 * any stack space, refer to btrfsic_process_metablock() */
220struct btrfsic_stack_frame {
221 u32 magic;
222 u32 nr;
223 int error;
224 int i;
225 int limit_nesting;
226 int num_copies;
227 int mirror_num;
228 struct btrfsic_block *block;
229 struct btrfsic_block_data_ctx *block_ctx;
230 struct btrfsic_block *next_block;
231 struct btrfsic_block_data_ctx next_block_ctx;
232 struct btrfs_header *hdr;
233 struct btrfsic_stack_frame *prev;
234};
235
236/* Some state per mounted filesystem */
237struct btrfsic_state {
238 u32 print_mask;
239 int include_extent_data;
240 int csum_size;
241 struct list_head all_blocks_list;
242 struct btrfsic_block_hashtable block_hashtable;
243 struct btrfsic_block_link_hashtable block_link_hashtable;
244 struct btrfs_fs_info *fs_info;
245 u64 max_superblock_generation;
246 struct btrfsic_block *latest_superblock;
247 u32 metablock_size;
248 u32 datablock_size;
249};
250
251static void btrfsic_block_init(struct btrfsic_block *b);
252static struct btrfsic_block *btrfsic_block_alloc(void);
253static void btrfsic_block_free(struct btrfsic_block *b);
254static void btrfsic_block_link_init(struct btrfsic_block_link *n);
255static struct btrfsic_block_link *btrfsic_block_link_alloc(void);
256static void btrfsic_block_link_free(struct btrfsic_block_link *n);
257static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds);
258static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void);
259static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds);
260static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h);
261static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
262 struct btrfsic_block_hashtable *h);
263static void btrfsic_block_hashtable_remove(struct btrfsic_block *b);
264static struct btrfsic_block *btrfsic_block_hashtable_lookup(
265 struct block_device *bdev,
266 u64 dev_bytenr,
267 struct btrfsic_block_hashtable *h);
268static void btrfsic_block_link_hashtable_init(
269 struct btrfsic_block_link_hashtable *h);
270static void btrfsic_block_link_hashtable_add(
271 struct btrfsic_block_link *l,
272 struct btrfsic_block_link_hashtable *h);
273static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l);
274static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
275 struct block_device *bdev_ref_to,
276 u64 dev_bytenr_ref_to,
277 struct block_device *bdev_ref_from,
278 u64 dev_bytenr_ref_from,
279 struct btrfsic_block_link_hashtable *h);
280static void btrfsic_dev_state_hashtable_init(
281 struct btrfsic_dev_state_hashtable *h);
282static void btrfsic_dev_state_hashtable_add(
283 struct btrfsic_dev_state *ds,
284 struct btrfsic_dev_state_hashtable *h);
285static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds);
286static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(dev_t dev,
287 struct btrfsic_dev_state_hashtable *h);
288static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void);
289static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf);
290static int btrfsic_process_superblock(struct btrfsic_state *state,
291 struct btrfs_fs_devices *fs_devices);
292static int btrfsic_process_metablock(struct btrfsic_state *state,
293 struct btrfsic_block *block,
294 struct btrfsic_block_data_ctx *block_ctx,
295 int limit_nesting, int force_iodone_flag);
296static void btrfsic_read_from_block_data(
297 struct btrfsic_block_data_ctx *block_ctx,
298 void *dst, u32 offset, size_t len);
299static int btrfsic_create_link_to_next_block(
300 struct btrfsic_state *state,
301 struct btrfsic_block *block,
302 struct btrfsic_block_data_ctx
303 *block_ctx, u64 next_bytenr,
304 int limit_nesting,
305 struct btrfsic_block_data_ctx *next_block_ctx,
306 struct btrfsic_block **next_blockp,
307 int force_iodone_flag,
308 int *num_copiesp, int *mirror_nump,
309 struct btrfs_disk_key *disk_key,
310 u64 parent_generation);
311static int btrfsic_handle_extent_data(struct btrfsic_state *state,
312 struct btrfsic_block *block,
313 struct btrfsic_block_data_ctx *block_ctx,
314 u32 item_offset, int force_iodone_flag);
315static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
316 struct btrfsic_block_data_ctx *block_ctx_out,
317 int mirror_num);
318static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx);
319static int btrfsic_read_block(struct btrfsic_state *state,
320 struct btrfsic_block_data_ctx *block_ctx);
321static void btrfsic_dump_database(struct btrfsic_state *state);
322static int btrfsic_test_for_metadata(struct btrfsic_state *state,
323 char **datav, unsigned int num_pages);
324static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
325 u64 dev_bytenr, char **mapped_datav,
326 unsigned int num_pages,
327 struct bio *bio, int *bio_is_patched,
328 struct buffer_head *bh,
329 int submit_bio_bh_rw);
330static int btrfsic_process_written_superblock(
331 struct btrfsic_state *state,
332 struct btrfsic_block *const block,
333 struct btrfs_super_block *const super_hdr);
334static void btrfsic_bio_end_io(struct bio *bp);
335static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate);
336static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state,
337 const struct btrfsic_block *block,
338 int recursion_level);
339static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
340 struct btrfsic_block *const block,
341 int recursion_level);
342static void btrfsic_print_add_link(const struct btrfsic_state *state,
343 const struct btrfsic_block_link *l);
344static void btrfsic_print_rem_link(const struct btrfsic_state *state,
345 const struct btrfsic_block_link *l);
346static char btrfsic_get_block_type(const struct btrfsic_state *state,
347 const struct btrfsic_block *block);
348static void btrfsic_dump_tree(const struct btrfsic_state *state);
349static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
350 const struct btrfsic_block *block,
351 int indent_level);
352static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
353 struct btrfsic_state *state,
354 struct btrfsic_block_data_ctx *next_block_ctx,
355 struct btrfsic_block *next_block,
356 struct btrfsic_block *from_block,
357 u64 parent_generation);
358static struct btrfsic_block *btrfsic_block_lookup_or_add(
359 struct btrfsic_state *state,
360 struct btrfsic_block_data_ctx *block_ctx,
361 const char *additional_string,
362 int is_metadata,
363 int is_iodone,
364 int never_written,
365 int mirror_num,
366 int *was_created);
367static int btrfsic_process_superblock_dev_mirror(
368 struct btrfsic_state *state,
369 struct btrfsic_dev_state *dev_state,
370 struct btrfs_device *device,
371 int superblock_mirror_num,
372 struct btrfsic_dev_state **selected_dev_state,
373 struct btrfs_super_block *selected_super);
374static struct btrfsic_dev_state *btrfsic_dev_state_lookup(dev_t dev);
375static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
376 u64 bytenr,
377 struct btrfsic_dev_state *dev_state,
378 u64 dev_bytenr);
379
380static struct mutex btrfsic_mutex;
381static int btrfsic_is_initialized;
382static struct btrfsic_dev_state_hashtable btrfsic_dev_state_hashtable;
383
384
385static void btrfsic_block_init(struct btrfsic_block *b)
386{
387 b->magic_num = BTRFSIC_BLOCK_MAGIC_NUMBER;
388 b->dev_state = NULL;
389 b->dev_bytenr = 0;
390 b->logical_bytenr = 0;
391 b->generation = BTRFSIC_GENERATION_UNKNOWN;
392 b->disk_key.objectid = 0;
393 b->disk_key.type = 0;
394 b->disk_key.offset = 0;
395 b->is_metadata = 0;
396 b->is_superblock = 0;
397 b->is_iodone = 0;
398 b->iodone_w_error = 0;
399 b->never_written = 0;
400 b->mirror_num = 0;
401 b->next_in_same_bio = NULL;
402 b->orig_bio_bh_private = NULL;
403 b->orig_bio_bh_end_io.bio = NULL;
404 INIT_LIST_HEAD(&b->collision_resolving_node);
405 INIT_LIST_HEAD(&b->all_blocks_node);
406 INIT_LIST_HEAD(&b->ref_to_list);
407 INIT_LIST_HEAD(&b->ref_from_list);
408 b->submit_bio_bh_rw = 0;
409 b->flush_gen = 0;
410}
411
412static struct btrfsic_block *btrfsic_block_alloc(void)
413{
414 struct btrfsic_block *b;
415
416 b = kzalloc(sizeof(*b), GFP_NOFS);
417 if (NULL != b)
418 btrfsic_block_init(b);
419
420 return b;
421}
422
423static void btrfsic_block_free(struct btrfsic_block *b)
424{
425 BUG_ON(!(NULL == b || BTRFSIC_BLOCK_MAGIC_NUMBER == b->magic_num));
426 kfree(b);
427}
428
429static void btrfsic_block_link_init(struct btrfsic_block_link *l)
430{
431 l->magic_num = BTRFSIC_BLOCK_LINK_MAGIC_NUMBER;
432 l->ref_cnt = 1;
433 INIT_LIST_HEAD(&l->node_ref_to);
434 INIT_LIST_HEAD(&l->node_ref_from);
435 INIT_LIST_HEAD(&l->collision_resolving_node);
436 l->block_ref_to = NULL;
437 l->block_ref_from = NULL;
438}
439
440static struct btrfsic_block_link *btrfsic_block_link_alloc(void)
441{
442 struct btrfsic_block_link *l;
443
444 l = kzalloc(sizeof(*l), GFP_NOFS);
445 if (NULL != l)
446 btrfsic_block_link_init(l);
447
448 return l;
449}
450
451static void btrfsic_block_link_free(struct btrfsic_block_link *l)
452{
453 BUG_ON(!(NULL == l || BTRFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num));
454 kfree(l);
455}
456
457static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds)
458{
459 ds->magic_num = BTRFSIC_DEV2STATE_MAGIC_NUMBER;
460 ds->bdev = NULL;
461 ds->state = NULL;
462 ds->name[0] = '\0';
463 INIT_LIST_HEAD(&ds->collision_resolving_node);
464 ds->last_flush_gen = 0;
465 btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush);
466 ds->dummy_block_for_bio_bh_flush.is_iodone = 1;
467 ds->dummy_block_for_bio_bh_flush.dev_state = ds;
468}
469
470static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void)
471{
472 struct btrfsic_dev_state *ds;
473
474 ds = kzalloc(sizeof(*ds), GFP_NOFS);
475 if (NULL != ds)
476 btrfsic_dev_state_init(ds);
477
478 return ds;
479}
480
481static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds)
482{
483 BUG_ON(!(NULL == ds ||
484 BTRFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num));
485 kfree(ds);
486}
487
488static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h)
489{
490 int i;
491
492 for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++)
493 INIT_LIST_HEAD(h->table + i);
494}
495
496static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
497 struct btrfsic_block_hashtable *h)
498{
499 const unsigned int hashval =
500 (((unsigned int)(b->dev_bytenr >> 16)) ^
501 ((unsigned int)((uintptr_t)b->dev_state->bdev))) &
502 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
503
504 list_add(&b->collision_resolving_node, h->table + hashval);
505}
506
507static void btrfsic_block_hashtable_remove(struct btrfsic_block *b)
508{
509 list_del(&b->collision_resolving_node);
510}
511
512static struct btrfsic_block *btrfsic_block_hashtable_lookup(
513 struct block_device *bdev,
514 u64 dev_bytenr,
515 struct btrfsic_block_hashtable *h)
516{
517 const unsigned int hashval =
518 (((unsigned int)(dev_bytenr >> 16)) ^
519 ((unsigned int)((uintptr_t)bdev))) &
520 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
521 struct btrfsic_block *b;
522
523 list_for_each_entry(b, h->table + hashval, collision_resolving_node) {
524 if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr)
525 return b;
526 }
527
528 return NULL;
529}
530
531static void btrfsic_block_link_hashtable_init(
532 struct btrfsic_block_link_hashtable *h)
533{
534 int i;
535
536 for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++)
537 INIT_LIST_HEAD(h->table + i);
538}
539
540static void btrfsic_block_link_hashtable_add(
541 struct btrfsic_block_link *l,
542 struct btrfsic_block_link_hashtable *h)
543{
544 const unsigned int hashval =
545 (((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^
546 ((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^
547 ((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^
548 ((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev)))
549 & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
550
551 BUG_ON(NULL == l->block_ref_to);
552 BUG_ON(NULL == l->block_ref_from);
553 list_add(&l->collision_resolving_node, h->table + hashval);
554}
555
556static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l)
557{
558 list_del(&l->collision_resolving_node);
559}
560
561static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
562 struct block_device *bdev_ref_to,
563 u64 dev_bytenr_ref_to,
564 struct block_device *bdev_ref_from,
565 u64 dev_bytenr_ref_from,
566 struct btrfsic_block_link_hashtable *h)
567{
568 const unsigned int hashval =
569 (((unsigned int)(dev_bytenr_ref_to >> 16)) ^
570 ((unsigned int)(dev_bytenr_ref_from >> 16)) ^
571 ((unsigned int)((uintptr_t)bdev_ref_to)) ^
572 ((unsigned int)((uintptr_t)bdev_ref_from))) &
573 (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
574 struct btrfsic_block_link *l;
575
576 list_for_each_entry(l, h->table + hashval, collision_resolving_node) {
577 BUG_ON(NULL == l->block_ref_to);
578 BUG_ON(NULL == l->block_ref_from);
579 if (l->block_ref_to->dev_state->bdev == bdev_ref_to &&
580 l->block_ref_to->dev_bytenr == dev_bytenr_ref_to &&
581 l->block_ref_from->dev_state->bdev == bdev_ref_from &&
582 l->block_ref_from->dev_bytenr == dev_bytenr_ref_from)
583 return l;
584 }
585
586 return NULL;
587}
588
589static void btrfsic_dev_state_hashtable_init(
590 struct btrfsic_dev_state_hashtable *h)
591{
592 int i;
593
594 for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++)
595 INIT_LIST_HEAD(h->table + i);
596}
597
598static void btrfsic_dev_state_hashtable_add(
599 struct btrfsic_dev_state *ds,
600 struct btrfsic_dev_state_hashtable *h)
601{
602 const unsigned int hashval =
603 (((unsigned int)((uintptr_t)ds->bdev->bd_dev)) &
604 (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
605
606 list_add(&ds->collision_resolving_node, h->table + hashval);
607}
608
609static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds)
610{
611 list_del(&ds->collision_resolving_node);
612}
613
614static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(dev_t dev,
615 struct btrfsic_dev_state_hashtable *h)
616{
617 const unsigned int hashval =
618 dev & (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1);
619 struct btrfsic_dev_state *ds;
620
621 list_for_each_entry(ds, h->table + hashval, collision_resolving_node) {
622 if (ds->bdev->bd_dev == dev)
623 return ds;
624 }
625
626 return NULL;
627}
628
629static int btrfsic_process_superblock(struct btrfsic_state *state,
630 struct btrfs_fs_devices *fs_devices)
631{
632 struct btrfs_fs_info *fs_info = state->fs_info;
633 struct btrfs_super_block *selected_super;
634 struct list_head *dev_head = &fs_devices->devices;
635 struct btrfs_device *device;
636 struct btrfsic_dev_state *selected_dev_state = NULL;
637 int ret = 0;
638 int pass;
639
640 BUG_ON(NULL == state);
641 selected_super = kzalloc(sizeof(*selected_super), GFP_NOFS);
642 if (NULL == selected_super) {
643 pr_info("btrfsic: error, kmalloc failed!\n");
644 return -ENOMEM;
645 }
646
647 list_for_each_entry(device, dev_head, dev_list) {
648 int i;
649 struct btrfsic_dev_state *dev_state;
650
651 if (!device->bdev || !device->name)
652 continue;
653
654 dev_state = btrfsic_dev_state_lookup(device->bdev->bd_dev);
655 BUG_ON(NULL == dev_state);
656 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
657 ret = btrfsic_process_superblock_dev_mirror(
658 state, dev_state, device, i,
659 &selected_dev_state, selected_super);
660 if (0 != ret && 0 == i) {
661 kfree(selected_super);
662 return ret;
663 }
664 }
665 }
666
667 if (NULL == state->latest_superblock) {
668 pr_info("btrfsic: no superblock found!\n");
669 kfree(selected_super);
670 return -1;
671 }
672
673 state->csum_size = btrfs_super_csum_size(selected_super);
674
675 for (pass = 0; pass < 3; pass++) {
676 int num_copies;
677 int mirror_num;
678 u64 next_bytenr;
679
680 switch (pass) {
681 case 0:
682 next_bytenr = btrfs_super_root(selected_super);
683 if (state->print_mask &
684 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
685 pr_info("root@%llu\n", next_bytenr);
686 break;
687 case 1:
688 next_bytenr = btrfs_super_chunk_root(selected_super);
689 if (state->print_mask &
690 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
691 pr_info("chunk@%llu\n", next_bytenr);
692 break;
693 case 2:
694 next_bytenr = btrfs_super_log_root(selected_super);
695 if (0 == next_bytenr)
696 continue;
697 if (state->print_mask &
698 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
699 pr_info("log@%llu\n", next_bytenr);
700 break;
701 }
702
703 num_copies = btrfs_num_copies(fs_info, next_bytenr,
704 state->metablock_size);
705 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
706 pr_info("num_copies(log_bytenr=%llu) = %d\n",
707 next_bytenr, num_copies);
708
709 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
710 struct btrfsic_block *next_block;
711 struct btrfsic_block_data_ctx tmp_next_block_ctx;
712 struct btrfsic_block_link *l;
713
714 ret = btrfsic_map_block(state, next_bytenr,
715 state->metablock_size,
716 &tmp_next_block_ctx,
717 mirror_num);
718 if (ret) {
719 pr_info("btrfsic: btrfsic_map_block(root @%llu, mirror %d) failed!\n",
720 next_bytenr, mirror_num);
721 kfree(selected_super);
722 return -1;
723 }
724
725 next_block = btrfsic_block_hashtable_lookup(
726 tmp_next_block_ctx.dev->bdev,
727 tmp_next_block_ctx.dev_bytenr,
728 &state->block_hashtable);
729 BUG_ON(NULL == next_block);
730
731 l = btrfsic_block_link_hashtable_lookup(
732 tmp_next_block_ctx.dev->bdev,
733 tmp_next_block_ctx.dev_bytenr,
734 state->latest_superblock->dev_state->
735 bdev,
736 state->latest_superblock->dev_bytenr,
737 &state->block_link_hashtable);
738 BUG_ON(NULL == l);
739
740 ret = btrfsic_read_block(state, &tmp_next_block_ctx);
741 if (ret < (int)PAGE_SIZE) {
742 pr_info("btrfsic: read @logical %llu failed!\n",
743 tmp_next_block_ctx.start);
744 btrfsic_release_block_ctx(&tmp_next_block_ctx);
745 kfree(selected_super);
746 return -1;
747 }
748
749 ret = btrfsic_process_metablock(state,
750 next_block,
751 &tmp_next_block_ctx,
752 BTRFS_MAX_LEVEL + 3, 1);
753 btrfsic_release_block_ctx(&tmp_next_block_ctx);
754 }
755 }
756
757 kfree(selected_super);
758 return ret;
759}
760
761static int btrfsic_process_superblock_dev_mirror(
762 struct btrfsic_state *state,
763 struct btrfsic_dev_state *dev_state,
764 struct btrfs_device *device,
765 int superblock_mirror_num,
766 struct btrfsic_dev_state **selected_dev_state,
767 struct btrfs_super_block *selected_super)
768{
769 struct btrfs_fs_info *fs_info = state->fs_info;
770 struct btrfs_super_block *super_tmp;
771 u64 dev_bytenr;
772 struct buffer_head *bh;
773 struct btrfsic_block *superblock_tmp;
774 int pass;
775 struct block_device *const superblock_bdev = device->bdev;
776
777 /* super block bytenr is always the unmapped device bytenr */
778 dev_bytenr = btrfs_sb_offset(superblock_mirror_num);
779 if (dev_bytenr + BTRFS_SUPER_INFO_SIZE > device->commit_total_bytes)
780 return -1;
781 bh = __bread(superblock_bdev, dev_bytenr / BTRFS_BDEV_BLOCKSIZE,
782 BTRFS_SUPER_INFO_SIZE);
783 if (NULL == bh)
784 return -1;
785 super_tmp = (struct btrfs_super_block *)
786 (bh->b_data + (dev_bytenr & (BTRFS_BDEV_BLOCKSIZE - 1)));
787
788 if (btrfs_super_bytenr(super_tmp) != dev_bytenr ||
789 btrfs_super_magic(super_tmp) != BTRFS_MAGIC ||
790 memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE) ||
791 btrfs_super_nodesize(super_tmp) != state->metablock_size ||
792 btrfs_super_sectorsize(super_tmp) != state->datablock_size) {
793 brelse(bh);
794 return 0;
795 }
796
797 superblock_tmp =
798 btrfsic_block_hashtable_lookup(superblock_bdev,
799 dev_bytenr,
800 &state->block_hashtable);
801 if (NULL == superblock_tmp) {
802 superblock_tmp = btrfsic_block_alloc();
803 if (NULL == superblock_tmp) {
804 pr_info("btrfsic: error, kmalloc failed!\n");
805 brelse(bh);
806 return -1;
807 }
808 /* for superblock, only the dev_bytenr makes sense */
809 superblock_tmp->dev_bytenr = dev_bytenr;
810 superblock_tmp->dev_state = dev_state;
811 superblock_tmp->logical_bytenr = dev_bytenr;
812 superblock_tmp->generation = btrfs_super_generation(super_tmp);
813 superblock_tmp->is_metadata = 1;
814 superblock_tmp->is_superblock = 1;
815 superblock_tmp->is_iodone = 1;
816 superblock_tmp->never_written = 0;
817 superblock_tmp->mirror_num = 1 + superblock_mirror_num;
818 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
819 btrfs_info_in_rcu(fs_info,
820 "new initial S-block (bdev %p, %s) @%llu (%s/%llu/%d)",
821 superblock_bdev,
822 rcu_str_deref(device->name), dev_bytenr,
823 dev_state->name, dev_bytenr,
824 superblock_mirror_num);
825 list_add(&superblock_tmp->all_blocks_node,
826 &state->all_blocks_list);
827 btrfsic_block_hashtable_add(superblock_tmp,
828 &state->block_hashtable);
829 }
830
831 /* select the one with the highest generation field */
832 if (btrfs_super_generation(super_tmp) >
833 state->max_superblock_generation ||
834 0 == state->max_superblock_generation) {
835 memcpy(selected_super, super_tmp, sizeof(*selected_super));
836 *selected_dev_state = dev_state;
837 state->max_superblock_generation =
838 btrfs_super_generation(super_tmp);
839 state->latest_superblock = superblock_tmp;
840 }
841
842 for (pass = 0; pass < 3; pass++) {
843 u64 next_bytenr;
844 int num_copies;
845 int mirror_num;
846 const char *additional_string = NULL;
847 struct btrfs_disk_key tmp_disk_key;
848
849 tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
850 tmp_disk_key.offset = 0;
851 switch (pass) {
852 case 0:
853 btrfs_set_disk_key_objectid(&tmp_disk_key,
854 BTRFS_ROOT_TREE_OBJECTID);
855 additional_string = "initial root ";
856 next_bytenr = btrfs_super_root(super_tmp);
857 break;
858 case 1:
859 btrfs_set_disk_key_objectid(&tmp_disk_key,
860 BTRFS_CHUNK_TREE_OBJECTID);
861 additional_string = "initial chunk ";
862 next_bytenr = btrfs_super_chunk_root(super_tmp);
863 break;
864 case 2:
865 btrfs_set_disk_key_objectid(&tmp_disk_key,
866 BTRFS_TREE_LOG_OBJECTID);
867 additional_string = "initial log ";
868 next_bytenr = btrfs_super_log_root(super_tmp);
869 if (0 == next_bytenr)
870 continue;
871 break;
872 }
873
874 num_copies = btrfs_num_copies(fs_info, next_bytenr,
875 state->metablock_size);
876 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
877 pr_info("num_copies(log_bytenr=%llu) = %d\n",
878 next_bytenr, num_copies);
879 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
880 struct btrfsic_block *next_block;
881 struct btrfsic_block_data_ctx tmp_next_block_ctx;
882 struct btrfsic_block_link *l;
883
884 if (btrfsic_map_block(state, next_bytenr,
885 state->metablock_size,
886 &tmp_next_block_ctx,
887 mirror_num)) {
888 pr_info("btrfsic: btrfsic_map_block(bytenr @%llu, mirror %d) failed!\n",
889 next_bytenr, mirror_num);
890 brelse(bh);
891 return -1;
892 }
893
894 next_block = btrfsic_block_lookup_or_add(
895 state, &tmp_next_block_ctx,
896 additional_string, 1, 1, 0,
897 mirror_num, NULL);
898 if (NULL == next_block) {
899 btrfsic_release_block_ctx(&tmp_next_block_ctx);
900 brelse(bh);
901 return -1;
902 }
903
904 next_block->disk_key = tmp_disk_key;
905 next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
906 l = btrfsic_block_link_lookup_or_add(
907 state, &tmp_next_block_ctx,
908 next_block, superblock_tmp,
909 BTRFSIC_GENERATION_UNKNOWN);
910 btrfsic_release_block_ctx(&tmp_next_block_ctx);
911 if (NULL == l) {
912 brelse(bh);
913 return -1;
914 }
915 }
916 }
917 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES)
918 btrfsic_dump_tree_sub(state, superblock_tmp, 0);
919
920 brelse(bh);
921 return 0;
922}
923
924static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void)
925{
926 struct btrfsic_stack_frame *sf;
927
928 sf = kzalloc(sizeof(*sf), GFP_NOFS);
929 if (NULL == sf)
930 pr_info("btrfsic: alloc memory failed!\n");
931 else
932 sf->magic = BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER;
933 return sf;
934}
935
936static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf)
937{
938 BUG_ON(!(NULL == sf ||
939 BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic));
940 kfree(sf);
941}
942
943static noinline_for_stack int btrfsic_process_metablock(
944 struct btrfsic_state *state,
945 struct btrfsic_block *const first_block,
946 struct btrfsic_block_data_ctx *const first_block_ctx,
947 int first_limit_nesting, int force_iodone_flag)
948{
949 struct btrfsic_stack_frame initial_stack_frame = { 0 };
950 struct btrfsic_stack_frame *sf;
951 struct btrfsic_stack_frame *next_stack;
952 struct btrfs_header *const first_hdr =
953 (struct btrfs_header *)first_block_ctx->datav[0];
954
955 BUG_ON(!first_hdr);
956 sf = &initial_stack_frame;
957 sf->error = 0;
958 sf->i = -1;
959 sf->limit_nesting = first_limit_nesting;
960 sf->block = first_block;
961 sf->block_ctx = first_block_ctx;
962 sf->next_block = NULL;
963 sf->hdr = first_hdr;
964 sf->prev = NULL;
965
966continue_with_new_stack_frame:
967 sf->block->generation = le64_to_cpu(sf->hdr->generation);
968 if (0 == sf->hdr->level) {
969 struct btrfs_leaf *const leafhdr =
970 (struct btrfs_leaf *)sf->hdr;
971
972 if (-1 == sf->i) {
973 sf->nr = btrfs_stack_header_nritems(&leafhdr->header);
974
975 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
976 pr_info("leaf %llu items %d generation %llu owner %llu\n",
977 sf->block_ctx->start, sf->nr,
978 btrfs_stack_header_generation(
979 &leafhdr->header),
980 btrfs_stack_header_owner(
981 &leafhdr->header));
982 }
983
984continue_with_current_leaf_stack_frame:
985 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
986 sf->i++;
987 sf->num_copies = 0;
988 }
989
990 if (sf->i < sf->nr) {
991 struct btrfs_item disk_item;
992 u32 disk_item_offset =
993 (uintptr_t)(leafhdr->items + sf->i) -
994 (uintptr_t)leafhdr;
995 struct btrfs_disk_key *disk_key;
996 u8 type;
997 u32 item_offset;
998 u32 item_size;
999
1000 if (disk_item_offset + sizeof(struct btrfs_item) >
1001 sf->block_ctx->len) {
1002leaf_item_out_of_bounce_error:
1003 pr_info("btrfsic: leaf item out of bounce at logical %llu, dev %s\n",
1004 sf->block_ctx->start,
1005 sf->block_ctx->dev->name);
1006 goto one_stack_frame_backwards;
1007 }
1008 btrfsic_read_from_block_data(sf->block_ctx,
1009 &disk_item,
1010 disk_item_offset,
1011 sizeof(struct btrfs_item));
1012 item_offset = btrfs_stack_item_offset(&disk_item);
1013 item_size = btrfs_stack_item_size(&disk_item);
1014 disk_key = &disk_item.key;
1015 type = btrfs_disk_key_type(disk_key);
1016
1017 if (BTRFS_ROOT_ITEM_KEY == type) {
1018 struct btrfs_root_item root_item;
1019 u32 root_item_offset;
1020 u64 next_bytenr;
1021
1022 root_item_offset = item_offset +
1023 offsetof(struct btrfs_leaf, items);
1024 if (root_item_offset + item_size >
1025 sf->block_ctx->len)
1026 goto leaf_item_out_of_bounce_error;
1027 btrfsic_read_from_block_data(
1028 sf->block_ctx, &root_item,
1029 root_item_offset,
1030 item_size);
1031 next_bytenr = btrfs_root_bytenr(&root_item);
1032
1033 sf->error =
1034 btrfsic_create_link_to_next_block(
1035 state,
1036 sf->block,
1037 sf->block_ctx,
1038 next_bytenr,
1039 sf->limit_nesting,
1040 &sf->next_block_ctx,
1041 &sf->next_block,
1042 force_iodone_flag,
1043 &sf->num_copies,
1044 &sf->mirror_num,
1045 disk_key,
1046 btrfs_root_generation(
1047 &root_item));
1048 if (sf->error)
1049 goto one_stack_frame_backwards;
1050
1051 if (NULL != sf->next_block) {
1052 struct btrfs_header *const next_hdr =
1053 (struct btrfs_header *)
1054 sf->next_block_ctx.datav[0];
1055
1056 next_stack =
1057 btrfsic_stack_frame_alloc();
1058 if (NULL == next_stack) {
1059 sf->error = -1;
1060 btrfsic_release_block_ctx(
1061 &sf->
1062 next_block_ctx);
1063 goto one_stack_frame_backwards;
1064 }
1065
1066 next_stack->i = -1;
1067 next_stack->block = sf->next_block;
1068 next_stack->block_ctx =
1069 &sf->next_block_ctx;
1070 next_stack->next_block = NULL;
1071 next_stack->hdr = next_hdr;
1072 next_stack->limit_nesting =
1073 sf->limit_nesting - 1;
1074 next_stack->prev = sf;
1075 sf = next_stack;
1076 goto continue_with_new_stack_frame;
1077 }
1078 } else if (BTRFS_EXTENT_DATA_KEY == type &&
1079 state->include_extent_data) {
1080 sf->error = btrfsic_handle_extent_data(
1081 state,
1082 sf->block,
1083 sf->block_ctx,
1084 item_offset,
1085 force_iodone_flag);
1086 if (sf->error)
1087 goto one_stack_frame_backwards;
1088 }
1089
1090 goto continue_with_current_leaf_stack_frame;
1091 }
1092 } else {
1093 struct btrfs_node *const nodehdr = (struct btrfs_node *)sf->hdr;
1094
1095 if (-1 == sf->i) {
1096 sf->nr = btrfs_stack_header_nritems(&nodehdr->header);
1097
1098 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1099 pr_info("node %llu level %d items %d generation %llu owner %llu\n",
1100 sf->block_ctx->start,
1101 nodehdr->header.level, sf->nr,
1102 btrfs_stack_header_generation(
1103 &nodehdr->header),
1104 btrfs_stack_header_owner(
1105 &nodehdr->header));
1106 }
1107
1108continue_with_current_node_stack_frame:
1109 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1110 sf->i++;
1111 sf->num_copies = 0;
1112 }
1113
1114 if (sf->i < sf->nr) {
1115 struct btrfs_key_ptr key_ptr;
1116 u32 key_ptr_offset;
1117 u64 next_bytenr;
1118
1119 key_ptr_offset = (uintptr_t)(nodehdr->ptrs + sf->i) -
1120 (uintptr_t)nodehdr;
1121 if (key_ptr_offset + sizeof(struct btrfs_key_ptr) >
1122 sf->block_ctx->len) {
1123 pr_info("btrfsic: node item out of bounce at logical %llu, dev %s\n",
1124 sf->block_ctx->start,
1125 sf->block_ctx->dev->name);
1126 goto one_stack_frame_backwards;
1127 }
1128 btrfsic_read_from_block_data(
1129 sf->block_ctx, &key_ptr, key_ptr_offset,
1130 sizeof(struct btrfs_key_ptr));
1131 next_bytenr = btrfs_stack_key_blockptr(&key_ptr);
1132
1133 sf->error = btrfsic_create_link_to_next_block(
1134 state,
1135 sf->block,
1136 sf->block_ctx,
1137 next_bytenr,
1138 sf->limit_nesting,
1139 &sf->next_block_ctx,
1140 &sf->next_block,
1141 force_iodone_flag,
1142 &sf->num_copies,
1143 &sf->mirror_num,
1144 &key_ptr.key,
1145 btrfs_stack_key_generation(&key_ptr));
1146 if (sf->error)
1147 goto one_stack_frame_backwards;
1148
1149 if (NULL != sf->next_block) {
1150 struct btrfs_header *const next_hdr =
1151 (struct btrfs_header *)
1152 sf->next_block_ctx.datav[0];
1153
1154 next_stack = btrfsic_stack_frame_alloc();
1155 if (NULL == next_stack) {
1156 sf->error = -1;
1157 goto one_stack_frame_backwards;
1158 }
1159
1160 next_stack->i = -1;
1161 next_stack->block = sf->next_block;
1162 next_stack->block_ctx = &sf->next_block_ctx;
1163 next_stack->next_block = NULL;
1164 next_stack->hdr = next_hdr;
1165 next_stack->limit_nesting =
1166 sf->limit_nesting - 1;
1167 next_stack->prev = sf;
1168 sf = next_stack;
1169 goto continue_with_new_stack_frame;
1170 }
1171
1172 goto continue_with_current_node_stack_frame;
1173 }
1174 }
1175
1176one_stack_frame_backwards:
1177 if (NULL != sf->prev) {
1178 struct btrfsic_stack_frame *const prev = sf->prev;
1179
1180 /* the one for the initial block is freed in the caller */
1181 btrfsic_release_block_ctx(sf->block_ctx);
1182
1183 if (sf->error) {
1184 prev->error = sf->error;
1185 btrfsic_stack_frame_free(sf);
1186 sf = prev;
1187 goto one_stack_frame_backwards;
1188 }
1189
1190 btrfsic_stack_frame_free(sf);
1191 sf = prev;
1192 goto continue_with_new_stack_frame;
1193 } else {
1194 BUG_ON(&initial_stack_frame != sf);
1195 }
1196
1197 return sf->error;
1198}
1199
1200static void btrfsic_read_from_block_data(
1201 struct btrfsic_block_data_ctx *block_ctx,
1202 void *dstv, u32 offset, size_t len)
1203{
1204 size_t cur;
1205 size_t pgoff;
1206 char *kaddr;
1207 char *dst = (char *)dstv;
1208 size_t start_offset = offset_in_page(block_ctx->start);
1209 unsigned long i = (start_offset + offset) >> PAGE_SHIFT;
1210
1211 WARN_ON(offset + len > block_ctx->len);
1212 pgoff = offset_in_page(start_offset + offset);
1213
1214 while (len > 0) {
1215 cur = min(len, ((size_t)PAGE_SIZE - pgoff));
1216 BUG_ON(i >= DIV_ROUND_UP(block_ctx->len, PAGE_SIZE));
1217 kaddr = block_ctx->datav[i];
1218 memcpy(dst, kaddr + pgoff, cur);
1219
1220 dst += cur;
1221 len -= cur;
1222 pgoff = 0;
1223 i++;
1224 }
1225}
1226
1227static int btrfsic_create_link_to_next_block(
1228 struct btrfsic_state *state,
1229 struct btrfsic_block *block,
1230 struct btrfsic_block_data_ctx *block_ctx,
1231 u64 next_bytenr,
1232 int limit_nesting,
1233 struct btrfsic_block_data_ctx *next_block_ctx,
1234 struct btrfsic_block **next_blockp,
1235 int force_iodone_flag,
1236 int *num_copiesp, int *mirror_nump,
1237 struct btrfs_disk_key *disk_key,
1238 u64 parent_generation)
1239{
1240 struct btrfs_fs_info *fs_info = state->fs_info;
1241 struct btrfsic_block *next_block = NULL;
1242 int ret;
1243 struct btrfsic_block_link *l;
1244 int did_alloc_block_link;
1245 int block_was_created;
1246
1247 *next_blockp = NULL;
1248 if (0 == *num_copiesp) {
1249 *num_copiesp = btrfs_num_copies(fs_info, next_bytenr,
1250 state->metablock_size);
1251 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1252 pr_info("num_copies(log_bytenr=%llu) = %d\n",
1253 next_bytenr, *num_copiesp);
1254 *mirror_nump = 1;
1255 }
1256
1257 if (*mirror_nump > *num_copiesp)
1258 return 0;
1259
1260 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1261 pr_info("btrfsic_create_link_to_next_block(mirror_num=%d)\n",
1262 *mirror_nump);
1263 ret = btrfsic_map_block(state, next_bytenr,
1264 state->metablock_size,
1265 next_block_ctx, *mirror_nump);
1266 if (ret) {
1267 pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1268 next_bytenr, *mirror_nump);
1269 btrfsic_release_block_ctx(next_block_ctx);
1270 *next_blockp = NULL;
1271 return -1;
1272 }
1273
1274 next_block = btrfsic_block_lookup_or_add(state,
1275 next_block_ctx, "referenced ",
1276 1, force_iodone_flag,
1277 !force_iodone_flag,
1278 *mirror_nump,
1279 &block_was_created);
1280 if (NULL == next_block) {
1281 btrfsic_release_block_ctx(next_block_ctx);
1282 *next_blockp = NULL;
1283 return -1;
1284 }
1285 if (block_was_created) {
1286 l = NULL;
1287 next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
1288 } else {
1289 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) {
1290 if (next_block->logical_bytenr != next_bytenr &&
1291 !(!next_block->is_metadata &&
1292 0 == next_block->logical_bytenr))
1293 pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n",
1294 next_bytenr, next_block_ctx->dev->name,
1295 next_block_ctx->dev_bytenr, *mirror_nump,
1296 btrfsic_get_block_type(state,
1297 next_block),
1298 next_block->logical_bytenr);
1299 else
1300 pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1301 next_bytenr, next_block_ctx->dev->name,
1302 next_block_ctx->dev_bytenr, *mirror_nump,
1303 btrfsic_get_block_type(state,
1304 next_block));
1305 }
1306 next_block->logical_bytenr = next_bytenr;
1307
1308 next_block->mirror_num = *mirror_nump;
1309 l = btrfsic_block_link_hashtable_lookup(
1310 next_block_ctx->dev->bdev,
1311 next_block_ctx->dev_bytenr,
1312 block_ctx->dev->bdev,
1313 block_ctx->dev_bytenr,
1314 &state->block_link_hashtable);
1315 }
1316
1317 next_block->disk_key = *disk_key;
1318 if (NULL == l) {
1319 l = btrfsic_block_link_alloc();
1320 if (NULL == l) {
1321 pr_info("btrfsic: error, kmalloc failed!\n");
1322 btrfsic_release_block_ctx(next_block_ctx);
1323 *next_blockp = NULL;
1324 return -1;
1325 }
1326
1327 did_alloc_block_link = 1;
1328 l->block_ref_to = next_block;
1329 l->block_ref_from = block;
1330 l->ref_cnt = 1;
1331 l->parent_generation = parent_generation;
1332
1333 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1334 btrfsic_print_add_link(state, l);
1335
1336 list_add(&l->node_ref_to, &block->ref_to_list);
1337 list_add(&l->node_ref_from, &next_block->ref_from_list);
1338
1339 btrfsic_block_link_hashtable_add(l,
1340 &state->block_link_hashtable);
1341 } else {
1342 did_alloc_block_link = 0;
1343 if (0 == limit_nesting) {
1344 l->ref_cnt++;
1345 l->parent_generation = parent_generation;
1346 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1347 btrfsic_print_add_link(state, l);
1348 }
1349 }
1350
1351 if (limit_nesting > 0 && did_alloc_block_link) {
1352 ret = btrfsic_read_block(state, next_block_ctx);
1353 if (ret < (int)next_block_ctx->len) {
1354 pr_info("btrfsic: read block @logical %llu failed!\n",
1355 next_bytenr);
1356 btrfsic_release_block_ctx(next_block_ctx);
1357 *next_blockp = NULL;
1358 return -1;
1359 }
1360
1361 *next_blockp = next_block;
1362 } else {
1363 *next_blockp = NULL;
1364 }
1365 (*mirror_nump)++;
1366
1367 return 0;
1368}
1369
1370static int btrfsic_handle_extent_data(
1371 struct btrfsic_state *state,
1372 struct btrfsic_block *block,
1373 struct btrfsic_block_data_ctx *block_ctx,
1374 u32 item_offset, int force_iodone_flag)
1375{
1376 struct btrfs_fs_info *fs_info = state->fs_info;
1377 struct btrfs_file_extent_item file_extent_item;
1378 u64 file_extent_item_offset;
1379 u64 next_bytenr;
1380 u64 num_bytes;
1381 u64 generation;
1382 struct btrfsic_block_link *l;
1383 int ret;
1384
1385 file_extent_item_offset = offsetof(struct btrfs_leaf, items) +
1386 item_offset;
1387 if (file_extent_item_offset +
1388 offsetof(struct btrfs_file_extent_item, disk_num_bytes) >
1389 block_ctx->len) {
1390 pr_info("btrfsic: file item out of bounce at logical %llu, dev %s\n",
1391 block_ctx->start, block_ctx->dev->name);
1392 return -1;
1393 }
1394
1395 btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1396 file_extent_item_offset,
1397 offsetof(struct btrfs_file_extent_item, disk_num_bytes));
1398 if (BTRFS_FILE_EXTENT_REG != file_extent_item.type ||
1399 btrfs_stack_file_extent_disk_bytenr(&file_extent_item) == 0) {
1400 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1401 pr_info("extent_data: type %u, disk_bytenr = %llu\n",
1402 file_extent_item.type,
1403 btrfs_stack_file_extent_disk_bytenr(
1404 &file_extent_item));
1405 return 0;
1406 }
1407
1408 if (file_extent_item_offset + sizeof(struct btrfs_file_extent_item) >
1409 block_ctx->len) {
1410 pr_info("btrfsic: file item out of bounce at logical %llu, dev %s\n",
1411 block_ctx->start, block_ctx->dev->name);
1412 return -1;
1413 }
1414 btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1415 file_extent_item_offset,
1416 sizeof(struct btrfs_file_extent_item));
1417 next_bytenr = btrfs_stack_file_extent_disk_bytenr(&file_extent_item);
1418 if (btrfs_stack_file_extent_compression(&file_extent_item) ==
1419 BTRFS_COMPRESS_NONE) {
1420 next_bytenr += btrfs_stack_file_extent_offset(&file_extent_item);
1421 num_bytes = btrfs_stack_file_extent_num_bytes(&file_extent_item);
1422 } else {
1423 num_bytes = btrfs_stack_file_extent_disk_num_bytes(&file_extent_item);
1424 }
1425 generation = btrfs_stack_file_extent_generation(&file_extent_item);
1426
1427 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1428 pr_info("extent_data: type %u, disk_bytenr = %llu, offset = %llu, num_bytes = %llu\n",
1429 file_extent_item.type,
1430 btrfs_stack_file_extent_disk_bytenr(&file_extent_item),
1431 btrfs_stack_file_extent_offset(&file_extent_item),
1432 num_bytes);
1433 while (num_bytes > 0) {
1434 u32 chunk_len;
1435 int num_copies;
1436 int mirror_num;
1437
1438 if (num_bytes > state->datablock_size)
1439 chunk_len = state->datablock_size;
1440 else
1441 chunk_len = num_bytes;
1442
1443 num_copies = btrfs_num_copies(fs_info, next_bytenr,
1444 state->datablock_size);
1445 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1446 pr_info("num_copies(log_bytenr=%llu) = %d\n",
1447 next_bytenr, num_copies);
1448 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
1449 struct btrfsic_block_data_ctx next_block_ctx;
1450 struct btrfsic_block *next_block;
1451 int block_was_created;
1452
1453 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1454 pr_info("btrfsic_handle_extent_data(mirror_num=%d)\n",
1455 mirror_num);
1456 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1457 pr_info("\tdisk_bytenr = %llu, num_bytes %u\n",
1458 next_bytenr, chunk_len);
1459 ret = btrfsic_map_block(state, next_bytenr,
1460 chunk_len, &next_block_ctx,
1461 mirror_num);
1462 if (ret) {
1463 pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1464 next_bytenr, mirror_num);
1465 return -1;
1466 }
1467
1468 next_block = btrfsic_block_lookup_or_add(
1469 state,
1470 &next_block_ctx,
1471 "referenced ",
1472 0,
1473 force_iodone_flag,
1474 !force_iodone_flag,
1475 mirror_num,
1476 &block_was_created);
1477 if (NULL == next_block) {
1478 pr_info("btrfsic: error, kmalloc failed!\n");
1479 btrfsic_release_block_ctx(&next_block_ctx);
1480 return -1;
1481 }
1482 if (!block_was_created) {
1483 if ((state->print_mask &
1484 BTRFSIC_PRINT_MASK_VERBOSE) &&
1485 next_block->logical_bytenr != next_bytenr &&
1486 !(!next_block->is_metadata &&
1487 0 == next_block->logical_bytenr)) {
1488 pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, D, bytenr mismatch (!= stored %llu).\n",
1489 next_bytenr,
1490 next_block_ctx.dev->name,
1491 next_block_ctx.dev_bytenr,
1492 mirror_num,
1493 next_block->logical_bytenr);
1494 }
1495 next_block->logical_bytenr = next_bytenr;
1496 next_block->mirror_num = mirror_num;
1497 }
1498
1499 l = btrfsic_block_link_lookup_or_add(state,
1500 &next_block_ctx,
1501 next_block, block,
1502 generation);
1503 btrfsic_release_block_ctx(&next_block_ctx);
1504 if (NULL == l)
1505 return -1;
1506 }
1507
1508 next_bytenr += chunk_len;
1509 num_bytes -= chunk_len;
1510 }
1511
1512 return 0;
1513}
1514
1515static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
1516 struct btrfsic_block_data_ctx *block_ctx_out,
1517 int mirror_num)
1518{
1519 struct btrfs_fs_info *fs_info = state->fs_info;
1520 int ret;
1521 u64 length;
1522 struct btrfs_bio *multi = NULL;
1523 struct btrfs_device *device;
1524
1525 length = len;
1526 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
1527 bytenr, &length, &multi, mirror_num);
1528
1529 if (ret) {
1530 block_ctx_out->start = 0;
1531 block_ctx_out->dev_bytenr = 0;
1532 block_ctx_out->len = 0;
1533 block_ctx_out->dev = NULL;
1534 block_ctx_out->datav = NULL;
1535 block_ctx_out->pagev = NULL;
1536 block_ctx_out->mem_to_free = NULL;
1537
1538 return ret;
1539 }
1540
1541 device = multi->stripes[0].dev;
1542 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state) ||
1543 !device->bdev || !device->name)
1544 block_ctx_out->dev = NULL;
1545 else
1546 block_ctx_out->dev = btrfsic_dev_state_lookup(
1547 device->bdev->bd_dev);
1548 block_ctx_out->dev_bytenr = multi->stripes[0].physical;
1549 block_ctx_out->start = bytenr;
1550 block_ctx_out->len = len;
1551 block_ctx_out->datav = NULL;
1552 block_ctx_out->pagev = NULL;
1553 block_ctx_out->mem_to_free = NULL;
1554
1555 kfree(multi);
1556 if (NULL == block_ctx_out->dev) {
1557 ret = -ENXIO;
1558 pr_info("btrfsic: error, cannot lookup dev (#1)!\n");
1559 }
1560
1561 return ret;
1562}
1563
1564static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx)
1565{
1566 if (block_ctx->mem_to_free) {
1567 unsigned int num_pages;
1568
1569 BUG_ON(!block_ctx->datav);
1570 BUG_ON(!block_ctx->pagev);
1571 num_pages = (block_ctx->len + (u64)PAGE_SIZE - 1) >>
1572 PAGE_SHIFT;
1573 while (num_pages > 0) {
1574 num_pages--;
1575 if (block_ctx->datav[num_pages]) {
1576 kunmap(block_ctx->pagev[num_pages]);
1577 block_ctx->datav[num_pages] = NULL;
1578 }
1579 if (block_ctx->pagev[num_pages]) {
1580 __free_page(block_ctx->pagev[num_pages]);
1581 block_ctx->pagev[num_pages] = NULL;
1582 }
1583 }
1584
1585 kfree(block_ctx->mem_to_free);
1586 block_ctx->mem_to_free = NULL;
1587 block_ctx->pagev = NULL;
1588 block_ctx->datav = NULL;
1589 }
1590}
1591
1592static int btrfsic_read_block(struct btrfsic_state *state,
1593 struct btrfsic_block_data_ctx *block_ctx)
1594{
1595 unsigned int num_pages;
1596 unsigned int i;
1597 size_t size;
1598 u64 dev_bytenr;
1599 int ret;
1600
1601 BUG_ON(block_ctx->datav);
1602 BUG_ON(block_ctx->pagev);
1603 BUG_ON(block_ctx->mem_to_free);
1604 if (!PAGE_ALIGNED(block_ctx->dev_bytenr)) {
1605 pr_info("btrfsic: read_block() with unaligned bytenr %llu\n",
1606 block_ctx->dev_bytenr);
1607 return -1;
1608 }
1609
1610 num_pages = (block_ctx->len + (u64)PAGE_SIZE - 1) >>
1611 PAGE_SHIFT;
1612 size = sizeof(*block_ctx->datav) + sizeof(*block_ctx->pagev);
1613 block_ctx->mem_to_free = kcalloc(num_pages, size, GFP_NOFS);
1614 if (!block_ctx->mem_to_free)
1615 return -ENOMEM;
1616 block_ctx->datav = block_ctx->mem_to_free;
1617 block_ctx->pagev = (struct page **)(block_ctx->datav + num_pages);
1618 for (i = 0; i < num_pages; i++) {
1619 block_ctx->pagev[i] = alloc_page(GFP_NOFS);
1620 if (!block_ctx->pagev[i])
1621 return -1;
1622 }
1623
1624 dev_bytenr = block_ctx->dev_bytenr;
1625 for (i = 0; i < num_pages;) {
1626 struct bio *bio;
1627 unsigned int j;
1628
1629 bio = btrfs_io_bio_alloc(num_pages - i);
1630 bio_set_dev(bio, block_ctx->dev->bdev);
1631 bio->bi_iter.bi_sector = dev_bytenr >> 9;
1632 bio->bi_opf = REQ_OP_READ;
1633
1634 for (j = i; j < num_pages; j++) {
1635 ret = bio_add_page(bio, block_ctx->pagev[j],
1636 PAGE_SIZE, 0);
1637 if (PAGE_SIZE != ret)
1638 break;
1639 }
1640 if (j == i) {
1641 pr_info("btrfsic: error, failed to add a single page!\n");
1642 return -1;
1643 }
1644 if (submit_bio_wait(bio)) {
1645 pr_info("btrfsic: read error at logical %llu dev %s!\n",
1646 block_ctx->start, block_ctx->dev->name);
1647 bio_put(bio);
1648 return -1;
1649 }
1650 bio_put(bio);
1651 dev_bytenr += (j - i) * PAGE_SIZE;
1652 i = j;
1653 }
1654 for (i = 0; i < num_pages; i++)
1655 block_ctx->datav[i] = kmap(block_ctx->pagev[i]);
1656
1657 return block_ctx->len;
1658}
1659
1660static void btrfsic_dump_database(struct btrfsic_state *state)
1661{
1662 const struct btrfsic_block *b_all;
1663
1664 BUG_ON(NULL == state);
1665
1666 pr_info("all_blocks_list:\n");
1667 list_for_each_entry(b_all, &state->all_blocks_list, all_blocks_node) {
1668 const struct btrfsic_block_link *l;
1669
1670 pr_info("%c-block @%llu (%s/%llu/%d)\n",
1671 btrfsic_get_block_type(state, b_all),
1672 b_all->logical_bytenr, b_all->dev_state->name,
1673 b_all->dev_bytenr, b_all->mirror_num);
1674
1675 list_for_each_entry(l, &b_all->ref_to_list, node_ref_to) {
1676 pr_info(" %c @%llu (%s/%llu/%d) refers %u* to %c @%llu (%s/%llu/%d)\n",
1677 btrfsic_get_block_type(state, b_all),
1678 b_all->logical_bytenr, b_all->dev_state->name,
1679 b_all->dev_bytenr, b_all->mirror_num,
1680 l->ref_cnt,
1681 btrfsic_get_block_type(state, l->block_ref_to),
1682 l->block_ref_to->logical_bytenr,
1683 l->block_ref_to->dev_state->name,
1684 l->block_ref_to->dev_bytenr,
1685 l->block_ref_to->mirror_num);
1686 }
1687
1688 list_for_each_entry(l, &b_all->ref_from_list, node_ref_from) {
1689 pr_info(" %c @%llu (%s/%llu/%d) is ref %u* from %c @%llu (%s/%llu/%d)\n",
1690 btrfsic_get_block_type(state, b_all),
1691 b_all->logical_bytenr, b_all->dev_state->name,
1692 b_all->dev_bytenr, b_all->mirror_num,
1693 l->ref_cnt,
1694 btrfsic_get_block_type(state, l->block_ref_from),
1695 l->block_ref_from->logical_bytenr,
1696 l->block_ref_from->dev_state->name,
1697 l->block_ref_from->dev_bytenr,
1698 l->block_ref_from->mirror_num);
1699 }
1700
1701 pr_info("\n");
1702 }
1703}
1704
1705/*
1706 * Test whether the disk block contains a tree block (leaf or node)
1707 * (note that this test fails for the super block)
1708 */
1709static noinline_for_stack int btrfsic_test_for_metadata(
1710 struct btrfsic_state *state,
1711 char **datav, unsigned int num_pages)
1712{
1713 struct btrfs_fs_info *fs_info = state->fs_info;
1714 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1715 struct btrfs_header *h;
1716 u8 csum[BTRFS_CSUM_SIZE];
1717 unsigned int i;
1718
1719 if (num_pages * PAGE_SIZE < state->metablock_size)
1720 return 1; /* not metadata */
1721 num_pages = state->metablock_size >> PAGE_SHIFT;
1722 h = (struct btrfs_header *)datav[0];
1723
1724 if (memcmp(h->fsid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE))
1725 return 1;
1726
1727 shash->tfm = fs_info->csum_shash;
1728 crypto_shash_init(shash);
1729
1730 for (i = 0; i < num_pages; i++) {
1731 u8 *data = i ? datav[i] : (datav[i] + BTRFS_CSUM_SIZE);
1732 size_t sublen = i ? PAGE_SIZE :
1733 (PAGE_SIZE - BTRFS_CSUM_SIZE);
1734
1735 crypto_shash_update(shash, data, sublen);
1736 }
1737 crypto_shash_final(shash, csum);
1738 if (memcmp(csum, h->csum, state->csum_size))
1739 return 1;
1740
1741 return 0; /* is metadata */
1742}
1743
1744static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
1745 u64 dev_bytenr, char **mapped_datav,
1746 unsigned int num_pages,
1747 struct bio *bio, int *bio_is_patched,
1748 struct buffer_head *bh,
1749 int submit_bio_bh_rw)
1750{
1751 int is_metadata;
1752 struct btrfsic_block *block;
1753 struct btrfsic_block_data_ctx block_ctx;
1754 int ret;
1755 struct btrfsic_state *state = dev_state->state;
1756 struct block_device *bdev = dev_state->bdev;
1757 unsigned int processed_len;
1758
1759 if (NULL != bio_is_patched)
1760 *bio_is_patched = 0;
1761
1762again:
1763 if (num_pages == 0)
1764 return;
1765
1766 processed_len = 0;
1767 is_metadata = (0 == btrfsic_test_for_metadata(state, mapped_datav,
1768 num_pages));
1769
1770 block = btrfsic_block_hashtable_lookup(bdev, dev_bytenr,
1771 &state->block_hashtable);
1772 if (NULL != block) {
1773 u64 bytenr = 0;
1774 struct btrfsic_block_link *l, *tmp;
1775
1776 if (block->is_superblock) {
1777 bytenr = btrfs_super_bytenr((struct btrfs_super_block *)
1778 mapped_datav[0]);
1779 if (num_pages * PAGE_SIZE <
1780 BTRFS_SUPER_INFO_SIZE) {
1781 pr_info("btrfsic: cannot work with too short bios!\n");
1782 return;
1783 }
1784 is_metadata = 1;
1785 BUG_ON(!PAGE_ALIGNED(BTRFS_SUPER_INFO_SIZE));
1786 processed_len = BTRFS_SUPER_INFO_SIZE;
1787 if (state->print_mask &
1788 BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE) {
1789 pr_info("[before new superblock is written]:\n");
1790 btrfsic_dump_tree_sub(state, block, 0);
1791 }
1792 }
1793 if (is_metadata) {
1794 if (!block->is_superblock) {
1795 if (num_pages * PAGE_SIZE <
1796 state->metablock_size) {
1797 pr_info("btrfsic: cannot work with too short bios!\n");
1798 return;
1799 }
1800 processed_len = state->metablock_size;
1801 bytenr = btrfs_stack_header_bytenr(
1802 (struct btrfs_header *)
1803 mapped_datav[0]);
1804 btrfsic_cmp_log_and_dev_bytenr(state, bytenr,
1805 dev_state,
1806 dev_bytenr);
1807 }
1808 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) {
1809 if (block->logical_bytenr != bytenr &&
1810 !(!block->is_metadata &&
1811 block->logical_bytenr == 0))
1812 pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n",
1813 bytenr, dev_state->name,
1814 dev_bytenr,
1815 block->mirror_num,
1816 btrfsic_get_block_type(state,
1817 block),
1818 block->logical_bytenr);
1819 else
1820 pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1821 bytenr, dev_state->name,
1822 dev_bytenr, block->mirror_num,
1823 btrfsic_get_block_type(state,
1824 block));
1825 }
1826 block->logical_bytenr = bytenr;
1827 } else {
1828 if (num_pages * PAGE_SIZE <
1829 state->datablock_size) {
1830 pr_info("btrfsic: cannot work with too short bios!\n");
1831 return;
1832 }
1833 processed_len = state->datablock_size;
1834 bytenr = block->logical_bytenr;
1835 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1836 pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1837 bytenr, dev_state->name, dev_bytenr,
1838 block->mirror_num,
1839 btrfsic_get_block_type(state, block));
1840 }
1841
1842 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1843 pr_info("ref_to_list: %cE, ref_from_list: %cE\n",
1844 list_empty(&block->ref_to_list) ? ' ' : '!',
1845 list_empty(&block->ref_from_list) ? ' ' : '!');
1846 if (btrfsic_is_block_ref_by_superblock(state, block, 0)) {
1847 pr_info("btrfs: attempt to overwrite %c-block @%llu (%s/%llu/%d), old(gen=%llu, objectid=%llu, type=%d, offset=%llu), new(gen=%llu), which is referenced by most recent superblock (superblockgen=%llu)!\n",
1848 btrfsic_get_block_type(state, block), bytenr,
1849 dev_state->name, dev_bytenr, block->mirror_num,
1850 block->generation,
1851 btrfs_disk_key_objectid(&block->disk_key),
1852 block->disk_key.type,
1853 btrfs_disk_key_offset(&block->disk_key),
1854 btrfs_stack_header_generation(
1855 (struct btrfs_header *) mapped_datav[0]),
1856 state->max_superblock_generation);
1857 btrfsic_dump_tree(state);
1858 }
1859
1860 if (!block->is_iodone && !block->never_written) {
1861 pr_info("btrfs: attempt to overwrite %c-block @%llu (%s/%llu/%d), oldgen=%llu, newgen=%llu, which is not yet iodone!\n",
1862 btrfsic_get_block_type(state, block), bytenr,
1863 dev_state->name, dev_bytenr, block->mirror_num,
1864 block->generation,
1865 btrfs_stack_header_generation(
1866 (struct btrfs_header *)
1867 mapped_datav[0]));
1868 /* it would not be safe to go on */
1869 btrfsic_dump_tree(state);
1870 goto continue_loop;
1871 }
1872
1873 /*
1874 * Clear all references of this block. Do not free
1875 * the block itself even if is not referenced anymore
1876 * because it still carries valuable information
1877 * like whether it was ever written and IO completed.
1878 */
1879 list_for_each_entry_safe(l, tmp, &block->ref_to_list,
1880 node_ref_to) {
1881 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1882 btrfsic_print_rem_link(state, l);
1883 l->ref_cnt--;
1884 if (0 == l->ref_cnt) {
1885 list_del(&l->node_ref_to);
1886 list_del(&l->node_ref_from);
1887 btrfsic_block_link_hashtable_remove(l);
1888 btrfsic_block_link_free(l);
1889 }
1890 }
1891
1892 block_ctx.dev = dev_state;
1893 block_ctx.dev_bytenr = dev_bytenr;
1894 block_ctx.start = bytenr;
1895 block_ctx.len = processed_len;
1896 block_ctx.pagev = NULL;
1897 block_ctx.mem_to_free = NULL;
1898 block_ctx.datav = mapped_datav;
1899
1900 if (is_metadata || state->include_extent_data) {
1901 block->never_written = 0;
1902 block->iodone_w_error = 0;
1903 if (NULL != bio) {
1904 block->is_iodone = 0;
1905 BUG_ON(NULL == bio_is_patched);
1906 if (!*bio_is_patched) {
1907 block->orig_bio_bh_private =
1908 bio->bi_private;
1909 block->orig_bio_bh_end_io.bio =
1910 bio->bi_end_io;
1911 block->next_in_same_bio = NULL;
1912 bio->bi_private = block;
1913 bio->bi_end_io = btrfsic_bio_end_io;
1914 *bio_is_patched = 1;
1915 } else {
1916 struct btrfsic_block *chained_block =
1917 (struct btrfsic_block *)
1918 bio->bi_private;
1919
1920 BUG_ON(NULL == chained_block);
1921 block->orig_bio_bh_private =
1922 chained_block->orig_bio_bh_private;
1923 block->orig_bio_bh_end_io.bio =
1924 chained_block->orig_bio_bh_end_io.
1925 bio;
1926 block->next_in_same_bio = chained_block;
1927 bio->bi_private = block;
1928 }
1929 } else if (NULL != bh) {
1930 block->is_iodone = 0;
1931 block->orig_bio_bh_private = bh->b_private;
1932 block->orig_bio_bh_end_io.bh = bh->b_end_io;
1933 block->next_in_same_bio = NULL;
1934 bh->b_private = block;
1935 bh->b_end_io = btrfsic_bh_end_io;
1936 } else {
1937 block->is_iodone = 1;
1938 block->orig_bio_bh_private = NULL;
1939 block->orig_bio_bh_end_io.bio = NULL;
1940 block->next_in_same_bio = NULL;
1941 }
1942 }
1943
1944 block->flush_gen = dev_state->last_flush_gen + 1;
1945 block->submit_bio_bh_rw = submit_bio_bh_rw;
1946 if (is_metadata) {
1947 block->logical_bytenr = bytenr;
1948 block->is_metadata = 1;
1949 if (block->is_superblock) {
1950 BUG_ON(PAGE_SIZE !=
1951 BTRFS_SUPER_INFO_SIZE);
1952 ret = btrfsic_process_written_superblock(
1953 state,
1954 block,
1955 (struct btrfs_super_block *)
1956 mapped_datav[0]);
1957 if (state->print_mask &
1958 BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE) {
1959 pr_info("[after new superblock is written]:\n");
1960 btrfsic_dump_tree_sub(state, block, 0);
1961 }
1962 } else {
1963 block->mirror_num = 0; /* unknown */
1964 ret = btrfsic_process_metablock(
1965 state,
1966 block,
1967 &block_ctx,
1968 0, 0);
1969 }
1970 if (ret)
1971 pr_info("btrfsic: btrfsic_process_metablock(root @%llu) failed!\n",
1972 dev_bytenr);
1973 } else {
1974 block->is_metadata = 0;
1975 block->mirror_num = 0; /* unknown */
1976 block->generation = BTRFSIC_GENERATION_UNKNOWN;
1977 if (!state->include_extent_data
1978 && list_empty(&block->ref_from_list)) {
1979 /*
1980 * disk block is overwritten with extent
1981 * data (not meta data) and we are configured
1982 * to not include extent data: take the
1983 * chance and free the block's memory
1984 */
1985 btrfsic_block_hashtable_remove(block);
1986 list_del(&block->all_blocks_node);
1987 btrfsic_block_free(block);
1988 }
1989 }
1990 btrfsic_release_block_ctx(&block_ctx);
1991 } else {
1992 /* block has not been found in hash table */
1993 u64 bytenr;
1994
1995 if (!is_metadata) {
1996 processed_len = state->datablock_size;
1997 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1998 pr_info("Written block (%s/%llu/?) !found in hash table, D.\n",
1999 dev_state->name, dev_bytenr);
2000 if (!state->include_extent_data) {
2001 /* ignore that written D block */
2002 goto continue_loop;
2003 }
2004
2005 /* this is getting ugly for the
2006 * include_extent_data case... */
2007 bytenr = 0; /* unknown */
2008 } else {
2009 processed_len = state->metablock_size;
2010 bytenr = btrfs_stack_header_bytenr(
2011 (struct btrfs_header *)
2012 mapped_datav[0]);
2013 btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state,
2014 dev_bytenr);
2015 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2016 pr_info("Written block @%llu (%s/%llu/?) !found in hash table, M.\n",
2017 bytenr, dev_state->name, dev_bytenr);
2018 }
2019
2020 block_ctx.dev = dev_state;
2021 block_ctx.dev_bytenr = dev_bytenr;
2022 block_ctx.start = bytenr;
2023 block_ctx.len = processed_len;
2024 block_ctx.pagev = NULL;
2025 block_ctx.mem_to_free = NULL;
2026 block_ctx.datav = mapped_datav;
2027
2028 block = btrfsic_block_alloc();
2029 if (NULL == block) {
2030 pr_info("btrfsic: error, kmalloc failed!\n");
2031 btrfsic_release_block_ctx(&block_ctx);
2032 goto continue_loop;
2033 }
2034 block->dev_state = dev_state;
2035 block->dev_bytenr = dev_bytenr;
2036 block->logical_bytenr = bytenr;
2037 block->is_metadata = is_metadata;
2038 block->never_written = 0;
2039 block->iodone_w_error = 0;
2040 block->mirror_num = 0; /* unknown */
2041 block->flush_gen = dev_state->last_flush_gen + 1;
2042 block->submit_bio_bh_rw = submit_bio_bh_rw;
2043 if (NULL != bio) {
2044 block->is_iodone = 0;
2045 BUG_ON(NULL == bio_is_patched);
2046 if (!*bio_is_patched) {
2047 block->orig_bio_bh_private = bio->bi_private;
2048 block->orig_bio_bh_end_io.bio = bio->bi_end_io;
2049 block->next_in_same_bio = NULL;
2050 bio->bi_private = block;
2051 bio->bi_end_io = btrfsic_bio_end_io;
2052 *bio_is_patched = 1;
2053 } else {
2054 struct btrfsic_block *chained_block =
2055 (struct btrfsic_block *)
2056 bio->bi_private;
2057
2058 BUG_ON(NULL == chained_block);
2059 block->orig_bio_bh_private =
2060 chained_block->orig_bio_bh_private;
2061 block->orig_bio_bh_end_io.bio =
2062 chained_block->orig_bio_bh_end_io.bio;
2063 block->next_in_same_bio = chained_block;
2064 bio->bi_private = block;
2065 }
2066 } else if (NULL != bh) {
2067 block->is_iodone = 0;
2068 block->orig_bio_bh_private = bh->b_private;
2069 block->orig_bio_bh_end_io.bh = bh->b_end_io;
2070 block->next_in_same_bio = NULL;
2071 bh->b_private = block;
2072 bh->b_end_io = btrfsic_bh_end_io;
2073 } else {
2074 block->is_iodone = 1;
2075 block->orig_bio_bh_private = NULL;
2076 block->orig_bio_bh_end_io.bio = NULL;
2077 block->next_in_same_bio = NULL;
2078 }
2079 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2080 pr_info("New written %c-block @%llu (%s/%llu/%d)\n",
2081 is_metadata ? 'M' : 'D',
2082 block->logical_bytenr, block->dev_state->name,
2083 block->dev_bytenr, block->mirror_num);
2084 list_add(&block->all_blocks_node, &state->all_blocks_list);
2085 btrfsic_block_hashtable_add(block, &state->block_hashtable);
2086
2087 if (is_metadata) {
2088 ret = btrfsic_process_metablock(state, block,
2089 &block_ctx, 0, 0);
2090 if (ret)
2091 pr_info("btrfsic: process_metablock(root @%llu) failed!\n",
2092 dev_bytenr);
2093 }
2094 btrfsic_release_block_ctx(&block_ctx);
2095 }
2096
2097continue_loop:
2098 BUG_ON(!processed_len);
2099 dev_bytenr += processed_len;
2100 mapped_datav += processed_len >> PAGE_SHIFT;
2101 num_pages -= processed_len >> PAGE_SHIFT;
2102 goto again;
2103}
2104
2105static void btrfsic_bio_end_io(struct bio *bp)
2106{
2107 struct btrfsic_block *block = (struct btrfsic_block *)bp->bi_private;
2108 int iodone_w_error;
2109
2110 /* mutex is not held! This is not save if IO is not yet completed
2111 * on umount */
2112 iodone_w_error = 0;
2113 if (bp->bi_status)
2114 iodone_w_error = 1;
2115
2116 BUG_ON(NULL == block);
2117 bp->bi_private = block->orig_bio_bh_private;
2118 bp->bi_end_io = block->orig_bio_bh_end_io.bio;
2119
2120 do {
2121 struct btrfsic_block *next_block;
2122 struct btrfsic_dev_state *const dev_state = block->dev_state;
2123
2124 if ((dev_state->state->print_mask &
2125 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2126 pr_info("bio_end_io(err=%d) for %c @%llu (%s/%llu/%d)\n",
2127 bp->bi_status,
2128 btrfsic_get_block_type(dev_state->state, block),
2129 block->logical_bytenr, dev_state->name,
2130 block->dev_bytenr, block->mirror_num);
2131 next_block = block->next_in_same_bio;
2132 block->iodone_w_error = iodone_w_error;
2133 if (block->submit_bio_bh_rw & REQ_PREFLUSH) {
2134 dev_state->last_flush_gen++;
2135 if ((dev_state->state->print_mask &
2136 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2137 pr_info("bio_end_io() new %s flush_gen=%llu\n",
2138 dev_state->name,
2139 dev_state->last_flush_gen);
2140 }
2141 if (block->submit_bio_bh_rw & REQ_FUA)
2142 block->flush_gen = 0; /* FUA completed means block is
2143 * on disk */
2144 block->is_iodone = 1; /* for FLUSH, this releases the block */
2145 block = next_block;
2146 } while (NULL != block);
2147
2148 bp->bi_end_io(bp);
2149}
2150
2151static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate)
2152{
2153 struct btrfsic_block *block = (struct btrfsic_block *)bh->b_private;
2154 int iodone_w_error = !uptodate;
2155 struct btrfsic_dev_state *dev_state;
2156
2157 BUG_ON(NULL == block);
2158 dev_state = block->dev_state;
2159 if ((dev_state->state->print_mask & BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2160 pr_info("bh_end_io(error=%d) for %c @%llu (%s/%llu/%d)\n",
2161 iodone_w_error,
2162 btrfsic_get_block_type(dev_state->state, block),
2163 block->logical_bytenr, block->dev_state->name,
2164 block->dev_bytenr, block->mirror_num);
2165
2166 block->iodone_w_error = iodone_w_error;
2167 if (block->submit_bio_bh_rw & REQ_PREFLUSH) {
2168 dev_state->last_flush_gen++;
2169 if ((dev_state->state->print_mask &
2170 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2171 pr_info("bh_end_io() new %s flush_gen=%llu\n",
2172 dev_state->name, dev_state->last_flush_gen);
2173 }
2174 if (block->submit_bio_bh_rw & REQ_FUA)
2175 block->flush_gen = 0; /* FUA completed means block is on disk */
2176
2177 bh->b_private = block->orig_bio_bh_private;
2178 bh->b_end_io = block->orig_bio_bh_end_io.bh;
2179 block->is_iodone = 1; /* for FLUSH, this releases the block */
2180 bh->b_end_io(bh, uptodate);
2181}
2182
2183static int btrfsic_process_written_superblock(
2184 struct btrfsic_state *state,
2185 struct btrfsic_block *const superblock,
2186 struct btrfs_super_block *const super_hdr)
2187{
2188 struct btrfs_fs_info *fs_info = state->fs_info;
2189 int pass;
2190
2191 superblock->generation = btrfs_super_generation(super_hdr);
2192 if (!(superblock->generation > state->max_superblock_generation ||
2193 0 == state->max_superblock_generation)) {
2194 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2195 pr_info("btrfsic: superblock @%llu (%s/%llu/%d) with old gen %llu <= %llu\n",
2196 superblock->logical_bytenr,
2197 superblock->dev_state->name,
2198 superblock->dev_bytenr, superblock->mirror_num,
2199 btrfs_super_generation(super_hdr),
2200 state->max_superblock_generation);
2201 } else {
2202 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2203 pr_info("btrfsic: got new superblock @%llu (%s/%llu/%d) with new gen %llu > %llu\n",
2204 superblock->logical_bytenr,
2205 superblock->dev_state->name,
2206 superblock->dev_bytenr, superblock->mirror_num,
2207 btrfs_super_generation(super_hdr),
2208 state->max_superblock_generation);
2209
2210 state->max_superblock_generation =
2211 btrfs_super_generation(super_hdr);
2212 state->latest_superblock = superblock;
2213 }
2214
2215 for (pass = 0; pass < 3; pass++) {
2216 int ret;
2217 u64 next_bytenr;
2218 struct btrfsic_block *next_block;
2219 struct btrfsic_block_data_ctx tmp_next_block_ctx;
2220 struct btrfsic_block_link *l;
2221 int num_copies;
2222 int mirror_num;
2223 const char *additional_string = NULL;
2224 struct btrfs_disk_key tmp_disk_key = {0};
2225
2226 btrfs_set_disk_key_objectid(&tmp_disk_key,
2227 BTRFS_ROOT_ITEM_KEY);
2228 btrfs_set_disk_key_objectid(&tmp_disk_key, 0);
2229
2230 switch (pass) {
2231 case 0:
2232 btrfs_set_disk_key_objectid(&tmp_disk_key,
2233 BTRFS_ROOT_TREE_OBJECTID);
2234 additional_string = "root ";
2235 next_bytenr = btrfs_super_root(super_hdr);
2236 if (state->print_mask &
2237 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2238 pr_info("root@%llu\n", next_bytenr);
2239 break;
2240 case 1:
2241 btrfs_set_disk_key_objectid(&tmp_disk_key,
2242 BTRFS_CHUNK_TREE_OBJECTID);
2243 additional_string = "chunk ";
2244 next_bytenr = btrfs_super_chunk_root(super_hdr);
2245 if (state->print_mask &
2246 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2247 pr_info("chunk@%llu\n", next_bytenr);
2248 break;
2249 case 2:
2250 btrfs_set_disk_key_objectid(&tmp_disk_key,
2251 BTRFS_TREE_LOG_OBJECTID);
2252 additional_string = "log ";
2253 next_bytenr = btrfs_super_log_root(super_hdr);
2254 if (0 == next_bytenr)
2255 continue;
2256 if (state->print_mask &
2257 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2258 pr_info("log@%llu\n", next_bytenr);
2259 break;
2260 }
2261
2262 num_copies = btrfs_num_copies(fs_info, next_bytenr,
2263 BTRFS_SUPER_INFO_SIZE);
2264 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
2265 pr_info("num_copies(log_bytenr=%llu) = %d\n",
2266 next_bytenr, num_copies);
2267 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2268 int was_created;
2269
2270 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2271 pr_info("btrfsic_process_written_superblock(mirror_num=%d)\n", mirror_num);
2272 ret = btrfsic_map_block(state, next_bytenr,
2273 BTRFS_SUPER_INFO_SIZE,
2274 &tmp_next_block_ctx,
2275 mirror_num);
2276 if (ret) {
2277 pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
2278 next_bytenr, mirror_num);
2279 return -1;
2280 }
2281
2282 next_block = btrfsic_block_lookup_or_add(
2283 state,
2284 &tmp_next_block_ctx,
2285 additional_string,
2286 1, 0, 1,
2287 mirror_num,
2288 &was_created);
2289 if (NULL == next_block) {
2290 pr_info("btrfsic: error, kmalloc failed!\n");
2291 btrfsic_release_block_ctx(&tmp_next_block_ctx);
2292 return -1;
2293 }
2294
2295 next_block->disk_key = tmp_disk_key;
2296 if (was_created)
2297 next_block->generation =
2298 BTRFSIC_GENERATION_UNKNOWN;
2299 l = btrfsic_block_link_lookup_or_add(
2300 state,
2301 &tmp_next_block_ctx,
2302 next_block,
2303 superblock,
2304 BTRFSIC_GENERATION_UNKNOWN);
2305 btrfsic_release_block_ctx(&tmp_next_block_ctx);
2306 if (NULL == l)
2307 return -1;
2308 }
2309 }
2310
2311 if (WARN_ON(-1 == btrfsic_check_all_ref_blocks(state, superblock, 0)))
2312 btrfsic_dump_tree(state);
2313
2314 return 0;
2315}
2316
2317static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
2318 struct btrfsic_block *const block,
2319 int recursion_level)
2320{
2321 const struct btrfsic_block_link *l;
2322 int ret = 0;
2323
2324 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2325 /*
2326 * Note that this situation can happen and does not
2327 * indicate an error in regular cases. It happens
2328 * when disk blocks are freed and later reused.
2329 * The check-integrity module is not aware of any
2330 * block free operations, it just recognizes block
2331 * write operations. Therefore it keeps the linkage
2332 * information for a block until a block is
2333 * rewritten. This can temporarily cause incorrect
2334 * and even circular linkage information. This
2335 * causes no harm unless such blocks are referenced
2336 * by the most recent super block.
2337 */
2338 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2339 pr_info("btrfsic: abort cyclic linkage (case 1).\n");
2340
2341 return ret;
2342 }
2343
2344 /*
2345 * This algorithm is recursive because the amount of used stack
2346 * space is very small and the max recursion depth is limited.
2347 */
2348 list_for_each_entry(l, &block->ref_to_list, node_ref_to) {
2349 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2350 pr_info("rl=%d, %c @%llu (%s/%llu/%d) %u* refers to %c @%llu (%s/%llu/%d)\n",
2351 recursion_level,
2352 btrfsic_get_block_type(state, block),
2353 block->logical_bytenr, block->dev_state->name,
2354 block->dev_bytenr, block->mirror_num,
2355 l->ref_cnt,
2356 btrfsic_get_block_type(state, l->block_ref_to),
2357 l->block_ref_to->logical_bytenr,
2358 l->block_ref_to->dev_state->name,
2359 l->block_ref_to->dev_bytenr,
2360 l->block_ref_to->mirror_num);
2361 if (l->block_ref_to->never_written) {
2362 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is never written!\n",
2363 btrfsic_get_block_type(state, l->block_ref_to),
2364 l->block_ref_to->logical_bytenr,
2365 l->block_ref_to->dev_state->name,
2366 l->block_ref_to->dev_bytenr,
2367 l->block_ref_to->mirror_num);
2368 ret = -1;
2369 } else if (!l->block_ref_to->is_iodone) {
2370 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is not yet iodone!\n",
2371 btrfsic_get_block_type(state, l->block_ref_to),
2372 l->block_ref_to->logical_bytenr,
2373 l->block_ref_to->dev_state->name,
2374 l->block_ref_to->dev_bytenr,
2375 l->block_ref_to->mirror_num);
2376 ret = -1;
2377 } else if (l->block_ref_to->iodone_w_error) {
2378 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which has write error!\n",
2379 btrfsic_get_block_type(state, l->block_ref_to),
2380 l->block_ref_to->logical_bytenr,
2381 l->block_ref_to->dev_state->name,
2382 l->block_ref_to->dev_bytenr,
2383 l->block_ref_to->mirror_num);
2384 ret = -1;
2385 } else if (l->parent_generation !=
2386 l->block_ref_to->generation &&
2387 BTRFSIC_GENERATION_UNKNOWN !=
2388 l->parent_generation &&
2389 BTRFSIC_GENERATION_UNKNOWN !=
2390 l->block_ref_to->generation) {
2391 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) with generation %llu != parent generation %llu!\n",
2392 btrfsic_get_block_type(state, l->block_ref_to),
2393 l->block_ref_to->logical_bytenr,
2394 l->block_ref_to->dev_state->name,
2395 l->block_ref_to->dev_bytenr,
2396 l->block_ref_to->mirror_num,
2397 l->block_ref_to->generation,
2398 l->parent_generation);
2399 ret = -1;
2400 } else if (l->block_ref_to->flush_gen >
2401 l->block_ref_to->dev_state->last_flush_gen) {
2402 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is not flushed out of disk's write cache (block flush_gen=%llu, dev->flush_gen=%llu)!\n",
2403 btrfsic_get_block_type(state, l->block_ref_to),
2404 l->block_ref_to->logical_bytenr,
2405 l->block_ref_to->dev_state->name,
2406 l->block_ref_to->dev_bytenr,
2407 l->block_ref_to->mirror_num, block->flush_gen,
2408 l->block_ref_to->dev_state->last_flush_gen);
2409 ret = -1;
2410 } else if (-1 == btrfsic_check_all_ref_blocks(state,
2411 l->block_ref_to,
2412 recursion_level +
2413 1)) {
2414 ret = -1;
2415 }
2416 }
2417
2418 return ret;
2419}
2420
2421static int btrfsic_is_block_ref_by_superblock(
2422 const struct btrfsic_state *state,
2423 const struct btrfsic_block *block,
2424 int recursion_level)
2425{
2426 const struct btrfsic_block_link *l;
2427
2428 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2429 /* refer to comment at "abort cyclic linkage (case 1)" */
2430 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2431 pr_info("btrfsic: abort cyclic linkage (case 2).\n");
2432
2433 return 0;
2434 }
2435
2436 /*
2437 * This algorithm is recursive because the amount of used stack space
2438 * is very small and the max recursion depth is limited.
2439 */
2440 list_for_each_entry(l, &block->ref_from_list, node_ref_from) {
2441 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2442 pr_info("rl=%d, %c @%llu (%s/%llu/%d) is ref %u* from %c @%llu (%s/%llu/%d)\n",
2443 recursion_level,
2444 btrfsic_get_block_type(state, block),
2445 block->logical_bytenr, block->dev_state->name,
2446 block->dev_bytenr, block->mirror_num,
2447 l->ref_cnt,
2448 btrfsic_get_block_type(state, l->block_ref_from),
2449 l->block_ref_from->logical_bytenr,
2450 l->block_ref_from->dev_state->name,
2451 l->block_ref_from->dev_bytenr,
2452 l->block_ref_from->mirror_num);
2453 if (l->block_ref_from->is_superblock &&
2454 state->latest_superblock->dev_bytenr ==
2455 l->block_ref_from->dev_bytenr &&
2456 state->latest_superblock->dev_state->bdev ==
2457 l->block_ref_from->dev_state->bdev)
2458 return 1;
2459 else if (btrfsic_is_block_ref_by_superblock(state,
2460 l->block_ref_from,
2461 recursion_level +
2462 1))
2463 return 1;
2464 }
2465
2466 return 0;
2467}
2468
2469static void btrfsic_print_add_link(const struct btrfsic_state *state,
2470 const struct btrfsic_block_link *l)
2471{
2472 pr_info("Add %u* link from %c @%llu (%s/%llu/%d) to %c @%llu (%s/%llu/%d).\n",
2473 l->ref_cnt,
2474 btrfsic_get_block_type(state, l->block_ref_from),
2475 l->block_ref_from->logical_bytenr,
2476 l->block_ref_from->dev_state->name,
2477 l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2478 btrfsic_get_block_type(state, l->block_ref_to),
2479 l->block_ref_to->logical_bytenr,
2480 l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2481 l->block_ref_to->mirror_num);
2482}
2483
2484static void btrfsic_print_rem_link(const struct btrfsic_state *state,
2485 const struct btrfsic_block_link *l)
2486{
2487 pr_info("Rem %u* link from %c @%llu (%s/%llu/%d) to %c @%llu (%s/%llu/%d).\n",
2488 l->ref_cnt,
2489 btrfsic_get_block_type(state, l->block_ref_from),
2490 l->block_ref_from->logical_bytenr,
2491 l->block_ref_from->dev_state->name,
2492 l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2493 btrfsic_get_block_type(state, l->block_ref_to),
2494 l->block_ref_to->logical_bytenr,
2495 l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2496 l->block_ref_to->mirror_num);
2497}
2498
2499static char btrfsic_get_block_type(const struct btrfsic_state *state,
2500 const struct btrfsic_block *block)
2501{
2502 if (block->is_superblock &&
2503 state->latest_superblock->dev_bytenr == block->dev_bytenr &&
2504 state->latest_superblock->dev_state->bdev == block->dev_state->bdev)
2505 return 'S';
2506 else if (block->is_superblock)
2507 return 's';
2508 else if (block->is_metadata)
2509 return 'M';
2510 else
2511 return 'D';
2512}
2513
2514static void btrfsic_dump_tree(const struct btrfsic_state *state)
2515{
2516 btrfsic_dump_tree_sub(state, state->latest_superblock, 0);
2517}
2518
2519static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
2520 const struct btrfsic_block *block,
2521 int indent_level)
2522{
2523 const struct btrfsic_block_link *l;
2524 int indent_add;
2525 static char buf[80];
2526 int cursor_position;
2527
2528 /*
2529 * Should better fill an on-stack buffer with a complete line and
2530 * dump it at once when it is time to print a newline character.
2531 */
2532
2533 /*
2534 * This algorithm is recursive because the amount of used stack space
2535 * is very small and the max recursion depth is limited.
2536 */
2537 indent_add = sprintf(buf, "%c-%llu(%s/%llu/%u)",
2538 btrfsic_get_block_type(state, block),
2539 block->logical_bytenr, block->dev_state->name,
2540 block->dev_bytenr, block->mirror_num);
2541 if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2542 printk("[...]\n");
2543 return;
2544 }
2545 printk(buf);
2546 indent_level += indent_add;
2547 if (list_empty(&block->ref_to_list)) {
2548 printk("\n");
2549 return;
2550 }
2551 if (block->mirror_num > 1 &&
2552 !(state->print_mask & BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS)) {
2553 printk(" [...]\n");
2554 return;
2555 }
2556
2557 cursor_position = indent_level;
2558 list_for_each_entry(l, &block->ref_to_list, node_ref_to) {
2559 while (cursor_position < indent_level) {
2560 printk(" ");
2561 cursor_position++;
2562 }
2563 if (l->ref_cnt > 1)
2564 indent_add = sprintf(buf, " %d*--> ", l->ref_cnt);
2565 else
2566 indent_add = sprintf(buf, " --> ");
2567 if (indent_level + indent_add >
2568 BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2569 printk("[...]\n");
2570 cursor_position = 0;
2571 continue;
2572 }
2573
2574 printk(buf);
2575
2576 btrfsic_dump_tree_sub(state, l->block_ref_to,
2577 indent_level + indent_add);
2578 cursor_position = 0;
2579 }
2580}
2581
2582static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
2583 struct btrfsic_state *state,
2584 struct btrfsic_block_data_ctx *next_block_ctx,
2585 struct btrfsic_block *next_block,
2586 struct btrfsic_block *from_block,
2587 u64 parent_generation)
2588{
2589 struct btrfsic_block_link *l;
2590
2591 l = btrfsic_block_link_hashtable_lookup(next_block_ctx->dev->bdev,
2592 next_block_ctx->dev_bytenr,
2593 from_block->dev_state->bdev,
2594 from_block->dev_bytenr,
2595 &state->block_link_hashtable);
2596 if (NULL == l) {
2597 l = btrfsic_block_link_alloc();
2598 if (NULL == l) {
2599 pr_info("btrfsic: error, kmalloc failed!\n");
2600 return NULL;
2601 }
2602
2603 l->block_ref_to = next_block;
2604 l->block_ref_from = from_block;
2605 l->ref_cnt = 1;
2606 l->parent_generation = parent_generation;
2607
2608 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2609 btrfsic_print_add_link(state, l);
2610
2611 list_add(&l->node_ref_to, &from_block->ref_to_list);
2612 list_add(&l->node_ref_from, &next_block->ref_from_list);
2613
2614 btrfsic_block_link_hashtable_add(l,
2615 &state->block_link_hashtable);
2616 } else {
2617 l->ref_cnt++;
2618 l->parent_generation = parent_generation;
2619 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2620 btrfsic_print_add_link(state, l);
2621 }
2622
2623 return l;
2624}
2625
2626static struct btrfsic_block *btrfsic_block_lookup_or_add(
2627 struct btrfsic_state *state,
2628 struct btrfsic_block_data_ctx *block_ctx,
2629 const char *additional_string,
2630 int is_metadata,
2631 int is_iodone,
2632 int never_written,
2633 int mirror_num,
2634 int *was_created)
2635{
2636 struct btrfsic_block *block;
2637
2638 block = btrfsic_block_hashtable_lookup(block_ctx->dev->bdev,
2639 block_ctx->dev_bytenr,
2640 &state->block_hashtable);
2641 if (NULL == block) {
2642 struct btrfsic_dev_state *dev_state;
2643
2644 block = btrfsic_block_alloc();
2645 if (NULL == block) {
2646 pr_info("btrfsic: error, kmalloc failed!\n");
2647 return NULL;
2648 }
2649 dev_state = btrfsic_dev_state_lookup(block_ctx->dev->bdev->bd_dev);
2650 if (NULL == dev_state) {
2651 pr_info("btrfsic: error, lookup dev_state failed!\n");
2652 btrfsic_block_free(block);
2653 return NULL;
2654 }
2655 block->dev_state = dev_state;
2656 block->dev_bytenr = block_ctx->dev_bytenr;
2657 block->logical_bytenr = block_ctx->start;
2658 block->is_metadata = is_metadata;
2659 block->is_iodone = is_iodone;
2660 block->never_written = never_written;
2661 block->mirror_num = mirror_num;
2662 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2663 pr_info("New %s%c-block @%llu (%s/%llu/%d)\n",
2664 additional_string,
2665 btrfsic_get_block_type(state, block),
2666 block->logical_bytenr, dev_state->name,
2667 block->dev_bytenr, mirror_num);
2668 list_add(&block->all_blocks_node, &state->all_blocks_list);
2669 btrfsic_block_hashtable_add(block, &state->block_hashtable);
2670 if (NULL != was_created)
2671 *was_created = 1;
2672 } else {
2673 if (NULL != was_created)
2674 *was_created = 0;
2675 }
2676
2677 return block;
2678}
2679
2680static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
2681 u64 bytenr,
2682 struct btrfsic_dev_state *dev_state,
2683 u64 dev_bytenr)
2684{
2685 struct btrfs_fs_info *fs_info = state->fs_info;
2686 struct btrfsic_block_data_ctx block_ctx;
2687 int num_copies;
2688 int mirror_num;
2689 int match = 0;
2690 int ret;
2691
2692 num_copies = btrfs_num_copies(fs_info, bytenr, state->metablock_size);
2693
2694 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2695 ret = btrfsic_map_block(state, bytenr, state->metablock_size,
2696 &block_ctx, mirror_num);
2697 if (ret) {
2698 pr_info("btrfsic: btrfsic_map_block(logical @%llu, mirror %d) failed!\n",
2699 bytenr, mirror_num);
2700 continue;
2701 }
2702
2703 if (dev_state->bdev == block_ctx.dev->bdev &&
2704 dev_bytenr == block_ctx.dev_bytenr) {
2705 match++;
2706 btrfsic_release_block_ctx(&block_ctx);
2707 break;
2708 }
2709 btrfsic_release_block_ctx(&block_ctx);
2710 }
2711
2712 if (WARN_ON(!match)) {
2713 pr_info("btrfs: attempt to write M-block which contains logical bytenr that doesn't map to dev+physical bytenr of submit_bio, buffer->log_bytenr=%llu, submit_bio(bdev=%s, phys_bytenr=%llu)!\n",
2714 bytenr, dev_state->name, dev_bytenr);
2715 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2716 ret = btrfsic_map_block(state, bytenr,
2717 state->metablock_size,
2718 &block_ctx, mirror_num);
2719 if (ret)
2720 continue;
2721
2722 pr_info("Read logical bytenr @%llu maps to (%s/%llu/%d)\n",
2723 bytenr, block_ctx.dev->name,
2724 block_ctx.dev_bytenr, mirror_num);
2725 }
2726 }
2727}
2728
2729static struct btrfsic_dev_state *btrfsic_dev_state_lookup(dev_t dev)
2730{
2731 return btrfsic_dev_state_hashtable_lookup(dev,
2732 &btrfsic_dev_state_hashtable);
2733}
2734
2735int btrfsic_submit_bh(int op, int op_flags, struct buffer_head *bh)
2736{
2737 struct btrfsic_dev_state *dev_state;
2738
2739 if (!btrfsic_is_initialized)
2740 return submit_bh(op, op_flags, bh);
2741
2742 mutex_lock(&btrfsic_mutex);
2743 /* since btrfsic_submit_bh() might also be called before
2744 * btrfsic_mount(), this might return NULL */
2745 dev_state = btrfsic_dev_state_lookup(bh->b_bdev->bd_dev);
2746
2747 /* Only called to write the superblock (incl. FLUSH/FUA) */
2748 if (NULL != dev_state &&
2749 (op == REQ_OP_WRITE) && bh->b_size > 0) {
2750 u64 dev_bytenr;
2751
2752 dev_bytenr = BTRFS_BDEV_BLOCKSIZE * bh->b_blocknr;
2753 if (dev_state->state->print_mask &
2754 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2755 pr_info("submit_bh(op=0x%x,0x%x, blocknr=%llu (bytenr %llu), size=%zu, data=%p, bdev=%p)\n",
2756 op, op_flags, (unsigned long long)bh->b_blocknr,
2757 dev_bytenr, bh->b_size, bh->b_data, bh->b_bdev);
2758 btrfsic_process_written_block(dev_state, dev_bytenr,
2759 &bh->b_data, 1, NULL,
2760 NULL, bh, op_flags);
2761 } else if (NULL != dev_state && (op_flags & REQ_PREFLUSH)) {
2762 if (dev_state->state->print_mask &
2763 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2764 pr_info("submit_bh(op=0x%x,0x%x FLUSH, bdev=%p)\n",
2765 op, op_flags, bh->b_bdev);
2766 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
2767 if ((dev_state->state->print_mask &
2768 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2769 BTRFSIC_PRINT_MASK_VERBOSE)))
2770 pr_info("btrfsic_submit_bh(%s) with FLUSH but dummy block already in use (ignored)!\n",
2771 dev_state->name);
2772 } else {
2773 struct btrfsic_block *const block =
2774 &dev_state->dummy_block_for_bio_bh_flush;
2775
2776 block->is_iodone = 0;
2777 block->never_written = 0;
2778 block->iodone_w_error = 0;
2779 block->flush_gen = dev_state->last_flush_gen + 1;
2780 block->submit_bio_bh_rw = op_flags;
2781 block->orig_bio_bh_private = bh->b_private;
2782 block->orig_bio_bh_end_io.bh = bh->b_end_io;
2783 block->next_in_same_bio = NULL;
2784 bh->b_private = block;
2785 bh->b_end_io = btrfsic_bh_end_io;
2786 }
2787 }
2788 mutex_unlock(&btrfsic_mutex);
2789 return submit_bh(op, op_flags, bh);
2790}
2791
2792static void __btrfsic_submit_bio(struct bio *bio)
2793{
2794 struct btrfsic_dev_state *dev_state;
2795
2796 if (!btrfsic_is_initialized)
2797 return;
2798
2799 mutex_lock(&btrfsic_mutex);
2800 /* since btrfsic_submit_bio() is also called before
2801 * btrfsic_mount(), this might return NULL */
2802 dev_state = btrfsic_dev_state_lookup(bio_dev(bio) + bio->bi_partno);
2803 if (NULL != dev_state &&
2804 (bio_op(bio) == REQ_OP_WRITE) && bio_has_data(bio)) {
2805 unsigned int i = 0;
2806 u64 dev_bytenr;
2807 u64 cur_bytenr;
2808 struct bio_vec bvec;
2809 struct bvec_iter iter;
2810 int bio_is_patched;
2811 char **mapped_datav;
2812 unsigned int segs = bio_segments(bio);
2813
2814 dev_bytenr = 512 * bio->bi_iter.bi_sector;
2815 bio_is_patched = 0;
2816 if (dev_state->state->print_mask &
2817 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2818 pr_info("submit_bio(rw=%d,0x%x, bi_vcnt=%u, bi_sector=%llu (bytenr %llu), bi_disk=%p)\n",
2819 bio_op(bio), bio->bi_opf, segs,
2820 (unsigned long long)bio->bi_iter.bi_sector,
2821 dev_bytenr, bio->bi_disk);
2822
2823 mapped_datav = kmalloc_array(segs,
2824 sizeof(*mapped_datav), GFP_NOFS);
2825 if (!mapped_datav)
2826 goto leave;
2827 cur_bytenr = dev_bytenr;
2828
2829 bio_for_each_segment(bvec, bio, iter) {
2830 BUG_ON(bvec.bv_len != PAGE_SIZE);
2831 mapped_datav[i] = kmap(bvec.bv_page);
2832 i++;
2833
2834 if (dev_state->state->print_mask &
2835 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE)
2836 pr_info("#%u: bytenr=%llu, len=%u, offset=%u\n",
2837 i, cur_bytenr, bvec.bv_len, bvec.bv_offset);
2838 cur_bytenr += bvec.bv_len;
2839 }
2840 btrfsic_process_written_block(dev_state, dev_bytenr,
2841 mapped_datav, segs,
2842 bio, &bio_is_patched,
2843 NULL, bio->bi_opf);
2844 bio_for_each_segment(bvec, bio, iter)
2845 kunmap(bvec.bv_page);
2846 kfree(mapped_datav);
2847 } else if (NULL != dev_state && (bio->bi_opf & REQ_PREFLUSH)) {
2848 if (dev_state->state->print_mask &
2849 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2850 pr_info("submit_bio(rw=%d,0x%x FLUSH, disk=%p)\n",
2851 bio_op(bio), bio->bi_opf, bio->bi_disk);
2852 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
2853 if ((dev_state->state->print_mask &
2854 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2855 BTRFSIC_PRINT_MASK_VERBOSE)))
2856 pr_info("btrfsic_submit_bio(%s) with FLUSH but dummy block already in use (ignored)!\n",
2857 dev_state->name);
2858 } else {
2859 struct btrfsic_block *const block =
2860 &dev_state->dummy_block_for_bio_bh_flush;
2861
2862 block->is_iodone = 0;
2863 block->never_written = 0;
2864 block->iodone_w_error = 0;
2865 block->flush_gen = dev_state->last_flush_gen + 1;
2866 block->submit_bio_bh_rw = bio->bi_opf;
2867 block->orig_bio_bh_private = bio->bi_private;
2868 block->orig_bio_bh_end_io.bio = bio->bi_end_io;
2869 block->next_in_same_bio = NULL;
2870 bio->bi_private = block;
2871 bio->bi_end_io = btrfsic_bio_end_io;
2872 }
2873 }
2874leave:
2875 mutex_unlock(&btrfsic_mutex);
2876}
2877
2878void btrfsic_submit_bio(struct bio *bio)
2879{
2880 __btrfsic_submit_bio(bio);
2881 submit_bio(bio);
2882}
2883
2884int btrfsic_submit_bio_wait(struct bio *bio)
2885{
2886 __btrfsic_submit_bio(bio);
2887 return submit_bio_wait(bio);
2888}
2889
2890int btrfsic_mount(struct btrfs_fs_info *fs_info,
2891 struct btrfs_fs_devices *fs_devices,
2892 int including_extent_data, u32 print_mask)
2893{
2894 int ret;
2895 struct btrfsic_state *state;
2896 struct list_head *dev_head = &fs_devices->devices;
2897 struct btrfs_device *device;
2898
2899 if (!PAGE_ALIGNED(fs_info->nodesize)) {
2900 pr_info("btrfsic: cannot handle nodesize %d not being a multiple of PAGE_SIZE %ld!\n",
2901 fs_info->nodesize, PAGE_SIZE);
2902 return -1;
2903 }
2904 if (!PAGE_ALIGNED(fs_info->sectorsize)) {
2905 pr_info("btrfsic: cannot handle sectorsize %d not being a multiple of PAGE_SIZE %ld!\n",
2906 fs_info->sectorsize, PAGE_SIZE);
2907 return -1;
2908 }
2909 state = kvzalloc(sizeof(*state), GFP_KERNEL);
2910 if (!state) {
2911 pr_info("btrfs check-integrity: allocation failed!\n");
2912 return -ENOMEM;
2913 }
2914
2915 if (!btrfsic_is_initialized) {
2916 mutex_init(&btrfsic_mutex);
2917 btrfsic_dev_state_hashtable_init(&btrfsic_dev_state_hashtable);
2918 btrfsic_is_initialized = 1;
2919 }
2920 mutex_lock(&btrfsic_mutex);
2921 state->fs_info = fs_info;
2922 state->print_mask = print_mask;
2923 state->include_extent_data = including_extent_data;
2924 state->csum_size = 0;
2925 state->metablock_size = fs_info->nodesize;
2926 state->datablock_size = fs_info->sectorsize;
2927 INIT_LIST_HEAD(&state->all_blocks_list);
2928 btrfsic_block_hashtable_init(&state->block_hashtable);
2929 btrfsic_block_link_hashtable_init(&state->block_link_hashtable);
2930 state->max_superblock_generation = 0;
2931 state->latest_superblock = NULL;
2932
2933 list_for_each_entry(device, dev_head, dev_list) {
2934 struct btrfsic_dev_state *ds;
2935 const char *p;
2936
2937 if (!device->bdev || !device->name)
2938 continue;
2939
2940 ds = btrfsic_dev_state_alloc();
2941 if (NULL == ds) {
2942 pr_info("btrfs check-integrity: kmalloc() failed!\n");
2943 mutex_unlock(&btrfsic_mutex);
2944 return -ENOMEM;
2945 }
2946 ds->bdev = device->bdev;
2947 ds->state = state;
2948 bdevname(ds->bdev, ds->name);
2949 ds->name[BDEVNAME_SIZE - 1] = '\0';
2950 p = kbasename(ds->name);
2951 strlcpy(ds->name, p, sizeof(ds->name));
2952 btrfsic_dev_state_hashtable_add(ds,
2953 &btrfsic_dev_state_hashtable);
2954 }
2955
2956 ret = btrfsic_process_superblock(state, fs_devices);
2957 if (0 != ret) {
2958 mutex_unlock(&btrfsic_mutex);
2959 btrfsic_unmount(fs_devices);
2960 return ret;
2961 }
2962
2963 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_DATABASE)
2964 btrfsic_dump_database(state);
2965 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_TREE)
2966 btrfsic_dump_tree(state);
2967
2968 mutex_unlock(&btrfsic_mutex);
2969 return 0;
2970}
2971
2972void btrfsic_unmount(struct btrfs_fs_devices *fs_devices)
2973{
2974 struct btrfsic_block *b_all, *tmp_all;
2975 struct btrfsic_state *state;
2976 struct list_head *dev_head = &fs_devices->devices;
2977 struct btrfs_device *device;
2978
2979 if (!btrfsic_is_initialized)
2980 return;
2981
2982 mutex_lock(&btrfsic_mutex);
2983
2984 state = NULL;
2985 list_for_each_entry(device, dev_head, dev_list) {
2986 struct btrfsic_dev_state *ds;
2987
2988 if (!device->bdev || !device->name)
2989 continue;
2990
2991 ds = btrfsic_dev_state_hashtable_lookup(
2992 device->bdev->bd_dev,
2993 &btrfsic_dev_state_hashtable);
2994 if (NULL != ds) {
2995 state = ds->state;
2996 btrfsic_dev_state_hashtable_remove(ds);
2997 btrfsic_dev_state_free(ds);
2998 }
2999 }
3000
3001 if (NULL == state) {
3002 pr_info("btrfsic: error, cannot find state information on umount!\n");
3003 mutex_unlock(&btrfsic_mutex);
3004 return;
3005 }
3006
3007 /*
3008 * Don't care about keeping the lists' state up to date,
3009 * just free all memory that was allocated dynamically.
3010 * Free the blocks and the block_links.
3011 */
3012 list_for_each_entry_safe(b_all, tmp_all, &state->all_blocks_list,
3013 all_blocks_node) {
3014 struct btrfsic_block_link *l, *tmp;
3015
3016 list_for_each_entry_safe(l, tmp, &b_all->ref_to_list,
3017 node_ref_to) {
3018 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
3019 btrfsic_print_rem_link(state, l);
3020
3021 l->ref_cnt--;
3022 if (0 == l->ref_cnt)
3023 btrfsic_block_link_free(l);
3024 }
3025
3026 if (b_all->is_iodone || b_all->never_written)
3027 btrfsic_block_free(b_all);
3028 else
3029 pr_info("btrfs: attempt to free %c-block @%llu (%s/%llu/%d) on umount which is not yet iodone!\n",
3030 btrfsic_get_block_type(state, b_all),
3031 b_all->logical_bytenr, b_all->dev_state->name,
3032 b_all->dev_bytenr, b_all->mirror_num);
3033 }
3034
3035 mutex_unlock(&btrfsic_mutex);
3036
3037 kvfree(state);
3038}
1/*
2 * Copyright (C) STRATO AG 2011. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19/*
20 * This module can be used to catch cases when the btrfs kernel
21 * code executes write requests to the disk that bring the file
22 * system in an inconsistent state. In such a state, a power-loss
23 * or kernel panic event would cause that the data on disk is
24 * lost or at least damaged.
25 *
26 * Code is added that examines all block write requests during
27 * runtime (including writes of the super block). Three rules
28 * are verified and an error is printed on violation of the
29 * rules:
30 * 1. It is not allowed to write a disk block which is
31 * currently referenced by the super block (either directly
32 * or indirectly).
33 * 2. When a super block is written, it is verified that all
34 * referenced (directly or indirectly) blocks fulfill the
35 * following requirements:
36 * 2a. All referenced blocks have either been present when
37 * the file system was mounted, (i.e., they have been
38 * referenced by the super block) or they have been
39 * written since then and the write completion callback
40 * was called and no write error was indicated and a
41 * FLUSH request to the device where these blocks are
42 * located was received and completed.
43 * 2b. All referenced blocks need to have a generation
44 * number which is equal to the parent's number.
45 *
46 * One issue that was found using this module was that the log
47 * tree on disk became temporarily corrupted because disk blocks
48 * that had been in use for the log tree had been freed and
49 * reused too early, while being referenced by the written super
50 * block.
51 *
52 * The search term in the kernel log that can be used to filter
53 * on the existence of detected integrity issues is
54 * "btrfs: attempt".
55 *
56 * The integrity check is enabled via mount options. These
57 * mount options are only supported if the integrity check
58 * tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY.
59 *
60 * Example #1, apply integrity checks to all metadata:
61 * mount /dev/sdb1 /mnt -o check_int
62 *
63 * Example #2, apply integrity checks to all metadata and
64 * to data extents:
65 * mount /dev/sdb1 /mnt -o check_int_data
66 *
67 * Example #3, apply integrity checks to all metadata and dump
68 * the tree that the super block references to kernel messages
69 * each time after a super block was written:
70 * mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263
71 *
72 * If the integrity check tool is included and activated in
73 * the mount options, plenty of kernel memory is used, and
74 * plenty of additional CPU cycles are spent. Enabling this
75 * functionality is not intended for normal use. In most
76 * cases, unless you are a btrfs developer who needs to verify
77 * the integrity of (super)-block write requests, do not
78 * enable the config option BTRFS_FS_CHECK_INTEGRITY to
79 * include and compile the integrity check tool.
80 *
81 * Expect millions of lines of information in the kernel log with an
82 * enabled check_int_print_mask. Therefore set LOG_BUF_SHIFT in the
83 * kernel config to at least 26 (which is 64MB). Usually the value is
84 * limited to 21 (which is 2MB) in init/Kconfig. The file needs to be
85 * changed like this before LOG_BUF_SHIFT can be set to a high value:
86 * config LOG_BUF_SHIFT
87 * int "Kernel log buffer size (16 => 64KB, 17 => 128KB)"
88 * range 12 30
89 */
90
91#include <linux/sched.h>
92#include <linux/slab.h>
93#include <linux/buffer_head.h>
94#include <linux/mutex.h>
95#include <linux/genhd.h>
96#include <linux/blkdev.h>
97#include <linux/vmalloc.h>
98#include <linux/string.h>
99#include "ctree.h"
100#include "disk-io.h"
101#include "hash.h"
102#include "transaction.h"
103#include "extent_io.h"
104#include "volumes.h"
105#include "print-tree.h"
106#include "locking.h"
107#include "check-integrity.h"
108#include "rcu-string.h"
109#include "compression.h"
110
111#define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000
112#define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000
113#define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100
114#define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051
115#define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807
116#define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530
117#define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300
118#define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6) /* in characters,
119 * excluding " [...]" */
120#define BTRFSIC_GENERATION_UNKNOWN ((u64)-1)
121
122/*
123 * The definition of the bitmask fields for the print_mask.
124 * They are specified with the mount option check_integrity_print_mask.
125 */
126#define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE 0x00000001
127#define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION 0x00000002
128#define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE 0x00000004
129#define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE 0x00000008
130#define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH 0x00000010
131#define BTRFSIC_PRINT_MASK_END_IO_BIO_BH 0x00000020
132#define BTRFSIC_PRINT_MASK_VERBOSE 0x00000040
133#define BTRFSIC_PRINT_MASK_VERY_VERBOSE 0x00000080
134#define BTRFSIC_PRINT_MASK_INITIAL_TREE 0x00000100
135#define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES 0x00000200
136#define BTRFSIC_PRINT_MASK_INITIAL_DATABASE 0x00000400
137#define BTRFSIC_PRINT_MASK_NUM_COPIES 0x00000800
138#define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS 0x00001000
139#define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE 0x00002000
140
141struct btrfsic_dev_state;
142struct btrfsic_state;
143
144struct btrfsic_block {
145 u32 magic_num; /* only used for debug purposes */
146 unsigned int is_metadata:1; /* if it is meta-data, not data-data */
147 unsigned int is_superblock:1; /* if it is one of the superblocks */
148 unsigned int is_iodone:1; /* if is done by lower subsystem */
149 unsigned int iodone_w_error:1; /* error was indicated to endio */
150 unsigned int never_written:1; /* block was added because it was
151 * referenced, not because it was
152 * written */
153 unsigned int mirror_num; /* large enough to hold
154 * BTRFS_SUPER_MIRROR_MAX */
155 struct btrfsic_dev_state *dev_state;
156 u64 dev_bytenr; /* key, physical byte num on disk */
157 u64 logical_bytenr; /* logical byte num on disk */
158 u64 generation;
159 struct btrfs_disk_key disk_key; /* extra info to print in case of
160 * issues, will not always be correct */
161 struct list_head collision_resolving_node; /* list node */
162 struct list_head all_blocks_node; /* list node */
163
164 /* the following two lists contain block_link items */
165 struct list_head ref_to_list; /* list */
166 struct list_head ref_from_list; /* list */
167 struct btrfsic_block *next_in_same_bio;
168 void *orig_bio_bh_private;
169 union {
170 bio_end_io_t *bio;
171 bh_end_io_t *bh;
172 } orig_bio_bh_end_io;
173 int submit_bio_bh_rw;
174 u64 flush_gen; /* only valid if !never_written */
175};
176
177/*
178 * Elements of this type are allocated dynamically and required because
179 * each block object can refer to and can be ref from multiple blocks.
180 * The key to lookup them in the hashtable is the dev_bytenr of
181 * the block ref to plus the one from the block referred from.
182 * The fact that they are searchable via a hashtable and that a
183 * ref_cnt is maintained is not required for the btrfs integrity
184 * check algorithm itself, it is only used to make the output more
185 * beautiful in case that an error is detected (an error is defined
186 * as a write operation to a block while that block is still referenced).
187 */
188struct btrfsic_block_link {
189 u32 magic_num; /* only used for debug purposes */
190 u32 ref_cnt;
191 struct list_head node_ref_to; /* list node */
192 struct list_head node_ref_from; /* list node */
193 struct list_head collision_resolving_node; /* list node */
194 struct btrfsic_block *block_ref_to;
195 struct btrfsic_block *block_ref_from;
196 u64 parent_generation;
197};
198
199struct btrfsic_dev_state {
200 u32 magic_num; /* only used for debug purposes */
201 struct block_device *bdev;
202 struct btrfsic_state *state;
203 struct list_head collision_resolving_node; /* list node */
204 struct btrfsic_block dummy_block_for_bio_bh_flush;
205 u64 last_flush_gen;
206 char name[BDEVNAME_SIZE];
207};
208
209struct btrfsic_block_hashtable {
210 struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE];
211};
212
213struct btrfsic_block_link_hashtable {
214 struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE];
215};
216
217struct btrfsic_dev_state_hashtable {
218 struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE];
219};
220
221struct btrfsic_block_data_ctx {
222 u64 start; /* virtual bytenr */
223 u64 dev_bytenr; /* physical bytenr on device */
224 u32 len;
225 struct btrfsic_dev_state *dev;
226 char **datav;
227 struct page **pagev;
228 void *mem_to_free;
229};
230
231/* This structure is used to implement recursion without occupying
232 * any stack space, refer to btrfsic_process_metablock() */
233struct btrfsic_stack_frame {
234 u32 magic;
235 u32 nr;
236 int error;
237 int i;
238 int limit_nesting;
239 int num_copies;
240 int mirror_num;
241 struct btrfsic_block *block;
242 struct btrfsic_block_data_ctx *block_ctx;
243 struct btrfsic_block *next_block;
244 struct btrfsic_block_data_ctx next_block_ctx;
245 struct btrfs_header *hdr;
246 struct btrfsic_stack_frame *prev;
247};
248
249/* Some state per mounted filesystem */
250struct btrfsic_state {
251 u32 print_mask;
252 int include_extent_data;
253 int csum_size;
254 struct list_head all_blocks_list;
255 struct btrfsic_block_hashtable block_hashtable;
256 struct btrfsic_block_link_hashtable block_link_hashtable;
257 struct btrfs_fs_info *fs_info;
258 u64 max_superblock_generation;
259 struct btrfsic_block *latest_superblock;
260 u32 metablock_size;
261 u32 datablock_size;
262};
263
264static void btrfsic_block_init(struct btrfsic_block *b);
265static struct btrfsic_block *btrfsic_block_alloc(void);
266static void btrfsic_block_free(struct btrfsic_block *b);
267static void btrfsic_block_link_init(struct btrfsic_block_link *n);
268static struct btrfsic_block_link *btrfsic_block_link_alloc(void);
269static void btrfsic_block_link_free(struct btrfsic_block_link *n);
270static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds);
271static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void);
272static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds);
273static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h);
274static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
275 struct btrfsic_block_hashtable *h);
276static void btrfsic_block_hashtable_remove(struct btrfsic_block *b);
277static struct btrfsic_block *btrfsic_block_hashtable_lookup(
278 struct block_device *bdev,
279 u64 dev_bytenr,
280 struct btrfsic_block_hashtable *h);
281static void btrfsic_block_link_hashtable_init(
282 struct btrfsic_block_link_hashtable *h);
283static void btrfsic_block_link_hashtable_add(
284 struct btrfsic_block_link *l,
285 struct btrfsic_block_link_hashtable *h);
286static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l);
287static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
288 struct block_device *bdev_ref_to,
289 u64 dev_bytenr_ref_to,
290 struct block_device *bdev_ref_from,
291 u64 dev_bytenr_ref_from,
292 struct btrfsic_block_link_hashtable *h);
293static void btrfsic_dev_state_hashtable_init(
294 struct btrfsic_dev_state_hashtable *h);
295static void btrfsic_dev_state_hashtable_add(
296 struct btrfsic_dev_state *ds,
297 struct btrfsic_dev_state_hashtable *h);
298static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds);
299static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
300 struct block_device *bdev,
301 struct btrfsic_dev_state_hashtable *h);
302static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void);
303static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf);
304static int btrfsic_process_superblock(struct btrfsic_state *state,
305 struct btrfs_fs_devices *fs_devices);
306static int btrfsic_process_metablock(struct btrfsic_state *state,
307 struct btrfsic_block *block,
308 struct btrfsic_block_data_ctx *block_ctx,
309 int limit_nesting, int force_iodone_flag);
310static void btrfsic_read_from_block_data(
311 struct btrfsic_block_data_ctx *block_ctx,
312 void *dst, u32 offset, size_t len);
313static int btrfsic_create_link_to_next_block(
314 struct btrfsic_state *state,
315 struct btrfsic_block *block,
316 struct btrfsic_block_data_ctx
317 *block_ctx, u64 next_bytenr,
318 int limit_nesting,
319 struct btrfsic_block_data_ctx *next_block_ctx,
320 struct btrfsic_block **next_blockp,
321 int force_iodone_flag,
322 int *num_copiesp, int *mirror_nump,
323 struct btrfs_disk_key *disk_key,
324 u64 parent_generation);
325static int btrfsic_handle_extent_data(struct btrfsic_state *state,
326 struct btrfsic_block *block,
327 struct btrfsic_block_data_ctx *block_ctx,
328 u32 item_offset, int force_iodone_flag);
329static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
330 struct btrfsic_block_data_ctx *block_ctx_out,
331 int mirror_num);
332static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx);
333static int btrfsic_read_block(struct btrfsic_state *state,
334 struct btrfsic_block_data_ctx *block_ctx);
335static void btrfsic_dump_database(struct btrfsic_state *state);
336static int btrfsic_test_for_metadata(struct btrfsic_state *state,
337 char **datav, unsigned int num_pages);
338static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
339 u64 dev_bytenr, char **mapped_datav,
340 unsigned int num_pages,
341 struct bio *bio, int *bio_is_patched,
342 struct buffer_head *bh,
343 int submit_bio_bh_rw);
344static int btrfsic_process_written_superblock(
345 struct btrfsic_state *state,
346 struct btrfsic_block *const block,
347 struct btrfs_super_block *const super_hdr);
348static void btrfsic_bio_end_io(struct bio *bp);
349static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate);
350static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state,
351 const struct btrfsic_block *block,
352 int recursion_level);
353static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
354 struct btrfsic_block *const block,
355 int recursion_level);
356static void btrfsic_print_add_link(const struct btrfsic_state *state,
357 const struct btrfsic_block_link *l);
358static void btrfsic_print_rem_link(const struct btrfsic_state *state,
359 const struct btrfsic_block_link *l);
360static char btrfsic_get_block_type(const struct btrfsic_state *state,
361 const struct btrfsic_block *block);
362static void btrfsic_dump_tree(const struct btrfsic_state *state);
363static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
364 const struct btrfsic_block *block,
365 int indent_level);
366static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
367 struct btrfsic_state *state,
368 struct btrfsic_block_data_ctx *next_block_ctx,
369 struct btrfsic_block *next_block,
370 struct btrfsic_block *from_block,
371 u64 parent_generation);
372static struct btrfsic_block *btrfsic_block_lookup_or_add(
373 struct btrfsic_state *state,
374 struct btrfsic_block_data_ctx *block_ctx,
375 const char *additional_string,
376 int is_metadata,
377 int is_iodone,
378 int never_written,
379 int mirror_num,
380 int *was_created);
381static int btrfsic_process_superblock_dev_mirror(
382 struct btrfsic_state *state,
383 struct btrfsic_dev_state *dev_state,
384 struct btrfs_device *device,
385 int superblock_mirror_num,
386 struct btrfsic_dev_state **selected_dev_state,
387 struct btrfs_super_block *selected_super);
388static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
389 struct block_device *bdev);
390static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
391 u64 bytenr,
392 struct btrfsic_dev_state *dev_state,
393 u64 dev_bytenr);
394
395static struct mutex btrfsic_mutex;
396static int btrfsic_is_initialized;
397static struct btrfsic_dev_state_hashtable btrfsic_dev_state_hashtable;
398
399
400static void btrfsic_block_init(struct btrfsic_block *b)
401{
402 b->magic_num = BTRFSIC_BLOCK_MAGIC_NUMBER;
403 b->dev_state = NULL;
404 b->dev_bytenr = 0;
405 b->logical_bytenr = 0;
406 b->generation = BTRFSIC_GENERATION_UNKNOWN;
407 b->disk_key.objectid = 0;
408 b->disk_key.type = 0;
409 b->disk_key.offset = 0;
410 b->is_metadata = 0;
411 b->is_superblock = 0;
412 b->is_iodone = 0;
413 b->iodone_w_error = 0;
414 b->never_written = 0;
415 b->mirror_num = 0;
416 b->next_in_same_bio = NULL;
417 b->orig_bio_bh_private = NULL;
418 b->orig_bio_bh_end_io.bio = NULL;
419 INIT_LIST_HEAD(&b->collision_resolving_node);
420 INIT_LIST_HEAD(&b->all_blocks_node);
421 INIT_LIST_HEAD(&b->ref_to_list);
422 INIT_LIST_HEAD(&b->ref_from_list);
423 b->submit_bio_bh_rw = 0;
424 b->flush_gen = 0;
425}
426
427static struct btrfsic_block *btrfsic_block_alloc(void)
428{
429 struct btrfsic_block *b;
430
431 b = kzalloc(sizeof(*b), GFP_NOFS);
432 if (NULL != b)
433 btrfsic_block_init(b);
434
435 return b;
436}
437
438static void btrfsic_block_free(struct btrfsic_block *b)
439{
440 BUG_ON(!(NULL == b || BTRFSIC_BLOCK_MAGIC_NUMBER == b->magic_num));
441 kfree(b);
442}
443
444static void btrfsic_block_link_init(struct btrfsic_block_link *l)
445{
446 l->magic_num = BTRFSIC_BLOCK_LINK_MAGIC_NUMBER;
447 l->ref_cnt = 1;
448 INIT_LIST_HEAD(&l->node_ref_to);
449 INIT_LIST_HEAD(&l->node_ref_from);
450 INIT_LIST_HEAD(&l->collision_resolving_node);
451 l->block_ref_to = NULL;
452 l->block_ref_from = NULL;
453}
454
455static struct btrfsic_block_link *btrfsic_block_link_alloc(void)
456{
457 struct btrfsic_block_link *l;
458
459 l = kzalloc(sizeof(*l), GFP_NOFS);
460 if (NULL != l)
461 btrfsic_block_link_init(l);
462
463 return l;
464}
465
466static void btrfsic_block_link_free(struct btrfsic_block_link *l)
467{
468 BUG_ON(!(NULL == l || BTRFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num));
469 kfree(l);
470}
471
472static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds)
473{
474 ds->magic_num = BTRFSIC_DEV2STATE_MAGIC_NUMBER;
475 ds->bdev = NULL;
476 ds->state = NULL;
477 ds->name[0] = '\0';
478 INIT_LIST_HEAD(&ds->collision_resolving_node);
479 ds->last_flush_gen = 0;
480 btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush);
481 ds->dummy_block_for_bio_bh_flush.is_iodone = 1;
482 ds->dummy_block_for_bio_bh_flush.dev_state = ds;
483}
484
485static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void)
486{
487 struct btrfsic_dev_state *ds;
488
489 ds = kzalloc(sizeof(*ds), GFP_NOFS);
490 if (NULL != ds)
491 btrfsic_dev_state_init(ds);
492
493 return ds;
494}
495
496static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds)
497{
498 BUG_ON(!(NULL == ds ||
499 BTRFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num));
500 kfree(ds);
501}
502
503static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h)
504{
505 int i;
506
507 for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++)
508 INIT_LIST_HEAD(h->table + i);
509}
510
511static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
512 struct btrfsic_block_hashtable *h)
513{
514 const unsigned int hashval =
515 (((unsigned int)(b->dev_bytenr >> 16)) ^
516 ((unsigned int)((uintptr_t)b->dev_state->bdev))) &
517 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
518
519 list_add(&b->collision_resolving_node, h->table + hashval);
520}
521
522static void btrfsic_block_hashtable_remove(struct btrfsic_block *b)
523{
524 list_del(&b->collision_resolving_node);
525}
526
527static struct btrfsic_block *btrfsic_block_hashtable_lookup(
528 struct block_device *bdev,
529 u64 dev_bytenr,
530 struct btrfsic_block_hashtable *h)
531{
532 const unsigned int hashval =
533 (((unsigned int)(dev_bytenr >> 16)) ^
534 ((unsigned int)((uintptr_t)bdev))) &
535 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
536 struct btrfsic_block *b;
537
538 list_for_each_entry(b, h->table + hashval, collision_resolving_node) {
539 if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr)
540 return b;
541 }
542
543 return NULL;
544}
545
546static void btrfsic_block_link_hashtable_init(
547 struct btrfsic_block_link_hashtable *h)
548{
549 int i;
550
551 for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++)
552 INIT_LIST_HEAD(h->table + i);
553}
554
555static void btrfsic_block_link_hashtable_add(
556 struct btrfsic_block_link *l,
557 struct btrfsic_block_link_hashtable *h)
558{
559 const unsigned int hashval =
560 (((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^
561 ((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^
562 ((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^
563 ((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev)))
564 & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
565
566 BUG_ON(NULL == l->block_ref_to);
567 BUG_ON(NULL == l->block_ref_from);
568 list_add(&l->collision_resolving_node, h->table + hashval);
569}
570
571static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l)
572{
573 list_del(&l->collision_resolving_node);
574}
575
576static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
577 struct block_device *bdev_ref_to,
578 u64 dev_bytenr_ref_to,
579 struct block_device *bdev_ref_from,
580 u64 dev_bytenr_ref_from,
581 struct btrfsic_block_link_hashtable *h)
582{
583 const unsigned int hashval =
584 (((unsigned int)(dev_bytenr_ref_to >> 16)) ^
585 ((unsigned int)(dev_bytenr_ref_from >> 16)) ^
586 ((unsigned int)((uintptr_t)bdev_ref_to)) ^
587 ((unsigned int)((uintptr_t)bdev_ref_from))) &
588 (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
589 struct btrfsic_block_link *l;
590
591 list_for_each_entry(l, h->table + hashval, collision_resolving_node) {
592 BUG_ON(NULL == l->block_ref_to);
593 BUG_ON(NULL == l->block_ref_from);
594 if (l->block_ref_to->dev_state->bdev == bdev_ref_to &&
595 l->block_ref_to->dev_bytenr == dev_bytenr_ref_to &&
596 l->block_ref_from->dev_state->bdev == bdev_ref_from &&
597 l->block_ref_from->dev_bytenr == dev_bytenr_ref_from)
598 return l;
599 }
600
601 return NULL;
602}
603
604static void btrfsic_dev_state_hashtable_init(
605 struct btrfsic_dev_state_hashtable *h)
606{
607 int i;
608
609 for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++)
610 INIT_LIST_HEAD(h->table + i);
611}
612
613static void btrfsic_dev_state_hashtable_add(
614 struct btrfsic_dev_state *ds,
615 struct btrfsic_dev_state_hashtable *h)
616{
617 const unsigned int hashval =
618 (((unsigned int)((uintptr_t)ds->bdev)) &
619 (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
620
621 list_add(&ds->collision_resolving_node, h->table + hashval);
622}
623
624static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds)
625{
626 list_del(&ds->collision_resolving_node);
627}
628
629static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
630 struct block_device *bdev,
631 struct btrfsic_dev_state_hashtable *h)
632{
633 const unsigned int hashval =
634 (((unsigned int)((uintptr_t)bdev)) &
635 (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
636 struct btrfsic_dev_state *ds;
637
638 list_for_each_entry(ds, h->table + hashval, collision_resolving_node) {
639 if (ds->bdev == bdev)
640 return ds;
641 }
642
643 return NULL;
644}
645
646static int btrfsic_process_superblock(struct btrfsic_state *state,
647 struct btrfs_fs_devices *fs_devices)
648{
649 struct btrfs_fs_info *fs_info = state->fs_info;
650 struct btrfs_super_block *selected_super;
651 struct list_head *dev_head = &fs_devices->devices;
652 struct btrfs_device *device;
653 struct btrfsic_dev_state *selected_dev_state = NULL;
654 int ret = 0;
655 int pass;
656
657 BUG_ON(NULL == state);
658 selected_super = kzalloc(sizeof(*selected_super), GFP_NOFS);
659 if (NULL == selected_super) {
660 pr_info("btrfsic: error, kmalloc failed!\n");
661 return -ENOMEM;
662 }
663
664 list_for_each_entry(device, dev_head, dev_list) {
665 int i;
666 struct btrfsic_dev_state *dev_state;
667
668 if (!device->bdev || !device->name)
669 continue;
670
671 dev_state = btrfsic_dev_state_lookup(device->bdev);
672 BUG_ON(NULL == dev_state);
673 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
674 ret = btrfsic_process_superblock_dev_mirror(
675 state, dev_state, device, i,
676 &selected_dev_state, selected_super);
677 if (0 != ret && 0 == i) {
678 kfree(selected_super);
679 return ret;
680 }
681 }
682 }
683
684 if (NULL == state->latest_superblock) {
685 pr_info("btrfsic: no superblock found!\n");
686 kfree(selected_super);
687 return -1;
688 }
689
690 state->csum_size = btrfs_super_csum_size(selected_super);
691
692 for (pass = 0; pass < 3; pass++) {
693 int num_copies;
694 int mirror_num;
695 u64 next_bytenr;
696
697 switch (pass) {
698 case 0:
699 next_bytenr = btrfs_super_root(selected_super);
700 if (state->print_mask &
701 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
702 pr_info("root@%llu\n", next_bytenr);
703 break;
704 case 1:
705 next_bytenr = btrfs_super_chunk_root(selected_super);
706 if (state->print_mask &
707 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
708 pr_info("chunk@%llu\n", next_bytenr);
709 break;
710 case 2:
711 next_bytenr = btrfs_super_log_root(selected_super);
712 if (0 == next_bytenr)
713 continue;
714 if (state->print_mask &
715 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
716 pr_info("log@%llu\n", next_bytenr);
717 break;
718 }
719
720 num_copies = btrfs_num_copies(fs_info, next_bytenr,
721 state->metablock_size);
722 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
723 pr_info("num_copies(log_bytenr=%llu) = %d\n",
724 next_bytenr, num_copies);
725
726 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
727 struct btrfsic_block *next_block;
728 struct btrfsic_block_data_ctx tmp_next_block_ctx;
729 struct btrfsic_block_link *l;
730
731 ret = btrfsic_map_block(state, next_bytenr,
732 state->metablock_size,
733 &tmp_next_block_ctx,
734 mirror_num);
735 if (ret) {
736 pr_info("btrfsic: btrfsic_map_block(root @%llu, mirror %d) failed!\n",
737 next_bytenr, mirror_num);
738 kfree(selected_super);
739 return -1;
740 }
741
742 next_block = btrfsic_block_hashtable_lookup(
743 tmp_next_block_ctx.dev->bdev,
744 tmp_next_block_ctx.dev_bytenr,
745 &state->block_hashtable);
746 BUG_ON(NULL == next_block);
747
748 l = btrfsic_block_link_hashtable_lookup(
749 tmp_next_block_ctx.dev->bdev,
750 tmp_next_block_ctx.dev_bytenr,
751 state->latest_superblock->dev_state->
752 bdev,
753 state->latest_superblock->dev_bytenr,
754 &state->block_link_hashtable);
755 BUG_ON(NULL == l);
756
757 ret = btrfsic_read_block(state, &tmp_next_block_ctx);
758 if (ret < (int)PAGE_SIZE) {
759 pr_info("btrfsic: read @logical %llu failed!\n",
760 tmp_next_block_ctx.start);
761 btrfsic_release_block_ctx(&tmp_next_block_ctx);
762 kfree(selected_super);
763 return -1;
764 }
765
766 ret = btrfsic_process_metablock(state,
767 next_block,
768 &tmp_next_block_ctx,
769 BTRFS_MAX_LEVEL + 3, 1);
770 btrfsic_release_block_ctx(&tmp_next_block_ctx);
771 }
772 }
773
774 kfree(selected_super);
775 return ret;
776}
777
778static int btrfsic_process_superblock_dev_mirror(
779 struct btrfsic_state *state,
780 struct btrfsic_dev_state *dev_state,
781 struct btrfs_device *device,
782 int superblock_mirror_num,
783 struct btrfsic_dev_state **selected_dev_state,
784 struct btrfs_super_block *selected_super)
785{
786 struct btrfs_fs_info *fs_info = state->fs_info;
787 struct btrfs_super_block *super_tmp;
788 u64 dev_bytenr;
789 struct buffer_head *bh;
790 struct btrfsic_block *superblock_tmp;
791 int pass;
792 struct block_device *const superblock_bdev = device->bdev;
793
794 /* super block bytenr is always the unmapped device bytenr */
795 dev_bytenr = btrfs_sb_offset(superblock_mirror_num);
796 if (dev_bytenr + BTRFS_SUPER_INFO_SIZE > device->commit_total_bytes)
797 return -1;
798 bh = __bread(superblock_bdev, dev_bytenr / 4096,
799 BTRFS_SUPER_INFO_SIZE);
800 if (NULL == bh)
801 return -1;
802 super_tmp = (struct btrfs_super_block *)
803 (bh->b_data + (dev_bytenr & 4095));
804
805 if (btrfs_super_bytenr(super_tmp) != dev_bytenr ||
806 btrfs_super_magic(super_tmp) != BTRFS_MAGIC ||
807 memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE) ||
808 btrfs_super_nodesize(super_tmp) != state->metablock_size ||
809 btrfs_super_sectorsize(super_tmp) != state->datablock_size) {
810 brelse(bh);
811 return 0;
812 }
813
814 superblock_tmp =
815 btrfsic_block_hashtable_lookup(superblock_bdev,
816 dev_bytenr,
817 &state->block_hashtable);
818 if (NULL == superblock_tmp) {
819 superblock_tmp = btrfsic_block_alloc();
820 if (NULL == superblock_tmp) {
821 pr_info("btrfsic: error, kmalloc failed!\n");
822 brelse(bh);
823 return -1;
824 }
825 /* for superblock, only the dev_bytenr makes sense */
826 superblock_tmp->dev_bytenr = dev_bytenr;
827 superblock_tmp->dev_state = dev_state;
828 superblock_tmp->logical_bytenr = dev_bytenr;
829 superblock_tmp->generation = btrfs_super_generation(super_tmp);
830 superblock_tmp->is_metadata = 1;
831 superblock_tmp->is_superblock = 1;
832 superblock_tmp->is_iodone = 1;
833 superblock_tmp->never_written = 0;
834 superblock_tmp->mirror_num = 1 + superblock_mirror_num;
835 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
836 btrfs_info_in_rcu(fs_info,
837 "new initial S-block (bdev %p, %s) @%llu (%s/%llu/%d)",
838 superblock_bdev,
839 rcu_str_deref(device->name), dev_bytenr,
840 dev_state->name, dev_bytenr,
841 superblock_mirror_num);
842 list_add(&superblock_tmp->all_blocks_node,
843 &state->all_blocks_list);
844 btrfsic_block_hashtable_add(superblock_tmp,
845 &state->block_hashtable);
846 }
847
848 /* select the one with the highest generation field */
849 if (btrfs_super_generation(super_tmp) >
850 state->max_superblock_generation ||
851 0 == state->max_superblock_generation) {
852 memcpy(selected_super, super_tmp, sizeof(*selected_super));
853 *selected_dev_state = dev_state;
854 state->max_superblock_generation =
855 btrfs_super_generation(super_tmp);
856 state->latest_superblock = superblock_tmp;
857 }
858
859 for (pass = 0; pass < 3; pass++) {
860 u64 next_bytenr;
861 int num_copies;
862 int mirror_num;
863 const char *additional_string = NULL;
864 struct btrfs_disk_key tmp_disk_key;
865
866 tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
867 tmp_disk_key.offset = 0;
868 switch (pass) {
869 case 0:
870 btrfs_set_disk_key_objectid(&tmp_disk_key,
871 BTRFS_ROOT_TREE_OBJECTID);
872 additional_string = "initial root ";
873 next_bytenr = btrfs_super_root(super_tmp);
874 break;
875 case 1:
876 btrfs_set_disk_key_objectid(&tmp_disk_key,
877 BTRFS_CHUNK_TREE_OBJECTID);
878 additional_string = "initial chunk ";
879 next_bytenr = btrfs_super_chunk_root(super_tmp);
880 break;
881 case 2:
882 btrfs_set_disk_key_objectid(&tmp_disk_key,
883 BTRFS_TREE_LOG_OBJECTID);
884 additional_string = "initial log ";
885 next_bytenr = btrfs_super_log_root(super_tmp);
886 if (0 == next_bytenr)
887 continue;
888 break;
889 }
890
891 num_copies = btrfs_num_copies(fs_info, next_bytenr,
892 state->metablock_size);
893 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
894 pr_info("num_copies(log_bytenr=%llu) = %d\n",
895 next_bytenr, num_copies);
896 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
897 struct btrfsic_block *next_block;
898 struct btrfsic_block_data_ctx tmp_next_block_ctx;
899 struct btrfsic_block_link *l;
900
901 if (btrfsic_map_block(state, next_bytenr,
902 state->metablock_size,
903 &tmp_next_block_ctx,
904 mirror_num)) {
905 pr_info("btrfsic: btrfsic_map_block(bytenr @%llu, mirror %d) failed!\n",
906 next_bytenr, mirror_num);
907 brelse(bh);
908 return -1;
909 }
910
911 next_block = btrfsic_block_lookup_or_add(
912 state, &tmp_next_block_ctx,
913 additional_string, 1, 1, 0,
914 mirror_num, NULL);
915 if (NULL == next_block) {
916 btrfsic_release_block_ctx(&tmp_next_block_ctx);
917 brelse(bh);
918 return -1;
919 }
920
921 next_block->disk_key = tmp_disk_key;
922 next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
923 l = btrfsic_block_link_lookup_or_add(
924 state, &tmp_next_block_ctx,
925 next_block, superblock_tmp,
926 BTRFSIC_GENERATION_UNKNOWN);
927 btrfsic_release_block_ctx(&tmp_next_block_ctx);
928 if (NULL == l) {
929 brelse(bh);
930 return -1;
931 }
932 }
933 }
934 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES)
935 btrfsic_dump_tree_sub(state, superblock_tmp, 0);
936
937 brelse(bh);
938 return 0;
939}
940
941static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void)
942{
943 struct btrfsic_stack_frame *sf;
944
945 sf = kzalloc(sizeof(*sf), GFP_NOFS);
946 if (NULL == sf)
947 pr_info("btrfsic: alloc memory failed!\n");
948 else
949 sf->magic = BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER;
950 return sf;
951}
952
953static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf)
954{
955 BUG_ON(!(NULL == sf ||
956 BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic));
957 kfree(sf);
958}
959
960static int btrfsic_process_metablock(
961 struct btrfsic_state *state,
962 struct btrfsic_block *const first_block,
963 struct btrfsic_block_data_ctx *const first_block_ctx,
964 int first_limit_nesting, int force_iodone_flag)
965{
966 struct btrfsic_stack_frame initial_stack_frame = { 0 };
967 struct btrfsic_stack_frame *sf;
968 struct btrfsic_stack_frame *next_stack;
969 struct btrfs_header *const first_hdr =
970 (struct btrfs_header *)first_block_ctx->datav[0];
971
972 BUG_ON(!first_hdr);
973 sf = &initial_stack_frame;
974 sf->error = 0;
975 sf->i = -1;
976 sf->limit_nesting = first_limit_nesting;
977 sf->block = first_block;
978 sf->block_ctx = first_block_ctx;
979 sf->next_block = NULL;
980 sf->hdr = first_hdr;
981 sf->prev = NULL;
982
983continue_with_new_stack_frame:
984 sf->block->generation = le64_to_cpu(sf->hdr->generation);
985 if (0 == sf->hdr->level) {
986 struct btrfs_leaf *const leafhdr =
987 (struct btrfs_leaf *)sf->hdr;
988
989 if (-1 == sf->i) {
990 sf->nr = btrfs_stack_header_nritems(&leafhdr->header);
991
992 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
993 pr_info("leaf %llu items %d generation %llu owner %llu\n",
994 sf->block_ctx->start, sf->nr,
995 btrfs_stack_header_generation(
996 &leafhdr->header),
997 btrfs_stack_header_owner(
998 &leafhdr->header));
999 }
1000
1001continue_with_current_leaf_stack_frame:
1002 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1003 sf->i++;
1004 sf->num_copies = 0;
1005 }
1006
1007 if (sf->i < sf->nr) {
1008 struct btrfs_item disk_item;
1009 u32 disk_item_offset =
1010 (uintptr_t)(leafhdr->items + sf->i) -
1011 (uintptr_t)leafhdr;
1012 struct btrfs_disk_key *disk_key;
1013 u8 type;
1014 u32 item_offset;
1015 u32 item_size;
1016
1017 if (disk_item_offset + sizeof(struct btrfs_item) >
1018 sf->block_ctx->len) {
1019leaf_item_out_of_bounce_error:
1020 pr_info("btrfsic: leaf item out of bounce at logical %llu, dev %s\n",
1021 sf->block_ctx->start,
1022 sf->block_ctx->dev->name);
1023 goto one_stack_frame_backwards;
1024 }
1025 btrfsic_read_from_block_data(sf->block_ctx,
1026 &disk_item,
1027 disk_item_offset,
1028 sizeof(struct btrfs_item));
1029 item_offset = btrfs_stack_item_offset(&disk_item);
1030 item_size = btrfs_stack_item_size(&disk_item);
1031 disk_key = &disk_item.key;
1032 type = btrfs_disk_key_type(disk_key);
1033
1034 if (BTRFS_ROOT_ITEM_KEY == type) {
1035 struct btrfs_root_item root_item;
1036 u32 root_item_offset;
1037 u64 next_bytenr;
1038
1039 root_item_offset = item_offset +
1040 offsetof(struct btrfs_leaf, items);
1041 if (root_item_offset + item_size >
1042 sf->block_ctx->len)
1043 goto leaf_item_out_of_bounce_error;
1044 btrfsic_read_from_block_data(
1045 sf->block_ctx, &root_item,
1046 root_item_offset,
1047 item_size);
1048 next_bytenr = btrfs_root_bytenr(&root_item);
1049
1050 sf->error =
1051 btrfsic_create_link_to_next_block(
1052 state,
1053 sf->block,
1054 sf->block_ctx,
1055 next_bytenr,
1056 sf->limit_nesting,
1057 &sf->next_block_ctx,
1058 &sf->next_block,
1059 force_iodone_flag,
1060 &sf->num_copies,
1061 &sf->mirror_num,
1062 disk_key,
1063 btrfs_root_generation(
1064 &root_item));
1065 if (sf->error)
1066 goto one_stack_frame_backwards;
1067
1068 if (NULL != sf->next_block) {
1069 struct btrfs_header *const next_hdr =
1070 (struct btrfs_header *)
1071 sf->next_block_ctx.datav[0];
1072
1073 next_stack =
1074 btrfsic_stack_frame_alloc();
1075 if (NULL == next_stack) {
1076 sf->error = -1;
1077 btrfsic_release_block_ctx(
1078 &sf->
1079 next_block_ctx);
1080 goto one_stack_frame_backwards;
1081 }
1082
1083 next_stack->i = -1;
1084 next_stack->block = sf->next_block;
1085 next_stack->block_ctx =
1086 &sf->next_block_ctx;
1087 next_stack->next_block = NULL;
1088 next_stack->hdr = next_hdr;
1089 next_stack->limit_nesting =
1090 sf->limit_nesting - 1;
1091 next_stack->prev = sf;
1092 sf = next_stack;
1093 goto continue_with_new_stack_frame;
1094 }
1095 } else if (BTRFS_EXTENT_DATA_KEY == type &&
1096 state->include_extent_data) {
1097 sf->error = btrfsic_handle_extent_data(
1098 state,
1099 sf->block,
1100 sf->block_ctx,
1101 item_offset,
1102 force_iodone_flag);
1103 if (sf->error)
1104 goto one_stack_frame_backwards;
1105 }
1106
1107 goto continue_with_current_leaf_stack_frame;
1108 }
1109 } else {
1110 struct btrfs_node *const nodehdr = (struct btrfs_node *)sf->hdr;
1111
1112 if (-1 == sf->i) {
1113 sf->nr = btrfs_stack_header_nritems(&nodehdr->header);
1114
1115 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1116 pr_info("node %llu level %d items %d generation %llu owner %llu\n",
1117 sf->block_ctx->start,
1118 nodehdr->header.level, sf->nr,
1119 btrfs_stack_header_generation(
1120 &nodehdr->header),
1121 btrfs_stack_header_owner(
1122 &nodehdr->header));
1123 }
1124
1125continue_with_current_node_stack_frame:
1126 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1127 sf->i++;
1128 sf->num_copies = 0;
1129 }
1130
1131 if (sf->i < sf->nr) {
1132 struct btrfs_key_ptr key_ptr;
1133 u32 key_ptr_offset;
1134 u64 next_bytenr;
1135
1136 key_ptr_offset = (uintptr_t)(nodehdr->ptrs + sf->i) -
1137 (uintptr_t)nodehdr;
1138 if (key_ptr_offset + sizeof(struct btrfs_key_ptr) >
1139 sf->block_ctx->len) {
1140 pr_info("btrfsic: node item out of bounce at logical %llu, dev %s\n",
1141 sf->block_ctx->start,
1142 sf->block_ctx->dev->name);
1143 goto one_stack_frame_backwards;
1144 }
1145 btrfsic_read_from_block_data(
1146 sf->block_ctx, &key_ptr, key_ptr_offset,
1147 sizeof(struct btrfs_key_ptr));
1148 next_bytenr = btrfs_stack_key_blockptr(&key_ptr);
1149
1150 sf->error = btrfsic_create_link_to_next_block(
1151 state,
1152 sf->block,
1153 sf->block_ctx,
1154 next_bytenr,
1155 sf->limit_nesting,
1156 &sf->next_block_ctx,
1157 &sf->next_block,
1158 force_iodone_flag,
1159 &sf->num_copies,
1160 &sf->mirror_num,
1161 &key_ptr.key,
1162 btrfs_stack_key_generation(&key_ptr));
1163 if (sf->error)
1164 goto one_stack_frame_backwards;
1165
1166 if (NULL != sf->next_block) {
1167 struct btrfs_header *const next_hdr =
1168 (struct btrfs_header *)
1169 sf->next_block_ctx.datav[0];
1170
1171 next_stack = btrfsic_stack_frame_alloc();
1172 if (NULL == next_stack) {
1173 sf->error = -1;
1174 goto one_stack_frame_backwards;
1175 }
1176
1177 next_stack->i = -1;
1178 next_stack->block = sf->next_block;
1179 next_stack->block_ctx = &sf->next_block_ctx;
1180 next_stack->next_block = NULL;
1181 next_stack->hdr = next_hdr;
1182 next_stack->limit_nesting =
1183 sf->limit_nesting - 1;
1184 next_stack->prev = sf;
1185 sf = next_stack;
1186 goto continue_with_new_stack_frame;
1187 }
1188
1189 goto continue_with_current_node_stack_frame;
1190 }
1191 }
1192
1193one_stack_frame_backwards:
1194 if (NULL != sf->prev) {
1195 struct btrfsic_stack_frame *const prev = sf->prev;
1196
1197 /* the one for the initial block is freed in the caller */
1198 btrfsic_release_block_ctx(sf->block_ctx);
1199
1200 if (sf->error) {
1201 prev->error = sf->error;
1202 btrfsic_stack_frame_free(sf);
1203 sf = prev;
1204 goto one_stack_frame_backwards;
1205 }
1206
1207 btrfsic_stack_frame_free(sf);
1208 sf = prev;
1209 goto continue_with_new_stack_frame;
1210 } else {
1211 BUG_ON(&initial_stack_frame != sf);
1212 }
1213
1214 return sf->error;
1215}
1216
1217static void btrfsic_read_from_block_data(
1218 struct btrfsic_block_data_ctx *block_ctx,
1219 void *dstv, u32 offset, size_t len)
1220{
1221 size_t cur;
1222 size_t offset_in_page;
1223 char *kaddr;
1224 char *dst = (char *)dstv;
1225 size_t start_offset = block_ctx->start & ((u64)PAGE_SIZE - 1);
1226 unsigned long i = (start_offset + offset) >> PAGE_SHIFT;
1227
1228 WARN_ON(offset + len > block_ctx->len);
1229 offset_in_page = (start_offset + offset) & (PAGE_SIZE - 1);
1230
1231 while (len > 0) {
1232 cur = min(len, ((size_t)PAGE_SIZE - offset_in_page));
1233 BUG_ON(i >= DIV_ROUND_UP(block_ctx->len, PAGE_SIZE));
1234 kaddr = block_ctx->datav[i];
1235 memcpy(dst, kaddr + offset_in_page, cur);
1236
1237 dst += cur;
1238 len -= cur;
1239 offset_in_page = 0;
1240 i++;
1241 }
1242}
1243
1244static int btrfsic_create_link_to_next_block(
1245 struct btrfsic_state *state,
1246 struct btrfsic_block *block,
1247 struct btrfsic_block_data_ctx *block_ctx,
1248 u64 next_bytenr,
1249 int limit_nesting,
1250 struct btrfsic_block_data_ctx *next_block_ctx,
1251 struct btrfsic_block **next_blockp,
1252 int force_iodone_flag,
1253 int *num_copiesp, int *mirror_nump,
1254 struct btrfs_disk_key *disk_key,
1255 u64 parent_generation)
1256{
1257 struct btrfs_fs_info *fs_info = state->fs_info;
1258 struct btrfsic_block *next_block = NULL;
1259 int ret;
1260 struct btrfsic_block_link *l;
1261 int did_alloc_block_link;
1262 int block_was_created;
1263
1264 *next_blockp = NULL;
1265 if (0 == *num_copiesp) {
1266 *num_copiesp = btrfs_num_copies(fs_info, next_bytenr,
1267 state->metablock_size);
1268 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1269 pr_info("num_copies(log_bytenr=%llu) = %d\n",
1270 next_bytenr, *num_copiesp);
1271 *mirror_nump = 1;
1272 }
1273
1274 if (*mirror_nump > *num_copiesp)
1275 return 0;
1276
1277 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1278 pr_info("btrfsic_create_link_to_next_block(mirror_num=%d)\n",
1279 *mirror_nump);
1280 ret = btrfsic_map_block(state, next_bytenr,
1281 state->metablock_size,
1282 next_block_ctx, *mirror_nump);
1283 if (ret) {
1284 pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1285 next_bytenr, *mirror_nump);
1286 btrfsic_release_block_ctx(next_block_ctx);
1287 *next_blockp = NULL;
1288 return -1;
1289 }
1290
1291 next_block = btrfsic_block_lookup_or_add(state,
1292 next_block_ctx, "referenced ",
1293 1, force_iodone_flag,
1294 !force_iodone_flag,
1295 *mirror_nump,
1296 &block_was_created);
1297 if (NULL == next_block) {
1298 btrfsic_release_block_ctx(next_block_ctx);
1299 *next_blockp = NULL;
1300 return -1;
1301 }
1302 if (block_was_created) {
1303 l = NULL;
1304 next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
1305 } else {
1306 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) {
1307 if (next_block->logical_bytenr != next_bytenr &&
1308 !(!next_block->is_metadata &&
1309 0 == next_block->logical_bytenr))
1310 pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n",
1311 next_bytenr, next_block_ctx->dev->name,
1312 next_block_ctx->dev_bytenr, *mirror_nump,
1313 btrfsic_get_block_type(state,
1314 next_block),
1315 next_block->logical_bytenr);
1316 else
1317 pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1318 next_bytenr, next_block_ctx->dev->name,
1319 next_block_ctx->dev_bytenr, *mirror_nump,
1320 btrfsic_get_block_type(state,
1321 next_block));
1322 }
1323 next_block->logical_bytenr = next_bytenr;
1324
1325 next_block->mirror_num = *mirror_nump;
1326 l = btrfsic_block_link_hashtable_lookup(
1327 next_block_ctx->dev->bdev,
1328 next_block_ctx->dev_bytenr,
1329 block_ctx->dev->bdev,
1330 block_ctx->dev_bytenr,
1331 &state->block_link_hashtable);
1332 }
1333
1334 next_block->disk_key = *disk_key;
1335 if (NULL == l) {
1336 l = btrfsic_block_link_alloc();
1337 if (NULL == l) {
1338 pr_info("btrfsic: error, kmalloc failed!\n");
1339 btrfsic_release_block_ctx(next_block_ctx);
1340 *next_blockp = NULL;
1341 return -1;
1342 }
1343
1344 did_alloc_block_link = 1;
1345 l->block_ref_to = next_block;
1346 l->block_ref_from = block;
1347 l->ref_cnt = 1;
1348 l->parent_generation = parent_generation;
1349
1350 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1351 btrfsic_print_add_link(state, l);
1352
1353 list_add(&l->node_ref_to, &block->ref_to_list);
1354 list_add(&l->node_ref_from, &next_block->ref_from_list);
1355
1356 btrfsic_block_link_hashtable_add(l,
1357 &state->block_link_hashtable);
1358 } else {
1359 did_alloc_block_link = 0;
1360 if (0 == limit_nesting) {
1361 l->ref_cnt++;
1362 l->parent_generation = parent_generation;
1363 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1364 btrfsic_print_add_link(state, l);
1365 }
1366 }
1367
1368 if (limit_nesting > 0 && did_alloc_block_link) {
1369 ret = btrfsic_read_block(state, next_block_ctx);
1370 if (ret < (int)next_block_ctx->len) {
1371 pr_info("btrfsic: read block @logical %llu failed!\n",
1372 next_bytenr);
1373 btrfsic_release_block_ctx(next_block_ctx);
1374 *next_blockp = NULL;
1375 return -1;
1376 }
1377
1378 *next_blockp = next_block;
1379 } else {
1380 *next_blockp = NULL;
1381 }
1382 (*mirror_nump)++;
1383
1384 return 0;
1385}
1386
1387static int btrfsic_handle_extent_data(
1388 struct btrfsic_state *state,
1389 struct btrfsic_block *block,
1390 struct btrfsic_block_data_ctx *block_ctx,
1391 u32 item_offset, int force_iodone_flag)
1392{
1393 struct btrfs_fs_info *fs_info = state->fs_info;
1394 struct btrfs_file_extent_item file_extent_item;
1395 u64 file_extent_item_offset;
1396 u64 next_bytenr;
1397 u64 num_bytes;
1398 u64 generation;
1399 struct btrfsic_block_link *l;
1400 int ret;
1401
1402 file_extent_item_offset = offsetof(struct btrfs_leaf, items) +
1403 item_offset;
1404 if (file_extent_item_offset +
1405 offsetof(struct btrfs_file_extent_item, disk_num_bytes) >
1406 block_ctx->len) {
1407 pr_info("btrfsic: file item out of bounce at logical %llu, dev %s\n",
1408 block_ctx->start, block_ctx->dev->name);
1409 return -1;
1410 }
1411
1412 btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1413 file_extent_item_offset,
1414 offsetof(struct btrfs_file_extent_item, disk_num_bytes));
1415 if (BTRFS_FILE_EXTENT_REG != file_extent_item.type ||
1416 btrfs_stack_file_extent_disk_bytenr(&file_extent_item) == 0) {
1417 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1418 pr_info("extent_data: type %u, disk_bytenr = %llu\n",
1419 file_extent_item.type,
1420 btrfs_stack_file_extent_disk_bytenr(
1421 &file_extent_item));
1422 return 0;
1423 }
1424
1425 if (file_extent_item_offset + sizeof(struct btrfs_file_extent_item) >
1426 block_ctx->len) {
1427 pr_info("btrfsic: file item out of bounce at logical %llu, dev %s\n",
1428 block_ctx->start, block_ctx->dev->name);
1429 return -1;
1430 }
1431 btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1432 file_extent_item_offset,
1433 sizeof(struct btrfs_file_extent_item));
1434 next_bytenr = btrfs_stack_file_extent_disk_bytenr(&file_extent_item);
1435 if (btrfs_stack_file_extent_compression(&file_extent_item) ==
1436 BTRFS_COMPRESS_NONE) {
1437 next_bytenr += btrfs_stack_file_extent_offset(&file_extent_item);
1438 num_bytes = btrfs_stack_file_extent_num_bytes(&file_extent_item);
1439 } else {
1440 num_bytes = btrfs_stack_file_extent_disk_num_bytes(&file_extent_item);
1441 }
1442 generation = btrfs_stack_file_extent_generation(&file_extent_item);
1443
1444 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1445 pr_info("extent_data: type %u, disk_bytenr = %llu, offset = %llu, num_bytes = %llu\n",
1446 file_extent_item.type,
1447 btrfs_stack_file_extent_disk_bytenr(&file_extent_item),
1448 btrfs_stack_file_extent_offset(&file_extent_item),
1449 num_bytes);
1450 while (num_bytes > 0) {
1451 u32 chunk_len;
1452 int num_copies;
1453 int mirror_num;
1454
1455 if (num_bytes > state->datablock_size)
1456 chunk_len = state->datablock_size;
1457 else
1458 chunk_len = num_bytes;
1459
1460 num_copies = btrfs_num_copies(fs_info, next_bytenr,
1461 state->datablock_size);
1462 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1463 pr_info("num_copies(log_bytenr=%llu) = %d\n",
1464 next_bytenr, num_copies);
1465 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
1466 struct btrfsic_block_data_ctx next_block_ctx;
1467 struct btrfsic_block *next_block;
1468 int block_was_created;
1469
1470 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1471 pr_info("btrfsic_handle_extent_data(mirror_num=%d)\n",
1472 mirror_num);
1473 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1474 pr_info("\tdisk_bytenr = %llu, num_bytes %u\n",
1475 next_bytenr, chunk_len);
1476 ret = btrfsic_map_block(state, next_bytenr,
1477 chunk_len, &next_block_ctx,
1478 mirror_num);
1479 if (ret) {
1480 pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1481 next_bytenr, mirror_num);
1482 return -1;
1483 }
1484
1485 next_block = btrfsic_block_lookup_or_add(
1486 state,
1487 &next_block_ctx,
1488 "referenced ",
1489 0,
1490 force_iodone_flag,
1491 !force_iodone_flag,
1492 mirror_num,
1493 &block_was_created);
1494 if (NULL == next_block) {
1495 pr_info("btrfsic: error, kmalloc failed!\n");
1496 btrfsic_release_block_ctx(&next_block_ctx);
1497 return -1;
1498 }
1499 if (!block_was_created) {
1500 if ((state->print_mask &
1501 BTRFSIC_PRINT_MASK_VERBOSE) &&
1502 next_block->logical_bytenr != next_bytenr &&
1503 !(!next_block->is_metadata &&
1504 0 == next_block->logical_bytenr)) {
1505 pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, D, bytenr mismatch (!= stored %llu).\n",
1506 next_bytenr,
1507 next_block_ctx.dev->name,
1508 next_block_ctx.dev_bytenr,
1509 mirror_num,
1510 next_block->logical_bytenr);
1511 }
1512 next_block->logical_bytenr = next_bytenr;
1513 next_block->mirror_num = mirror_num;
1514 }
1515
1516 l = btrfsic_block_link_lookup_or_add(state,
1517 &next_block_ctx,
1518 next_block, block,
1519 generation);
1520 btrfsic_release_block_ctx(&next_block_ctx);
1521 if (NULL == l)
1522 return -1;
1523 }
1524
1525 next_bytenr += chunk_len;
1526 num_bytes -= chunk_len;
1527 }
1528
1529 return 0;
1530}
1531
1532static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
1533 struct btrfsic_block_data_ctx *block_ctx_out,
1534 int mirror_num)
1535{
1536 struct btrfs_fs_info *fs_info = state->fs_info;
1537 int ret;
1538 u64 length;
1539 struct btrfs_bio *multi = NULL;
1540 struct btrfs_device *device;
1541
1542 length = len;
1543 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
1544 bytenr, &length, &multi, mirror_num);
1545
1546 if (ret) {
1547 block_ctx_out->start = 0;
1548 block_ctx_out->dev_bytenr = 0;
1549 block_ctx_out->len = 0;
1550 block_ctx_out->dev = NULL;
1551 block_ctx_out->datav = NULL;
1552 block_ctx_out->pagev = NULL;
1553 block_ctx_out->mem_to_free = NULL;
1554
1555 return ret;
1556 }
1557
1558 device = multi->stripes[0].dev;
1559 block_ctx_out->dev = btrfsic_dev_state_lookup(device->bdev);
1560 block_ctx_out->dev_bytenr = multi->stripes[0].physical;
1561 block_ctx_out->start = bytenr;
1562 block_ctx_out->len = len;
1563 block_ctx_out->datav = NULL;
1564 block_ctx_out->pagev = NULL;
1565 block_ctx_out->mem_to_free = NULL;
1566
1567 kfree(multi);
1568 if (NULL == block_ctx_out->dev) {
1569 ret = -ENXIO;
1570 pr_info("btrfsic: error, cannot lookup dev (#1)!\n");
1571 }
1572
1573 return ret;
1574}
1575
1576static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx)
1577{
1578 if (block_ctx->mem_to_free) {
1579 unsigned int num_pages;
1580
1581 BUG_ON(!block_ctx->datav);
1582 BUG_ON(!block_ctx->pagev);
1583 num_pages = (block_ctx->len + (u64)PAGE_SIZE - 1) >>
1584 PAGE_SHIFT;
1585 while (num_pages > 0) {
1586 num_pages--;
1587 if (block_ctx->datav[num_pages]) {
1588 kunmap(block_ctx->pagev[num_pages]);
1589 block_ctx->datav[num_pages] = NULL;
1590 }
1591 if (block_ctx->pagev[num_pages]) {
1592 __free_page(block_ctx->pagev[num_pages]);
1593 block_ctx->pagev[num_pages] = NULL;
1594 }
1595 }
1596
1597 kfree(block_ctx->mem_to_free);
1598 block_ctx->mem_to_free = NULL;
1599 block_ctx->pagev = NULL;
1600 block_ctx->datav = NULL;
1601 }
1602}
1603
1604static int btrfsic_read_block(struct btrfsic_state *state,
1605 struct btrfsic_block_data_ctx *block_ctx)
1606{
1607 unsigned int num_pages;
1608 unsigned int i;
1609 u64 dev_bytenr;
1610 int ret;
1611
1612 BUG_ON(block_ctx->datav);
1613 BUG_ON(block_ctx->pagev);
1614 BUG_ON(block_ctx->mem_to_free);
1615 if (block_ctx->dev_bytenr & ((u64)PAGE_SIZE - 1)) {
1616 pr_info("btrfsic: read_block() with unaligned bytenr %llu\n",
1617 block_ctx->dev_bytenr);
1618 return -1;
1619 }
1620
1621 num_pages = (block_ctx->len + (u64)PAGE_SIZE - 1) >>
1622 PAGE_SHIFT;
1623 block_ctx->mem_to_free = kzalloc((sizeof(*block_ctx->datav) +
1624 sizeof(*block_ctx->pagev)) *
1625 num_pages, GFP_NOFS);
1626 if (!block_ctx->mem_to_free)
1627 return -ENOMEM;
1628 block_ctx->datav = block_ctx->mem_to_free;
1629 block_ctx->pagev = (struct page **)(block_ctx->datav + num_pages);
1630 for (i = 0; i < num_pages; i++) {
1631 block_ctx->pagev[i] = alloc_page(GFP_NOFS);
1632 if (!block_ctx->pagev[i])
1633 return -1;
1634 }
1635
1636 dev_bytenr = block_ctx->dev_bytenr;
1637 for (i = 0; i < num_pages;) {
1638 struct bio *bio;
1639 unsigned int j;
1640
1641 bio = btrfs_io_bio_alloc(GFP_NOFS, num_pages - i);
1642 if (!bio) {
1643 pr_info("btrfsic: bio_alloc() for %u pages failed!\n",
1644 num_pages - i);
1645 return -1;
1646 }
1647 bio->bi_bdev = block_ctx->dev->bdev;
1648 bio->bi_iter.bi_sector = dev_bytenr >> 9;
1649 bio_set_op_attrs(bio, REQ_OP_READ, 0);
1650
1651 for (j = i; j < num_pages; j++) {
1652 ret = bio_add_page(bio, block_ctx->pagev[j],
1653 PAGE_SIZE, 0);
1654 if (PAGE_SIZE != ret)
1655 break;
1656 }
1657 if (j == i) {
1658 pr_info("btrfsic: error, failed to add a single page!\n");
1659 return -1;
1660 }
1661 if (submit_bio_wait(bio)) {
1662 pr_info("btrfsic: read error at logical %llu dev %s!\n",
1663 block_ctx->start, block_ctx->dev->name);
1664 bio_put(bio);
1665 return -1;
1666 }
1667 bio_put(bio);
1668 dev_bytenr += (j - i) * PAGE_SIZE;
1669 i = j;
1670 }
1671 for (i = 0; i < num_pages; i++) {
1672 block_ctx->datav[i] = kmap(block_ctx->pagev[i]);
1673 if (!block_ctx->datav[i]) {
1674 pr_info("btrfsic: kmap() failed (dev %s)!\n",
1675 block_ctx->dev->name);
1676 return -1;
1677 }
1678 }
1679
1680 return block_ctx->len;
1681}
1682
1683static void btrfsic_dump_database(struct btrfsic_state *state)
1684{
1685 const struct btrfsic_block *b_all;
1686
1687 BUG_ON(NULL == state);
1688
1689 pr_info("all_blocks_list:\n");
1690 list_for_each_entry(b_all, &state->all_blocks_list, all_blocks_node) {
1691 const struct btrfsic_block_link *l;
1692
1693 pr_info("%c-block @%llu (%s/%llu/%d)\n",
1694 btrfsic_get_block_type(state, b_all),
1695 b_all->logical_bytenr, b_all->dev_state->name,
1696 b_all->dev_bytenr, b_all->mirror_num);
1697
1698 list_for_each_entry(l, &b_all->ref_to_list, node_ref_to) {
1699 pr_info(" %c @%llu (%s/%llu/%d) refers %u* to %c @%llu (%s/%llu/%d)\n",
1700 btrfsic_get_block_type(state, b_all),
1701 b_all->logical_bytenr, b_all->dev_state->name,
1702 b_all->dev_bytenr, b_all->mirror_num,
1703 l->ref_cnt,
1704 btrfsic_get_block_type(state, l->block_ref_to),
1705 l->block_ref_to->logical_bytenr,
1706 l->block_ref_to->dev_state->name,
1707 l->block_ref_to->dev_bytenr,
1708 l->block_ref_to->mirror_num);
1709 }
1710
1711 list_for_each_entry(l, &b_all->ref_from_list, node_ref_from) {
1712 pr_info(" %c @%llu (%s/%llu/%d) is ref %u* from %c @%llu (%s/%llu/%d)\n",
1713 btrfsic_get_block_type(state, b_all),
1714 b_all->logical_bytenr, b_all->dev_state->name,
1715 b_all->dev_bytenr, b_all->mirror_num,
1716 l->ref_cnt,
1717 btrfsic_get_block_type(state, l->block_ref_from),
1718 l->block_ref_from->logical_bytenr,
1719 l->block_ref_from->dev_state->name,
1720 l->block_ref_from->dev_bytenr,
1721 l->block_ref_from->mirror_num);
1722 }
1723
1724 pr_info("\n");
1725 }
1726}
1727
1728/*
1729 * Test whether the disk block contains a tree block (leaf or node)
1730 * (note that this test fails for the super block)
1731 */
1732static int btrfsic_test_for_metadata(struct btrfsic_state *state,
1733 char **datav, unsigned int num_pages)
1734{
1735 struct btrfs_fs_info *fs_info = state->fs_info;
1736 struct btrfs_header *h;
1737 u8 csum[BTRFS_CSUM_SIZE];
1738 u32 crc = ~(u32)0;
1739 unsigned int i;
1740
1741 if (num_pages * PAGE_SIZE < state->metablock_size)
1742 return 1; /* not metadata */
1743 num_pages = state->metablock_size >> PAGE_SHIFT;
1744 h = (struct btrfs_header *)datav[0];
1745
1746 if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1747 return 1;
1748
1749 for (i = 0; i < num_pages; i++) {
1750 u8 *data = i ? datav[i] : (datav[i] + BTRFS_CSUM_SIZE);
1751 size_t sublen = i ? PAGE_SIZE :
1752 (PAGE_SIZE - BTRFS_CSUM_SIZE);
1753
1754 crc = btrfs_crc32c(crc, data, sublen);
1755 }
1756 btrfs_csum_final(crc, csum);
1757 if (memcmp(csum, h->csum, state->csum_size))
1758 return 1;
1759
1760 return 0; /* is metadata */
1761}
1762
1763static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
1764 u64 dev_bytenr, char **mapped_datav,
1765 unsigned int num_pages,
1766 struct bio *bio, int *bio_is_patched,
1767 struct buffer_head *bh,
1768 int submit_bio_bh_rw)
1769{
1770 int is_metadata;
1771 struct btrfsic_block *block;
1772 struct btrfsic_block_data_ctx block_ctx;
1773 int ret;
1774 struct btrfsic_state *state = dev_state->state;
1775 struct block_device *bdev = dev_state->bdev;
1776 unsigned int processed_len;
1777
1778 if (NULL != bio_is_patched)
1779 *bio_is_patched = 0;
1780
1781again:
1782 if (num_pages == 0)
1783 return;
1784
1785 processed_len = 0;
1786 is_metadata = (0 == btrfsic_test_for_metadata(state, mapped_datav,
1787 num_pages));
1788
1789 block = btrfsic_block_hashtable_lookup(bdev, dev_bytenr,
1790 &state->block_hashtable);
1791 if (NULL != block) {
1792 u64 bytenr = 0;
1793 struct btrfsic_block_link *l, *tmp;
1794
1795 if (block->is_superblock) {
1796 bytenr = btrfs_super_bytenr((struct btrfs_super_block *)
1797 mapped_datav[0]);
1798 if (num_pages * PAGE_SIZE <
1799 BTRFS_SUPER_INFO_SIZE) {
1800 pr_info("btrfsic: cannot work with too short bios!\n");
1801 return;
1802 }
1803 is_metadata = 1;
1804 BUG_ON(BTRFS_SUPER_INFO_SIZE & (PAGE_SIZE - 1));
1805 processed_len = BTRFS_SUPER_INFO_SIZE;
1806 if (state->print_mask &
1807 BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE) {
1808 pr_info("[before new superblock is written]:\n");
1809 btrfsic_dump_tree_sub(state, block, 0);
1810 }
1811 }
1812 if (is_metadata) {
1813 if (!block->is_superblock) {
1814 if (num_pages * PAGE_SIZE <
1815 state->metablock_size) {
1816 pr_info("btrfsic: cannot work with too short bios!\n");
1817 return;
1818 }
1819 processed_len = state->metablock_size;
1820 bytenr = btrfs_stack_header_bytenr(
1821 (struct btrfs_header *)
1822 mapped_datav[0]);
1823 btrfsic_cmp_log_and_dev_bytenr(state, bytenr,
1824 dev_state,
1825 dev_bytenr);
1826 }
1827 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) {
1828 if (block->logical_bytenr != bytenr &&
1829 !(!block->is_metadata &&
1830 block->logical_bytenr == 0))
1831 pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n",
1832 bytenr, dev_state->name,
1833 dev_bytenr,
1834 block->mirror_num,
1835 btrfsic_get_block_type(state,
1836 block),
1837 block->logical_bytenr);
1838 else
1839 pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1840 bytenr, dev_state->name,
1841 dev_bytenr, block->mirror_num,
1842 btrfsic_get_block_type(state,
1843 block));
1844 }
1845 block->logical_bytenr = bytenr;
1846 } else {
1847 if (num_pages * PAGE_SIZE <
1848 state->datablock_size) {
1849 pr_info("btrfsic: cannot work with too short bios!\n");
1850 return;
1851 }
1852 processed_len = state->datablock_size;
1853 bytenr = block->logical_bytenr;
1854 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1855 pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1856 bytenr, dev_state->name, dev_bytenr,
1857 block->mirror_num,
1858 btrfsic_get_block_type(state, block));
1859 }
1860
1861 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1862 pr_info("ref_to_list: %cE, ref_from_list: %cE\n",
1863 list_empty(&block->ref_to_list) ? ' ' : '!',
1864 list_empty(&block->ref_from_list) ? ' ' : '!');
1865 if (btrfsic_is_block_ref_by_superblock(state, block, 0)) {
1866 pr_info("btrfs: attempt to overwrite %c-block @%llu (%s/%llu/%d), old(gen=%llu, objectid=%llu, type=%d, offset=%llu), new(gen=%llu), which is referenced by most recent superblock (superblockgen=%llu)!\n",
1867 btrfsic_get_block_type(state, block), bytenr,
1868 dev_state->name, dev_bytenr, block->mirror_num,
1869 block->generation,
1870 btrfs_disk_key_objectid(&block->disk_key),
1871 block->disk_key.type,
1872 btrfs_disk_key_offset(&block->disk_key),
1873 btrfs_stack_header_generation(
1874 (struct btrfs_header *) mapped_datav[0]),
1875 state->max_superblock_generation);
1876 btrfsic_dump_tree(state);
1877 }
1878
1879 if (!block->is_iodone && !block->never_written) {
1880 pr_info("btrfs: attempt to overwrite %c-block @%llu (%s/%llu/%d), oldgen=%llu, newgen=%llu, which is not yet iodone!\n",
1881 btrfsic_get_block_type(state, block), bytenr,
1882 dev_state->name, dev_bytenr, block->mirror_num,
1883 block->generation,
1884 btrfs_stack_header_generation(
1885 (struct btrfs_header *)
1886 mapped_datav[0]));
1887 /* it would not be safe to go on */
1888 btrfsic_dump_tree(state);
1889 goto continue_loop;
1890 }
1891
1892 /*
1893 * Clear all references of this block. Do not free
1894 * the block itself even if is not referenced anymore
1895 * because it still carries valuable information
1896 * like whether it was ever written and IO completed.
1897 */
1898 list_for_each_entry_safe(l, tmp, &block->ref_to_list,
1899 node_ref_to) {
1900 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1901 btrfsic_print_rem_link(state, l);
1902 l->ref_cnt--;
1903 if (0 == l->ref_cnt) {
1904 list_del(&l->node_ref_to);
1905 list_del(&l->node_ref_from);
1906 btrfsic_block_link_hashtable_remove(l);
1907 btrfsic_block_link_free(l);
1908 }
1909 }
1910
1911 block_ctx.dev = dev_state;
1912 block_ctx.dev_bytenr = dev_bytenr;
1913 block_ctx.start = bytenr;
1914 block_ctx.len = processed_len;
1915 block_ctx.pagev = NULL;
1916 block_ctx.mem_to_free = NULL;
1917 block_ctx.datav = mapped_datav;
1918
1919 if (is_metadata || state->include_extent_data) {
1920 block->never_written = 0;
1921 block->iodone_w_error = 0;
1922 if (NULL != bio) {
1923 block->is_iodone = 0;
1924 BUG_ON(NULL == bio_is_patched);
1925 if (!*bio_is_patched) {
1926 block->orig_bio_bh_private =
1927 bio->bi_private;
1928 block->orig_bio_bh_end_io.bio =
1929 bio->bi_end_io;
1930 block->next_in_same_bio = NULL;
1931 bio->bi_private = block;
1932 bio->bi_end_io = btrfsic_bio_end_io;
1933 *bio_is_patched = 1;
1934 } else {
1935 struct btrfsic_block *chained_block =
1936 (struct btrfsic_block *)
1937 bio->bi_private;
1938
1939 BUG_ON(NULL == chained_block);
1940 block->orig_bio_bh_private =
1941 chained_block->orig_bio_bh_private;
1942 block->orig_bio_bh_end_io.bio =
1943 chained_block->orig_bio_bh_end_io.
1944 bio;
1945 block->next_in_same_bio = chained_block;
1946 bio->bi_private = block;
1947 }
1948 } else if (NULL != bh) {
1949 block->is_iodone = 0;
1950 block->orig_bio_bh_private = bh->b_private;
1951 block->orig_bio_bh_end_io.bh = bh->b_end_io;
1952 block->next_in_same_bio = NULL;
1953 bh->b_private = block;
1954 bh->b_end_io = btrfsic_bh_end_io;
1955 } else {
1956 block->is_iodone = 1;
1957 block->orig_bio_bh_private = NULL;
1958 block->orig_bio_bh_end_io.bio = NULL;
1959 block->next_in_same_bio = NULL;
1960 }
1961 }
1962
1963 block->flush_gen = dev_state->last_flush_gen + 1;
1964 block->submit_bio_bh_rw = submit_bio_bh_rw;
1965 if (is_metadata) {
1966 block->logical_bytenr = bytenr;
1967 block->is_metadata = 1;
1968 if (block->is_superblock) {
1969 BUG_ON(PAGE_SIZE !=
1970 BTRFS_SUPER_INFO_SIZE);
1971 ret = btrfsic_process_written_superblock(
1972 state,
1973 block,
1974 (struct btrfs_super_block *)
1975 mapped_datav[0]);
1976 if (state->print_mask &
1977 BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE) {
1978 pr_info("[after new superblock is written]:\n");
1979 btrfsic_dump_tree_sub(state, block, 0);
1980 }
1981 } else {
1982 block->mirror_num = 0; /* unknown */
1983 ret = btrfsic_process_metablock(
1984 state,
1985 block,
1986 &block_ctx,
1987 0, 0);
1988 }
1989 if (ret)
1990 pr_info("btrfsic: btrfsic_process_metablock(root @%llu) failed!\n",
1991 dev_bytenr);
1992 } else {
1993 block->is_metadata = 0;
1994 block->mirror_num = 0; /* unknown */
1995 block->generation = BTRFSIC_GENERATION_UNKNOWN;
1996 if (!state->include_extent_data
1997 && list_empty(&block->ref_from_list)) {
1998 /*
1999 * disk block is overwritten with extent
2000 * data (not meta data) and we are configured
2001 * to not include extent data: take the
2002 * chance and free the block's memory
2003 */
2004 btrfsic_block_hashtable_remove(block);
2005 list_del(&block->all_blocks_node);
2006 btrfsic_block_free(block);
2007 }
2008 }
2009 btrfsic_release_block_ctx(&block_ctx);
2010 } else {
2011 /* block has not been found in hash table */
2012 u64 bytenr;
2013
2014 if (!is_metadata) {
2015 processed_len = state->datablock_size;
2016 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2017 pr_info("Written block (%s/%llu/?) !found in hash table, D.\n",
2018 dev_state->name, dev_bytenr);
2019 if (!state->include_extent_data) {
2020 /* ignore that written D block */
2021 goto continue_loop;
2022 }
2023
2024 /* this is getting ugly for the
2025 * include_extent_data case... */
2026 bytenr = 0; /* unknown */
2027 } else {
2028 processed_len = state->metablock_size;
2029 bytenr = btrfs_stack_header_bytenr(
2030 (struct btrfs_header *)
2031 mapped_datav[0]);
2032 btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state,
2033 dev_bytenr);
2034 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2035 pr_info("Written block @%llu (%s/%llu/?) !found in hash table, M.\n",
2036 bytenr, dev_state->name, dev_bytenr);
2037 }
2038
2039 block_ctx.dev = dev_state;
2040 block_ctx.dev_bytenr = dev_bytenr;
2041 block_ctx.start = bytenr;
2042 block_ctx.len = processed_len;
2043 block_ctx.pagev = NULL;
2044 block_ctx.mem_to_free = NULL;
2045 block_ctx.datav = mapped_datav;
2046
2047 block = btrfsic_block_alloc();
2048 if (NULL == block) {
2049 pr_info("btrfsic: error, kmalloc failed!\n");
2050 btrfsic_release_block_ctx(&block_ctx);
2051 goto continue_loop;
2052 }
2053 block->dev_state = dev_state;
2054 block->dev_bytenr = dev_bytenr;
2055 block->logical_bytenr = bytenr;
2056 block->is_metadata = is_metadata;
2057 block->never_written = 0;
2058 block->iodone_w_error = 0;
2059 block->mirror_num = 0; /* unknown */
2060 block->flush_gen = dev_state->last_flush_gen + 1;
2061 block->submit_bio_bh_rw = submit_bio_bh_rw;
2062 if (NULL != bio) {
2063 block->is_iodone = 0;
2064 BUG_ON(NULL == bio_is_patched);
2065 if (!*bio_is_patched) {
2066 block->orig_bio_bh_private = bio->bi_private;
2067 block->orig_bio_bh_end_io.bio = bio->bi_end_io;
2068 block->next_in_same_bio = NULL;
2069 bio->bi_private = block;
2070 bio->bi_end_io = btrfsic_bio_end_io;
2071 *bio_is_patched = 1;
2072 } else {
2073 struct btrfsic_block *chained_block =
2074 (struct btrfsic_block *)
2075 bio->bi_private;
2076
2077 BUG_ON(NULL == chained_block);
2078 block->orig_bio_bh_private =
2079 chained_block->orig_bio_bh_private;
2080 block->orig_bio_bh_end_io.bio =
2081 chained_block->orig_bio_bh_end_io.bio;
2082 block->next_in_same_bio = chained_block;
2083 bio->bi_private = block;
2084 }
2085 } else if (NULL != bh) {
2086 block->is_iodone = 0;
2087 block->orig_bio_bh_private = bh->b_private;
2088 block->orig_bio_bh_end_io.bh = bh->b_end_io;
2089 block->next_in_same_bio = NULL;
2090 bh->b_private = block;
2091 bh->b_end_io = btrfsic_bh_end_io;
2092 } else {
2093 block->is_iodone = 1;
2094 block->orig_bio_bh_private = NULL;
2095 block->orig_bio_bh_end_io.bio = NULL;
2096 block->next_in_same_bio = NULL;
2097 }
2098 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2099 pr_info("New written %c-block @%llu (%s/%llu/%d)\n",
2100 is_metadata ? 'M' : 'D',
2101 block->logical_bytenr, block->dev_state->name,
2102 block->dev_bytenr, block->mirror_num);
2103 list_add(&block->all_blocks_node, &state->all_blocks_list);
2104 btrfsic_block_hashtable_add(block, &state->block_hashtable);
2105
2106 if (is_metadata) {
2107 ret = btrfsic_process_metablock(state, block,
2108 &block_ctx, 0, 0);
2109 if (ret)
2110 pr_info("btrfsic: process_metablock(root @%llu) failed!\n",
2111 dev_bytenr);
2112 }
2113 btrfsic_release_block_ctx(&block_ctx);
2114 }
2115
2116continue_loop:
2117 BUG_ON(!processed_len);
2118 dev_bytenr += processed_len;
2119 mapped_datav += processed_len >> PAGE_SHIFT;
2120 num_pages -= processed_len >> PAGE_SHIFT;
2121 goto again;
2122}
2123
2124static void btrfsic_bio_end_io(struct bio *bp)
2125{
2126 struct btrfsic_block *block = (struct btrfsic_block *)bp->bi_private;
2127 int iodone_w_error;
2128
2129 /* mutex is not held! This is not save if IO is not yet completed
2130 * on umount */
2131 iodone_w_error = 0;
2132 if (bp->bi_error)
2133 iodone_w_error = 1;
2134
2135 BUG_ON(NULL == block);
2136 bp->bi_private = block->orig_bio_bh_private;
2137 bp->bi_end_io = block->orig_bio_bh_end_io.bio;
2138
2139 do {
2140 struct btrfsic_block *next_block;
2141 struct btrfsic_dev_state *const dev_state = block->dev_state;
2142
2143 if ((dev_state->state->print_mask &
2144 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2145 pr_info("bio_end_io(err=%d) for %c @%llu (%s/%llu/%d)\n",
2146 bp->bi_error,
2147 btrfsic_get_block_type(dev_state->state, block),
2148 block->logical_bytenr, dev_state->name,
2149 block->dev_bytenr, block->mirror_num);
2150 next_block = block->next_in_same_bio;
2151 block->iodone_w_error = iodone_w_error;
2152 if (block->submit_bio_bh_rw & REQ_PREFLUSH) {
2153 dev_state->last_flush_gen++;
2154 if ((dev_state->state->print_mask &
2155 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2156 pr_info("bio_end_io() new %s flush_gen=%llu\n",
2157 dev_state->name,
2158 dev_state->last_flush_gen);
2159 }
2160 if (block->submit_bio_bh_rw & REQ_FUA)
2161 block->flush_gen = 0; /* FUA completed means block is
2162 * on disk */
2163 block->is_iodone = 1; /* for FLUSH, this releases the block */
2164 block = next_block;
2165 } while (NULL != block);
2166
2167 bp->bi_end_io(bp);
2168}
2169
2170static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate)
2171{
2172 struct btrfsic_block *block = (struct btrfsic_block *)bh->b_private;
2173 int iodone_w_error = !uptodate;
2174 struct btrfsic_dev_state *dev_state;
2175
2176 BUG_ON(NULL == block);
2177 dev_state = block->dev_state;
2178 if ((dev_state->state->print_mask & BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2179 pr_info("bh_end_io(error=%d) for %c @%llu (%s/%llu/%d)\n",
2180 iodone_w_error,
2181 btrfsic_get_block_type(dev_state->state, block),
2182 block->logical_bytenr, block->dev_state->name,
2183 block->dev_bytenr, block->mirror_num);
2184
2185 block->iodone_w_error = iodone_w_error;
2186 if (block->submit_bio_bh_rw & REQ_PREFLUSH) {
2187 dev_state->last_flush_gen++;
2188 if ((dev_state->state->print_mask &
2189 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2190 pr_info("bh_end_io() new %s flush_gen=%llu\n",
2191 dev_state->name, dev_state->last_flush_gen);
2192 }
2193 if (block->submit_bio_bh_rw & REQ_FUA)
2194 block->flush_gen = 0; /* FUA completed means block is on disk */
2195
2196 bh->b_private = block->orig_bio_bh_private;
2197 bh->b_end_io = block->orig_bio_bh_end_io.bh;
2198 block->is_iodone = 1; /* for FLUSH, this releases the block */
2199 bh->b_end_io(bh, uptodate);
2200}
2201
2202static int btrfsic_process_written_superblock(
2203 struct btrfsic_state *state,
2204 struct btrfsic_block *const superblock,
2205 struct btrfs_super_block *const super_hdr)
2206{
2207 struct btrfs_fs_info *fs_info = state->fs_info;
2208 int pass;
2209
2210 superblock->generation = btrfs_super_generation(super_hdr);
2211 if (!(superblock->generation > state->max_superblock_generation ||
2212 0 == state->max_superblock_generation)) {
2213 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2214 pr_info("btrfsic: superblock @%llu (%s/%llu/%d) with old gen %llu <= %llu\n",
2215 superblock->logical_bytenr,
2216 superblock->dev_state->name,
2217 superblock->dev_bytenr, superblock->mirror_num,
2218 btrfs_super_generation(super_hdr),
2219 state->max_superblock_generation);
2220 } else {
2221 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2222 pr_info("btrfsic: got new superblock @%llu (%s/%llu/%d) with new gen %llu > %llu\n",
2223 superblock->logical_bytenr,
2224 superblock->dev_state->name,
2225 superblock->dev_bytenr, superblock->mirror_num,
2226 btrfs_super_generation(super_hdr),
2227 state->max_superblock_generation);
2228
2229 state->max_superblock_generation =
2230 btrfs_super_generation(super_hdr);
2231 state->latest_superblock = superblock;
2232 }
2233
2234 for (pass = 0; pass < 3; pass++) {
2235 int ret;
2236 u64 next_bytenr;
2237 struct btrfsic_block *next_block;
2238 struct btrfsic_block_data_ctx tmp_next_block_ctx;
2239 struct btrfsic_block_link *l;
2240 int num_copies;
2241 int mirror_num;
2242 const char *additional_string = NULL;
2243 struct btrfs_disk_key tmp_disk_key = {0};
2244
2245 btrfs_set_disk_key_objectid(&tmp_disk_key,
2246 BTRFS_ROOT_ITEM_KEY);
2247 btrfs_set_disk_key_objectid(&tmp_disk_key, 0);
2248
2249 switch (pass) {
2250 case 0:
2251 btrfs_set_disk_key_objectid(&tmp_disk_key,
2252 BTRFS_ROOT_TREE_OBJECTID);
2253 additional_string = "root ";
2254 next_bytenr = btrfs_super_root(super_hdr);
2255 if (state->print_mask &
2256 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2257 pr_info("root@%llu\n", next_bytenr);
2258 break;
2259 case 1:
2260 btrfs_set_disk_key_objectid(&tmp_disk_key,
2261 BTRFS_CHUNK_TREE_OBJECTID);
2262 additional_string = "chunk ";
2263 next_bytenr = btrfs_super_chunk_root(super_hdr);
2264 if (state->print_mask &
2265 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2266 pr_info("chunk@%llu\n", next_bytenr);
2267 break;
2268 case 2:
2269 btrfs_set_disk_key_objectid(&tmp_disk_key,
2270 BTRFS_TREE_LOG_OBJECTID);
2271 additional_string = "log ";
2272 next_bytenr = btrfs_super_log_root(super_hdr);
2273 if (0 == next_bytenr)
2274 continue;
2275 if (state->print_mask &
2276 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2277 pr_info("log@%llu\n", next_bytenr);
2278 break;
2279 }
2280
2281 num_copies = btrfs_num_copies(fs_info, next_bytenr,
2282 BTRFS_SUPER_INFO_SIZE);
2283 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
2284 pr_info("num_copies(log_bytenr=%llu) = %d\n",
2285 next_bytenr, num_copies);
2286 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2287 int was_created;
2288
2289 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2290 pr_info("btrfsic_process_written_superblock(mirror_num=%d)\n", mirror_num);
2291 ret = btrfsic_map_block(state, next_bytenr,
2292 BTRFS_SUPER_INFO_SIZE,
2293 &tmp_next_block_ctx,
2294 mirror_num);
2295 if (ret) {
2296 pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
2297 next_bytenr, mirror_num);
2298 return -1;
2299 }
2300
2301 next_block = btrfsic_block_lookup_or_add(
2302 state,
2303 &tmp_next_block_ctx,
2304 additional_string,
2305 1, 0, 1,
2306 mirror_num,
2307 &was_created);
2308 if (NULL == next_block) {
2309 pr_info("btrfsic: error, kmalloc failed!\n");
2310 btrfsic_release_block_ctx(&tmp_next_block_ctx);
2311 return -1;
2312 }
2313
2314 next_block->disk_key = tmp_disk_key;
2315 if (was_created)
2316 next_block->generation =
2317 BTRFSIC_GENERATION_UNKNOWN;
2318 l = btrfsic_block_link_lookup_or_add(
2319 state,
2320 &tmp_next_block_ctx,
2321 next_block,
2322 superblock,
2323 BTRFSIC_GENERATION_UNKNOWN);
2324 btrfsic_release_block_ctx(&tmp_next_block_ctx);
2325 if (NULL == l)
2326 return -1;
2327 }
2328 }
2329
2330 if (WARN_ON(-1 == btrfsic_check_all_ref_blocks(state, superblock, 0)))
2331 btrfsic_dump_tree(state);
2332
2333 return 0;
2334}
2335
2336static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
2337 struct btrfsic_block *const block,
2338 int recursion_level)
2339{
2340 const struct btrfsic_block_link *l;
2341 int ret = 0;
2342
2343 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2344 /*
2345 * Note that this situation can happen and does not
2346 * indicate an error in regular cases. It happens
2347 * when disk blocks are freed and later reused.
2348 * The check-integrity module is not aware of any
2349 * block free operations, it just recognizes block
2350 * write operations. Therefore it keeps the linkage
2351 * information for a block until a block is
2352 * rewritten. This can temporarily cause incorrect
2353 * and even circular linkage informations. This
2354 * causes no harm unless such blocks are referenced
2355 * by the most recent super block.
2356 */
2357 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2358 pr_info("btrfsic: abort cyclic linkage (case 1).\n");
2359
2360 return ret;
2361 }
2362
2363 /*
2364 * This algorithm is recursive because the amount of used stack
2365 * space is very small and the max recursion depth is limited.
2366 */
2367 list_for_each_entry(l, &block->ref_to_list, node_ref_to) {
2368 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2369 pr_info("rl=%d, %c @%llu (%s/%llu/%d) %u* refers to %c @%llu (%s/%llu/%d)\n",
2370 recursion_level,
2371 btrfsic_get_block_type(state, block),
2372 block->logical_bytenr, block->dev_state->name,
2373 block->dev_bytenr, block->mirror_num,
2374 l->ref_cnt,
2375 btrfsic_get_block_type(state, l->block_ref_to),
2376 l->block_ref_to->logical_bytenr,
2377 l->block_ref_to->dev_state->name,
2378 l->block_ref_to->dev_bytenr,
2379 l->block_ref_to->mirror_num);
2380 if (l->block_ref_to->never_written) {
2381 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is never written!\n",
2382 btrfsic_get_block_type(state, l->block_ref_to),
2383 l->block_ref_to->logical_bytenr,
2384 l->block_ref_to->dev_state->name,
2385 l->block_ref_to->dev_bytenr,
2386 l->block_ref_to->mirror_num);
2387 ret = -1;
2388 } else if (!l->block_ref_to->is_iodone) {
2389 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is not yet iodone!\n",
2390 btrfsic_get_block_type(state, l->block_ref_to),
2391 l->block_ref_to->logical_bytenr,
2392 l->block_ref_to->dev_state->name,
2393 l->block_ref_to->dev_bytenr,
2394 l->block_ref_to->mirror_num);
2395 ret = -1;
2396 } else if (l->block_ref_to->iodone_w_error) {
2397 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which has write error!\n",
2398 btrfsic_get_block_type(state, l->block_ref_to),
2399 l->block_ref_to->logical_bytenr,
2400 l->block_ref_to->dev_state->name,
2401 l->block_ref_to->dev_bytenr,
2402 l->block_ref_to->mirror_num);
2403 ret = -1;
2404 } else if (l->parent_generation !=
2405 l->block_ref_to->generation &&
2406 BTRFSIC_GENERATION_UNKNOWN !=
2407 l->parent_generation &&
2408 BTRFSIC_GENERATION_UNKNOWN !=
2409 l->block_ref_to->generation) {
2410 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) with generation %llu != parent generation %llu!\n",
2411 btrfsic_get_block_type(state, l->block_ref_to),
2412 l->block_ref_to->logical_bytenr,
2413 l->block_ref_to->dev_state->name,
2414 l->block_ref_to->dev_bytenr,
2415 l->block_ref_to->mirror_num,
2416 l->block_ref_to->generation,
2417 l->parent_generation);
2418 ret = -1;
2419 } else if (l->block_ref_to->flush_gen >
2420 l->block_ref_to->dev_state->last_flush_gen) {
2421 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is not flushed out of disk's write cache (block flush_gen=%llu, dev->flush_gen=%llu)!\n",
2422 btrfsic_get_block_type(state, l->block_ref_to),
2423 l->block_ref_to->logical_bytenr,
2424 l->block_ref_to->dev_state->name,
2425 l->block_ref_to->dev_bytenr,
2426 l->block_ref_to->mirror_num, block->flush_gen,
2427 l->block_ref_to->dev_state->last_flush_gen);
2428 ret = -1;
2429 } else if (-1 == btrfsic_check_all_ref_blocks(state,
2430 l->block_ref_to,
2431 recursion_level +
2432 1)) {
2433 ret = -1;
2434 }
2435 }
2436
2437 return ret;
2438}
2439
2440static int btrfsic_is_block_ref_by_superblock(
2441 const struct btrfsic_state *state,
2442 const struct btrfsic_block *block,
2443 int recursion_level)
2444{
2445 const struct btrfsic_block_link *l;
2446
2447 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2448 /* refer to comment at "abort cyclic linkage (case 1)" */
2449 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2450 pr_info("btrfsic: abort cyclic linkage (case 2).\n");
2451
2452 return 0;
2453 }
2454
2455 /*
2456 * This algorithm is recursive because the amount of used stack space
2457 * is very small and the max recursion depth is limited.
2458 */
2459 list_for_each_entry(l, &block->ref_from_list, node_ref_from) {
2460 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2461 pr_info("rl=%d, %c @%llu (%s/%llu/%d) is ref %u* from %c @%llu (%s/%llu/%d)\n",
2462 recursion_level,
2463 btrfsic_get_block_type(state, block),
2464 block->logical_bytenr, block->dev_state->name,
2465 block->dev_bytenr, block->mirror_num,
2466 l->ref_cnt,
2467 btrfsic_get_block_type(state, l->block_ref_from),
2468 l->block_ref_from->logical_bytenr,
2469 l->block_ref_from->dev_state->name,
2470 l->block_ref_from->dev_bytenr,
2471 l->block_ref_from->mirror_num);
2472 if (l->block_ref_from->is_superblock &&
2473 state->latest_superblock->dev_bytenr ==
2474 l->block_ref_from->dev_bytenr &&
2475 state->latest_superblock->dev_state->bdev ==
2476 l->block_ref_from->dev_state->bdev)
2477 return 1;
2478 else if (btrfsic_is_block_ref_by_superblock(state,
2479 l->block_ref_from,
2480 recursion_level +
2481 1))
2482 return 1;
2483 }
2484
2485 return 0;
2486}
2487
2488static void btrfsic_print_add_link(const struct btrfsic_state *state,
2489 const struct btrfsic_block_link *l)
2490{
2491 pr_info("Add %u* link from %c @%llu (%s/%llu/%d) to %c @%llu (%s/%llu/%d).\n",
2492 l->ref_cnt,
2493 btrfsic_get_block_type(state, l->block_ref_from),
2494 l->block_ref_from->logical_bytenr,
2495 l->block_ref_from->dev_state->name,
2496 l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2497 btrfsic_get_block_type(state, l->block_ref_to),
2498 l->block_ref_to->logical_bytenr,
2499 l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2500 l->block_ref_to->mirror_num);
2501}
2502
2503static void btrfsic_print_rem_link(const struct btrfsic_state *state,
2504 const struct btrfsic_block_link *l)
2505{
2506 pr_info("Rem %u* link from %c @%llu (%s/%llu/%d) to %c @%llu (%s/%llu/%d).\n",
2507 l->ref_cnt,
2508 btrfsic_get_block_type(state, l->block_ref_from),
2509 l->block_ref_from->logical_bytenr,
2510 l->block_ref_from->dev_state->name,
2511 l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2512 btrfsic_get_block_type(state, l->block_ref_to),
2513 l->block_ref_to->logical_bytenr,
2514 l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2515 l->block_ref_to->mirror_num);
2516}
2517
2518static char btrfsic_get_block_type(const struct btrfsic_state *state,
2519 const struct btrfsic_block *block)
2520{
2521 if (block->is_superblock &&
2522 state->latest_superblock->dev_bytenr == block->dev_bytenr &&
2523 state->latest_superblock->dev_state->bdev == block->dev_state->bdev)
2524 return 'S';
2525 else if (block->is_superblock)
2526 return 's';
2527 else if (block->is_metadata)
2528 return 'M';
2529 else
2530 return 'D';
2531}
2532
2533static void btrfsic_dump_tree(const struct btrfsic_state *state)
2534{
2535 btrfsic_dump_tree_sub(state, state->latest_superblock, 0);
2536}
2537
2538static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
2539 const struct btrfsic_block *block,
2540 int indent_level)
2541{
2542 const struct btrfsic_block_link *l;
2543 int indent_add;
2544 static char buf[80];
2545 int cursor_position;
2546
2547 /*
2548 * Should better fill an on-stack buffer with a complete line and
2549 * dump it at once when it is time to print a newline character.
2550 */
2551
2552 /*
2553 * This algorithm is recursive because the amount of used stack space
2554 * is very small and the max recursion depth is limited.
2555 */
2556 indent_add = sprintf(buf, "%c-%llu(%s/%llu/%u)",
2557 btrfsic_get_block_type(state, block),
2558 block->logical_bytenr, block->dev_state->name,
2559 block->dev_bytenr, block->mirror_num);
2560 if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2561 printk("[...]\n");
2562 return;
2563 }
2564 printk(buf);
2565 indent_level += indent_add;
2566 if (list_empty(&block->ref_to_list)) {
2567 printk("\n");
2568 return;
2569 }
2570 if (block->mirror_num > 1 &&
2571 !(state->print_mask & BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS)) {
2572 printk(" [...]\n");
2573 return;
2574 }
2575
2576 cursor_position = indent_level;
2577 list_for_each_entry(l, &block->ref_to_list, node_ref_to) {
2578 while (cursor_position < indent_level) {
2579 printk(" ");
2580 cursor_position++;
2581 }
2582 if (l->ref_cnt > 1)
2583 indent_add = sprintf(buf, " %d*--> ", l->ref_cnt);
2584 else
2585 indent_add = sprintf(buf, " --> ");
2586 if (indent_level + indent_add >
2587 BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2588 printk("[...]\n");
2589 cursor_position = 0;
2590 continue;
2591 }
2592
2593 printk(buf);
2594
2595 btrfsic_dump_tree_sub(state, l->block_ref_to,
2596 indent_level + indent_add);
2597 cursor_position = 0;
2598 }
2599}
2600
2601static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
2602 struct btrfsic_state *state,
2603 struct btrfsic_block_data_ctx *next_block_ctx,
2604 struct btrfsic_block *next_block,
2605 struct btrfsic_block *from_block,
2606 u64 parent_generation)
2607{
2608 struct btrfsic_block_link *l;
2609
2610 l = btrfsic_block_link_hashtable_lookup(next_block_ctx->dev->bdev,
2611 next_block_ctx->dev_bytenr,
2612 from_block->dev_state->bdev,
2613 from_block->dev_bytenr,
2614 &state->block_link_hashtable);
2615 if (NULL == l) {
2616 l = btrfsic_block_link_alloc();
2617 if (NULL == l) {
2618 pr_info("btrfsic: error, kmalloc failed!\n");
2619 return NULL;
2620 }
2621
2622 l->block_ref_to = next_block;
2623 l->block_ref_from = from_block;
2624 l->ref_cnt = 1;
2625 l->parent_generation = parent_generation;
2626
2627 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2628 btrfsic_print_add_link(state, l);
2629
2630 list_add(&l->node_ref_to, &from_block->ref_to_list);
2631 list_add(&l->node_ref_from, &next_block->ref_from_list);
2632
2633 btrfsic_block_link_hashtable_add(l,
2634 &state->block_link_hashtable);
2635 } else {
2636 l->ref_cnt++;
2637 l->parent_generation = parent_generation;
2638 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2639 btrfsic_print_add_link(state, l);
2640 }
2641
2642 return l;
2643}
2644
2645static struct btrfsic_block *btrfsic_block_lookup_or_add(
2646 struct btrfsic_state *state,
2647 struct btrfsic_block_data_ctx *block_ctx,
2648 const char *additional_string,
2649 int is_metadata,
2650 int is_iodone,
2651 int never_written,
2652 int mirror_num,
2653 int *was_created)
2654{
2655 struct btrfsic_block *block;
2656
2657 block = btrfsic_block_hashtable_lookup(block_ctx->dev->bdev,
2658 block_ctx->dev_bytenr,
2659 &state->block_hashtable);
2660 if (NULL == block) {
2661 struct btrfsic_dev_state *dev_state;
2662
2663 block = btrfsic_block_alloc();
2664 if (NULL == block) {
2665 pr_info("btrfsic: error, kmalloc failed!\n");
2666 return NULL;
2667 }
2668 dev_state = btrfsic_dev_state_lookup(block_ctx->dev->bdev);
2669 if (NULL == dev_state) {
2670 pr_info("btrfsic: error, lookup dev_state failed!\n");
2671 btrfsic_block_free(block);
2672 return NULL;
2673 }
2674 block->dev_state = dev_state;
2675 block->dev_bytenr = block_ctx->dev_bytenr;
2676 block->logical_bytenr = block_ctx->start;
2677 block->is_metadata = is_metadata;
2678 block->is_iodone = is_iodone;
2679 block->never_written = never_written;
2680 block->mirror_num = mirror_num;
2681 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2682 pr_info("New %s%c-block @%llu (%s/%llu/%d)\n",
2683 additional_string,
2684 btrfsic_get_block_type(state, block),
2685 block->logical_bytenr, dev_state->name,
2686 block->dev_bytenr, mirror_num);
2687 list_add(&block->all_blocks_node, &state->all_blocks_list);
2688 btrfsic_block_hashtable_add(block, &state->block_hashtable);
2689 if (NULL != was_created)
2690 *was_created = 1;
2691 } else {
2692 if (NULL != was_created)
2693 *was_created = 0;
2694 }
2695
2696 return block;
2697}
2698
2699static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
2700 u64 bytenr,
2701 struct btrfsic_dev_state *dev_state,
2702 u64 dev_bytenr)
2703{
2704 struct btrfs_fs_info *fs_info = state->fs_info;
2705 struct btrfsic_block_data_ctx block_ctx;
2706 int num_copies;
2707 int mirror_num;
2708 int match = 0;
2709 int ret;
2710
2711 num_copies = btrfs_num_copies(fs_info, bytenr, state->metablock_size);
2712
2713 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2714 ret = btrfsic_map_block(state, bytenr, state->metablock_size,
2715 &block_ctx, mirror_num);
2716 if (ret) {
2717 pr_info("btrfsic: btrfsic_map_block(logical @%llu, mirror %d) failed!\n",
2718 bytenr, mirror_num);
2719 continue;
2720 }
2721
2722 if (dev_state->bdev == block_ctx.dev->bdev &&
2723 dev_bytenr == block_ctx.dev_bytenr) {
2724 match++;
2725 btrfsic_release_block_ctx(&block_ctx);
2726 break;
2727 }
2728 btrfsic_release_block_ctx(&block_ctx);
2729 }
2730
2731 if (WARN_ON(!match)) {
2732 pr_info("btrfs: attempt to write M-block which contains logical bytenr that doesn't map to dev+physical bytenr of submit_bio, buffer->log_bytenr=%llu, submit_bio(bdev=%s, phys_bytenr=%llu)!\n",
2733 bytenr, dev_state->name, dev_bytenr);
2734 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2735 ret = btrfsic_map_block(state, bytenr,
2736 state->metablock_size,
2737 &block_ctx, mirror_num);
2738 if (ret)
2739 continue;
2740
2741 pr_info("Read logical bytenr @%llu maps to (%s/%llu/%d)\n",
2742 bytenr, block_ctx.dev->name,
2743 block_ctx.dev_bytenr, mirror_num);
2744 }
2745 }
2746}
2747
2748static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
2749 struct block_device *bdev)
2750{
2751 return btrfsic_dev_state_hashtable_lookup(bdev,
2752 &btrfsic_dev_state_hashtable);
2753}
2754
2755int btrfsic_submit_bh(int op, int op_flags, struct buffer_head *bh)
2756{
2757 struct btrfsic_dev_state *dev_state;
2758
2759 if (!btrfsic_is_initialized)
2760 return submit_bh(op, op_flags, bh);
2761
2762 mutex_lock(&btrfsic_mutex);
2763 /* since btrfsic_submit_bh() might also be called before
2764 * btrfsic_mount(), this might return NULL */
2765 dev_state = btrfsic_dev_state_lookup(bh->b_bdev);
2766
2767 /* Only called to write the superblock (incl. FLUSH/FUA) */
2768 if (NULL != dev_state &&
2769 (op == REQ_OP_WRITE) && bh->b_size > 0) {
2770 u64 dev_bytenr;
2771
2772 dev_bytenr = 4096 * bh->b_blocknr;
2773 if (dev_state->state->print_mask &
2774 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2775 pr_info("submit_bh(op=0x%x,0x%x, blocknr=%llu (bytenr %llu), size=%zu, data=%p, bdev=%p)\n",
2776 op, op_flags, (unsigned long long)bh->b_blocknr,
2777 dev_bytenr, bh->b_size, bh->b_data, bh->b_bdev);
2778 btrfsic_process_written_block(dev_state, dev_bytenr,
2779 &bh->b_data, 1, NULL,
2780 NULL, bh, op_flags);
2781 } else if (NULL != dev_state && (op_flags & REQ_PREFLUSH)) {
2782 if (dev_state->state->print_mask &
2783 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2784 pr_info("submit_bh(op=0x%x,0x%x FLUSH, bdev=%p)\n",
2785 op, op_flags, bh->b_bdev);
2786 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
2787 if ((dev_state->state->print_mask &
2788 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2789 BTRFSIC_PRINT_MASK_VERBOSE)))
2790 pr_info("btrfsic_submit_bh(%s) with FLUSH but dummy block already in use (ignored)!\n",
2791 dev_state->name);
2792 } else {
2793 struct btrfsic_block *const block =
2794 &dev_state->dummy_block_for_bio_bh_flush;
2795
2796 block->is_iodone = 0;
2797 block->never_written = 0;
2798 block->iodone_w_error = 0;
2799 block->flush_gen = dev_state->last_flush_gen + 1;
2800 block->submit_bio_bh_rw = op_flags;
2801 block->orig_bio_bh_private = bh->b_private;
2802 block->orig_bio_bh_end_io.bh = bh->b_end_io;
2803 block->next_in_same_bio = NULL;
2804 bh->b_private = block;
2805 bh->b_end_io = btrfsic_bh_end_io;
2806 }
2807 }
2808 mutex_unlock(&btrfsic_mutex);
2809 return submit_bh(op, op_flags, bh);
2810}
2811
2812static void __btrfsic_submit_bio(struct bio *bio)
2813{
2814 struct btrfsic_dev_state *dev_state;
2815
2816 if (!btrfsic_is_initialized)
2817 return;
2818
2819 mutex_lock(&btrfsic_mutex);
2820 /* since btrfsic_submit_bio() is also called before
2821 * btrfsic_mount(), this might return NULL */
2822 dev_state = btrfsic_dev_state_lookup(bio->bi_bdev);
2823 if (NULL != dev_state &&
2824 (bio_op(bio) == REQ_OP_WRITE) && bio_has_data(bio)) {
2825 unsigned int i;
2826 u64 dev_bytenr;
2827 u64 cur_bytenr;
2828 struct bio_vec *bvec;
2829 int bio_is_patched;
2830 char **mapped_datav;
2831
2832 dev_bytenr = 512 * bio->bi_iter.bi_sector;
2833 bio_is_patched = 0;
2834 if (dev_state->state->print_mask &
2835 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2836 pr_info("submit_bio(rw=%d,0x%x, bi_vcnt=%u, bi_sector=%llu (bytenr %llu), bi_bdev=%p)\n",
2837 bio_op(bio), bio->bi_opf, bio->bi_vcnt,
2838 (unsigned long long)bio->bi_iter.bi_sector,
2839 dev_bytenr, bio->bi_bdev);
2840
2841 mapped_datav = kmalloc_array(bio->bi_vcnt,
2842 sizeof(*mapped_datav), GFP_NOFS);
2843 if (!mapped_datav)
2844 goto leave;
2845 cur_bytenr = dev_bytenr;
2846
2847 bio_for_each_segment_all(bvec, bio, i) {
2848 BUG_ON(bvec->bv_len != PAGE_SIZE);
2849 mapped_datav[i] = kmap(bvec->bv_page);
2850
2851 if (dev_state->state->print_mask &
2852 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE)
2853 pr_info("#%u: bytenr=%llu, len=%u, offset=%u\n",
2854 i, cur_bytenr, bvec->bv_len, bvec->bv_offset);
2855 cur_bytenr += bvec->bv_len;
2856 }
2857 btrfsic_process_written_block(dev_state, dev_bytenr,
2858 mapped_datav, bio->bi_vcnt,
2859 bio, &bio_is_patched,
2860 NULL, bio->bi_opf);
2861 bio_for_each_segment_all(bvec, bio, i)
2862 kunmap(bvec->bv_page);
2863 kfree(mapped_datav);
2864 } else if (NULL != dev_state && (bio->bi_opf & REQ_PREFLUSH)) {
2865 if (dev_state->state->print_mask &
2866 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2867 pr_info("submit_bio(rw=%d,0x%x FLUSH, bdev=%p)\n",
2868 bio_op(bio), bio->bi_opf, bio->bi_bdev);
2869 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
2870 if ((dev_state->state->print_mask &
2871 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2872 BTRFSIC_PRINT_MASK_VERBOSE)))
2873 pr_info("btrfsic_submit_bio(%s) with FLUSH but dummy block already in use (ignored)!\n",
2874 dev_state->name);
2875 } else {
2876 struct btrfsic_block *const block =
2877 &dev_state->dummy_block_for_bio_bh_flush;
2878
2879 block->is_iodone = 0;
2880 block->never_written = 0;
2881 block->iodone_w_error = 0;
2882 block->flush_gen = dev_state->last_flush_gen + 1;
2883 block->submit_bio_bh_rw = bio->bi_opf;
2884 block->orig_bio_bh_private = bio->bi_private;
2885 block->orig_bio_bh_end_io.bio = bio->bi_end_io;
2886 block->next_in_same_bio = NULL;
2887 bio->bi_private = block;
2888 bio->bi_end_io = btrfsic_bio_end_io;
2889 }
2890 }
2891leave:
2892 mutex_unlock(&btrfsic_mutex);
2893}
2894
2895void btrfsic_submit_bio(struct bio *bio)
2896{
2897 __btrfsic_submit_bio(bio);
2898 submit_bio(bio);
2899}
2900
2901int btrfsic_submit_bio_wait(struct bio *bio)
2902{
2903 __btrfsic_submit_bio(bio);
2904 return submit_bio_wait(bio);
2905}
2906
2907int btrfsic_mount(struct btrfs_fs_info *fs_info,
2908 struct btrfs_fs_devices *fs_devices,
2909 int including_extent_data, u32 print_mask)
2910{
2911 int ret;
2912 struct btrfsic_state *state;
2913 struct list_head *dev_head = &fs_devices->devices;
2914 struct btrfs_device *device;
2915
2916 if (fs_info->nodesize & ((u64)PAGE_SIZE - 1)) {
2917 pr_info("btrfsic: cannot handle nodesize %d not being a multiple of PAGE_SIZE %ld!\n",
2918 fs_info->nodesize, PAGE_SIZE);
2919 return -1;
2920 }
2921 if (fs_info->sectorsize & ((u64)PAGE_SIZE - 1)) {
2922 pr_info("btrfsic: cannot handle sectorsize %d not being a multiple of PAGE_SIZE %ld!\n",
2923 fs_info->sectorsize, PAGE_SIZE);
2924 return -1;
2925 }
2926 state = kzalloc(sizeof(*state), GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
2927 if (!state) {
2928 state = vzalloc(sizeof(*state));
2929 if (!state) {
2930 pr_info("btrfs check-integrity: vzalloc() failed!\n");
2931 return -1;
2932 }
2933 }
2934
2935 if (!btrfsic_is_initialized) {
2936 mutex_init(&btrfsic_mutex);
2937 btrfsic_dev_state_hashtable_init(&btrfsic_dev_state_hashtable);
2938 btrfsic_is_initialized = 1;
2939 }
2940 mutex_lock(&btrfsic_mutex);
2941 state->fs_info = fs_info;
2942 state->print_mask = print_mask;
2943 state->include_extent_data = including_extent_data;
2944 state->csum_size = 0;
2945 state->metablock_size = fs_info->nodesize;
2946 state->datablock_size = fs_info->sectorsize;
2947 INIT_LIST_HEAD(&state->all_blocks_list);
2948 btrfsic_block_hashtable_init(&state->block_hashtable);
2949 btrfsic_block_link_hashtable_init(&state->block_link_hashtable);
2950 state->max_superblock_generation = 0;
2951 state->latest_superblock = NULL;
2952
2953 list_for_each_entry(device, dev_head, dev_list) {
2954 struct btrfsic_dev_state *ds;
2955 const char *p;
2956
2957 if (!device->bdev || !device->name)
2958 continue;
2959
2960 ds = btrfsic_dev_state_alloc();
2961 if (NULL == ds) {
2962 pr_info("btrfs check-integrity: kmalloc() failed!\n");
2963 mutex_unlock(&btrfsic_mutex);
2964 return -1;
2965 }
2966 ds->bdev = device->bdev;
2967 ds->state = state;
2968 bdevname(ds->bdev, ds->name);
2969 ds->name[BDEVNAME_SIZE - 1] = '\0';
2970 p = kbasename(ds->name);
2971 strlcpy(ds->name, p, sizeof(ds->name));
2972 btrfsic_dev_state_hashtable_add(ds,
2973 &btrfsic_dev_state_hashtable);
2974 }
2975
2976 ret = btrfsic_process_superblock(state, fs_devices);
2977 if (0 != ret) {
2978 mutex_unlock(&btrfsic_mutex);
2979 btrfsic_unmount(fs_devices);
2980 return ret;
2981 }
2982
2983 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_DATABASE)
2984 btrfsic_dump_database(state);
2985 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_TREE)
2986 btrfsic_dump_tree(state);
2987
2988 mutex_unlock(&btrfsic_mutex);
2989 return 0;
2990}
2991
2992void btrfsic_unmount(struct btrfs_fs_devices *fs_devices)
2993{
2994 struct btrfsic_block *b_all, *tmp_all;
2995 struct btrfsic_state *state;
2996 struct list_head *dev_head = &fs_devices->devices;
2997 struct btrfs_device *device;
2998
2999 if (!btrfsic_is_initialized)
3000 return;
3001
3002 mutex_lock(&btrfsic_mutex);
3003
3004 state = NULL;
3005 list_for_each_entry(device, dev_head, dev_list) {
3006 struct btrfsic_dev_state *ds;
3007
3008 if (!device->bdev || !device->name)
3009 continue;
3010
3011 ds = btrfsic_dev_state_hashtable_lookup(
3012 device->bdev,
3013 &btrfsic_dev_state_hashtable);
3014 if (NULL != ds) {
3015 state = ds->state;
3016 btrfsic_dev_state_hashtable_remove(ds);
3017 btrfsic_dev_state_free(ds);
3018 }
3019 }
3020
3021 if (NULL == state) {
3022 pr_info("btrfsic: error, cannot find state information on umount!\n");
3023 mutex_unlock(&btrfsic_mutex);
3024 return;
3025 }
3026
3027 /*
3028 * Don't care about keeping the lists' state up to date,
3029 * just free all memory that was allocated dynamically.
3030 * Free the blocks and the block_links.
3031 */
3032 list_for_each_entry_safe(b_all, tmp_all, &state->all_blocks_list,
3033 all_blocks_node) {
3034 struct btrfsic_block_link *l, *tmp;
3035
3036 list_for_each_entry_safe(l, tmp, &b_all->ref_to_list,
3037 node_ref_to) {
3038 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
3039 btrfsic_print_rem_link(state, l);
3040
3041 l->ref_cnt--;
3042 if (0 == l->ref_cnt)
3043 btrfsic_block_link_free(l);
3044 }
3045
3046 if (b_all->is_iodone || b_all->never_written)
3047 btrfsic_block_free(b_all);
3048 else
3049 pr_info("btrfs: attempt to free %c-block @%llu (%s/%llu/%d) on umount which is not yet iodone!\n",
3050 btrfsic_get_block_type(state, b_all),
3051 b_all->logical_bytenr, b_all->dev_state->name,
3052 b_all->dev_bytenr, b_all->mirror_num);
3053 }
3054
3055 mutex_unlock(&btrfsic_mutex);
3056
3057 kvfree(state);
3058}