Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011 STRATO.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/mm.h>
   7#include <linux/rbtree.h>
   8#include <trace/events/btrfs.h>
   9#include "ctree.h"
  10#include "disk-io.h"
  11#include "backref.h"
  12#include "ulist.h"
  13#include "transaction.h"
  14#include "delayed-ref.h"
  15#include "locking.h"
  16
  17/* Just an arbitrary number so we can be sure this happened */
  18#define BACKREF_FOUND_SHARED 6
  19
  20struct extent_inode_elem {
  21	u64 inum;
  22	u64 offset;
  23	struct extent_inode_elem *next;
  24};
  25
  26static int check_extent_in_eb(const struct btrfs_key *key,
  27			      const struct extent_buffer *eb,
  28			      const struct btrfs_file_extent_item *fi,
  29			      u64 extent_item_pos,
  30			      struct extent_inode_elem **eie,
  31			      bool ignore_offset)
  32{
  33	u64 offset = 0;
  34	struct extent_inode_elem *e;
  35
  36	if (!ignore_offset &&
  37	    !btrfs_file_extent_compression(eb, fi) &&
  38	    !btrfs_file_extent_encryption(eb, fi) &&
  39	    !btrfs_file_extent_other_encoding(eb, fi)) {
  40		u64 data_offset;
  41		u64 data_len;
  42
  43		data_offset = btrfs_file_extent_offset(eb, fi);
  44		data_len = btrfs_file_extent_num_bytes(eb, fi);
  45
  46		if (extent_item_pos < data_offset ||
  47		    extent_item_pos >= data_offset + data_len)
  48			return 1;
  49		offset = extent_item_pos - data_offset;
  50	}
  51
  52	e = kmalloc(sizeof(*e), GFP_NOFS);
  53	if (!e)
  54		return -ENOMEM;
  55
  56	e->next = *eie;
  57	e->inum = key->objectid;
  58	e->offset = key->offset + offset;
  59	*eie = e;
  60
  61	return 0;
  62}
  63
  64static void free_inode_elem_list(struct extent_inode_elem *eie)
  65{
  66	struct extent_inode_elem *eie_next;
  67
  68	for (; eie; eie = eie_next) {
  69		eie_next = eie->next;
  70		kfree(eie);
  71	}
  72}
  73
  74static int find_extent_in_eb(const struct extent_buffer *eb,
  75			     u64 wanted_disk_byte, u64 extent_item_pos,
  76			     struct extent_inode_elem **eie,
  77			     bool ignore_offset)
  78{
  79	u64 disk_byte;
  80	struct btrfs_key key;
  81	struct btrfs_file_extent_item *fi;
  82	int slot;
  83	int nritems;
  84	int extent_type;
  85	int ret;
  86
  87	/*
  88	 * from the shared data ref, we only have the leaf but we need
  89	 * the key. thus, we must look into all items and see that we
  90	 * find one (some) with a reference to our extent item.
  91	 */
  92	nritems = btrfs_header_nritems(eb);
  93	for (slot = 0; slot < nritems; ++slot) {
  94		btrfs_item_key_to_cpu(eb, &key, slot);
  95		if (key.type != BTRFS_EXTENT_DATA_KEY)
  96			continue;
  97		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
  98		extent_type = btrfs_file_extent_type(eb, fi);
  99		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
 100			continue;
 101		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
 102		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
 103		if (disk_byte != wanted_disk_byte)
 104			continue;
 105
 106		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
 107		if (ret < 0)
 108			return ret;
 109	}
 110
 111	return 0;
 112}
 113
 114struct preftree {
 115	struct rb_root_cached root;
 116	unsigned int count;
 117};
 118
 119#define PREFTREE_INIT	{ .root = RB_ROOT_CACHED, .count = 0 }
 120
 121struct preftrees {
 122	struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
 123	struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
 124	struct preftree indirect_missing_keys;
 125};
 126
 127/*
 128 * Checks for a shared extent during backref search.
 129 *
 130 * The share_count tracks prelim_refs (direct and indirect) having a
 131 * ref->count >0:
 132 *  - incremented when a ref->count transitions to >0
 133 *  - decremented when a ref->count transitions to <1
 134 */
 135struct share_check {
 136	u64 root_objectid;
 137	u64 inum;
 138	int share_count;
 
 
 
 
 
 139};
 140
 141static inline int extent_is_shared(struct share_check *sc)
 142{
 143	return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
 144}
 145
 146static struct kmem_cache *btrfs_prelim_ref_cache;
 147
 148int __init btrfs_prelim_ref_init(void)
 149{
 150	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
 151					sizeof(struct prelim_ref),
 152					0,
 153					SLAB_MEM_SPREAD,
 154					NULL);
 155	if (!btrfs_prelim_ref_cache)
 156		return -ENOMEM;
 157	return 0;
 158}
 159
 160void __cold btrfs_prelim_ref_exit(void)
 161{
 162	kmem_cache_destroy(btrfs_prelim_ref_cache);
 163}
 164
 165static void free_pref(struct prelim_ref *ref)
 166{
 167	kmem_cache_free(btrfs_prelim_ref_cache, ref);
 168}
 169
 170/*
 171 * Return 0 when both refs are for the same block (and can be merged).
 172 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
 173 * indicates a 'higher' block.
 174 */
 175static int prelim_ref_compare(struct prelim_ref *ref1,
 176			      struct prelim_ref *ref2)
 177{
 178	if (ref1->level < ref2->level)
 179		return -1;
 180	if (ref1->level > ref2->level)
 181		return 1;
 182	if (ref1->root_id < ref2->root_id)
 183		return -1;
 184	if (ref1->root_id > ref2->root_id)
 185		return 1;
 186	if (ref1->key_for_search.type < ref2->key_for_search.type)
 187		return -1;
 188	if (ref1->key_for_search.type > ref2->key_for_search.type)
 189		return 1;
 190	if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
 191		return -1;
 192	if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
 193		return 1;
 194	if (ref1->key_for_search.offset < ref2->key_for_search.offset)
 195		return -1;
 196	if (ref1->key_for_search.offset > ref2->key_for_search.offset)
 197		return 1;
 198	if (ref1->parent < ref2->parent)
 199		return -1;
 200	if (ref1->parent > ref2->parent)
 201		return 1;
 202
 203	return 0;
 204}
 205
 206static void update_share_count(struct share_check *sc, int oldcount,
 207			       int newcount)
 208{
 209	if ((!sc) || (oldcount == 0 && newcount < 1))
 210		return;
 211
 212	if (oldcount > 0 && newcount < 1)
 213		sc->share_count--;
 214	else if (oldcount < 1 && newcount > 0)
 215		sc->share_count++;
 216}
 217
 218/*
 219 * Add @newref to the @root rbtree, merging identical refs.
 220 *
 221 * Callers should assume that newref has been freed after calling.
 222 */
 223static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
 224			      struct preftree *preftree,
 225			      struct prelim_ref *newref,
 226			      struct share_check *sc)
 227{
 228	struct rb_root_cached *root;
 229	struct rb_node **p;
 230	struct rb_node *parent = NULL;
 231	struct prelim_ref *ref;
 232	int result;
 233	bool leftmost = true;
 234
 235	root = &preftree->root;
 236	p = &root->rb_root.rb_node;
 237
 238	while (*p) {
 239		parent = *p;
 240		ref = rb_entry(parent, struct prelim_ref, rbnode);
 241		result = prelim_ref_compare(ref, newref);
 242		if (result < 0) {
 243			p = &(*p)->rb_left;
 244		} else if (result > 0) {
 245			p = &(*p)->rb_right;
 246			leftmost = false;
 247		} else {
 248			/* Identical refs, merge them and free @newref */
 249			struct extent_inode_elem *eie = ref->inode_list;
 250
 251			while (eie && eie->next)
 252				eie = eie->next;
 253
 254			if (!eie)
 255				ref->inode_list = newref->inode_list;
 256			else
 257				eie->next = newref->inode_list;
 258			trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
 259						     preftree->count);
 260			/*
 261			 * A delayed ref can have newref->count < 0.
 262			 * The ref->count is updated to follow any
 263			 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
 264			 */
 265			update_share_count(sc, ref->count,
 266					   ref->count + newref->count);
 267			ref->count += newref->count;
 268			free_pref(newref);
 269			return;
 270		}
 271	}
 272
 273	update_share_count(sc, 0, newref->count);
 274	preftree->count++;
 275	trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
 276	rb_link_node(&newref->rbnode, parent, p);
 277	rb_insert_color_cached(&newref->rbnode, root, leftmost);
 278}
 279
 280/*
 281 * Release the entire tree.  We don't care about internal consistency so
 282 * just free everything and then reset the tree root.
 283 */
 284static void prelim_release(struct preftree *preftree)
 285{
 286	struct prelim_ref *ref, *next_ref;
 287
 288	rbtree_postorder_for_each_entry_safe(ref, next_ref,
 289					     &preftree->root.rb_root, rbnode)
 290		free_pref(ref);
 291
 292	preftree->root = RB_ROOT_CACHED;
 293	preftree->count = 0;
 294}
 295
 296/*
 297 * the rules for all callers of this function are:
 298 * - obtaining the parent is the goal
 299 * - if you add a key, you must know that it is a correct key
 300 * - if you cannot add the parent or a correct key, then we will look into the
 301 *   block later to set a correct key
 302 *
 303 * delayed refs
 304 * ============
 305 *        backref type | shared | indirect | shared | indirect
 306 * information         |   tree |     tree |   data |     data
 307 * --------------------+--------+----------+--------+----------
 308 *      parent logical |    y   |     -    |    -   |     -
 309 *      key to resolve |    -   |     y    |    y   |     y
 310 *  tree block logical |    -   |     -    |    -   |     -
 311 *  root for resolving |    y   |     y    |    y   |     y
 312 *
 313 * - column 1:       we've the parent -> done
 314 * - column 2, 3, 4: we use the key to find the parent
 315 *
 316 * on disk refs (inline or keyed)
 317 * ==============================
 318 *        backref type | shared | indirect | shared | indirect
 319 * information         |   tree |     tree |   data |     data
 320 * --------------------+--------+----------+--------+----------
 321 *      parent logical |    y   |     -    |    y   |     -
 322 *      key to resolve |    -   |     -    |    -   |     y
 323 *  tree block logical |    y   |     y    |    y   |     y
 324 *  root for resolving |    -   |     y    |    y   |     y
 325 *
 326 * - column 1, 3: we've the parent -> done
 327 * - column 2:    we take the first key from the block to find the parent
 328 *                (see add_missing_keys)
 329 * - column 4:    we use the key to find the parent
 330 *
 331 * additional information that's available but not required to find the parent
 332 * block might help in merging entries to gain some speed.
 333 */
 334static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
 335			  struct preftree *preftree, u64 root_id,
 336			  const struct btrfs_key *key, int level, u64 parent,
 337			  u64 wanted_disk_byte, int count,
 338			  struct share_check *sc, gfp_t gfp_mask)
 339{
 340	struct prelim_ref *ref;
 341
 342	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
 343		return 0;
 344
 345	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
 346	if (!ref)
 347		return -ENOMEM;
 348
 349	ref->root_id = root_id;
 350	if (key) {
 351		ref->key_for_search = *key;
 352		/*
 353		 * We can often find data backrefs with an offset that is too
 354		 * large (>= LLONG_MAX, maximum allowed file offset) due to
 355		 * underflows when subtracting a file's offset with the data
 356		 * offset of its corresponding extent data item. This can
 357		 * happen for example in the clone ioctl.
 358		 * So if we detect such case we set the search key's offset to
 359		 * zero to make sure we will find the matching file extent item
 360		 * at add_all_parents(), otherwise we will miss it because the
 361		 * offset taken form the backref is much larger then the offset
 362		 * of the file extent item. This can make us scan a very large
 363		 * number of file extent items, but at least it will not make
 364		 * us miss any.
 365		 * This is an ugly workaround for a behaviour that should have
 366		 * never existed, but it does and a fix for the clone ioctl
 367		 * would touch a lot of places, cause backwards incompatibility
 368		 * and would not fix the problem for extents cloned with older
 369		 * kernels.
 370		 */
 371		if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
 372		    ref->key_for_search.offset >= LLONG_MAX)
 373			ref->key_for_search.offset = 0;
 374	} else {
 375		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
 376	}
 377
 378	ref->inode_list = NULL;
 379	ref->level = level;
 380	ref->count = count;
 381	ref->parent = parent;
 382	ref->wanted_disk_byte = wanted_disk_byte;
 383	prelim_ref_insert(fs_info, preftree, ref, sc);
 384	return extent_is_shared(sc);
 385}
 386
 387/* direct refs use root == 0, key == NULL */
 388static int add_direct_ref(const struct btrfs_fs_info *fs_info,
 389			  struct preftrees *preftrees, int level, u64 parent,
 390			  u64 wanted_disk_byte, int count,
 391			  struct share_check *sc, gfp_t gfp_mask)
 392{
 393	return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
 394			      parent, wanted_disk_byte, count, sc, gfp_mask);
 395}
 396
 397/* indirect refs use parent == 0 */
 398static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
 399			    struct preftrees *preftrees, u64 root_id,
 400			    const struct btrfs_key *key, int level,
 401			    u64 wanted_disk_byte, int count,
 402			    struct share_check *sc, gfp_t gfp_mask)
 403{
 404	struct preftree *tree = &preftrees->indirect;
 405
 406	if (!key)
 407		tree = &preftrees->indirect_missing_keys;
 408	return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
 409			      wanted_disk_byte, count, sc, gfp_mask);
 410}
 411
 412static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
 413			   struct ulist *parents, struct prelim_ref *ref,
 414			   int level, u64 time_seq, const u64 *extent_item_pos,
 415			   u64 total_refs, bool ignore_offset)
 416{
 417	int ret = 0;
 418	int slot;
 419	struct extent_buffer *eb;
 420	struct btrfs_key key;
 421	struct btrfs_key *key_for_search = &ref->key_for_search;
 422	struct btrfs_file_extent_item *fi;
 423	struct extent_inode_elem *eie = NULL, *old = NULL;
 424	u64 disk_byte;
 425	u64 wanted_disk_byte = ref->wanted_disk_byte;
 426	u64 count = 0;
 427
 428	if (level != 0) {
 429		eb = path->nodes[level];
 430		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
 431		if (ret < 0)
 432			return ret;
 433		return 0;
 434	}
 435
 436	/*
 437	 * We normally enter this function with the path already pointing to
 438	 * the first item to check. But sometimes, we may enter it with
 439	 * slot==nritems. In that case, go to the next leaf before we continue.
 440	 */
 441	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
 442		if (time_seq == SEQ_LAST)
 443			ret = btrfs_next_leaf(root, path);
 444		else
 445			ret = btrfs_next_old_leaf(root, path, time_seq);
 446	}
 447
 448	while (!ret && count < total_refs) {
 449		eb = path->nodes[0];
 450		slot = path->slots[0];
 451
 452		btrfs_item_key_to_cpu(eb, &key, slot);
 453
 454		if (key.objectid != key_for_search->objectid ||
 455		    key.type != BTRFS_EXTENT_DATA_KEY)
 456			break;
 457
 458		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 459		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
 460
 461		if (disk_byte == wanted_disk_byte) {
 462			eie = NULL;
 463			old = NULL;
 464			count++;
 465			if (extent_item_pos) {
 466				ret = check_extent_in_eb(&key, eb, fi,
 467						*extent_item_pos,
 468						&eie, ignore_offset);
 469				if (ret < 0)
 470					break;
 471			}
 472			if (ret > 0)
 473				goto next;
 474			ret = ulist_add_merge_ptr(parents, eb->start,
 475						  eie, (void **)&old, GFP_NOFS);
 476			if (ret < 0)
 477				break;
 478			if (!ret && extent_item_pos) {
 479				while (old->next)
 480					old = old->next;
 481				old->next = eie;
 482			}
 483			eie = NULL;
 484		}
 485next:
 486		if (time_seq == SEQ_LAST)
 487			ret = btrfs_next_item(root, path);
 488		else
 489			ret = btrfs_next_old_item(root, path, time_seq);
 490	}
 491
 492	if (ret > 0)
 493		ret = 0;
 494	else if (ret < 0)
 495		free_inode_elem_list(eie);
 496	return ret;
 497}
 498
 499/*
 500 * resolve an indirect backref in the form (root_id, key, level)
 501 * to a logical address
 502 */
 503static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
 504				struct btrfs_path *path, u64 time_seq,
 505				struct prelim_ref *ref, struct ulist *parents,
 506				const u64 *extent_item_pos, u64 total_refs,
 507				bool ignore_offset)
 508{
 509	struct btrfs_root *root;
 510	struct btrfs_key root_key;
 511	struct extent_buffer *eb;
 512	int ret = 0;
 513	int root_level;
 514	int level = ref->level;
 515	int index;
 516
 517	root_key.objectid = ref->root_id;
 518	root_key.type = BTRFS_ROOT_ITEM_KEY;
 519	root_key.offset = (u64)-1;
 520
 521	index = srcu_read_lock(&fs_info->subvol_srcu);
 522
 523	root = btrfs_get_fs_root(fs_info, &root_key, false);
 524	if (IS_ERR(root)) {
 525		srcu_read_unlock(&fs_info->subvol_srcu, index);
 526		ret = PTR_ERR(root);
 527		goto out;
 528	}
 529
 530	if (btrfs_is_testing(fs_info)) {
 531		srcu_read_unlock(&fs_info->subvol_srcu, index);
 532		ret = -ENOENT;
 533		goto out;
 534	}
 535
 536	if (path->search_commit_root)
 537		root_level = btrfs_header_level(root->commit_root);
 538	else if (time_seq == SEQ_LAST)
 539		root_level = btrfs_header_level(root->node);
 540	else
 541		root_level = btrfs_old_root_level(root, time_seq);
 542
 543	if (root_level + 1 == level) {
 544		srcu_read_unlock(&fs_info->subvol_srcu, index);
 545		goto out;
 546	}
 547
 548	path->lowest_level = level;
 549	if (time_seq == SEQ_LAST)
 550		ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
 551					0, 0);
 552	else
 553		ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
 554					    time_seq);
 555
 556	/* root node has been locked, we can release @subvol_srcu safely here */
 557	srcu_read_unlock(&fs_info->subvol_srcu, index);
 558
 559	btrfs_debug(fs_info,
 560		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
 561		 ref->root_id, level, ref->count, ret,
 562		 ref->key_for_search.objectid, ref->key_for_search.type,
 563		 ref->key_for_search.offset);
 564	if (ret < 0)
 565		goto out;
 566
 567	eb = path->nodes[level];
 568	while (!eb) {
 569		if (WARN_ON(!level)) {
 570			ret = 1;
 571			goto out;
 572		}
 573		level--;
 574		eb = path->nodes[level];
 575	}
 576
 577	ret = add_all_parents(root, path, parents, ref, level, time_seq,
 578			      extent_item_pos, total_refs, ignore_offset);
 579out:
 580	path->lowest_level = 0;
 581	btrfs_release_path(path);
 582	return ret;
 583}
 584
 585static struct extent_inode_elem *
 586unode_aux_to_inode_list(struct ulist_node *node)
 587{
 588	if (!node)
 589		return NULL;
 590	return (struct extent_inode_elem *)(uintptr_t)node->aux;
 591}
 592
 593/*
 594 * We maintain three separate rbtrees: one for direct refs, one for
 595 * indirect refs which have a key, and one for indirect refs which do not
 596 * have a key. Each tree does merge on insertion.
 597 *
 598 * Once all of the references are located, we iterate over the tree of
 599 * indirect refs with missing keys. An appropriate key is located and
 600 * the ref is moved onto the tree for indirect refs. After all missing
 601 * keys are thus located, we iterate over the indirect ref tree, resolve
 602 * each reference, and then insert the resolved reference onto the
 603 * direct tree (merging there too).
 604 *
 605 * New backrefs (i.e., for parent nodes) are added to the appropriate
 606 * rbtree as they are encountered. The new backrefs are subsequently
 607 * resolved as above.
 608 */
 609static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
 610				 struct btrfs_path *path, u64 time_seq,
 611				 struct preftrees *preftrees,
 612				 const u64 *extent_item_pos, u64 total_refs,
 613				 struct share_check *sc, bool ignore_offset)
 614{
 615	int err;
 616	int ret = 0;
 
 
 
 617	struct ulist *parents;
 618	struct ulist_node *node;
 619	struct ulist_iterator uiter;
 620	struct rb_node *rnode;
 621
 622	parents = ulist_alloc(GFP_NOFS);
 623	if (!parents)
 624		return -ENOMEM;
 625
 626	/*
 627	 * We could trade memory usage for performance here by iterating
 628	 * the tree, allocating new refs for each insertion, and then
 629	 * freeing the entire indirect tree when we're done.  In some test
 630	 * cases, the tree can grow quite large (~200k objects).
 631	 */
 632	while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
 633		struct prelim_ref *ref;
 634
 635		ref = rb_entry(rnode, struct prelim_ref, rbnode);
 636		if (WARN(ref->parent,
 637			 "BUG: direct ref found in indirect tree")) {
 638			ret = -EINVAL;
 639			goto out;
 640		}
 641
 642		rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
 643		preftrees->indirect.count--;
 644
 645		if (ref->count == 0) {
 646			free_pref(ref);
 647			continue;
 648		}
 649
 650		if (sc && sc->root_objectid &&
 651		    ref->root_id != sc->root_objectid) {
 652			free_pref(ref);
 653			ret = BACKREF_FOUND_SHARED;
 654			goto out;
 655		}
 656		err = resolve_indirect_ref(fs_info, path, time_seq, ref,
 657					   parents, extent_item_pos,
 658					   total_refs, ignore_offset);
 659		/*
 660		 * we can only tolerate ENOENT,otherwise,we should catch error
 661		 * and return directly.
 662		 */
 663		if (err == -ENOENT) {
 664			prelim_ref_insert(fs_info, &preftrees->direct, ref,
 665					  NULL);
 666			continue;
 667		} else if (err) {
 668			free_pref(ref);
 669			ret = err;
 670			goto out;
 671		}
 672
 673		/* we put the first parent into the ref at hand */
 674		ULIST_ITER_INIT(&uiter);
 675		node = ulist_next(parents, &uiter);
 676		ref->parent = node ? node->val : 0;
 677		ref->inode_list = unode_aux_to_inode_list(node);
 
 678
 679		/* Add a prelim_ref(s) for any other parent(s). */
 680		while ((node = ulist_next(parents, &uiter))) {
 681			struct prelim_ref *new_ref;
 682
 683			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
 684						   GFP_NOFS);
 685			if (!new_ref) {
 686				free_pref(ref);
 687				ret = -ENOMEM;
 688				goto out;
 689			}
 690			memcpy(new_ref, ref, sizeof(*ref));
 691			new_ref->parent = node->val;
 692			new_ref->inode_list = unode_aux_to_inode_list(node);
 693			prelim_ref_insert(fs_info, &preftrees->direct,
 694					  new_ref, NULL);
 695		}
 696
 697		/*
 698		 * Now it's a direct ref, put it in the direct tree. We must
 699		 * do this last because the ref could be merged/freed here.
 700		 */
 701		prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
 702
 703		ulist_reinit(parents);
 704		cond_resched();
 705	}
 706out:
 707	ulist_free(parents);
 708	return ret;
 709}
 710
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 711/*
 712 * read tree blocks and add keys where required.
 713 */
 714static int add_missing_keys(struct btrfs_fs_info *fs_info,
 715			    struct preftrees *preftrees, bool lock)
 716{
 717	struct prelim_ref *ref;
 718	struct extent_buffer *eb;
 719	struct preftree *tree = &preftrees->indirect_missing_keys;
 720	struct rb_node *node;
 721
 722	while ((node = rb_first_cached(&tree->root))) {
 723		ref = rb_entry(node, struct prelim_ref, rbnode);
 724		rb_erase_cached(node, &tree->root);
 725
 726		BUG_ON(ref->parent);	/* should not be a direct ref */
 727		BUG_ON(ref->key_for_search.type);
 
 
 
 728		BUG_ON(!ref->wanted_disk_byte);
 729
 730		eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0,
 731				     ref->level - 1, NULL);
 732		if (IS_ERR(eb)) {
 733			free_pref(ref);
 734			return PTR_ERR(eb);
 735		} else if (!extent_buffer_uptodate(eb)) {
 736			free_pref(ref);
 737			free_extent_buffer(eb);
 738			return -EIO;
 739		}
 740		if (lock)
 741			btrfs_tree_read_lock(eb);
 742		if (btrfs_header_level(eb) == 0)
 743			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
 744		else
 745			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
 746		if (lock)
 747			btrfs_tree_read_unlock(eb);
 748		free_extent_buffer(eb);
 749		prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
 750		cond_resched();
 751	}
 752	return 0;
 753}
 754
 755/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 756 * add all currently queued delayed refs from this head whose seq nr is
 757 * smaller or equal that seq to the list
 758 */
 759static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
 760			    struct btrfs_delayed_ref_head *head, u64 seq,
 761			    struct preftrees *preftrees, u64 *total_refs,
 762			    struct share_check *sc)
 763{
 764	struct btrfs_delayed_ref_node *node;
 765	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
 766	struct btrfs_key key;
 767	struct btrfs_key tmp_op_key;
 768	struct rb_node *n;
 769	int count;
 770	int ret = 0;
 771
 772	if (extent_op && extent_op->update_key)
 773		btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
 774
 775	spin_lock(&head->lock);
 776	for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
 777		node = rb_entry(n, struct btrfs_delayed_ref_node,
 778				ref_node);
 779		if (node->seq > seq)
 780			continue;
 781
 782		switch (node->action) {
 783		case BTRFS_ADD_DELAYED_EXTENT:
 784		case BTRFS_UPDATE_DELAYED_HEAD:
 785			WARN_ON(1);
 786			continue;
 787		case BTRFS_ADD_DELAYED_REF:
 788			count = node->ref_mod;
 789			break;
 790		case BTRFS_DROP_DELAYED_REF:
 791			count = node->ref_mod * -1;
 792			break;
 793		default:
 794			BUG();
 795		}
 796		*total_refs += count;
 797		switch (node->type) {
 798		case BTRFS_TREE_BLOCK_REF_KEY: {
 799			/* NORMAL INDIRECT METADATA backref */
 800			struct btrfs_delayed_tree_ref *ref;
 801
 802			ref = btrfs_delayed_node_to_tree_ref(node);
 803			ret = add_indirect_ref(fs_info, preftrees, ref->root,
 804					       &tmp_op_key, ref->level + 1,
 805					       node->bytenr, count, sc,
 806					       GFP_ATOMIC);
 807			break;
 808		}
 809		case BTRFS_SHARED_BLOCK_REF_KEY: {
 810			/* SHARED DIRECT METADATA backref */
 811			struct btrfs_delayed_tree_ref *ref;
 812
 813			ref = btrfs_delayed_node_to_tree_ref(node);
 814
 815			ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
 816					     ref->parent, node->bytenr, count,
 817					     sc, GFP_ATOMIC);
 818			break;
 819		}
 820		case BTRFS_EXTENT_DATA_REF_KEY: {
 821			/* NORMAL INDIRECT DATA backref */
 822			struct btrfs_delayed_data_ref *ref;
 823			ref = btrfs_delayed_node_to_data_ref(node);
 824
 825			key.objectid = ref->objectid;
 826			key.type = BTRFS_EXTENT_DATA_KEY;
 827			key.offset = ref->offset;
 828
 829			/*
 830			 * Found a inum that doesn't match our known inum, we
 831			 * know it's shared.
 832			 */
 833			if (sc && sc->inum && ref->objectid != sc->inum) {
 834				ret = BACKREF_FOUND_SHARED;
 835				goto out;
 836			}
 837
 838			ret = add_indirect_ref(fs_info, preftrees, ref->root,
 839					       &key, 0, node->bytenr, count, sc,
 840					       GFP_ATOMIC);
 841			break;
 842		}
 843		case BTRFS_SHARED_DATA_REF_KEY: {
 844			/* SHARED DIRECT FULL backref */
 845			struct btrfs_delayed_data_ref *ref;
 846
 847			ref = btrfs_delayed_node_to_data_ref(node);
 848
 849			ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
 850					     node->bytenr, count, sc,
 851					     GFP_ATOMIC);
 852			break;
 853		}
 854		default:
 855			WARN_ON(1);
 856		}
 857		/*
 858		 * We must ignore BACKREF_FOUND_SHARED until all delayed
 859		 * refs have been checked.
 860		 */
 861		if (ret && (ret != BACKREF_FOUND_SHARED))
 862			break;
 863	}
 864	if (!ret)
 865		ret = extent_is_shared(sc);
 866out:
 867	spin_unlock(&head->lock);
 868	return ret;
 869}
 870
 871/*
 872 * add all inline backrefs for bytenr to the list
 873 *
 874 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
 875 */
 876static int add_inline_refs(const struct btrfs_fs_info *fs_info,
 877			   struct btrfs_path *path, u64 bytenr,
 878			   int *info_level, struct preftrees *preftrees,
 879			   u64 *total_refs, struct share_check *sc)
 880{
 881	int ret = 0;
 882	int slot;
 883	struct extent_buffer *leaf;
 884	struct btrfs_key key;
 885	struct btrfs_key found_key;
 886	unsigned long ptr;
 887	unsigned long end;
 888	struct btrfs_extent_item *ei;
 889	u64 flags;
 890	u64 item_size;
 891
 892	/*
 893	 * enumerate all inline refs
 894	 */
 895	leaf = path->nodes[0];
 896	slot = path->slots[0];
 897
 898	item_size = btrfs_item_size_nr(leaf, slot);
 899	BUG_ON(item_size < sizeof(*ei));
 900
 901	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
 902	flags = btrfs_extent_flags(leaf, ei);
 903	*total_refs += btrfs_extent_refs(leaf, ei);
 904	btrfs_item_key_to_cpu(leaf, &found_key, slot);
 905
 906	ptr = (unsigned long)(ei + 1);
 907	end = (unsigned long)ei + item_size;
 908
 909	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
 910	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 911		struct btrfs_tree_block_info *info;
 912
 913		info = (struct btrfs_tree_block_info *)ptr;
 914		*info_level = btrfs_tree_block_level(leaf, info);
 915		ptr += sizeof(struct btrfs_tree_block_info);
 916		BUG_ON(ptr > end);
 917	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
 918		*info_level = found_key.offset;
 919	} else {
 920		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
 921	}
 922
 923	while (ptr < end) {
 924		struct btrfs_extent_inline_ref *iref;
 925		u64 offset;
 926		int type;
 927
 928		iref = (struct btrfs_extent_inline_ref *)ptr;
 929		type = btrfs_get_extent_inline_ref_type(leaf, iref,
 930							BTRFS_REF_TYPE_ANY);
 931		if (type == BTRFS_REF_TYPE_INVALID)
 932			return -EUCLEAN;
 933
 934		offset = btrfs_extent_inline_ref_offset(leaf, iref);
 935
 936		switch (type) {
 937		case BTRFS_SHARED_BLOCK_REF_KEY:
 938			ret = add_direct_ref(fs_info, preftrees,
 939					     *info_level + 1, offset,
 940					     bytenr, 1, NULL, GFP_NOFS);
 941			break;
 942		case BTRFS_SHARED_DATA_REF_KEY: {
 943			struct btrfs_shared_data_ref *sdref;
 944			int count;
 945
 946			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
 947			count = btrfs_shared_data_ref_count(leaf, sdref);
 948
 949			ret = add_direct_ref(fs_info, preftrees, 0, offset,
 950					     bytenr, count, sc, GFP_NOFS);
 951			break;
 952		}
 953		case BTRFS_TREE_BLOCK_REF_KEY:
 954			ret = add_indirect_ref(fs_info, preftrees, offset,
 955					       NULL, *info_level + 1,
 956					       bytenr, 1, NULL, GFP_NOFS);
 957			break;
 958		case BTRFS_EXTENT_DATA_REF_KEY: {
 959			struct btrfs_extent_data_ref *dref;
 960			int count;
 961			u64 root;
 962
 963			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
 964			count = btrfs_extent_data_ref_count(leaf, dref);
 965			key.objectid = btrfs_extent_data_ref_objectid(leaf,
 966								      dref);
 967			key.type = BTRFS_EXTENT_DATA_KEY;
 968			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
 969
 970			if (sc && sc->inum && key.objectid != sc->inum) {
 971				ret = BACKREF_FOUND_SHARED;
 972				break;
 973			}
 974
 975			root = btrfs_extent_data_ref_root(leaf, dref);
 976
 977			ret = add_indirect_ref(fs_info, preftrees, root,
 978					       &key, 0, bytenr, count,
 979					       sc, GFP_NOFS);
 980			break;
 981		}
 982		default:
 983			WARN_ON(1);
 984		}
 985		if (ret)
 986			return ret;
 987		ptr += btrfs_extent_inline_ref_size(type);
 988	}
 989
 990	return 0;
 991}
 992
 993/*
 994 * add all non-inline backrefs for bytenr to the list
 995 *
 996 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
 997 */
 998static int add_keyed_refs(struct btrfs_fs_info *fs_info,
 999			  struct btrfs_path *path, u64 bytenr,
1000			  int info_level, struct preftrees *preftrees,
1001			  struct share_check *sc)
1002{
1003	struct btrfs_root *extent_root = fs_info->extent_root;
1004	int ret;
1005	int slot;
1006	struct extent_buffer *leaf;
1007	struct btrfs_key key;
1008
1009	while (1) {
1010		ret = btrfs_next_item(extent_root, path);
1011		if (ret < 0)
1012			break;
1013		if (ret) {
1014			ret = 0;
1015			break;
1016		}
1017
1018		slot = path->slots[0];
1019		leaf = path->nodes[0];
1020		btrfs_item_key_to_cpu(leaf, &key, slot);
1021
1022		if (key.objectid != bytenr)
1023			break;
1024		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1025			continue;
1026		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1027			break;
1028
1029		switch (key.type) {
1030		case BTRFS_SHARED_BLOCK_REF_KEY:
1031			/* SHARED DIRECT METADATA backref */
1032			ret = add_direct_ref(fs_info, preftrees,
1033					     info_level + 1, key.offset,
1034					     bytenr, 1, NULL, GFP_NOFS);
1035			break;
1036		case BTRFS_SHARED_DATA_REF_KEY: {
1037			/* SHARED DIRECT FULL backref */
1038			struct btrfs_shared_data_ref *sdref;
1039			int count;
1040
1041			sdref = btrfs_item_ptr(leaf, slot,
1042					      struct btrfs_shared_data_ref);
1043			count = btrfs_shared_data_ref_count(leaf, sdref);
1044			ret = add_direct_ref(fs_info, preftrees, 0,
1045					     key.offset, bytenr, count,
1046					     sc, GFP_NOFS);
1047			break;
1048		}
1049		case BTRFS_TREE_BLOCK_REF_KEY:
1050			/* NORMAL INDIRECT METADATA backref */
1051			ret = add_indirect_ref(fs_info, preftrees, key.offset,
1052					       NULL, info_level + 1, bytenr,
1053					       1, NULL, GFP_NOFS);
1054			break;
1055		case BTRFS_EXTENT_DATA_REF_KEY: {
1056			/* NORMAL INDIRECT DATA backref */
1057			struct btrfs_extent_data_ref *dref;
1058			int count;
1059			u64 root;
1060
1061			dref = btrfs_item_ptr(leaf, slot,
1062					      struct btrfs_extent_data_ref);
1063			count = btrfs_extent_data_ref_count(leaf, dref);
1064			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1065								      dref);
1066			key.type = BTRFS_EXTENT_DATA_KEY;
1067			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1068
1069			if (sc && sc->inum && key.objectid != sc->inum) {
1070				ret = BACKREF_FOUND_SHARED;
1071				break;
1072			}
1073
1074			root = btrfs_extent_data_ref_root(leaf, dref);
1075			ret = add_indirect_ref(fs_info, preftrees, root,
1076					       &key, 0, bytenr, count,
1077					       sc, GFP_NOFS);
1078			break;
1079		}
1080		default:
1081			WARN_ON(1);
1082		}
1083		if (ret)
1084			return ret;
1085
1086	}
1087
1088	return ret;
1089}
1090
1091/*
1092 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1093 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1094 * indirect refs to their parent bytenr.
1095 * When roots are found, they're added to the roots list
1096 *
1097 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
 
 
1098 * much like trans == NULL case, the difference only lies in it will not
1099 * commit root.
1100 * The special case is for qgroup to search roots in commit_transaction().
1101 *
1102 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1103 * shared extent is detected.
1104 *
1105 * Otherwise this returns 0 for success and <0 for an error.
1106 *
1107 * If ignore_offset is set to false, only extent refs whose offsets match
1108 * extent_item_pos are returned.  If true, every extent ref is returned
1109 * and extent_item_pos is ignored.
1110 *
1111 * FIXME some caching might speed things up
1112 */
1113static int find_parent_nodes(struct btrfs_trans_handle *trans,
1114			     struct btrfs_fs_info *fs_info, u64 bytenr,
1115			     u64 time_seq, struct ulist *refs,
1116			     struct ulist *roots, const u64 *extent_item_pos,
1117			     struct share_check *sc, bool ignore_offset)
1118{
1119	struct btrfs_key key;
1120	struct btrfs_path *path;
1121	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1122	struct btrfs_delayed_ref_head *head;
1123	int info_level = 0;
1124	int ret;
1125	struct prelim_ref *ref;
1126	struct rb_node *node;
 
1127	struct extent_inode_elem *eie = NULL;
1128	/* total of both direct AND indirect refs! */
1129	u64 total_refs = 0;
1130	struct preftrees preftrees = {
1131		.direct = PREFTREE_INIT,
1132		.indirect = PREFTREE_INIT,
1133		.indirect_missing_keys = PREFTREE_INIT
1134	};
1135
1136	key.objectid = bytenr;
1137	key.offset = (u64)-1;
1138	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1139		key.type = BTRFS_METADATA_ITEM_KEY;
1140	else
1141		key.type = BTRFS_EXTENT_ITEM_KEY;
1142
1143	path = btrfs_alloc_path();
1144	if (!path)
1145		return -ENOMEM;
1146	if (!trans) {
1147		path->search_commit_root = 1;
1148		path->skip_locking = 1;
1149	}
1150
1151	if (time_seq == SEQ_LAST)
1152		path->skip_locking = 1;
1153
1154	/*
1155	 * grab both a lock on the path and a lock on the delayed ref head.
1156	 * We need both to get a consistent picture of how the refs look
1157	 * at a specified point in time
1158	 */
1159again:
1160	head = NULL;
1161
1162	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1163	if (ret < 0)
1164		goto out;
1165	BUG_ON(ret == 0);
1166
1167#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1168	if (trans && likely(trans->type != __TRANS_DUMMY) &&
1169	    time_seq != SEQ_LAST) {
1170#else
1171	if (trans && time_seq != SEQ_LAST) {
1172#endif
1173		/*
1174		 * look if there are updates for this ref queued and lock the
1175		 * head
1176		 */
1177		delayed_refs = &trans->transaction->delayed_refs;
1178		spin_lock(&delayed_refs->lock);
1179		head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1180		if (head) {
1181			if (!mutex_trylock(&head->mutex)) {
1182				refcount_inc(&head->refs);
1183				spin_unlock(&delayed_refs->lock);
1184
1185				btrfs_release_path(path);
1186
1187				/*
1188				 * Mutex was contended, block until it's
1189				 * released and try again
1190				 */
1191				mutex_lock(&head->mutex);
1192				mutex_unlock(&head->mutex);
1193				btrfs_put_delayed_ref_head(head);
1194				goto again;
1195			}
1196			spin_unlock(&delayed_refs->lock);
1197			ret = add_delayed_refs(fs_info, head, time_seq,
1198					       &preftrees, &total_refs, sc);
 
1199			mutex_unlock(&head->mutex);
1200			if (ret)
1201				goto out;
1202		} else {
1203			spin_unlock(&delayed_refs->lock);
1204		}
1205	}
1206
1207	if (path->slots[0]) {
1208		struct extent_buffer *leaf;
1209		int slot;
1210
1211		path->slots[0]--;
1212		leaf = path->nodes[0];
1213		slot = path->slots[0];
1214		btrfs_item_key_to_cpu(leaf, &key, slot);
1215		if (key.objectid == bytenr &&
1216		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
1217		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1218			ret = add_inline_refs(fs_info, path, bytenr,
1219					      &info_level, &preftrees,
1220					      &total_refs, sc);
1221			if (ret)
1222				goto out;
1223			ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1224					     &preftrees, sc);
1225			if (ret)
1226				goto out;
1227		}
1228	}
1229
1230	btrfs_release_path(path);
1231
1232	ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
 
 
1233	if (ret)
1234		goto out;
1235
1236	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1237
1238	ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1239				    extent_item_pos, total_refs, sc, ignore_offset);
 
1240	if (ret)
1241		goto out;
1242
1243	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1244
1245	/*
1246	 * This walks the tree of merged and resolved refs. Tree blocks are
1247	 * read in as needed. Unique entries are added to the ulist, and
1248	 * the list of found roots is updated.
1249	 *
1250	 * We release the entire tree in one go before returning.
1251	 */
1252	node = rb_first_cached(&preftrees.direct.root);
1253	while (node) {
1254		ref = rb_entry(node, struct prelim_ref, rbnode);
1255		node = rb_next(&ref->rbnode);
1256		/*
1257		 * ref->count < 0 can happen here if there are delayed
1258		 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1259		 * prelim_ref_insert() relies on this when merging
1260		 * identical refs to keep the overall count correct.
1261		 * prelim_ref_insert() will merge only those refs
1262		 * which compare identically.  Any refs having
1263		 * e.g. different offsets would not be merged,
1264		 * and would retain their original ref->count < 0.
1265		 */
1266		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1267			if (sc && sc->root_objectid &&
1268			    ref->root_id != sc->root_objectid) {
1269				ret = BACKREF_FOUND_SHARED;
1270				goto out;
1271			}
1272
1273			/* no parent == root of tree */
1274			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1275			if (ret < 0)
1276				goto out;
1277		}
1278		if (ref->count && ref->parent) {
1279			if (extent_item_pos && !ref->inode_list &&
1280			    ref->level == 0) {
1281				struct extent_buffer *eb;
1282
1283				eb = read_tree_block(fs_info, ref->parent, 0,
1284						     ref->level, NULL);
1285				if (IS_ERR(eb)) {
1286					ret = PTR_ERR(eb);
1287					goto out;
1288				} else if (!extent_buffer_uptodate(eb)) {
1289					free_extent_buffer(eb);
1290					ret = -EIO;
1291					goto out;
1292				}
1293
1294				if (!path->skip_locking) {
1295					btrfs_tree_read_lock(eb);
1296					btrfs_set_lock_blocking_read(eb);
1297				}
1298				ret = find_extent_in_eb(eb, bytenr,
1299							*extent_item_pos, &eie, ignore_offset);
1300				if (!path->skip_locking)
1301					btrfs_tree_read_unlock_blocking(eb);
1302				free_extent_buffer(eb);
1303				if (ret < 0)
1304					goto out;
1305				ref->inode_list = eie;
1306			}
1307			ret = ulist_add_merge_ptr(refs, ref->parent,
1308						  ref->inode_list,
1309						  (void **)&eie, GFP_NOFS);
1310			if (ret < 0)
1311				goto out;
1312			if (!ret && extent_item_pos) {
1313				/*
1314				 * we've recorded that parent, so we must extend
1315				 * its inode list here
1316				 */
1317				BUG_ON(!eie);
1318				while (eie->next)
1319					eie = eie->next;
1320				eie->next = ref->inode_list;
1321			}
1322			eie = NULL;
1323		}
1324		cond_resched();
 
1325	}
1326
1327out:
1328	btrfs_free_path(path);
1329
1330	prelim_release(&preftrees.direct);
1331	prelim_release(&preftrees.indirect);
1332	prelim_release(&preftrees.indirect_missing_keys);
1333
 
 
 
 
 
 
1334	if (ret < 0)
1335		free_inode_elem_list(eie);
1336	return ret;
1337}
1338
1339static void free_leaf_list(struct ulist *blocks)
1340{
1341	struct ulist_node *node = NULL;
1342	struct extent_inode_elem *eie;
1343	struct ulist_iterator uiter;
1344
1345	ULIST_ITER_INIT(&uiter);
1346	while ((node = ulist_next(blocks, &uiter))) {
1347		if (!node->aux)
1348			continue;
1349		eie = unode_aux_to_inode_list(node);
1350		free_inode_elem_list(eie);
1351		node->aux = 0;
1352	}
1353
1354	ulist_free(blocks);
1355}
1356
1357/*
1358 * Finds all leafs with a reference to the specified combination of bytenr and
1359 * offset. key_list_head will point to a list of corresponding keys (caller must
1360 * free each list element). The leafs will be stored in the leafs ulist, which
1361 * must be freed with ulist_free.
1362 *
1363 * returns 0 on success, <0 on error
1364 */
1365static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1366				struct btrfs_fs_info *fs_info, u64 bytenr,
1367				u64 time_seq, struct ulist **leafs,
1368				const u64 *extent_item_pos, bool ignore_offset)
1369{
1370	int ret;
1371
1372	*leafs = ulist_alloc(GFP_NOFS);
1373	if (!*leafs)
1374		return -ENOMEM;
1375
1376	ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1377				*leafs, NULL, extent_item_pos, NULL, ignore_offset);
1378	if (ret < 0 && ret != -ENOENT) {
1379		free_leaf_list(*leafs);
1380		return ret;
1381	}
1382
1383	return 0;
1384}
1385
1386/*
1387 * walk all backrefs for a given extent to find all roots that reference this
1388 * extent. Walking a backref means finding all extents that reference this
1389 * extent and in turn walk the backrefs of those, too. Naturally this is a
1390 * recursive process, but here it is implemented in an iterative fashion: We
1391 * find all referencing extents for the extent in question and put them on a
1392 * list. In turn, we find all referencing extents for those, further appending
1393 * to the list. The way we iterate the list allows adding more elements after
1394 * the current while iterating. The process stops when we reach the end of the
1395 * list. Found roots are added to the roots list.
1396 *
1397 * returns 0 on success, < 0 on error.
1398 */
1399static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1400				     struct btrfs_fs_info *fs_info, u64 bytenr,
1401				     u64 time_seq, struct ulist **roots,
1402				     bool ignore_offset)
1403{
1404	struct ulist *tmp;
1405	struct ulist_node *node = NULL;
1406	struct ulist_iterator uiter;
1407	int ret;
1408
1409	tmp = ulist_alloc(GFP_NOFS);
1410	if (!tmp)
1411		return -ENOMEM;
1412	*roots = ulist_alloc(GFP_NOFS);
1413	if (!*roots) {
1414		ulist_free(tmp);
1415		return -ENOMEM;
1416	}
1417
1418	ULIST_ITER_INIT(&uiter);
1419	while (1) {
1420		ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1421					tmp, *roots, NULL, NULL, ignore_offset);
1422		if (ret < 0 && ret != -ENOENT) {
1423			ulist_free(tmp);
1424			ulist_free(*roots);
1425			return ret;
1426		}
1427		node = ulist_next(tmp, &uiter);
1428		if (!node)
1429			break;
1430		bytenr = node->val;
1431		cond_resched();
1432	}
1433
1434	ulist_free(tmp);
1435	return 0;
1436}
1437
1438int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1439			 struct btrfs_fs_info *fs_info, u64 bytenr,
1440			 u64 time_seq, struct ulist **roots,
1441			 bool ignore_offset)
1442{
1443	int ret;
1444
1445	if (!trans)
1446		down_read(&fs_info->commit_root_sem);
1447	ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1448					time_seq, roots, ignore_offset);
1449	if (!trans)
1450		up_read(&fs_info->commit_root_sem);
1451	return ret;
1452}
1453
1454/**
1455 * btrfs_check_shared - tell us whether an extent is shared
1456 *
 
 
1457 * btrfs_check_shared uses the backref walking code but will short
1458 * circuit as soon as it finds a root or inode that doesn't match the
1459 * one passed in. This provides a significant performance benefit for
1460 * callers (such as fiemap) which want to know whether the extent is
1461 * shared but do not need a ref count.
1462 *
1463 * This attempts to attach to the running transaction in order to account for
1464 * delayed refs, but continues on even when no running transaction exists.
1465 *
1466 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1467 */
1468int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr,
1469		struct ulist *roots, struct ulist *tmp)
 
1470{
1471	struct btrfs_fs_info *fs_info = root->fs_info;
1472	struct btrfs_trans_handle *trans;
1473	struct ulist_iterator uiter;
1474	struct ulist_node *node;
1475	struct seq_list elem = SEQ_LIST_INIT(elem);
1476	int ret = 0;
1477	struct share_check shared = {
1478		.root_objectid = root->root_key.objectid,
1479		.inum = inum,
1480		.share_count = 0,
1481	};
1482
1483	ulist_init(roots);
1484	ulist_init(tmp);
1485
1486	trans = btrfs_join_transaction_nostart(root);
1487	if (IS_ERR(trans)) {
1488		if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1489			ret = PTR_ERR(trans);
1490			goto out;
1491		}
1492		trans = NULL;
1493		down_read(&fs_info->commit_root_sem);
1494	} else {
1495		btrfs_get_tree_mod_seq(fs_info, &elem);
1496	}
1497
 
 
 
 
1498	ULIST_ITER_INIT(&uiter);
1499	while (1) {
1500		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1501					roots, NULL, &shared, false);
1502		if (ret == BACKREF_FOUND_SHARED) {
1503			/* this is the only condition under which we return 1 */
1504			ret = 1;
1505			break;
1506		}
1507		if (ret < 0 && ret != -ENOENT)
1508			break;
1509		ret = 0;
1510		node = ulist_next(tmp, &uiter);
1511		if (!node)
1512			break;
1513		bytenr = node->val;
1514		shared.share_count = 0;
1515		cond_resched();
1516	}
1517
1518	if (trans) {
1519		btrfs_put_tree_mod_seq(fs_info, &elem);
1520		btrfs_end_transaction(trans);
1521	} else {
1522		up_read(&fs_info->commit_root_sem);
1523	}
1524out:
1525	ulist_release(roots);
1526	ulist_release(tmp);
1527	return ret;
1528}
1529
1530int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1531			  u64 start_off, struct btrfs_path *path,
1532			  struct btrfs_inode_extref **ret_extref,
1533			  u64 *found_off)
1534{
1535	int ret, slot;
1536	struct btrfs_key key;
1537	struct btrfs_key found_key;
1538	struct btrfs_inode_extref *extref;
1539	const struct extent_buffer *leaf;
1540	unsigned long ptr;
1541
1542	key.objectid = inode_objectid;
1543	key.type = BTRFS_INODE_EXTREF_KEY;
1544	key.offset = start_off;
1545
1546	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1547	if (ret < 0)
1548		return ret;
1549
1550	while (1) {
1551		leaf = path->nodes[0];
1552		slot = path->slots[0];
1553		if (slot >= btrfs_header_nritems(leaf)) {
1554			/*
1555			 * If the item at offset is not found,
1556			 * btrfs_search_slot will point us to the slot
1557			 * where it should be inserted. In our case
1558			 * that will be the slot directly before the
1559			 * next INODE_REF_KEY_V2 item. In the case
1560			 * that we're pointing to the last slot in a
1561			 * leaf, we must move one leaf over.
1562			 */
1563			ret = btrfs_next_leaf(root, path);
1564			if (ret) {
1565				if (ret >= 1)
1566					ret = -ENOENT;
1567				break;
1568			}
1569			continue;
1570		}
1571
1572		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1573
1574		/*
1575		 * Check that we're still looking at an extended ref key for
1576		 * this particular objectid. If we have different
1577		 * objectid or type then there are no more to be found
1578		 * in the tree and we can exit.
1579		 */
1580		ret = -ENOENT;
1581		if (found_key.objectid != inode_objectid)
1582			break;
1583		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1584			break;
1585
1586		ret = 0;
1587		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1588		extref = (struct btrfs_inode_extref *)ptr;
1589		*ret_extref = extref;
1590		if (found_off)
1591			*found_off = found_key.offset;
1592		break;
1593	}
1594
1595	return ret;
1596}
1597
1598/*
1599 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1600 * Elements of the path are separated by '/' and the path is guaranteed to be
1601 * 0-terminated. the path is only given within the current file system.
1602 * Therefore, it never starts with a '/'. the caller is responsible to provide
1603 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1604 * the start point of the resulting string is returned. this pointer is within
1605 * dest, normally.
1606 * in case the path buffer would overflow, the pointer is decremented further
1607 * as if output was written to the buffer, though no more output is actually
1608 * generated. that way, the caller can determine how much space would be
1609 * required for the path to fit into the buffer. in that case, the returned
1610 * value will be smaller than dest. callers must check this!
1611 */
1612char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1613			u32 name_len, unsigned long name_off,
1614			struct extent_buffer *eb_in, u64 parent,
1615			char *dest, u32 size)
1616{
1617	int slot;
1618	u64 next_inum;
1619	int ret;
1620	s64 bytes_left = ((s64)size) - 1;
1621	struct extent_buffer *eb = eb_in;
1622	struct btrfs_key found_key;
1623	int leave_spinning = path->leave_spinning;
1624	struct btrfs_inode_ref *iref;
1625
1626	if (bytes_left >= 0)
1627		dest[bytes_left] = '\0';
1628
1629	path->leave_spinning = 1;
1630	while (1) {
1631		bytes_left -= name_len;
1632		if (bytes_left >= 0)
1633			read_extent_buffer(eb, dest + bytes_left,
1634					   name_off, name_len);
1635		if (eb != eb_in) {
1636			if (!path->skip_locking)
1637				btrfs_tree_read_unlock_blocking(eb);
1638			free_extent_buffer(eb);
1639		}
1640		ret = btrfs_find_item(fs_root, path, parent, 0,
1641				BTRFS_INODE_REF_KEY, &found_key);
1642		if (ret > 0)
1643			ret = -ENOENT;
1644		if (ret)
1645			break;
1646
1647		next_inum = found_key.offset;
1648
1649		/* regular exit ahead */
1650		if (parent == next_inum)
1651			break;
1652
1653		slot = path->slots[0];
1654		eb = path->nodes[0];
1655		/* make sure we can use eb after releasing the path */
1656		if (eb != eb_in) {
1657			if (!path->skip_locking)
1658				btrfs_set_lock_blocking_read(eb);
1659			path->nodes[0] = NULL;
1660			path->locks[0] = 0;
1661		}
1662		btrfs_release_path(path);
1663		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1664
1665		name_len = btrfs_inode_ref_name_len(eb, iref);
1666		name_off = (unsigned long)(iref + 1);
1667
1668		parent = next_inum;
1669		--bytes_left;
1670		if (bytes_left >= 0)
1671			dest[bytes_left] = '/';
1672	}
1673
1674	btrfs_release_path(path);
1675	path->leave_spinning = leave_spinning;
1676
1677	if (ret)
1678		return ERR_PTR(ret);
1679
1680	return dest + bytes_left;
1681}
1682
1683/*
1684 * this makes the path point to (logical EXTENT_ITEM *)
1685 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1686 * tree blocks and <0 on error.
1687 */
1688int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1689			struct btrfs_path *path, struct btrfs_key *found_key,
1690			u64 *flags_ret)
1691{
1692	int ret;
1693	u64 flags;
1694	u64 size = 0;
1695	u32 item_size;
1696	const struct extent_buffer *eb;
1697	struct btrfs_extent_item *ei;
1698	struct btrfs_key key;
1699
1700	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1701		key.type = BTRFS_METADATA_ITEM_KEY;
1702	else
1703		key.type = BTRFS_EXTENT_ITEM_KEY;
1704	key.objectid = logical;
1705	key.offset = (u64)-1;
1706
1707	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1708	if (ret < 0)
1709		return ret;
1710
1711	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1712	if (ret) {
1713		if (ret > 0)
1714			ret = -ENOENT;
1715		return ret;
1716	}
1717	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1718	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1719		size = fs_info->nodesize;
1720	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1721		size = found_key->offset;
1722
1723	if (found_key->objectid > logical ||
1724	    found_key->objectid + size <= logical) {
1725		btrfs_debug(fs_info,
1726			"logical %llu is not within any extent", logical);
1727		return -ENOENT;
1728	}
1729
1730	eb = path->nodes[0];
1731	item_size = btrfs_item_size_nr(eb, path->slots[0]);
1732	BUG_ON(item_size < sizeof(*ei));
1733
1734	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1735	flags = btrfs_extent_flags(eb, ei);
1736
1737	btrfs_debug(fs_info,
1738		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1739		 logical, logical - found_key->objectid, found_key->objectid,
1740		 found_key->offset, flags, item_size);
1741
1742	WARN_ON(!flags_ret);
1743	if (flags_ret) {
1744		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1745			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1746		else if (flags & BTRFS_EXTENT_FLAG_DATA)
1747			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
1748		else
1749			BUG();
1750		return 0;
1751	}
1752
1753	return -EIO;
1754}
1755
1756/*
1757 * helper function to iterate extent inline refs. ptr must point to a 0 value
1758 * for the first call and may be modified. it is used to track state.
1759 * if more refs exist, 0 is returned and the next call to
1760 * get_extent_inline_ref must pass the modified ptr parameter to get the
1761 * next ref. after the last ref was processed, 1 is returned.
1762 * returns <0 on error
1763 */
1764static int get_extent_inline_ref(unsigned long *ptr,
1765				 const struct extent_buffer *eb,
1766				 const struct btrfs_key *key,
1767				 const struct btrfs_extent_item *ei,
1768				 u32 item_size,
1769				 struct btrfs_extent_inline_ref **out_eiref,
1770				 int *out_type)
1771{
1772	unsigned long end;
1773	u64 flags;
1774	struct btrfs_tree_block_info *info;
1775
1776	if (!*ptr) {
1777		/* first call */
1778		flags = btrfs_extent_flags(eb, ei);
1779		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1780			if (key->type == BTRFS_METADATA_ITEM_KEY) {
1781				/* a skinny metadata extent */
1782				*out_eiref =
1783				     (struct btrfs_extent_inline_ref *)(ei + 1);
1784			} else {
1785				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1786				info = (struct btrfs_tree_block_info *)(ei + 1);
1787				*out_eiref =
1788				   (struct btrfs_extent_inline_ref *)(info + 1);
1789			}
1790		} else {
1791			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1792		}
1793		*ptr = (unsigned long)*out_eiref;
1794		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1795			return -ENOENT;
1796	}
1797
1798	end = (unsigned long)ei + item_size;
1799	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1800	*out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1801						     BTRFS_REF_TYPE_ANY);
1802	if (*out_type == BTRFS_REF_TYPE_INVALID)
1803		return -EUCLEAN;
1804
1805	*ptr += btrfs_extent_inline_ref_size(*out_type);
1806	WARN_ON(*ptr > end);
1807	if (*ptr == end)
1808		return 1; /* last */
1809
1810	return 0;
1811}
1812
1813/*
1814 * reads the tree block backref for an extent. tree level and root are returned
1815 * through out_level and out_root. ptr must point to a 0 value for the first
1816 * call and may be modified (see get_extent_inline_ref comment).
1817 * returns 0 if data was provided, 1 if there was no more data to provide or
1818 * <0 on error.
1819 */
1820int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1821			    struct btrfs_key *key, struct btrfs_extent_item *ei,
1822			    u32 item_size, u64 *out_root, u8 *out_level)
1823{
1824	int ret;
1825	int type;
1826	struct btrfs_extent_inline_ref *eiref;
1827
1828	if (*ptr == (unsigned long)-1)
1829		return 1;
1830
1831	while (1) {
1832		ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1833					      &eiref, &type);
1834		if (ret < 0)
1835			return ret;
1836
1837		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1838		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1839			break;
1840
1841		if (ret == 1)
1842			return 1;
1843	}
1844
1845	/* we can treat both ref types equally here */
1846	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1847
1848	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1849		struct btrfs_tree_block_info *info;
1850
1851		info = (struct btrfs_tree_block_info *)(ei + 1);
1852		*out_level = btrfs_tree_block_level(eb, info);
1853	} else {
1854		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1855		*out_level = (u8)key->offset;
1856	}
1857
1858	if (ret == 1)
1859		*ptr = (unsigned long)-1;
1860
1861	return 0;
1862}
1863
1864static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1865			     struct extent_inode_elem *inode_list,
1866			     u64 root, u64 extent_item_objectid,
1867			     iterate_extent_inodes_t *iterate, void *ctx)
1868{
1869	struct extent_inode_elem *eie;
1870	int ret = 0;
1871
1872	for (eie = inode_list; eie; eie = eie->next) {
1873		btrfs_debug(fs_info,
1874			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1875			    extent_item_objectid, eie->inum,
1876			    eie->offset, root);
1877		ret = iterate(eie->inum, eie->offset, root, ctx);
1878		if (ret) {
1879			btrfs_debug(fs_info,
1880				    "stopping iteration for %llu due to ret=%d",
1881				    extent_item_objectid, ret);
1882			break;
1883		}
1884	}
1885
1886	return ret;
1887}
1888
1889/*
1890 * calls iterate() for every inode that references the extent identified by
1891 * the given parameters.
1892 * when the iterator function returns a non-zero value, iteration stops.
1893 */
1894int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1895				u64 extent_item_objectid, u64 extent_item_pos,
1896				int search_commit_root,
1897				iterate_extent_inodes_t *iterate, void *ctx,
1898				bool ignore_offset)
1899{
1900	int ret;
1901	struct btrfs_trans_handle *trans = NULL;
1902	struct ulist *refs = NULL;
1903	struct ulist *roots = NULL;
1904	struct ulist_node *ref_node = NULL;
1905	struct ulist_node *root_node = NULL;
1906	struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
1907	struct ulist_iterator ref_uiter;
1908	struct ulist_iterator root_uiter;
1909
1910	btrfs_debug(fs_info, "resolving all inodes for extent %llu",
1911			extent_item_objectid);
1912
1913	if (!search_commit_root) {
1914		trans = btrfs_attach_transaction(fs_info->extent_root);
1915		if (IS_ERR(trans)) {
1916			if (PTR_ERR(trans) != -ENOENT &&
1917			    PTR_ERR(trans) != -EROFS)
1918				return PTR_ERR(trans);
1919			trans = NULL;
1920		}
1921	}
1922
1923	if (trans)
1924		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1925	else
1926		down_read(&fs_info->commit_root_sem);
 
1927
1928	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1929				   tree_mod_seq_elem.seq, &refs,
1930				   &extent_item_pos, ignore_offset);
1931	if (ret)
1932		goto out;
1933
1934	ULIST_ITER_INIT(&ref_uiter);
1935	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1936		ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
1937						tree_mod_seq_elem.seq, &roots,
1938						ignore_offset);
1939		if (ret)
1940			break;
1941		ULIST_ITER_INIT(&root_uiter);
1942		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1943			btrfs_debug(fs_info,
1944				    "root %llu references leaf %llu, data list %#llx",
1945				    root_node->val, ref_node->val,
1946				    ref_node->aux);
1947			ret = iterate_leaf_refs(fs_info,
1948						(struct extent_inode_elem *)
1949						(uintptr_t)ref_node->aux,
1950						root_node->val,
1951						extent_item_objectid,
1952						iterate, ctx);
1953		}
1954		ulist_free(roots);
1955	}
1956
1957	free_leaf_list(refs);
1958out:
1959	if (trans) {
1960		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1961		btrfs_end_transaction(trans);
1962	} else {
1963		up_read(&fs_info->commit_root_sem);
1964	}
1965
1966	return ret;
1967}
1968
1969int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1970				struct btrfs_path *path,
1971				iterate_extent_inodes_t *iterate, void *ctx,
1972				bool ignore_offset)
1973{
1974	int ret;
1975	u64 extent_item_pos;
1976	u64 flags = 0;
1977	struct btrfs_key found_key;
1978	int search_commit_root = path->search_commit_root;
1979
1980	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1981	btrfs_release_path(path);
1982	if (ret < 0)
1983		return ret;
1984	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1985		return -EINVAL;
1986
1987	extent_item_pos = logical - found_key.objectid;
1988	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1989					extent_item_pos, search_commit_root,
1990					iterate, ctx, ignore_offset);
1991
1992	return ret;
1993}
1994
1995typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1996			      struct extent_buffer *eb, void *ctx);
1997
1998static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1999			      struct btrfs_path *path,
2000			      iterate_irefs_t *iterate, void *ctx)
2001{
2002	int ret = 0;
2003	int slot;
2004	u32 cur;
2005	u32 len;
2006	u32 name_len;
2007	u64 parent = 0;
2008	int found = 0;
2009	struct extent_buffer *eb;
2010	struct btrfs_item *item;
2011	struct btrfs_inode_ref *iref;
2012	struct btrfs_key found_key;
2013
2014	while (!ret) {
2015		ret = btrfs_find_item(fs_root, path, inum,
2016				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2017				&found_key);
2018
2019		if (ret < 0)
2020			break;
2021		if (ret) {
2022			ret = found ? 0 : -ENOENT;
2023			break;
2024		}
2025		++found;
2026
2027		parent = found_key.offset;
2028		slot = path->slots[0];
2029		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2030		if (!eb) {
2031			ret = -ENOMEM;
2032			break;
2033		}
 
 
 
2034		btrfs_release_path(path);
2035
2036		item = btrfs_item_nr(slot);
2037		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2038
2039		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2040			name_len = btrfs_inode_ref_name_len(eb, iref);
2041			/* path must be released before calling iterate()! */
2042			btrfs_debug(fs_root->fs_info,
2043				"following ref at offset %u for inode %llu in tree %llu",
2044				cur, found_key.objectid,
2045				fs_root->root_key.objectid);
2046			ret = iterate(parent, name_len,
2047				      (unsigned long)(iref + 1), eb, ctx);
2048			if (ret)
2049				break;
2050			len = sizeof(*iref) + name_len;
2051			iref = (struct btrfs_inode_ref *)((char *)iref + len);
2052		}
 
2053		free_extent_buffer(eb);
2054	}
2055
2056	btrfs_release_path(path);
2057
2058	return ret;
2059}
2060
2061static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2062				 struct btrfs_path *path,
2063				 iterate_irefs_t *iterate, void *ctx)
2064{
2065	int ret;
2066	int slot;
2067	u64 offset = 0;
2068	u64 parent;
2069	int found = 0;
2070	struct extent_buffer *eb;
2071	struct btrfs_inode_extref *extref;
2072	u32 item_size;
2073	u32 cur_offset;
2074	unsigned long ptr;
2075
2076	while (1) {
2077		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2078					    &offset);
2079		if (ret < 0)
2080			break;
2081		if (ret) {
2082			ret = found ? 0 : -ENOENT;
2083			break;
2084		}
2085		++found;
2086
2087		slot = path->slots[0];
2088		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2089		if (!eb) {
2090			ret = -ENOMEM;
2091			break;
2092		}
 
 
 
 
2093		btrfs_release_path(path);
2094
2095		item_size = btrfs_item_size_nr(eb, slot);
2096		ptr = btrfs_item_ptr_offset(eb, slot);
2097		cur_offset = 0;
2098
2099		while (cur_offset < item_size) {
2100			u32 name_len;
2101
2102			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2103			parent = btrfs_inode_extref_parent(eb, extref);
2104			name_len = btrfs_inode_extref_name_len(eb, extref);
2105			ret = iterate(parent, name_len,
2106				      (unsigned long)&extref->name, eb, ctx);
2107			if (ret)
2108				break;
2109
2110			cur_offset += btrfs_inode_extref_name_len(eb, extref);
2111			cur_offset += sizeof(*extref);
2112		}
 
2113		free_extent_buffer(eb);
2114
2115		offset++;
2116	}
2117
2118	btrfs_release_path(path);
2119
2120	return ret;
2121}
2122
2123static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2124			 struct btrfs_path *path, iterate_irefs_t *iterate,
2125			 void *ctx)
2126{
2127	int ret;
2128	int found_refs = 0;
2129
2130	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2131	if (!ret)
2132		++found_refs;
2133	else if (ret != -ENOENT)
2134		return ret;
2135
2136	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2137	if (ret == -ENOENT && found_refs)
2138		return 0;
2139
2140	return ret;
2141}
2142
2143/*
2144 * returns 0 if the path could be dumped (probably truncated)
2145 * returns <0 in case of an error
2146 */
2147static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2148			 struct extent_buffer *eb, void *ctx)
2149{
2150	struct inode_fs_paths *ipath = ctx;
2151	char *fspath;
2152	char *fspath_min;
2153	int i = ipath->fspath->elem_cnt;
2154	const int s_ptr = sizeof(char *);
2155	u32 bytes_left;
2156
2157	bytes_left = ipath->fspath->bytes_left > s_ptr ?
2158					ipath->fspath->bytes_left - s_ptr : 0;
2159
2160	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2161	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2162				   name_off, eb, inum, fspath_min, bytes_left);
2163	if (IS_ERR(fspath))
2164		return PTR_ERR(fspath);
2165
2166	if (fspath > fspath_min) {
2167		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2168		++ipath->fspath->elem_cnt;
2169		ipath->fspath->bytes_left = fspath - fspath_min;
2170	} else {
2171		++ipath->fspath->elem_missed;
2172		ipath->fspath->bytes_missing += fspath_min - fspath;
2173		ipath->fspath->bytes_left = 0;
2174	}
2175
2176	return 0;
2177}
2178
2179/*
2180 * this dumps all file system paths to the inode into the ipath struct, provided
2181 * is has been created large enough. each path is zero-terminated and accessed
2182 * from ipath->fspath->val[i].
2183 * when it returns, there are ipath->fspath->elem_cnt number of paths available
2184 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2185 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2186 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2187 * have been needed to return all paths.
2188 */
2189int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2190{
2191	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2192			     inode_to_path, ipath);
2193}
2194
2195struct btrfs_data_container *init_data_container(u32 total_bytes)
2196{
2197	struct btrfs_data_container *data;
2198	size_t alloc_bytes;
2199
2200	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2201	data = kvmalloc(alloc_bytes, GFP_KERNEL);
2202	if (!data)
2203		return ERR_PTR(-ENOMEM);
2204
2205	if (total_bytes >= sizeof(*data)) {
2206		data->bytes_left = total_bytes - sizeof(*data);
2207		data->bytes_missing = 0;
2208	} else {
2209		data->bytes_missing = sizeof(*data) - total_bytes;
2210		data->bytes_left = 0;
2211	}
2212
2213	data->elem_cnt = 0;
2214	data->elem_missed = 0;
2215
2216	return data;
2217}
2218
2219/*
2220 * allocates space to return multiple file system paths for an inode.
2221 * total_bytes to allocate are passed, note that space usable for actual path
2222 * information will be total_bytes - sizeof(struct inode_fs_paths).
2223 * the returned pointer must be freed with free_ipath() in the end.
2224 */
2225struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2226					struct btrfs_path *path)
2227{
2228	struct inode_fs_paths *ifp;
2229	struct btrfs_data_container *fspath;
2230
2231	fspath = init_data_container(total_bytes);
2232	if (IS_ERR(fspath))
2233		return ERR_CAST(fspath);
2234
2235	ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2236	if (!ifp) {
2237		kvfree(fspath);
2238		return ERR_PTR(-ENOMEM);
2239	}
2240
2241	ifp->btrfs_path = path;
2242	ifp->fspath = fspath;
2243	ifp->fs_root = fs_root;
2244
2245	return ifp;
2246}
2247
2248void free_ipath(struct inode_fs_paths *ipath)
2249{
2250	if (!ipath)
2251		return;
2252	kvfree(ipath->fspath);
2253	kfree(ipath);
2254}
v4.6
 
   1/*
   2 * Copyright (C) 2011 STRATO.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/vmalloc.h>
 
 
  20#include "ctree.h"
  21#include "disk-io.h"
  22#include "backref.h"
  23#include "ulist.h"
  24#include "transaction.h"
  25#include "delayed-ref.h"
  26#include "locking.h"
  27
  28/* Just an arbitrary number so we can be sure this happened */
  29#define BACKREF_FOUND_SHARED 6
  30
  31struct extent_inode_elem {
  32	u64 inum;
  33	u64 offset;
  34	struct extent_inode_elem *next;
  35};
  36
  37static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
  38				struct btrfs_file_extent_item *fi,
  39				u64 extent_item_pos,
  40				struct extent_inode_elem **eie)
 
 
  41{
  42	u64 offset = 0;
  43	struct extent_inode_elem *e;
  44
  45	if (!btrfs_file_extent_compression(eb, fi) &&
 
  46	    !btrfs_file_extent_encryption(eb, fi) &&
  47	    !btrfs_file_extent_other_encoding(eb, fi)) {
  48		u64 data_offset;
  49		u64 data_len;
  50
  51		data_offset = btrfs_file_extent_offset(eb, fi);
  52		data_len = btrfs_file_extent_num_bytes(eb, fi);
  53
  54		if (extent_item_pos < data_offset ||
  55		    extent_item_pos >= data_offset + data_len)
  56			return 1;
  57		offset = extent_item_pos - data_offset;
  58	}
  59
  60	e = kmalloc(sizeof(*e), GFP_NOFS);
  61	if (!e)
  62		return -ENOMEM;
  63
  64	e->next = *eie;
  65	e->inum = key->objectid;
  66	e->offset = key->offset + offset;
  67	*eie = e;
  68
  69	return 0;
  70}
  71
  72static void free_inode_elem_list(struct extent_inode_elem *eie)
  73{
  74	struct extent_inode_elem *eie_next;
  75
  76	for (; eie; eie = eie_next) {
  77		eie_next = eie->next;
  78		kfree(eie);
  79	}
  80}
  81
  82static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
  83				u64 extent_item_pos,
  84				struct extent_inode_elem **eie)
 
  85{
  86	u64 disk_byte;
  87	struct btrfs_key key;
  88	struct btrfs_file_extent_item *fi;
  89	int slot;
  90	int nritems;
  91	int extent_type;
  92	int ret;
  93
  94	/*
  95	 * from the shared data ref, we only have the leaf but we need
  96	 * the key. thus, we must look into all items and see that we
  97	 * find one (some) with a reference to our extent item.
  98	 */
  99	nritems = btrfs_header_nritems(eb);
 100	for (slot = 0; slot < nritems; ++slot) {
 101		btrfs_item_key_to_cpu(eb, &key, slot);
 102		if (key.type != BTRFS_EXTENT_DATA_KEY)
 103			continue;
 104		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 105		extent_type = btrfs_file_extent_type(eb, fi);
 106		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
 107			continue;
 108		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
 109		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
 110		if (disk_byte != wanted_disk_byte)
 111			continue;
 112
 113		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
 114		if (ret < 0)
 115			return ret;
 116	}
 117
 118	return 0;
 119}
 120
 
 
 
 
 
 
 
 
 
 
 
 
 
 121/*
 122 * this structure records all encountered refs on the way up to the root
 
 
 
 
 
 123 */
 124struct __prelim_ref {
 125	struct list_head list;
 126	u64 root_id;
 127	struct btrfs_key key_for_search;
 128	int level;
 129	int count;
 130	struct extent_inode_elem *inode_list;
 131	u64 parent;
 132	u64 wanted_disk_byte;
 133};
 134
 
 
 
 
 
 135static struct kmem_cache *btrfs_prelim_ref_cache;
 136
 137int __init btrfs_prelim_ref_init(void)
 138{
 139	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
 140					sizeof(struct __prelim_ref),
 141					0,
 142					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
 143					NULL);
 144	if (!btrfs_prelim_ref_cache)
 145		return -ENOMEM;
 146	return 0;
 147}
 148
 149void btrfs_prelim_ref_exit(void)
 150{
 151	kmem_cache_destroy(btrfs_prelim_ref_cache);
 152}
 153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 154/*
 155 * the rules for all callers of this function are:
 156 * - obtaining the parent is the goal
 157 * - if you add a key, you must know that it is a correct key
 158 * - if you cannot add the parent or a correct key, then we will look into the
 159 *   block later to set a correct key
 160 *
 161 * delayed refs
 162 * ============
 163 *        backref type | shared | indirect | shared | indirect
 164 * information         |   tree |     tree |   data |     data
 165 * --------------------+--------+----------+--------+----------
 166 *      parent logical |    y   |     -    |    -   |     -
 167 *      key to resolve |    -   |     y    |    y   |     y
 168 *  tree block logical |    -   |     -    |    -   |     -
 169 *  root for resolving |    y   |     y    |    y   |     y
 170 *
 171 * - column 1:       we've the parent -> done
 172 * - column 2, 3, 4: we use the key to find the parent
 173 *
 174 * on disk refs (inline or keyed)
 175 * ==============================
 176 *        backref type | shared | indirect | shared | indirect
 177 * information         |   tree |     tree |   data |     data
 178 * --------------------+--------+----------+--------+----------
 179 *      parent logical |    y   |     -    |    y   |     -
 180 *      key to resolve |    -   |     -    |    -   |     y
 181 *  tree block logical |    y   |     y    |    y   |     y
 182 *  root for resolving |    -   |     y    |    y   |     y
 183 *
 184 * - column 1, 3: we've the parent -> done
 185 * - column 2:    we take the first key from the block to find the parent
 186 *                (see __add_missing_keys)
 187 * - column 4:    we use the key to find the parent
 188 *
 189 * additional information that's available but not required to find the parent
 190 * block might help in merging entries to gain some speed.
 191 */
 192
 193static int __add_prelim_ref(struct list_head *head, u64 root_id,
 194			    struct btrfs_key *key, int level,
 195			    u64 parent, u64 wanted_disk_byte, int count,
 196			    gfp_t gfp_mask)
 197{
 198	struct __prelim_ref *ref;
 199
 200	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
 201		return 0;
 202
 203	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
 204	if (!ref)
 205		return -ENOMEM;
 206
 207	ref->root_id = root_id;
 208	if (key) {
 209		ref->key_for_search = *key;
 210		/*
 211		 * We can often find data backrefs with an offset that is too
 212		 * large (>= LLONG_MAX, maximum allowed file offset) due to
 213		 * underflows when subtracting a file's offset with the data
 214		 * offset of its corresponding extent data item. This can
 215		 * happen for example in the clone ioctl.
 216		 * So if we detect such case we set the search key's offset to
 217		 * zero to make sure we will find the matching file extent item
 218		 * at add_all_parents(), otherwise we will miss it because the
 219		 * offset taken form the backref is much larger then the offset
 220		 * of the file extent item. This can make us scan a very large
 221		 * number of file extent items, but at least it will not make
 222		 * us miss any.
 223		 * This is an ugly workaround for a behaviour that should have
 224		 * never existed, but it does and a fix for the clone ioctl
 225		 * would touch a lot of places, cause backwards incompatibility
 226		 * and would not fix the problem for extents cloned with older
 227		 * kernels.
 228		 */
 229		if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
 230		    ref->key_for_search.offset >= LLONG_MAX)
 231			ref->key_for_search.offset = 0;
 232	} else {
 233		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
 234	}
 235
 236	ref->inode_list = NULL;
 237	ref->level = level;
 238	ref->count = count;
 239	ref->parent = parent;
 240	ref->wanted_disk_byte = wanted_disk_byte;
 241	list_add_tail(&ref->list, head);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 242
 243	return 0;
 
 
 
 244}
 245
 246static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
 247			   struct ulist *parents, struct __prelim_ref *ref,
 248			   int level, u64 time_seq, const u64 *extent_item_pos,
 249			   u64 total_refs)
 250{
 251	int ret = 0;
 252	int slot;
 253	struct extent_buffer *eb;
 254	struct btrfs_key key;
 255	struct btrfs_key *key_for_search = &ref->key_for_search;
 256	struct btrfs_file_extent_item *fi;
 257	struct extent_inode_elem *eie = NULL, *old = NULL;
 258	u64 disk_byte;
 259	u64 wanted_disk_byte = ref->wanted_disk_byte;
 260	u64 count = 0;
 261
 262	if (level != 0) {
 263		eb = path->nodes[level];
 264		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
 265		if (ret < 0)
 266			return ret;
 267		return 0;
 268	}
 269
 270	/*
 271	 * We normally enter this function with the path already pointing to
 272	 * the first item to check. But sometimes, we may enter it with
 273	 * slot==nritems. In that case, go to the next leaf before we continue.
 274	 */
 275	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
 276		if (time_seq == (u64)-1)
 277			ret = btrfs_next_leaf(root, path);
 278		else
 279			ret = btrfs_next_old_leaf(root, path, time_seq);
 280	}
 281
 282	while (!ret && count < total_refs) {
 283		eb = path->nodes[0];
 284		slot = path->slots[0];
 285
 286		btrfs_item_key_to_cpu(eb, &key, slot);
 287
 288		if (key.objectid != key_for_search->objectid ||
 289		    key.type != BTRFS_EXTENT_DATA_KEY)
 290			break;
 291
 292		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 293		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
 294
 295		if (disk_byte == wanted_disk_byte) {
 296			eie = NULL;
 297			old = NULL;
 298			count++;
 299			if (extent_item_pos) {
 300				ret = check_extent_in_eb(&key, eb, fi,
 301						*extent_item_pos,
 302						&eie);
 303				if (ret < 0)
 304					break;
 305			}
 306			if (ret > 0)
 307				goto next;
 308			ret = ulist_add_merge_ptr(parents, eb->start,
 309						  eie, (void **)&old, GFP_NOFS);
 310			if (ret < 0)
 311				break;
 312			if (!ret && extent_item_pos) {
 313				while (old->next)
 314					old = old->next;
 315				old->next = eie;
 316			}
 317			eie = NULL;
 318		}
 319next:
 320		if (time_seq == (u64)-1)
 321			ret = btrfs_next_item(root, path);
 322		else
 323			ret = btrfs_next_old_item(root, path, time_seq);
 324	}
 325
 326	if (ret > 0)
 327		ret = 0;
 328	else if (ret < 0)
 329		free_inode_elem_list(eie);
 330	return ret;
 331}
 332
 333/*
 334 * resolve an indirect backref in the form (root_id, key, level)
 335 * to a logical address
 336 */
 337static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
 338				  struct btrfs_path *path, u64 time_seq,
 339				  struct __prelim_ref *ref,
 340				  struct ulist *parents,
 341				  const u64 *extent_item_pos, u64 total_refs)
 342{
 343	struct btrfs_root *root;
 344	struct btrfs_key root_key;
 345	struct extent_buffer *eb;
 346	int ret = 0;
 347	int root_level;
 348	int level = ref->level;
 349	int index;
 350
 351	root_key.objectid = ref->root_id;
 352	root_key.type = BTRFS_ROOT_ITEM_KEY;
 353	root_key.offset = (u64)-1;
 354
 355	index = srcu_read_lock(&fs_info->subvol_srcu);
 356
 357	root = btrfs_get_fs_root(fs_info, &root_key, false);
 358	if (IS_ERR(root)) {
 359		srcu_read_unlock(&fs_info->subvol_srcu, index);
 360		ret = PTR_ERR(root);
 361		goto out;
 362	}
 363
 364	if (btrfs_test_is_dummy_root(root)) {
 365		srcu_read_unlock(&fs_info->subvol_srcu, index);
 366		ret = -ENOENT;
 367		goto out;
 368	}
 369
 370	if (path->search_commit_root)
 371		root_level = btrfs_header_level(root->commit_root);
 372	else if (time_seq == (u64)-1)
 373		root_level = btrfs_header_level(root->node);
 374	else
 375		root_level = btrfs_old_root_level(root, time_seq);
 376
 377	if (root_level + 1 == level) {
 378		srcu_read_unlock(&fs_info->subvol_srcu, index);
 379		goto out;
 380	}
 381
 382	path->lowest_level = level;
 383	if (time_seq == (u64)-1)
 384		ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
 385					0, 0);
 386	else
 387		ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
 388					    time_seq);
 389
 390	/* root node has been locked, we can release @subvol_srcu safely here */
 391	srcu_read_unlock(&fs_info->subvol_srcu, index);
 392
 393	pr_debug("search slot in root %llu (level %d, ref count %d) returned "
 394		 "%d for key (%llu %u %llu)\n",
 395		 ref->root_id, level, ref->count, ret,
 396		 ref->key_for_search.objectid, ref->key_for_search.type,
 397		 ref->key_for_search.offset);
 398	if (ret < 0)
 399		goto out;
 400
 401	eb = path->nodes[level];
 402	while (!eb) {
 403		if (WARN_ON(!level)) {
 404			ret = 1;
 405			goto out;
 406		}
 407		level--;
 408		eb = path->nodes[level];
 409	}
 410
 411	ret = add_all_parents(root, path, parents, ref, level, time_seq,
 412			      extent_item_pos, total_refs);
 413out:
 414	path->lowest_level = 0;
 415	btrfs_release_path(path);
 416	return ret;
 417}
 418
 
 
 
 
 
 
 
 
 419/*
 420 * resolve all indirect backrefs from the list
 421 */
 422static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
 423				   struct btrfs_path *path, u64 time_seq,
 424				   struct list_head *head,
 425				   const u64 *extent_item_pos, u64 total_refs,
 426				   u64 root_objectid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 427{
 428	int err;
 429	int ret = 0;
 430	struct __prelim_ref *ref;
 431	struct __prelim_ref *ref_safe;
 432	struct __prelim_ref *new_ref;
 433	struct ulist *parents;
 434	struct ulist_node *node;
 435	struct ulist_iterator uiter;
 
 436
 437	parents = ulist_alloc(GFP_NOFS);
 438	if (!parents)
 439		return -ENOMEM;
 440
 441	/*
 442	 * _safe allows us to insert directly after the current item without
 443	 * iterating over the newly inserted items.
 444	 * we're also allowed to re-assign ref during iteration.
 
 445	 */
 446	list_for_each_entry_safe(ref, ref_safe, head, list) {
 447		if (ref->parent)	/* already direct */
 
 
 
 
 
 
 
 
 
 
 
 
 
 448			continue;
 449		if (ref->count == 0)
 450			continue;
 451		if (root_objectid && ref->root_id != root_objectid) {
 
 
 452			ret = BACKREF_FOUND_SHARED;
 453			goto out;
 454		}
 455		err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
 456					     parents, extent_item_pos,
 457					     total_refs);
 458		/*
 459		 * we can only tolerate ENOENT,otherwise,we should catch error
 460		 * and return directly.
 461		 */
 462		if (err == -ENOENT) {
 
 
 463			continue;
 464		} else if (err) {
 
 465			ret = err;
 466			goto out;
 467		}
 468
 469		/* we put the first parent into the ref at hand */
 470		ULIST_ITER_INIT(&uiter);
 471		node = ulist_next(parents, &uiter);
 472		ref->parent = node ? node->val : 0;
 473		ref->inode_list = node ?
 474			(struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
 475
 476		/* additional parents require new refs being added here */
 477		while ((node = ulist_next(parents, &uiter))) {
 
 
 478			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
 479						   GFP_NOFS);
 480			if (!new_ref) {
 
 481				ret = -ENOMEM;
 482				goto out;
 483			}
 484			memcpy(new_ref, ref, sizeof(*ref));
 485			new_ref->parent = node->val;
 486			new_ref->inode_list = (struct extent_inode_elem *)
 487							(uintptr_t)node->aux;
 488			list_add(&new_ref->list, &ref->list);
 489		}
 
 
 
 
 
 
 
 490		ulist_reinit(parents);
 
 491	}
 492out:
 493	ulist_free(parents);
 494	return ret;
 495}
 496
 497static inline int ref_for_same_block(struct __prelim_ref *ref1,
 498				     struct __prelim_ref *ref2)
 499{
 500	if (ref1->level != ref2->level)
 501		return 0;
 502	if (ref1->root_id != ref2->root_id)
 503		return 0;
 504	if (ref1->key_for_search.type != ref2->key_for_search.type)
 505		return 0;
 506	if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
 507		return 0;
 508	if (ref1->key_for_search.offset != ref2->key_for_search.offset)
 509		return 0;
 510	if (ref1->parent != ref2->parent)
 511		return 0;
 512
 513	return 1;
 514}
 515
 516/*
 517 * read tree blocks and add keys where required.
 518 */
 519static int __add_missing_keys(struct btrfs_fs_info *fs_info,
 520			      struct list_head *head)
 521{
 522	struct __prelim_ref *ref;
 523	struct extent_buffer *eb;
 
 
 
 
 
 
 524
 525	list_for_each_entry(ref, head, list) {
 526		if (ref->parent)
 527			continue;
 528		if (ref->key_for_search.type)
 529			continue;
 530		BUG_ON(!ref->wanted_disk_byte);
 531		eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
 532				     0);
 
 533		if (IS_ERR(eb)) {
 
 534			return PTR_ERR(eb);
 535		} else if (!extent_buffer_uptodate(eb)) {
 
 536			free_extent_buffer(eb);
 537			return -EIO;
 538		}
 539		btrfs_tree_read_lock(eb);
 
 540		if (btrfs_header_level(eb) == 0)
 541			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
 542		else
 543			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
 544		btrfs_tree_read_unlock(eb);
 
 545		free_extent_buffer(eb);
 
 
 546	}
 547	return 0;
 548}
 549
 550/*
 551 * merge backrefs and adjust counts accordingly
 552 *
 553 * mode = 1: merge identical keys, if key is set
 554 *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
 555 *           additionally, we could even add a key range for the blocks we
 556 *           looked into to merge even more (-> replace unresolved refs by those
 557 *           having a parent).
 558 * mode = 2: merge identical parents
 559 */
 560static void __merge_refs(struct list_head *head, int mode)
 561{
 562	struct __prelim_ref *pos1;
 563
 564	list_for_each_entry(pos1, head, list) {
 565		struct __prelim_ref *pos2 = pos1, *tmp;
 566
 567		list_for_each_entry_safe_continue(pos2, tmp, head, list) {
 568			struct __prelim_ref *ref1 = pos1, *ref2 = pos2;
 569			struct extent_inode_elem *eie;
 570
 571			if (!ref_for_same_block(ref1, ref2))
 572				continue;
 573			if (mode == 1) {
 574				if (!ref1->parent && ref2->parent)
 575					swap(ref1, ref2);
 576			} else {
 577				if (ref1->parent != ref2->parent)
 578					continue;
 579			}
 580
 581			eie = ref1->inode_list;
 582			while (eie && eie->next)
 583				eie = eie->next;
 584			if (eie)
 585				eie->next = ref2->inode_list;
 586			else
 587				ref1->inode_list = ref2->inode_list;
 588			ref1->count += ref2->count;
 589
 590			list_del(&ref2->list);
 591			kmem_cache_free(btrfs_prelim_ref_cache, ref2);
 592		}
 593
 594	}
 595}
 596
 597/*
 598 * add all currently queued delayed refs from this head whose seq nr is
 599 * smaller or equal that seq to the list
 600 */
 601static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
 602			      struct list_head *prefs, u64 *total_refs,
 603			      u64 inum)
 
 604{
 605	struct btrfs_delayed_ref_node *node;
 606	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
 607	struct btrfs_key key;
 608	struct btrfs_key op_key = {0};
 609	int sgn;
 
 610	int ret = 0;
 611
 612	if (extent_op && extent_op->update_key)
 613		btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
 614
 615	spin_lock(&head->lock);
 616	list_for_each_entry(node, &head->ref_list, list) {
 
 
 617		if (node->seq > seq)
 618			continue;
 619
 620		switch (node->action) {
 621		case BTRFS_ADD_DELAYED_EXTENT:
 622		case BTRFS_UPDATE_DELAYED_HEAD:
 623			WARN_ON(1);
 624			continue;
 625		case BTRFS_ADD_DELAYED_REF:
 626			sgn = 1;
 627			break;
 628		case BTRFS_DROP_DELAYED_REF:
 629			sgn = -1;
 630			break;
 631		default:
 632			BUG_ON(1);
 633		}
 634		*total_refs += (node->ref_mod * sgn);
 635		switch (node->type) {
 636		case BTRFS_TREE_BLOCK_REF_KEY: {
 
 637			struct btrfs_delayed_tree_ref *ref;
 638
 639			ref = btrfs_delayed_node_to_tree_ref(node);
 640			ret = __add_prelim_ref(prefs, ref->root, &op_key,
 641					       ref->level + 1, 0, node->bytenr,
 642					       node->ref_mod * sgn, GFP_ATOMIC);
 
 643			break;
 644		}
 645		case BTRFS_SHARED_BLOCK_REF_KEY: {
 
 646			struct btrfs_delayed_tree_ref *ref;
 647
 648			ref = btrfs_delayed_node_to_tree_ref(node);
 649			ret = __add_prelim_ref(prefs, 0, NULL,
 650					       ref->level + 1, ref->parent,
 651					       node->bytenr,
 652					       node->ref_mod * sgn, GFP_ATOMIC);
 653			break;
 654		}
 655		case BTRFS_EXTENT_DATA_REF_KEY: {
 
 656			struct btrfs_delayed_data_ref *ref;
 657			ref = btrfs_delayed_node_to_data_ref(node);
 658
 659			key.objectid = ref->objectid;
 660			key.type = BTRFS_EXTENT_DATA_KEY;
 661			key.offset = ref->offset;
 662
 663			/*
 664			 * Found a inum that doesn't match our known inum, we
 665			 * know it's shared.
 666			 */
 667			if (inum && ref->objectid != inum) {
 668				ret = BACKREF_FOUND_SHARED;
 669				break;
 670			}
 671
 672			ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
 673					       node->bytenr,
 674					       node->ref_mod * sgn, GFP_ATOMIC);
 675			break;
 676		}
 677		case BTRFS_SHARED_DATA_REF_KEY: {
 
 678			struct btrfs_delayed_data_ref *ref;
 679
 680			ref = btrfs_delayed_node_to_data_ref(node);
 681			ret = __add_prelim_ref(prefs, 0, NULL, 0,
 682					       ref->parent, node->bytenr,
 683					       node->ref_mod * sgn, GFP_ATOMIC);
 
 684			break;
 685		}
 686		default:
 687			WARN_ON(1);
 688		}
 689		if (ret)
 
 
 
 
 690			break;
 691	}
 
 
 
 692	spin_unlock(&head->lock);
 693	return ret;
 694}
 695
 696/*
 697 * add all inline backrefs for bytenr to the list
 
 
 698 */
 699static int __add_inline_refs(struct btrfs_fs_info *fs_info,
 700			     struct btrfs_path *path, u64 bytenr,
 701			     int *info_level, struct list_head *prefs,
 702			     u64 *total_refs, u64 inum)
 703{
 704	int ret = 0;
 705	int slot;
 706	struct extent_buffer *leaf;
 707	struct btrfs_key key;
 708	struct btrfs_key found_key;
 709	unsigned long ptr;
 710	unsigned long end;
 711	struct btrfs_extent_item *ei;
 712	u64 flags;
 713	u64 item_size;
 714
 715	/*
 716	 * enumerate all inline refs
 717	 */
 718	leaf = path->nodes[0];
 719	slot = path->slots[0];
 720
 721	item_size = btrfs_item_size_nr(leaf, slot);
 722	BUG_ON(item_size < sizeof(*ei));
 723
 724	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
 725	flags = btrfs_extent_flags(leaf, ei);
 726	*total_refs += btrfs_extent_refs(leaf, ei);
 727	btrfs_item_key_to_cpu(leaf, &found_key, slot);
 728
 729	ptr = (unsigned long)(ei + 1);
 730	end = (unsigned long)ei + item_size;
 731
 732	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
 733	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 734		struct btrfs_tree_block_info *info;
 735
 736		info = (struct btrfs_tree_block_info *)ptr;
 737		*info_level = btrfs_tree_block_level(leaf, info);
 738		ptr += sizeof(struct btrfs_tree_block_info);
 739		BUG_ON(ptr > end);
 740	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
 741		*info_level = found_key.offset;
 742	} else {
 743		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
 744	}
 745
 746	while (ptr < end) {
 747		struct btrfs_extent_inline_ref *iref;
 748		u64 offset;
 749		int type;
 750
 751		iref = (struct btrfs_extent_inline_ref *)ptr;
 752		type = btrfs_extent_inline_ref_type(leaf, iref);
 
 
 
 
 753		offset = btrfs_extent_inline_ref_offset(leaf, iref);
 754
 755		switch (type) {
 756		case BTRFS_SHARED_BLOCK_REF_KEY:
 757			ret = __add_prelim_ref(prefs, 0, NULL,
 758						*info_level + 1, offset,
 759						bytenr, 1, GFP_NOFS);
 760			break;
 761		case BTRFS_SHARED_DATA_REF_KEY: {
 762			struct btrfs_shared_data_ref *sdref;
 763			int count;
 764
 765			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
 766			count = btrfs_shared_data_ref_count(leaf, sdref);
 767			ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
 768					       bytenr, count, GFP_NOFS);
 
 769			break;
 770		}
 771		case BTRFS_TREE_BLOCK_REF_KEY:
 772			ret = __add_prelim_ref(prefs, offset, NULL,
 773					       *info_level + 1, 0,
 774					       bytenr, 1, GFP_NOFS);
 775			break;
 776		case BTRFS_EXTENT_DATA_REF_KEY: {
 777			struct btrfs_extent_data_ref *dref;
 778			int count;
 779			u64 root;
 780
 781			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
 782			count = btrfs_extent_data_ref_count(leaf, dref);
 783			key.objectid = btrfs_extent_data_ref_objectid(leaf,
 784								      dref);
 785			key.type = BTRFS_EXTENT_DATA_KEY;
 786			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
 787
 788			if (inum && key.objectid != inum) {
 789				ret = BACKREF_FOUND_SHARED;
 790				break;
 791			}
 792
 793			root = btrfs_extent_data_ref_root(leaf, dref);
 794			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
 795					       bytenr, count, GFP_NOFS);
 
 
 796			break;
 797		}
 798		default:
 799			WARN_ON(1);
 800		}
 801		if (ret)
 802			return ret;
 803		ptr += btrfs_extent_inline_ref_size(type);
 804	}
 805
 806	return 0;
 807}
 808
 809/*
 810 * add all non-inline backrefs for bytenr to the list
 
 
 811 */
 812static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
 813			    struct btrfs_path *path, u64 bytenr,
 814			    int info_level, struct list_head *prefs, u64 inum)
 
 815{
 816	struct btrfs_root *extent_root = fs_info->extent_root;
 817	int ret;
 818	int slot;
 819	struct extent_buffer *leaf;
 820	struct btrfs_key key;
 821
 822	while (1) {
 823		ret = btrfs_next_item(extent_root, path);
 824		if (ret < 0)
 825			break;
 826		if (ret) {
 827			ret = 0;
 828			break;
 829		}
 830
 831		slot = path->slots[0];
 832		leaf = path->nodes[0];
 833		btrfs_item_key_to_cpu(leaf, &key, slot);
 834
 835		if (key.objectid != bytenr)
 836			break;
 837		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
 838			continue;
 839		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
 840			break;
 841
 842		switch (key.type) {
 843		case BTRFS_SHARED_BLOCK_REF_KEY:
 844			ret = __add_prelim_ref(prefs, 0, NULL,
 845						info_level + 1, key.offset,
 846						bytenr, 1, GFP_NOFS);
 
 847			break;
 848		case BTRFS_SHARED_DATA_REF_KEY: {
 
 849			struct btrfs_shared_data_ref *sdref;
 850			int count;
 851
 852			sdref = btrfs_item_ptr(leaf, slot,
 853					      struct btrfs_shared_data_ref);
 854			count = btrfs_shared_data_ref_count(leaf, sdref);
 855			ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
 856						bytenr, count, GFP_NOFS);
 
 857			break;
 858		}
 859		case BTRFS_TREE_BLOCK_REF_KEY:
 860			ret = __add_prelim_ref(prefs, key.offset, NULL,
 861					       info_level + 1, 0,
 862					       bytenr, 1, GFP_NOFS);
 
 863			break;
 864		case BTRFS_EXTENT_DATA_REF_KEY: {
 
 865			struct btrfs_extent_data_ref *dref;
 866			int count;
 867			u64 root;
 868
 869			dref = btrfs_item_ptr(leaf, slot,
 870					      struct btrfs_extent_data_ref);
 871			count = btrfs_extent_data_ref_count(leaf, dref);
 872			key.objectid = btrfs_extent_data_ref_objectid(leaf,
 873								      dref);
 874			key.type = BTRFS_EXTENT_DATA_KEY;
 875			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
 876
 877			if (inum && key.objectid != inum) {
 878				ret = BACKREF_FOUND_SHARED;
 879				break;
 880			}
 881
 882			root = btrfs_extent_data_ref_root(leaf, dref);
 883			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
 884					       bytenr, count, GFP_NOFS);
 
 885			break;
 886		}
 887		default:
 888			WARN_ON(1);
 889		}
 890		if (ret)
 891			return ret;
 892
 893	}
 894
 895	return ret;
 896}
 897
 898/*
 899 * this adds all existing backrefs (inline backrefs, backrefs and delayed
 900 * refs) for the given bytenr to the refs list, merges duplicates and resolves
 901 * indirect refs to their parent bytenr.
 902 * When roots are found, they're added to the roots list
 903 *
 904 * NOTE: This can return values > 0
 905 *
 906 * If time_seq is set to (u64)-1, it will not search delayed_refs, and behave
 907 * much like trans == NULL case, the difference only lies in it will not
 908 * commit root.
 909 * The special case is for qgroup to search roots in commit_transaction().
 910 *
 
 
 
 
 
 
 
 
 
 911 * FIXME some caching might speed things up
 912 */
 913static int find_parent_nodes(struct btrfs_trans_handle *trans,
 914			     struct btrfs_fs_info *fs_info, u64 bytenr,
 915			     u64 time_seq, struct ulist *refs,
 916			     struct ulist *roots, const u64 *extent_item_pos,
 917			     u64 root_objectid, u64 inum)
 918{
 919	struct btrfs_key key;
 920	struct btrfs_path *path;
 921	struct btrfs_delayed_ref_root *delayed_refs = NULL;
 922	struct btrfs_delayed_ref_head *head;
 923	int info_level = 0;
 924	int ret;
 925	struct list_head prefs_delayed;
 926	struct list_head prefs;
 927	struct __prelim_ref *ref;
 928	struct extent_inode_elem *eie = NULL;
 
 929	u64 total_refs = 0;
 930
 931	INIT_LIST_HEAD(&prefs);
 932	INIT_LIST_HEAD(&prefs_delayed);
 
 
 933
 934	key.objectid = bytenr;
 935	key.offset = (u64)-1;
 936	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
 937		key.type = BTRFS_METADATA_ITEM_KEY;
 938	else
 939		key.type = BTRFS_EXTENT_ITEM_KEY;
 940
 941	path = btrfs_alloc_path();
 942	if (!path)
 943		return -ENOMEM;
 944	if (!trans) {
 945		path->search_commit_root = 1;
 946		path->skip_locking = 1;
 947	}
 948
 949	if (time_seq == (u64)-1)
 950		path->skip_locking = 1;
 951
 952	/*
 953	 * grab both a lock on the path and a lock on the delayed ref head.
 954	 * We need both to get a consistent picture of how the refs look
 955	 * at a specified point in time
 956	 */
 957again:
 958	head = NULL;
 959
 960	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
 961	if (ret < 0)
 962		goto out;
 963	BUG_ON(ret == 0);
 964
 965#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
 966	if (trans && likely(trans->type != __TRANS_DUMMY) &&
 967	    time_seq != (u64)-1) {
 968#else
 969	if (trans && time_seq != (u64)-1) {
 970#endif
 971		/*
 972		 * look if there are updates for this ref queued and lock the
 973		 * head
 974		 */
 975		delayed_refs = &trans->transaction->delayed_refs;
 976		spin_lock(&delayed_refs->lock);
 977		head = btrfs_find_delayed_ref_head(trans, bytenr);
 978		if (head) {
 979			if (!mutex_trylock(&head->mutex)) {
 980				atomic_inc(&head->node.refs);
 981				spin_unlock(&delayed_refs->lock);
 982
 983				btrfs_release_path(path);
 984
 985				/*
 986				 * Mutex was contended, block until it's
 987				 * released and try again
 988				 */
 989				mutex_lock(&head->mutex);
 990				mutex_unlock(&head->mutex);
 991				btrfs_put_delayed_ref(&head->node);
 992				goto again;
 993			}
 994			spin_unlock(&delayed_refs->lock);
 995			ret = __add_delayed_refs(head, time_seq,
 996						 &prefs_delayed, &total_refs,
 997						 inum);
 998			mutex_unlock(&head->mutex);
 999			if (ret)
1000				goto out;
1001		} else {
1002			spin_unlock(&delayed_refs->lock);
1003		}
1004	}
1005
1006	if (path->slots[0]) {
1007		struct extent_buffer *leaf;
1008		int slot;
1009
1010		path->slots[0]--;
1011		leaf = path->nodes[0];
1012		slot = path->slots[0];
1013		btrfs_item_key_to_cpu(leaf, &key, slot);
1014		if (key.objectid == bytenr &&
1015		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
1016		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1017			ret = __add_inline_refs(fs_info, path, bytenr,
1018						&info_level, &prefs,
1019						&total_refs, inum);
1020			if (ret)
1021				goto out;
1022			ret = __add_keyed_refs(fs_info, path, bytenr,
1023					       info_level, &prefs, inum);
1024			if (ret)
1025				goto out;
1026		}
1027	}
 
1028	btrfs_release_path(path);
1029
1030	list_splice_init(&prefs_delayed, &prefs);
1031
1032	ret = __add_missing_keys(fs_info, &prefs);
1033	if (ret)
1034		goto out;
1035
1036	__merge_refs(&prefs, 1);
1037
1038	ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
1039				      extent_item_pos, total_refs,
1040				      root_objectid);
1041	if (ret)
1042		goto out;
1043
1044	__merge_refs(&prefs, 2);
1045
1046	while (!list_empty(&prefs)) {
1047		ref = list_first_entry(&prefs, struct __prelim_ref, list);
1048		WARN_ON(ref->count < 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1049		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1050			if (root_objectid && ref->root_id != root_objectid) {
 
1051				ret = BACKREF_FOUND_SHARED;
1052				goto out;
1053			}
1054
1055			/* no parent == root of tree */
1056			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1057			if (ret < 0)
1058				goto out;
1059		}
1060		if (ref->count && ref->parent) {
1061			if (extent_item_pos && !ref->inode_list &&
1062			    ref->level == 0) {
1063				struct extent_buffer *eb;
1064
1065				eb = read_tree_block(fs_info->extent_root,
1066							   ref->parent, 0);
1067				if (IS_ERR(eb)) {
1068					ret = PTR_ERR(eb);
1069					goto out;
1070				} else if (!extent_buffer_uptodate(eb)) {
1071					free_extent_buffer(eb);
1072					ret = -EIO;
1073					goto out;
1074				}
1075				btrfs_tree_read_lock(eb);
1076				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
 
 
 
1077				ret = find_extent_in_eb(eb, bytenr,
1078							*extent_item_pos, &eie);
1079				btrfs_tree_read_unlock_blocking(eb);
 
1080				free_extent_buffer(eb);
1081				if (ret < 0)
1082					goto out;
1083				ref->inode_list = eie;
1084			}
1085			ret = ulist_add_merge_ptr(refs, ref->parent,
1086						  ref->inode_list,
1087						  (void **)&eie, GFP_NOFS);
1088			if (ret < 0)
1089				goto out;
1090			if (!ret && extent_item_pos) {
1091				/*
1092				 * we've recorded that parent, so we must extend
1093				 * its inode list here
1094				 */
1095				BUG_ON(!eie);
1096				while (eie->next)
1097					eie = eie->next;
1098				eie->next = ref->inode_list;
1099			}
1100			eie = NULL;
1101		}
1102		list_del(&ref->list);
1103		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1104	}
1105
1106out:
1107	btrfs_free_path(path);
1108	while (!list_empty(&prefs)) {
1109		ref = list_first_entry(&prefs, struct __prelim_ref, list);
1110		list_del(&ref->list);
1111		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1112	}
1113	while (!list_empty(&prefs_delayed)) {
1114		ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
1115				       list);
1116		list_del(&ref->list);
1117		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1118	}
1119	if (ret < 0)
1120		free_inode_elem_list(eie);
1121	return ret;
1122}
1123
1124static void free_leaf_list(struct ulist *blocks)
1125{
1126	struct ulist_node *node = NULL;
1127	struct extent_inode_elem *eie;
1128	struct ulist_iterator uiter;
1129
1130	ULIST_ITER_INIT(&uiter);
1131	while ((node = ulist_next(blocks, &uiter))) {
1132		if (!node->aux)
1133			continue;
1134		eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
1135		free_inode_elem_list(eie);
1136		node->aux = 0;
1137	}
1138
1139	ulist_free(blocks);
1140}
1141
1142/*
1143 * Finds all leafs with a reference to the specified combination of bytenr and
1144 * offset. key_list_head will point to a list of corresponding keys (caller must
1145 * free each list element). The leafs will be stored in the leafs ulist, which
1146 * must be freed with ulist_free.
1147 *
1148 * returns 0 on success, <0 on error
1149 */
1150static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1151				struct btrfs_fs_info *fs_info, u64 bytenr,
1152				u64 time_seq, struct ulist **leafs,
1153				const u64 *extent_item_pos)
1154{
1155	int ret;
1156
1157	*leafs = ulist_alloc(GFP_NOFS);
1158	if (!*leafs)
1159		return -ENOMEM;
1160
1161	ret = find_parent_nodes(trans, fs_info, bytenr,
1162				time_seq, *leafs, NULL, extent_item_pos, 0, 0);
1163	if (ret < 0 && ret != -ENOENT) {
1164		free_leaf_list(*leafs);
1165		return ret;
1166	}
1167
1168	return 0;
1169}
1170
1171/*
1172 * walk all backrefs for a given extent to find all roots that reference this
1173 * extent. Walking a backref means finding all extents that reference this
1174 * extent and in turn walk the backrefs of those, too. Naturally this is a
1175 * recursive process, but here it is implemented in an iterative fashion: We
1176 * find all referencing extents for the extent in question and put them on a
1177 * list. In turn, we find all referencing extents for those, further appending
1178 * to the list. The way we iterate the list allows adding more elements after
1179 * the current while iterating. The process stops when we reach the end of the
1180 * list. Found roots are added to the roots list.
1181 *
1182 * returns 0 on success, < 0 on error.
1183 */
1184static int __btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1185				  struct btrfs_fs_info *fs_info, u64 bytenr,
1186				  u64 time_seq, struct ulist **roots)
 
1187{
1188	struct ulist *tmp;
1189	struct ulist_node *node = NULL;
1190	struct ulist_iterator uiter;
1191	int ret;
1192
1193	tmp = ulist_alloc(GFP_NOFS);
1194	if (!tmp)
1195		return -ENOMEM;
1196	*roots = ulist_alloc(GFP_NOFS);
1197	if (!*roots) {
1198		ulist_free(tmp);
1199		return -ENOMEM;
1200	}
1201
1202	ULIST_ITER_INIT(&uiter);
1203	while (1) {
1204		ret = find_parent_nodes(trans, fs_info, bytenr,
1205					time_seq, tmp, *roots, NULL, 0, 0);
1206		if (ret < 0 && ret != -ENOENT) {
1207			ulist_free(tmp);
1208			ulist_free(*roots);
1209			return ret;
1210		}
1211		node = ulist_next(tmp, &uiter);
1212		if (!node)
1213			break;
1214		bytenr = node->val;
1215		cond_resched();
1216	}
1217
1218	ulist_free(tmp);
1219	return 0;
1220}
1221
1222int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1223			 struct btrfs_fs_info *fs_info, u64 bytenr,
1224			 u64 time_seq, struct ulist **roots)
 
1225{
1226	int ret;
1227
1228	if (!trans)
1229		down_read(&fs_info->commit_root_sem);
1230	ret = __btrfs_find_all_roots(trans, fs_info, bytenr, time_seq, roots);
 
1231	if (!trans)
1232		up_read(&fs_info->commit_root_sem);
1233	return ret;
1234}
1235
1236/**
1237 * btrfs_check_shared - tell us whether an extent is shared
1238 *
1239 * @trans: optional trans handle
1240 *
1241 * btrfs_check_shared uses the backref walking code but will short
1242 * circuit as soon as it finds a root or inode that doesn't match the
1243 * one passed in. This provides a significant performance benefit for
1244 * callers (such as fiemap) which want to know whether the extent is
1245 * shared but do not need a ref count.
1246 *
 
 
 
1247 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1248 */
1249int btrfs_check_shared(struct btrfs_trans_handle *trans,
1250		       struct btrfs_fs_info *fs_info, u64 root_objectid,
1251		       u64 inum, u64 bytenr)
1252{
1253	struct ulist *tmp = NULL;
1254	struct ulist *roots = NULL;
1255	struct ulist_iterator uiter;
1256	struct ulist_node *node;
1257	struct seq_list elem = SEQ_LIST_INIT(elem);
1258	int ret = 0;
1259
1260	tmp = ulist_alloc(GFP_NOFS);
1261	roots = ulist_alloc(GFP_NOFS);
1262	if (!tmp || !roots) {
1263		ulist_free(tmp);
1264		ulist_free(roots);
1265		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
1266	}
1267
1268	if (trans)
1269		btrfs_get_tree_mod_seq(fs_info, &elem);
1270	else
1271		down_read(&fs_info->commit_root_sem);
1272	ULIST_ITER_INIT(&uiter);
1273	while (1) {
1274		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1275					roots, NULL, root_objectid, inum);
1276		if (ret == BACKREF_FOUND_SHARED) {
1277			/* this is the only condition under which we return 1 */
1278			ret = 1;
1279			break;
1280		}
1281		if (ret < 0 && ret != -ENOENT)
1282			break;
1283		ret = 0;
1284		node = ulist_next(tmp, &uiter);
1285		if (!node)
1286			break;
1287		bytenr = node->val;
 
1288		cond_resched();
1289	}
1290	if (trans)
 
1291		btrfs_put_tree_mod_seq(fs_info, &elem);
1292	else
 
1293		up_read(&fs_info->commit_root_sem);
1294	ulist_free(tmp);
1295	ulist_free(roots);
 
 
1296	return ret;
1297}
1298
1299int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1300			  u64 start_off, struct btrfs_path *path,
1301			  struct btrfs_inode_extref **ret_extref,
1302			  u64 *found_off)
1303{
1304	int ret, slot;
1305	struct btrfs_key key;
1306	struct btrfs_key found_key;
1307	struct btrfs_inode_extref *extref;
1308	struct extent_buffer *leaf;
1309	unsigned long ptr;
1310
1311	key.objectid = inode_objectid;
1312	key.type = BTRFS_INODE_EXTREF_KEY;
1313	key.offset = start_off;
1314
1315	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1316	if (ret < 0)
1317		return ret;
1318
1319	while (1) {
1320		leaf = path->nodes[0];
1321		slot = path->slots[0];
1322		if (slot >= btrfs_header_nritems(leaf)) {
1323			/*
1324			 * If the item at offset is not found,
1325			 * btrfs_search_slot will point us to the slot
1326			 * where it should be inserted. In our case
1327			 * that will be the slot directly before the
1328			 * next INODE_REF_KEY_V2 item. In the case
1329			 * that we're pointing to the last slot in a
1330			 * leaf, we must move one leaf over.
1331			 */
1332			ret = btrfs_next_leaf(root, path);
1333			if (ret) {
1334				if (ret >= 1)
1335					ret = -ENOENT;
1336				break;
1337			}
1338			continue;
1339		}
1340
1341		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1342
1343		/*
1344		 * Check that we're still looking at an extended ref key for
1345		 * this particular objectid. If we have different
1346		 * objectid or type then there are no more to be found
1347		 * in the tree and we can exit.
1348		 */
1349		ret = -ENOENT;
1350		if (found_key.objectid != inode_objectid)
1351			break;
1352		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1353			break;
1354
1355		ret = 0;
1356		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1357		extref = (struct btrfs_inode_extref *)ptr;
1358		*ret_extref = extref;
1359		if (found_off)
1360			*found_off = found_key.offset;
1361		break;
1362	}
1363
1364	return ret;
1365}
1366
1367/*
1368 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1369 * Elements of the path are separated by '/' and the path is guaranteed to be
1370 * 0-terminated. the path is only given within the current file system.
1371 * Therefore, it never starts with a '/'. the caller is responsible to provide
1372 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1373 * the start point of the resulting string is returned. this pointer is within
1374 * dest, normally.
1375 * in case the path buffer would overflow, the pointer is decremented further
1376 * as if output was written to the buffer, though no more output is actually
1377 * generated. that way, the caller can determine how much space would be
1378 * required for the path to fit into the buffer. in that case, the returned
1379 * value will be smaller than dest. callers must check this!
1380 */
1381char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1382			u32 name_len, unsigned long name_off,
1383			struct extent_buffer *eb_in, u64 parent,
1384			char *dest, u32 size)
1385{
1386	int slot;
1387	u64 next_inum;
1388	int ret;
1389	s64 bytes_left = ((s64)size) - 1;
1390	struct extent_buffer *eb = eb_in;
1391	struct btrfs_key found_key;
1392	int leave_spinning = path->leave_spinning;
1393	struct btrfs_inode_ref *iref;
1394
1395	if (bytes_left >= 0)
1396		dest[bytes_left] = '\0';
1397
1398	path->leave_spinning = 1;
1399	while (1) {
1400		bytes_left -= name_len;
1401		if (bytes_left >= 0)
1402			read_extent_buffer(eb, dest + bytes_left,
1403					   name_off, name_len);
1404		if (eb != eb_in) {
1405			if (!path->skip_locking)
1406				btrfs_tree_read_unlock_blocking(eb);
1407			free_extent_buffer(eb);
1408		}
1409		ret = btrfs_find_item(fs_root, path, parent, 0,
1410				BTRFS_INODE_REF_KEY, &found_key);
1411		if (ret > 0)
1412			ret = -ENOENT;
1413		if (ret)
1414			break;
1415
1416		next_inum = found_key.offset;
1417
1418		/* regular exit ahead */
1419		if (parent == next_inum)
1420			break;
1421
1422		slot = path->slots[0];
1423		eb = path->nodes[0];
1424		/* make sure we can use eb after releasing the path */
1425		if (eb != eb_in) {
1426			if (!path->skip_locking)
1427				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1428			path->nodes[0] = NULL;
1429			path->locks[0] = 0;
1430		}
1431		btrfs_release_path(path);
1432		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1433
1434		name_len = btrfs_inode_ref_name_len(eb, iref);
1435		name_off = (unsigned long)(iref + 1);
1436
1437		parent = next_inum;
1438		--bytes_left;
1439		if (bytes_left >= 0)
1440			dest[bytes_left] = '/';
1441	}
1442
1443	btrfs_release_path(path);
1444	path->leave_spinning = leave_spinning;
1445
1446	if (ret)
1447		return ERR_PTR(ret);
1448
1449	return dest + bytes_left;
1450}
1451
1452/*
1453 * this makes the path point to (logical EXTENT_ITEM *)
1454 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1455 * tree blocks and <0 on error.
1456 */
1457int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1458			struct btrfs_path *path, struct btrfs_key *found_key,
1459			u64 *flags_ret)
1460{
1461	int ret;
1462	u64 flags;
1463	u64 size = 0;
1464	u32 item_size;
1465	struct extent_buffer *eb;
1466	struct btrfs_extent_item *ei;
1467	struct btrfs_key key;
1468
1469	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1470		key.type = BTRFS_METADATA_ITEM_KEY;
1471	else
1472		key.type = BTRFS_EXTENT_ITEM_KEY;
1473	key.objectid = logical;
1474	key.offset = (u64)-1;
1475
1476	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1477	if (ret < 0)
1478		return ret;
1479
1480	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1481	if (ret) {
1482		if (ret > 0)
1483			ret = -ENOENT;
1484		return ret;
1485	}
1486	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1487	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1488		size = fs_info->extent_root->nodesize;
1489	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1490		size = found_key->offset;
1491
1492	if (found_key->objectid > logical ||
1493	    found_key->objectid + size <= logical) {
1494		pr_debug("logical %llu is not within any extent\n", logical);
 
1495		return -ENOENT;
1496	}
1497
1498	eb = path->nodes[0];
1499	item_size = btrfs_item_size_nr(eb, path->slots[0]);
1500	BUG_ON(item_size < sizeof(*ei));
1501
1502	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1503	flags = btrfs_extent_flags(eb, ei);
1504
1505	pr_debug("logical %llu is at position %llu within the extent (%llu "
1506		 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1507		 logical, logical - found_key->objectid, found_key->objectid,
1508		 found_key->offset, flags, item_size);
1509
1510	WARN_ON(!flags_ret);
1511	if (flags_ret) {
1512		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1513			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1514		else if (flags & BTRFS_EXTENT_FLAG_DATA)
1515			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
1516		else
1517			BUG_ON(1);
1518		return 0;
1519	}
1520
1521	return -EIO;
1522}
1523
1524/*
1525 * helper function to iterate extent inline refs. ptr must point to a 0 value
1526 * for the first call and may be modified. it is used to track state.
1527 * if more refs exist, 0 is returned and the next call to
1528 * __get_extent_inline_ref must pass the modified ptr parameter to get the
1529 * next ref. after the last ref was processed, 1 is returned.
1530 * returns <0 on error
1531 */
1532static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1533				   struct btrfs_key *key,
1534				   struct btrfs_extent_item *ei, u32 item_size,
1535				   struct btrfs_extent_inline_ref **out_eiref,
1536				   int *out_type)
 
 
1537{
1538	unsigned long end;
1539	u64 flags;
1540	struct btrfs_tree_block_info *info;
1541
1542	if (!*ptr) {
1543		/* first call */
1544		flags = btrfs_extent_flags(eb, ei);
1545		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1546			if (key->type == BTRFS_METADATA_ITEM_KEY) {
1547				/* a skinny metadata extent */
1548				*out_eiref =
1549				     (struct btrfs_extent_inline_ref *)(ei + 1);
1550			} else {
1551				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1552				info = (struct btrfs_tree_block_info *)(ei + 1);
1553				*out_eiref =
1554				   (struct btrfs_extent_inline_ref *)(info + 1);
1555			}
1556		} else {
1557			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1558		}
1559		*ptr = (unsigned long)*out_eiref;
1560		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1561			return -ENOENT;
1562	}
1563
1564	end = (unsigned long)ei + item_size;
1565	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1566	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
 
 
 
1567
1568	*ptr += btrfs_extent_inline_ref_size(*out_type);
1569	WARN_ON(*ptr > end);
1570	if (*ptr == end)
1571		return 1; /* last */
1572
1573	return 0;
1574}
1575
1576/*
1577 * reads the tree block backref for an extent. tree level and root are returned
1578 * through out_level and out_root. ptr must point to a 0 value for the first
1579 * call and may be modified (see __get_extent_inline_ref comment).
1580 * returns 0 if data was provided, 1 if there was no more data to provide or
1581 * <0 on error.
1582 */
1583int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1584			    struct btrfs_key *key, struct btrfs_extent_item *ei,
1585			    u32 item_size, u64 *out_root, u8 *out_level)
1586{
1587	int ret;
1588	int type;
1589	struct btrfs_extent_inline_ref *eiref;
1590
1591	if (*ptr == (unsigned long)-1)
1592		return 1;
1593
1594	while (1) {
1595		ret = __get_extent_inline_ref(ptr, eb, key, ei, item_size,
1596					      &eiref, &type);
1597		if (ret < 0)
1598			return ret;
1599
1600		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1601		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1602			break;
1603
1604		if (ret == 1)
1605			return 1;
1606	}
1607
1608	/* we can treat both ref types equally here */
1609	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1610
1611	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1612		struct btrfs_tree_block_info *info;
1613
1614		info = (struct btrfs_tree_block_info *)(ei + 1);
1615		*out_level = btrfs_tree_block_level(eb, info);
1616	} else {
1617		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1618		*out_level = (u8)key->offset;
1619	}
1620
1621	if (ret == 1)
1622		*ptr = (unsigned long)-1;
1623
1624	return 0;
1625}
1626
1627static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1628				u64 root, u64 extent_item_objectid,
1629				iterate_extent_inodes_t *iterate, void *ctx)
 
1630{
1631	struct extent_inode_elem *eie;
1632	int ret = 0;
1633
1634	for (eie = inode_list; eie; eie = eie->next) {
1635		pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1636			 "root %llu\n", extent_item_objectid,
1637			 eie->inum, eie->offset, root);
 
1638		ret = iterate(eie->inum, eie->offset, root, ctx);
1639		if (ret) {
1640			pr_debug("stopping iteration for %llu due to ret=%d\n",
1641				 extent_item_objectid, ret);
 
1642			break;
1643		}
1644	}
1645
1646	return ret;
1647}
1648
1649/*
1650 * calls iterate() for every inode that references the extent identified by
1651 * the given parameters.
1652 * when the iterator function returns a non-zero value, iteration stops.
1653 */
1654int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1655				u64 extent_item_objectid, u64 extent_item_pos,
1656				int search_commit_root,
1657				iterate_extent_inodes_t *iterate, void *ctx)
 
1658{
1659	int ret;
1660	struct btrfs_trans_handle *trans = NULL;
1661	struct ulist *refs = NULL;
1662	struct ulist *roots = NULL;
1663	struct ulist_node *ref_node = NULL;
1664	struct ulist_node *root_node = NULL;
1665	struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
1666	struct ulist_iterator ref_uiter;
1667	struct ulist_iterator root_uiter;
1668
1669	pr_debug("resolving all inodes for extent %llu\n",
1670			extent_item_objectid);
1671
1672	if (!search_commit_root) {
1673		trans = btrfs_join_transaction(fs_info->extent_root);
1674		if (IS_ERR(trans))
1675			return PTR_ERR(trans);
 
 
 
 
 
 
 
1676		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1677	} else {
1678		down_read(&fs_info->commit_root_sem);
1679	}
1680
1681	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1682				   tree_mod_seq_elem.seq, &refs,
1683				   &extent_item_pos);
1684	if (ret)
1685		goto out;
1686
1687	ULIST_ITER_INIT(&ref_uiter);
1688	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1689		ret = __btrfs_find_all_roots(trans, fs_info, ref_node->val,
1690					     tree_mod_seq_elem.seq, &roots);
 
1691		if (ret)
1692			break;
1693		ULIST_ITER_INIT(&root_uiter);
1694		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1695			pr_debug("root %llu references leaf %llu, data list "
1696				 "%#llx\n", root_node->val, ref_node->val,
1697				 ref_node->aux);
1698			ret = iterate_leaf_refs((struct extent_inode_elem *)
 
 
1699						(uintptr_t)ref_node->aux,
1700						root_node->val,
1701						extent_item_objectid,
1702						iterate, ctx);
1703		}
1704		ulist_free(roots);
1705	}
1706
1707	free_leaf_list(refs);
1708out:
1709	if (!search_commit_root) {
1710		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1711		btrfs_end_transaction(trans, fs_info->extent_root);
1712	} else {
1713		up_read(&fs_info->commit_root_sem);
1714	}
1715
1716	return ret;
1717}
1718
1719int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1720				struct btrfs_path *path,
1721				iterate_extent_inodes_t *iterate, void *ctx)
 
1722{
1723	int ret;
1724	u64 extent_item_pos;
1725	u64 flags = 0;
1726	struct btrfs_key found_key;
1727	int search_commit_root = path->search_commit_root;
1728
1729	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1730	btrfs_release_path(path);
1731	if (ret < 0)
1732		return ret;
1733	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1734		return -EINVAL;
1735
1736	extent_item_pos = logical - found_key.objectid;
1737	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1738					extent_item_pos, search_commit_root,
1739					iterate, ctx);
1740
1741	return ret;
1742}
1743
1744typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1745			      struct extent_buffer *eb, void *ctx);
1746
1747static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1748			      struct btrfs_path *path,
1749			      iterate_irefs_t *iterate, void *ctx)
1750{
1751	int ret = 0;
1752	int slot;
1753	u32 cur;
1754	u32 len;
1755	u32 name_len;
1756	u64 parent = 0;
1757	int found = 0;
1758	struct extent_buffer *eb;
1759	struct btrfs_item *item;
1760	struct btrfs_inode_ref *iref;
1761	struct btrfs_key found_key;
1762
1763	while (!ret) {
1764		ret = btrfs_find_item(fs_root, path, inum,
1765				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
1766				&found_key);
1767
1768		if (ret < 0)
1769			break;
1770		if (ret) {
1771			ret = found ? 0 : -ENOENT;
1772			break;
1773		}
1774		++found;
1775
1776		parent = found_key.offset;
1777		slot = path->slots[0];
1778		eb = btrfs_clone_extent_buffer(path->nodes[0]);
1779		if (!eb) {
1780			ret = -ENOMEM;
1781			break;
1782		}
1783		extent_buffer_get(eb);
1784		btrfs_tree_read_lock(eb);
1785		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1786		btrfs_release_path(path);
1787
1788		item = btrfs_item_nr(slot);
1789		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1790
1791		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1792			name_len = btrfs_inode_ref_name_len(eb, iref);
1793			/* path must be released before calling iterate()! */
1794			pr_debug("following ref at offset %u for inode %llu in "
1795				 "tree %llu\n", cur, found_key.objectid,
1796				 fs_root->objectid);
 
1797			ret = iterate(parent, name_len,
1798				      (unsigned long)(iref + 1), eb, ctx);
1799			if (ret)
1800				break;
1801			len = sizeof(*iref) + name_len;
1802			iref = (struct btrfs_inode_ref *)((char *)iref + len);
1803		}
1804		btrfs_tree_read_unlock_blocking(eb);
1805		free_extent_buffer(eb);
1806	}
1807
1808	btrfs_release_path(path);
1809
1810	return ret;
1811}
1812
1813static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
1814				 struct btrfs_path *path,
1815				 iterate_irefs_t *iterate, void *ctx)
1816{
1817	int ret;
1818	int slot;
1819	u64 offset = 0;
1820	u64 parent;
1821	int found = 0;
1822	struct extent_buffer *eb;
1823	struct btrfs_inode_extref *extref;
1824	u32 item_size;
1825	u32 cur_offset;
1826	unsigned long ptr;
1827
1828	while (1) {
1829		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
1830					    &offset);
1831		if (ret < 0)
1832			break;
1833		if (ret) {
1834			ret = found ? 0 : -ENOENT;
1835			break;
1836		}
1837		++found;
1838
1839		slot = path->slots[0];
1840		eb = btrfs_clone_extent_buffer(path->nodes[0]);
1841		if (!eb) {
1842			ret = -ENOMEM;
1843			break;
1844		}
1845		extent_buffer_get(eb);
1846
1847		btrfs_tree_read_lock(eb);
1848		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1849		btrfs_release_path(path);
1850
1851		item_size = btrfs_item_size_nr(eb, slot);
1852		ptr = btrfs_item_ptr_offset(eb, slot);
1853		cur_offset = 0;
1854
1855		while (cur_offset < item_size) {
1856			u32 name_len;
1857
1858			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
1859			parent = btrfs_inode_extref_parent(eb, extref);
1860			name_len = btrfs_inode_extref_name_len(eb, extref);
1861			ret = iterate(parent, name_len,
1862				      (unsigned long)&extref->name, eb, ctx);
1863			if (ret)
1864				break;
1865
1866			cur_offset += btrfs_inode_extref_name_len(eb, extref);
1867			cur_offset += sizeof(*extref);
1868		}
1869		btrfs_tree_read_unlock_blocking(eb);
1870		free_extent_buffer(eb);
1871
1872		offset++;
1873	}
1874
1875	btrfs_release_path(path);
1876
1877	return ret;
1878}
1879
1880static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1881			 struct btrfs_path *path, iterate_irefs_t *iterate,
1882			 void *ctx)
1883{
1884	int ret;
1885	int found_refs = 0;
1886
1887	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
1888	if (!ret)
1889		++found_refs;
1890	else if (ret != -ENOENT)
1891		return ret;
1892
1893	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
1894	if (ret == -ENOENT && found_refs)
1895		return 0;
1896
1897	return ret;
1898}
1899
1900/*
1901 * returns 0 if the path could be dumped (probably truncated)
1902 * returns <0 in case of an error
1903 */
1904static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
1905			 struct extent_buffer *eb, void *ctx)
1906{
1907	struct inode_fs_paths *ipath = ctx;
1908	char *fspath;
1909	char *fspath_min;
1910	int i = ipath->fspath->elem_cnt;
1911	const int s_ptr = sizeof(char *);
1912	u32 bytes_left;
1913
1914	bytes_left = ipath->fspath->bytes_left > s_ptr ?
1915					ipath->fspath->bytes_left - s_ptr : 0;
1916
1917	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1918	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
1919				   name_off, eb, inum, fspath_min, bytes_left);
1920	if (IS_ERR(fspath))
1921		return PTR_ERR(fspath);
1922
1923	if (fspath > fspath_min) {
1924		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1925		++ipath->fspath->elem_cnt;
1926		ipath->fspath->bytes_left = fspath - fspath_min;
1927	} else {
1928		++ipath->fspath->elem_missed;
1929		ipath->fspath->bytes_missing += fspath_min - fspath;
1930		ipath->fspath->bytes_left = 0;
1931	}
1932
1933	return 0;
1934}
1935
1936/*
1937 * this dumps all file system paths to the inode into the ipath struct, provided
1938 * is has been created large enough. each path is zero-terminated and accessed
1939 * from ipath->fspath->val[i].
1940 * when it returns, there are ipath->fspath->elem_cnt number of paths available
1941 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1942 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1943 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1944 * have been needed to return all paths.
1945 */
1946int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1947{
1948	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
1949			     inode_to_path, ipath);
1950}
1951
1952struct btrfs_data_container *init_data_container(u32 total_bytes)
1953{
1954	struct btrfs_data_container *data;
1955	size_t alloc_bytes;
1956
1957	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1958	data = vmalloc(alloc_bytes);
1959	if (!data)
1960		return ERR_PTR(-ENOMEM);
1961
1962	if (total_bytes >= sizeof(*data)) {
1963		data->bytes_left = total_bytes - sizeof(*data);
1964		data->bytes_missing = 0;
1965	} else {
1966		data->bytes_missing = sizeof(*data) - total_bytes;
1967		data->bytes_left = 0;
1968	}
1969
1970	data->elem_cnt = 0;
1971	data->elem_missed = 0;
1972
1973	return data;
1974}
1975
1976/*
1977 * allocates space to return multiple file system paths for an inode.
1978 * total_bytes to allocate are passed, note that space usable for actual path
1979 * information will be total_bytes - sizeof(struct inode_fs_paths).
1980 * the returned pointer must be freed with free_ipath() in the end.
1981 */
1982struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1983					struct btrfs_path *path)
1984{
1985	struct inode_fs_paths *ifp;
1986	struct btrfs_data_container *fspath;
1987
1988	fspath = init_data_container(total_bytes);
1989	if (IS_ERR(fspath))
1990		return (void *)fspath;
1991
1992	ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1993	if (!ifp) {
1994		kfree(fspath);
1995		return ERR_PTR(-ENOMEM);
1996	}
1997
1998	ifp->btrfs_path = path;
1999	ifp->fspath = fspath;
2000	ifp->fs_root = fs_root;
2001
2002	return ifp;
2003}
2004
2005void free_ipath(struct inode_fs_paths *ipath)
2006{
2007	if (!ipath)
2008		return;
2009	vfree(ipath->fspath);
2010	kfree(ipath);
2011}