Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011 STRATO.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/mm.h>
   7#include <linux/rbtree.h>
   8#include <trace/events/btrfs.h>
   9#include "ctree.h"
  10#include "disk-io.h"
  11#include "backref.h"
  12#include "ulist.h"
  13#include "transaction.h"
  14#include "delayed-ref.h"
  15#include "locking.h"
  16
  17/* Just an arbitrary number so we can be sure this happened */
  18#define BACKREF_FOUND_SHARED 6
  19
  20struct extent_inode_elem {
  21	u64 inum;
  22	u64 offset;
  23	struct extent_inode_elem *next;
  24};
  25
  26static int check_extent_in_eb(const struct btrfs_key *key,
  27			      const struct extent_buffer *eb,
  28			      const struct btrfs_file_extent_item *fi,
  29			      u64 extent_item_pos,
  30			      struct extent_inode_elem **eie,
  31			      bool ignore_offset)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  32{
  33	u64 offset = 0;
  34	struct extent_inode_elem *e;
  35
  36	if (!ignore_offset &&
  37	    !btrfs_file_extent_compression(eb, fi) &&
  38	    !btrfs_file_extent_encryption(eb, fi) &&
  39	    !btrfs_file_extent_other_encoding(eb, fi)) {
  40		u64 data_offset;
  41		u64 data_len;
  42
  43		data_offset = btrfs_file_extent_offset(eb, fi);
  44		data_len = btrfs_file_extent_num_bytes(eb, fi);
  45
  46		if (extent_item_pos < data_offset ||
  47		    extent_item_pos >= data_offset + data_len)
  48			return 1;
  49		offset = extent_item_pos - data_offset;
  50	}
  51
  52	e = kmalloc(sizeof(*e), GFP_NOFS);
  53	if (!e)
  54		return -ENOMEM;
  55
  56	e->next = *eie;
  57	e->inum = key->objectid;
  58	e->offset = key->offset + offset;
  59	*eie = e;
  60
  61	return 0;
  62}
  63
  64static void free_inode_elem_list(struct extent_inode_elem *eie)
  65{
  66	struct extent_inode_elem *eie_next;
  67
  68	for (; eie; eie = eie_next) {
  69		eie_next = eie->next;
  70		kfree(eie);
  71	}
  72}
  73
  74static int find_extent_in_eb(const struct extent_buffer *eb,
  75			     u64 wanted_disk_byte, u64 extent_item_pos,
  76			     struct extent_inode_elem **eie,
  77			     bool ignore_offset)
  78{
  79	u64 disk_byte;
  80	struct btrfs_key key;
  81	struct btrfs_file_extent_item *fi;
  82	int slot;
  83	int nritems;
  84	int extent_type;
  85	int ret;
  86
  87	/*
  88	 * from the shared data ref, we only have the leaf but we need
  89	 * the key. thus, we must look into all items and see that we
  90	 * find one (some) with a reference to our extent item.
  91	 */
  92	nritems = btrfs_header_nritems(eb);
  93	for (slot = 0; slot < nritems; ++slot) {
  94		btrfs_item_key_to_cpu(eb, &key, slot);
  95		if (key.type != BTRFS_EXTENT_DATA_KEY)
  96			continue;
  97		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
  98		extent_type = btrfs_file_extent_type(eb, fi);
  99		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
 100			continue;
 101		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
 102		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
 103		if (disk_byte != wanted_disk_byte)
 104			continue;
 105
 106		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
 107		if (ret < 0)
 108			return ret;
 109	}
 110
 111	return 0;
 112}
 113
 114struct preftree {
 115	struct rb_root_cached root;
 116	unsigned int count;
 117};
 118
 119#define PREFTREE_INIT	{ .root = RB_ROOT_CACHED, .count = 0 }
 120
 121struct preftrees {
 122	struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
 123	struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
 124	struct preftree indirect_missing_keys;
 125};
 126
 127/*
 128 * Checks for a shared extent during backref search.
 129 *
 130 * The share_count tracks prelim_refs (direct and indirect) having a
 131 * ref->count >0:
 132 *  - incremented when a ref->count transitions to >0
 133 *  - decremented when a ref->count transitions to <1
 134 */
 135struct share_check {
 136	u64 root_objectid;
 137	u64 inum;
 138	int share_count;
 
 
 
 
 
 139};
 140
 141static inline int extent_is_shared(struct share_check *sc)
 142{
 143	return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
 144}
 145
 146static struct kmem_cache *btrfs_prelim_ref_cache;
 147
 148int __init btrfs_prelim_ref_init(void)
 149{
 150	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
 151					sizeof(struct prelim_ref),
 152					0,
 153					SLAB_MEM_SPREAD,
 154					NULL);
 155	if (!btrfs_prelim_ref_cache)
 156		return -ENOMEM;
 157	return 0;
 158}
 159
 160void __cold btrfs_prelim_ref_exit(void)
 161{
 162	kmem_cache_destroy(btrfs_prelim_ref_cache);
 163}
 164
 165static void free_pref(struct prelim_ref *ref)
 166{
 167	kmem_cache_free(btrfs_prelim_ref_cache, ref);
 168}
 169
 170/*
 171 * Return 0 when both refs are for the same block (and can be merged).
 172 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
 173 * indicates a 'higher' block.
 174 */
 175static int prelim_ref_compare(struct prelim_ref *ref1,
 176			      struct prelim_ref *ref2)
 177{
 178	if (ref1->level < ref2->level)
 179		return -1;
 180	if (ref1->level > ref2->level)
 181		return 1;
 182	if (ref1->root_id < ref2->root_id)
 183		return -1;
 184	if (ref1->root_id > ref2->root_id)
 185		return 1;
 186	if (ref1->key_for_search.type < ref2->key_for_search.type)
 187		return -1;
 188	if (ref1->key_for_search.type > ref2->key_for_search.type)
 189		return 1;
 190	if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
 191		return -1;
 192	if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
 193		return 1;
 194	if (ref1->key_for_search.offset < ref2->key_for_search.offset)
 195		return -1;
 196	if (ref1->key_for_search.offset > ref2->key_for_search.offset)
 197		return 1;
 198	if (ref1->parent < ref2->parent)
 199		return -1;
 200	if (ref1->parent > ref2->parent)
 201		return 1;
 202
 203	return 0;
 204}
 205
 206static void update_share_count(struct share_check *sc, int oldcount,
 207			       int newcount)
 208{
 209	if ((!sc) || (oldcount == 0 && newcount < 1))
 210		return;
 211
 212	if (oldcount > 0 && newcount < 1)
 213		sc->share_count--;
 214	else if (oldcount < 1 && newcount > 0)
 215		sc->share_count++;
 216}
 217
 218/*
 219 * Add @newref to the @root rbtree, merging identical refs.
 220 *
 221 * Callers should assume that newref has been freed after calling.
 222 */
 223static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
 224			      struct preftree *preftree,
 225			      struct prelim_ref *newref,
 226			      struct share_check *sc)
 227{
 228	struct rb_root_cached *root;
 229	struct rb_node **p;
 230	struct rb_node *parent = NULL;
 231	struct prelim_ref *ref;
 232	int result;
 233	bool leftmost = true;
 234
 235	root = &preftree->root;
 236	p = &root->rb_root.rb_node;
 237
 238	while (*p) {
 239		parent = *p;
 240		ref = rb_entry(parent, struct prelim_ref, rbnode);
 241		result = prelim_ref_compare(ref, newref);
 242		if (result < 0) {
 243			p = &(*p)->rb_left;
 244		} else if (result > 0) {
 245			p = &(*p)->rb_right;
 246			leftmost = false;
 247		} else {
 248			/* Identical refs, merge them and free @newref */
 249			struct extent_inode_elem *eie = ref->inode_list;
 250
 251			while (eie && eie->next)
 252				eie = eie->next;
 253
 254			if (!eie)
 255				ref->inode_list = newref->inode_list;
 256			else
 257				eie->next = newref->inode_list;
 258			trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
 259						     preftree->count);
 260			/*
 261			 * A delayed ref can have newref->count < 0.
 262			 * The ref->count is updated to follow any
 263			 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
 264			 */
 265			update_share_count(sc, ref->count,
 266					   ref->count + newref->count);
 267			ref->count += newref->count;
 268			free_pref(newref);
 269			return;
 270		}
 271	}
 272
 273	update_share_count(sc, 0, newref->count);
 274	preftree->count++;
 275	trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
 276	rb_link_node(&newref->rbnode, parent, p);
 277	rb_insert_color_cached(&newref->rbnode, root, leftmost);
 278}
 279
 280/*
 281 * Release the entire tree.  We don't care about internal consistency so
 282 * just free everything and then reset the tree root.
 283 */
 284static void prelim_release(struct preftree *preftree)
 285{
 286	struct prelim_ref *ref, *next_ref;
 287
 288	rbtree_postorder_for_each_entry_safe(ref, next_ref,
 289					     &preftree->root.rb_root, rbnode)
 290		free_pref(ref);
 291
 292	preftree->root = RB_ROOT_CACHED;
 293	preftree->count = 0;
 294}
 295
 296/*
 297 * the rules for all callers of this function are:
 298 * - obtaining the parent is the goal
 299 * - if you add a key, you must know that it is a correct key
 300 * - if you cannot add the parent or a correct key, then we will look into the
 301 *   block later to set a correct key
 302 *
 303 * delayed refs
 304 * ============
 305 *        backref type | shared | indirect | shared | indirect
 306 * information         |   tree |     tree |   data |     data
 307 * --------------------+--------+----------+--------+----------
 308 *      parent logical |    y   |     -    |    -   |     -
 309 *      key to resolve |    -   |     y    |    y   |     y
 310 *  tree block logical |    -   |     -    |    -   |     -
 311 *  root for resolving |    y   |     y    |    y   |     y
 312 *
 313 * - column 1:       we've the parent -> done
 314 * - column 2, 3, 4: we use the key to find the parent
 315 *
 316 * on disk refs (inline or keyed)
 317 * ==============================
 318 *        backref type | shared | indirect | shared | indirect
 319 * information         |   tree |     tree |   data |     data
 320 * --------------------+--------+----------+--------+----------
 321 *      parent logical |    y   |     -    |    y   |     -
 322 *      key to resolve |    -   |     -    |    -   |     y
 323 *  tree block logical |    y   |     y    |    y   |     y
 324 *  root for resolving |    -   |     y    |    y   |     y
 325 *
 326 * - column 1, 3: we've the parent -> done
 327 * - column 2:    we take the first key from the block to find the parent
 328 *                (see add_missing_keys)
 329 * - column 4:    we use the key to find the parent
 330 *
 331 * additional information that's available but not required to find the parent
 332 * block might help in merging entries to gain some speed.
 333 */
 334static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
 335			  struct preftree *preftree, u64 root_id,
 336			  const struct btrfs_key *key, int level, u64 parent,
 337			  u64 wanted_disk_byte, int count,
 338			  struct share_check *sc, gfp_t gfp_mask)
 339{
 340	struct prelim_ref *ref;
 341
 342	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
 343		return 0;
 344
 345	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
 346	if (!ref)
 347		return -ENOMEM;
 348
 349	ref->root_id = root_id;
 350	if (key) {
 351		ref->key_for_search = *key;
 352		/*
 353		 * We can often find data backrefs with an offset that is too
 354		 * large (>= LLONG_MAX, maximum allowed file offset) due to
 355		 * underflows when subtracting a file's offset with the data
 356		 * offset of its corresponding extent data item. This can
 357		 * happen for example in the clone ioctl.
 358		 * So if we detect such case we set the search key's offset to
 359		 * zero to make sure we will find the matching file extent item
 360		 * at add_all_parents(), otherwise we will miss it because the
 361		 * offset taken form the backref is much larger then the offset
 362		 * of the file extent item. This can make us scan a very large
 363		 * number of file extent items, but at least it will not make
 364		 * us miss any.
 365		 * This is an ugly workaround for a behaviour that should have
 366		 * never existed, but it does and a fix for the clone ioctl
 367		 * would touch a lot of places, cause backwards incompatibility
 368		 * and would not fix the problem for extents cloned with older
 369		 * kernels.
 370		 */
 371		if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
 372		    ref->key_for_search.offset >= LLONG_MAX)
 373			ref->key_for_search.offset = 0;
 374	} else {
 375		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
 376	}
 377
 378	ref->inode_list = NULL;
 379	ref->level = level;
 380	ref->count = count;
 381	ref->parent = parent;
 382	ref->wanted_disk_byte = wanted_disk_byte;
 383	prelim_ref_insert(fs_info, preftree, ref, sc);
 384	return extent_is_shared(sc);
 385}
 386
 387/* direct refs use root == 0, key == NULL */
 388static int add_direct_ref(const struct btrfs_fs_info *fs_info,
 389			  struct preftrees *preftrees, int level, u64 parent,
 390			  u64 wanted_disk_byte, int count,
 391			  struct share_check *sc, gfp_t gfp_mask)
 392{
 393	return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
 394			      parent, wanted_disk_byte, count, sc, gfp_mask);
 395}
 396
 397/* indirect refs use parent == 0 */
 398static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
 399			    struct preftrees *preftrees, u64 root_id,
 400			    const struct btrfs_key *key, int level,
 401			    u64 wanted_disk_byte, int count,
 402			    struct share_check *sc, gfp_t gfp_mask)
 403{
 404	struct preftree *tree = &preftrees->indirect;
 405
 406	if (!key)
 407		tree = &preftrees->indirect_missing_keys;
 408	return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
 409			      wanted_disk_byte, count, sc, gfp_mask);
 410}
 411
 412static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
 413			   struct ulist *parents, struct prelim_ref *ref,
 414			   int level, u64 time_seq, const u64 *extent_item_pos,
 415			   u64 total_refs, bool ignore_offset)
 416{
 417	int ret = 0;
 418	int slot;
 419	struct extent_buffer *eb;
 420	struct btrfs_key key;
 421	struct btrfs_key *key_for_search = &ref->key_for_search;
 422	struct btrfs_file_extent_item *fi;
 423	struct extent_inode_elem *eie = NULL, *old = NULL;
 424	u64 disk_byte;
 425	u64 wanted_disk_byte = ref->wanted_disk_byte;
 426	u64 count = 0;
 427
 428	if (level != 0) {
 429		eb = path->nodes[level];
 430		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
 431		if (ret < 0)
 432			return ret;
 433		return 0;
 434	}
 435
 436	/*
 437	 * We normally enter this function with the path already pointing to
 438	 * the first item to check. But sometimes, we may enter it with
 439	 * slot==nritems. In that case, go to the next leaf before we continue.
 440	 */
 441	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
 442		if (time_seq == SEQ_LAST)
 443			ret = btrfs_next_leaf(root, path);
 444		else
 445			ret = btrfs_next_old_leaf(root, path, time_seq);
 446	}
 447
 448	while (!ret && count < total_refs) {
 449		eb = path->nodes[0];
 450		slot = path->slots[0];
 451
 452		btrfs_item_key_to_cpu(eb, &key, slot);
 453
 454		if (key.objectid != key_for_search->objectid ||
 455		    key.type != BTRFS_EXTENT_DATA_KEY)
 456			break;
 457
 458		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 459		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
 460
 461		if (disk_byte == wanted_disk_byte) {
 462			eie = NULL;
 463			old = NULL;
 464			count++;
 465			if (extent_item_pos) {
 466				ret = check_extent_in_eb(&key, eb, fi,
 467						*extent_item_pos,
 468						&eie, ignore_offset);
 469				if (ret < 0)
 470					break;
 471			}
 472			if (ret > 0)
 473				goto next;
 474			ret = ulist_add_merge_ptr(parents, eb->start,
 475						  eie, (void **)&old, GFP_NOFS);
 476			if (ret < 0)
 477				break;
 478			if (!ret && extent_item_pos) {
 479				while (old->next)
 480					old = old->next;
 481				old->next = eie;
 482			}
 483			eie = NULL;
 484		}
 485next:
 486		if (time_seq == SEQ_LAST)
 487			ret = btrfs_next_item(root, path);
 488		else
 489			ret = btrfs_next_old_item(root, path, time_seq);
 490	}
 491
 492	if (ret > 0)
 493		ret = 0;
 494	else if (ret < 0)
 495		free_inode_elem_list(eie);
 496	return ret;
 497}
 498
 499/*
 500 * resolve an indirect backref in the form (root_id, key, level)
 501 * to a logical address
 502 */
 503static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
 504				struct btrfs_path *path, u64 time_seq,
 505				struct prelim_ref *ref, struct ulist *parents,
 506				const u64 *extent_item_pos, u64 total_refs,
 507				bool ignore_offset)
 508{
 509	struct btrfs_root *root;
 510	struct btrfs_key root_key;
 511	struct extent_buffer *eb;
 512	int ret = 0;
 513	int root_level;
 514	int level = ref->level;
 515	int index;
 516
 517	root_key.objectid = ref->root_id;
 518	root_key.type = BTRFS_ROOT_ITEM_KEY;
 519	root_key.offset = (u64)-1;
 520
 521	index = srcu_read_lock(&fs_info->subvol_srcu);
 522
 523	root = btrfs_get_fs_root(fs_info, &root_key, false);
 524	if (IS_ERR(root)) {
 525		srcu_read_unlock(&fs_info->subvol_srcu, index);
 526		ret = PTR_ERR(root);
 527		goto out;
 528	}
 529
 530	if (btrfs_is_testing(fs_info)) {
 531		srcu_read_unlock(&fs_info->subvol_srcu, index);
 532		ret = -ENOENT;
 533		goto out;
 534	}
 535
 536	if (path->search_commit_root)
 537		root_level = btrfs_header_level(root->commit_root);
 538	else if (time_seq == SEQ_LAST)
 539		root_level = btrfs_header_level(root->node);
 540	else
 541		root_level = btrfs_old_root_level(root, time_seq);
 542
 543	if (root_level + 1 == level) {
 544		srcu_read_unlock(&fs_info->subvol_srcu, index);
 545		goto out;
 546	}
 547
 548	path->lowest_level = level;
 549	if (time_seq == SEQ_LAST)
 550		ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
 551					0, 0);
 552	else
 553		ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
 554					    time_seq);
 555
 556	/* root node has been locked, we can release @subvol_srcu safely here */
 557	srcu_read_unlock(&fs_info->subvol_srcu, index);
 558
 559	btrfs_debug(fs_info,
 560		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
 561		 ref->root_id, level, ref->count, ret,
 562		 ref->key_for_search.objectid, ref->key_for_search.type,
 563		 ref->key_for_search.offset);
 564	if (ret < 0)
 565		goto out;
 566
 567	eb = path->nodes[level];
 568	while (!eb) {
 569		if (WARN_ON(!level)) {
 570			ret = 1;
 571			goto out;
 572		}
 573		level--;
 574		eb = path->nodes[level];
 575	}
 576
 577	ret = add_all_parents(root, path, parents, ref, level, time_seq,
 578			      extent_item_pos, total_refs, ignore_offset);
 579out:
 580	path->lowest_level = 0;
 581	btrfs_release_path(path);
 582	return ret;
 583}
 584
 585static struct extent_inode_elem *
 586unode_aux_to_inode_list(struct ulist_node *node)
 587{
 588	if (!node)
 589		return NULL;
 590	return (struct extent_inode_elem *)(uintptr_t)node->aux;
 591}
 592
 593/*
 594 * We maintain three separate rbtrees: one for direct refs, one for
 595 * indirect refs which have a key, and one for indirect refs which do not
 596 * have a key. Each tree does merge on insertion.
 597 *
 598 * Once all of the references are located, we iterate over the tree of
 599 * indirect refs with missing keys. An appropriate key is located and
 600 * the ref is moved onto the tree for indirect refs. After all missing
 601 * keys are thus located, we iterate over the indirect ref tree, resolve
 602 * each reference, and then insert the resolved reference onto the
 603 * direct tree (merging there too).
 604 *
 605 * New backrefs (i.e., for parent nodes) are added to the appropriate
 606 * rbtree as they are encountered. The new backrefs are subsequently
 607 * resolved as above.
 608 */
 609static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
 610				 struct btrfs_path *path, u64 time_seq,
 611				 struct preftrees *preftrees,
 612				 const u64 *extent_item_pos, u64 total_refs,
 613				 struct share_check *sc, bool ignore_offset)
 614{
 615	int err;
 616	int ret = 0;
 
 
 
 617	struct ulist *parents;
 618	struct ulist_node *node;
 619	struct ulist_iterator uiter;
 620	struct rb_node *rnode;
 621
 622	parents = ulist_alloc(GFP_NOFS);
 623	if (!parents)
 624		return -ENOMEM;
 625
 626	/*
 627	 * We could trade memory usage for performance here by iterating
 628	 * the tree, allocating new refs for each insertion, and then
 629	 * freeing the entire indirect tree when we're done.  In some test
 630	 * cases, the tree can grow quite large (~200k objects).
 631	 */
 632	while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
 633		struct prelim_ref *ref;
 634
 635		ref = rb_entry(rnode, struct prelim_ref, rbnode);
 636		if (WARN(ref->parent,
 637			 "BUG: direct ref found in indirect tree")) {
 638			ret = -EINVAL;
 639			goto out;
 640		}
 641
 642		rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
 643		preftrees->indirect.count--;
 644
 645		if (ref->count == 0) {
 646			free_pref(ref);
 647			continue;
 648		}
 649
 650		if (sc && sc->root_objectid &&
 651		    ref->root_id != sc->root_objectid) {
 652			free_pref(ref);
 653			ret = BACKREF_FOUND_SHARED;
 654			goto out;
 655		}
 656		err = resolve_indirect_ref(fs_info, path, time_seq, ref,
 657					   parents, extent_item_pos,
 658					   total_refs, ignore_offset);
 659		/*
 660		 * we can only tolerate ENOENT,otherwise,we should catch error
 661		 * and return directly.
 662		 */
 663		if (err == -ENOENT) {
 664			prelim_ref_insert(fs_info, &preftrees->direct, ref,
 665					  NULL);
 666			continue;
 667		} else if (err) {
 668			free_pref(ref);
 669			ret = err;
 670			goto out;
 671		}
 672
 673		/* we put the first parent into the ref at hand */
 674		ULIST_ITER_INIT(&uiter);
 675		node = ulist_next(parents, &uiter);
 676		ref->parent = node ? node->val : 0;
 677		ref->inode_list = unode_aux_to_inode_list(node);
 
 678
 679		/* Add a prelim_ref(s) for any other parent(s). */
 680		while ((node = ulist_next(parents, &uiter))) {
 681			struct prelim_ref *new_ref;
 682
 683			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
 684						   GFP_NOFS);
 685			if (!new_ref) {
 686				free_pref(ref);
 687				ret = -ENOMEM;
 688				goto out;
 689			}
 690			memcpy(new_ref, ref, sizeof(*ref));
 691			new_ref->parent = node->val;
 692			new_ref->inode_list = unode_aux_to_inode_list(node);
 693			prelim_ref_insert(fs_info, &preftrees->direct,
 694					  new_ref, NULL);
 695		}
 696
 697		/*
 698		 * Now it's a direct ref, put it in the direct tree. We must
 699		 * do this last because the ref could be merged/freed here.
 700		 */
 701		prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
 702
 703		ulist_reinit(parents);
 704		cond_resched();
 705	}
 706out:
 707	ulist_free(parents);
 708	return ret;
 709}
 710
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 711/*
 712 * read tree blocks and add keys where required.
 713 */
 714static int add_missing_keys(struct btrfs_fs_info *fs_info,
 715			    struct preftrees *preftrees, bool lock)
 716{
 717	struct prelim_ref *ref;
 718	struct extent_buffer *eb;
 719	struct preftree *tree = &preftrees->indirect_missing_keys;
 720	struct rb_node *node;
 721
 722	while ((node = rb_first_cached(&tree->root))) {
 723		ref = rb_entry(node, struct prelim_ref, rbnode);
 724		rb_erase_cached(node, &tree->root);
 725
 726		BUG_ON(ref->parent);	/* should not be a direct ref */
 727		BUG_ON(ref->key_for_search.type);
 
 
 
 728		BUG_ON(!ref->wanted_disk_byte);
 729
 730		eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0,
 731				     ref->level - 1, NULL);
 732		if (IS_ERR(eb)) {
 733			free_pref(ref);
 734			return PTR_ERR(eb);
 735		} else if (!extent_buffer_uptodate(eb)) {
 736			free_pref(ref);
 737			free_extent_buffer(eb);
 738			return -EIO;
 739		}
 740		if (lock)
 741			btrfs_tree_read_lock(eb);
 742		if (btrfs_header_level(eb) == 0)
 743			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
 744		else
 745			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
 746		if (lock)
 747			btrfs_tree_read_unlock(eb);
 748		free_extent_buffer(eb);
 749		prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
 750		cond_resched();
 751	}
 752	return 0;
 753}
 754
 755/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 756 * add all currently queued delayed refs from this head whose seq nr is
 757 * smaller or equal that seq to the list
 758 */
 759static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
 760			    struct btrfs_delayed_ref_head *head, u64 seq,
 761			    struct preftrees *preftrees, u64 *total_refs,
 762			    struct share_check *sc)
 763{
 764	struct btrfs_delayed_ref_node *node;
 765	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
 766	struct btrfs_key key;
 767	struct btrfs_key tmp_op_key;
 768	struct rb_node *n;
 769	int count;
 770	int ret = 0;
 771
 772	if (extent_op && extent_op->update_key)
 773		btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
 774
 775	spin_lock(&head->lock);
 776	for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
 777		node = rb_entry(n, struct btrfs_delayed_ref_node,
 778				ref_node);
 779		if (node->seq > seq)
 780			continue;
 781
 782		switch (node->action) {
 783		case BTRFS_ADD_DELAYED_EXTENT:
 784		case BTRFS_UPDATE_DELAYED_HEAD:
 785			WARN_ON(1);
 786			continue;
 787		case BTRFS_ADD_DELAYED_REF:
 788			count = node->ref_mod;
 789			break;
 790		case BTRFS_DROP_DELAYED_REF:
 791			count = node->ref_mod * -1;
 792			break;
 793		default:
 794			BUG();
 795		}
 796		*total_refs += count;
 797		switch (node->type) {
 798		case BTRFS_TREE_BLOCK_REF_KEY: {
 799			/* NORMAL INDIRECT METADATA backref */
 800			struct btrfs_delayed_tree_ref *ref;
 801
 802			ref = btrfs_delayed_node_to_tree_ref(node);
 803			ret = add_indirect_ref(fs_info, preftrees, ref->root,
 804					       &tmp_op_key, ref->level + 1,
 805					       node->bytenr, count, sc,
 806					       GFP_ATOMIC);
 807			break;
 808		}
 809		case BTRFS_SHARED_BLOCK_REF_KEY: {
 810			/* SHARED DIRECT METADATA backref */
 811			struct btrfs_delayed_tree_ref *ref;
 812
 813			ref = btrfs_delayed_node_to_tree_ref(node);
 814
 815			ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
 816					     ref->parent, node->bytenr, count,
 817					     sc, GFP_ATOMIC);
 818			break;
 819		}
 820		case BTRFS_EXTENT_DATA_REF_KEY: {
 821			/* NORMAL INDIRECT DATA backref */
 822			struct btrfs_delayed_data_ref *ref;
 823			ref = btrfs_delayed_node_to_data_ref(node);
 824
 825			key.objectid = ref->objectid;
 826			key.type = BTRFS_EXTENT_DATA_KEY;
 827			key.offset = ref->offset;
 828
 829			/*
 830			 * Found a inum that doesn't match our known inum, we
 831			 * know it's shared.
 832			 */
 833			if (sc && sc->inum && ref->objectid != sc->inum) {
 834				ret = BACKREF_FOUND_SHARED;
 835				goto out;
 836			}
 837
 838			ret = add_indirect_ref(fs_info, preftrees, ref->root,
 839					       &key, 0, node->bytenr, count, sc,
 840					       GFP_ATOMIC);
 841			break;
 842		}
 843		case BTRFS_SHARED_DATA_REF_KEY: {
 844			/* SHARED DIRECT FULL backref */
 845			struct btrfs_delayed_data_ref *ref;
 846
 847			ref = btrfs_delayed_node_to_data_ref(node);
 848
 849			ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
 850					     node->bytenr, count, sc,
 851					     GFP_ATOMIC);
 852			break;
 853		}
 854		default:
 855			WARN_ON(1);
 856		}
 857		/*
 858		 * We must ignore BACKREF_FOUND_SHARED until all delayed
 859		 * refs have been checked.
 860		 */
 861		if (ret && (ret != BACKREF_FOUND_SHARED))
 862			break;
 863	}
 864	if (!ret)
 865		ret = extent_is_shared(sc);
 866out:
 867	spin_unlock(&head->lock);
 868	return ret;
 869}
 870
 871/*
 872 * add all inline backrefs for bytenr to the list
 873 *
 874 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
 875 */
 876static int add_inline_refs(const struct btrfs_fs_info *fs_info,
 877			   struct btrfs_path *path, u64 bytenr,
 878			   int *info_level, struct preftrees *preftrees,
 879			   u64 *total_refs, struct share_check *sc)
 
 880{
 881	int ret = 0;
 882	int slot;
 883	struct extent_buffer *leaf;
 884	struct btrfs_key key;
 885	struct btrfs_key found_key;
 886	unsigned long ptr;
 887	unsigned long end;
 888	struct btrfs_extent_item *ei;
 889	u64 flags;
 890	u64 item_size;
 891
 892	/*
 893	 * enumerate all inline refs
 894	 */
 895	leaf = path->nodes[0];
 896	slot = path->slots[0];
 897
 898	item_size = btrfs_item_size_nr(leaf, slot);
 899	BUG_ON(item_size < sizeof(*ei));
 900
 901	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
 902	flags = btrfs_extent_flags(leaf, ei);
 903	*total_refs += btrfs_extent_refs(leaf, ei);
 904	btrfs_item_key_to_cpu(leaf, &found_key, slot);
 905
 906	ptr = (unsigned long)(ei + 1);
 907	end = (unsigned long)ei + item_size;
 908
 909	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
 910	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 911		struct btrfs_tree_block_info *info;
 912
 913		info = (struct btrfs_tree_block_info *)ptr;
 914		*info_level = btrfs_tree_block_level(leaf, info);
 915		ptr += sizeof(struct btrfs_tree_block_info);
 916		BUG_ON(ptr > end);
 917	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
 918		*info_level = found_key.offset;
 919	} else {
 920		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
 921	}
 922
 923	while (ptr < end) {
 924		struct btrfs_extent_inline_ref *iref;
 925		u64 offset;
 926		int type;
 927
 928		iref = (struct btrfs_extent_inline_ref *)ptr;
 929		type = btrfs_get_extent_inline_ref_type(leaf, iref,
 930							BTRFS_REF_TYPE_ANY);
 931		if (type == BTRFS_REF_TYPE_INVALID)
 932			return -EUCLEAN;
 933
 934		offset = btrfs_extent_inline_ref_offset(leaf, iref);
 935
 936		switch (type) {
 937		case BTRFS_SHARED_BLOCK_REF_KEY:
 938			ret = add_direct_ref(fs_info, preftrees,
 939					     *info_level + 1, offset,
 940					     bytenr, 1, NULL, GFP_NOFS);
 941			break;
 942		case BTRFS_SHARED_DATA_REF_KEY: {
 943			struct btrfs_shared_data_ref *sdref;
 944			int count;
 945
 946			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
 947			count = btrfs_shared_data_ref_count(leaf, sdref);
 948
 949			ret = add_direct_ref(fs_info, preftrees, 0, offset,
 950					     bytenr, count, sc, GFP_NOFS);
 
 
 
 
 
 
 951			break;
 952		}
 953		case BTRFS_TREE_BLOCK_REF_KEY:
 954			ret = add_indirect_ref(fs_info, preftrees, offset,
 955					       NULL, *info_level + 1,
 956					       bytenr, 1, NULL, GFP_NOFS);
 957			break;
 958		case BTRFS_EXTENT_DATA_REF_KEY: {
 959			struct btrfs_extent_data_ref *dref;
 960			int count;
 961			u64 root;
 962
 963			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
 964			count = btrfs_extent_data_ref_count(leaf, dref);
 965			key.objectid = btrfs_extent_data_ref_objectid(leaf,
 966								      dref);
 967			key.type = BTRFS_EXTENT_DATA_KEY;
 968			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
 969
 970			if (sc && sc->inum && key.objectid != sc->inum) {
 971				ret = BACKREF_FOUND_SHARED;
 972				break;
 973			}
 974
 975			root = btrfs_extent_data_ref_root(leaf, dref);
 976
 977			ret = add_indirect_ref(fs_info, preftrees, root,
 978					       &key, 0, bytenr, count,
 979					       sc, GFP_NOFS);
 
 
 
 
 
 
 
 980			break;
 981		}
 982		default:
 983			WARN_ON(1);
 984		}
 985		if (ret)
 986			return ret;
 987		ptr += btrfs_extent_inline_ref_size(type);
 988	}
 989
 990	return 0;
 991}
 992
 993/*
 994 * add all non-inline backrefs for bytenr to the list
 995 *
 996 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
 997 */
 998static int add_keyed_refs(struct btrfs_fs_info *fs_info,
 999			  struct btrfs_path *path, u64 bytenr,
1000			  int info_level, struct preftrees *preftrees,
1001			  struct share_check *sc)
1002{
1003	struct btrfs_root *extent_root = fs_info->extent_root;
1004	int ret;
1005	int slot;
1006	struct extent_buffer *leaf;
1007	struct btrfs_key key;
1008
1009	while (1) {
1010		ret = btrfs_next_item(extent_root, path);
1011		if (ret < 0)
1012			break;
1013		if (ret) {
1014			ret = 0;
1015			break;
1016		}
1017
1018		slot = path->slots[0];
1019		leaf = path->nodes[0];
1020		btrfs_item_key_to_cpu(leaf, &key, slot);
1021
1022		if (key.objectid != bytenr)
1023			break;
1024		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1025			continue;
1026		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1027			break;
1028
1029		switch (key.type) {
1030		case BTRFS_SHARED_BLOCK_REF_KEY:
1031			/* SHARED DIRECT METADATA backref */
1032			ret = add_direct_ref(fs_info, preftrees,
1033					     info_level + 1, key.offset,
1034					     bytenr, 1, NULL, GFP_NOFS);
1035			break;
1036		case BTRFS_SHARED_DATA_REF_KEY: {
1037			/* SHARED DIRECT FULL backref */
1038			struct btrfs_shared_data_ref *sdref;
1039			int count;
1040
1041			sdref = btrfs_item_ptr(leaf, slot,
1042					      struct btrfs_shared_data_ref);
1043			count = btrfs_shared_data_ref_count(leaf, sdref);
1044			ret = add_direct_ref(fs_info, preftrees, 0,
1045					     key.offset, bytenr, count,
1046					     sc, GFP_NOFS);
 
 
 
 
 
 
1047			break;
1048		}
1049		case BTRFS_TREE_BLOCK_REF_KEY:
1050			/* NORMAL INDIRECT METADATA backref */
1051			ret = add_indirect_ref(fs_info, preftrees, key.offset,
1052					       NULL, info_level + 1, bytenr,
1053					       1, NULL, GFP_NOFS);
1054			break;
1055		case BTRFS_EXTENT_DATA_REF_KEY: {
1056			/* NORMAL INDIRECT DATA backref */
1057			struct btrfs_extent_data_ref *dref;
1058			int count;
1059			u64 root;
1060
1061			dref = btrfs_item_ptr(leaf, slot,
1062					      struct btrfs_extent_data_ref);
1063			count = btrfs_extent_data_ref_count(leaf, dref);
1064			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1065								      dref);
1066			key.type = BTRFS_EXTENT_DATA_KEY;
1067			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1068
1069			if (sc && sc->inum && key.objectid != sc->inum) {
1070				ret = BACKREF_FOUND_SHARED;
1071				break;
1072			}
1073
1074			root = btrfs_extent_data_ref_root(leaf, dref);
1075			ret = add_indirect_ref(fs_info, preftrees, root,
1076					       &key, 0, bytenr, count,
1077					       sc, GFP_NOFS);
 
 
 
 
 
 
 
 
1078			break;
1079		}
1080		default:
1081			WARN_ON(1);
1082		}
1083		if (ret)
1084			return ret;
1085
1086	}
1087
1088	return ret;
1089}
1090
1091/*
1092 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1093 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1094 * indirect refs to their parent bytenr.
1095 * When roots are found, they're added to the roots list
1096 *
1097 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
 
 
1098 * much like trans == NULL case, the difference only lies in it will not
1099 * commit root.
1100 * The special case is for qgroup to search roots in commit_transaction().
1101 *
1102 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1103 * shared extent is detected.
1104 *
1105 * Otherwise this returns 0 for success and <0 for an error.
1106 *
1107 * If ignore_offset is set to false, only extent refs whose offsets match
1108 * extent_item_pos are returned.  If true, every extent ref is returned
1109 * and extent_item_pos is ignored.
1110 *
1111 * FIXME some caching might speed things up
1112 */
1113static int find_parent_nodes(struct btrfs_trans_handle *trans,
1114			     struct btrfs_fs_info *fs_info, u64 bytenr,
1115			     u64 time_seq, struct ulist *refs,
1116			     struct ulist *roots, const u64 *extent_item_pos,
1117			     struct share_check *sc, bool ignore_offset)
1118{
1119	struct btrfs_key key;
1120	struct btrfs_path *path;
1121	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1122	struct btrfs_delayed_ref_head *head;
1123	int info_level = 0;
1124	int ret;
1125	struct prelim_ref *ref;
1126	struct rb_node *node;
 
1127	struct extent_inode_elem *eie = NULL;
1128	/* total of both direct AND indirect refs! */
1129	u64 total_refs = 0;
1130	struct preftrees preftrees = {
1131		.direct = PREFTREE_INIT,
1132		.indirect = PREFTREE_INIT,
1133		.indirect_missing_keys = PREFTREE_INIT
1134	};
1135
1136	key.objectid = bytenr;
1137	key.offset = (u64)-1;
1138	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1139		key.type = BTRFS_METADATA_ITEM_KEY;
1140	else
1141		key.type = BTRFS_EXTENT_ITEM_KEY;
1142
1143	path = btrfs_alloc_path();
1144	if (!path)
1145		return -ENOMEM;
1146	if (!trans) {
1147		path->search_commit_root = 1;
1148		path->skip_locking = 1;
1149	}
1150
1151	if (time_seq == SEQ_LAST)
1152		path->skip_locking = 1;
1153
1154	/*
1155	 * grab both a lock on the path and a lock on the delayed ref head.
1156	 * We need both to get a consistent picture of how the refs look
1157	 * at a specified point in time
1158	 */
1159again:
1160	head = NULL;
1161
 
 
 
 
 
 
 
 
 
 
 
 
1162	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1163	if (ret < 0)
1164		goto out;
1165	BUG_ON(ret == 0);
1166
1167#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1168	if (trans && likely(trans->type != __TRANS_DUMMY) &&
1169	    time_seq != SEQ_LAST) {
1170#else
1171	if (trans && time_seq != SEQ_LAST) {
1172#endif
1173		/*
1174		 * look if there are updates for this ref queued and lock the
1175		 * head
1176		 */
1177		delayed_refs = &trans->transaction->delayed_refs;
1178		spin_lock(&delayed_refs->lock);
1179		head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1180		if (head) {
1181			if (!mutex_trylock(&head->mutex)) {
1182				refcount_inc(&head->refs);
1183				spin_unlock(&delayed_refs->lock);
1184
1185				btrfs_release_path(path);
1186
1187				/*
1188				 * Mutex was contended, block until it's
1189				 * released and try again
1190				 */
1191				mutex_lock(&head->mutex);
1192				mutex_unlock(&head->mutex);
1193				btrfs_put_delayed_ref_head(head);
1194				goto again;
1195			}
1196			spin_unlock(&delayed_refs->lock);
1197			ret = add_delayed_refs(fs_info, head, time_seq,
1198					       &preftrees, &total_refs, sc);
 
1199			mutex_unlock(&head->mutex);
1200			if (ret)
1201				goto out;
1202		} else {
1203			spin_unlock(&delayed_refs->lock);
1204		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1205	}
1206
1207	if (path->slots[0]) {
1208		struct extent_buffer *leaf;
1209		int slot;
1210
1211		path->slots[0]--;
1212		leaf = path->nodes[0];
1213		slot = path->slots[0];
1214		btrfs_item_key_to_cpu(leaf, &key, slot);
1215		if (key.objectid == bytenr &&
1216		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
1217		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1218			ret = add_inline_refs(fs_info, path, bytenr,
1219					      &info_level, &preftrees,
1220					      &total_refs, sc);
 
1221			if (ret)
1222				goto out;
1223			ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1224					     &preftrees, sc);
 
1225			if (ret)
1226				goto out;
1227		}
1228	}
1229
1230	btrfs_release_path(path);
1231
1232	ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
 
 
1233	if (ret)
1234		goto out;
1235
1236	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1237
1238	ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1239				    extent_item_pos, total_refs, sc, ignore_offset);
 
1240	if (ret)
1241		goto out;
1242
1243	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1244
1245	/*
1246	 * This walks the tree of merged and resolved refs. Tree blocks are
1247	 * read in as needed. Unique entries are added to the ulist, and
1248	 * the list of found roots is updated.
1249	 *
1250	 * We release the entire tree in one go before returning.
1251	 */
1252	node = rb_first_cached(&preftrees.direct.root);
1253	while (node) {
1254		ref = rb_entry(node, struct prelim_ref, rbnode);
1255		node = rb_next(&ref->rbnode);
1256		/*
1257		 * ref->count < 0 can happen here if there are delayed
1258		 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1259		 * prelim_ref_insert() relies on this when merging
1260		 * identical refs to keep the overall count correct.
1261		 * prelim_ref_insert() will merge only those refs
1262		 * which compare identically.  Any refs having
1263		 * e.g. different offsets would not be merged,
1264		 * and would retain their original ref->count < 0.
1265		 */
1266		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1267			if (sc && sc->root_objectid &&
1268			    ref->root_id != sc->root_objectid) {
1269				ret = BACKREF_FOUND_SHARED;
1270				goto out;
1271			}
1272
1273			/* no parent == root of tree */
1274			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1275			if (ret < 0)
1276				goto out;
1277		}
1278		if (ref->count && ref->parent) {
1279			if (extent_item_pos && !ref->inode_list &&
1280			    ref->level == 0) {
1281				struct extent_buffer *eb;
1282
1283				eb = read_tree_block(fs_info, ref->parent, 0,
1284						     ref->level, NULL);
1285				if (IS_ERR(eb)) {
1286					ret = PTR_ERR(eb);
1287					goto out;
1288				} else if (!extent_buffer_uptodate(eb)) {
1289					free_extent_buffer(eb);
1290					ret = -EIO;
1291					goto out;
1292				}
1293
1294				if (!path->skip_locking) {
1295					btrfs_tree_read_lock(eb);
1296					btrfs_set_lock_blocking_read(eb);
1297				}
1298				ret = find_extent_in_eb(eb, bytenr,
1299							*extent_item_pos, &eie, ignore_offset);
1300				if (!path->skip_locking)
1301					btrfs_tree_read_unlock_blocking(eb);
1302				free_extent_buffer(eb);
1303				if (ret < 0)
1304					goto out;
1305				ref->inode_list = eie;
1306			}
1307			ret = ulist_add_merge_ptr(refs, ref->parent,
1308						  ref->inode_list,
1309						  (void **)&eie, GFP_NOFS);
1310			if (ret < 0)
1311				goto out;
1312			if (!ret && extent_item_pos) {
1313				/*
1314				 * we've recorded that parent, so we must extend
1315				 * its inode list here
1316				 */
1317				BUG_ON(!eie);
1318				while (eie->next)
1319					eie = eie->next;
1320				eie->next = ref->inode_list;
1321			}
1322			eie = NULL;
1323		}
1324		cond_resched();
 
1325	}
1326
1327out:
1328	btrfs_free_path(path);
1329
1330	prelim_release(&preftrees.direct);
1331	prelim_release(&preftrees.indirect);
1332	prelim_release(&preftrees.indirect_missing_keys);
1333
 
 
 
 
 
 
 
1334	if (ret < 0)
1335		free_inode_elem_list(eie);
1336	return ret;
1337}
1338
1339static void free_leaf_list(struct ulist *blocks)
1340{
1341	struct ulist_node *node = NULL;
1342	struct extent_inode_elem *eie;
1343	struct ulist_iterator uiter;
1344
1345	ULIST_ITER_INIT(&uiter);
1346	while ((node = ulist_next(blocks, &uiter))) {
1347		if (!node->aux)
1348			continue;
1349		eie = unode_aux_to_inode_list(node);
1350		free_inode_elem_list(eie);
1351		node->aux = 0;
1352	}
1353
1354	ulist_free(blocks);
1355}
1356
1357/*
1358 * Finds all leafs with a reference to the specified combination of bytenr and
1359 * offset. key_list_head will point to a list of corresponding keys (caller must
1360 * free each list element). The leafs will be stored in the leafs ulist, which
1361 * must be freed with ulist_free.
1362 *
1363 * returns 0 on success, <0 on error
1364 */
1365static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1366				struct btrfs_fs_info *fs_info, u64 bytenr,
1367				u64 time_seq, struct ulist **leafs,
1368				const u64 *extent_item_pos, bool ignore_offset)
1369{
1370	int ret;
1371
1372	*leafs = ulist_alloc(GFP_NOFS);
1373	if (!*leafs)
1374		return -ENOMEM;
1375
1376	ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1377				*leafs, NULL, extent_item_pos, NULL, ignore_offset);
1378	if (ret < 0 && ret != -ENOENT) {
1379		free_leaf_list(*leafs);
1380		return ret;
1381	}
1382
1383	return 0;
1384}
1385
1386/*
1387 * walk all backrefs for a given extent to find all roots that reference this
1388 * extent. Walking a backref means finding all extents that reference this
1389 * extent and in turn walk the backrefs of those, too. Naturally this is a
1390 * recursive process, but here it is implemented in an iterative fashion: We
1391 * find all referencing extents for the extent in question and put them on a
1392 * list. In turn, we find all referencing extents for those, further appending
1393 * to the list. The way we iterate the list allows adding more elements after
1394 * the current while iterating. The process stops when we reach the end of the
1395 * list. Found roots are added to the roots list.
1396 *
1397 * returns 0 on success, < 0 on error.
1398 */
1399static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1400				     struct btrfs_fs_info *fs_info, u64 bytenr,
1401				     u64 time_seq, struct ulist **roots,
1402				     bool ignore_offset)
1403{
1404	struct ulist *tmp;
1405	struct ulist_node *node = NULL;
1406	struct ulist_iterator uiter;
1407	int ret;
1408
1409	tmp = ulist_alloc(GFP_NOFS);
1410	if (!tmp)
1411		return -ENOMEM;
1412	*roots = ulist_alloc(GFP_NOFS);
1413	if (!*roots) {
1414		ulist_free(tmp);
1415		return -ENOMEM;
1416	}
1417
1418	ULIST_ITER_INIT(&uiter);
1419	while (1) {
1420		ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1421					tmp, *roots, NULL, NULL, ignore_offset);
1422		if (ret < 0 && ret != -ENOENT) {
1423			ulist_free(tmp);
1424			ulist_free(*roots);
1425			return ret;
1426		}
1427		node = ulist_next(tmp, &uiter);
1428		if (!node)
1429			break;
1430		bytenr = node->val;
1431		cond_resched();
1432	}
1433
1434	ulist_free(tmp);
1435	return 0;
1436}
1437
1438int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1439			 struct btrfs_fs_info *fs_info, u64 bytenr,
1440			 u64 time_seq, struct ulist **roots,
1441			 bool ignore_offset)
1442{
1443	int ret;
1444
1445	if (!trans)
1446		down_read(&fs_info->commit_root_sem);
1447	ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1448					time_seq, roots, ignore_offset);
1449	if (!trans)
1450		up_read(&fs_info->commit_root_sem);
1451	return ret;
1452}
1453
1454/**
1455 * btrfs_check_shared - tell us whether an extent is shared
1456 *
 
 
1457 * btrfs_check_shared uses the backref walking code but will short
1458 * circuit as soon as it finds a root or inode that doesn't match the
1459 * one passed in. This provides a significant performance benefit for
1460 * callers (such as fiemap) which want to know whether the extent is
1461 * shared but do not need a ref count.
1462 *
1463 * This attempts to attach to the running transaction in order to account for
1464 * delayed refs, but continues on even when no running transaction exists.
1465 *
1466 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1467 */
1468int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr,
1469		struct ulist *roots, struct ulist *tmp)
 
1470{
1471	struct btrfs_fs_info *fs_info = root->fs_info;
1472	struct btrfs_trans_handle *trans;
1473	struct ulist_iterator uiter;
1474	struct ulist_node *node;
1475	struct seq_list elem = SEQ_LIST_INIT(elem);
1476	int ret = 0;
1477	struct share_check shared = {
1478		.root_objectid = root->root_key.objectid,
1479		.inum = inum,
1480		.share_count = 0,
1481	};
1482
1483	ulist_init(roots);
1484	ulist_init(tmp);
1485
1486	trans = btrfs_join_transaction_nostart(root);
1487	if (IS_ERR(trans)) {
1488		if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1489			ret = PTR_ERR(trans);
1490			goto out;
1491		}
1492		trans = NULL;
1493		down_read(&fs_info->commit_root_sem);
1494	} else {
1495		btrfs_get_tree_mod_seq(fs_info, &elem);
1496	}
1497
 
 
 
 
1498	ULIST_ITER_INIT(&uiter);
1499	while (1) {
1500		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1501					roots, NULL, &shared, false);
1502		if (ret == BACKREF_FOUND_SHARED) {
1503			/* this is the only condition under which we return 1 */
1504			ret = 1;
1505			break;
1506		}
1507		if (ret < 0 && ret != -ENOENT)
1508			break;
1509		ret = 0;
1510		node = ulist_next(tmp, &uiter);
1511		if (!node)
1512			break;
1513		bytenr = node->val;
1514		shared.share_count = 0;
1515		cond_resched();
1516	}
1517
1518	if (trans) {
1519		btrfs_put_tree_mod_seq(fs_info, &elem);
1520		btrfs_end_transaction(trans);
1521	} else {
1522		up_read(&fs_info->commit_root_sem);
1523	}
1524out:
1525	ulist_release(roots);
1526	ulist_release(tmp);
1527	return ret;
1528}
1529
1530int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1531			  u64 start_off, struct btrfs_path *path,
1532			  struct btrfs_inode_extref **ret_extref,
1533			  u64 *found_off)
1534{
1535	int ret, slot;
1536	struct btrfs_key key;
1537	struct btrfs_key found_key;
1538	struct btrfs_inode_extref *extref;
1539	const struct extent_buffer *leaf;
1540	unsigned long ptr;
1541
1542	key.objectid = inode_objectid;
1543	key.type = BTRFS_INODE_EXTREF_KEY;
1544	key.offset = start_off;
1545
1546	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1547	if (ret < 0)
1548		return ret;
1549
1550	while (1) {
1551		leaf = path->nodes[0];
1552		slot = path->slots[0];
1553		if (slot >= btrfs_header_nritems(leaf)) {
1554			/*
1555			 * If the item at offset is not found,
1556			 * btrfs_search_slot will point us to the slot
1557			 * where it should be inserted. In our case
1558			 * that will be the slot directly before the
1559			 * next INODE_REF_KEY_V2 item. In the case
1560			 * that we're pointing to the last slot in a
1561			 * leaf, we must move one leaf over.
1562			 */
1563			ret = btrfs_next_leaf(root, path);
1564			if (ret) {
1565				if (ret >= 1)
1566					ret = -ENOENT;
1567				break;
1568			}
1569			continue;
1570		}
1571
1572		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1573
1574		/*
1575		 * Check that we're still looking at an extended ref key for
1576		 * this particular objectid. If we have different
1577		 * objectid or type then there are no more to be found
1578		 * in the tree and we can exit.
1579		 */
1580		ret = -ENOENT;
1581		if (found_key.objectid != inode_objectid)
1582			break;
1583		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1584			break;
1585
1586		ret = 0;
1587		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1588		extref = (struct btrfs_inode_extref *)ptr;
1589		*ret_extref = extref;
1590		if (found_off)
1591			*found_off = found_key.offset;
1592		break;
1593	}
1594
1595	return ret;
1596}
1597
1598/*
1599 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1600 * Elements of the path are separated by '/' and the path is guaranteed to be
1601 * 0-terminated. the path is only given within the current file system.
1602 * Therefore, it never starts with a '/'. the caller is responsible to provide
1603 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1604 * the start point of the resulting string is returned. this pointer is within
1605 * dest, normally.
1606 * in case the path buffer would overflow, the pointer is decremented further
1607 * as if output was written to the buffer, though no more output is actually
1608 * generated. that way, the caller can determine how much space would be
1609 * required for the path to fit into the buffer. in that case, the returned
1610 * value will be smaller than dest. callers must check this!
1611 */
1612char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1613			u32 name_len, unsigned long name_off,
1614			struct extent_buffer *eb_in, u64 parent,
1615			char *dest, u32 size)
1616{
1617	int slot;
1618	u64 next_inum;
1619	int ret;
1620	s64 bytes_left = ((s64)size) - 1;
1621	struct extent_buffer *eb = eb_in;
1622	struct btrfs_key found_key;
1623	int leave_spinning = path->leave_spinning;
1624	struct btrfs_inode_ref *iref;
1625
1626	if (bytes_left >= 0)
1627		dest[bytes_left] = '\0';
1628
1629	path->leave_spinning = 1;
1630	while (1) {
1631		bytes_left -= name_len;
1632		if (bytes_left >= 0)
1633			read_extent_buffer(eb, dest + bytes_left,
1634					   name_off, name_len);
1635		if (eb != eb_in) {
1636			if (!path->skip_locking)
1637				btrfs_tree_read_unlock_blocking(eb);
1638			free_extent_buffer(eb);
1639		}
1640		ret = btrfs_find_item(fs_root, path, parent, 0,
1641				BTRFS_INODE_REF_KEY, &found_key);
1642		if (ret > 0)
1643			ret = -ENOENT;
1644		if (ret)
1645			break;
1646
1647		next_inum = found_key.offset;
1648
1649		/* regular exit ahead */
1650		if (parent == next_inum)
1651			break;
1652
1653		slot = path->slots[0];
1654		eb = path->nodes[0];
1655		/* make sure we can use eb after releasing the path */
1656		if (eb != eb_in) {
1657			if (!path->skip_locking)
1658				btrfs_set_lock_blocking_read(eb);
1659			path->nodes[0] = NULL;
1660			path->locks[0] = 0;
1661		}
1662		btrfs_release_path(path);
1663		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1664
1665		name_len = btrfs_inode_ref_name_len(eb, iref);
1666		name_off = (unsigned long)(iref + 1);
1667
1668		parent = next_inum;
1669		--bytes_left;
1670		if (bytes_left >= 0)
1671			dest[bytes_left] = '/';
1672	}
1673
1674	btrfs_release_path(path);
1675	path->leave_spinning = leave_spinning;
1676
1677	if (ret)
1678		return ERR_PTR(ret);
1679
1680	return dest + bytes_left;
1681}
1682
1683/*
1684 * this makes the path point to (logical EXTENT_ITEM *)
1685 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1686 * tree blocks and <0 on error.
1687 */
1688int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1689			struct btrfs_path *path, struct btrfs_key *found_key,
1690			u64 *flags_ret)
1691{
1692	int ret;
1693	u64 flags;
1694	u64 size = 0;
1695	u32 item_size;
1696	const struct extent_buffer *eb;
1697	struct btrfs_extent_item *ei;
1698	struct btrfs_key key;
1699
1700	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1701		key.type = BTRFS_METADATA_ITEM_KEY;
1702	else
1703		key.type = BTRFS_EXTENT_ITEM_KEY;
1704	key.objectid = logical;
1705	key.offset = (u64)-1;
1706
1707	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1708	if (ret < 0)
1709		return ret;
1710
1711	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1712	if (ret) {
1713		if (ret > 0)
1714			ret = -ENOENT;
1715		return ret;
1716	}
1717	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1718	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1719		size = fs_info->nodesize;
1720	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1721		size = found_key->offset;
1722
1723	if (found_key->objectid > logical ||
1724	    found_key->objectid + size <= logical) {
1725		btrfs_debug(fs_info,
1726			"logical %llu is not within any extent", logical);
1727		return -ENOENT;
1728	}
1729
1730	eb = path->nodes[0];
1731	item_size = btrfs_item_size_nr(eb, path->slots[0]);
1732	BUG_ON(item_size < sizeof(*ei));
1733
1734	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1735	flags = btrfs_extent_flags(eb, ei);
1736
1737	btrfs_debug(fs_info,
1738		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1739		 logical, logical - found_key->objectid, found_key->objectid,
1740		 found_key->offset, flags, item_size);
1741
1742	WARN_ON(!flags_ret);
1743	if (flags_ret) {
1744		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1745			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1746		else if (flags & BTRFS_EXTENT_FLAG_DATA)
1747			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
1748		else
1749			BUG();
1750		return 0;
1751	}
1752
1753	return -EIO;
1754}
1755
1756/*
1757 * helper function to iterate extent inline refs. ptr must point to a 0 value
1758 * for the first call and may be modified. it is used to track state.
1759 * if more refs exist, 0 is returned and the next call to
1760 * get_extent_inline_ref must pass the modified ptr parameter to get the
1761 * next ref. after the last ref was processed, 1 is returned.
1762 * returns <0 on error
1763 */
1764static int get_extent_inline_ref(unsigned long *ptr,
1765				 const struct extent_buffer *eb,
1766				 const struct btrfs_key *key,
1767				 const struct btrfs_extent_item *ei,
1768				 u32 item_size,
1769				 struct btrfs_extent_inline_ref **out_eiref,
1770				 int *out_type)
1771{
1772	unsigned long end;
1773	u64 flags;
1774	struct btrfs_tree_block_info *info;
1775
1776	if (!*ptr) {
1777		/* first call */
1778		flags = btrfs_extent_flags(eb, ei);
1779		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1780			if (key->type == BTRFS_METADATA_ITEM_KEY) {
1781				/* a skinny metadata extent */
1782				*out_eiref =
1783				     (struct btrfs_extent_inline_ref *)(ei + 1);
1784			} else {
1785				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1786				info = (struct btrfs_tree_block_info *)(ei + 1);
1787				*out_eiref =
1788				   (struct btrfs_extent_inline_ref *)(info + 1);
1789			}
1790		} else {
1791			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1792		}
1793		*ptr = (unsigned long)*out_eiref;
1794		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1795			return -ENOENT;
1796	}
1797
1798	end = (unsigned long)ei + item_size;
1799	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1800	*out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1801						     BTRFS_REF_TYPE_ANY);
1802	if (*out_type == BTRFS_REF_TYPE_INVALID)
1803		return -EUCLEAN;
1804
1805	*ptr += btrfs_extent_inline_ref_size(*out_type);
1806	WARN_ON(*ptr > end);
1807	if (*ptr == end)
1808		return 1; /* last */
1809
1810	return 0;
1811}
1812
1813/*
1814 * reads the tree block backref for an extent. tree level and root are returned
1815 * through out_level and out_root. ptr must point to a 0 value for the first
1816 * call and may be modified (see get_extent_inline_ref comment).
1817 * returns 0 if data was provided, 1 if there was no more data to provide or
1818 * <0 on error.
1819 */
1820int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1821			    struct btrfs_key *key, struct btrfs_extent_item *ei,
1822			    u32 item_size, u64 *out_root, u8 *out_level)
1823{
1824	int ret;
1825	int type;
1826	struct btrfs_extent_inline_ref *eiref;
1827
1828	if (*ptr == (unsigned long)-1)
1829		return 1;
1830
1831	while (1) {
1832		ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1833					      &eiref, &type);
1834		if (ret < 0)
1835			return ret;
1836
1837		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1838		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1839			break;
1840
1841		if (ret == 1)
1842			return 1;
1843	}
1844
1845	/* we can treat both ref types equally here */
1846	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1847
1848	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1849		struct btrfs_tree_block_info *info;
1850
1851		info = (struct btrfs_tree_block_info *)(ei + 1);
1852		*out_level = btrfs_tree_block_level(eb, info);
1853	} else {
1854		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1855		*out_level = (u8)key->offset;
1856	}
1857
1858	if (ret == 1)
1859		*ptr = (unsigned long)-1;
1860
1861	return 0;
1862}
1863
1864static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1865			     struct extent_inode_elem *inode_list,
1866			     u64 root, u64 extent_item_objectid,
1867			     iterate_extent_inodes_t *iterate, void *ctx)
1868{
1869	struct extent_inode_elem *eie;
1870	int ret = 0;
1871
1872	for (eie = inode_list; eie; eie = eie->next) {
1873		btrfs_debug(fs_info,
1874			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1875			    extent_item_objectid, eie->inum,
1876			    eie->offset, root);
1877		ret = iterate(eie->inum, eie->offset, root, ctx);
1878		if (ret) {
1879			btrfs_debug(fs_info,
1880				    "stopping iteration for %llu due to ret=%d",
1881				    extent_item_objectid, ret);
1882			break;
1883		}
1884	}
1885
1886	return ret;
1887}
1888
1889/*
1890 * calls iterate() for every inode that references the extent identified by
1891 * the given parameters.
1892 * when the iterator function returns a non-zero value, iteration stops.
1893 */
1894int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1895				u64 extent_item_objectid, u64 extent_item_pos,
1896				int search_commit_root,
1897				iterate_extent_inodes_t *iterate, void *ctx,
1898				bool ignore_offset)
1899{
1900	int ret;
1901	struct btrfs_trans_handle *trans = NULL;
1902	struct ulist *refs = NULL;
1903	struct ulist *roots = NULL;
1904	struct ulist_node *ref_node = NULL;
1905	struct ulist_node *root_node = NULL;
1906	struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
1907	struct ulist_iterator ref_uiter;
1908	struct ulist_iterator root_uiter;
1909
1910	btrfs_debug(fs_info, "resolving all inodes for extent %llu",
1911			extent_item_objectid);
1912
1913	if (!search_commit_root) {
1914		trans = btrfs_attach_transaction(fs_info->extent_root);
1915		if (IS_ERR(trans)) {
1916			if (PTR_ERR(trans) != -ENOENT &&
1917			    PTR_ERR(trans) != -EROFS)
1918				return PTR_ERR(trans);
1919			trans = NULL;
1920		}
1921	}
1922
1923	if (trans)
1924		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1925	else
1926		down_read(&fs_info->commit_root_sem);
 
1927
1928	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1929				   tree_mod_seq_elem.seq, &refs,
1930				   &extent_item_pos, ignore_offset);
1931	if (ret)
1932		goto out;
1933
1934	ULIST_ITER_INIT(&ref_uiter);
1935	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1936		ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
1937						tree_mod_seq_elem.seq, &roots,
1938						ignore_offset);
1939		if (ret)
1940			break;
1941		ULIST_ITER_INIT(&root_uiter);
1942		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1943			btrfs_debug(fs_info,
1944				    "root %llu references leaf %llu, data list %#llx",
1945				    root_node->val, ref_node->val,
1946				    ref_node->aux);
1947			ret = iterate_leaf_refs(fs_info,
1948						(struct extent_inode_elem *)
1949						(uintptr_t)ref_node->aux,
1950						root_node->val,
1951						extent_item_objectid,
1952						iterate, ctx);
1953		}
1954		ulist_free(roots);
1955	}
1956
1957	free_leaf_list(refs);
1958out:
1959	if (trans) {
1960		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1961		btrfs_end_transaction(trans);
1962	} else {
1963		up_read(&fs_info->commit_root_sem);
1964	}
1965
1966	return ret;
1967}
1968
1969int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1970				struct btrfs_path *path,
1971				iterate_extent_inodes_t *iterate, void *ctx,
1972				bool ignore_offset)
1973{
1974	int ret;
1975	u64 extent_item_pos;
1976	u64 flags = 0;
1977	struct btrfs_key found_key;
1978	int search_commit_root = path->search_commit_root;
1979
1980	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1981	btrfs_release_path(path);
1982	if (ret < 0)
1983		return ret;
1984	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1985		return -EINVAL;
1986
1987	extent_item_pos = logical - found_key.objectid;
1988	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1989					extent_item_pos, search_commit_root,
1990					iterate, ctx, ignore_offset);
1991
1992	return ret;
1993}
1994
1995typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1996			      struct extent_buffer *eb, void *ctx);
1997
1998static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1999			      struct btrfs_path *path,
2000			      iterate_irefs_t *iterate, void *ctx)
2001{
2002	int ret = 0;
2003	int slot;
2004	u32 cur;
2005	u32 len;
2006	u32 name_len;
2007	u64 parent = 0;
2008	int found = 0;
2009	struct extent_buffer *eb;
2010	struct btrfs_item *item;
2011	struct btrfs_inode_ref *iref;
2012	struct btrfs_key found_key;
2013
2014	while (!ret) {
2015		ret = btrfs_find_item(fs_root, path, inum,
2016				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2017				&found_key);
2018
2019		if (ret < 0)
2020			break;
2021		if (ret) {
2022			ret = found ? 0 : -ENOENT;
2023			break;
2024		}
2025		++found;
2026
2027		parent = found_key.offset;
2028		slot = path->slots[0];
2029		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2030		if (!eb) {
2031			ret = -ENOMEM;
2032			break;
2033		}
 
 
 
2034		btrfs_release_path(path);
2035
2036		item = btrfs_item_nr(slot);
2037		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2038
2039		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2040			name_len = btrfs_inode_ref_name_len(eb, iref);
2041			/* path must be released before calling iterate()! */
2042			btrfs_debug(fs_root->fs_info,
2043				"following ref at offset %u for inode %llu in tree %llu",
2044				cur, found_key.objectid,
2045				fs_root->root_key.objectid);
2046			ret = iterate(parent, name_len,
2047				      (unsigned long)(iref + 1), eb, ctx);
2048			if (ret)
2049				break;
2050			len = sizeof(*iref) + name_len;
2051			iref = (struct btrfs_inode_ref *)((char *)iref + len);
2052		}
 
2053		free_extent_buffer(eb);
2054	}
2055
2056	btrfs_release_path(path);
2057
2058	return ret;
2059}
2060
2061static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2062				 struct btrfs_path *path,
2063				 iterate_irefs_t *iterate, void *ctx)
2064{
2065	int ret;
2066	int slot;
2067	u64 offset = 0;
2068	u64 parent;
2069	int found = 0;
2070	struct extent_buffer *eb;
2071	struct btrfs_inode_extref *extref;
2072	u32 item_size;
2073	u32 cur_offset;
2074	unsigned long ptr;
2075
2076	while (1) {
2077		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2078					    &offset);
2079		if (ret < 0)
2080			break;
2081		if (ret) {
2082			ret = found ? 0 : -ENOENT;
2083			break;
2084		}
2085		++found;
2086
2087		slot = path->slots[0];
2088		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2089		if (!eb) {
2090			ret = -ENOMEM;
2091			break;
2092		}
 
 
 
 
2093		btrfs_release_path(path);
2094
2095		item_size = btrfs_item_size_nr(eb, slot);
2096		ptr = btrfs_item_ptr_offset(eb, slot);
2097		cur_offset = 0;
2098
2099		while (cur_offset < item_size) {
2100			u32 name_len;
2101
2102			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2103			parent = btrfs_inode_extref_parent(eb, extref);
2104			name_len = btrfs_inode_extref_name_len(eb, extref);
2105			ret = iterate(parent, name_len,
2106				      (unsigned long)&extref->name, eb, ctx);
2107			if (ret)
2108				break;
2109
2110			cur_offset += btrfs_inode_extref_name_len(eb, extref);
2111			cur_offset += sizeof(*extref);
2112		}
 
2113		free_extent_buffer(eb);
2114
2115		offset++;
2116	}
2117
2118	btrfs_release_path(path);
2119
2120	return ret;
2121}
2122
2123static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2124			 struct btrfs_path *path, iterate_irefs_t *iterate,
2125			 void *ctx)
2126{
2127	int ret;
2128	int found_refs = 0;
2129
2130	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2131	if (!ret)
2132		++found_refs;
2133	else if (ret != -ENOENT)
2134		return ret;
2135
2136	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2137	if (ret == -ENOENT && found_refs)
2138		return 0;
2139
2140	return ret;
2141}
2142
2143/*
2144 * returns 0 if the path could be dumped (probably truncated)
2145 * returns <0 in case of an error
2146 */
2147static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2148			 struct extent_buffer *eb, void *ctx)
2149{
2150	struct inode_fs_paths *ipath = ctx;
2151	char *fspath;
2152	char *fspath_min;
2153	int i = ipath->fspath->elem_cnt;
2154	const int s_ptr = sizeof(char *);
2155	u32 bytes_left;
2156
2157	bytes_left = ipath->fspath->bytes_left > s_ptr ?
2158					ipath->fspath->bytes_left - s_ptr : 0;
2159
2160	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2161	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2162				   name_off, eb, inum, fspath_min, bytes_left);
2163	if (IS_ERR(fspath))
2164		return PTR_ERR(fspath);
2165
2166	if (fspath > fspath_min) {
2167		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2168		++ipath->fspath->elem_cnt;
2169		ipath->fspath->bytes_left = fspath - fspath_min;
2170	} else {
2171		++ipath->fspath->elem_missed;
2172		ipath->fspath->bytes_missing += fspath_min - fspath;
2173		ipath->fspath->bytes_left = 0;
2174	}
2175
2176	return 0;
2177}
2178
2179/*
2180 * this dumps all file system paths to the inode into the ipath struct, provided
2181 * is has been created large enough. each path is zero-terminated and accessed
2182 * from ipath->fspath->val[i].
2183 * when it returns, there are ipath->fspath->elem_cnt number of paths available
2184 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2185 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2186 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2187 * have been needed to return all paths.
2188 */
2189int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2190{
2191	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2192			     inode_to_path, ipath);
2193}
2194
2195struct btrfs_data_container *init_data_container(u32 total_bytes)
2196{
2197	struct btrfs_data_container *data;
2198	size_t alloc_bytes;
2199
2200	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2201	data = kvmalloc(alloc_bytes, GFP_KERNEL);
2202	if (!data)
2203		return ERR_PTR(-ENOMEM);
2204
2205	if (total_bytes >= sizeof(*data)) {
2206		data->bytes_left = total_bytes - sizeof(*data);
2207		data->bytes_missing = 0;
2208	} else {
2209		data->bytes_missing = sizeof(*data) - total_bytes;
2210		data->bytes_left = 0;
2211	}
2212
2213	data->elem_cnt = 0;
2214	data->elem_missed = 0;
2215
2216	return data;
2217}
2218
2219/*
2220 * allocates space to return multiple file system paths for an inode.
2221 * total_bytes to allocate are passed, note that space usable for actual path
2222 * information will be total_bytes - sizeof(struct inode_fs_paths).
2223 * the returned pointer must be freed with free_ipath() in the end.
2224 */
2225struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2226					struct btrfs_path *path)
2227{
2228	struct inode_fs_paths *ifp;
2229	struct btrfs_data_container *fspath;
2230
2231	fspath = init_data_container(total_bytes);
2232	if (IS_ERR(fspath))
2233		return ERR_CAST(fspath);
2234
2235	ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2236	if (!ifp) {
2237		kvfree(fspath);
2238		return ERR_PTR(-ENOMEM);
2239	}
2240
2241	ifp->btrfs_path = path;
2242	ifp->fspath = fspath;
2243	ifp->fs_root = fs_root;
2244
2245	return ifp;
2246}
2247
2248void free_ipath(struct inode_fs_paths *ipath)
2249{
2250	if (!ipath)
2251		return;
2252	kvfree(ipath->fspath);
2253	kfree(ipath);
2254}
v4.10.11
 
   1/*
   2 * Copyright (C) 2011 STRATO.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/vmalloc.h>
  20#include <linux/rbtree.h>
 
  21#include "ctree.h"
  22#include "disk-io.h"
  23#include "backref.h"
  24#include "ulist.h"
  25#include "transaction.h"
  26#include "delayed-ref.h"
  27#include "locking.h"
  28
  29/* Just an arbitrary number so we can be sure this happened */
  30#define BACKREF_FOUND_SHARED 6
  31
  32struct extent_inode_elem {
  33	u64 inum;
  34	u64 offset;
  35	struct extent_inode_elem *next;
  36};
  37
  38/*
  39 * ref_root is used as the root of the ref tree that hold a collection
  40 * of unique references.
  41 */
  42struct ref_root {
  43	struct rb_root rb_root;
  44
  45	/*
  46	 * The unique_refs represents the number of ref_nodes with a positive
  47	 * count stored in the tree. Even if a ref_node (the count is greater
  48	 * than one) is added, the unique_refs will only increase by one.
  49	 */
  50	unsigned int unique_refs;
  51};
  52
  53/* ref_node is used to store a unique reference to the ref tree. */
  54struct ref_node {
  55	struct rb_node rb_node;
  56
  57	/* For NORMAL_REF, otherwise all these fields should be set to 0 */
  58	u64 root_id;
  59	u64 object_id;
  60	u64 offset;
  61
  62	/* For SHARED_REF, otherwise parent field should be set to 0 */
  63	u64 parent;
  64
  65	/* Ref to the ref_mod of btrfs_delayed_ref_node */
  66	int ref_mod;
  67};
  68
  69/* Dynamically allocate and initialize a ref_root */
  70static struct ref_root *ref_root_alloc(void)
  71{
  72	struct ref_root *ref_tree;
  73
  74	ref_tree = kmalloc(sizeof(*ref_tree), GFP_NOFS);
  75	if (!ref_tree)
  76		return NULL;
  77
  78	ref_tree->rb_root = RB_ROOT;
  79	ref_tree->unique_refs = 0;
  80
  81	return ref_tree;
  82}
  83
  84/* Free all nodes in the ref tree, and reinit ref_root */
  85static void ref_root_fini(struct ref_root *ref_tree)
  86{
  87	struct ref_node *node;
  88	struct rb_node *next;
  89
  90	while ((next = rb_first(&ref_tree->rb_root)) != NULL) {
  91		node = rb_entry(next, struct ref_node, rb_node);
  92		rb_erase(next, &ref_tree->rb_root);
  93		kfree(node);
  94	}
  95
  96	ref_tree->rb_root = RB_ROOT;
  97	ref_tree->unique_refs = 0;
  98}
  99
 100static void ref_root_free(struct ref_root *ref_tree)
 101{
 102	if (!ref_tree)
 103		return;
 104
 105	ref_root_fini(ref_tree);
 106	kfree(ref_tree);
 107}
 108
 109/*
 110 * Compare ref_node with (root_id, object_id, offset, parent)
 111 *
 112 * The function compares two ref_node a and b. It returns an integer less
 113 * than, equal to, or greater than zero , respectively, to be less than, to
 114 * equal, or be greater than b.
 115 */
 116static int ref_node_cmp(struct ref_node *a, struct ref_node *b)
 117{
 118	if (a->root_id < b->root_id)
 119		return -1;
 120	else if (a->root_id > b->root_id)
 121		return 1;
 122
 123	if (a->object_id < b->object_id)
 124		return -1;
 125	else if (a->object_id > b->object_id)
 126		return 1;
 127
 128	if (a->offset < b->offset)
 129		return -1;
 130	else if (a->offset > b->offset)
 131		return 1;
 132
 133	if (a->parent < b->parent)
 134		return -1;
 135	else if (a->parent > b->parent)
 136		return 1;
 137
 138	return 0;
 139}
 140
 141/*
 142 * Search ref_node with (root_id, object_id, offset, parent) in the tree
 143 *
 144 * if found, the pointer of the ref_node will be returned;
 145 * if not found, NULL will be returned and pos will point to the rb_node for
 146 * insert, pos_parent will point to pos'parent for insert;
 147*/
 148static struct ref_node *__ref_tree_search(struct ref_root *ref_tree,
 149					  struct rb_node ***pos,
 150					  struct rb_node **pos_parent,
 151					  u64 root_id, u64 object_id,
 152					  u64 offset, u64 parent)
 153{
 154	struct ref_node *cur = NULL;
 155	struct ref_node entry;
 156	int ret;
 157
 158	entry.root_id = root_id;
 159	entry.object_id = object_id;
 160	entry.offset = offset;
 161	entry.parent = parent;
 162
 163	*pos = &ref_tree->rb_root.rb_node;
 164
 165	while (**pos) {
 166		*pos_parent = **pos;
 167		cur = rb_entry(*pos_parent, struct ref_node, rb_node);
 168
 169		ret = ref_node_cmp(cur, &entry);
 170		if (ret > 0)
 171			*pos = &(**pos)->rb_left;
 172		else if (ret < 0)
 173			*pos = &(**pos)->rb_right;
 174		else
 175			return cur;
 176	}
 177
 178	return NULL;
 179}
 180
 181/*
 182 * Insert a ref_node to the ref tree
 183 * @pos used for specifiy the position to insert
 184 * @pos_parent for specifiy pos's parent
 185 *
 186 * success, return 0;
 187 * ref_node already exists, return -EEXIST;
 188*/
 189static int ref_tree_insert(struct ref_root *ref_tree, struct rb_node **pos,
 190			   struct rb_node *pos_parent, struct ref_node *ins)
 191{
 192	struct rb_node **p = NULL;
 193	struct rb_node *parent = NULL;
 194	struct ref_node *cur = NULL;
 195
 196	if (!pos) {
 197		cur = __ref_tree_search(ref_tree, &p, &parent, ins->root_id,
 198					ins->object_id, ins->offset,
 199					ins->parent);
 200		if (cur)
 201			return -EEXIST;
 202	} else {
 203		p = pos;
 204		parent = pos_parent;
 205	}
 206
 207	rb_link_node(&ins->rb_node, parent, p);
 208	rb_insert_color(&ins->rb_node, &ref_tree->rb_root);
 209
 210	return 0;
 211}
 212
 213/* Erase and free ref_node, caller should update ref_root->unique_refs */
 214static void ref_tree_remove(struct ref_root *ref_tree, struct ref_node *node)
 215{
 216	rb_erase(&node->rb_node, &ref_tree->rb_root);
 217	kfree(node);
 218}
 219
 220/*
 221 * Update ref_root->unique_refs
 222 *
 223 * Call __ref_tree_search
 224 *	1. if ref_node doesn't exist, ref_tree_insert this node, and update
 225 *	ref_root->unique_refs:
 226 *		if ref_node->ref_mod > 0, ref_root->unique_refs++;
 227 *		if ref_node->ref_mod < 0, do noting;
 228 *
 229 *	2. if ref_node is found, then get origin ref_node->ref_mod, and update
 230 *	ref_node->ref_mod.
 231 *		if ref_node->ref_mod is equal to 0,then call ref_tree_remove
 232 *
 233 *		according to origin_mod and new_mod, update ref_root->items
 234 *		+----------------+--------------+-------------+
 235 *		|		 |new_count <= 0|new_count > 0|
 236 *		+----------------+--------------+-------------+
 237 *		|origin_count < 0|       0      |      1      |
 238 *		+----------------+--------------+-------------+
 239 *		|origin_count > 0|      -1      |      0      |
 240 *		+----------------+--------------+-------------+
 241 *
 242 * In case of allocation failure, -ENOMEM is returned and the ref_tree stays
 243 * unaltered.
 244 * Success, return 0
 245 */
 246static int ref_tree_add(struct ref_root *ref_tree, u64 root_id, u64 object_id,
 247			u64 offset, u64 parent, int count)
 248{
 249	struct ref_node *node = NULL;
 250	struct rb_node **pos = NULL;
 251	struct rb_node *pos_parent = NULL;
 252	int origin_count;
 253	int ret;
 254
 255	if (!count)
 256		return 0;
 257
 258	node = __ref_tree_search(ref_tree, &pos, &pos_parent, root_id,
 259				 object_id, offset, parent);
 260	if (node == NULL) {
 261		node = kmalloc(sizeof(*node), GFP_NOFS);
 262		if (!node)
 263			return -ENOMEM;
 264
 265		node->root_id = root_id;
 266		node->object_id = object_id;
 267		node->offset = offset;
 268		node->parent = parent;
 269		node->ref_mod = count;
 270
 271		ret = ref_tree_insert(ref_tree, pos, pos_parent, node);
 272		ASSERT(!ret);
 273		if (ret) {
 274			kfree(node);
 275			return ret;
 276		}
 277
 278		ref_tree->unique_refs += node->ref_mod > 0 ? 1 : 0;
 279
 280		return 0;
 281	}
 282
 283	origin_count = node->ref_mod;
 284	node->ref_mod += count;
 285
 286	if (node->ref_mod > 0)
 287		ref_tree->unique_refs += origin_count > 0 ? 0 : 1;
 288	else if (node->ref_mod <= 0)
 289		ref_tree->unique_refs += origin_count > 0 ? -1 : 0;
 290
 291	if (!node->ref_mod)
 292		ref_tree_remove(ref_tree, node);
 293
 294	return 0;
 295}
 296
 297static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
 298				struct btrfs_file_extent_item *fi,
 299				u64 extent_item_pos,
 300				struct extent_inode_elem **eie)
 301{
 302	u64 offset = 0;
 303	struct extent_inode_elem *e;
 304
 305	if (!btrfs_file_extent_compression(eb, fi) &&
 
 306	    !btrfs_file_extent_encryption(eb, fi) &&
 307	    !btrfs_file_extent_other_encoding(eb, fi)) {
 308		u64 data_offset;
 309		u64 data_len;
 310
 311		data_offset = btrfs_file_extent_offset(eb, fi);
 312		data_len = btrfs_file_extent_num_bytes(eb, fi);
 313
 314		if (extent_item_pos < data_offset ||
 315		    extent_item_pos >= data_offset + data_len)
 316			return 1;
 317		offset = extent_item_pos - data_offset;
 318	}
 319
 320	e = kmalloc(sizeof(*e), GFP_NOFS);
 321	if (!e)
 322		return -ENOMEM;
 323
 324	e->next = *eie;
 325	e->inum = key->objectid;
 326	e->offset = key->offset + offset;
 327	*eie = e;
 328
 329	return 0;
 330}
 331
 332static void free_inode_elem_list(struct extent_inode_elem *eie)
 333{
 334	struct extent_inode_elem *eie_next;
 335
 336	for (; eie; eie = eie_next) {
 337		eie_next = eie->next;
 338		kfree(eie);
 339	}
 340}
 341
 342static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
 343				u64 extent_item_pos,
 344				struct extent_inode_elem **eie)
 
 345{
 346	u64 disk_byte;
 347	struct btrfs_key key;
 348	struct btrfs_file_extent_item *fi;
 349	int slot;
 350	int nritems;
 351	int extent_type;
 352	int ret;
 353
 354	/*
 355	 * from the shared data ref, we only have the leaf but we need
 356	 * the key. thus, we must look into all items and see that we
 357	 * find one (some) with a reference to our extent item.
 358	 */
 359	nritems = btrfs_header_nritems(eb);
 360	for (slot = 0; slot < nritems; ++slot) {
 361		btrfs_item_key_to_cpu(eb, &key, slot);
 362		if (key.type != BTRFS_EXTENT_DATA_KEY)
 363			continue;
 364		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 365		extent_type = btrfs_file_extent_type(eb, fi);
 366		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
 367			continue;
 368		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
 369		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
 370		if (disk_byte != wanted_disk_byte)
 371			continue;
 372
 373		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
 374		if (ret < 0)
 375			return ret;
 376	}
 377
 378	return 0;
 379}
 380
 
 
 
 
 
 
 
 
 
 
 
 
 
 381/*
 382 * this structure records all encountered refs on the way up to the root
 
 
 
 
 
 383 */
 384struct __prelim_ref {
 385	struct list_head list;
 386	u64 root_id;
 387	struct btrfs_key key_for_search;
 388	int level;
 389	int count;
 390	struct extent_inode_elem *inode_list;
 391	u64 parent;
 392	u64 wanted_disk_byte;
 393};
 394
 
 
 
 
 
 395static struct kmem_cache *btrfs_prelim_ref_cache;
 396
 397int __init btrfs_prelim_ref_init(void)
 398{
 399	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
 400					sizeof(struct __prelim_ref),
 401					0,
 402					SLAB_MEM_SPREAD,
 403					NULL);
 404	if (!btrfs_prelim_ref_cache)
 405		return -ENOMEM;
 406	return 0;
 407}
 408
 409void btrfs_prelim_ref_exit(void)
 410{
 411	kmem_cache_destroy(btrfs_prelim_ref_cache);
 412}
 413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 414/*
 415 * the rules for all callers of this function are:
 416 * - obtaining the parent is the goal
 417 * - if you add a key, you must know that it is a correct key
 418 * - if you cannot add the parent or a correct key, then we will look into the
 419 *   block later to set a correct key
 420 *
 421 * delayed refs
 422 * ============
 423 *        backref type | shared | indirect | shared | indirect
 424 * information         |   tree |     tree |   data |     data
 425 * --------------------+--------+----------+--------+----------
 426 *      parent logical |    y   |     -    |    -   |     -
 427 *      key to resolve |    -   |     y    |    y   |     y
 428 *  tree block logical |    -   |     -    |    -   |     -
 429 *  root for resolving |    y   |     y    |    y   |     y
 430 *
 431 * - column 1:       we've the parent -> done
 432 * - column 2, 3, 4: we use the key to find the parent
 433 *
 434 * on disk refs (inline or keyed)
 435 * ==============================
 436 *        backref type | shared | indirect | shared | indirect
 437 * information         |   tree |     tree |   data |     data
 438 * --------------------+--------+----------+--------+----------
 439 *      parent logical |    y   |     -    |    y   |     -
 440 *      key to resolve |    -   |     -    |    -   |     y
 441 *  tree block logical |    y   |     y    |    y   |     y
 442 *  root for resolving |    -   |     y    |    y   |     y
 443 *
 444 * - column 1, 3: we've the parent -> done
 445 * - column 2:    we take the first key from the block to find the parent
 446 *                (see __add_missing_keys)
 447 * - column 4:    we use the key to find the parent
 448 *
 449 * additional information that's available but not required to find the parent
 450 * block might help in merging entries to gain some speed.
 451 */
 452
 453static int __add_prelim_ref(struct list_head *head, u64 root_id,
 454			    struct btrfs_key *key, int level,
 455			    u64 parent, u64 wanted_disk_byte, int count,
 456			    gfp_t gfp_mask)
 457{
 458	struct __prelim_ref *ref;
 459
 460	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
 461		return 0;
 462
 463	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
 464	if (!ref)
 465		return -ENOMEM;
 466
 467	ref->root_id = root_id;
 468	if (key) {
 469		ref->key_for_search = *key;
 470		/*
 471		 * We can often find data backrefs with an offset that is too
 472		 * large (>= LLONG_MAX, maximum allowed file offset) due to
 473		 * underflows when subtracting a file's offset with the data
 474		 * offset of its corresponding extent data item. This can
 475		 * happen for example in the clone ioctl.
 476		 * So if we detect such case we set the search key's offset to
 477		 * zero to make sure we will find the matching file extent item
 478		 * at add_all_parents(), otherwise we will miss it because the
 479		 * offset taken form the backref is much larger then the offset
 480		 * of the file extent item. This can make us scan a very large
 481		 * number of file extent items, but at least it will not make
 482		 * us miss any.
 483		 * This is an ugly workaround for a behaviour that should have
 484		 * never existed, but it does and a fix for the clone ioctl
 485		 * would touch a lot of places, cause backwards incompatibility
 486		 * and would not fix the problem for extents cloned with older
 487		 * kernels.
 488		 */
 489		if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
 490		    ref->key_for_search.offset >= LLONG_MAX)
 491			ref->key_for_search.offset = 0;
 492	} else {
 493		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
 494	}
 495
 496	ref->inode_list = NULL;
 497	ref->level = level;
 498	ref->count = count;
 499	ref->parent = parent;
 500	ref->wanted_disk_byte = wanted_disk_byte;
 501	list_add_tail(&ref->list, head);
 
 
 502
 503	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 504}
 505
 506static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
 507			   struct ulist *parents, struct __prelim_ref *ref,
 508			   int level, u64 time_seq, const u64 *extent_item_pos,
 509			   u64 total_refs)
 510{
 511	int ret = 0;
 512	int slot;
 513	struct extent_buffer *eb;
 514	struct btrfs_key key;
 515	struct btrfs_key *key_for_search = &ref->key_for_search;
 516	struct btrfs_file_extent_item *fi;
 517	struct extent_inode_elem *eie = NULL, *old = NULL;
 518	u64 disk_byte;
 519	u64 wanted_disk_byte = ref->wanted_disk_byte;
 520	u64 count = 0;
 521
 522	if (level != 0) {
 523		eb = path->nodes[level];
 524		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
 525		if (ret < 0)
 526			return ret;
 527		return 0;
 528	}
 529
 530	/*
 531	 * We normally enter this function with the path already pointing to
 532	 * the first item to check. But sometimes, we may enter it with
 533	 * slot==nritems. In that case, go to the next leaf before we continue.
 534	 */
 535	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
 536		if (time_seq == (u64)-1)
 537			ret = btrfs_next_leaf(root, path);
 538		else
 539			ret = btrfs_next_old_leaf(root, path, time_seq);
 540	}
 541
 542	while (!ret && count < total_refs) {
 543		eb = path->nodes[0];
 544		slot = path->slots[0];
 545
 546		btrfs_item_key_to_cpu(eb, &key, slot);
 547
 548		if (key.objectid != key_for_search->objectid ||
 549		    key.type != BTRFS_EXTENT_DATA_KEY)
 550			break;
 551
 552		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 553		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
 554
 555		if (disk_byte == wanted_disk_byte) {
 556			eie = NULL;
 557			old = NULL;
 558			count++;
 559			if (extent_item_pos) {
 560				ret = check_extent_in_eb(&key, eb, fi,
 561						*extent_item_pos,
 562						&eie);
 563				if (ret < 0)
 564					break;
 565			}
 566			if (ret > 0)
 567				goto next;
 568			ret = ulist_add_merge_ptr(parents, eb->start,
 569						  eie, (void **)&old, GFP_NOFS);
 570			if (ret < 0)
 571				break;
 572			if (!ret && extent_item_pos) {
 573				while (old->next)
 574					old = old->next;
 575				old->next = eie;
 576			}
 577			eie = NULL;
 578		}
 579next:
 580		if (time_seq == (u64)-1)
 581			ret = btrfs_next_item(root, path);
 582		else
 583			ret = btrfs_next_old_item(root, path, time_seq);
 584	}
 585
 586	if (ret > 0)
 587		ret = 0;
 588	else if (ret < 0)
 589		free_inode_elem_list(eie);
 590	return ret;
 591}
 592
 593/*
 594 * resolve an indirect backref in the form (root_id, key, level)
 595 * to a logical address
 596 */
 597static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
 598				  struct btrfs_path *path, u64 time_seq,
 599				  struct __prelim_ref *ref,
 600				  struct ulist *parents,
 601				  const u64 *extent_item_pos, u64 total_refs)
 602{
 603	struct btrfs_root *root;
 604	struct btrfs_key root_key;
 605	struct extent_buffer *eb;
 606	int ret = 0;
 607	int root_level;
 608	int level = ref->level;
 609	int index;
 610
 611	root_key.objectid = ref->root_id;
 612	root_key.type = BTRFS_ROOT_ITEM_KEY;
 613	root_key.offset = (u64)-1;
 614
 615	index = srcu_read_lock(&fs_info->subvol_srcu);
 616
 617	root = btrfs_get_fs_root(fs_info, &root_key, false);
 618	if (IS_ERR(root)) {
 619		srcu_read_unlock(&fs_info->subvol_srcu, index);
 620		ret = PTR_ERR(root);
 621		goto out;
 622	}
 623
 624	if (btrfs_is_testing(fs_info)) {
 625		srcu_read_unlock(&fs_info->subvol_srcu, index);
 626		ret = -ENOENT;
 627		goto out;
 628	}
 629
 630	if (path->search_commit_root)
 631		root_level = btrfs_header_level(root->commit_root);
 632	else if (time_seq == (u64)-1)
 633		root_level = btrfs_header_level(root->node);
 634	else
 635		root_level = btrfs_old_root_level(root, time_seq);
 636
 637	if (root_level + 1 == level) {
 638		srcu_read_unlock(&fs_info->subvol_srcu, index);
 639		goto out;
 640	}
 641
 642	path->lowest_level = level;
 643	if (time_seq == (u64)-1)
 644		ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
 645					0, 0);
 646	else
 647		ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
 648					    time_seq);
 649
 650	/* root node has been locked, we can release @subvol_srcu safely here */
 651	srcu_read_unlock(&fs_info->subvol_srcu, index);
 652
 653	btrfs_debug(fs_info,
 654		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
 655		 ref->root_id, level, ref->count, ret,
 656		 ref->key_for_search.objectid, ref->key_for_search.type,
 657		 ref->key_for_search.offset);
 658	if (ret < 0)
 659		goto out;
 660
 661	eb = path->nodes[level];
 662	while (!eb) {
 663		if (WARN_ON(!level)) {
 664			ret = 1;
 665			goto out;
 666		}
 667		level--;
 668		eb = path->nodes[level];
 669	}
 670
 671	ret = add_all_parents(root, path, parents, ref, level, time_seq,
 672			      extent_item_pos, total_refs);
 673out:
 674	path->lowest_level = 0;
 675	btrfs_release_path(path);
 676	return ret;
 677}
 678
 
 
 
 
 
 
 
 
 679/*
 680 * resolve all indirect backrefs from the list
 681 */
 682static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
 683				   struct btrfs_path *path, u64 time_seq,
 684				   struct list_head *head,
 685				   const u64 *extent_item_pos, u64 total_refs,
 686				   u64 root_objectid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 687{
 688	int err;
 689	int ret = 0;
 690	struct __prelim_ref *ref;
 691	struct __prelim_ref *ref_safe;
 692	struct __prelim_ref *new_ref;
 693	struct ulist *parents;
 694	struct ulist_node *node;
 695	struct ulist_iterator uiter;
 
 696
 697	parents = ulist_alloc(GFP_NOFS);
 698	if (!parents)
 699		return -ENOMEM;
 700
 701	/*
 702	 * _safe allows us to insert directly after the current item without
 703	 * iterating over the newly inserted items.
 704	 * we're also allowed to re-assign ref during iteration.
 
 705	 */
 706	list_for_each_entry_safe(ref, ref_safe, head, list) {
 707		if (ref->parent)	/* already direct */
 
 
 
 
 
 
 
 
 
 
 
 
 
 708			continue;
 709		if (ref->count == 0)
 710			continue;
 711		if (root_objectid && ref->root_id != root_objectid) {
 
 
 712			ret = BACKREF_FOUND_SHARED;
 713			goto out;
 714		}
 715		err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
 716					     parents, extent_item_pos,
 717					     total_refs);
 718		/*
 719		 * we can only tolerate ENOENT,otherwise,we should catch error
 720		 * and return directly.
 721		 */
 722		if (err == -ENOENT) {
 
 
 723			continue;
 724		} else if (err) {
 
 725			ret = err;
 726			goto out;
 727		}
 728
 729		/* we put the first parent into the ref at hand */
 730		ULIST_ITER_INIT(&uiter);
 731		node = ulist_next(parents, &uiter);
 732		ref->parent = node ? node->val : 0;
 733		ref->inode_list = node ?
 734			(struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
 735
 736		/* additional parents require new refs being added here */
 737		while ((node = ulist_next(parents, &uiter))) {
 
 
 738			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
 739						   GFP_NOFS);
 740			if (!new_ref) {
 
 741				ret = -ENOMEM;
 742				goto out;
 743			}
 744			memcpy(new_ref, ref, sizeof(*ref));
 745			new_ref->parent = node->val;
 746			new_ref->inode_list = (struct extent_inode_elem *)
 747							(uintptr_t)node->aux;
 748			list_add(&new_ref->list, &ref->list);
 749		}
 
 
 
 
 
 
 
 750		ulist_reinit(parents);
 
 751	}
 752out:
 753	ulist_free(parents);
 754	return ret;
 755}
 756
 757static inline int ref_for_same_block(struct __prelim_ref *ref1,
 758				     struct __prelim_ref *ref2)
 759{
 760	if (ref1->level != ref2->level)
 761		return 0;
 762	if (ref1->root_id != ref2->root_id)
 763		return 0;
 764	if (ref1->key_for_search.type != ref2->key_for_search.type)
 765		return 0;
 766	if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
 767		return 0;
 768	if (ref1->key_for_search.offset != ref2->key_for_search.offset)
 769		return 0;
 770	if (ref1->parent != ref2->parent)
 771		return 0;
 772
 773	return 1;
 774}
 775
 776/*
 777 * read tree blocks and add keys where required.
 778 */
 779static int __add_missing_keys(struct btrfs_fs_info *fs_info,
 780			      struct list_head *head)
 781{
 782	struct __prelim_ref *ref;
 783	struct extent_buffer *eb;
 
 
 
 
 
 
 784
 785	list_for_each_entry(ref, head, list) {
 786		if (ref->parent)
 787			continue;
 788		if (ref->key_for_search.type)
 789			continue;
 790		BUG_ON(!ref->wanted_disk_byte);
 791		eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0);
 
 
 792		if (IS_ERR(eb)) {
 
 793			return PTR_ERR(eb);
 794		} else if (!extent_buffer_uptodate(eb)) {
 
 795			free_extent_buffer(eb);
 796			return -EIO;
 797		}
 798		btrfs_tree_read_lock(eb);
 
 799		if (btrfs_header_level(eb) == 0)
 800			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
 801		else
 802			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
 803		btrfs_tree_read_unlock(eb);
 
 804		free_extent_buffer(eb);
 
 
 805	}
 806	return 0;
 807}
 808
 809/*
 810 * merge backrefs and adjust counts accordingly
 811 *
 812 * mode = 1: merge identical keys, if key is set
 813 *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
 814 *           additionally, we could even add a key range for the blocks we
 815 *           looked into to merge even more (-> replace unresolved refs by those
 816 *           having a parent).
 817 * mode = 2: merge identical parents
 818 */
 819static void __merge_refs(struct list_head *head, int mode)
 820{
 821	struct __prelim_ref *pos1;
 822
 823	list_for_each_entry(pos1, head, list) {
 824		struct __prelim_ref *pos2 = pos1, *tmp;
 825
 826		list_for_each_entry_safe_continue(pos2, tmp, head, list) {
 827			struct __prelim_ref *ref1 = pos1, *ref2 = pos2;
 828			struct extent_inode_elem *eie;
 829
 830			if (!ref_for_same_block(ref1, ref2))
 831				continue;
 832			if (mode == 1) {
 833				if (!ref1->parent && ref2->parent)
 834					swap(ref1, ref2);
 835			} else {
 836				if (ref1->parent != ref2->parent)
 837					continue;
 838			}
 839
 840			eie = ref1->inode_list;
 841			while (eie && eie->next)
 842				eie = eie->next;
 843			if (eie)
 844				eie->next = ref2->inode_list;
 845			else
 846				ref1->inode_list = ref2->inode_list;
 847			ref1->count += ref2->count;
 848
 849			list_del(&ref2->list);
 850			kmem_cache_free(btrfs_prelim_ref_cache, ref2);
 851			cond_resched();
 852		}
 853
 854	}
 855}
 856
 857/*
 858 * add all currently queued delayed refs from this head whose seq nr is
 859 * smaller or equal that seq to the list
 860 */
 861static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
 862			      struct list_head *prefs, u64 *total_refs,
 863			      u64 inum)
 
 864{
 865	struct btrfs_delayed_ref_node *node;
 866	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
 867	struct btrfs_key key;
 868	struct btrfs_key op_key = {0};
 869	int sgn;
 
 870	int ret = 0;
 871
 872	if (extent_op && extent_op->update_key)
 873		btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
 874
 875	spin_lock(&head->lock);
 876	list_for_each_entry(node, &head->ref_list, list) {
 
 
 877		if (node->seq > seq)
 878			continue;
 879
 880		switch (node->action) {
 881		case BTRFS_ADD_DELAYED_EXTENT:
 882		case BTRFS_UPDATE_DELAYED_HEAD:
 883			WARN_ON(1);
 884			continue;
 885		case BTRFS_ADD_DELAYED_REF:
 886			sgn = 1;
 887			break;
 888		case BTRFS_DROP_DELAYED_REF:
 889			sgn = -1;
 890			break;
 891		default:
 892			BUG_ON(1);
 893		}
 894		*total_refs += (node->ref_mod * sgn);
 895		switch (node->type) {
 896		case BTRFS_TREE_BLOCK_REF_KEY: {
 
 897			struct btrfs_delayed_tree_ref *ref;
 898
 899			ref = btrfs_delayed_node_to_tree_ref(node);
 900			ret = __add_prelim_ref(prefs, ref->root, &op_key,
 901					       ref->level + 1, 0, node->bytenr,
 902					       node->ref_mod * sgn, GFP_ATOMIC);
 
 903			break;
 904		}
 905		case BTRFS_SHARED_BLOCK_REF_KEY: {
 
 906			struct btrfs_delayed_tree_ref *ref;
 907
 908			ref = btrfs_delayed_node_to_tree_ref(node);
 909			ret = __add_prelim_ref(prefs, 0, NULL,
 910					       ref->level + 1, ref->parent,
 911					       node->bytenr,
 912					       node->ref_mod * sgn, GFP_ATOMIC);
 913			break;
 914		}
 915		case BTRFS_EXTENT_DATA_REF_KEY: {
 
 916			struct btrfs_delayed_data_ref *ref;
 917			ref = btrfs_delayed_node_to_data_ref(node);
 918
 919			key.objectid = ref->objectid;
 920			key.type = BTRFS_EXTENT_DATA_KEY;
 921			key.offset = ref->offset;
 922
 923			/*
 924			 * Found a inum that doesn't match our known inum, we
 925			 * know it's shared.
 926			 */
 927			if (inum && ref->objectid != inum) {
 928				ret = BACKREF_FOUND_SHARED;
 929				break;
 930			}
 931
 932			ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
 933					       node->bytenr,
 934					       node->ref_mod * sgn, GFP_ATOMIC);
 935			break;
 936		}
 937		case BTRFS_SHARED_DATA_REF_KEY: {
 
 938			struct btrfs_delayed_data_ref *ref;
 939
 940			ref = btrfs_delayed_node_to_data_ref(node);
 941			ret = __add_prelim_ref(prefs, 0, NULL, 0,
 942					       ref->parent, node->bytenr,
 943					       node->ref_mod * sgn, GFP_ATOMIC);
 
 944			break;
 945		}
 946		default:
 947			WARN_ON(1);
 948		}
 949		if (ret)
 
 
 
 
 950			break;
 951	}
 
 
 
 952	spin_unlock(&head->lock);
 953	return ret;
 954}
 955
 956/*
 957 * add all inline backrefs for bytenr to the list
 
 
 958 */
 959static int __add_inline_refs(struct btrfs_fs_info *fs_info,
 960			     struct btrfs_path *path, u64 bytenr,
 961			     int *info_level, struct list_head *prefs,
 962			     struct ref_root *ref_tree,
 963			     u64 *total_refs, u64 inum)
 964{
 965	int ret = 0;
 966	int slot;
 967	struct extent_buffer *leaf;
 968	struct btrfs_key key;
 969	struct btrfs_key found_key;
 970	unsigned long ptr;
 971	unsigned long end;
 972	struct btrfs_extent_item *ei;
 973	u64 flags;
 974	u64 item_size;
 975
 976	/*
 977	 * enumerate all inline refs
 978	 */
 979	leaf = path->nodes[0];
 980	slot = path->slots[0];
 981
 982	item_size = btrfs_item_size_nr(leaf, slot);
 983	BUG_ON(item_size < sizeof(*ei));
 984
 985	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
 986	flags = btrfs_extent_flags(leaf, ei);
 987	*total_refs += btrfs_extent_refs(leaf, ei);
 988	btrfs_item_key_to_cpu(leaf, &found_key, slot);
 989
 990	ptr = (unsigned long)(ei + 1);
 991	end = (unsigned long)ei + item_size;
 992
 993	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
 994	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 995		struct btrfs_tree_block_info *info;
 996
 997		info = (struct btrfs_tree_block_info *)ptr;
 998		*info_level = btrfs_tree_block_level(leaf, info);
 999		ptr += sizeof(struct btrfs_tree_block_info);
1000		BUG_ON(ptr > end);
1001	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
1002		*info_level = found_key.offset;
1003	} else {
1004		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1005	}
1006
1007	while (ptr < end) {
1008		struct btrfs_extent_inline_ref *iref;
1009		u64 offset;
1010		int type;
1011
1012		iref = (struct btrfs_extent_inline_ref *)ptr;
1013		type = btrfs_extent_inline_ref_type(leaf, iref);
 
 
 
 
1014		offset = btrfs_extent_inline_ref_offset(leaf, iref);
1015
1016		switch (type) {
1017		case BTRFS_SHARED_BLOCK_REF_KEY:
1018			ret = __add_prelim_ref(prefs, 0, NULL,
1019						*info_level + 1, offset,
1020						bytenr, 1, GFP_NOFS);
1021			break;
1022		case BTRFS_SHARED_DATA_REF_KEY: {
1023			struct btrfs_shared_data_ref *sdref;
1024			int count;
1025
1026			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1027			count = btrfs_shared_data_ref_count(leaf, sdref);
1028			ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
1029					       bytenr, count, GFP_NOFS);
1030			if (ref_tree) {
1031				if (!ret)
1032					ret = ref_tree_add(ref_tree, 0, 0, 0,
1033							   bytenr, count);
1034				if (!ret && ref_tree->unique_refs > 1)
1035					ret = BACKREF_FOUND_SHARED;
1036			}
1037			break;
1038		}
1039		case BTRFS_TREE_BLOCK_REF_KEY:
1040			ret = __add_prelim_ref(prefs, offset, NULL,
1041					       *info_level + 1, 0,
1042					       bytenr, 1, GFP_NOFS);
1043			break;
1044		case BTRFS_EXTENT_DATA_REF_KEY: {
1045			struct btrfs_extent_data_ref *dref;
1046			int count;
1047			u64 root;
1048
1049			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1050			count = btrfs_extent_data_ref_count(leaf, dref);
1051			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1052								      dref);
1053			key.type = BTRFS_EXTENT_DATA_KEY;
1054			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1055
1056			if (inum && key.objectid != inum) {
1057				ret = BACKREF_FOUND_SHARED;
1058				break;
1059			}
1060
1061			root = btrfs_extent_data_ref_root(leaf, dref);
1062			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
1063					       bytenr, count, GFP_NOFS);
1064			if (ref_tree) {
1065				if (!ret)
1066					ret = ref_tree_add(ref_tree, root,
1067							   key.objectid,
1068							   key.offset, 0,
1069							   count);
1070				if (!ret && ref_tree->unique_refs > 1)
1071					ret = BACKREF_FOUND_SHARED;
1072			}
1073			break;
1074		}
1075		default:
1076			WARN_ON(1);
1077		}
1078		if (ret)
1079			return ret;
1080		ptr += btrfs_extent_inline_ref_size(type);
1081	}
1082
1083	return 0;
1084}
1085
1086/*
1087 * add all non-inline backrefs for bytenr to the list
 
 
1088 */
1089static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
1090			    struct btrfs_path *path, u64 bytenr,
1091			    int info_level, struct list_head *prefs,
1092			    struct ref_root *ref_tree, u64 inum)
1093{
1094	struct btrfs_root *extent_root = fs_info->extent_root;
1095	int ret;
1096	int slot;
1097	struct extent_buffer *leaf;
1098	struct btrfs_key key;
1099
1100	while (1) {
1101		ret = btrfs_next_item(extent_root, path);
1102		if (ret < 0)
1103			break;
1104		if (ret) {
1105			ret = 0;
1106			break;
1107		}
1108
1109		slot = path->slots[0];
1110		leaf = path->nodes[0];
1111		btrfs_item_key_to_cpu(leaf, &key, slot);
1112
1113		if (key.objectid != bytenr)
1114			break;
1115		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1116			continue;
1117		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1118			break;
1119
1120		switch (key.type) {
1121		case BTRFS_SHARED_BLOCK_REF_KEY:
1122			ret = __add_prelim_ref(prefs, 0, NULL,
1123						info_level + 1, key.offset,
1124						bytenr, 1, GFP_NOFS);
 
1125			break;
1126		case BTRFS_SHARED_DATA_REF_KEY: {
 
1127			struct btrfs_shared_data_ref *sdref;
1128			int count;
1129
1130			sdref = btrfs_item_ptr(leaf, slot,
1131					      struct btrfs_shared_data_ref);
1132			count = btrfs_shared_data_ref_count(leaf, sdref);
1133			ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
1134						bytenr, count, GFP_NOFS);
1135			if (ref_tree) {
1136				if (!ret)
1137					ret = ref_tree_add(ref_tree, 0, 0, 0,
1138							   bytenr, count);
1139				if (!ret && ref_tree->unique_refs > 1)
1140					ret = BACKREF_FOUND_SHARED;
1141			}
1142			break;
1143		}
1144		case BTRFS_TREE_BLOCK_REF_KEY:
1145			ret = __add_prelim_ref(prefs, key.offset, NULL,
1146					       info_level + 1, 0,
1147					       bytenr, 1, GFP_NOFS);
 
1148			break;
1149		case BTRFS_EXTENT_DATA_REF_KEY: {
 
1150			struct btrfs_extent_data_ref *dref;
1151			int count;
1152			u64 root;
1153
1154			dref = btrfs_item_ptr(leaf, slot,
1155					      struct btrfs_extent_data_ref);
1156			count = btrfs_extent_data_ref_count(leaf, dref);
1157			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1158								      dref);
1159			key.type = BTRFS_EXTENT_DATA_KEY;
1160			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1161
1162			if (inum && key.objectid != inum) {
1163				ret = BACKREF_FOUND_SHARED;
1164				break;
1165			}
1166
1167			root = btrfs_extent_data_ref_root(leaf, dref);
1168			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
1169					       bytenr, count, GFP_NOFS);
1170			if (ref_tree) {
1171				if (!ret)
1172					ret = ref_tree_add(ref_tree, root,
1173							   key.objectid,
1174							   key.offset, 0,
1175							   count);
1176				if (!ret && ref_tree->unique_refs > 1)
1177					ret = BACKREF_FOUND_SHARED;
1178			}
1179			break;
1180		}
1181		default:
1182			WARN_ON(1);
1183		}
1184		if (ret)
1185			return ret;
1186
1187	}
1188
1189	return ret;
1190}
1191
1192/*
1193 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1194 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1195 * indirect refs to their parent bytenr.
1196 * When roots are found, they're added to the roots list
1197 *
1198 * NOTE: This can return values > 0
1199 *
1200 * If time_seq is set to (u64)-1, it will not search delayed_refs, and behave
1201 * much like trans == NULL case, the difference only lies in it will not
1202 * commit root.
1203 * The special case is for qgroup to search roots in commit_transaction().
1204 *
1205 * If check_shared is set to 1, any extent has more than one ref item, will
1206 * be returned BACKREF_FOUND_SHARED immediately.
 
 
 
 
 
 
1207 *
1208 * FIXME some caching might speed things up
1209 */
1210static int find_parent_nodes(struct btrfs_trans_handle *trans,
1211			     struct btrfs_fs_info *fs_info, u64 bytenr,
1212			     u64 time_seq, struct ulist *refs,
1213			     struct ulist *roots, const u64 *extent_item_pos,
1214			     u64 root_objectid, u64 inum, int check_shared)
1215{
1216	struct btrfs_key key;
1217	struct btrfs_path *path;
1218	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1219	struct btrfs_delayed_ref_head *head;
1220	int info_level = 0;
1221	int ret;
1222	struct list_head prefs_delayed;
1223	struct list_head prefs;
1224	struct __prelim_ref *ref;
1225	struct extent_inode_elem *eie = NULL;
1226	struct ref_root *ref_tree = NULL;
1227	u64 total_refs = 0;
1228
1229	INIT_LIST_HEAD(&prefs);
1230	INIT_LIST_HEAD(&prefs_delayed);
 
 
1231
1232	key.objectid = bytenr;
1233	key.offset = (u64)-1;
1234	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1235		key.type = BTRFS_METADATA_ITEM_KEY;
1236	else
1237		key.type = BTRFS_EXTENT_ITEM_KEY;
1238
1239	path = btrfs_alloc_path();
1240	if (!path)
1241		return -ENOMEM;
1242	if (!trans) {
1243		path->search_commit_root = 1;
1244		path->skip_locking = 1;
1245	}
1246
1247	if (time_seq == (u64)-1)
1248		path->skip_locking = 1;
1249
1250	/*
1251	 * grab both a lock on the path and a lock on the delayed ref head.
1252	 * We need both to get a consistent picture of how the refs look
1253	 * at a specified point in time
1254	 */
1255again:
1256	head = NULL;
1257
1258	if (check_shared) {
1259		if (!ref_tree) {
1260			ref_tree = ref_root_alloc();
1261			if (!ref_tree) {
1262				ret = -ENOMEM;
1263				goto out;
1264			}
1265		} else {
1266			ref_root_fini(ref_tree);
1267		}
1268	}
1269
1270	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1271	if (ret < 0)
1272		goto out;
1273	BUG_ON(ret == 0);
1274
1275#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1276	if (trans && likely(trans->type != __TRANS_DUMMY) &&
1277	    time_seq != (u64)-1) {
1278#else
1279	if (trans && time_seq != (u64)-1) {
1280#endif
1281		/*
1282		 * look if there are updates for this ref queued and lock the
1283		 * head
1284		 */
1285		delayed_refs = &trans->transaction->delayed_refs;
1286		spin_lock(&delayed_refs->lock);
1287		head = btrfs_find_delayed_ref_head(trans, bytenr);
1288		if (head) {
1289			if (!mutex_trylock(&head->mutex)) {
1290				atomic_inc(&head->node.refs);
1291				spin_unlock(&delayed_refs->lock);
1292
1293				btrfs_release_path(path);
1294
1295				/*
1296				 * Mutex was contended, block until it's
1297				 * released and try again
1298				 */
1299				mutex_lock(&head->mutex);
1300				mutex_unlock(&head->mutex);
1301				btrfs_put_delayed_ref(&head->node);
1302				goto again;
1303			}
1304			spin_unlock(&delayed_refs->lock);
1305			ret = __add_delayed_refs(head, time_seq,
1306						 &prefs_delayed, &total_refs,
1307						 inum);
1308			mutex_unlock(&head->mutex);
1309			if (ret)
1310				goto out;
1311		} else {
1312			spin_unlock(&delayed_refs->lock);
1313		}
1314
1315		if (check_shared && !list_empty(&prefs_delayed)) {
1316			/*
1317			 * Add all delay_ref to the ref_tree and check if there
1318			 * are multiple ref items added.
1319			 */
1320			list_for_each_entry(ref, &prefs_delayed, list) {
1321				if (ref->key_for_search.type) {
1322					ret = ref_tree_add(ref_tree,
1323						ref->root_id,
1324						ref->key_for_search.objectid,
1325						ref->key_for_search.offset,
1326						0, ref->count);
1327					if (ret)
1328						goto out;
1329				} else {
1330					ret = ref_tree_add(ref_tree, 0, 0, 0,
1331						     ref->parent, ref->count);
1332					if (ret)
1333						goto out;
1334				}
1335
1336			}
1337
1338			if (ref_tree->unique_refs > 1) {
1339				ret = BACKREF_FOUND_SHARED;
1340				goto out;
1341			}
1342
1343		}
1344	}
1345
1346	if (path->slots[0]) {
1347		struct extent_buffer *leaf;
1348		int slot;
1349
1350		path->slots[0]--;
1351		leaf = path->nodes[0];
1352		slot = path->slots[0];
1353		btrfs_item_key_to_cpu(leaf, &key, slot);
1354		if (key.objectid == bytenr &&
1355		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
1356		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1357			ret = __add_inline_refs(fs_info, path, bytenr,
1358						&info_level, &prefs,
1359						ref_tree, &total_refs,
1360						inum);
1361			if (ret)
1362				goto out;
1363			ret = __add_keyed_refs(fs_info, path, bytenr,
1364					       info_level, &prefs,
1365					       ref_tree, inum);
1366			if (ret)
1367				goto out;
1368		}
1369	}
 
1370	btrfs_release_path(path);
1371
1372	list_splice_init(&prefs_delayed, &prefs);
1373
1374	ret = __add_missing_keys(fs_info, &prefs);
1375	if (ret)
1376		goto out;
1377
1378	__merge_refs(&prefs, 1);
1379
1380	ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
1381				      extent_item_pos, total_refs,
1382				      root_objectid);
1383	if (ret)
1384		goto out;
1385
1386	__merge_refs(&prefs, 2);
1387
1388	while (!list_empty(&prefs)) {
1389		ref = list_first_entry(&prefs, struct __prelim_ref, list);
1390		WARN_ON(ref->count < 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1391		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1392			if (root_objectid && ref->root_id != root_objectid) {
 
1393				ret = BACKREF_FOUND_SHARED;
1394				goto out;
1395			}
1396
1397			/* no parent == root of tree */
1398			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1399			if (ret < 0)
1400				goto out;
1401		}
1402		if (ref->count && ref->parent) {
1403			if (extent_item_pos && !ref->inode_list &&
1404			    ref->level == 0) {
1405				struct extent_buffer *eb;
1406
1407				eb = read_tree_block(fs_info, ref->parent, 0);
 
1408				if (IS_ERR(eb)) {
1409					ret = PTR_ERR(eb);
1410					goto out;
1411				} else if (!extent_buffer_uptodate(eb)) {
1412					free_extent_buffer(eb);
1413					ret = -EIO;
1414					goto out;
1415				}
1416				btrfs_tree_read_lock(eb);
1417				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
 
 
 
1418				ret = find_extent_in_eb(eb, bytenr,
1419							*extent_item_pos, &eie);
1420				btrfs_tree_read_unlock_blocking(eb);
 
1421				free_extent_buffer(eb);
1422				if (ret < 0)
1423					goto out;
1424				ref->inode_list = eie;
1425			}
1426			ret = ulist_add_merge_ptr(refs, ref->parent,
1427						  ref->inode_list,
1428						  (void **)&eie, GFP_NOFS);
1429			if (ret < 0)
1430				goto out;
1431			if (!ret && extent_item_pos) {
1432				/*
1433				 * we've recorded that parent, so we must extend
1434				 * its inode list here
1435				 */
1436				BUG_ON(!eie);
1437				while (eie->next)
1438					eie = eie->next;
1439				eie->next = ref->inode_list;
1440			}
1441			eie = NULL;
1442		}
1443		list_del(&ref->list);
1444		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1445	}
1446
1447out:
1448	btrfs_free_path(path);
1449	ref_root_free(ref_tree);
1450	while (!list_empty(&prefs)) {
1451		ref = list_first_entry(&prefs, struct __prelim_ref, list);
1452		list_del(&ref->list);
1453		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1454	}
1455	while (!list_empty(&prefs_delayed)) {
1456		ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
1457				       list);
1458		list_del(&ref->list);
1459		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1460	}
1461	if (ret < 0)
1462		free_inode_elem_list(eie);
1463	return ret;
1464}
1465
1466static void free_leaf_list(struct ulist *blocks)
1467{
1468	struct ulist_node *node = NULL;
1469	struct extent_inode_elem *eie;
1470	struct ulist_iterator uiter;
1471
1472	ULIST_ITER_INIT(&uiter);
1473	while ((node = ulist_next(blocks, &uiter))) {
1474		if (!node->aux)
1475			continue;
1476		eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
1477		free_inode_elem_list(eie);
1478		node->aux = 0;
1479	}
1480
1481	ulist_free(blocks);
1482}
1483
1484/*
1485 * Finds all leafs with a reference to the specified combination of bytenr and
1486 * offset. key_list_head will point to a list of corresponding keys (caller must
1487 * free each list element). The leafs will be stored in the leafs ulist, which
1488 * must be freed with ulist_free.
1489 *
1490 * returns 0 on success, <0 on error
1491 */
1492static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1493				struct btrfs_fs_info *fs_info, u64 bytenr,
1494				u64 time_seq, struct ulist **leafs,
1495				const u64 *extent_item_pos)
1496{
1497	int ret;
1498
1499	*leafs = ulist_alloc(GFP_NOFS);
1500	if (!*leafs)
1501		return -ENOMEM;
1502
1503	ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1504				*leafs, NULL, extent_item_pos, 0, 0, 0);
1505	if (ret < 0 && ret != -ENOENT) {
1506		free_leaf_list(*leafs);
1507		return ret;
1508	}
1509
1510	return 0;
1511}
1512
1513/*
1514 * walk all backrefs for a given extent to find all roots that reference this
1515 * extent. Walking a backref means finding all extents that reference this
1516 * extent and in turn walk the backrefs of those, too. Naturally this is a
1517 * recursive process, but here it is implemented in an iterative fashion: We
1518 * find all referencing extents for the extent in question and put them on a
1519 * list. In turn, we find all referencing extents for those, further appending
1520 * to the list. The way we iterate the list allows adding more elements after
1521 * the current while iterating. The process stops when we reach the end of the
1522 * list. Found roots are added to the roots list.
1523 *
1524 * returns 0 on success, < 0 on error.
1525 */
1526static int __btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1527				  struct btrfs_fs_info *fs_info, u64 bytenr,
1528				  u64 time_seq, struct ulist **roots)
 
1529{
1530	struct ulist *tmp;
1531	struct ulist_node *node = NULL;
1532	struct ulist_iterator uiter;
1533	int ret;
1534
1535	tmp = ulist_alloc(GFP_NOFS);
1536	if (!tmp)
1537		return -ENOMEM;
1538	*roots = ulist_alloc(GFP_NOFS);
1539	if (!*roots) {
1540		ulist_free(tmp);
1541		return -ENOMEM;
1542	}
1543
1544	ULIST_ITER_INIT(&uiter);
1545	while (1) {
1546		ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1547					tmp, *roots, NULL, 0, 0, 0);
1548		if (ret < 0 && ret != -ENOENT) {
1549			ulist_free(tmp);
1550			ulist_free(*roots);
1551			return ret;
1552		}
1553		node = ulist_next(tmp, &uiter);
1554		if (!node)
1555			break;
1556		bytenr = node->val;
1557		cond_resched();
1558	}
1559
1560	ulist_free(tmp);
1561	return 0;
1562}
1563
1564int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1565			 struct btrfs_fs_info *fs_info, u64 bytenr,
1566			 u64 time_seq, struct ulist **roots)
 
1567{
1568	int ret;
1569
1570	if (!trans)
1571		down_read(&fs_info->commit_root_sem);
1572	ret = __btrfs_find_all_roots(trans, fs_info, bytenr, time_seq, roots);
 
1573	if (!trans)
1574		up_read(&fs_info->commit_root_sem);
1575	return ret;
1576}
1577
1578/**
1579 * btrfs_check_shared - tell us whether an extent is shared
1580 *
1581 * @trans: optional trans handle
1582 *
1583 * btrfs_check_shared uses the backref walking code but will short
1584 * circuit as soon as it finds a root or inode that doesn't match the
1585 * one passed in. This provides a significant performance benefit for
1586 * callers (such as fiemap) which want to know whether the extent is
1587 * shared but do not need a ref count.
1588 *
 
 
 
1589 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1590 */
1591int btrfs_check_shared(struct btrfs_trans_handle *trans,
1592		       struct btrfs_fs_info *fs_info, u64 root_objectid,
1593		       u64 inum, u64 bytenr)
1594{
1595	struct ulist *tmp = NULL;
1596	struct ulist *roots = NULL;
1597	struct ulist_iterator uiter;
1598	struct ulist_node *node;
1599	struct seq_list elem = SEQ_LIST_INIT(elem);
1600	int ret = 0;
1601
1602	tmp = ulist_alloc(GFP_NOFS);
1603	roots = ulist_alloc(GFP_NOFS);
1604	if (!tmp || !roots) {
1605		ulist_free(tmp);
1606		ulist_free(roots);
1607		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
1608	}
1609
1610	if (trans)
1611		btrfs_get_tree_mod_seq(fs_info, &elem);
1612	else
1613		down_read(&fs_info->commit_root_sem);
1614	ULIST_ITER_INIT(&uiter);
1615	while (1) {
1616		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1617					roots, NULL, root_objectid, inum, 1);
1618		if (ret == BACKREF_FOUND_SHARED) {
1619			/* this is the only condition under which we return 1 */
1620			ret = 1;
1621			break;
1622		}
1623		if (ret < 0 && ret != -ENOENT)
1624			break;
1625		ret = 0;
1626		node = ulist_next(tmp, &uiter);
1627		if (!node)
1628			break;
1629		bytenr = node->val;
 
1630		cond_resched();
1631	}
1632	if (trans)
 
1633		btrfs_put_tree_mod_seq(fs_info, &elem);
1634	else
 
1635		up_read(&fs_info->commit_root_sem);
1636	ulist_free(tmp);
1637	ulist_free(roots);
 
 
1638	return ret;
1639}
1640
1641int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1642			  u64 start_off, struct btrfs_path *path,
1643			  struct btrfs_inode_extref **ret_extref,
1644			  u64 *found_off)
1645{
1646	int ret, slot;
1647	struct btrfs_key key;
1648	struct btrfs_key found_key;
1649	struct btrfs_inode_extref *extref;
1650	struct extent_buffer *leaf;
1651	unsigned long ptr;
1652
1653	key.objectid = inode_objectid;
1654	key.type = BTRFS_INODE_EXTREF_KEY;
1655	key.offset = start_off;
1656
1657	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1658	if (ret < 0)
1659		return ret;
1660
1661	while (1) {
1662		leaf = path->nodes[0];
1663		slot = path->slots[0];
1664		if (slot >= btrfs_header_nritems(leaf)) {
1665			/*
1666			 * If the item at offset is not found,
1667			 * btrfs_search_slot will point us to the slot
1668			 * where it should be inserted. In our case
1669			 * that will be the slot directly before the
1670			 * next INODE_REF_KEY_V2 item. In the case
1671			 * that we're pointing to the last slot in a
1672			 * leaf, we must move one leaf over.
1673			 */
1674			ret = btrfs_next_leaf(root, path);
1675			if (ret) {
1676				if (ret >= 1)
1677					ret = -ENOENT;
1678				break;
1679			}
1680			continue;
1681		}
1682
1683		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1684
1685		/*
1686		 * Check that we're still looking at an extended ref key for
1687		 * this particular objectid. If we have different
1688		 * objectid or type then there are no more to be found
1689		 * in the tree and we can exit.
1690		 */
1691		ret = -ENOENT;
1692		if (found_key.objectid != inode_objectid)
1693			break;
1694		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1695			break;
1696
1697		ret = 0;
1698		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1699		extref = (struct btrfs_inode_extref *)ptr;
1700		*ret_extref = extref;
1701		if (found_off)
1702			*found_off = found_key.offset;
1703		break;
1704	}
1705
1706	return ret;
1707}
1708
1709/*
1710 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1711 * Elements of the path are separated by '/' and the path is guaranteed to be
1712 * 0-terminated. the path is only given within the current file system.
1713 * Therefore, it never starts with a '/'. the caller is responsible to provide
1714 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1715 * the start point of the resulting string is returned. this pointer is within
1716 * dest, normally.
1717 * in case the path buffer would overflow, the pointer is decremented further
1718 * as if output was written to the buffer, though no more output is actually
1719 * generated. that way, the caller can determine how much space would be
1720 * required for the path to fit into the buffer. in that case, the returned
1721 * value will be smaller than dest. callers must check this!
1722 */
1723char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1724			u32 name_len, unsigned long name_off,
1725			struct extent_buffer *eb_in, u64 parent,
1726			char *dest, u32 size)
1727{
1728	int slot;
1729	u64 next_inum;
1730	int ret;
1731	s64 bytes_left = ((s64)size) - 1;
1732	struct extent_buffer *eb = eb_in;
1733	struct btrfs_key found_key;
1734	int leave_spinning = path->leave_spinning;
1735	struct btrfs_inode_ref *iref;
1736
1737	if (bytes_left >= 0)
1738		dest[bytes_left] = '\0';
1739
1740	path->leave_spinning = 1;
1741	while (1) {
1742		bytes_left -= name_len;
1743		if (bytes_left >= 0)
1744			read_extent_buffer(eb, dest + bytes_left,
1745					   name_off, name_len);
1746		if (eb != eb_in) {
1747			if (!path->skip_locking)
1748				btrfs_tree_read_unlock_blocking(eb);
1749			free_extent_buffer(eb);
1750		}
1751		ret = btrfs_find_item(fs_root, path, parent, 0,
1752				BTRFS_INODE_REF_KEY, &found_key);
1753		if (ret > 0)
1754			ret = -ENOENT;
1755		if (ret)
1756			break;
1757
1758		next_inum = found_key.offset;
1759
1760		/* regular exit ahead */
1761		if (parent == next_inum)
1762			break;
1763
1764		slot = path->slots[0];
1765		eb = path->nodes[0];
1766		/* make sure we can use eb after releasing the path */
1767		if (eb != eb_in) {
1768			if (!path->skip_locking)
1769				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1770			path->nodes[0] = NULL;
1771			path->locks[0] = 0;
1772		}
1773		btrfs_release_path(path);
1774		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1775
1776		name_len = btrfs_inode_ref_name_len(eb, iref);
1777		name_off = (unsigned long)(iref + 1);
1778
1779		parent = next_inum;
1780		--bytes_left;
1781		if (bytes_left >= 0)
1782			dest[bytes_left] = '/';
1783	}
1784
1785	btrfs_release_path(path);
1786	path->leave_spinning = leave_spinning;
1787
1788	if (ret)
1789		return ERR_PTR(ret);
1790
1791	return dest + bytes_left;
1792}
1793
1794/*
1795 * this makes the path point to (logical EXTENT_ITEM *)
1796 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1797 * tree blocks and <0 on error.
1798 */
1799int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1800			struct btrfs_path *path, struct btrfs_key *found_key,
1801			u64 *flags_ret)
1802{
1803	int ret;
1804	u64 flags;
1805	u64 size = 0;
1806	u32 item_size;
1807	struct extent_buffer *eb;
1808	struct btrfs_extent_item *ei;
1809	struct btrfs_key key;
1810
1811	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1812		key.type = BTRFS_METADATA_ITEM_KEY;
1813	else
1814		key.type = BTRFS_EXTENT_ITEM_KEY;
1815	key.objectid = logical;
1816	key.offset = (u64)-1;
1817
1818	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1819	if (ret < 0)
1820		return ret;
1821
1822	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1823	if (ret) {
1824		if (ret > 0)
1825			ret = -ENOENT;
1826		return ret;
1827	}
1828	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1829	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1830		size = fs_info->nodesize;
1831	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1832		size = found_key->offset;
1833
1834	if (found_key->objectid > logical ||
1835	    found_key->objectid + size <= logical) {
1836		btrfs_debug(fs_info,
1837			"logical %llu is not within any extent", logical);
1838		return -ENOENT;
1839	}
1840
1841	eb = path->nodes[0];
1842	item_size = btrfs_item_size_nr(eb, path->slots[0]);
1843	BUG_ON(item_size < sizeof(*ei));
1844
1845	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1846	flags = btrfs_extent_flags(eb, ei);
1847
1848	btrfs_debug(fs_info,
1849		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1850		 logical, logical - found_key->objectid, found_key->objectid,
1851		 found_key->offset, flags, item_size);
1852
1853	WARN_ON(!flags_ret);
1854	if (flags_ret) {
1855		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1856			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1857		else if (flags & BTRFS_EXTENT_FLAG_DATA)
1858			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
1859		else
1860			BUG_ON(1);
1861		return 0;
1862	}
1863
1864	return -EIO;
1865}
1866
1867/*
1868 * helper function to iterate extent inline refs. ptr must point to a 0 value
1869 * for the first call and may be modified. it is used to track state.
1870 * if more refs exist, 0 is returned and the next call to
1871 * __get_extent_inline_ref must pass the modified ptr parameter to get the
1872 * next ref. after the last ref was processed, 1 is returned.
1873 * returns <0 on error
1874 */
1875static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1876				   struct btrfs_key *key,
1877				   struct btrfs_extent_item *ei, u32 item_size,
1878				   struct btrfs_extent_inline_ref **out_eiref,
1879				   int *out_type)
 
 
1880{
1881	unsigned long end;
1882	u64 flags;
1883	struct btrfs_tree_block_info *info;
1884
1885	if (!*ptr) {
1886		/* first call */
1887		flags = btrfs_extent_flags(eb, ei);
1888		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1889			if (key->type == BTRFS_METADATA_ITEM_KEY) {
1890				/* a skinny metadata extent */
1891				*out_eiref =
1892				     (struct btrfs_extent_inline_ref *)(ei + 1);
1893			} else {
1894				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1895				info = (struct btrfs_tree_block_info *)(ei + 1);
1896				*out_eiref =
1897				   (struct btrfs_extent_inline_ref *)(info + 1);
1898			}
1899		} else {
1900			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1901		}
1902		*ptr = (unsigned long)*out_eiref;
1903		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1904			return -ENOENT;
1905	}
1906
1907	end = (unsigned long)ei + item_size;
1908	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1909	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
 
 
 
1910
1911	*ptr += btrfs_extent_inline_ref_size(*out_type);
1912	WARN_ON(*ptr > end);
1913	if (*ptr == end)
1914		return 1; /* last */
1915
1916	return 0;
1917}
1918
1919/*
1920 * reads the tree block backref for an extent. tree level and root are returned
1921 * through out_level and out_root. ptr must point to a 0 value for the first
1922 * call and may be modified (see __get_extent_inline_ref comment).
1923 * returns 0 if data was provided, 1 if there was no more data to provide or
1924 * <0 on error.
1925 */
1926int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1927			    struct btrfs_key *key, struct btrfs_extent_item *ei,
1928			    u32 item_size, u64 *out_root, u8 *out_level)
1929{
1930	int ret;
1931	int type;
1932	struct btrfs_extent_inline_ref *eiref;
1933
1934	if (*ptr == (unsigned long)-1)
1935		return 1;
1936
1937	while (1) {
1938		ret = __get_extent_inline_ref(ptr, eb, key, ei, item_size,
1939					      &eiref, &type);
1940		if (ret < 0)
1941			return ret;
1942
1943		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1944		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1945			break;
1946
1947		if (ret == 1)
1948			return 1;
1949	}
1950
1951	/* we can treat both ref types equally here */
1952	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1953
1954	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1955		struct btrfs_tree_block_info *info;
1956
1957		info = (struct btrfs_tree_block_info *)(ei + 1);
1958		*out_level = btrfs_tree_block_level(eb, info);
1959	} else {
1960		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1961		*out_level = (u8)key->offset;
1962	}
1963
1964	if (ret == 1)
1965		*ptr = (unsigned long)-1;
1966
1967	return 0;
1968}
1969
1970static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1971			     struct extent_inode_elem *inode_list,
1972			     u64 root, u64 extent_item_objectid,
1973			     iterate_extent_inodes_t *iterate, void *ctx)
1974{
1975	struct extent_inode_elem *eie;
1976	int ret = 0;
1977
1978	for (eie = inode_list; eie; eie = eie->next) {
1979		btrfs_debug(fs_info,
1980			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1981			    extent_item_objectid, eie->inum,
1982			    eie->offset, root);
1983		ret = iterate(eie->inum, eie->offset, root, ctx);
1984		if (ret) {
1985			btrfs_debug(fs_info,
1986				    "stopping iteration for %llu due to ret=%d",
1987				    extent_item_objectid, ret);
1988			break;
1989		}
1990	}
1991
1992	return ret;
1993}
1994
1995/*
1996 * calls iterate() for every inode that references the extent identified by
1997 * the given parameters.
1998 * when the iterator function returns a non-zero value, iteration stops.
1999 */
2000int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
2001				u64 extent_item_objectid, u64 extent_item_pos,
2002				int search_commit_root,
2003				iterate_extent_inodes_t *iterate, void *ctx)
 
2004{
2005	int ret;
2006	struct btrfs_trans_handle *trans = NULL;
2007	struct ulist *refs = NULL;
2008	struct ulist *roots = NULL;
2009	struct ulist_node *ref_node = NULL;
2010	struct ulist_node *root_node = NULL;
2011	struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
2012	struct ulist_iterator ref_uiter;
2013	struct ulist_iterator root_uiter;
2014
2015	btrfs_debug(fs_info, "resolving all inodes for extent %llu",
2016			extent_item_objectid);
2017
2018	if (!search_commit_root) {
2019		trans = btrfs_join_transaction(fs_info->extent_root);
2020		if (IS_ERR(trans))
2021			return PTR_ERR(trans);
 
 
 
 
 
 
 
2022		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
2023	} else {
2024		down_read(&fs_info->commit_root_sem);
2025	}
2026
2027	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
2028				   tree_mod_seq_elem.seq, &refs,
2029				   &extent_item_pos);
2030	if (ret)
2031		goto out;
2032
2033	ULIST_ITER_INIT(&ref_uiter);
2034	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
2035		ret = __btrfs_find_all_roots(trans, fs_info, ref_node->val,
2036					     tree_mod_seq_elem.seq, &roots);
 
2037		if (ret)
2038			break;
2039		ULIST_ITER_INIT(&root_uiter);
2040		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
2041			btrfs_debug(fs_info,
2042				    "root %llu references leaf %llu, data list %#llx",
2043				    root_node->val, ref_node->val,
2044				    ref_node->aux);
2045			ret = iterate_leaf_refs(fs_info,
2046						(struct extent_inode_elem *)
2047						(uintptr_t)ref_node->aux,
2048						root_node->val,
2049						extent_item_objectid,
2050						iterate, ctx);
2051		}
2052		ulist_free(roots);
2053	}
2054
2055	free_leaf_list(refs);
2056out:
2057	if (!search_commit_root) {
2058		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
2059		btrfs_end_transaction(trans);
2060	} else {
2061		up_read(&fs_info->commit_root_sem);
2062	}
2063
2064	return ret;
2065}
2066
2067int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2068				struct btrfs_path *path,
2069				iterate_extent_inodes_t *iterate, void *ctx)
 
2070{
2071	int ret;
2072	u64 extent_item_pos;
2073	u64 flags = 0;
2074	struct btrfs_key found_key;
2075	int search_commit_root = path->search_commit_root;
2076
2077	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2078	btrfs_release_path(path);
2079	if (ret < 0)
2080		return ret;
2081	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2082		return -EINVAL;
2083
2084	extent_item_pos = logical - found_key.objectid;
2085	ret = iterate_extent_inodes(fs_info, found_key.objectid,
2086					extent_item_pos, search_commit_root,
2087					iterate, ctx);
2088
2089	return ret;
2090}
2091
2092typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
2093			      struct extent_buffer *eb, void *ctx);
2094
2095static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
2096			      struct btrfs_path *path,
2097			      iterate_irefs_t *iterate, void *ctx)
2098{
2099	int ret = 0;
2100	int slot;
2101	u32 cur;
2102	u32 len;
2103	u32 name_len;
2104	u64 parent = 0;
2105	int found = 0;
2106	struct extent_buffer *eb;
2107	struct btrfs_item *item;
2108	struct btrfs_inode_ref *iref;
2109	struct btrfs_key found_key;
2110
2111	while (!ret) {
2112		ret = btrfs_find_item(fs_root, path, inum,
2113				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2114				&found_key);
2115
2116		if (ret < 0)
2117			break;
2118		if (ret) {
2119			ret = found ? 0 : -ENOENT;
2120			break;
2121		}
2122		++found;
2123
2124		parent = found_key.offset;
2125		slot = path->slots[0];
2126		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2127		if (!eb) {
2128			ret = -ENOMEM;
2129			break;
2130		}
2131		extent_buffer_get(eb);
2132		btrfs_tree_read_lock(eb);
2133		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
2134		btrfs_release_path(path);
2135
2136		item = btrfs_item_nr(slot);
2137		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2138
2139		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2140			name_len = btrfs_inode_ref_name_len(eb, iref);
2141			/* path must be released before calling iterate()! */
2142			btrfs_debug(fs_root->fs_info,
2143				"following ref at offset %u for inode %llu in tree %llu",
2144				cur, found_key.objectid, fs_root->objectid);
 
2145			ret = iterate(parent, name_len,
2146				      (unsigned long)(iref + 1), eb, ctx);
2147			if (ret)
2148				break;
2149			len = sizeof(*iref) + name_len;
2150			iref = (struct btrfs_inode_ref *)((char *)iref + len);
2151		}
2152		btrfs_tree_read_unlock_blocking(eb);
2153		free_extent_buffer(eb);
2154	}
2155
2156	btrfs_release_path(path);
2157
2158	return ret;
2159}
2160
2161static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2162				 struct btrfs_path *path,
2163				 iterate_irefs_t *iterate, void *ctx)
2164{
2165	int ret;
2166	int slot;
2167	u64 offset = 0;
2168	u64 parent;
2169	int found = 0;
2170	struct extent_buffer *eb;
2171	struct btrfs_inode_extref *extref;
2172	u32 item_size;
2173	u32 cur_offset;
2174	unsigned long ptr;
2175
2176	while (1) {
2177		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2178					    &offset);
2179		if (ret < 0)
2180			break;
2181		if (ret) {
2182			ret = found ? 0 : -ENOENT;
2183			break;
2184		}
2185		++found;
2186
2187		slot = path->slots[0];
2188		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2189		if (!eb) {
2190			ret = -ENOMEM;
2191			break;
2192		}
2193		extent_buffer_get(eb);
2194
2195		btrfs_tree_read_lock(eb);
2196		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
2197		btrfs_release_path(path);
2198
2199		item_size = btrfs_item_size_nr(eb, slot);
2200		ptr = btrfs_item_ptr_offset(eb, slot);
2201		cur_offset = 0;
2202
2203		while (cur_offset < item_size) {
2204			u32 name_len;
2205
2206			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2207			parent = btrfs_inode_extref_parent(eb, extref);
2208			name_len = btrfs_inode_extref_name_len(eb, extref);
2209			ret = iterate(parent, name_len,
2210				      (unsigned long)&extref->name, eb, ctx);
2211			if (ret)
2212				break;
2213
2214			cur_offset += btrfs_inode_extref_name_len(eb, extref);
2215			cur_offset += sizeof(*extref);
2216		}
2217		btrfs_tree_read_unlock_blocking(eb);
2218		free_extent_buffer(eb);
2219
2220		offset++;
2221	}
2222
2223	btrfs_release_path(path);
2224
2225	return ret;
2226}
2227
2228static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2229			 struct btrfs_path *path, iterate_irefs_t *iterate,
2230			 void *ctx)
2231{
2232	int ret;
2233	int found_refs = 0;
2234
2235	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2236	if (!ret)
2237		++found_refs;
2238	else if (ret != -ENOENT)
2239		return ret;
2240
2241	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2242	if (ret == -ENOENT && found_refs)
2243		return 0;
2244
2245	return ret;
2246}
2247
2248/*
2249 * returns 0 if the path could be dumped (probably truncated)
2250 * returns <0 in case of an error
2251 */
2252static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2253			 struct extent_buffer *eb, void *ctx)
2254{
2255	struct inode_fs_paths *ipath = ctx;
2256	char *fspath;
2257	char *fspath_min;
2258	int i = ipath->fspath->elem_cnt;
2259	const int s_ptr = sizeof(char *);
2260	u32 bytes_left;
2261
2262	bytes_left = ipath->fspath->bytes_left > s_ptr ?
2263					ipath->fspath->bytes_left - s_ptr : 0;
2264
2265	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2266	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2267				   name_off, eb, inum, fspath_min, bytes_left);
2268	if (IS_ERR(fspath))
2269		return PTR_ERR(fspath);
2270
2271	if (fspath > fspath_min) {
2272		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2273		++ipath->fspath->elem_cnt;
2274		ipath->fspath->bytes_left = fspath - fspath_min;
2275	} else {
2276		++ipath->fspath->elem_missed;
2277		ipath->fspath->bytes_missing += fspath_min - fspath;
2278		ipath->fspath->bytes_left = 0;
2279	}
2280
2281	return 0;
2282}
2283
2284/*
2285 * this dumps all file system paths to the inode into the ipath struct, provided
2286 * is has been created large enough. each path is zero-terminated and accessed
2287 * from ipath->fspath->val[i].
2288 * when it returns, there are ipath->fspath->elem_cnt number of paths available
2289 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2290 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2291 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2292 * have been needed to return all paths.
2293 */
2294int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2295{
2296	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2297			     inode_to_path, ipath);
2298}
2299
2300struct btrfs_data_container *init_data_container(u32 total_bytes)
2301{
2302	struct btrfs_data_container *data;
2303	size_t alloc_bytes;
2304
2305	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2306	data = vmalloc(alloc_bytes);
2307	if (!data)
2308		return ERR_PTR(-ENOMEM);
2309
2310	if (total_bytes >= sizeof(*data)) {
2311		data->bytes_left = total_bytes - sizeof(*data);
2312		data->bytes_missing = 0;
2313	} else {
2314		data->bytes_missing = sizeof(*data) - total_bytes;
2315		data->bytes_left = 0;
2316	}
2317
2318	data->elem_cnt = 0;
2319	data->elem_missed = 0;
2320
2321	return data;
2322}
2323
2324/*
2325 * allocates space to return multiple file system paths for an inode.
2326 * total_bytes to allocate are passed, note that space usable for actual path
2327 * information will be total_bytes - sizeof(struct inode_fs_paths).
2328 * the returned pointer must be freed with free_ipath() in the end.
2329 */
2330struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2331					struct btrfs_path *path)
2332{
2333	struct inode_fs_paths *ifp;
2334	struct btrfs_data_container *fspath;
2335
2336	fspath = init_data_container(total_bytes);
2337	if (IS_ERR(fspath))
2338		return (void *)fspath;
2339
2340	ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
2341	if (!ifp) {
2342		vfree(fspath);
2343		return ERR_PTR(-ENOMEM);
2344	}
2345
2346	ifp->btrfs_path = path;
2347	ifp->fspath = fspath;
2348	ifp->fs_root = fs_root;
2349
2350	return ifp;
2351}
2352
2353void free_ipath(struct inode_fs_paths *ipath)
2354{
2355	if (!ipath)
2356		return;
2357	vfree(ipath->fspath);
2358	kfree(ipath);
2359}