Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2011 STRATO. All rights reserved.
4 */
5
6#include <linux/mm.h>
7#include <linux/rbtree.h>
8#include <trace/events/btrfs.h>
9#include "ctree.h"
10#include "disk-io.h"
11#include "backref.h"
12#include "ulist.h"
13#include "transaction.h"
14#include "delayed-ref.h"
15#include "locking.h"
16
17/* Just an arbitrary number so we can be sure this happened */
18#define BACKREF_FOUND_SHARED 6
19
20struct extent_inode_elem {
21 u64 inum;
22 u64 offset;
23 struct extent_inode_elem *next;
24};
25
26static int check_extent_in_eb(const struct btrfs_key *key,
27 const struct extent_buffer *eb,
28 const struct btrfs_file_extent_item *fi,
29 u64 extent_item_pos,
30 struct extent_inode_elem **eie,
31 bool ignore_offset)
32{
33 u64 offset = 0;
34 struct extent_inode_elem *e;
35
36 if (!ignore_offset &&
37 !btrfs_file_extent_compression(eb, fi) &&
38 !btrfs_file_extent_encryption(eb, fi) &&
39 !btrfs_file_extent_other_encoding(eb, fi)) {
40 u64 data_offset;
41 u64 data_len;
42
43 data_offset = btrfs_file_extent_offset(eb, fi);
44 data_len = btrfs_file_extent_num_bytes(eb, fi);
45
46 if (extent_item_pos < data_offset ||
47 extent_item_pos >= data_offset + data_len)
48 return 1;
49 offset = extent_item_pos - data_offset;
50 }
51
52 e = kmalloc(sizeof(*e), GFP_NOFS);
53 if (!e)
54 return -ENOMEM;
55
56 e->next = *eie;
57 e->inum = key->objectid;
58 e->offset = key->offset + offset;
59 *eie = e;
60
61 return 0;
62}
63
64static void free_inode_elem_list(struct extent_inode_elem *eie)
65{
66 struct extent_inode_elem *eie_next;
67
68 for (; eie; eie = eie_next) {
69 eie_next = eie->next;
70 kfree(eie);
71 }
72}
73
74static int find_extent_in_eb(const struct extent_buffer *eb,
75 u64 wanted_disk_byte, u64 extent_item_pos,
76 struct extent_inode_elem **eie,
77 bool ignore_offset)
78{
79 u64 disk_byte;
80 struct btrfs_key key;
81 struct btrfs_file_extent_item *fi;
82 int slot;
83 int nritems;
84 int extent_type;
85 int ret;
86
87 /*
88 * from the shared data ref, we only have the leaf but we need
89 * the key. thus, we must look into all items and see that we
90 * find one (some) with a reference to our extent item.
91 */
92 nritems = btrfs_header_nritems(eb);
93 for (slot = 0; slot < nritems; ++slot) {
94 btrfs_item_key_to_cpu(eb, &key, slot);
95 if (key.type != BTRFS_EXTENT_DATA_KEY)
96 continue;
97 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
98 extent_type = btrfs_file_extent_type(eb, fi);
99 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
100 continue;
101 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
102 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
103 if (disk_byte != wanted_disk_byte)
104 continue;
105
106 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
107 if (ret < 0)
108 return ret;
109 }
110
111 return 0;
112}
113
114struct preftree {
115 struct rb_root_cached root;
116 unsigned int count;
117};
118
119#define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 }
120
121struct preftrees {
122 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
123 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
124 struct preftree indirect_missing_keys;
125};
126
127/*
128 * Checks for a shared extent during backref search.
129 *
130 * The share_count tracks prelim_refs (direct and indirect) having a
131 * ref->count >0:
132 * - incremented when a ref->count transitions to >0
133 * - decremented when a ref->count transitions to <1
134 */
135struct share_check {
136 u64 root_objectid;
137 u64 inum;
138 int share_count;
139};
140
141static inline int extent_is_shared(struct share_check *sc)
142{
143 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
144}
145
146static struct kmem_cache *btrfs_prelim_ref_cache;
147
148int __init btrfs_prelim_ref_init(void)
149{
150 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
151 sizeof(struct prelim_ref),
152 0,
153 SLAB_MEM_SPREAD,
154 NULL);
155 if (!btrfs_prelim_ref_cache)
156 return -ENOMEM;
157 return 0;
158}
159
160void __cold btrfs_prelim_ref_exit(void)
161{
162 kmem_cache_destroy(btrfs_prelim_ref_cache);
163}
164
165static void free_pref(struct prelim_ref *ref)
166{
167 kmem_cache_free(btrfs_prelim_ref_cache, ref);
168}
169
170/*
171 * Return 0 when both refs are for the same block (and can be merged).
172 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
173 * indicates a 'higher' block.
174 */
175static int prelim_ref_compare(struct prelim_ref *ref1,
176 struct prelim_ref *ref2)
177{
178 if (ref1->level < ref2->level)
179 return -1;
180 if (ref1->level > ref2->level)
181 return 1;
182 if (ref1->root_id < ref2->root_id)
183 return -1;
184 if (ref1->root_id > ref2->root_id)
185 return 1;
186 if (ref1->key_for_search.type < ref2->key_for_search.type)
187 return -1;
188 if (ref1->key_for_search.type > ref2->key_for_search.type)
189 return 1;
190 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
191 return -1;
192 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
193 return 1;
194 if (ref1->key_for_search.offset < ref2->key_for_search.offset)
195 return -1;
196 if (ref1->key_for_search.offset > ref2->key_for_search.offset)
197 return 1;
198 if (ref1->parent < ref2->parent)
199 return -1;
200 if (ref1->parent > ref2->parent)
201 return 1;
202
203 return 0;
204}
205
206static void update_share_count(struct share_check *sc, int oldcount,
207 int newcount)
208{
209 if ((!sc) || (oldcount == 0 && newcount < 1))
210 return;
211
212 if (oldcount > 0 && newcount < 1)
213 sc->share_count--;
214 else if (oldcount < 1 && newcount > 0)
215 sc->share_count++;
216}
217
218/*
219 * Add @newref to the @root rbtree, merging identical refs.
220 *
221 * Callers should assume that newref has been freed after calling.
222 */
223static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
224 struct preftree *preftree,
225 struct prelim_ref *newref,
226 struct share_check *sc)
227{
228 struct rb_root_cached *root;
229 struct rb_node **p;
230 struct rb_node *parent = NULL;
231 struct prelim_ref *ref;
232 int result;
233 bool leftmost = true;
234
235 root = &preftree->root;
236 p = &root->rb_root.rb_node;
237
238 while (*p) {
239 parent = *p;
240 ref = rb_entry(parent, struct prelim_ref, rbnode);
241 result = prelim_ref_compare(ref, newref);
242 if (result < 0) {
243 p = &(*p)->rb_left;
244 } else if (result > 0) {
245 p = &(*p)->rb_right;
246 leftmost = false;
247 } else {
248 /* Identical refs, merge them and free @newref */
249 struct extent_inode_elem *eie = ref->inode_list;
250
251 while (eie && eie->next)
252 eie = eie->next;
253
254 if (!eie)
255 ref->inode_list = newref->inode_list;
256 else
257 eie->next = newref->inode_list;
258 trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
259 preftree->count);
260 /*
261 * A delayed ref can have newref->count < 0.
262 * The ref->count is updated to follow any
263 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
264 */
265 update_share_count(sc, ref->count,
266 ref->count + newref->count);
267 ref->count += newref->count;
268 free_pref(newref);
269 return;
270 }
271 }
272
273 update_share_count(sc, 0, newref->count);
274 preftree->count++;
275 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
276 rb_link_node(&newref->rbnode, parent, p);
277 rb_insert_color_cached(&newref->rbnode, root, leftmost);
278}
279
280/*
281 * Release the entire tree. We don't care about internal consistency so
282 * just free everything and then reset the tree root.
283 */
284static void prelim_release(struct preftree *preftree)
285{
286 struct prelim_ref *ref, *next_ref;
287
288 rbtree_postorder_for_each_entry_safe(ref, next_ref,
289 &preftree->root.rb_root, rbnode)
290 free_pref(ref);
291
292 preftree->root = RB_ROOT_CACHED;
293 preftree->count = 0;
294}
295
296/*
297 * the rules for all callers of this function are:
298 * - obtaining the parent is the goal
299 * - if you add a key, you must know that it is a correct key
300 * - if you cannot add the parent or a correct key, then we will look into the
301 * block later to set a correct key
302 *
303 * delayed refs
304 * ============
305 * backref type | shared | indirect | shared | indirect
306 * information | tree | tree | data | data
307 * --------------------+--------+----------+--------+----------
308 * parent logical | y | - | - | -
309 * key to resolve | - | y | y | y
310 * tree block logical | - | - | - | -
311 * root for resolving | y | y | y | y
312 *
313 * - column 1: we've the parent -> done
314 * - column 2, 3, 4: we use the key to find the parent
315 *
316 * on disk refs (inline or keyed)
317 * ==============================
318 * backref type | shared | indirect | shared | indirect
319 * information | tree | tree | data | data
320 * --------------------+--------+----------+--------+----------
321 * parent logical | y | - | y | -
322 * key to resolve | - | - | - | y
323 * tree block logical | y | y | y | y
324 * root for resolving | - | y | y | y
325 *
326 * - column 1, 3: we've the parent -> done
327 * - column 2: we take the first key from the block to find the parent
328 * (see add_missing_keys)
329 * - column 4: we use the key to find the parent
330 *
331 * additional information that's available but not required to find the parent
332 * block might help in merging entries to gain some speed.
333 */
334static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
335 struct preftree *preftree, u64 root_id,
336 const struct btrfs_key *key, int level, u64 parent,
337 u64 wanted_disk_byte, int count,
338 struct share_check *sc, gfp_t gfp_mask)
339{
340 struct prelim_ref *ref;
341
342 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
343 return 0;
344
345 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
346 if (!ref)
347 return -ENOMEM;
348
349 ref->root_id = root_id;
350 if (key) {
351 ref->key_for_search = *key;
352 /*
353 * We can often find data backrefs with an offset that is too
354 * large (>= LLONG_MAX, maximum allowed file offset) due to
355 * underflows when subtracting a file's offset with the data
356 * offset of its corresponding extent data item. This can
357 * happen for example in the clone ioctl.
358 * So if we detect such case we set the search key's offset to
359 * zero to make sure we will find the matching file extent item
360 * at add_all_parents(), otherwise we will miss it because the
361 * offset taken form the backref is much larger then the offset
362 * of the file extent item. This can make us scan a very large
363 * number of file extent items, but at least it will not make
364 * us miss any.
365 * This is an ugly workaround for a behaviour that should have
366 * never existed, but it does and a fix for the clone ioctl
367 * would touch a lot of places, cause backwards incompatibility
368 * and would not fix the problem for extents cloned with older
369 * kernels.
370 */
371 if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
372 ref->key_for_search.offset >= LLONG_MAX)
373 ref->key_for_search.offset = 0;
374 } else {
375 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
376 }
377
378 ref->inode_list = NULL;
379 ref->level = level;
380 ref->count = count;
381 ref->parent = parent;
382 ref->wanted_disk_byte = wanted_disk_byte;
383 prelim_ref_insert(fs_info, preftree, ref, sc);
384 return extent_is_shared(sc);
385}
386
387/* direct refs use root == 0, key == NULL */
388static int add_direct_ref(const struct btrfs_fs_info *fs_info,
389 struct preftrees *preftrees, int level, u64 parent,
390 u64 wanted_disk_byte, int count,
391 struct share_check *sc, gfp_t gfp_mask)
392{
393 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
394 parent, wanted_disk_byte, count, sc, gfp_mask);
395}
396
397/* indirect refs use parent == 0 */
398static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
399 struct preftrees *preftrees, u64 root_id,
400 const struct btrfs_key *key, int level,
401 u64 wanted_disk_byte, int count,
402 struct share_check *sc, gfp_t gfp_mask)
403{
404 struct preftree *tree = &preftrees->indirect;
405
406 if (!key)
407 tree = &preftrees->indirect_missing_keys;
408 return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
409 wanted_disk_byte, count, sc, gfp_mask);
410}
411
412static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
413 struct ulist *parents, struct prelim_ref *ref,
414 int level, u64 time_seq, const u64 *extent_item_pos,
415 u64 total_refs, bool ignore_offset)
416{
417 int ret = 0;
418 int slot;
419 struct extent_buffer *eb;
420 struct btrfs_key key;
421 struct btrfs_key *key_for_search = &ref->key_for_search;
422 struct btrfs_file_extent_item *fi;
423 struct extent_inode_elem *eie = NULL, *old = NULL;
424 u64 disk_byte;
425 u64 wanted_disk_byte = ref->wanted_disk_byte;
426 u64 count = 0;
427
428 if (level != 0) {
429 eb = path->nodes[level];
430 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
431 if (ret < 0)
432 return ret;
433 return 0;
434 }
435
436 /*
437 * We normally enter this function with the path already pointing to
438 * the first item to check. But sometimes, we may enter it with
439 * slot==nritems. In that case, go to the next leaf before we continue.
440 */
441 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
442 if (time_seq == SEQ_LAST)
443 ret = btrfs_next_leaf(root, path);
444 else
445 ret = btrfs_next_old_leaf(root, path, time_seq);
446 }
447
448 while (!ret && count < total_refs) {
449 eb = path->nodes[0];
450 slot = path->slots[0];
451
452 btrfs_item_key_to_cpu(eb, &key, slot);
453
454 if (key.objectid != key_for_search->objectid ||
455 key.type != BTRFS_EXTENT_DATA_KEY)
456 break;
457
458 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
459 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
460
461 if (disk_byte == wanted_disk_byte) {
462 eie = NULL;
463 old = NULL;
464 count++;
465 if (extent_item_pos) {
466 ret = check_extent_in_eb(&key, eb, fi,
467 *extent_item_pos,
468 &eie, ignore_offset);
469 if (ret < 0)
470 break;
471 }
472 if (ret > 0)
473 goto next;
474 ret = ulist_add_merge_ptr(parents, eb->start,
475 eie, (void **)&old, GFP_NOFS);
476 if (ret < 0)
477 break;
478 if (!ret && extent_item_pos) {
479 while (old->next)
480 old = old->next;
481 old->next = eie;
482 }
483 eie = NULL;
484 }
485next:
486 if (time_seq == SEQ_LAST)
487 ret = btrfs_next_item(root, path);
488 else
489 ret = btrfs_next_old_item(root, path, time_seq);
490 }
491
492 if (ret > 0)
493 ret = 0;
494 else if (ret < 0)
495 free_inode_elem_list(eie);
496 return ret;
497}
498
499/*
500 * resolve an indirect backref in the form (root_id, key, level)
501 * to a logical address
502 */
503static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
504 struct btrfs_path *path, u64 time_seq,
505 struct prelim_ref *ref, struct ulist *parents,
506 const u64 *extent_item_pos, u64 total_refs,
507 bool ignore_offset)
508{
509 struct btrfs_root *root;
510 struct btrfs_key root_key;
511 struct extent_buffer *eb;
512 int ret = 0;
513 int root_level;
514 int level = ref->level;
515 int index;
516
517 root_key.objectid = ref->root_id;
518 root_key.type = BTRFS_ROOT_ITEM_KEY;
519 root_key.offset = (u64)-1;
520
521 index = srcu_read_lock(&fs_info->subvol_srcu);
522
523 root = btrfs_get_fs_root(fs_info, &root_key, false);
524 if (IS_ERR(root)) {
525 srcu_read_unlock(&fs_info->subvol_srcu, index);
526 ret = PTR_ERR(root);
527 goto out;
528 }
529
530 if (btrfs_is_testing(fs_info)) {
531 srcu_read_unlock(&fs_info->subvol_srcu, index);
532 ret = -ENOENT;
533 goto out;
534 }
535
536 if (path->search_commit_root)
537 root_level = btrfs_header_level(root->commit_root);
538 else if (time_seq == SEQ_LAST)
539 root_level = btrfs_header_level(root->node);
540 else
541 root_level = btrfs_old_root_level(root, time_seq);
542
543 if (root_level + 1 == level) {
544 srcu_read_unlock(&fs_info->subvol_srcu, index);
545 goto out;
546 }
547
548 path->lowest_level = level;
549 if (time_seq == SEQ_LAST)
550 ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
551 0, 0);
552 else
553 ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
554 time_seq);
555
556 /* root node has been locked, we can release @subvol_srcu safely here */
557 srcu_read_unlock(&fs_info->subvol_srcu, index);
558
559 btrfs_debug(fs_info,
560 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
561 ref->root_id, level, ref->count, ret,
562 ref->key_for_search.objectid, ref->key_for_search.type,
563 ref->key_for_search.offset);
564 if (ret < 0)
565 goto out;
566
567 eb = path->nodes[level];
568 while (!eb) {
569 if (WARN_ON(!level)) {
570 ret = 1;
571 goto out;
572 }
573 level--;
574 eb = path->nodes[level];
575 }
576
577 ret = add_all_parents(root, path, parents, ref, level, time_seq,
578 extent_item_pos, total_refs, ignore_offset);
579out:
580 path->lowest_level = 0;
581 btrfs_release_path(path);
582 return ret;
583}
584
585static struct extent_inode_elem *
586unode_aux_to_inode_list(struct ulist_node *node)
587{
588 if (!node)
589 return NULL;
590 return (struct extent_inode_elem *)(uintptr_t)node->aux;
591}
592
593/*
594 * We maintain three separate rbtrees: one for direct refs, one for
595 * indirect refs which have a key, and one for indirect refs which do not
596 * have a key. Each tree does merge on insertion.
597 *
598 * Once all of the references are located, we iterate over the tree of
599 * indirect refs with missing keys. An appropriate key is located and
600 * the ref is moved onto the tree for indirect refs. After all missing
601 * keys are thus located, we iterate over the indirect ref tree, resolve
602 * each reference, and then insert the resolved reference onto the
603 * direct tree (merging there too).
604 *
605 * New backrefs (i.e., for parent nodes) are added to the appropriate
606 * rbtree as they are encountered. The new backrefs are subsequently
607 * resolved as above.
608 */
609static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
610 struct btrfs_path *path, u64 time_seq,
611 struct preftrees *preftrees,
612 const u64 *extent_item_pos, u64 total_refs,
613 struct share_check *sc, bool ignore_offset)
614{
615 int err;
616 int ret = 0;
617 struct ulist *parents;
618 struct ulist_node *node;
619 struct ulist_iterator uiter;
620 struct rb_node *rnode;
621
622 parents = ulist_alloc(GFP_NOFS);
623 if (!parents)
624 return -ENOMEM;
625
626 /*
627 * We could trade memory usage for performance here by iterating
628 * the tree, allocating new refs for each insertion, and then
629 * freeing the entire indirect tree when we're done. In some test
630 * cases, the tree can grow quite large (~200k objects).
631 */
632 while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
633 struct prelim_ref *ref;
634
635 ref = rb_entry(rnode, struct prelim_ref, rbnode);
636 if (WARN(ref->parent,
637 "BUG: direct ref found in indirect tree")) {
638 ret = -EINVAL;
639 goto out;
640 }
641
642 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
643 preftrees->indirect.count--;
644
645 if (ref->count == 0) {
646 free_pref(ref);
647 continue;
648 }
649
650 if (sc && sc->root_objectid &&
651 ref->root_id != sc->root_objectid) {
652 free_pref(ref);
653 ret = BACKREF_FOUND_SHARED;
654 goto out;
655 }
656 err = resolve_indirect_ref(fs_info, path, time_seq, ref,
657 parents, extent_item_pos,
658 total_refs, ignore_offset);
659 /*
660 * we can only tolerate ENOENT,otherwise,we should catch error
661 * and return directly.
662 */
663 if (err == -ENOENT) {
664 prelim_ref_insert(fs_info, &preftrees->direct, ref,
665 NULL);
666 continue;
667 } else if (err) {
668 free_pref(ref);
669 ret = err;
670 goto out;
671 }
672
673 /* we put the first parent into the ref at hand */
674 ULIST_ITER_INIT(&uiter);
675 node = ulist_next(parents, &uiter);
676 ref->parent = node ? node->val : 0;
677 ref->inode_list = unode_aux_to_inode_list(node);
678
679 /* Add a prelim_ref(s) for any other parent(s). */
680 while ((node = ulist_next(parents, &uiter))) {
681 struct prelim_ref *new_ref;
682
683 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
684 GFP_NOFS);
685 if (!new_ref) {
686 free_pref(ref);
687 ret = -ENOMEM;
688 goto out;
689 }
690 memcpy(new_ref, ref, sizeof(*ref));
691 new_ref->parent = node->val;
692 new_ref->inode_list = unode_aux_to_inode_list(node);
693 prelim_ref_insert(fs_info, &preftrees->direct,
694 new_ref, NULL);
695 }
696
697 /*
698 * Now it's a direct ref, put it in the direct tree. We must
699 * do this last because the ref could be merged/freed here.
700 */
701 prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
702
703 ulist_reinit(parents);
704 cond_resched();
705 }
706out:
707 ulist_free(parents);
708 return ret;
709}
710
711/*
712 * read tree blocks and add keys where required.
713 */
714static int add_missing_keys(struct btrfs_fs_info *fs_info,
715 struct preftrees *preftrees, bool lock)
716{
717 struct prelim_ref *ref;
718 struct extent_buffer *eb;
719 struct preftree *tree = &preftrees->indirect_missing_keys;
720 struct rb_node *node;
721
722 while ((node = rb_first_cached(&tree->root))) {
723 ref = rb_entry(node, struct prelim_ref, rbnode);
724 rb_erase_cached(node, &tree->root);
725
726 BUG_ON(ref->parent); /* should not be a direct ref */
727 BUG_ON(ref->key_for_search.type);
728 BUG_ON(!ref->wanted_disk_byte);
729
730 eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0,
731 ref->level - 1, NULL);
732 if (IS_ERR(eb)) {
733 free_pref(ref);
734 return PTR_ERR(eb);
735 } else if (!extent_buffer_uptodate(eb)) {
736 free_pref(ref);
737 free_extent_buffer(eb);
738 return -EIO;
739 }
740 if (lock)
741 btrfs_tree_read_lock(eb);
742 if (btrfs_header_level(eb) == 0)
743 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
744 else
745 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
746 if (lock)
747 btrfs_tree_read_unlock(eb);
748 free_extent_buffer(eb);
749 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
750 cond_resched();
751 }
752 return 0;
753}
754
755/*
756 * add all currently queued delayed refs from this head whose seq nr is
757 * smaller or equal that seq to the list
758 */
759static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
760 struct btrfs_delayed_ref_head *head, u64 seq,
761 struct preftrees *preftrees, u64 *total_refs,
762 struct share_check *sc)
763{
764 struct btrfs_delayed_ref_node *node;
765 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
766 struct btrfs_key key;
767 struct btrfs_key tmp_op_key;
768 struct rb_node *n;
769 int count;
770 int ret = 0;
771
772 if (extent_op && extent_op->update_key)
773 btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
774
775 spin_lock(&head->lock);
776 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
777 node = rb_entry(n, struct btrfs_delayed_ref_node,
778 ref_node);
779 if (node->seq > seq)
780 continue;
781
782 switch (node->action) {
783 case BTRFS_ADD_DELAYED_EXTENT:
784 case BTRFS_UPDATE_DELAYED_HEAD:
785 WARN_ON(1);
786 continue;
787 case BTRFS_ADD_DELAYED_REF:
788 count = node->ref_mod;
789 break;
790 case BTRFS_DROP_DELAYED_REF:
791 count = node->ref_mod * -1;
792 break;
793 default:
794 BUG();
795 }
796 *total_refs += count;
797 switch (node->type) {
798 case BTRFS_TREE_BLOCK_REF_KEY: {
799 /* NORMAL INDIRECT METADATA backref */
800 struct btrfs_delayed_tree_ref *ref;
801
802 ref = btrfs_delayed_node_to_tree_ref(node);
803 ret = add_indirect_ref(fs_info, preftrees, ref->root,
804 &tmp_op_key, ref->level + 1,
805 node->bytenr, count, sc,
806 GFP_ATOMIC);
807 break;
808 }
809 case BTRFS_SHARED_BLOCK_REF_KEY: {
810 /* SHARED DIRECT METADATA backref */
811 struct btrfs_delayed_tree_ref *ref;
812
813 ref = btrfs_delayed_node_to_tree_ref(node);
814
815 ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
816 ref->parent, node->bytenr, count,
817 sc, GFP_ATOMIC);
818 break;
819 }
820 case BTRFS_EXTENT_DATA_REF_KEY: {
821 /* NORMAL INDIRECT DATA backref */
822 struct btrfs_delayed_data_ref *ref;
823 ref = btrfs_delayed_node_to_data_ref(node);
824
825 key.objectid = ref->objectid;
826 key.type = BTRFS_EXTENT_DATA_KEY;
827 key.offset = ref->offset;
828
829 /*
830 * Found a inum that doesn't match our known inum, we
831 * know it's shared.
832 */
833 if (sc && sc->inum && ref->objectid != sc->inum) {
834 ret = BACKREF_FOUND_SHARED;
835 goto out;
836 }
837
838 ret = add_indirect_ref(fs_info, preftrees, ref->root,
839 &key, 0, node->bytenr, count, sc,
840 GFP_ATOMIC);
841 break;
842 }
843 case BTRFS_SHARED_DATA_REF_KEY: {
844 /* SHARED DIRECT FULL backref */
845 struct btrfs_delayed_data_ref *ref;
846
847 ref = btrfs_delayed_node_to_data_ref(node);
848
849 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
850 node->bytenr, count, sc,
851 GFP_ATOMIC);
852 break;
853 }
854 default:
855 WARN_ON(1);
856 }
857 /*
858 * We must ignore BACKREF_FOUND_SHARED until all delayed
859 * refs have been checked.
860 */
861 if (ret && (ret != BACKREF_FOUND_SHARED))
862 break;
863 }
864 if (!ret)
865 ret = extent_is_shared(sc);
866out:
867 spin_unlock(&head->lock);
868 return ret;
869}
870
871/*
872 * add all inline backrefs for bytenr to the list
873 *
874 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
875 */
876static int add_inline_refs(const struct btrfs_fs_info *fs_info,
877 struct btrfs_path *path, u64 bytenr,
878 int *info_level, struct preftrees *preftrees,
879 u64 *total_refs, struct share_check *sc)
880{
881 int ret = 0;
882 int slot;
883 struct extent_buffer *leaf;
884 struct btrfs_key key;
885 struct btrfs_key found_key;
886 unsigned long ptr;
887 unsigned long end;
888 struct btrfs_extent_item *ei;
889 u64 flags;
890 u64 item_size;
891
892 /*
893 * enumerate all inline refs
894 */
895 leaf = path->nodes[0];
896 slot = path->slots[0];
897
898 item_size = btrfs_item_size_nr(leaf, slot);
899 BUG_ON(item_size < sizeof(*ei));
900
901 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
902 flags = btrfs_extent_flags(leaf, ei);
903 *total_refs += btrfs_extent_refs(leaf, ei);
904 btrfs_item_key_to_cpu(leaf, &found_key, slot);
905
906 ptr = (unsigned long)(ei + 1);
907 end = (unsigned long)ei + item_size;
908
909 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
910 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
911 struct btrfs_tree_block_info *info;
912
913 info = (struct btrfs_tree_block_info *)ptr;
914 *info_level = btrfs_tree_block_level(leaf, info);
915 ptr += sizeof(struct btrfs_tree_block_info);
916 BUG_ON(ptr > end);
917 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
918 *info_level = found_key.offset;
919 } else {
920 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
921 }
922
923 while (ptr < end) {
924 struct btrfs_extent_inline_ref *iref;
925 u64 offset;
926 int type;
927
928 iref = (struct btrfs_extent_inline_ref *)ptr;
929 type = btrfs_get_extent_inline_ref_type(leaf, iref,
930 BTRFS_REF_TYPE_ANY);
931 if (type == BTRFS_REF_TYPE_INVALID)
932 return -EUCLEAN;
933
934 offset = btrfs_extent_inline_ref_offset(leaf, iref);
935
936 switch (type) {
937 case BTRFS_SHARED_BLOCK_REF_KEY:
938 ret = add_direct_ref(fs_info, preftrees,
939 *info_level + 1, offset,
940 bytenr, 1, NULL, GFP_NOFS);
941 break;
942 case BTRFS_SHARED_DATA_REF_KEY: {
943 struct btrfs_shared_data_ref *sdref;
944 int count;
945
946 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
947 count = btrfs_shared_data_ref_count(leaf, sdref);
948
949 ret = add_direct_ref(fs_info, preftrees, 0, offset,
950 bytenr, count, sc, GFP_NOFS);
951 break;
952 }
953 case BTRFS_TREE_BLOCK_REF_KEY:
954 ret = add_indirect_ref(fs_info, preftrees, offset,
955 NULL, *info_level + 1,
956 bytenr, 1, NULL, GFP_NOFS);
957 break;
958 case BTRFS_EXTENT_DATA_REF_KEY: {
959 struct btrfs_extent_data_ref *dref;
960 int count;
961 u64 root;
962
963 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
964 count = btrfs_extent_data_ref_count(leaf, dref);
965 key.objectid = btrfs_extent_data_ref_objectid(leaf,
966 dref);
967 key.type = BTRFS_EXTENT_DATA_KEY;
968 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
969
970 if (sc && sc->inum && key.objectid != sc->inum) {
971 ret = BACKREF_FOUND_SHARED;
972 break;
973 }
974
975 root = btrfs_extent_data_ref_root(leaf, dref);
976
977 ret = add_indirect_ref(fs_info, preftrees, root,
978 &key, 0, bytenr, count,
979 sc, GFP_NOFS);
980 break;
981 }
982 default:
983 WARN_ON(1);
984 }
985 if (ret)
986 return ret;
987 ptr += btrfs_extent_inline_ref_size(type);
988 }
989
990 return 0;
991}
992
993/*
994 * add all non-inline backrefs for bytenr to the list
995 *
996 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
997 */
998static int add_keyed_refs(struct btrfs_fs_info *fs_info,
999 struct btrfs_path *path, u64 bytenr,
1000 int info_level, struct preftrees *preftrees,
1001 struct share_check *sc)
1002{
1003 struct btrfs_root *extent_root = fs_info->extent_root;
1004 int ret;
1005 int slot;
1006 struct extent_buffer *leaf;
1007 struct btrfs_key key;
1008
1009 while (1) {
1010 ret = btrfs_next_item(extent_root, path);
1011 if (ret < 0)
1012 break;
1013 if (ret) {
1014 ret = 0;
1015 break;
1016 }
1017
1018 slot = path->slots[0];
1019 leaf = path->nodes[0];
1020 btrfs_item_key_to_cpu(leaf, &key, slot);
1021
1022 if (key.objectid != bytenr)
1023 break;
1024 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1025 continue;
1026 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1027 break;
1028
1029 switch (key.type) {
1030 case BTRFS_SHARED_BLOCK_REF_KEY:
1031 /* SHARED DIRECT METADATA backref */
1032 ret = add_direct_ref(fs_info, preftrees,
1033 info_level + 1, key.offset,
1034 bytenr, 1, NULL, GFP_NOFS);
1035 break;
1036 case BTRFS_SHARED_DATA_REF_KEY: {
1037 /* SHARED DIRECT FULL backref */
1038 struct btrfs_shared_data_ref *sdref;
1039 int count;
1040
1041 sdref = btrfs_item_ptr(leaf, slot,
1042 struct btrfs_shared_data_ref);
1043 count = btrfs_shared_data_ref_count(leaf, sdref);
1044 ret = add_direct_ref(fs_info, preftrees, 0,
1045 key.offset, bytenr, count,
1046 sc, GFP_NOFS);
1047 break;
1048 }
1049 case BTRFS_TREE_BLOCK_REF_KEY:
1050 /* NORMAL INDIRECT METADATA backref */
1051 ret = add_indirect_ref(fs_info, preftrees, key.offset,
1052 NULL, info_level + 1, bytenr,
1053 1, NULL, GFP_NOFS);
1054 break;
1055 case BTRFS_EXTENT_DATA_REF_KEY: {
1056 /* NORMAL INDIRECT DATA backref */
1057 struct btrfs_extent_data_ref *dref;
1058 int count;
1059 u64 root;
1060
1061 dref = btrfs_item_ptr(leaf, slot,
1062 struct btrfs_extent_data_ref);
1063 count = btrfs_extent_data_ref_count(leaf, dref);
1064 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1065 dref);
1066 key.type = BTRFS_EXTENT_DATA_KEY;
1067 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1068
1069 if (sc && sc->inum && key.objectid != sc->inum) {
1070 ret = BACKREF_FOUND_SHARED;
1071 break;
1072 }
1073
1074 root = btrfs_extent_data_ref_root(leaf, dref);
1075 ret = add_indirect_ref(fs_info, preftrees, root,
1076 &key, 0, bytenr, count,
1077 sc, GFP_NOFS);
1078 break;
1079 }
1080 default:
1081 WARN_ON(1);
1082 }
1083 if (ret)
1084 return ret;
1085
1086 }
1087
1088 return ret;
1089}
1090
1091/*
1092 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1093 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1094 * indirect refs to their parent bytenr.
1095 * When roots are found, they're added to the roots list
1096 *
1097 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
1098 * much like trans == NULL case, the difference only lies in it will not
1099 * commit root.
1100 * The special case is for qgroup to search roots in commit_transaction().
1101 *
1102 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1103 * shared extent is detected.
1104 *
1105 * Otherwise this returns 0 for success and <0 for an error.
1106 *
1107 * If ignore_offset is set to false, only extent refs whose offsets match
1108 * extent_item_pos are returned. If true, every extent ref is returned
1109 * and extent_item_pos is ignored.
1110 *
1111 * FIXME some caching might speed things up
1112 */
1113static int find_parent_nodes(struct btrfs_trans_handle *trans,
1114 struct btrfs_fs_info *fs_info, u64 bytenr,
1115 u64 time_seq, struct ulist *refs,
1116 struct ulist *roots, const u64 *extent_item_pos,
1117 struct share_check *sc, bool ignore_offset)
1118{
1119 struct btrfs_key key;
1120 struct btrfs_path *path;
1121 struct btrfs_delayed_ref_root *delayed_refs = NULL;
1122 struct btrfs_delayed_ref_head *head;
1123 int info_level = 0;
1124 int ret;
1125 struct prelim_ref *ref;
1126 struct rb_node *node;
1127 struct extent_inode_elem *eie = NULL;
1128 /* total of both direct AND indirect refs! */
1129 u64 total_refs = 0;
1130 struct preftrees preftrees = {
1131 .direct = PREFTREE_INIT,
1132 .indirect = PREFTREE_INIT,
1133 .indirect_missing_keys = PREFTREE_INIT
1134 };
1135
1136 key.objectid = bytenr;
1137 key.offset = (u64)-1;
1138 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1139 key.type = BTRFS_METADATA_ITEM_KEY;
1140 else
1141 key.type = BTRFS_EXTENT_ITEM_KEY;
1142
1143 path = btrfs_alloc_path();
1144 if (!path)
1145 return -ENOMEM;
1146 if (!trans) {
1147 path->search_commit_root = 1;
1148 path->skip_locking = 1;
1149 }
1150
1151 if (time_seq == SEQ_LAST)
1152 path->skip_locking = 1;
1153
1154 /*
1155 * grab both a lock on the path and a lock on the delayed ref head.
1156 * We need both to get a consistent picture of how the refs look
1157 * at a specified point in time
1158 */
1159again:
1160 head = NULL;
1161
1162 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1163 if (ret < 0)
1164 goto out;
1165 BUG_ON(ret == 0);
1166
1167#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1168 if (trans && likely(trans->type != __TRANS_DUMMY) &&
1169 time_seq != SEQ_LAST) {
1170#else
1171 if (trans && time_seq != SEQ_LAST) {
1172#endif
1173 /*
1174 * look if there are updates for this ref queued and lock the
1175 * head
1176 */
1177 delayed_refs = &trans->transaction->delayed_refs;
1178 spin_lock(&delayed_refs->lock);
1179 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1180 if (head) {
1181 if (!mutex_trylock(&head->mutex)) {
1182 refcount_inc(&head->refs);
1183 spin_unlock(&delayed_refs->lock);
1184
1185 btrfs_release_path(path);
1186
1187 /*
1188 * Mutex was contended, block until it's
1189 * released and try again
1190 */
1191 mutex_lock(&head->mutex);
1192 mutex_unlock(&head->mutex);
1193 btrfs_put_delayed_ref_head(head);
1194 goto again;
1195 }
1196 spin_unlock(&delayed_refs->lock);
1197 ret = add_delayed_refs(fs_info, head, time_seq,
1198 &preftrees, &total_refs, sc);
1199 mutex_unlock(&head->mutex);
1200 if (ret)
1201 goto out;
1202 } else {
1203 spin_unlock(&delayed_refs->lock);
1204 }
1205 }
1206
1207 if (path->slots[0]) {
1208 struct extent_buffer *leaf;
1209 int slot;
1210
1211 path->slots[0]--;
1212 leaf = path->nodes[0];
1213 slot = path->slots[0];
1214 btrfs_item_key_to_cpu(leaf, &key, slot);
1215 if (key.objectid == bytenr &&
1216 (key.type == BTRFS_EXTENT_ITEM_KEY ||
1217 key.type == BTRFS_METADATA_ITEM_KEY)) {
1218 ret = add_inline_refs(fs_info, path, bytenr,
1219 &info_level, &preftrees,
1220 &total_refs, sc);
1221 if (ret)
1222 goto out;
1223 ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1224 &preftrees, sc);
1225 if (ret)
1226 goto out;
1227 }
1228 }
1229
1230 btrfs_release_path(path);
1231
1232 ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
1233 if (ret)
1234 goto out;
1235
1236 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1237
1238 ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1239 extent_item_pos, total_refs, sc, ignore_offset);
1240 if (ret)
1241 goto out;
1242
1243 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1244
1245 /*
1246 * This walks the tree of merged and resolved refs. Tree blocks are
1247 * read in as needed. Unique entries are added to the ulist, and
1248 * the list of found roots is updated.
1249 *
1250 * We release the entire tree in one go before returning.
1251 */
1252 node = rb_first_cached(&preftrees.direct.root);
1253 while (node) {
1254 ref = rb_entry(node, struct prelim_ref, rbnode);
1255 node = rb_next(&ref->rbnode);
1256 /*
1257 * ref->count < 0 can happen here if there are delayed
1258 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1259 * prelim_ref_insert() relies on this when merging
1260 * identical refs to keep the overall count correct.
1261 * prelim_ref_insert() will merge only those refs
1262 * which compare identically. Any refs having
1263 * e.g. different offsets would not be merged,
1264 * and would retain their original ref->count < 0.
1265 */
1266 if (roots && ref->count && ref->root_id && ref->parent == 0) {
1267 if (sc && sc->root_objectid &&
1268 ref->root_id != sc->root_objectid) {
1269 ret = BACKREF_FOUND_SHARED;
1270 goto out;
1271 }
1272
1273 /* no parent == root of tree */
1274 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1275 if (ret < 0)
1276 goto out;
1277 }
1278 if (ref->count && ref->parent) {
1279 if (extent_item_pos && !ref->inode_list &&
1280 ref->level == 0) {
1281 struct extent_buffer *eb;
1282
1283 eb = read_tree_block(fs_info, ref->parent, 0,
1284 ref->level, NULL);
1285 if (IS_ERR(eb)) {
1286 ret = PTR_ERR(eb);
1287 goto out;
1288 } else if (!extent_buffer_uptodate(eb)) {
1289 free_extent_buffer(eb);
1290 ret = -EIO;
1291 goto out;
1292 }
1293
1294 if (!path->skip_locking) {
1295 btrfs_tree_read_lock(eb);
1296 btrfs_set_lock_blocking_read(eb);
1297 }
1298 ret = find_extent_in_eb(eb, bytenr,
1299 *extent_item_pos, &eie, ignore_offset);
1300 if (!path->skip_locking)
1301 btrfs_tree_read_unlock_blocking(eb);
1302 free_extent_buffer(eb);
1303 if (ret < 0)
1304 goto out;
1305 ref->inode_list = eie;
1306 }
1307 ret = ulist_add_merge_ptr(refs, ref->parent,
1308 ref->inode_list,
1309 (void **)&eie, GFP_NOFS);
1310 if (ret < 0)
1311 goto out;
1312 if (!ret && extent_item_pos) {
1313 /*
1314 * we've recorded that parent, so we must extend
1315 * its inode list here
1316 */
1317 BUG_ON(!eie);
1318 while (eie->next)
1319 eie = eie->next;
1320 eie->next = ref->inode_list;
1321 }
1322 eie = NULL;
1323 }
1324 cond_resched();
1325 }
1326
1327out:
1328 btrfs_free_path(path);
1329
1330 prelim_release(&preftrees.direct);
1331 prelim_release(&preftrees.indirect);
1332 prelim_release(&preftrees.indirect_missing_keys);
1333
1334 if (ret < 0)
1335 free_inode_elem_list(eie);
1336 return ret;
1337}
1338
1339static void free_leaf_list(struct ulist *blocks)
1340{
1341 struct ulist_node *node = NULL;
1342 struct extent_inode_elem *eie;
1343 struct ulist_iterator uiter;
1344
1345 ULIST_ITER_INIT(&uiter);
1346 while ((node = ulist_next(blocks, &uiter))) {
1347 if (!node->aux)
1348 continue;
1349 eie = unode_aux_to_inode_list(node);
1350 free_inode_elem_list(eie);
1351 node->aux = 0;
1352 }
1353
1354 ulist_free(blocks);
1355}
1356
1357/*
1358 * Finds all leafs with a reference to the specified combination of bytenr and
1359 * offset. key_list_head will point to a list of corresponding keys (caller must
1360 * free each list element). The leafs will be stored in the leafs ulist, which
1361 * must be freed with ulist_free.
1362 *
1363 * returns 0 on success, <0 on error
1364 */
1365static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1366 struct btrfs_fs_info *fs_info, u64 bytenr,
1367 u64 time_seq, struct ulist **leafs,
1368 const u64 *extent_item_pos, bool ignore_offset)
1369{
1370 int ret;
1371
1372 *leafs = ulist_alloc(GFP_NOFS);
1373 if (!*leafs)
1374 return -ENOMEM;
1375
1376 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1377 *leafs, NULL, extent_item_pos, NULL, ignore_offset);
1378 if (ret < 0 && ret != -ENOENT) {
1379 free_leaf_list(*leafs);
1380 return ret;
1381 }
1382
1383 return 0;
1384}
1385
1386/*
1387 * walk all backrefs for a given extent to find all roots that reference this
1388 * extent. Walking a backref means finding all extents that reference this
1389 * extent and in turn walk the backrefs of those, too. Naturally this is a
1390 * recursive process, but here it is implemented in an iterative fashion: We
1391 * find all referencing extents for the extent in question and put them on a
1392 * list. In turn, we find all referencing extents for those, further appending
1393 * to the list. The way we iterate the list allows adding more elements after
1394 * the current while iterating. The process stops when we reach the end of the
1395 * list. Found roots are added to the roots list.
1396 *
1397 * returns 0 on success, < 0 on error.
1398 */
1399static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1400 struct btrfs_fs_info *fs_info, u64 bytenr,
1401 u64 time_seq, struct ulist **roots,
1402 bool ignore_offset)
1403{
1404 struct ulist *tmp;
1405 struct ulist_node *node = NULL;
1406 struct ulist_iterator uiter;
1407 int ret;
1408
1409 tmp = ulist_alloc(GFP_NOFS);
1410 if (!tmp)
1411 return -ENOMEM;
1412 *roots = ulist_alloc(GFP_NOFS);
1413 if (!*roots) {
1414 ulist_free(tmp);
1415 return -ENOMEM;
1416 }
1417
1418 ULIST_ITER_INIT(&uiter);
1419 while (1) {
1420 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1421 tmp, *roots, NULL, NULL, ignore_offset);
1422 if (ret < 0 && ret != -ENOENT) {
1423 ulist_free(tmp);
1424 ulist_free(*roots);
1425 return ret;
1426 }
1427 node = ulist_next(tmp, &uiter);
1428 if (!node)
1429 break;
1430 bytenr = node->val;
1431 cond_resched();
1432 }
1433
1434 ulist_free(tmp);
1435 return 0;
1436}
1437
1438int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1439 struct btrfs_fs_info *fs_info, u64 bytenr,
1440 u64 time_seq, struct ulist **roots,
1441 bool ignore_offset)
1442{
1443 int ret;
1444
1445 if (!trans)
1446 down_read(&fs_info->commit_root_sem);
1447 ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1448 time_seq, roots, ignore_offset);
1449 if (!trans)
1450 up_read(&fs_info->commit_root_sem);
1451 return ret;
1452}
1453
1454/**
1455 * btrfs_check_shared - tell us whether an extent is shared
1456 *
1457 * btrfs_check_shared uses the backref walking code but will short
1458 * circuit as soon as it finds a root or inode that doesn't match the
1459 * one passed in. This provides a significant performance benefit for
1460 * callers (such as fiemap) which want to know whether the extent is
1461 * shared but do not need a ref count.
1462 *
1463 * This attempts to attach to the running transaction in order to account for
1464 * delayed refs, but continues on even when no running transaction exists.
1465 *
1466 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1467 */
1468int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr,
1469 struct ulist *roots, struct ulist *tmp)
1470{
1471 struct btrfs_fs_info *fs_info = root->fs_info;
1472 struct btrfs_trans_handle *trans;
1473 struct ulist_iterator uiter;
1474 struct ulist_node *node;
1475 struct seq_list elem = SEQ_LIST_INIT(elem);
1476 int ret = 0;
1477 struct share_check shared = {
1478 .root_objectid = root->root_key.objectid,
1479 .inum = inum,
1480 .share_count = 0,
1481 };
1482
1483 ulist_init(roots);
1484 ulist_init(tmp);
1485
1486 trans = btrfs_join_transaction_nostart(root);
1487 if (IS_ERR(trans)) {
1488 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1489 ret = PTR_ERR(trans);
1490 goto out;
1491 }
1492 trans = NULL;
1493 down_read(&fs_info->commit_root_sem);
1494 } else {
1495 btrfs_get_tree_mod_seq(fs_info, &elem);
1496 }
1497
1498 ULIST_ITER_INIT(&uiter);
1499 while (1) {
1500 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1501 roots, NULL, &shared, false);
1502 if (ret == BACKREF_FOUND_SHARED) {
1503 /* this is the only condition under which we return 1 */
1504 ret = 1;
1505 break;
1506 }
1507 if (ret < 0 && ret != -ENOENT)
1508 break;
1509 ret = 0;
1510 node = ulist_next(tmp, &uiter);
1511 if (!node)
1512 break;
1513 bytenr = node->val;
1514 shared.share_count = 0;
1515 cond_resched();
1516 }
1517
1518 if (trans) {
1519 btrfs_put_tree_mod_seq(fs_info, &elem);
1520 btrfs_end_transaction(trans);
1521 } else {
1522 up_read(&fs_info->commit_root_sem);
1523 }
1524out:
1525 ulist_release(roots);
1526 ulist_release(tmp);
1527 return ret;
1528}
1529
1530int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1531 u64 start_off, struct btrfs_path *path,
1532 struct btrfs_inode_extref **ret_extref,
1533 u64 *found_off)
1534{
1535 int ret, slot;
1536 struct btrfs_key key;
1537 struct btrfs_key found_key;
1538 struct btrfs_inode_extref *extref;
1539 const struct extent_buffer *leaf;
1540 unsigned long ptr;
1541
1542 key.objectid = inode_objectid;
1543 key.type = BTRFS_INODE_EXTREF_KEY;
1544 key.offset = start_off;
1545
1546 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1547 if (ret < 0)
1548 return ret;
1549
1550 while (1) {
1551 leaf = path->nodes[0];
1552 slot = path->slots[0];
1553 if (slot >= btrfs_header_nritems(leaf)) {
1554 /*
1555 * If the item at offset is not found,
1556 * btrfs_search_slot will point us to the slot
1557 * where it should be inserted. In our case
1558 * that will be the slot directly before the
1559 * next INODE_REF_KEY_V2 item. In the case
1560 * that we're pointing to the last slot in a
1561 * leaf, we must move one leaf over.
1562 */
1563 ret = btrfs_next_leaf(root, path);
1564 if (ret) {
1565 if (ret >= 1)
1566 ret = -ENOENT;
1567 break;
1568 }
1569 continue;
1570 }
1571
1572 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1573
1574 /*
1575 * Check that we're still looking at an extended ref key for
1576 * this particular objectid. If we have different
1577 * objectid or type then there are no more to be found
1578 * in the tree and we can exit.
1579 */
1580 ret = -ENOENT;
1581 if (found_key.objectid != inode_objectid)
1582 break;
1583 if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1584 break;
1585
1586 ret = 0;
1587 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1588 extref = (struct btrfs_inode_extref *)ptr;
1589 *ret_extref = extref;
1590 if (found_off)
1591 *found_off = found_key.offset;
1592 break;
1593 }
1594
1595 return ret;
1596}
1597
1598/*
1599 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1600 * Elements of the path are separated by '/' and the path is guaranteed to be
1601 * 0-terminated. the path is only given within the current file system.
1602 * Therefore, it never starts with a '/'. the caller is responsible to provide
1603 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1604 * the start point of the resulting string is returned. this pointer is within
1605 * dest, normally.
1606 * in case the path buffer would overflow, the pointer is decremented further
1607 * as if output was written to the buffer, though no more output is actually
1608 * generated. that way, the caller can determine how much space would be
1609 * required for the path to fit into the buffer. in that case, the returned
1610 * value will be smaller than dest. callers must check this!
1611 */
1612char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1613 u32 name_len, unsigned long name_off,
1614 struct extent_buffer *eb_in, u64 parent,
1615 char *dest, u32 size)
1616{
1617 int slot;
1618 u64 next_inum;
1619 int ret;
1620 s64 bytes_left = ((s64)size) - 1;
1621 struct extent_buffer *eb = eb_in;
1622 struct btrfs_key found_key;
1623 int leave_spinning = path->leave_spinning;
1624 struct btrfs_inode_ref *iref;
1625
1626 if (bytes_left >= 0)
1627 dest[bytes_left] = '\0';
1628
1629 path->leave_spinning = 1;
1630 while (1) {
1631 bytes_left -= name_len;
1632 if (bytes_left >= 0)
1633 read_extent_buffer(eb, dest + bytes_left,
1634 name_off, name_len);
1635 if (eb != eb_in) {
1636 if (!path->skip_locking)
1637 btrfs_tree_read_unlock_blocking(eb);
1638 free_extent_buffer(eb);
1639 }
1640 ret = btrfs_find_item(fs_root, path, parent, 0,
1641 BTRFS_INODE_REF_KEY, &found_key);
1642 if (ret > 0)
1643 ret = -ENOENT;
1644 if (ret)
1645 break;
1646
1647 next_inum = found_key.offset;
1648
1649 /* regular exit ahead */
1650 if (parent == next_inum)
1651 break;
1652
1653 slot = path->slots[0];
1654 eb = path->nodes[0];
1655 /* make sure we can use eb after releasing the path */
1656 if (eb != eb_in) {
1657 if (!path->skip_locking)
1658 btrfs_set_lock_blocking_read(eb);
1659 path->nodes[0] = NULL;
1660 path->locks[0] = 0;
1661 }
1662 btrfs_release_path(path);
1663 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1664
1665 name_len = btrfs_inode_ref_name_len(eb, iref);
1666 name_off = (unsigned long)(iref + 1);
1667
1668 parent = next_inum;
1669 --bytes_left;
1670 if (bytes_left >= 0)
1671 dest[bytes_left] = '/';
1672 }
1673
1674 btrfs_release_path(path);
1675 path->leave_spinning = leave_spinning;
1676
1677 if (ret)
1678 return ERR_PTR(ret);
1679
1680 return dest + bytes_left;
1681}
1682
1683/*
1684 * this makes the path point to (logical EXTENT_ITEM *)
1685 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1686 * tree blocks and <0 on error.
1687 */
1688int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1689 struct btrfs_path *path, struct btrfs_key *found_key,
1690 u64 *flags_ret)
1691{
1692 int ret;
1693 u64 flags;
1694 u64 size = 0;
1695 u32 item_size;
1696 const struct extent_buffer *eb;
1697 struct btrfs_extent_item *ei;
1698 struct btrfs_key key;
1699
1700 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1701 key.type = BTRFS_METADATA_ITEM_KEY;
1702 else
1703 key.type = BTRFS_EXTENT_ITEM_KEY;
1704 key.objectid = logical;
1705 key.offset = (u64)-1;
1706
1707 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1708 if (ret < 0)
1709 return ret;
1710
1711 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1712 if (ret) {
1713 if (ret > 0)
1714 ret = -ENOENT;
1715 return ret;
1716 }
1717 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1718 if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1719 size = fs_info->nodesize;
1720 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1721 size = found_key->offset;
1722
1723 if (found_key->objectid > logical ||
1724 found_key->objectid + size <= logical) {
1725 btrfs_debug(fs_info,
1726 "logical %llu is not within any extent", logical);
1727 return -ENOENT;
1728 }
1729
1730 eb = path->nodes[0];
1731 item_size = btrfs_item_size_nr(eb, path->slots[0]);
1732 BUG_ON(item_size < sizeof(*ei));
1733
1734 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1735 flags = btrfs_extent_flags(eb, ei);
1736
1737 btrfs_debug(fs_info,
1738 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1739 logical, logical - found_key->objectid, found_key->objectid,
1740 found_key->offset, flags, item_size);
1741
1742 WARN_ON(!flags_ret);
1743 if (flags_ret) {
1744 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1745 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1746 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1747 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1748 else
1749 BUG();
1750 return 0;
1751 }
1752
1753 return -EIO;
1754}
1755
1756/*
1757 * helper function to iterate extent inline refs. ptr must point to a 0 value
1758 * for the first call and may be modified. it is used to track state.
1759 * if more refs exist, 0 is returned and the next call to
1760 * get_extent_inline_ref must pass the modified ptr parameter to get the
1761 * next ref. after the last ref was processed, 1 is returned.
1762 * returns <0 on error
1763 */
1764static int get_extent_inline_ref(unsigned long *ptr,
1765 const struct extent_buffer *eb,
1766 const struct btrfs_key *key,
1767 const struct btrfs_extent_item *ei,
1768 u32 item_size,
1769 struct btrfs_extent_inline_ref **out_eiref,
1770 int *out_type)
1771{
1772 unsigned long end;
1773 u64 flags;
1774 struct btrfs_tree_block_info *info;
1775
1776 if (!*ptr) {
1777 /* first call */
1778 flags = btrfs_extent_flags(eb, ei);
1779 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1780 if (key->type == BTRFS_METADATA_ITEM_KEY) {
1781 /* a skinny metadata extent */
1782 *out_eiref =
1783 (struct btrfs_extent_inline_ref *)(ei + 1);
1784 } else {
1785 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1786 info = (struct btrfs_tree_block_info *)(ei + 1);
1787 *out_eiref =
1788 (struct btrfs_extent_inline_ref *)(info + 1);
1789 }
1790 } else {
1791 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1792 }
1793 *ptr = (unsigned long)*out_eiref;
1794 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1795 return -ENOENT;
1796 }
1797
1798 end = (unsigned long)ei + item_size;
1799 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1800 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1801 BTRFS_REF_TYPE_ANY);
1802 if (*out_type == BTRFS_REF_TYPE_INVALID)
1803 return -EUCLEAN;
1804
1805 *ptr += btrfs_extent_inline_ref_size(*out_type);
1806 WARN_ON(*ptr > end);
1807 if (*ptr == end)
1808 return 1; /* last */
1809
1810 return 0;
1811}
1812
1813/*
1814 * reads the tree block backref for an extent. tree level and root are returned
1815 * through out_level and out_root. ptr must point to a 0 value for the first
1816 * call and may be modified (see get_extent_inline_ref comment).
1817 * returns 0 if data was provided, 1 if there was no more data to provide or
1818 * <0 on error.
1819 */
1820int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1821 struct btrfs_key *key, struct btrfs_extent_item *ei,
1822 u32 item_size, u64 *out_root, u8 *out_level)
1823{
1824 int ret;
1825 int type;
1826 struct btrfs_extent_inline_ref *eiref;
1827
1828 if (*ptr == (unsigned long)-1)
1829 return 1;
1830
1831 while (1) {
1832 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1833 &eiref, &type);
1834 if (ret < 0)
1835 return ret;
1836
1837 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1838 type == BTRFS_SHARED_BLOCK_REF_KEY)
1839 break;
1840
1841 if (ret == 1)
1842 return 1;
1843 }
1844
1845 /* we can treat both ref types equally here */
1846 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1847
1848 if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1849 struct btrfs_tree_block_info *info;
1850
1851 info = (struct btrfs_tree_block_info *)(ei + 1);
1852 *out_level = btrfs_tree_block_level(eb, info);
1853 } else {
1854 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1855 *out_level = (u8)key->offset;
1856 }
1857
1858 if (ret == 1)
1859 *ptr = (unsigned long)-1;
1860
1861 return 0;
1862}
1863
1864static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1865 struct extent_inode_elem *inode_list,
1866 u64 root, u64 extent_item_objectid,
1867 iterate_extent_inodes_t *iterate, void *ctx)
1868{
1869 struct extent_inode_elem *eie;
1870 int ret = 0;
1871
1872 for (eie = inode_list; eie; eie = eie->next) {
1873 btrfs_debug(fs_info,
1874 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1875 extent_item_objectid, eie->inum,
1876 eie->offset, root);
1877 ret = iterate(eie->inum, eie->offset, root, ctx);
1878 if (ret) {
1879 btrfs_debug(fs_info,
1880 "stopping iteration for %llu due to ret=%d",
1881 extent_item_objectid, ret);
1882 break;
1883 }
1884 }
1885
1886 return ret;
1887}
1888
1889/*
1890 * calls iterate() for every inode that references the extent identified by
1891 * the given parameters.
1892 * when the iterator function returns a non-zero value, iteration stops.
1893 */
1894int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1895 u64 extent_item_objectid, u64 extent_item_pos,
1896 int search_commit_root,
1897 iterate_extent_inodes_t *iterate, void *ctx,
1898 bool ignore_offset)
1899{
1900 int ret;
1901 struct btrfs_trans_handle *trans = NULL;
1902 struct ulist *refs = NULL;
1903 struct ulist *roots = NULL;
1904 struct ulist_node *ref_node = NULL;
1905 struct ulist_node *root_node = NULL;
1906 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
1907 struct ulist_iterator ref_uiter;
1908 struct ulist_iterator root_uiter;
1909
1910 btrfs_debug(fs_info, "resolving all inodes for extent %llu",
1911 extent_item_objectid);
1912
1913 if (!search_commit_root) {
1914 trans = btrfs_attach_transaction(fs_info->extent_root);
1915 if (IS_ERR(trans)) {
1916 if (PTR_ERR(trans) != -ENOENT &&
1917 PTR_ERR(trans) != -EROFS)
1918 return PTR_ERR(trans);
1919 trans = NULL;
1920 }
1921 }
1922
1923 if (trans)
1924 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1925 else
1926 down_read(&fs_info->commit_root_sem);
1927
1928 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1929 tree_mod_seq_elem.seq, &refs,
1930 &extent_item_pos, ignore_offset);
1931 if (ret)
1932 goto out;
1933
1934 ULIST_ITER_INIT(&ref_uiter);
1935 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1936 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
1937 tree_mod_seq_elem.seq, &roots,
1938 ignore_offset);
1939 if (ret)
1940 break;
1941 ULIST_ITER_INIT(&root_uiter);
1942 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1943 btrfs_debug(fs_info,
1944 "root %llu references leaf %llu, data list %#llx",
1945 root_node->val, ref_node->val,
1946 ref_node->aux);
1947 ret = iterate_leaf_refs(fs_info,
1948 (struct extent_inode_elem *)
1949 (uintptr_t)ref_node->aux,
1950 root_node->val,
1951 extent_item_objectid,
1952 iterate, ctx);
1953 }
1954 ulist_free(roots);
1955 }
1956
1957 free_leaf_list(refs);
1958out:
1959 if (trans) {
1960 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1961 btrfs_end_transaction(trans);
1962 } else {
1963 up_read(&fs_info->commit_root_sem);
1964 }
1965
1966 return ret;
1967}
1968
1969int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1970 struct btrfs_path *path,
1971 iterate_extent_inodes_t *iterate, void *ctx,
1972 bool ignore_offset)
1973{
1974 int ret;
1975 u64 extent_item_pos;
1976 u64 flags = 0;
1977 struct btrfs_key found_key;
1978 int search_commit_root = path->search_commit_root;
1979
1980 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1981 btrfs_release_path(path);
1982 if (ret < 0)
1983 return ret;
1984 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1985 return -EINVAL;
1986
1987 extent_item_pos = logical - found_key.objectid;
1988 ret = iterate_extent_inodes(fs_info, found_key.objectid,
1989 extent_item_pos, search_commit_root,
1990 iterate, ctx, ignore_offset);
1991
1992 return ret;
1993}
1994
1995typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1996 struct extent_buffer *eb, void *ctx);
1997
1998static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1999 struct btrfs_path *path,
2000 iterate_irefs_t *iterate, void *ctx)
2001{
2002 int ret = 0;
2003 int slot;
2004 u32 cur;
2005 u32 len;
2006 u32 name_len;
2007 u64 parent = 0;
2008 int found = 0;
2009 struct extent_buffer *eb;
2010 struct btrfs_item *item;
2011 struct btrfs_inode_ref *iref;
2012 struct btrfs_key found_key;
2013
2014 while (!ret) {
2015 ret = btrfs_find_item(fs_root, path, inum,
2016 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2017 &found_key);
2018
2019 if (ret < 0)
2020 break;
2021 if (ret) {
2022 ret = found ? 0 : -ENOENT;
2023 break;
2024 }
2025 ++found;
2026
2027 parent = found_key.offset;
2028 slot = path->slots[0];
2029 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2030 if (!eb) {
2031 ret = -ENOMEM;
2032 break;
2033 }
2034 btrfs_release_path(path);
2035
2036 item = btrfs_item_nr(slot);
2037 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2038
2039 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2040 name_len = btrfs_inode_ref_name_len(eb, iref);
2041 /* path must be released before calling iterate()! */
2042 btrfs_debug(fs_root->fs_info,
2043 "following ref at offset %u for inode %llu in tree %llu",
2044 cur, found_key.objectid,
2045 fs_root->root_key.objectid);
2046 ret = iterate(parent, name_len,
2047 (unsigned long)(iref + 1), eb, ctx);
2048 if (ret)
2049 break;
2050 len = sizeof(*iref) + name_len;
2051 iref = (struct btrfs_inode_ref *)((char *)iref + len);
2052 }
2053 free_extent_buffer(eb);
2054 }
2055
2056 btrfs_release_path(path);
2057
2058 return ret;
2059}
2060
2061static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2062 struct btrfs_path *path,
2063 iterate_irefs_t *iterate, void *ctx)
2064{
2065 int ret;
2066 int slot;
2067 u64 offset = 0;
2068 u64 parent;
2069 int found = 0;
2070 struct extent_buffer *eb;
2071 struct btrfs_inode_extref *extref;
2072 u32 item_size;
2073 u32 cur_offset;
2074 unsigned long ptr;
2075
2076 while (1) {
2077 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2078 &offset);
2079 if (ret < 0)
2080 break;
2081 if (ret) {
2082 ret = found ? 0 : -ENOENT;
2083 break;
2084 }
2085 ++found;
2086
2087 slot = path->slots[0];
2088 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2089 if (!eb) {
2090 ret = -ENOMEM;
2091 break;
2092 }
2093 btrfs_release_path(path);
2094
2095 item_size = btrfs_item_size_nr(eb, slot);
2096 ptr = btrfs_item_ptr_offset(eb, slot);
2097 cur_offset = 0;
2098
2099 while (cur_offset < item_size) {
2100 u32 name_len;
2101
2102 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2103 parent = btrfs_inode_extref_parent(eb, extref);
2104 name_len = btrfs_inode_extref_name_len(eb, extref);
2105 ret = iterate(parent, name_len,
2106 (unsigned long)&extref->name, eb, ctx);
2107 if (ret)
2108 break;
2109
2110 cur_offset += btrfs_inode_extref_name_len(eb, extref);
2111 cur_offset += sizeof(*extref);
2112 }
2113 free_extent_buffer(eb);
2114
2115 offset++;
2116 }
2117
2118 btrfs_release_path(path);
2119
2120 return ret;
2121}
2122
2123static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2124 struct btrfs_path *path, iterate_irefs_t *iterate,
2125 void *ctx)
2126{
2127 int ret;
2128 int found_refs = 0;
2129
2130 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2131 if (!ret)
2132 ++found_refs;
2133 else if (ret != -ENOENT)
2134 return ret;
2135
2136 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2137 if (ret == -ENOENT && found_refs)
2138 return 0;
2139
2140 return ret;
2141}
2142
2143/*
2144 * returns 0 if the path could be dumped (probably truncated)
2145 * returns <0 in case of an error
2146 */
2147static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2148 struct extent_buffer *eb, void *ctx)
2149{
2150 struct inode_fs_paths *ipath = ctx;
2151 char *fspath;
2152 char *fspath_min;
2153 int i = ipath->fspath->elem_cnt;
2154 const int s_ptr = sizeof(char *);
2155 u32 bytes_left;
2156
2157 bytes_left = ipath->fspath->bytes_left > s_ptr ?
2158 ipath->fspath->bytes_left - s_ptr : 0;
2159
2160 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2161 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2162 name_off, eb, inum, fspath_min, bytes_left);
2163 if (IS_ERR(fspath))
2164 return PTR_ERR(fspath);
2165
2166 if (fspath > fspath_min) {
2167 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2168 ++ipath->fspath->elem_cnt;
2169 ipath->fspath->bytes_left = fspath - fspath_min;
2170 } else {
2171 ++ipath->fspath->elem_missed;
2172 ipath->fspath->bytes_missing += fspath_min - fspath;
2173 ipath->fspath->bytes_left = 0;
2174 }
2175
2176 return 0;
2177}
2178
2179/*
2180 * this dumps all file system paths to the inode into the ipath struct, provided
2181 * is has been created large enough. each path is zero-terminated and accessed
2182 * from ipath->fspath->val[i].
2183 * when it returns, there are ipath->fspath->elem_cnt number of paths available
2184 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2185 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2186 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2187 * have been needed to return all paths.
2188 */
2189int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2190{
2191 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2192 inode_to_path, ipath);
2193}
2194
2195struct btrfs_data_container *init_data_container(u32 total_bytes)
2196{
2197 struct btrfs_data_container *data;
2198 size_t alloc_bytes;
2199
2200 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2201 data = kvmalloc(alloc_bytes, GFP_KERNEL);
2202 if (!data)
2203 return ERR_PTR(-ENOMEM);
2204
2205 if (total_bytes >= sizeof(*data)) {
2206 data->bytes_left = total_bytes - sizeof(*data);
2207 data->bytes_missing = 0;
2208 } else {
2209 data->bytes_missing = sizeof(*data) - total_bytes;
2210 data->bytes_left = 0;
2211 }
2212
2213 data->elem_cnt = 0;
2214 data->elem_missed = 0;
2215
2216 return data;
2217}
2218
2219/*
2220 * allocates space to return multiple file system paths for an inode.
2221 * total_bytes to allocate are passed, note that space usable for actual path
2222 * information will be total_bytes - sizeof(struct inode_fs_paths).
2223 * the returned pointer must be freed with free_ipath() in the end.
2224 */
2225struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2226 struct btrfs_path *path)
2227{
2228 struct inode_fs_paths *ifp;
2229 struct btrfs_data_container *fspath;
2230
2231 fspath = init_data_container(total_bytes);
2232 if (IS_ERR(fspath))
2233 return ERR_CAST(fspath);
2234
2235 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2236 if (!ifp) {
2237 kvfree(fspath);
2238 return ERR_PTR(-ENOMEM);
2239 }
2240
2241 ifp->btrfs_path = path;
2242 ifp->fspath = fspath;
2243 ifp->fs_root = fs_root;
2244
2245 return ifp;
2246}
2247
2248void free_ipath(struct inode_fs_paths *ipath)
2249{
2250 if (!ipath)
2251 return;
2252 kvfree(ipath->fspath);
2253 kfree(ipath);
2254}
1/*
2 * Copyright (C) 2011 STRATO. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/vmalloc.h>
20#include <linux/rbtree.h>
21#include "ctree.h"
22#include "disk-io.h"
23#include "backref.h"
24#include "ulist.h"
25#include "transaction.h"
26#include "delayed-ref.h"
27#include "locking.h"
28
29/* Just an arbitrary number so we can be sure this happened */
30#define BACKREF_FOUND_SHARED 6
31
32struct extent_inode_elem {
33 u64 inum;
34 u64 offset;
35 struct extent_inode_elem *next;
36};
37
38/*
39 * ref_root is used as the root of the ref tree that hold a collection
40 * of unique references.
41 */
42struct ref_root {
43 struct rb_root rb_root;
44
45 /*
46 * The unique_refs represents the number of ref_nodes with a positive
47 * count stored in the tree. Even if a ref_node (the count is greater
48 * than one) is added, the unique_refs will only increase by one.
49 */
50 unsigned int unique_refs;
51};
52
53/* ref_node is used to store a unique reference to the ref tree. */
54struct ref_node {
55 struct rb_node rb_node;
56
57 /* For NORMAL_REF, otherwise all these fields should be set to 0 */
58 u64 root_id;
59 u64 object_id;
60 u64 offset;
61
62 /* For SHARED_REF, otherwise parent field should be set to 0 */
63 u64 parent;
64
65 /* Ref to the ref_mod of btrfs_delayed_ref_node */
66 int ref_mod;
67};
68
69/* Dynamically allocate and initialize a ref_root */
70static struct ref_root *ref_root_alloc(void)
71{
72 struct ref_root *ref_tree;
73
74 ref_tree = kmalloc(sizeof(*ref_tree), GFP_NOFS);
75 if (!ref_tree)
76 return NULL;
77
78 ref_tree->rb_root = RB_ROOT;
79 ref_tree->unique_refs = 0;
80
81 return ref_tree;
82}
83
84/* Free all nodes in the ref tree, and reinit ref_root */
85static void ref_root_fini(struct ref_root *ref_tree)
86{
87 struct ref_node *node;
88 struct rb_node *next;
89
90 while ((next = rb_first(&ref_tree->rb_root)) != NULL) {
91 node = rb_entry(next, struct ref_node, rb_node);
92 rb_erase(next, &ref_tree->rb_root);
93 kfree(node);
94 }
95
96 ref_tree->rb_root = RB_ROOT;
97 ref_tree->unique_refs = 0;
98}
99
100static void ref_root_free(struct ref_root *ref_tree)
101{
102 if (!ref_tree)
103 return;
104
105 ref_root_fini(ref_tree);
106 kfree(ref_tree);
107}
108
109/*
110 * Compare ref_node with (root_id, object_id, offset, parent)
111 *
112 * The function compares two ref_node a and b. It returns an integer less
113 * than, equal to, or greater than zero , respectively, to be less than, to
114 * equal, or be greater than b.
115 */
116static int ref_node_cmp(struct ref_node *a, struct ref_node *b)
117{
118 if (a->root_id < b->root_id)
119 return -1;
120 else if (a->root_id > b->root_id)
121 return 1;
122
123 if (a->object_id < b->object_id)
124 return -1;
125 else if (a->object_id > b->object_id)
126 return 1;
127
128 if (a->offset < b->offset)
129 return -1;
130 else if (a->offset > b->offset)
131 return 1;
132
133 if (a->parent < b->parent)
134 return -1;
135 else if (a->parent > b->parent)
136 return 1;
137
138 return 0;
139}
140
141/*
142 * Search ref_node with (root_id, object_id, offset, parent) in the tree
143 *
144 * if found, the pointer of the ref_node will be returned;
145 * if not found, NULL will be returned and pos will point to the rb_node for
146 * insert, pos_parent will point to pos'parent for insert;
147*/
148static struct ref_node *__ref_tree_search(struct ref_root *ref_tree,
149 struct rb_node ***pos,
150 struct rb_node **pos_parent,
151 u64 root_id, u64 object_id,
152 u64 offset, u64 parent)
153{
154 struct ref_node *cur = NULL;
155 struct ref_node entry;
156 int ret;
157
158 entry.root_id = root_id;
159 entry.object_id = object_id;
160 entry.offset = offset;
161 entry.parent = parent;
162
163 *pos = &ref_tree->rb_root.rb_node;
164
165 while (**pos) {
166 *pos_parent = **pos;
167 cur = rb_entry(*pos_parent, struct ref_node, rb_node);
168
169 ret = ref_node_cmp(cur, &entry);
170 if (ret > 0)
171 *pos = &(**pos)->rb_left;
172 else if (ret < 0)
173 *pos = &(**pos)->rb_right;
174 else
175 return cur;
176 }
177
178 return NULL;
179}
180
181/*
182 * Insert a ref_node to the ref tree
183 * @pos used for specifiy the position to insert
184 * @pos_parent for specifiy pos's parent
185 *
186 * success, return 0;
187 * ref_node already exists, return -EEXIST;
188*/
189static int ref_tree_insert(struct ref_root *ref_tree, struct rb_node **pos,
190 struct rb_node *pos_parent, struct ref_node *ins)
191{
192 struct rb_node **p = NULL;
193 struct rb_node *parent = NULL;
194 struct ref_node *cur = NULL;
195
196 if (!pos) {
197 cur = __ref_tree_search(ref_tree, &p, &parent, ins->root_id,
198 ins->object_id, ins->offset,
199 ins->parent);
200 if (cur)
201 return -EEXIST;
202 } else {
203 p = pos;
204 parent = pos_parent;
205 }
206
207 rb_link_node(&ins->rb_node, parent, p);
208 rb_insert_color(&ins->rb_node, &ref_tree->rb_root);
209
210 return 0;
211}
212
213/* Erase and free ref_node, caller should update ref_root->unique_refs */
214static void ref_tree_remove(struct ref_root *ref_tree, struct ref_node *node)
215{
216 rb_erase(&node->rb_node, &ref_tree->rb_root);
217 kfree(node);
218}
219
220/*
221 * Update ref_root->unique_refs
222 *
223 * Call __ref_tree_search
224 * 1. if ref_node doesn't exist, ref_tree_insert this node, and update
225 * ref_root->unique_refs:
226 * if ref_node->ref_mod > 0, ref_root->unique_refs++;
227 * if ref_node->ref_mod < 0, do noting;
228 *
229 * 2. if ref_node is found, then get origin ref_node->ref_mod, and update
230 * ref_node->ref_mod.
231 * if ref_node->ref_mod is equal to 0,then call ref_tree_remove
232 *
233 * according to origin_mod and new_mod, update ref_root->items
234 * +----------------+--------------+-------------+
235 * | |new_count <= 0|new_count > 0|
236 * +----------------+--------------+-------------+
237 * |origin_count < 0| 0 | 1 |
238 * +----------------+--------------+-------------+
239 * |origin_count > 0| -1 | 0 |
240 * +----------------+--------------+-------------+
241 *
242 * In case of allocation failure, -ENOMEM is returned and the ref_tree stays
243 * unaltered.
244 * Success, return 0
245 */
246static int ref_tree_add(struct ref_root *ref_tree, u64 root_id, u64 object_id,
247 u64 offset, u64 parent, int count)
248{
249 struct ref_node *node = NULL;
250 struct rb_node **pos = NULL;
251 struct rb_node *pos_parent = NULL;
252 int origin_count;
253 int ret;
254
255 if (!count)
256 return 0;
257
258 node = __ref_tree_search(ref_tree, &pos, &pos_parent, root_id,
259 object_id, offset, parent);
260 if (node == NULL) {
261 node = kmalloc(sizeof(*node), GFP_NOFS);
262 if (!node)
263 return -ENOMEM;
264
265 node->root_id = root_id;
266 node->object_id = object_id;
267 node->offset = offset;
268 node->parent = parent;
269 node->ref_mod = count;
270
271 ret = ref_tree_insert(ref_tree, pos, pos_parent, node);
272 ASSERT(!ret);
273 if (ret) {
274 kfree(node);
275 return ret;
276 }
277
278 ref_tree->unique_refs += node->ref_mod > 0 ? 1 : 0;
279
280 return 0;
281 }
282
283 origin_count = node->ref_mod;
284 node->ref_mod += count;
285
286 if (node->ref_mod > 0)
287 ref_tree->unique_refs += origin_count > 0 ? 0 : 1;
288 else if (node->ref_mod <= 0)
289 ref_tree->unique_refs += origin_count > 0 ? -1 : 0;
290
291 if (!node->ref_mod)
292 ref_tree_remove(ref_tree, node);
293
294 return 0;
295}
296
297static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
298 struct btrfs_file_extent_item *fi,
299 u64 extent_item_pos,
300 struct extent_inode_elem **eie)
301{
302 u64 offset = 0;
303 struct extent_inode_elem *e;
304
305 if (!btrfs_file_extent_compression(eb, fi) &&
306 !btrfs_file_extent_encryption(eb, fi) &&
307 !btrfs_file_extent_other_encoding(eb, fi)) {
308 u64 data_offset;
309 u64 data_len;
310
311 data_offset = btrfs_file_extent_offset(eb, fi);
312 data_len = btrfs_file_extent_num_bytes(eb, fi);
313
314 if (extent_item_pos < data_offset ||
315 extent_item_pos >= data_offset + data_len)
316 return 1;
317 offset = extent_item_pos - data_offset;
318 }
319
320 e = kmalloc(sizeof(*e), GFP_NOFS);
321 if (!e)
322 return -ENOMEM;
323
324 e->next = *eie;
325 e->inum = key->objectid;
326 e->offset = key->offset + offset;
327 *eie = e;
328
329 return 0;
330}
331
332static void free_inode_elem_list(struct extent_inode_elem *eie)
333{
334 struct extent_inode_elem *eie_next;
335
336 for (; eie; eie = eie_next) {
337 eie_next = eie->next;
338 kfree(eie);
339 }
340}
341
342static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
343 u64 extent_item_pos,
344 struct extent_inode_elem **eie)
345{
346 u64 disk_byte;
347 struct btrfs_key key;
348 struct btrfs_file_extent_item *fi;
349 int slot;
350 int nritems;
351 int extent_type;
352 int ret;
353
354 /*
355 * from the shared data ref, we only have the leaf but we need
356 * the key. thus, we must look into all items and see that we
357 * find one (some) with a reference to our extent item.
358 */
359 nritems = btrfs_header_nritems(eb);
360 for (slot = 0; slot < nritems; ++slot) {
361 btrfs_item_key_to_cpu(eb, &key, slot);
362 if (key.type != BTRFS_EXTENT_DATA_KEY)
363 continue;
364 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
365 extent_type = btrfs_file_extent_type(eb, fi);
366 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
367 continue;
368 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
369 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
370 if (disk_byte != wanted_disk_byte)
371 continue;
372
373 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
374 if (ret < 0)
375 return ret;
376 }
377
378 return 0;
379}
380
381/*
382 * this structure records all encountered refs on the way up to the root
383 */
384struct __prelim_ref {
385 struct list_head list;
386 u64 root_id;
387 struct btrfs_key key_for_search;
388 int level;
389 int count;
390 struct extent_inode_elem *inode_list;
391 u64 parent;
392 u64 wanted_disk_byte;
393};
394
395static struct kmem_cache *btrfs_prelim_ref_cache;
396
397int __init btrfs_prelim_ref_init(void)
398{
399 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
400 sizeof(struct __prelim_ref),
401 0,
402 SLAB_MEM_SPREAD,
403 NULL);
404 if (!btrfs_prelim_ref_cache)
405 return -ENOMEM;
406 return 0;
407}
408
409void btrfs_prelim_ref_exit(void)
410{
411 kmem_cache_destroy(btrfs_prelim_ref_cache);
412}
413
414/*
415 * the rules for all callers of this function are:
416 * - obtaining the parent is the goal
417 * - if you add a key, you must know that it is a correct key
418 * - if you cannot add the parent or a correct key, then we will look into the
419 * block later to set a correct key
420 *
421 * delayed refs
422 * ============
423 * backref type | shared | indirect | shared | indirect
424 * information | tree | tree | data | data
425 * --------------------+--------+----------+--------+----------
426 * parent logical | y | - | - | -
427 * key to resolve | - | y | y | y
428 * tree block logical | - | - | - | -
429 * root for resolving | y | y | y | y
430 *
431 * - column 1: we've the parent -> done
432 * - column 2, 3, 4: we use the key to find the parent
433 *
434 * on disk refs (inline or keyed)
435 * ==============================
436 * backref type | shared | indirect | shared | indirect
437 * information | tree | tree | data | data
438 * --------------------+--------+----------+--------+----------
439 * parent logical | y | - | y | -
440 * key to resolve | - | - | - | y
441 * tree block logical | y | y | y | y
442 * root for resolving | - | y | y | y
443 *
444 * - column 1, 3: we've the parent -> done
445 * - column 2: we take the first key from the block to find the parent
446 * (see __add_missing_keys)
447 * - column 4: we use the key to find the parent
448 *
449 * additional information that's available but not required to find the parent
450 * block might help in merging entries to gain some speed.
451 */
452
453static int __add_prelim_ref(struct list_head *head, u64 root_id,
454 struct btrfs_key *key, int level,
455 u64 parent, u64 wanted_disk_byte, int count,
456 gfp_t gfp_mask)
457{
458 struct __prelim_ref *ref;
459
460 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
461 return 0;
462
463 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
464 if (!ref)
465 return -ENOMEM;
466
467 ref->root_id = root_id;
468 if (key) {
469 ref->key_for_search = *key;
470 /*
471 * We can often find data backrefs with an offset that is too
472 * large (>= LLONG_MAX, maximum allowed file offset) due to
473 * underflows when subtracting a file's offset with the data
474 * offset of its corresponding extent data item. This can
475 * happen for example in the clone ioctl.
476 * So if we detect such case we set the search key's offset to
477 * zero to make sure we will find the matching file extent item
478 * at add_all_parents(), otherwise we will miss it because the
479 * offset taken form the backref is much larger then the offset
480 * of the file extent item. This can make us scan a very large
481 * number of file extent items, but at least it will not make
482 * us miss any.
483 * This is an ugly workaround for a behaviour that should have
484 * never existed, but it does and a fix for the clone ioctl
485 * would touch a lot of places, cause backwards incompatibility
486 * and would not fix the problem for extents cloned with older
487 * kernels.
488 */
489 if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
490 ref->key_for_search.offset >= LLONG_MAX)
491 ref->key_for_search.offset = 0;
492 } else {
493 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
494 }
495
496 ref->inode_list = NULL;
497 ref->level = level;
498 ref->count = count;
499 ref->parent = parent;
500 ref->wanted_disk_byte = wanted_disk_byte;
501 list_add_tail(&ref->list, head);
502
503 return 0;
504}
505
506static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
507 struct ulist *parents, struct __prelim_ref *ref,
508 int level, u64 time_seq, const u64 *extent_item_pos,
509 u64 total_refs)
510{
511 int ret = 0;
512 int slot;
513 struct extent_buffer *eb;
514 struct btrfs_key key;
515 struct btrfs_key *key_for_search = &ref->key_for_search;
516 struct btrfs_file_extent_item *fi;
517 struct extent_inode_elem *eie = NULL, *old = NULL;
518 u64 disk_byte;
519 u64 wanted_disk_byte = ref->wanted_disk_byte;
520 u64 count = 0;
521
522 if (level != 0) {
523 eb = path->nodes[level];
524 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
525 if (ret < 0)
526 return ret;
527 return 0;
528 }
529
530 /*
531 * We normally enter this function with the path already pointing to
532 * the first item to check. But sometimes, we may enter it with
533 * slot==nritems. In that case, go to the next leaf before we continue.
534 */
535 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
536 if (time_seq == (u64)-1)
537 ret = btrfs_next_leaf(root, path);
538 else
539 ret = btrfs_next_old_leaf(root, path, time_seq);
540 }
541
542 while (!ret && count < total_refs) {
543 eb = path->nodes[0];
544 slot = path->slots[0];
545
546 btrfs_item_key_to_cpu(eb, &key, slot);
547
548 if (key.objectid != key_for_search->objectid ||
549 key.type != BTRFS_EXTENT_DATA_KEY)
550 break;
551
552 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
553 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
554
555 if (disk_byte == wanted_disk_byte) {
556 eie = NULL;
557 old = NULL;
558 count++;
559 if (extent_item_pos) {
560 ret = check_extent_in_eb(&key, eb, fi,
561 *extent_item_pos,
562 &eie);
563 if (ret < 0)
564 break;
565 }
566 if (ret > 0)
567 goto next;
568 ret = ulist_add_merge_ptr(parents, eb->start,
569 eie, (void **)&old, GFP_NOFS);
570 if (ret < 0)
571 break;
572 if (!ret && extent_item_pos) {
573 while (old->next)
574 old = old->next;
575 old->next = eie;
576 }
577 eie = NULL;
578 }
579next:
580 if (time_seq == (u64)-1)
581 ret = btrfs_next_item(root, path);
582 else
583 ret = btrfs_next_old_item(root, path, time_seq);
584 }
585
586 if (ret > 0)
587 ret = 0;
588 else if (ret < 0)
589 free_inode_elem_list(eie);
590 return ret;
591}
592
593/*
594 * resolve an indirect backref in the form (root_id, key, level)
595 * to a logical address
596 */
597static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
598 struct btrfs_path *path, u64 time_seq,
599 struct __prelim_ref *ref,
600 struct ulist *parents,
601 const u64 *extent_item_pos, u64 total_refs)
602{
603 struct btrfs_root *root;
604 struct btrfs_key root_key;
605 struct extent_buffer *eb;
606 int ret = 0;
607 int root_level;
608 int level = ref->level;
609 int index;
610
611 root_key.objectid = ref->root_id;
612 root_key.type = BTRFS_ROOT_ITEM_KEY;
613 root_key.offset = (u64)-1;
614
615 index = srcu_read_lock(&fs_info->subvol_srcu);
616
617 root = btrfs_get_fs_root(fs_info, &root_key, false);
618 if (IS_ERR(root)) {
619 srcu_read_unlock(&fs_info->subvol_srcu, index);
620 ret = PTR_ERR(root);
621 goto out;
622 }
623
624 if (btrfs_is_testing(fs_info)) {
625 srcu_read_unlock(&fs_info->subvol_srcu, index);
626 ret = -ENOENT;
627 goto out;
628 }
629
630 if (path->search_commit_root)
631 root_level = btrfs_header_level(root->commit_root);
632 else if (time_seq == (u64)-1)
633 root_level = btrfs_header_level(root->node);
634 else
635 root_level = btrfs_old_root_level(root, time_seq);
636
637 if (root_level + 1 == level) {
638 srcu_read_unlock(&fs_info->subvol_srcu, index);
639 goto out;
640 }
641
642 path->lowest_level = level;
643 if (time_seq == (u64)-1)
644 ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
645 0, 0);
646 else
647 ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
648 time_seq);
649
650 /* root node has been locked, we can release @subvol_srcu safely here */
651 srcu_read_unlock(&fs_info->subvol_srcu, index);
652
653 btrfs_debug(fs_info,
654 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
655 ref->root_id, level, ref->count, ret,
656 ref->key_for_search.objectid, ref->key_for_search.type,
657 ref->key_for_search.offset);
658 if (ret < 0)
659 goto out;
660
661 eb = path->nodes[level];
662 while (!eb) {
663 if (WARN_ON(!level)) {
664 ret = 1;
665 goto out;
666 }
667 level--;
668 eb = path->nodes[level];
669 }
670
671 ret = add_all_parents(root, path, parents, ref, level, time_seq,
672 extent_item_pos, total_refs);
673out:
674 path->lowest_level = 0;
675 btrfs_release_path(path);
676 return ret;
677}
678
679/*
680 * resolve all indirect backrefs from the list
681 */
682static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
683 struct btrfs_path *path, u64 time_seq,
684 struct list_head *head,
685 const u64 *extent_item_pos, u64 total_refs,
686 u64 root_objectid)
687{
688 int err;
689 int ret = 0;
690 struct __prelim_ref *ref;
691 struct __prelim_ref *ref_safe;
692 struct __prelim_ref *new_ref;
693 struct ulist *parents;
694 struct ulist_node *node;
695 struct ulist_iterator uiter;
696
697 parents = ulist_alloc(GFP_NOFS);
698 if (!parents)
699 return -ENOMEM;
700
701 /*
702 * _safe allows us to insert directly after the current item without
703 * iterating over the newly inserted items.
704 * we're also allowed to re-assign ref during iteration.
705 */
706 list_for_each_entry_safe(ref, ref_safe, head, list) {
707 if (ref->parent) /* already direct */
708 continue;
709 if (ref->count == 0)
710 continue;
711 if (root_objectid && ref->root_id != root_objectid) {
712 ret = BACKREF_FOUND_SHARED;
713 goto out;
714 }
715 err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
716 parents, extent_item_pos,
717 total_refs);
718 /*
719 * we can only tolerate ENOENT,otherwise,we should catch error
720 * and return directly.
721 */
722 if (err == -ENOENT) {
723 continue;
724 } else if (err) {
725 ret = err;
726 goto out;
727 }
728
729 /* we put the first parent into the ref at hand */
730 ULIST_ITER_INIT(&uiter);
731 node = ulist_next(parents, &uiter);
732 ref->parent = node ? node->val : 0;
733 ref->inode_list = node ?
734 (struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
735
736 /* additional parents require new refs being added here */
737 while ((node = ulist_next(parents, &uiter))) {
738 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
739 GFP_NOFS);
740 if (!new_ref) {
741 ret = -ENOMEM;
742 goto out;
743 }
744 memcpy(new_ref, ref, sizeof(*ref));
745 new_ref->parent = node->val;
746 new_ref->inode_list = (struct extent_inode_elem *)
747 (uintptr_t)node->aux;
748 list_add(&new_ref->list, &ref->list);
749 }
750 ulist_reinit(parents);
751 }
752out:
753 ulist_free(parents);
754 return ret;
755}
756
757static inline int ref_for_same_block(struct __prelim_ref *ref1,
758 struct __prelim_ref *ref2)
759{
760 if (ref1->level != ref2->level)
761 return 0;
762 if (ref1->root_id != ref2->root_id)
763 return 0;
764 if (ref1->key_for_search.type != ref2->key_for_search.type)
765 return 0;
766 if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
767 return 0;
768 if (ref1->key_for_search.offset != ref2->key_for_search.offset)
769 return 0;
770 if (ref1->parent != ref2->parent)
771 return 0;
772
773 return 1;
774}
775
776/*
777 * read tree blocks and add keys where required.
778 */
779static int __add_missing_keys(struct btrfs_fs_info *fs_info,
780 struct list_head *head)
781{
782 struct __prelim_ref *ref;
783 struct extent_buffer *eb;
784
785 list_for_each_entry(ref, head, list) {
786 if (ref->parent)
787 continue;
788 if (ref->key_for_search.type)
789 continue;
790 BUG_ON(!ref->wanted_disk_byte);
791 eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0);
792 if (IS_ERR(eb)) {
793 return PTR_ERR(eb);
794 } else if (!extent_buffer_uptodate(eb)) {
795 free_extent_buffer(eb);
796 return -EIO;
797 }
798 btrfs_tree_read_lock(eb);
799 if (btrfs_header_level(eb) == 0)
800 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
801 else
802 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
803 btrfs_tree_read_unlock(eb);
804 free_extent_buffer(eb);
805 }
806 return 0;
807}
808
809/*
810 * merge backrefs and adjust counts accordingly
811 *
812 * mode = 1: merge identical keys, if key is set
813 * FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
814 * additionally, we could even add a key range for the blocks we
815 * looked into to merge even more (-> replace unresolved refs by those
816 * having a parent).
817 * mode = 2: merge identical parents
818 */
819static void __merge_refs(struct list_head *head, int mode)
820{
821 struct __prelim_ref *pos1;
822
823 list_for_each_entry(pos1, head, list) {
824 struct __prelim_ref *pos2 = pos1, *tmp;
825
826 list_for_each_entry_safe_continue(pos2, tmp, head, list) {
827 struct __prelim_ref *ref1 = pos1, *ref2 = pos2;
828 struct extent_inode_elem *eie;
829
830 if (!ref_for_same_block(ref1, ref2))
831 continue;
832 if (mode == 1) {
833 if (!ref1->parent && ref2->parent)
834 swap(ref1, ref2);
835 } else {
836 if (ref1->parent != ref2->parent)
837 continue;
838 }
839
840 eie = ref1->inode_list;
841 while (eie && eie->next)
842 eie = eie->next;
843 if (eie)
844 eie->next = ref2->inode_list;
845 else
846 ref1->inode_list = ref2->inode_list;
847 ref1->count += ref2->count;
848
849 list_del(&ref2->list);
850 kmem_cache_free(btrfs_prelim_ref_cache, ref2);
851 cond_resched();
852 }
853
854 }
855}
856
857/*
858 * add all currently queued delayed refs from this head whose seq nr is
859 * smaller or equal that seq to the list
860 */
861static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
862 struct list_head *prefs, u64 *total_refs,
863 u64 inum)
864{
865 struct btrfs_delayed_ref_node *node;
866 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
867 struct btrfs_key key;
868 struct btrfs_key op_key = {0};
869 int sgn;
870 int ret = 0;
871
872 if (extent_op && extent_op->update_key)
873 btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
874
875 spin_lock(&head->lock);
876 list_for_each_entry(node, &head->ref_list, list) {
877 if (node->seq > seq)
878 continue;
879
880 switch (node->action) {
881 case BTRFS_ADD_DELAYED_EXTENT:
882 case BTRFS_UPDATE_DELAYED_HEAD:
883 WARN_ON(1);
884 continue;
885 case BTRFS_ADD_DELAYED_REF:
886 sgn = 1;
887 break;
888 case BTRFS_DROP_DELAYED_REF:
889 sgn = -1;
890 break;
891 default:
892 BUG_ON(1);
893 }
894 *total_refs += (node->ref_mod * sgn);
895 switch (node->type) {
896 case BTRFS_TREE_BLOCK_REF_KEY: {
897 struct btrfs_delayed_tree_ref *ref;
898
899 ref = btrfs_delayed_node_to_tree_ref(node);
900 ret = __add_prelim_ref(prefs, ref->root, &op_key,
901 ref->level + 1, 0, node->bytenr,
902 node->ref_mod * sgn, GFP_ATOMIC);
903 break;
904 }
905 case BTRFS_SHARED_BLOCK_REF_KEY: {
906 struct btrfs_delayed_tree_ref *ref;
907
908 ref = btrfs_delayed_node_to_tree_ref(node);
909 ret = __add_prelim_ref(prefs, 0, NULL,
910 ref->level + 1, ref->parent,
911 node->bytenr,
912 node->ref_mod * sgn, GFP_ATOMIC);
913 break;
914 }
915 case BTRFS_EXTENT_DATA_REF_KEY: {
916 struct btrfs_delayed_data_ref *ref;
917 ref = btrfs_delayed_node_to_data_ref(node);
918
919 key.objectid = ref->objectid;
920 key.type = BTRFS_EXTENT_DATA_KEY;
921 key.offset = ref->offset;
922
923 /*
924 * Found a inum that doesn't match our known inum, we
925 * know it's shared.
926 */
927 if (inum && ref->objectid != inum) {
928 ret = BACKREF_FOUND_SHARED;
929 break;
930 }
931
932 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
933 node->bytenr,
934 node->ref_mod * sgn, GFP_ATOMIC);
935 break;
936 }
937 case BTRFS_SHARED_DATA_REF_KEY: {
938 struct btrfs_delayed_data_ref *ref;
939
940 ref = btrfs_delayed_node_to_data_ref(node);
941 ret = __add_prelim_ref(prefs, 0, NULL, 0,
942 ref->parent, node->bytenr,
943 node->ref_mod * sgn, GFP_ATOMIC);
944 break;
945 }
946 default:
947 WARN_ON(1);
948 }
949 if (ret)
950 break;
951 }
952 spin_unlock(&head->lock);
953 return ret;
954}
955
956/*
957 * add all inline backrefs for bytenr to the list
958 */
959static int __add_inline_refs(struct btrfs_fs_info *fs_info,
960 struct btrfs_path *path, u64 bytenr,
961 int *info_level, struct list_head *prefs,
962 struct ref_root *ref_tree,
963 u64 *total_refs, u64 inum)
964{
965 int ret = 0;
966 int slot;
967 struct extent_buffer *leaf;
968 struct btrfs_key key;
969 struct btrfs_key found_key;
970 unsigned long ptr;
971 unsigned long end;
972 struct btrfs_extent_item *ei;
973 u64 flags;
974 u64 item_size;
975
976 /*
977 * enumerate all inline refs
978 */
979 leaf = path->nodes[0];
980 slot = path->slots[0];
981
982 item_size = btrfs_item_size_nr(leaf, slot);
983 BUG_ON(item_size < sizeof(*ei));
984
985 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
986 flags = btrfs_extent_flags(leaf, ei);
987 *total_refs += btrfs_extent_refs(leaf, ei);
988 btrfs_item_key_to_cpu(leaf, &found_key, slot);
989
990 ptr = (unsigned long)(ei + 1);
991 end = (unsigned long)ei + item_size;
992
993 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
994 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
995 struct btrfs_tree_block_info *info;
996
997 info = (struct btrfs_tree_block_info *)ptr;
998 *info_level = btrfs_tree_block_level(leaf, info);
999 ptr += sizeof(struct btrfs_tree_block_info);
1000 BUG_ON(ptr > end);
1001 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
1002 *info_level = found_key.offset;
1003 } else {
1004 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1005 }
1006
1007 while (ptr < end) {
1008 struct btrfs_extent_inline_ref *iref;
1009 u64 offset;
1010 int type;
1011
1012 iref = (struct btrfs_extent_inline_ref *)ptr;
1013 type = btrfs_extent_inline_ref_type(leaf, iref);
1014 offset = btrfs_extent_inline_ref_offset(leaf, iref);
1015
1016 switch (type) {
1017 case BTRFS_SHARED_BLOCK_REF_KEY:
1018 ret = __add_prelim_ref(prefs, 0, NULL,
1019 *info_level + 1, offset,
1020 bytenr, 1, GFP_NOFS);
1021 break;
1022 case BTRFS_SHARED_DATA_REF_KEY: {
1023 struct btrfs_shared_data_ref *sdref;
1024 int count;
1025
1026 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1027 count = btrfs_shared_data_ref_count(leaf, sdref);
1028 ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
1029 bytenr, count, GFP_NOFS);
1030 if (ref_tree) {
1031 if (!ret)
1032 ret = ref_tree_add(ref_tree, 0, 0, 0,
1033 bytenr, count);
1034 if (!ret && ref_tree->unique_refs > 1)
1035 ret = BACKREF_FOUND_SHARED;
1036 }
1037 break;
1038 }
1039 case BTRFS_TREE_BLOCK_REF_KEY:
1040 ret = __add_prelim_ref(prefs, offset, NULL,
1041 *info_level + 1, 0,
1042 bytenr, 1, GFP_NOFS);
1043 break;
1044 case BTRFS_EXTENT_DATA_REF_KEY: {
1045 struct btrfs_extent_data_ref *dref;
1046 int count;
1047 u64 root;
1048
1049 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1050 count = btrfs_extent_data_ref_count(leaf, dref);
1051 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1052 dref);
1053 key.type = BTRFS_EXTENT_DATA_KEY;
1054 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1055
1056 if (inum && key.objectid != inum) {
1057 ret = BACKREF_FOUND_SHARED;
1058 break;
1059 }
1060
1061 root = btrfs_extent_data_ref_root(leaf, dref);
1062 ret = __add_prelim_ref(prefs, root, &key, 0, 0,
1063 bytenr, count, GFP_NOFS);
1064 if (ref_tree) {
1065 if (!ret)
1066 ret = ref_tree_add(ref_tree, root,
1067 key.objectid,
1068 key.offset, 0,
1069 count);
1070 if (!ret && ref_tree->unique_refs > 1)
1071 ret = BACKREF_FOUND_SHARED;
1072 }
1073 break;
1074 }
1075 default:
1076 WARN_ON(1);
1077 }
1078 if (ret)
1079 return ret;
1080 ptr += btrfs_extent_inline_ref_size(type);
1081 }
1082
1083 return 0;
1084}
1085
1086/*
1087 * add all non-inline backrefs for bytenr to the list
1088 */
1089static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
1090 struct btrfs_path *path, u64 bytenr,
1091 int info_level, struct list_head *prefs,
1092 struct ref_root *ref_tree, u64 inum)
1093{
1094 struct btrfs_root *extent_root = fs_info->extent_root;
1095 int ret;
1096 int slot;
1097 struct extent_buffer *leaf;
1098 struct btrfs_key key;
1099
1100 while (1) {
1101 ret = btrfs_next_item(extent_root, path);
1102 if (ret < 0)
1103 break;
1104 if (ret) {
1105 ret = 0;
1106 break;
1107 }
1108
1109 slot = path->slots[0];
1110 leaf = path->nodes[0];
1111 btrfs_item_key_to_cpu(leaf, &key, slot);
1112
1113 if (key.objectid != bytenr)
1114 break;
1115 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1116 continue;
1117 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1118 break;
1119
1120 switch (key.type) {
1121 case BTRFS_SHARED_BLOCK_REF_KEY:
1122 ret = __add_prelim_ref(prefs, 0, NULL,
1123 info_level + 1, key.offset,
1124 bytenr, 1, GFP_NOFS);
1125 break;
1126 case BTRFS_SHARED_DATA_REF_KEY: {
1127 struct btrfs_shared_data_ref *sdref;
1128 int count;
1129
1130 sdref = btrfs_item_ptr(leaf, slot,
1131 struct btrfs_shared_data_ref);
1132 count = btrfs_shared_data_ref_count(leaf, sdref);
1133 ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
1134 bytenr, count, GFP_NOFS);
1135 if (ref_tree) {
1136 if (!ret)
1137 ret = ref_tree_add(ref_tree, 0, 0, 0,
1138 bytenr, count);
1139 if (!ret && ref_tree->unique_refs > 1)
1140 ret = BACKREF_FOUND_SHARED;
1141 }
1142 break;
1143 }
1144 case BTRFS_TREE_BLOCK_REF_KEY:
1145 ret = __add_prelim_ref(prefs, key.offset, NULL,
1146 info_level + 1, 0,
1147 bytenr, 1, GFP_NOFS);
1148 break;
1149 case BTRFS_EXTENT_DATA_REF_KEY: {
1150 struct btrfs_extent_data_ref *dref;
1151 int count;
1152 u64 root;
1153
1154 dref = btrfs_item_ptr(leaf, slot,
1155 struct btrfs_extent_data_ref);
1156 count = btrfs_extent_data_ref_count(leaf, dref);
1157 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1158 dref);
1159 key.type = BTRFS_EXTENT_DATA_KEY;
1160 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1161
1162 if (inum && key.objectid != inum) {
1163 ret = BACKREF_FOUND_SHARED;
1164 break;
1165 }
1166
1167 root = btrfs_extent_data_ref_root(leaf, dref);
1168 ret = __add_prelim_ref(prefs, root, &key, 0, 0,
1169 bytenr, count, GFP_NOFS);
1170 if (ref_tree) {
1171 if (!ret)
1172 ret = ref_tree_add(ref_tree, root,
1173 key.objectid,
1174 key.offset, 0,
1175 count);
1176 if (!ret && ref_tree->unique_refs > 1)
1177 ret = BACKREF_FOUND_SHARED;
1178 }
1179 break;
1180 }
1181 default:
1182 WARN_ON(1);
1183 }
1184 if (ret)
1185 return ret;
1186
1187 }
1188
1189 return ret;
1190}
1191
1192/*
1193 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1194 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1195 * indirect refs to their parent bytenr.
1196 * When roots are found, they're added to the roots list
1197 *
1198 * NOTE: This can return values > 0
1199 *
1200 * If time_seq is set to (u64)-1, it will not search delayed_refs, and behave
1201 * much like trans == NULL case, the difference only lies in it will not
1202 * commit root.
1203 * The special case is for qgroup to search roots in commit_transaction().
1204 *
1205 * If check_shared is set to 1, any extent has more than one ref item, will
1206 * be returned BACKREF_FOUND_SHARED immediately.
1207 *
1208 * FIXME some caching might speed things up
1209 */
1210static int find_parent_nodes(struct btrfs_trans_handle *trans,
1211 struct btrfs_fs_info *fs_info, u64 bytenr,
1212 u64 time_seq, struct ulist *refs,
1213 struct ulist *roots, const u64 *extent_item_pos,
1214 u64 root_objectid, u64 inum, int check_shared)
1215{
1216 struct btrfs_key key;
1217 struct btrfs_path *path;
1218 struct btrfs_delayed_ref_root *delayed_refs = NULL;
1219 struct btrfs_delayed_ref_head *head;
1220 int info_level = 0;
1221 int ret;
1222 struct list_head prefs_delayed;
1223 struct list_head prefs;
1224 struct __prelim_ref *ref;
1225 struct extent_inode_elem *eie = NULL;
1226 struct ref_root *ref_tree = NULL;
1227 u64 total_refs = 0;
1228
1229 INIT_LIST_HEAD(&prefs);
1230 INIT_LIST_HEAD(&prefs_delayed);
1231
1232 key.objectid = bytenr;
1233 key.offset = (u64)-1;
1234 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1235 key.type = BTRFS_METADATA_ITEM_KEY;
1236 else
1237 key.type = BTRFS_EXTENT_ITEM_KEY;
1238
1239 path = btrfs_alloc_path();
1240 if (!path)
1241 return -ENOMEM;
1242 if (!trans) {
1243 path->search_commit_root = 1;
1244 path->skip_locking = 1;
1245 }
1246
1247 if (time_seq == (u64)-1)
1248 path->skip_locking = 1;
1249
1250 /*
1251 * grab both a lock on the path and a lock on the delayed ref head.
1252 * We need both to get a consistent picture of how the refs look
1253 * at a specified point in time
1254 */
1255again:
1256 head = NULL;
1257
1258 if (check_shared) {
1259 if (!ref_tree) {
1260 ref_tree = ref_root_alloc();
1261 if (!ref_tree) {
1262 ret = -ENOMEM;
1263 goto out;
1264 }
1265 } else {
1266 ref_root_fini(ref_tree);
1267 }
1268 }
1269
1270 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1271 if (ret < 0)
1272 goto out;
1273 BUG_ON(ret == 0);
1274
1275#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1276 if (trans && likely(trans->type != __TRANS_DUMMY) &&
1277 time_seq != (u64)-1) {
1278#else
1279 if (trans && time_seq != (u64)-1) {
1280#endif
1281 /*
1282 * look if there are updates for this ref queued and lock the
1283 * head
1284 */
1285 delayed_refs = &trans->transaction->delayed_refs;
1286 spin_lock(&delayed_refs->lock);
1287 head = btrfs_find_delayed_ref_head(trans, bytenr);
1288 if (head) {
1289 if (!mutex_trylock(&head->mutex)) {
1290 atomic_inc(&head->node.refs);
1291 spin_unlock(&delayed_refs->lock);
1292
1293 btrfs_release_path(path);
1294
1295 /*
1296 * Mutex was contended, block until it's
1297 * released and try again
1298 */
1299 mutex_lock(&head->mutex);
1300 mutex_unlock(&head->mutex);
1301 btrfs_put_delayed_ref(&head->node);
1302 goto again;
1303 }
1304 spin_unlock(&delayed_refs->lock);
1305 ret = __add_delayed_refs(head, time_seq,
1306 &prefs_delayed, &total_refs,
1307 inum);
1308 mutex_unlock(&head->mutex);
1309 if (ret)
1310 goto out;
1311 } else {
1312 spin_unlock(&delayed_refs->lock);
1313 }
1314
1315 if (check_shared && !list_empty(&prefs_delayed)) {
1316 /*
1317 * Add all delay_ref to the ref_tree and check if there
1318 * are multiple ref items added.
1319 */
1320 list_for_each_entry(ref, &prefs_delayed, list) {
1321 if (ref->key_for_search.type) {
1322 ret = ref_tree_add(ref_tree,
1323 ref->root_id,
1324 ref->key_for_search.objectid,
1325 ref->key_for_search.offset,
1326 0, ref->count);
1327 if (ret)
1328 goto out;
1329 } else {
1330 ret = ref_tree_add(ref_tree, 0, 0, 0,
1331 ref->parent, ref->count);
1332 if (ret)
1333 goto out;
1334 }
1335
1336 }
1337
1338 if (ref_tree->unique_refs > 1) {
1339 ret = BACKREF_FOUND_SHARED;
1340 goto out;
1341 }
1342
1343 }
1344 }
1345
1346 if (path->slots[0]) {
1347 struct extent_buffer *leaf;
1348 int slot;
1349
1350 path->slots[0]--;
1351 leaf = path->nodes[0];
1352 slot = path->slots[0];
1353 btrfs_item_key_to_cpu(leaf, &key, slot);
1354 if (key.objectid == bytenr &&
1355 (key.type == BTRFS_EXTENT_ITEM_KEY ||
1356 key.type == BTRFS_METADATA_ITEM_KEY)) {
1357 ret = __add_inline_refs(fs_info, path, bytenr,
1358 &info_level, &prefs,
1359 ref_tree, &total_refs,
1360 inum);
1361 if (ret)
1362 goto out;
1363 ret = __add_keyed_refs(fs_info, path, bytenr,
1364 info_level, &prefs,
1365 ref_tree, inum);
1366 if (ret)
1367 goto out;
1368 }
1369 }
1370 btrfs_release_path(path);
1371
1372 list_splice_init(&prefs_delayed, &prefs);
1373
1374 ret = __add_missing_keys(fs_info, &prefs);
1375 if (ret)
1376 goto out;
1377
1378 __merge_refs(&prefs, 1);
1379
1380 ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
1381 extent_item_pos, total_refs,
1382 root_objectid);
1383 if (ret)
1384 goto out;
1385
1386 __merge_refs(&prefs, 2);
1387
1388 while (!list_empty(&prefs)) {
1389 ref = list_first_entry(&prefs, struct __prelim_ref, list);
1390 WARN_ON(ref->count < 0);
1391 if (roots && ref->count && ref->root_id && ref->parent == 0) {
1392 if (root_objectid && ref->root_id != root_objectid) {
1393 ret = BACKREF_FOUND_SHARED;
1394 goto out;
1395 }
1396
1397 /* no parent == root of tree */
1398 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1399 if (ret < 0)
1400 goto out;
1401 }
1402 if (ref->count && ref->parent) {
1403 if (extent_item_pos && !ref->inode_list &&
1404 ref->level == 0) {
1405 struct extent_buffer *eb;
1406
1407 eb = read_tree_block(fs_info, ref->parent, 0);
1408 if (IS_ERR(eb)) {
1409 ret = PTR_ERR(eb);
1410 goto out;
1411 } else if (!extent_buffer_uptodate(eb)) {
1412 free_extent_buffer(eb);
1413 ret = -EIO;
1414 goto out;
1415 }
1416 btrfs_tree_read_lock(eb);
1417 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1418 ret = find_extent_in_eb(eb, bytenr,
1419 *extent_item_pos, &eie);
1420 btrfs_tree_read_unlock_blocking(eb);
1421 free_extent_buffer(eb);
1422 if (ret < 0)
1423 goto out;
1424 ref->inode_list = eie;
1425 }
1426 ret = ulist_add_merge_ptr(refs, ref->parent,
1427 ref->inode_list,
1428 (void **)&eie, GFP_NOFS);
1429 if (ret < 0)
1430 goto out;
1431 if (!ret && extent_item_pos) {
1432 /*
1433 * we've recorded that parent, so we must extend
1434 * its inode list here
1435 */
1436 BUG_ON(!eie);
1437 while (eie->next)
1438 eie = eie->next;
1439 eie->next = ref->inode_list;
1440 }
1441 eie = NULL;
1442 }
1443 list_del(&ref->list);
1444 kmem_cache_free(btrfs_prelim_ref_cache, ref);
1445 }
1446
1447out:
1448 btrfs_free_path(path);
1449 ref_root_free(ref_tree);
1450 while (!list_empty(&prefs)) {
1451 ref = list_first_entry(&prefs, struct __prelim_ref, list);
1452 list_del(&ref->list);
1453 kmem_cache_free(btrfs_prelim_ref_cache, ref);
1454 }
1455 while (!list_empty(&prefs_delayed)) {
1456 ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
1457 list);
1458 list_del(&ref->list);
1459 kmem_cache_free(btrfs_prelim_ref_cache, ref);
1460 }
1461 if (ret < 0)
1462 free_inode_elem_list(eie);
1463 return ret;
1464}
1465
1466static void free_leaf_list(struct ulist *blocks)
1467{
1468 struct ulist_node *node = NULL;
1469 struct extent_inode_elem *eie;
1470 struct ulist_iterator uiter;
1471
1472 ULIST_ITER_INIT(&uiter);
1473 while ((node = ulist_next(blocks, &uiter))) {
1474 if (!node->aux)
1475 continue;
1476 eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
1477 free_inode_elem_list(eie);
1478 node->aux = 0;
1479 }
1480
1481 ulist_free(blocks);
1482}
1483
1484/*
1485 * Finds all leafs with a reference to the specified combination of bytenr and
1486 * offset. key_list_head will point to a list of corresponding keys (caller must
1487 * free each list element). The leafs will be stored in the leafs ulist, which
1488 * must be freed with ulist_free.
1489 *
1490 * returns 0 on success, <0 on error
1491 */
1492static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1493 struct btrfs_fs_info *fs_info, u64 bytenr,
1494 u64 time_seq, struct ulist **leafs,
1495 const u64 *extent_item_pos)
1496{
1497 int ret;
1498
1499 *leafs = ulist_alloc(GFP_NOFS);
1500 if (!*leafs)
1501 return -ENOMEM;
1502
1503 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1504 *leafs, NULL, extent_item_pos, 0, 0, 0);
1505 if (ret < 0 && ret != -ENOENT) {
1506 free_leaf_list(*leafs);
1507 return ret;
1508 }
1509
1510 return 0;
1511}
1512
1513/*
1514 * walk all backrefs for a given extent to find all roots that reference this
1515 * extent. Walking a backref means finding all extents that reference this
1516 * extent and in turn walk the backrefs of those, too. Naturally this is a
1517 * recursive process, but here it is implemented in an iterative fashion: We
1518 * find all referencing extents for the extent in question and put them on a
1519 * list. In turn, we find all referencing extents for those, further appending
1520 * to the list. The way we iterate the list allows adding more elements after
1521 * the current while iterating. The process stops when we reach the end of the
1522 * list. Found roots are added to the roots list.
1523 *
1524 * returns 0 on success, < 0 on error.
1525 */
1526static int __btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1527 struct btrfs_fs_info *fs_info, u64 bytenr,
1528 u64 time_seq, struct ulist **roots)
1529{
1530 struct ulist *tmp;
1531 struct ulist_node *node = NULL;
1532 struct ulist_iterator uiter;
1533 int ret;
1534
1535 tmp = ulist_alloc(GFP_NOFS);
1536 if (!tmp)
1537 return -ENOMEM;
1538 *roots = ulist_alloc(GFP_NOFS);
1539 if (!*roots) {
1540 ulist_free(tmp);
1541 return -ENOMEM;
1542 }
1543
1544 ULIST_ITER_INIT(&uiter);
1545 while (1) {
1546 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1547 tmp, *roots, NULL, 0, 0, 0);
1548 if (ret < 0 && ret != -ENOENT) {
1549 ulist_free(tmp);
1550 ulist_free(*roots);
1551 return ret;
1552 }
1553 node = ulist_next(tmp, &uiter);
1554 if (!node)
1555 break;
1556 bytenr = node->val;
1557 cond_resched();
1558 }
1559
1560 ulist_free(tmp);
1561 return 0;
1562}
1563
1564int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1565 struct btrfs_fs_info *fs_info, u64 bytenr,
1566 u64 time_seq, struct ulist **roots)
1567{
1568 int ret;
1569
1570 if (!trans)
1571 down_read(&fs_info->commit_root_sem);
1572 ret = __btrfs_find_all_roots(trans, fs_info, bytenr, time_seq, roots);
1573 if (!trans)
1574 up_read(&fs_info->commit_root_sem);
1575 return ret;
1576}
1577
1578/**
1579 * btrfs_check_shared - tell us whether an extent is shared
1580 *
1581 * @trans: optional trans handle
1582 *
1583 * btrfs_check_shared uses the backref walking code but will short
1584 * circuit as soon as it finds a root or inode that doesn't match the
1585 * one passed in. This provides a significant performance benefit for
1586 * callers (such as fiemap) which want to know whether the extent is
1587 * shared but do not need a ref count.
1588 *
1589 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1590 */
1591int btrfs_check_shared(struct btrfs_trans_handle *trans,
1592 struct btrfs_fs_info *fs_info, u64 root_objectid,
1593 u64 inum, u64 bytenr)
1594{
1595 struct ulist *tmp = NULL;
1596 struct ulist *roots = NULL;
1597 struct ulist_iterator uiter;
1598 struct ulist_node *node;
1599 struct seq_list elem = SEQ_LIST_INIT(elem);
1600 int ret = 0;
1601
1602 tmp = ulist_alloc(GFP_NOFS);
1603 roots = ulist_alloc(GFP_NOFS);
1604 if (!tmp || !roots) {
1605 ulist_free(tmp);
1606 ulist_free(roots);
1607 return -ENOMEM;
1608 }
1609
1610 if (trans)
1611 btrfs_get_tree_mod_seq(fs_info, &elem);
1612 else
1613 down_read(&fs_info->commit_root_sem);
1614 ULIST_ITER_INIT(&uiter);
1615 while (1) {
1616 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1617 roots, NULL, root_objectid, inum, 1);
1618 if (ret == BACKREF_FOUND_SHARED) {
1619 /* this is the only condition under which we return 1 */
1620 ret = 1;
1621 break;
1622 }
1623 if (ret < 0 && ret != -ENOENT)
1624 break;
1625 ret = 0;
1626 node = ulist_next(tmp, &uiter);
1627 if (!node)
1628 break;
1629 bytenr = node->val;
1630 cond_resched();
1631 }
1632 if (trans)
1633 btrfs_put_tree_mod_seq(fs_info, &elem);
1634 else
1635 up_read(&fs_info->commit_root_sem);
1636 ulist_free(tmp);
1637 ulist_free(roots);
1638 return ret;
1639}
1640
1641int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1642 u64 start_off, struct btrfs_path *path,
1643 struct btrfs_inode_extref **ret_extref,
1644 u64 *found_off)
1645{
1646 int ret, slot;
1647 struct btrfs_key key;
1648 struct btrfs_key found_key;
1649 struct btrfs_inode_extref *extref;
1650 struct extent_buffer *leaf;
1651 unsigned long ptr;
1652
1653 key.objectid = inode_objectid;
1654 key.type = BTRFS_INODE_EXTREF_KEY;
1655 key.offset = start_off;
1656
1657 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1658 if (ret < 0)
1659 return ret;
1660
1661 while (1) {
1662 leaf = path->nodes[0];
1663 slot = path->slots[0];
1664 if (slot >= btrfs_header_nritems(leaf)) {
1665 /*
1666 * If the item at offset is not found,
1667 * btrfs_search_slot will point us to the slot
1668 * where it should be inserted. In our case
1669 * that will be the slot directly before the
1670 * next INODE_REF_KEY_V2 item. In the case
1671 * that we're pointing to the last slot in a
1672 * leaf, we must move one leaf over.
1673 */
1674 ret = btrfs_next_leaf(root, path);
1675 if (ret) {
1676 if (ret >= 1)
1677 ret = -ENOENT;
1678 break;
1679 }
1680 continue;
1681 }
1682
1683 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1684
1685 /*
1686 * Check that we're still looking at an extended ref key for
1687 * this particular objectid. If we have different
1688 * objectid or type then there are no more to be found
1689 * in the tree and we can exit.
1690 */
1691 ret = -ENOENT;
1692 if (found_key.objectid != inode_objectid)
1693 break;
1694 if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1695 break;
1696
1697 ret = 0;
1698 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1699 extref = (struct btrfs_inode_extref *)ptr;
1700 *ret_extref = extref;
1701 if (found_off)
1702 *found_off = found_key.offset;
1703 break;
1704 }
1705
1706 return ret;
1707}
1708
1709/*
1710 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1711 * Elements of the path are separated by '/' and the path is guaranteed to be
1712 * 0-terminated. the path is only given within the current file system.
1713 * Therefore, it never starts with a '/'. the caller is responsible to provide
1714 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1715 * the start point of the resulting string is returned. this pointer is within
1716 * dest, normally.
1717 * in case the path buffer would overflow, the pointer is decremented further
1718 * as if output was written to the buffer, though no more output is actually
1719 * generated. that way, the caller can determine how much space would be
1720 * required for the path to fit into the buffer. in that case, the returned
1721 * value will be smaller than dest. callers must check this!
1722 */
1723char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1724 u32 name_len, unsigned long name_off,
1725 struct extent_buffer *eb_in, u64 parent,
1726 char *dest, u32 size)
1727{
1728 int slot;
1729 u64 next_inum;
1730 int ret;
1731 s64 bytes_left = ((s64)size) - 1;
1732 struct extent_buffer *eb = eb_in;
1733 struct btrfs_key found_key;
1734 int leave_spinning = path->leave_spinning;
1735 struct btrfs_inode_ref *iref;
1736
1737 if (bytes_left >= 0)
1738 dest[bytes_left] = '\0';
1739
1740 path->leave_spinning = 1;
1741 while (1) {
1742 bytes_left -= name_len;
1743 if (bytes_left >= 0)
1744 read_extent_buffer(eb, dest + bytes_left,
1745 name_off, name_len);
1746 if (eb != eb_in) {
1747 if (!path->skip_locking)
1748 btrfs_tree_read_unlock_blocking(eb);
1749 free_extent_buffer(eb);
1750 }
1751 ret = btrfs_find_item(fs_root, path, parent, 0,
1752 BTRFS_INODE_REF_KEY, &found_key);
1753 if (ret > 0)
1754 ret = -ENOENT;
1755 if (ret)
1756 break;
1757
1758 next_inum = found_key.offset;
1759
1760 /* regular exit ahead */
1761 if (parent == next_inum)
1762 break;
1763
1764 slot = path->slots[0];
1765 eb = path->nodes[0];
1766 /* make sure we can use eb after releasing the path */
1767 if (eb != eb_in) {
1768 if (!path->skip_locking)
1769 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1770 path->nodes[0] = NULL;
1771 path->locks[0] = 0;
1772 }
1773 btrfs_release_path(path);
1774 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1775
1776 name_len = btrfs_inode_ref_name_len(eb, iref);
1777 name_off = (unsigned long)(iref + 1);
1778
1779 parent = next_inum;
1780 --bytes_left;
1781 if (bytes_left >= 0)
1782 dest[bytes_left] = '/';
1783 }
1784
1785 btrfs_release_path(path);
1786 path->leave_spinning = leave_spinning;
1787
1788 if (ret)
1789 return ERR_PTR(ret);
1790
1791 return dest + bytes_left;
1792}
1793
1794/*
1795 * this makes the path point to (logical EXTENT_ITEM *)
1796 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1797 * tree blocks and <0 on error.
1798 */
1799int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1800 struct btrfs_path *path, struct btrfs_key *found_key,
1801 u64 *flags_ret)
1802{
1803 int ret;
1804 u64 flags;
1805 u64 size = 0;
1806 u32 item_size;
1807 struct extent_buffer *eb;
1808 struct btrfs_extent_item *ei;
1809 struct btrfs_key key;
1810
1811 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1812 key.type = BTRFS_METADATA_ITEM_KEY;
1813 else
1814 key.type = BTRFS_EXTENT_ITEM_KEY;
1815 key.objectid = logical;
1816 key.offset = (u64)-1;
1817
1818 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1819 if (ret < 0)
1820 return ret;
1821
1822 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1823 if (ret) {
1824 if (ret > 0)
1825 ret = -ENOENT;
1826 return ret;
1827 }
1828 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1829 if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1830 size = fs_info->nodesize;
1831 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1832 size = found_key->offset;
1833
1834 if (found_key->objectid > logical ||
1835 found_key->objectid + size <= logical) {
1836 btrfs_debug(fs_info,
1837 "logical %llu is not within any extent", logical);
1838 return -ENOENT;
1839 }
1840
1841 eb = path->nodes[0];
1842 item_size = btrfs_item_size_nr(eb, path->slots[0]);
1843 BUG_ON(item_size < sizeof(*ei));
1844
1845 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1846 flags = btrfs_extent_flags(eb, ei);
1847
1848 btrfs_debug(fs_info,
1849 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1850 logical, logical - found_key->objectid, found_key->objectid,
1851 found_key->offset, flags, item_size);
1852
1853 WARN_ON(!flags_ret);
1854 if (flags_ret) {
1855 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1856 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1857 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1858 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1859 else
1860 BUG_ON(1);
1861 return 0;
1862 }
1863
1864 return -EIO;
1865}
1866
1867/*
1868 * helper function to iterate extent inline refs. ptr must point to a 0 value
1869 * for the first call and may be modified. it is used to track state.
1870 * if more refs exist, 0 is returned and the next call to
1871 * __get_extent_inline_ref must pass the modified ptr parameter to get the
1872 * next ref. after the last ref was processed, 1 is returned.
1873 * returns <0 on error
1874 */
1875static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1876 struct btrfs_key *key,
1877 struct btrfs_extent_item *ei, u32 item_size,
1878 struct btrfs_extent_inline_ref **out_eiref,
1879 int *out_type)
1880{
1881 unsigned long end;
1882 u64 flags;
1883 struct btrfs_tree_block_info *info;
1884
1885 if (!*ptr) {
1886 /* first call */
1887 flags = btrfs_extent_flags(eb, ei);
1888 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1889 if (key->type == BTRFS_METADATA_ITEM_KEY) {
1890 /* a skinny metadata extent */
1891 *out_eiref =
1892 (struct btrfs_extent_inline_ref *)(ei + 1);
1893 } else {
1894 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1895 info = (struct btrfs_tree_block_info *)(ei + 1);
1896 *out_eiref =
1897 (struct btrfs_extent_inline_ref *)(info + 1);
1898 }
1899 } else {
1900 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1901 }
1902 *ptr = (unsigned long)*out_eiref;
1903 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1904 return -ENOENT;
1905 }
1906
1907 end = (unsigned long)ei + item_size;
1908 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1909 *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1910
1911 *ptr += btrfs_extent_inline_ref_size(*out_type);
1912 WARN_ON(*ptr > end);
1913 if (*ptr == end)
1914 return 1; /* last */
1915
1916 return 0;
1917}
1918
1919/*
1920 * reads the tree block backref for an extent. tree level and root are returned
1921 * through out_level and out_root. ptr must point to a 0 value for the first
1922 * call and may be modified (see __get_extent_inline_ref comment).
1923 * returns 0 if data was provided, 1 if there was no more data to provide or
1924 * <0 on error.
1925 */
1926int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1927 struct btrfs_key *key, struct btrfs_extent_item *ei,
1928 u32 item_size, u64 *out_root, u8 *out_level)
1929{
1930 int ret;
1931 int type;
1932 struct btrfs_extent_inline_ref *eiref;
1933
1934 if (*ptr == (unsigned long)-1)
1935 return 1;
1936
1937 while (1) {
1938 ret = __get_extent_inline_ref(ptr, eb, key, ei, item_size,
1939 &eiref, &type);
1940 if (ret < 0)
1941 return ret;
1942
1943 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1944 type == BTRFS_SHARED_BLOCK_REF_KEY)
1945 break;
1946
1947 if (ret == 1)
1948 return 1;
1949 }
1950
1951 /* we can treat both ref types equally here */
1952 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1953
1954 if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1955 struct btrfs_tree_block_info *info;
1956
1957 info = (struct btrfs_tree_block_info *)(ei + 1);
1958 *out_level = btrfs_tree_block_level(eb, info);
1959 } else {
1960 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1961 *out_level = (u8)key->offset;
1962 }
1963
1964 if (ret == 1)
1965 *ptr = (unsigned long)-1;
1966
1967 return 0;
1968}
1969
1970static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1971 struct extent_inode_elem *inode_list,
1972 u64 root, u64 extent_item_objectid,
1973 iterate_extent_inodes_t *iterate, void *ctx)
1974{
1975 struct extent_inode_elem *eie;
1976 int ret = 0;
1977
1978 for (eie = inode_list; eie; eie = eie->next) {
1979 btrfs_debug(fs_info,
1980 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1981 extent_item_objectid, eie->inum,
1982 eie->offset, root);
1983 ret = iterate(eie->inum, eie->offset, root, ctx);
1984 if (ret) {
1985 btrfs_debug(fs_info,
1986 "stopping iteration for %llu due to ret=%d",
1987 extent_item_objectid, ret);
1988 break;
1989 }
1990 }
1991
1992 return ret;
1993}
1994
1995/*
1996 * calls iterate() for every inode that references the extent identified by
1997 * the given parameters.
1998 * when the iterator function returns a non-zero value, iteration stops.
1999 */
2000int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
2001 u64 extent_item_objectid, u64 extent_item_pos,
2002 int search_commit_root,
2003 iterate_extent_inodes_t *iterate, void *ctx)
2004{
2005 int ret;
2006 struct btrfs_trans_handle *trans = NULL;
2007 struct ulist *refs = NULL;
2008 struct ulist *roots = NULL;
2009 struct ulist_node *ref_node = NULL;
2010 struct ulist_node *root_node = NULL;
2011 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
2012 struct ulist_iterator ref_uiter;
2013 struct ulist_iterator root_uiter;
2014
2015 btrfs_debug(fs_info, "resolving all inodes for extent %llu",
2016 extent_item_objectid);
2017
2018 if (!search_commit_root) {
2019 trans = btrfs_join_transaction(fs_info->extent_root);
2020 if (IS_ERR(trans))
2021 return PTR_ERR(trans);
2022 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
2023 } else {
2024 down_read(&fs_info->commit_root_sem);
2025 }
2026
2027 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
2028 tree_mod_seq_elem.seq, &refs,
2029 &extent_item_pos);
2030 if (ret)
2031 goto out;
2032
2033 ULIST_ITER_INIT(&ref_uiter);
2034 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
2035 ret = __btrfs_find_all_roots(trans, fs_info, ref_node->val,
2036 tree_mod_seq_elem.seq, &roots);
2037 if (ret)
2038 break;
2039 ULIST_ITER_INIT(&root_uiter);
2040 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
2041 btrfs_debug(fs_info,
2042 "root %llu references leaf %llu, data list %#llx",
2043 root_node->val, ref_node->val,
2044 ref_node->aux);
2045 ret = iterate_leaf_refs(fs_info,
2046 (struct extent_inode_elem *)
2047 (uintptr_t)ref_node->aux,
2048 root_node->val,
2049 extent_item_objectid,
2050 iterate, ctx);
2051 }
2052 ulist_free(roots);
2053 }
2054
2055 free_leaf_list(refs);
2056out:
2057 if (!search_commit_root) {
2058 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
2059 btrfs_end_transaction(trans);
2060 } else {
2061 up_read(&fs_info->commit_root_sem);
2062 }
2063
2064 return ret;
2065}
2066
2067int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2068 struct btrfs_path *path,
2069 iterate_extent_inodes_t *iterate, void *ctx)
2070{
2071 int ret;
2072 u64 extent_item_pos;
2073 u64 flags = 0;
2074 struct btrfs_key found_key;
2075 int search_commit_root = path->search_commit_root;
2076
2077 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2078 btrfs_release_path(path);
2079 if (ret < 0)
2080 return ret;
2081 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2082 return -EINVAL;
2083
2084 extent_item_pos = logical - found_key.objectid;
2085 ret = iterate_extent_inodes(fs_info, found_key.objectid,
2086 extent_item_pos, search_commit_root,
2087 iterate, ctx);
2088
2089 return ret;
2090}
2091
2092typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
2093 struct extent_buffer *eb, void *ctx);
2094
2095static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
2096 struct btrfs_path *path,
2097 iterate_irefs_t *iterate, void *ctx)
2098{
2099 int ret = 0;
2100 int slot;
2101 u32 cur;
2102 u32 len;
2103 u32 name_len;
2104 u64 parent = 0;
2105 int found = 0;
2106 struct extent_buffer *eb;
2107 struct btrfs_item *item;
2108 struct btrfs_inode_ref *iref;
2109 struct btrfs_key found_key;
2110
2111 while (!ret) {
2112 ret = btrfs_find_item(fs_root, path, inum,
2113 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2114 &found_key);
2115
2116 if (ret < 0)
2117 break;
2118 if (ret) {
2119 ret = found ? 0 : -ENOENT;
2120 break;
2121 }
2122 ++found;
2123
2124 parent = found_key.offset;
2125 slot = path->slots[0];
2126 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2127 if (!eb) {
2128 ret = -ENOMEM;
2129 break;
2130 }
2131 extent_buffer_get(eb);
2132 btrfs_tree_read_lock(eb);
2133 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
2134 btrfs_release_path(path);
2135
2136 item = btrfs_item_nr(slot);
2137 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2138
2139 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2140 name_len = btrfs_inode_ref_name_len(eb, iref);
2141 /* path must be released before calling iterate()! */
2142 btrfs_debug(fs_root->fs_info,
2143 "following ref at offset %u for inode %llu in tree %llu",
2144 cur, found_key.objectid, fs_root->objectid);
2145 ret = iterate(parent, name_len,
2146 (unsigned long)(iref + 1), eb, ctx);
2147 if (ret)
2148 break;
2149 len = sizeof(*iref) + name_len;
2150 iref = (struct btrfs_inode_ref *)((char *)iref + len);
2151 }
2152 btrfs_tree_read_unlock_blocking(eb);
2153 free_extent_buffer(eb);
2154 }
2155
2156 btrfs_release_path(path);
2157
2158 return ret;
2159}
2160
2161static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2162 struct btrfs_path *path,
2163 iterate_irefs_t *iterate, void *ctx)
2164{
2165 int ret;
2166 int slot;
2167 u64 offset = 0;
2168 u64 parent;
2169 int found = 0;
2170 struct extent_buffer *eb;
2171 struct btrfs_inode_extref *extref;
2172 u32 item_size;
2173 u32 cur_offset;
2174 unsigned long ptr;
2175
2176 while (1) {
2177 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2178 &offset);
2179 if (ret < 0)
2180 break;
2181 if (ret) {
2182 ret = found ? 0 : -ENOENT;
2183 break;
2184 }
2185 ++found;
2186
2187 slot = path->slots[0];
2188 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2189 if (!eb) {
2190 ret = -ENOMEM;
2191 break;
2192 }
2193 extent_buffer_get(eb);
2194
2195 btrfs_tree_read_lock(eb);
2196 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
2197 btrfs_release_path(path);
2198
2199 item_size = btrfs_item_size_nr(eb, slot);
2200 ptr = btrfs_item_ptr_offset(eb, slot);
2201 cur_offset = 0;
2202
2203 while (cur_offset < item_size) {
2204 u32 name_len;
2205
2206 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2207 parent = btrfs_inode_extref_parent(eb, extref);
2208 name_len = btrfs_inode_extref_name_len(eb, extref);
2209 ret = iterate(parent, name_len,
2210 (unsigned long)&extref->name, eb, ctx);
2211 if (ret)
2212 break;
2213
2214 cur_offset += btrfs_inode_extref_name_len(eb, extref);
2215 cur_offset += sizeof(*extref);
2216 }
2217 btrfs_tree_read_unlock_blocking(eb);
2218 free_extent_buffer(eb);
2219
2220 offset++;
2221 }
2222
2223 btrfs_release_path(path);
2224
2225 return ret;
2226}
2227
2228static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2229 struct btrfs_path *path, iterate_irefs_t *iterate,
2230 void *ctx)
2231{
2232 int ret;
2233 int found_refs = 0;
2234
2235 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2236 if (!ret)
2237 ++found_refs;
2238 else if (ret != -ENOENT)
2239 return ret;
2240
2241 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2242 if (ret == -ENOENT && found_refs)
2243 return 0;
2244
2245 return ret;
2246}
2247
2248/*
2249 * returns 0 if the path could be dumped (probably truncated)
2250 * returns <0 in case of an error
2251 */
2252static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2253 struct extent_buffer *eb, void *ctx)
2254{
2255 struct inode_fs_paths *ipath = ctx;
2256 char *fspath;
2257 char *fspath_min;
2258 int i = ipath->fspath->elem_cnt;
2259 const int s_ptr = sizeof(char *);
2260 u32 bytes_left;
2261
2262 bytes_left = ipath->fspath->bytes_left > s_ptr ?
2263 ipath->fspath->bytes_left - s_ptr : 0;
2264
2265 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2266 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2267 name_off, eb, inum, fspath_min, bytes_left);
2268 if (IS_ERR(fspath))
2269 return PTR_ERR(fspath);
2270
2271 if (fspath > fspath_min) {
2272 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2273 ++ipath->fspath->elem_cnt;
2274 ipath->fspath->bytes_left = fspath - fspath_min;
2275 } else {
2276 ++ipath->fspath->elem_missed;
2277 ipath->fspath->bytes_missing += fspath_min - fspath;
2278 ipath->fspath->bytes_left = 0;
2279 }
2280
2281 return 0;
2282}
2283
2284/*
2285 * this dumps all file system paths to the inode into the ipath struct, provided
2286 * is has been created large enough. each path is zero-terminated and accessed
2287 * from ipath->fspath->val[i].
2288 * when it returns, there are ipath->fspath->elem_cnt number of paths available
2289 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2290 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2291 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2292 * have been needed to return all paths.
2293 */
2294int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2295{
2296 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2297 inode_to_path, ipath);
2298}
2299
2300struct btrfs_data_container *init_data_container(u32 total_bytes)
2301{
2302 struct btrfs_data_container *data;
2303 size_t alloc_bytes;
2304
2305 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2306 data = vmalloc(alloc_bytes);
2307 if (!data)
2308 return ERR_PTR(-ENOMEM);
2309
2310 if (total_bytes >= sizeof(*data)) {
2311 data->bytes_left = total_bytes - sizeof(*data);
2312 data->bytes_missing = 0;
2313 } else {
2314 data->bytes_missing = sizeof(*data) - total_bytes;
2315 data->bytes_left = 0;
2316 }
2317
2318 data->elem_cnt = 0;
2319 data->elem_missed = 0;
2320
2321 return data;
2322}
2323
2324/*
2325 * allocates space to return multiple file system paths for an inode.
2326 * total_bytes to allocate are passed, note that space usable for actual path
2327 * information will be total_bytes - sizeof(struct inode_fs_paths).
2328 * the returned pointer must be freed with free_ipath() in the end.
2329 */
2330struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2331 struct btrfs_path *path)
2332{
2333 struct inode_fs_paths *ifp;
2334 struct btrfs_data_container *fspath;
2335
2336 fspath = init_data_container(total_bytes);
2337 if (IS_ERR(fspath))
2338 return (void *)fspath;
2339
2340 ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
2341 if (!ifp) {
2342 vfree(fspath);
2343 return ERR_PTR(-ENOMEM);
2344 }
2345
2346 ifp->btrfs_path = path;
2347 ifp->fspath = fspath;
2348 ifp->fs_root = fs_root;
2349
2350 return ifp;
2351}
2352
2353void free_ipath(struct inode_fs_paths *ipath)
2354{
2355 if (!ipath)
2356 return;
2357 vfree(ipath->fspath);
2358 kfree(ipath);
2359}