Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * TLB Management (flush/create/diagnostics) for ARC700
4 *
5 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
6 *
7 * vineetg: Aug 2011
8 * -Reintroduce duplicate PD fixup - some customer chips still have the issue
9 *
10 * vineetg: May 2011
11 * -No need to flush_cache_page( ) for each call to update_mmu_cache()
12 * some of the LMBench tests improved amazingly
13 * = page-fault thrice as fast (75 usec to 28 usec)
14 * = mmap twice as fast (9.6 msec to 4.6 msec),
15 * = fork (5.3 msec to 3.7 msec)
16 *
17 * vineetg: April 2011 :
18 * -MMU v3: PD{0,1} bits layout changed: They don't overlap anymore,
19 * helps avoid a shift when preparing PD0 from PTE
20 *
21 * vineetg: April 2011 : Preparing for MMU V3
22 * -MMU v2/v3 BCRs decoded differently
23 * -Remove TLB_SIZE hardcoding as it's variable now: 256 or 512
24 * -tlb_entry_erase( ) can be void
25 * -local_flush_tlb_range( ):
26 * = need not "ceil" @end
27 * = walks MMU only if range spans < 32 entries, as opposed to 256
28 *
29 * Vineetg: Sept 10th 2008
30 * -Changes related to MMU v2 (Rel 4.8)
31 *
32 * Vineetg: Aug 29th 2008
33 * -In TLB Flush operations (Metal Fix MMU) there is a explict command to
34 * flush Micro-TLBS. If TLB Index Reg is invalid prior to TLBIVUTLB cmd,
35 * it fails. Thus need to load it with ANY valid value before invoking
36 * TLBIVUTLB cmd
37 *
38 * Vineetg: Aug 21th 2008:
39 * -Reduced the duration of IRQ lockouts in TLB Flush routines
40 * -Multiple copies of TLB erase code seperated into a "single" function
41 * -In TLB Flush routines, interrupt disabling moved UP to retrieve ASID
42 * in interrupt-safe region.
43 *
44 * Vineetg: April 23rd Bug #93131
45 * Problem: tlb_flush_kernel_range() doesn't do anything if the range to
46 * flush is more than the size of TLB itself.
47 *
48 * Rahul Trivedi : Codito Technologies 2004
49 */
50
51#include <linux/module.h>
52#include <linux/bug.h>
53#include <linux/mm_types.h>
54
55#include <asm/arcregs.h>
56#include <asm/setup.h>
57#include <asm/mmu_context.h>
58#include <asm/mmu.h>
59
60/* Need for ARC MMU v2
61 *
62 * ARC700 MMU-v1 had a Joint-TLB for Code and Data and is 2 way set-assoc.
63 * For a memcpy operation with 3 players (src/dst/code) such that all 3 pages
64 * map into same set, there would be contention for the 2 ways causing severe
65 * Thrashing.
66 *
67 * Although J-TLB is 2 way set assoc, ARC700 caches J-TLB into uTLBS which has
68 * much higher associativity. u-D-TLB is 8 ways, u-I-TLB is 4 ways.
69 * Given this, the thrasing problem should never happen because once the 3
70 * J-TLB entries are created (even though 3rd will knock out one of the prev
71 * two), the u-D-TLB and u-I-TLB will have what is required to accomplish memcpy
72 *
73 * Yet we still see the Thrashing because a J-TLB Write cause flush of u-TLBs.
74 * This is a simple design for keeping them in sync. So what do we do?
75 * The solution which James came up was pretty neat. It utilised the assoc
76 * of uTLBs by not invalidating always but only when absolutely necessary.
77 *
78 * - Existing TLB commands work as before
79 * - New command (TLBWriteNI) for TLB write without clearing uTLBs
80 * - New command (TLBIVUTLB) to invalidate uTLBs.
81 *
82 * The uTLBs need only be invalidated when pages are being removed from the
83 * OS page table. If a 'victim' TLB entry is being overwritten in the main TLB
84 * as a result of a miss, the removed entry is still allowed to exist in the
85 * uTLBs as it is still valid and present in the OS page table. This allows the
86 * full associativity of the uTLBs to hide the limited associativity of the main
87 * TLB.
88 *
89 * During a miss handler, the new "TLBWriteNI" command is used to load
90 * entries without clearing the uTLBs.
91 *
92 * When the OS page table is updated, TLB entries that may be associated with a
93 * removed page are removed (flushed) from the TLB using TLBWrite. In this
94 * circumstance, the uTLBs must also be cleared. This is done by using the
95 * existing TLBWrite command. An explicit IVUTLB is also required for those
96 * corner cases when TLBWrite was not executed at all because the corresp
97 * J-TLB entry got evicted/replaced.
98 */
99
100
101/* A copy of the ASID from the PID reg is kept in asid_cache */
102DEFINE_PER_CPU(unsigned int, asid_cache) = MM_CTXT_FIRST_CYCLE;
103
104static int __read_mostly pae_exists;
105
106/*
107 * Utility Routine to erase a J-TLB entry
108 * Caller needs to setup Index Reg (manually or via getIndex)
109 */
110static inline void __tlb_entry_erase(void)
111{
112 write_aux_reg(ARC_REG_TLBPD1, 0);
113
114 if (is_pae40_enabled())
115 write_aux_reg(ARC_REG_TLBPD1HI, 0);
116
117 write_aux_reg(ARC_REG_TLBPD0, 0);
118 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
119}
120
121#if (CONFIG_ARC_MMU_VER < 4)
122
123static inline unsigned int tlb_entry_lkup(unsigned long vaddr_n_asid)
124{
125 unsigned int idx;
126
127 write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid);
128
129 write_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe);
130 idx = read_aux_reg(ARC_REG_TLBINDEX);
131
132 return idx;
133}
134
135static void tlb_entry_erase(unsigned int vaddr_n_asid)
136{
137 unsigned int idx;
138
139 /* Locate the TLB entry for this vaddr + ASID */
140 idx = tlb_entry_lkup(vaddr_n_asid);
141
142 /* No error means entry found, zero it out */
143 if (likely(!(idx & TLB_LKUP_ERR))) {
144 __tlb_entry_erase();
145 } else {
146 /* Duplicate entry error */
147 WARN(idx == TLB_DUP_ERR, "Probe returned Dup PD for %x\n",
148 vaddr_n_asid);
149 }
150}
151
152/****************************************************************************
153 * ARC700 MMU caches recently used J-TLB entries (RAM) as uTLBs (FLOPs)
154 *
155 * New IVUTLB cmd in MMU v2 explictly invalidates the uTLB
156 *
157 * utlb_invalidate ( )
158 * -For v2 MMU calls Flush uTLB Cmd
159 * -For v1 MMU does nothing (except for Metal Fix v1 MMU)
160 * This is because in v1 TLBWrite itself invalidate uTLBs
161 ***************************************************************************/
162
163static void utlb_invalidate(void)
164{
165#if (CONFIG_ARC_MMU_VER >= 2)
166
167#if (CONFIG_ARC_MMU_VER == 2)
168 /* MMU v2 introduced the uTLB Flush command.
169 * There was however an obscure hardware bug, where uTLB flush would
170 * fail when a prior probe for J-TLB (both totally unrelated) would
171 * return lkup err - because the entry didn't exist in MMU.
172 * The Workround was to set Index reg with some valid value, prior to
173 * flush. This was fixed in MMU v3 hence not needed any more
174 */
175 unsigned int idx;
176
177 /* make sure INDEX Reg is valid */
178 idx = read_aux_reg(ARC_REG_TLBINDEX);
179
180 /* If not write some dummy val */
181 if (unlikely(idx & TLB_LKUP_ERR))
182 write_aux_reg(ARC_REG_TLBINDEX, 0xa);
183#endif
184
185 write_aux_reg(ARC_REG_TLBCOMMAND, TLBIVUTLB);
186#endif
187
188}
189
190static void tlb_entry_insert(unsigned int pd0, pte_t pd1)
191{
192 unsigned int idx;
193
194 /*
195 * First verify if entry for this vaddr+ASID already exists
196 * This also sets up PD0 (vaddr, ASID..) for final commit
197 */
198 idx = tlb_entry_lkup(pd0);
199
200 /*
201 * If Not already present get a free slot from MMU.
202 * Otherwise, Probe would have located the entry and set INDEX Reg
203 * with existing location. This will cause Write CMD to over-write
204 * existing entry with new PD0 and PD1
205 */
206 if (likely(idx & TLB_LKUP_ERR))
207 write_aux_reg(ARC_REG_TLBCOMMAND, TLBGetIndex);
208
209 /* setup the other half of TLB entry (pfn, rwx..) */
210 write_aux_reg(ARC_REG_TLBPD1, pd1);
211
212 /*
213 * Commit the Entry to MMU
214 * It doesn't sound safe to use the TLBWriteNI cmd here
215 * which doesn't flush uTLBs. I'd rather be safe than sorry.
216 */
217 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
218}
219
220#else /* CONFIG_ARC_MMU_VER >= 4) */
221
222static void utlb_invalidate(void)
223{
224 /* No need since uTLB is always in sync with JTLB */
225}
226
227static void tlb_entry_erase(unsigned int vaddr_n_asid)
228{
229 write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid | _PAGE_PRESENT);
230 write_aux_reg(ARC_REG_TLBCOMMAND, TLBDeleteEntry);
231}
232
233static void tlb_entry_insert(unsigned int pd0, pte_t pd1)
234{
235 write_aux_reg(ARC_REG_TLBPD0, pd0);
236 write_aux_reg(ARC_REG_TLBPD1, pd1);
237
238 if (is_pae40_enabled())
239 write_aux_reg(ARC_REG_TLBPD1HI, (u64)pd1 >> 32);
240
241 write_aux_reg(ARC_REG_TLBCOMMAND, TLBInsertEntry);
242}
243
244#endif
245
246/*
247 * Un-conditionally (without lookup) erase the entire MMU contents
248 */
249
250noinline void local_flush_tlb_all(void)
251{
252 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
253 unsigned long flags;
254 unsigned int entry;
255 int num_tlb = mmu->sets * mmu->ways;
256
257 local_irq_save(flags);
258
259 /* Load PD0 and PD1 with template for a Blank Entry */
260 write_aux_reg(ARC_REG_TLBPD1, 0);
261
262 if (is_pae40_enabled())
263 write_aux_reg(ARC_REG_TLBPD1HI, 0);
264
265 write_aux_reg(ARC_REG_TLBPD0, 0);
266
267 for (entry = 0; entry < num_tlb; entry++) {
268 /* write this entry to the TLB */
269 write_aux_reg(ARC_REG_TLBINDEX, entry);
270 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
271 }
272
273 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
274 const int stlb_idx = 0x800;
275
276 /* Blank sTLB entry */
277 write_aux_reg(ARC_REG_TLBPD0, _PAGE_HW_SZ);
278
279 for (entry = stlb_idx; entry < stlb_idx + 16; entry++) {
280 write_aux_reg(ARC_REG_TLBINDEX, entry);
281 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
282 }
283 }
284
285 utlb_invalidate();
286
287 local_irq_restore(flags);
288}
289
290/*
291 * Flush the entrie MM for userland. The fastest way is to move to Next ASID
292 */
293noinline void local_flush_tlb_mm(struct mm_struct *mm)
294{
295 /*
296 * Small optimisation courtesy IA64
297 * flush_mm called during fork,exit,munmap etc, multiple times as well.
298 * Only for fork( ) do we need to move parent to a new MMU ctxt,
299 * all other cases are NOPs, hence this check.
300 */
301 if (atomic_read(&mm->mm_users) == 0)
302 return;
303
304 /*
305 * - Move to a new ASID, but only if the mm is still wired in
306 * (Android Binder ended up calling this for vma->mm != tsk->mm,
307 * causing h/w - s/w ASID to get out of sync)
308 * - Also get_new_mmu_context() new implementation allocates a new
309 * ASID only if it is not allocated already - so unallocate first
310 */
311 destroy_context(mm);
312 if (current->mm == mm)
313 get_new_mmu_context(mm);
314}
315
316/*
317 * Flush a Range of TLB entries for userland.
318 * @start is inclusive, while @end is exclusive
319 * Difference between this and Kernel Range Flush is
320 * -Here the fastest way (if range is too large) is to move to next ASID
321 * without doing any explicit Shootdown
322 * -In case of kernel Flush, entry has to be shot down explictly
323 */
324void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
325 unsigned long end)
326{
327 const unsigned int cpu = smp_processor_id();
328 unsigned long flags;
329
330 /* If range @start to @end is more than 32 TLB entries deep,
331 * its better to move to a new ASID rather than searching for
332 * individual entries and then shooting them down
333 *
334 * The calc above is rough, doesn't account for unaligned parts,
335 * since this is heuristics based anyways
336 */
337 if (unlikely((end - start) >= PAGE_SIZE * 32)) {
338 local_flush_tlb_mm(vma->vm_mm);
339 return;
340 }
341
342 /*
343 * @start moved to page start: this alone suffices for checking
344 * loop end condition below, w/o need for aligning @end to end
345 * e.g. 2000 to 4001 will anyhow loop twice
346 */
347 start &= PAGE_MASK;
348
349 local_irq_save(flags);
350
351 if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
352 while (start < end) {
353 tlb_entry_erase(start | hw_pid(vma->vm_mm, cpu));
354 start += PAGE_SIZE;
355 }
356 }
357
358 utlb_invalidate();
359
360 local_irq_restore(flags);
361}
362
363/* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective)
364 * @start, @end interpreted as kvaddr
365 * Interestingly, shared TLB entries can also be flushed using just
366 * @start,@end alone (interpreted as user vaddr), although technically SASID
367 * is also needed. However our smart TLbProbe lookup takes care of that.
368 */
369void local_flush_tlb_kernel_range(unsigned long start, unsigned long end)
370{
371 unsigned long flags;
372
373 /* exactly same as above, except for TLB entry not taking ASID */
374
375 if (unlikely((end - start) >= PAGE_SIZE * 32)) {
376 local_flush_tlb_all();
377 return;
378 }
379
380 start &= PAGE_MASK;
381
382 local_irq_save(flags);
383 while (start < end) {
384 tlb_entry_erase(start);
385 start += PAGE_SIZE;
386 }
387
388 utlb_invalidate();
389
390 local_irq_restore(flags);
391}
392
393/*
394 * Delete TLB entry in MMU for a given page (??? address)
395 * NOTE One TLB entry contains translation for single PAGE
396 */
397
398void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
399{
400 const unsigned int cpu = smp_processor_id();
401 unsigned long flags;
402
403 /* Note that it is critical that interrupts are DISABLED between
404 * checking the ASID and using it flush the TLB entry
405 */
406 local_irq_save(flags);
407
408 if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
409 tlb_entry_erase((page & PAGE_MASK) | hw_pid(vma->vm_mm, cpu));
410 utlb_invalidate();
411 }
412
413 local_irq_restore(flags);
414}
415
416#ifdef CONFIG_SMP
417
418struct tlb_args {
419 struct vm_area_struct *ta_vma;
420 unsigned long ta_start;
421 unsigned long ta_end;
422};
423
424static inline void ipi_flush_tlb_page(void *arg)
425{
426 struct tlb_args *ta = arg;
427
428 local_flush_tlb_page(ta->ta_vma, ta->ta_start);
429}
430
431static inline void ipi_flush_tlb_range(void *arg)
432{
433 struct tlb_args *ta = arg;
434
435 local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
436}
437
438#ifdef CONFIG_TRANSPARENT_HUGEPAGE
439static inline void ipi_flush_pmd_tlb_range(void *arg)
440{
441 struct tlb_args *ta = arg;
442
443 local_flush_pmd_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
444}
445#endif
446
447static inline void ipi_flush_tlb_kernel_range(void *arg)
448{
449 struct tlb_args *ta = (struct tlb_args *)arg;
450
451 local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
452}
453
454void flush_tlb_all(void)
455{
456 on_each_cpu((smp_call_func_t)local_flush_tlb_all, NULL, 1);
457}
458
459void flush_tlb_mm(struct mm_struct *mm)
460{
461 on_each_cpu_mask(mm_cpumask(mm), (smp_call_func_t)local_flush_tlb_mm,
462 mm, 1);
463}
464
465void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
466{
467 struct tlb_args ta = {
468 .ta_vma = vma,
469 .ta_start = uaddr
470 };
471
472 on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_page, &ta, 1);
473}
474
475void flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
476 unsigned long end)
477{
478 struct tlb_args ta = {
479 .ta_vma = vma,
480 .ta_start = start,
481 .ta_end = end
482 };
483
484 on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_range, &ta, 1);
485}
486
487#ifdef CONFIG_TRANSPARENT_HUGEPAGE
488void flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start,
489 unsigned long end)
490{
491 struct tlb_args ta = {
492 .ta_vma = vma,
493 .ta_start = start,
494 .ta_end = end
495 };
496
497 on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_pmd_tlb_range, &ta, 1);
498}
499#endif
500
501void flush_tlb_kernel_range(unsigned long start, unsigned long end)
502{
503 struct tlb_args ta = {
504 .ta_start = start,
505 .ta_end = end
506 };
507
508 on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1);
509}
510#endif
511
512/*
513 * Routine to create a TLB entry
514 */
515void create_tlb(struct vm_area_struct *vma, unsigned long vaddr, pte_t *ptep)
516{
517 unsigned long flags;
518 unsigned int asid_or_sasid, rwx;
519 unsigned long pd0;
520 pte_t pd1;
521
522 /*
523 * create_tlb() assumes that current->mm == vma->mm, since
524 * -it ASID for TLB entry is fetched from MMU ASID reg (valid for curr)
525 * -completes the lazy write to SASID reg (again valid for curr tsk)
526 *
527 * Removing the assumption involves
528 * -Using vma->mm->context{ASID,SASID}, as opposed to MMU reg.
529 * -Fix the TLB paranoid debug code to not trigger false negatives.
530 * -More importantly it makes this handler inconsistent with fast-path
531 * TLB Refill handler which always deals with "current"
532 *
533 * Lets see the use cases when current->mm != vma->mm and we land here
534 * 1. execve->copy_strings()->__get_user_pages->handle_mm_fault
535 * Here VM wants to pre-install a TLB entry for user stack while
536 * current->mm still points to pre-execve mm (hence the condition).
537 * However the stack vaddr is soon relocated (randomization) and
538 * move_page_tables() tries to undo that TLB entry.
539 * Thus not creating TLB entry is not any worse.
540 *
541 * 2. ptrace(POKETEXT) causes a CoW - debugger(current) inserting a
542 * breakpoint in debugged task. Not creating a TLB now is not
543 * performance critical.
544 *
545 * Both the cases above are not good enough for code churn.
546 */
547 if (current->active_mm != vma->vm_mm)
548 return;
549
550 local_irq_save(flags);
551
552 tlb_paranoid_check(asid_mm(vma->vm_mm, smp_processor_id()), vaddr);
553
554 vaddr &= PAGE_MASK;
555
556 /* update this PTE credentials */
557 pte_val(*ptep) |= (_PAGE_PRESENT | _PAGE_ACCESSED);
558
559 /* Create HW TLB(PD0,PD1) from PTE */
560
561 /* ASID for this task */
562 asid_or_sasid = read_aux_reg(ARC_REG_PID) & 0xff;
563
564 pd0 = vaddr | asid_or_sasid | (pte_val(*ptep) & PTE_BITS_IN_PD0);
565
566 /*
567 * ARC MMU provides fully orthogonal access bits for K/U mode,
568 * however Linux only saves 1 set to save PTE real-estate
569 * Here we convert 3 PTE bits into 6 MMU bits:
570 * -Kernel only entries have Kr Kw Kx 0 0 0
571 * -User entries have mirrored K and U bits
572 */
573 rwx = pte_val(*ptep) & PTE_BITS_RWX;
574
575 if (pte_val(*ptep) & _PAGE_GLOBAL)
576 rwx <<= 3; /* r w x => Kr Kw Kx 0 0 0 */
577 else
578 rwx |= (rwx << 3); /* r w x => Kr Kw Kx Ur Uw Ux */
579
580 pd1 = rwx | (pte_val(*ptep) & PTE_BITS_NON_RWX_IN_PD1);
581
582 tlb_entry_insert(pd0, pd1);
583
584 local_irq_restore(flags);
585}
586
587/*
588 * Called at the end of pagefault, for a userspace mapped page
589 * -pre-install the corresponding TLB entry into MMU
590 * -Finalize the delayed D-cache flush of kernel mapping of page due to
591 * flush_dcache_page(), copy_user_page()
592 *
593 * Note that flush (when done) involves both WBACK - so physical page is
594 * in sync as well as INV - so any non-congruent aliases don't remain
595 */
596void update_mmu_cache(struct vm_area_struct *vma, unsigned long vaddr_unaligned,
597 pte_t *ptep)
598{
599 unsigned long vaddr = vaddr_unaligned & PAGE_MASK;
600 phys_addr_t paddr = pte_val(*ptep) & PAGE_MASK;
601 struct page *page = pfn_to_page(pte_pfn(*ptep));
602
603 create_tlb(vma, vaddr, ptep);
604
605 if (page == ZERO_PAGE(0)) {
606 return;
607 }
608
609 /*
610 * Exec page : Independent of aliasing/page-color considerations,
611 * since icache doesn't snoop dcache on ARC, any dirty
612 * K-mapping of a code page needs to be wback+inv so that
613 * icache fetch by userspace sees code correctly.
614 * !EXEC page: If K-mapping is NOT congruent to U-mapping, flush it
615 * so userspace sees the right data.
616 * (Avoids the flush for Non-exec + congruent mapping case)
617 */
618 if ((vma->vm_flags & VM_EXEC) ||
619 addr_not_cache_congruent(paddr, vaddr)) {
620
621 int dirty = !test_and_set_bit(PG_dc_clean, &page->flags);
622 if (dirty) {
623 /* wback + inv dcache lines (K-mapping) */
624 __flush_dcache_page(paddr, paddr);
625
626 /* invalidate any existing icache lines (U-mapping) */
627 if (vma->vm_flags & VM_EXEC)
628 __inv_icache_page(paddr, vaddr);
629 }
630 }
631}
632
633#ifdef CONFIG_TRANSPARENT_HUGEPAGE
634
635/*
636 * MMUv4 in HS38x cores supports Super Pages which are basis for Linux THP
637 * support.
638 *
639 * Normal and Super pages can co-exist (ofcourse not overlap) in TLB with a
640 * new bit "SZ" in TLB page descriptor to distinguish between them.
641 * Super Page size is configurable in hardware (4K to 16M), but fixed once
642 * RTL builds.
643 *
644 * The exact THP size a Linx configuration will support is a function of:
645 * - MMU page size (typical 8K, RTL fixed)
646 * - software page walker address split between PGD:PTE:PFN (typical
647 * 11:8:13, but can be changed with 1 line)
648 * So for above default, THP size supported is 8K * (2^8) = 2M
649 *
650 * Default Page Walker is 2 levels, PGD:PTE:PFN, which in THP regime
651 * reduces to 1 level (as PTE is folded into PGD and canonically referred
652 * to as PMD).
653 * Thus THP PMD accessors are implemented in terms of PTE (just like sparc)
654 */
655
656void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
657 pmd_t *pmd)
658{
659 pte_t pte = __pte(pmd_val(*pmd));
660 update_mmu_cache(vma, addr, &pte);
661}
662
663void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
664 pgtable_t pgtable)
665{
666 struct list_head *lh = (struct list_head *) pgtable;
667
668 assert_spin_locked(&mm->page_table_lock);
669
670 /* FIFO */
671 if (!pmd_huge_pte(mm, pmdp))
672 INIT_LIST_HEAD(lh);
673 else
674 list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
675 pmd_huge_pte(mm, pmdp) = pgtable;
676}
677
678pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
679{
680 struct list_head *lh;
681 pgtable_t pgtable;
682
683 assert_spin_locked(&mm->page_table_lock);
684
685 pgtable = pmd_huge_pte(mm, pmdp);
686 lh = (struct list_head *) pgtable;
687 if (list_empty(lh))
688 pmd_huge_pte(mm, pmdp) = NULL;
689 else {
690 pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
691 list_del(lh);
692 }
693
694 pte_val(pgtable[0]) = 0;
695 pte_val(pgtable[1]) = 0;
696
697 return pgtable;
698}
699
700void local_flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start,
701 unsigned long end)
702{
703 unsigned int cpu;
704 unsigned long flags;
705
706 local_irq_save(flags);
707
708 cpu = smp_processor_id();
709
710 if (likely(asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID)) {
711 unsigned int asid = hw_pid(vma->vm_mm, cpu);
712
713 /* No need to loop here: this will always be for 1 Huge Page */
714 tlb_entry_erase(start | _PAGE_HW_SZ | asid);
715 }
716
717 local_irq_restore(flags);
718}
719
720#endif
721
722/* Read the Cache Build Confuration Registers, Decode them and save into
723 * the cpuinfo structure for later use.
724 * No Validation is done here, simply read/convert the BCRs
725 */
726void read_decode_mmu_bcr(void)
727{
728 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
729 unsigned int tmp;
730 struct bcr_mmu_1_2 {
731#ifdef CONFIG_CPU_BIG_ENDIAN
732 unsigned int ver:8, ways:4, sets:4, u_itlb:8, u_dtlb:8;
733#else
734 unsigned int u_dtlb:8, u_itlb:8, sets:4, ways:4, ver:8;
735#endif
736 } *mmu2;
737
738 struct bcr_mmu_3 {
739#ifdef CONFIG_CPU_BIG_ENDIAN
740 unsigned int ver:8, ways:4, sets:4, res:3, sasid:1, pg_sz:4,
741 u_itlb:4, u_dtlb:4;
742#else
743 unsigned int u_dtlb:4, u_itlb:4, pg_sz:4, sasid:1, res:3, sets:4,
744 ways:4, ver:8;
745#endif
746 } *mmu3;
747
748 struct bcr_mmu_4 {
749#ifdef CONFIG_CPU_BIG_ENDIAN
750 unsigned int ver:8, sasid:1, sz1:4, sz0:4, res:2, pae:1,
751 n_ways:2, n_entry:2, n_super:2, u_itlb:3, u_dtlb:3;
752#else
753 /* DTLB ITLB JES JE JA */
754 unsigned int u_dtlb:3, u_itlb:3, n_super:2, n_entry:2, n_ways:2,
755 pae:1, res:2, sz0:4, sz1:4, sasid:1, ver:8;
756#endif
757 } *mmu4;
758
759 tmp = read_aux_reg(ARC_REG_MMU_BCR);
760 mmu->ver = (tmp >> 24);
761
762 if (is_isa_arcompact()) {
763 if (mmu->ver <= 2) {
764 mmu2 = (struct bcr_mmu_1_2 *)&tmp;
765 mmu->pg_sz_k = TO_KB(0x2000);
766 mmu->sets = 1 << mmu2->sets;
767 mmu->ways = 1 << mmu2->ways;
768 mmu->u_dtlb = mmu2->u_dtlb;
769 mmu->u_itlb = mmu2->u_itlb;
770 } else {
771 mmu3 = (struct bcr_mmu_3 *)&tmp;
772 mmu->pg_sz_k = 1 << (mmu3->pg_sz - 1);
773 mmu->sets = 1 << mmu3->sets;
774 mmu->ways = 1 << mmu3->ways;
775 mmu->u_dtlb = mmu3->u_dtlb;
776 mmu->u_itlb = mmu3->u_itlb;
777 mmu->sasid = mmu3->sasid;
778 }
779 } else {
780 mmu4 = (struct bcr_mmu_4 *)&tmp;
781 mmu->pg_sz_k = 1 << (mmu4->sz0 - 1);
782 mmu->s_pg_sz_m = 1 << (mmu4->sz1 - 11);
783 mmu->sets = 64 << mmu4->n_entry;
784 mmu->ways = mmu4->n_ways * 2;
785 mmu->u_dtlb = mmu4->u_dtlb * 4;
786 mmu->u_itlb = mmu4->u_itlb * 4;
787 mmu->sasid = mmu4->sasid;
788 pae_exists = mmu->pae = mmu4->pae;
789 }
790}
791
792char *arc_mmu_mumbojumbo(int cpu_id, char *buf, int len)
793{
794 int n = 0;
795 struct cpuinfo_arc_mmu *p_mmu = &cpuinfo_arc700[cpu_id].mmu;
796 char super_pg[64] = "";
797
798 if (p_mmu->s_pg_sz_m)
799 scnprintf(super_pg, 64, "%dM Super Page %s",
800 p_mmu->s_pg_sz_m,
801 IS_USED_CFG(CONFIG_TRANSPARENT_HUGEPAGE));
802
803 n += scnprintf(buf + n, len - n,
804 "MMU [v%x]\t: %dk PAGE, %sJTLB %d (%dx%d), uDTLB %d, uITLB %d%s%s\n",
805 p_mmu->ver, p_mmu->pg_sz_k, super_pg,
806 p_mmu->sets * p_mmu->ways, p_mmu->sets, p_mmu->ways,
807 p_mmu->u_dtlb, p_mmu->u_itlb,
808 IS_AVAIL2(p_mmu->pae, ", PAE40 ", CONFIG_ARC_HAS_PAE40));
809
810 return buf;
811}
812
813int pae40_exist_but_not_enab(void)
814{
815 return pae_exists && !is_pae40_enabled();
816}
817
818void arc_mmu_init(void)
819{
820 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
821 char str[256];
822 int compat = 0;
823
824 pr_info("%s", arc_mmu_mumbojumbo(0, str, sizeof(str)));
825
826 /*
827 * Can't be done in processor.h due to header include depenedencies
828 */
829 BUILD_BUG_ON(!IS_ALIGNED((CONFIG_ARC_KVADDR_SIZE << 20), PMD_SIZE));
830
831 /*
832 * stack top size sanity check,
833 * Can't be done in processor.h due to header include depenedencies
834 */
835 BUILD_BUG_ON(!IS_ALIGNED(STACK_TOP, PMD_SIZE));
836
837 /*
838 * Ensure that MMU features assumed by kernel exist in hardware.
839 * For older ARC700 cpus, it has to be exact match, since the MMU
840 * revisions were not backwards compatible (MMUv3 TLB layout changed
841 * so even if kernel for v2 didn't use any new cmds of v3, it would
842 * still not work.
843 * For HS cpus, MMUv4 was baseline and v5 is backwards compatible
844 * (will run older software).
845 */
846 if (is_isa_arcompact() && mmu->ver == CONFIG_ARC_MMU_VER)
847 compat = 1;
848 else if (is_isa_arcv2() && mmu->ver >= CONFIG_ARC_MMU_VER)
849 compat = 1;
850
851 if (!compat) {
852 panic("MMU ver %d doesn't match kernel built for %d...\n",
853 mmu->ver, CONFIG_ARC_MMU_VER);
854 }
855
856 if (mmu->pg_sz_k != TO_KB(PAGE_SIZE))
857 panic("MMU pg size != PAGE_SIZE (%luk)\n", TO_KB(PAGE_SIZE));
858
859 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
860 mmu->s_pg_sz_m != TO_MB(HPAGE_PMD_SIZE))
861 panic("MMU Super pg size != Linux HPAGE_PMD_SIZE (%luM)\n",
862 (unsigned long)TO_MB(HPAGE_PMD_SIZE));
863
864 if (IS_ENABLED(CONFIG_ARC_HAS_PAE40) && !mmu->pae)
865 panic("Hardware doesn't support PAE40\n");
866
867 /* Enable the MMU */
868 write_aux_reg(ARC_REG_PID, MMU_ENABLE);
869
870 /* In smp we use this reg for interrupt 1 scratch */
871#ifndef CONFIG_SMP
872 /* swapper_pg_dir is the pgd for the kernel, used by vmalloc */
873 write_aux_reg(ARC_REG_SCRATCH_DATA0, swapper_pg_dir);
874#endif
875
876 if (pae40_exist_but_not_enab())
877 write_aux_reg(ARC_REG_TLBPD1HI, 0);
878}
879
880/*
881 * TLB Programmer's Model uses Linear Indexes: 0 to {255, 511} for 128 x {2,4}
882 * The mapping is Column-first.
883 * --------------------- -----------
884 * |way0|way1|way2|way3| |way0|way1|
885 * --------------------- -----------
886 * [set0] | 0 | 1 | 2 | 3 | | 0 | 1 |
887 * [set1] | 4 | 5 | 6 | 7 | | 2 | 3 |
888 * ~ ~ ~ ~
889 * [set127] | 508| 509| 510| 511| | 254| 255|
890 * --------------------- -----------
891 * For normal operations we don't(must not) care how above works since
892 * MMU cmd getIndex(vaddr) abstracts that out.
893 * However for walking WAYS of a SET, we need to know this
894 */
895#define SET_WAY_TO_IDX(mmu, set, way) ((set) * mmu->ways + (way))
896
897/* Handling of Duplicate PD (TLB entry) in MMU.
898 * -Could be due to buggy customer tapeouts or obscure kernel bugs
899 * -MMU complaints not at the time of duplicate PD installation, but at the
900 * time of lookup matching multiple ways.
901 * -Ideally these should never happen - but if they do - workaround by deleting
902 * the duplicate one.
903 * -Knob to be verbose abt it.(TODO: hook them up to debugfs)
904 */
905volatile int dup_pd_silent; /* Be slient abt it or complain (default) */
906
907void do_tlb_overlap_fault(unsigned long cause, unsigned long address,
908 struct pt_regs *regs)
909{
910 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
911 unsigned long flags;
912 int set, n_ways = mmu->ways;
913
914 n_ways = min(n_ways, 4);
915 BUG_ON(mmu->ways > 4);
916
917 local_irq_save(flags);
918
919 /* loop thru all sets of TLB */
920 for (set = 0; set < mmu->sets; set++) {
921
922 int is_valid, way;
923 unsigned int pd0[4];
924
925 /* read out all the ways of current set */
926 for (way = 0, is_valid = 0; way < n_ways; way++) {
927 write_aux_reg(ARC_REG_TLBINDEX,
928 SET_WAY_TO_IDX(mmu, set, way));
929 write_aux_reg(ARC_REG_TLBCOMMAND, TLBRead);
930 pd0[way] = read_aux_reg(ARC_REG_TLBPD0);
931 is_valid |= pd0[way] & _PAGE_PRESENT;
932 pd0[way] &= PAGE_MASK;
933 }
934
935 /* If all the WAYS in SET are empty, skip to next SET */
936 if (!is_valid)
937 continue;
938
939 /* Scan the set for duplicate ways: needs a nested loop */
940 for (way = 0; way < n_ways - 1; way++) {
941
942 int n;
943
944 if (!pd0[way])
945 continue;
946
947 for (n = way + 1; n < n_ways; n++) {
948 if (pd0[way] != pd0[n])
949 continue;
950
951 if (!dup_pd_silent)
952 pr_info("Dup TLB PD0 %08x @ set %d ways %d,%d\n",
953 pd0[way], set, way, n);
954
955 /*
956 * clear entry @way and not @n.
957 * This is critical to our optimised loop
958 */
959 pd0[way] = 0;
960 write_aux_reg(ARC_REG_TLBINDEX,
961 SET_WAY_TO_IDX(mmu, set, way));
962 __tlb_entry_erase();
963 }
964 }
965 }
966
967 local_irq_restore(flags);
968}
969
970/***********************************************************************
971 * Diagnostic Routines
972 * -Called from Low Level TLB Hanlders if things don;t look good
973 **********************************************************************/
974
975#ifdef CONFIG_ARC_DBG_TLB_PARANOIA
976
977/*
978 * Low Level ASM TLB handler calls this if it finds that HW and SW ASIDS
979 * don't match
980 */
981void print_asid_mismatch(int mm_asid, int mmu_asid, int is_fast_path)
982{
983 pr_emerg("ASID Mismatch in %s Path Handler: sw-pid=0x%x hw-pid=0x%x\n",
984 is_fast_path ? "Fast" : "Slow", mm_asid, mmu_asid);
985
986 __asm__ __volatile__("flag 1");
987}
988
989void tlb_paranoid_check(unsigned int mm_asid, unsigned long addr)
990{
991 unsigned int mmu_asid;
992
993 mmu_asid = read_aux_reg(ARC_REG_PID) & 0xff;
994
995 /*
996 * At the time of a TLB miss/installation
997 * - HW version needs to match SW version
998 * - SW needs to have a valid ASID
999 */
1000 if (addr < 0x70000000 &&
1001 ((mm_asid == MM_CTXT_NO_ASID) ||
1002 (mmu_asid != (mm_asid & MM_CTXT_ASID_MASK))))
1003 print_asid_mismatch(mm_asid, mmu_asid, 0);
1004}
1005#endif
1/*
2 * TLB Management (flush/create/diagnostics) for ARC700
3 *
4 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * vineetg: Aug 2011
11 * -Reintroduce duplicate PD fixup - some customer chips still have the issue
12 *
13 * vineetg: May 2011
14 * -No need to flush_cache_page( ) for each call to update_mmu_cache()
15 * some of the LMBench tests improved amazingly
16 * = page-fault thrice as fast (75 usec to 28 usec)
17 * = mmap twice as fast (9.6 msec to 4.6 msec),
18 * = fork (5.3 msec to 3.7 msec)
19 *
20 * vineetg: April 2011 :
21 * -MMU v3: PD{0,1} bits layout changed: They don't overlap anymore,
22 * helps avoid a shift when preparing PD0 from PTE
23 *
24 * vineetg: April 2011 : Preparing for MMU V3
25 * -MMU v2/v3 BCRs decoded differently
26 * -Remove TLB_SIZE hardcoding as it's variable now: 256 or 512
27 * -tlb_entry_erase( ) can be void
28 * -local_flush_tlb_range( ):
29 * = need not "ceil" @end
30 * = walks MMU only if range spans < 32 entries, as opposed to 256
31 *
32 * Vineetg: Sept 10th 2008
33 * -Changes related to MMU v2 (Rel 4.8)
34 *
35 * Vineetg: Aug 29th 2008
36 * -In TLB Flush operations (Metal Fix MMU) there is a explict command to
37 * flush Micro-TLBS. If TLB Index Reg is invalid prior to TLBIVUTLB cmd,
38 * it fails. Thus need to load it with ANY valid value before invoking
39 * TLBIVUTLB cmd
40 *
41 * Vineetg: Aug 21th 2008:
42 * -Reduced the duration of IRQ lockouts in TLB Flush routines
43 * -Multiple copies of TLB erase code seperated into a "single" function
44 * -In TLB Flush routines, interrupt disabling moved UP to retrieve ASID
45 * in interrupt-safe region.
46 *
47 * Vineetg: April 23rd Bug #93131
48 * Problem: tlb_flush_kernel_range() doesn't do anything if the range to
49 * flush is more than the size of TLB itself.
50 *
51 * Rahul Trivedi : Codito Technologies 2004
52 */
53
54#include <linux/module.h>
55#include <linux/bug.h>
56#include <asm/arcregs.h>
57#include <asm/setup.h>
58#include <asm/mmu_context.h>
59#include <asm/mmu.h>
60
61/* Need for ARC MMU v2
62 *
63 * ARC700 MMU-v1 had a Joint-TLB for Code and Data and is 2 way set-assoc.
64 * For a memcpy operation with 3 players (src/dst/code) such that all 3 pages
65 * map into same set, there would be contention for the 2 ways causing severe
66 * Thrashing.
67 *
68 * Although J-TLB is 2 way set assoc, ARC700 caches J-TLB into uTLBS which has
69 * much higher associativity. u-D-TLB is 8 ways, u-I-TLB is 4 ways.
70 * Given this, the thrasing problem should never happen because once the 3
71 * J-TLB entries are created (even though 3rd will knock out one of the prev
72 * two), the u-D-TLB and u-I-TLB will have what is required to accomplish memcpy
73 *
74 * Yet we still see the Thrashing because a J-TLB Write cause flush of u-TLBs.
75 * This is a simple design for keeping them in sync. So what do we do?
76 * The solution which James came up was pretty neat. It utilised the assoc
77 * of uTLBs by not invalidating always but only when absolutely necessary.
78 *
79 * - Existing TLB commands work as before
80 * - New command (TLBWriteNI) for TLB write without clearing uTLBs
81 * - New command (TLBIVUTLB) to invalidate uTLBs.
82 *
83 * The uTLBs need only be invalidated when pages are being removed from the
84 * OS page table. If a 'victim' TLB entry is being overwritten in the main TLB
85 * as a result of a miss, the removed entry is still allowed to exist in the
86 * uTLBs as it is still valid and present in the OS page table. This allows the
87 * full associativity of the uTLBs to hide the limited associativity of the main
88 * TLB.
89 *
90 * During a miss handler, the new "TLBWriteNI" command is used to load
91 * entries without clearing the uTLBs.
92 *
93 * When the OS page table is updated, TLB entries that may be associated with a
94 * removed page are removed (flushed) from the TLB using TLBWrite. In this
95 * circumstance, the uTLBs must also be cleared. This is done by using the
96 * existing TLBWrite command. An explicit IVUTLB is also required for those
97 * corner cases when TLBWrite was not executed at all because the corresp
98 * J-TLB entry got evicted/replaced.
99 */
100
101
102/* A copy of the ASID from the PID reg is kept in asid_cache */
103DEFINE_PER_CPU(unsigned int, asid_cache) = MM_CTXT_FIRST_CYCLE;
104
105/*
106 * Utility Routine to erase a J-TLB entry
107 * Caller needs to setup Index Reg (manually or via getIndex)
108 */
109static inline void __tlb_entry_erase(void)
110{
111 write_aux_reg(ARC_REG_TLBPD1, 0);
112
113 if (is_pae40_enabled())
114 write_aux_reg(ARC_REG_TLBPD1HI, 0);
115
116 write_aux_reg(ARC_REG_TLBPD0, 0);
117 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
118}
119
120#if (CONFIG_ARC_MMU_VER < 4)
121
122static inline unsigned int tlb_entry_lkup(unsigned long vaddr_n_asid)
123{
124 unsigned int idx;
125
126 write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid);
127
128 write_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe);
129 idx = read_aux_reg(ARC_REG_TLBINDEX);
130
131 return idx;
132}
133
134static void tlb_entry_erase(unsigned int vaddr_n_asid)
135{
136 unsigned int idx;
137
138 /* Locate the TLB entry for this vaddr + ASID */
139 idx = tlb_entry_lkup(vaddr_n_asid);
140
141 /* No error means entry found, zero it out */
142 if (likely(!(idx & TLB_LKUP_ERR))) {
143 __tlb_entry_erase();
144 } else {
145 /* Duplicate entry error */
146 WARN(idx == TLB_DUP_ERR, "Probe returned Dup PD for %x\n",
147 vaddr_n_asid);
148 }
149}
150
151/****************************************************************************
152 * ARC700 MMU caches recently used J-TLB entries (RAM) as uTLBs (FLOPs)
153 *
154 * New IVUTLB cmd in MMU v2 explictly invalidates the uTLB
155 *
156 * utlb_invalidate ( )
157 * -For v2 MMU calls Flush uTLB Cmd
158 * -For v1 MMU does nothing (except for Metal Fix v1 MMU)
159 * This is because in v1 TLBWrite itself invalidate uTLBs
160 ***************************************************************************/
161
162static void utlb_invalidate(void)
163{
164#if (CONFIG_ARC_MMU_VER >= 2)
165
166#if (CONFIG_ARC_MMU_VER == 2)
167 /* MMU v2 introduced the uTLB Flush command.
168 * There was however an obscure hardware bug, where uTLB flush would
169 * fail when a prior probe for J-TLB (both totally unrelated) would
170 * return lkup err - because the entry didn't exist in MMU.
171 * The Workround was to set Index reg with some valid value, prior to
172 * flush. This was fixed in MMU v3 hence not needed any more
173 */
174 unsigned int idx;
175
176 /* make sure INDEX Reg is valid */
177 idx = read_aux_reg(ARC_REG_TLBINDEX);
178
179 /* If not write some dummy val */
180 if (unlikely(idx & TLB_LKUP_ERR))
181 write_aux_reg(ARC_REG_TLBINDEX, 0xa);
182#endif
183
184 write_aux_reg(ARC_REG_TLBCOMMAND, TLBIVUTLB);
185#endif
186
187}
188
189static void tlb_entry_insert(unsigned int pd0, pte_t pd1)
190{
191 unsigned int idx;
192
193 /*
194 * First verify if entry for this vaddr+ASID already exists
195 * This also sets up PD0 (vaddr, ASID..) for final commit
196 */
197 idx = tlb_entry_lkup(pd0);
198
199 /*
200 * If Not already present get a free slot from MMU.
201 * Otherwise, Probe would have located the entry and set INDEX Reg
202 * with existing location. This will cause Write CMD to over-write
203 * existing entry with new PD0 and PD1
204 */
205 if (likely(idx & TLB_LKUP_ERR))
206 write_aux_reg(ARC_REG_TLBCOMMAND, TLBGetIndex);
207
208 /* setup the other half of TLB entry (pfn, rwx..) */
209 write_aux_reg(ARC_REG_TLBPD1, pd1);
210
211 /*
212 * Commit the Entry to MMU
213 * It doesn't sound safe to use the TLBWriteNI cmd here
214 * which doesn't flush uTLBs. I'd rather be safe than sorry.
215 */
216 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
217}
218
219#else /* CONFIG_ARC_MMU_VER >= 4) */
220
221static void utlb_invalidate(void)
222{
223 /* No need since uTLB is always in sync with JTLB */
224}
225
226static void tlb_entry_erase(unsigned int vaddr_n_asid)
227{
228 write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid | _PAGE_PRESENT);
229 write_aux_reg(ARC_REG_TLBCOMMAND, TLBDeleteEntry);
230}
231
232static void tlb_entry_insert(unsigned int pd0, pte_t pd1)
233{
234 write_aux_reg(ARC_REG_TLBPD0, pd0);
235 write_aux_reg(ARC_REG_TLBPD1, pd1);
236
237 if (is_pae40_enabled())
238 write_aux_reg(ARC_REG_TLBPD1HI, (u64)pd1 >> 32);
239
240 write_aux_reg(ARC_REG_TLBCOMMAND, TLBInsertEntry);
241}
242
243#endif
244
245/*
246 * Un-conditionally (without lookup) erase the entire MMU contents
247 */
248
249noinline void local_flush_tlb_all(void)
250{
251 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
252 unsigned long flags;
253 unsigned int entry;
254 int num_tlb = mmu->sets * mmu->ways;
255
256 local_irq_save(flags);
257
258 /* Load PD0 and PD1 with template for a Blank Entry */
259 write_aux_reg(ARC_REG_TLBPD1, 0);
260
261 if (is_pae40_enabled())
262 write_aux_reg(ARC_REG_TLBPD1HI, 0);
263
264 write_aux_reg(ARC_REG_TLBPD0, 0);
265
266 for (entry = 0; entry < num_tlb; entry++) {
267 /* write this entry to the TLB */
268 write_aux_reg(ARC_REG_TLBINDEX, entry);
269 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
270 }
271
272 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
273 const int stlb_idx = 0x800;
274
275 /* Blank sTLB entry */
276 write_aux_reg(ARC_REG_TLBPD0, _PAGE_HW_SZ);
277
278 for (entry = stlb_idx; entry < stlb_idx + 16; entry++) {
279 write_aux_reg(ARC_REG_TLBINDEX, entry);
280 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
281 }
282 }
283
284 utlb_invalidate();
285
286 local_irq_restore(flags);
287}
288
289/*
290 * Flush the entrie MM for userland. The fastest way is to move to Next ASID
291 */
292noinline void local_flush_tlb_mm(struct mm_struct *mm)
293{
294 /*
295 * Small optimisation courtesy IA64
296 * flush_mm called during fork,exit,munmap etc, multiple times as well.
297 * Only for fork( ) do we need to move parent to a new MMU ctxt,
298 * all other cases are NOPs, hence this check.
299 */
300 if (atomic_read(&mm->mm_users) == 0)
301 return;
302
303 /*
304 * - Move to a new ASID, but only if the mm is still wired in
305 * (Android Binder ended up calling this for vma->mm != tsk->mm,
306 * causing h/w - s/w ASID to get out of sync)
307 * - Also get_new_mmu_context() new implementation allocates a new
308 * ASID only if it is not allocated already - so unallocate first
309 */
310 destroy_context(mm);
311 if (current->mm == mm)
312 get_new_mmu_context(mm);
313}
314
315/*
316 * Flush a Range of TLB entries for userland.
317 * @start is inclusive, while @end is exclusive
318 * Difference between this and Kernel Range Flush is
319 * -Here the fastest way (if range is too large) is to move to next ASID
320 * without doing any explicit Shootdown
321 * -In case of kernel Flush, entry has to be shot down explictly
322 */
323void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
324 unsigned long end)
325{
326 const unsigned int cpu = smp_processor_id();
327 unsigned long flags;
328
329 /* If range @start to @end is more than 32 TLB entries deep,
330 * its better to move to a new ASID rather than searching for
331 * individual entries and then shooting them down
332 *
333 * The calc above is rough, doesn't account for unaligned parts,
334 * since this is heuristics based anyways
335 */
336 if (unlikely((end - start) >= PAGE_SIZE * 32)) {
337 local_flush_tlb_mm(vma->vm_mm);
338 return;
339 }
340
341 /*
342 * @start moved to page start: this alone suffices for checking
343 * loop end condition below, w/o need for aligning @end to end
344 * e.g. 2000 to 4001 will anyhow loop twice
345 */
346 start &= PAGE_MASK;
347
348 local_irq_save(flags);
349
350 if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
351 while (start < end) {
352 tlb_entry_erase(start | hw_pid(vma->vm_mm, cpu));
353 start += PAGE_SIZE;
354 }
355 }
356
357 utlb_invalidate();
358
359 local_irq_restore(flags);
360}
361
362/* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective)
363 * @start, @end interpreted as kvaddr
364 * Interestingly, shared TLB entries can also be flushed using just
365 * @start,@end alone (interpreted as user vaddr), although technically SASID
366 * is also needed. However our smart TLbProbe lookup takes care of that.
367 */
368void local_flush_tlb_kernel_range(unsigned long start, unsigned long end)
369{
370 unsigned long flags;
371
372 /* exactly same as above, except for TLB entry not taking ASID */
373
374 if (unlikely((end - start) >= PAGE_SIZE * 32)) {
375 local_flush_tlb_all();
376 return;
377 }
378
379 start &= PAGE_MASK;
380
381 local_irq_save(flags);
382 while (start < end) {
383 tlb_entry_erase(start);
384 start += PAGE_SIZE;
385 }
386
387 utlb_invalidate();
388
389 local_irq_restore(flags);
390}
391
392/*
393 * Delete TLB entry in MMU for a given page (??? address)
394 * NOTE One TLB entry contains translation for single PAGE
395 */
396
397void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
398{
399 const unsigned int cpu = smp_processor_id();
400 unsigned long flags;
401
402 /* Note that it is critical that interrupts are DISABLED between
403 * checking the ASID and using it flush the TLB entry
404 */
405 local_irq_save(flags);
406
407 if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
408 tlb_entry_erase((page & PAGE_MASK) | hw_pid(vma->vm_mm, cpu));
409 utlb_invalidate();
410 }
411
412 local_irq_restore(flags);
413}
414
415#ifdef CONFIG_SMP
416
417struct tlb_args {
418 struct vm_area_struct *ta_vma;
419 unsigned long ta_start;
420 unsigned long ta_end;
421};
422
423static inline void ipi_flush_tlb_page(void *arg)
424{
425 struct tlb_args *ta = arg;
426
427 local_flush_tlb_page(ta->ta_vma, ta->ta_start);
428}
429
430static inline void ipi_flush_tlb_range(void *arg)
431{
432 struct tlb_args *ta = arg;
433
434 local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
435}
436
437#ifdef CONFIG_TRANSPARENT_HUGEPAGE
438static inline void ipi_flush_pmd_tlb_range(void *arg)
439{
440 struct tlb_args *ta = arg;
441
442 local_flush_pmd_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
443}
444#endif
445
446static inline void ipi_flush_tlb_kernel_range(void *arg)
447{
448 struct tlb_args *ta = (struct tlb_args *)arg;
449
450 local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
451}
452
453void flush_tlb_all(void)
454{
455 on_each_cpu((smp_call_func_t)local_flush_tlb_all, NULL, 1);
456}
457
458void flush_tlb_mm(struct mm_struct *mm)
459{
460 on_each_cpu_mask(mm_cpumask(mm), (smp_call_func_t)local_flush_tlb_mm,
461 mm, 1);
462}
463
464void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
465{
466 struct tlb_args ta = {
467 .ta_vma = vma,
468 .ta_start = uaddr
469 };
470
471 on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_page, &ta, 1);
472}
473
474void flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
475 unsigned long end)
476{
477 struct tlb_args ta = {
478 .ta_vma = vma,
479 .ta_start = start,
480 .ta_end = end
481 };
482
483 on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_range, &ta, 1);
484}
485
486#ifdef CONFIG_TRANSPARENT_HUGEPAGE
487void flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start,
488 unsigned long end)
489{
490 struct tlb_args ta = {
491 .ta_vma = vma,
492 .ta_start = start,
493 .ta_end = end
494 };
495
496 on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_pmd_tlb_range, &ta, 1);
497}
498#endif
499
500void flush_tlb_kernel_range(unsigned long start, unsigned long end)
501{
502 struct tlb_args ta = {
503 .ta_start = start,
504 .ta_end = end
505 };
506
507 on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1);
508}
509#endif
510
511/*
512 * Routine to create a TLB entry
513 */
514void create_tlb(struct vm_area_struct *vma, unsigned long vaddr, pte_t *ptep)
515{
516 unsigned long flags;
517 unsigned int asid_or_sasid, rwx;
518 unsigned long pd0;
519 pte_t pd1;
520
521 /*
522 * create_tlb() assumes that current->mm == vma->mm, since
523 * -it ASID for TLB entry is fetched from MMU ASID reg (valid for curr)
524 * -completes the lazy write to SASID reg (again valid for curr tsk)
525 *
526 * Removing the assumption involves
527 * -Using vma->mm->context{ASID,SASID}, as opposed to MMU reg.
528 * -Fix the TLB paranoid debug code to not trigger false negatives.
529 * -More importantly it makes this handler inconsistent with fast-path
530 * TLB Refill handler which always deals with "current"
531 *
532 * Lets see the use cases when current->mm != vma->mm and we land here
533 * 1. execve->copy_strings()->__get_user_pages->handle_mm_fault
534 * Here VM wants to pre-install a TLB entry for user stack while
535 * current->mm still points to pre-execve mm (hence the condition).
536 * However the stack vaddr is soon relocated (randomization) and
537 * move_page_tables() tries to undo that TLB entry.
538 * Thus not creating TLB entry is not any worse.
539 *
540 * 2. ptrace(POKETEXT) causes a CoW - debugger(current) inserting a
541 * breakpoint in debugged task. Not creating a TLB now is not
542 * performance critical.
543 *
544 * Both the cases above are not good enough for code churn.
545 */
546 if (current->active_mm != vma->vm_mm)
547 return;
548
549 local_irq_save(flags);
550
551 tlb_paranoid_check(asid_mm(vma->vm_mm, smp_processor_id()), vaddr);
552
553 vaddr &= PAGE_MASK;
554
555 /* update this PTE credentials */
556 pte_val(*ptep) |= (_PAGE_PRESENT | _PAGE_ACCESSED);
557
558 /* Create HW TLB(PD0,PD1) from PTE */
559
560 /* ASID for this task */
561 asid_or_sasid = read_aux_reg(ARC_REG_PID) & 0xff;
562
563 pd0 = vaddr | asid_or_sasid | (pte_val(*ptep) & PTE_BITS_IN_PD0);
564
565 /*
566 * ARC MMU provides fully orthogonal access bits for K/U mode,
567 * however Linux only saves 1 set to save PTE real-estate
568 * Here we convert 3 PTE bits into 6 MMU bits:
569 * -Kernel only entries have Kr Kw Kx 0 0 0
570 * -User entries have mirrored K and U bits
571 */
572 rwx = pte_val(*ptep) & PTE_BITS_RWX;
573
574 if (pte_val(*ptep) & _PAGE_GLOBAL)
575 rwx <<= 3; /* r w x => Kr Kw Kx 0 0 0 */
576 else
577 rwx |= (rwx << 3); /* r w x => Kr Kw Kx Ur Uw Ux */
578
579 pd1 = rwx | (pte_val(*ptep) & PTE_BITS_NON_RWX_IN_PD1);
580
581 tlb_entry_insert(pd0, pd1);
582
583 local_irq_restore(flags);
584}
585
586/*
587 * Called at the end of pagefault, for a userspace mapped page
588 * -pre-install the corresponding TLB entry into MMU
589 * -Finalize the delayed D-cache flush of kernel mapping of page due to
590 * flush_dcache_page(), copy_user_page()
591 *
592 * Note that flush (when done) involves both WBACK - so physical page is
593 * in sync as well as INV - so any non-congruent aliases don't remain
594 */
595void update_mmu_cache(struct vm_area_struct *vma, unsigned long vaddr_unaligned,
596 pte_t *ptep)
597{
598 unsigned long vaddr = vaddr_unaligned & PAGE_MASK;
599 phys_addr_t paddr = pte_val(*ptep) & PAGE_MASK;
600 struct page *page = pfn_to_page(pte_pfn(*ptep));
601
602 create_tlb(vma, vaddr, ptep);
603
604 if (page == ZERO_PAGE(0)) {
605 return;
606 }
607
608 /*
609 * Exec page : Independent of aliasing/page-color considerations,
610 * since icache doesn't snoop dcache on ARC, any dirty
611 * K-mapping of a code page needs to be wback+inv so that
612 * icache fetch by userspace sees code correctly.
613 * !EXEC page: If K-mapping is NOT congruent to U-mapping, flush it
614 * so userspace sees the right data.
615 * (Avoids the flush for Non-exec + congruent mapping case)
616 */
617 if ((vma->vm_flags & VM_EXEC) ||
618 addr_not_cache_congruent(paddr, vaddr)) {
619
620 int dirty = !test_and_set_bit(PG_dc_clean, &page->flags);
621 if (dirty) {
622 /* wback + inv dcache lines (K-mapping) */
623 __flush_dcache_page(paddr, paddr);
624
625 /* invalidate any existing icache lines (U-mapping) */
626 if (vma->vm_flags & VM_EXEC)
627 __inv_icache_page(paddr, vaddr);
628 }
629 }
630}
631
632#ifdef CONFIG_TRANSPARENT_HUGEPAGE
633
634/*
635 * MMUv4 in HS38x cores supports Super Pages which are basis for Linux THP
636 * support.
637 *
638 * Normal and Super pages can co-exist (ofcourse not overlap) in TLB with a
639 * new bit "SZ" in TLB page descriptor to distinguish between them.
640 * Super Page size is configurable in hardware (4K to 16M), but fixed once
641 * RTL builds.
642 *
643 * The exact THP size a Linx configuration will support is a function of:
644 * - MMU page size (typical 8K, RTL fixed)
645 * - software page walker address split between PGD:PTE:PFN (typical
646 * 11:8:13, but can be changed with 1 line)
647 * So for above default, THP size supported is 8K * (2^8) = 2M
648 *
649 * Default Page Walker is 2 levels, PGD:PTE:PFN, which in THP regime
650 * reduces to 1 level (as PTE is folded into PGD and canonically referred
651 * to as PMD).
652 * Thus THP PMD accessors are implemented in terms of PTE (just like sparc)
653 */
654
655void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
656 pmd_t *pmd)
657{
658 pte_t pte = __pte(pmd_val(*pmd));
659 update_mmu_cache(vma, addr, &pte);
660}
661
662void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
663 pgtable_t pgtable)
664{
665 struct list_head *lh = (struct list_head *) pgtable;
666
667 assert_spin_locked(&mm->page_table_lock);
668
669 /* FIFO */
670 if (!pmd_huge_pte(mm, pmdp))
671 INIT_LIST_HEAD(lh);
672 else
673 list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
674 pmd_huge_pte(mm, pmdp) = pgtable;
675}
676
677pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
678{
679 struct list_head *lh;
680 pgtable_t pgtable;
681
682 assert_spin_locked(&mm->page_table_lock);
683
684 pgtable = pmd_huge_pte(mm, pmdp);
685 lh = (struct list_head *) pgtable;
686 if (list_empty(lh))
687 pmd_huge_pte(mm, pmdp) = NULL;
688 else {
689 pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
690 list_del(lh);
691 }
692
693 pte_val(pgtable[0]) = 0;
694 pte_val(pgtable[1]) = 0;
695
696 return pgtable;
697}
698
699void local_flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start,
700 unsigned long end)
701{
702 unsigned int cpu;
703 unsigned long flags;
704
705 local_irq_save(flags);
706
707 cpu = smp_processor_id();
708
709 if (likely(asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID)) {
710 unsigned int asid = hw_pid(vma->vm_mm, cpu);
711
712 /* No need to loop here: this will always be for 1 Huge Page */
713 tlb_entry_erase(start | _PAGE_HW_SZ | asid);
714 }
715
716 local_irq_restore(flags);
717}
718
719#endif
720
721/* Read the Cache Build Confuration Registers, Decode them and save into
722 * the cpuinfo structure for later use.
723 * No Validation is done here, simply read/convert the BCRs
724 */
725void read_decode_mmu_bcr(void)
726{
727 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
728 unsigned int tmp;
729 struct bcr_mmu_1_2 {
730#ifdef CONFIG_CPU_BIG_ENDIAN
731 unsigned int ver:8, ways:4, sets:4, u_itlb:8, u_dtlb:8;
732#else
733 unsigned int u_dtlb:8, u_itlb:8, sets:4, ways:4, ver:8;
734#endif
735 } *mmu2;
736
737 struct bcr_mmu_3 {
738#ifdef CONFIG_CPU_BIG_ENDIAN
739 unsigned int ver:8, ways:4, sets:4, res:3, sasid:1, pg_sz:4,
740 u_itlb:4, u_dtlb:4;
741#else
742 unsigned int u_dtlb:4, u_itlb:4, pg_sz:4, sasid:1, res:3, sets:4,
743 ways:4, ver:8;
744#endif
745 } *mmu3;
746
747 struct bcr_mmu_4 {
748#ifdef CONFIG_CPU_BIG_ENDIAN
749 unsigned int ver:8, sasid:1, sz1:4, sz0:4, res:2, pae:1,
750 n_ways:2, n_entry:2, n_super:2, u_itlb:3, u_dtlb:3;
751#else
752 /* DTLB ITLB JES JE JA */
753 unsigned int u_dtlb:3, u_itlb:3, n_super:2, n_entry:2, n_ways:2,
754 pae:1, res:2, sz0:4, sz1:4, sasid:1, ver:8;
755#endif
756 } *mmu4;
757
758 tmp = read_aux_reg(ARC_REG_MMU_BCR);
759 mmu->ver = (tmp >> 24);
760
761 if (mmu->ver <= 2) {
762 mmu2 = (struct bcr_mmu_1_2 *)&tmp;
763 mmu->pg_sz_k = TO_KB(0x2000);
764 mmu->sets = 1 << mmu2->sets;
765 mmu->ways = 1 << mmu2->ways;
766 mmu->u_dtlb = mmu2->u_dtlb;
767 mmu->u_itlb = mmu2->u_itlb;
768 } else if (mmu->ver == 3) {
769 mmu3 = (struct bcr_mmu_3 *)&tmp;
770 mmu->pg_sz_k = 1 << (mmu3->pg_sz - 1);
771 mmu->sets = 1 << mmu3->sets;
772 mmu->ways = 1 << mmu3->ways;
773 mmu->u_dtlb = mmu3->u_dtlb;
774 mmu->u_itlb = mmu3->u_itlb;
775 mmu->sasid = mmu3->sasid;
776 } else {
777 mmu4 = (struct bcr_mmu_4 *)&tmp;
778 mmu->pg_sz_k = 1 << (mmu4->sz0 - 1);
779 mmu->s_pg_sz_m = 1 << (mmu4->sz1 - 11);
780 mmu->sets = 64 << mmu4->n_entry;
781 mmu->ways = mmu4->n_ways * 2;
782 mmu->u_dtlb = mmu4->u_dtlb * 4;
783 mmu->u_itlb = mmu4->u_itlb * 4;
784 mmu->sasid = mmu4->sasid;
785 mmu->pae = mmu4->pae;
786 }
787}
788
789char *arc_mmu_mumbojumbo(int cpu_id, char *buf, int len)
790{
791 int n = 0;
792 struct cpuinfo_arc_mmu *p_mmu = &cpuinfo_arc700[cpu_id].mmu;
793 char super_pg[64] = "";
794
795 if (p_mmu->s_pg_sz_m)
796 scnprintf(super_pg, 64, "%dM Super Page%s, ",
797 p_mmu->s_pg_sz_m,
798 IS_USED_CFG(CONFIG_TRANSPARENT_HUGEPAGE));
799
800 n += scnprintf(buf + n, len - n,
801 "MMU [v%x]\t: %dk PAGE, %sJTLB %d (%dx%d), uDTLB %d, uITLB %d %s%s\n",
802 p_mmu->ver, p_mmu->pg_sz_k, super_pg,
803 p_mmu->sets * p_mmu->ways, p_mmu->sets, p_mmu->ways,
804 p_mmu->u_dtlb, p_mmu->u_itlb,
805 IS_AVAIL2(p_mmu->pae, "PAE40 ", CONFIG_ARC_HAS_PAE40));
806
807 return buf;
808}
809
810void arc_mmu_init(void)
811{
812 char str[256];
813 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
814
815 printk(arc_mmu_mumbojumbo(0, str, sizeof(str)));
816
817 /* For efficiency sake, kernel is compile time built for a MMU ver
818 * This must match the hardware it is running on.
819 * Linux built for MMU V2, if run on MMU V1 will break down because V1
820 * hardware doesn't understand cmds such as WriteNI, or IVUTLB
821 * On the other hand, Linux built for V1 if run on MMU V2 will do
822 * un-needed workarounds to prevent memcpy thrashing.
823 * Similarly MMU V3 has new features which won't work on older MMU
824 */
825 if (mmu->ver != CONFIG_ARC_MMU_VER) {
826 panic("MMU ver %d doesn't match kernel built for %d...\n",
827 mmu->ver, CONFIG_ARC_MMU_VER);
828 }
829
830 if (mmu->pg_sz_k != TO_KB(PAGE_SIZE))
831 panic("MMU pg size != PAGE_SIZE (%luk)\n", TO_KB(PAGE_SIZE));
832
833 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
834 mmu->s_pg_sz_m != TO_MB(HPAGE_PMD_SIZE))
835 panic("MMU Super pg size != Linux HPAGE_PMD_SIZE (%luM)\n",
836 (unsigned long)TO_MB(HPAGE_PMD_SIZE));
837
838 if (IS_ENABLED(CONFIG_ARC_HAS_PAE40) && !mmu->pae)
839 panic("Hardware doesn't support PAE40\n");
840
841 /* Enable the MMU */
842 write_aux_reg(ARC_REG_PID, MMU_ENABLE);
843
844 /* In smp we use this reg for interrupt 1 scratch */
845#ifndef CONFIG_SMP
846 /* swapper_pg_dir is the pgd for the kernel, used by vmalloc */
847 write_aux_reg(ARC_REG_SCRATCH_DATA0, swapper_pg_dir);
848#endif
849}
850
851/*
852 * TLB Programmer's Model uses Linear Indexes: 0 to {255, 511} for 128 x {2,4}
853 * The mapping is Column-first.
854 * --------------------- -----------
855 * |way0|way1|way2|way3| |way0|way1|
856 * --------------------- -----------
857 * [set0] | 0 | 1 | 2 | 3 | | 0 | 1 |
858 * [set1] | 4 | 5 | 6 | 7 | | 2 | 3 |
859 * ~ ~ ~ ~
860 * [set127] | 508| 509| 510| 511| | 254| 255|
861 * --------------------- -----------
862 * For normal operations we don't(must not) care how above works since
863 * MMU cmd getIndex(vaddr) abstracts that out.
864 * However for walking WAYS of a SET, we need to know this
865 */
866#define SET_WAY_TO_IDX(mmu, set, way) ((set) * mmu->ways + (way))
867
868/* Handling of Duplicate PD (TLB entry) in MMU.
869 * -Could be due to buggy customer tapeouts or obscure kernel bugs
870 * -MMU complaints not at the time of duplicate PD installation, but at the
871 * time of lookup matching multiple ways.
872 * -Ideally these should never happen - but if they do - workaround by deleting
873 * the duplicate one.
874 * -Knob to be verbose abt it.(TODO: hook them up to debugfs)
875 */
876volatile int dup_pd_silent; /* Be slient abt it or complain (default) */
877
878void do_tlb_overlap_fault(unsigned long cause, unsigned long address,
879 struct pt_regs *regs)
880{
881 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
882 unsigned int pd0[mmu->ways];
883 unsigned long flags;
884 int set;
885
886 local_irq_save(flags);
887
888 /* re-enable the MMU */
889 write_aux_reg(ARC_REG_PID, MMU_ENABLE | read_aux_reg(ARC_REG_PID));
890
891 /* loop thru all sets of TLB */
892 for (set = 0; set < mmu->sets; set++) {
893
894 int is_valid, way;
895
896 /* read out all the ways of current set */
897 for (way = 0, is_valid = 0; way < mmu->ways; way++) {
898 write_aux_reg(ARC_REG_TLBINDEX,
899 SET_WAY_TO_IDX(mmu, set, way));
900 write_aux_reg(ARC_REG_TLBCOMMAND, TLBRead);
901 pd0[way] = read_aux_reg(ARC_REG_TLBPD0);
902 is_valid |= pd0[way] & _PAGE_PRESENT;
903 pd0[way] &= PAGE_MASK;
904 }
905
906 /* If all the WAYS in SET are empty, skip to next SET */
907 if (!is_valid)
908 continue;
909
910 /* Scan the set for duplicate ways: needs a nested loop */
911 for (way = 0; way < mmu->ways - 1; way++) {
912
913 int n;
914
915 if (!pd0[way])
916 continue;
917
918 for (n = way + 1; n < mmu->ways; n++) {
919 if (pd0[way] != pd0[n])
920 continue;
921
922 if (!dup_pd_silent)
923 pr_info("Dup TLB PD0 %08x @ set %d ways %d,%d\n",
924 pd0[way], set, way, n);
925
926 /*
927 * clear entry @way and not @n.
928 * This is critical to our optimised loop
929 */
930 pd0[way] = 0;
931 write_aux_reg(ARC_REG_TLBINDEX,
932 SET_WAY_TO_IDX(mmu, set, way));
933 __tlb_entry_erase();
934 }
935 }
936 }
937
938 local_irq_restore(flags);
939}
940
941/***********************************************************************
942 * Diagnostic Routines
943 * -Called from Low Level TLB Hanlders if things don;t look good
944 **********************************************************************/
945
946#ifdef CONFIG_ARC_DBG_TLB_PARANOIA
947
948/*
949 * Low Level ASM TLB handler calls this if it finds that HW and SW ASIDS
950 * don't match
951 */
952void print_asid_mismatch(int mm_asid, int mmu_asid, int is_fast_path)
953{
954 pr_emerg("ASID Mismatch in %s Path Handler: sw-pid=0x%x hw-pid=0x%x\n",
955 is_fast_path ? "Fast" : "Slow", mm_asid, mmu_asid);
956
957 __asm__ __volatile__("flag 1");
958}
959
960void tlb_paranoid_check(unsigned int mm_asid, unsigned long addr)
961{
962 unsigned int mmu_asid;
963
964 mmu_asid = read_aux_reg(ARC_REG_PID) & 0xff;
965
966 /*
967 * At the time of a TLB miss/installation
968 * - HW version needs to match SW version
969 * - SW needs to have a valid ASID
970 */
971 if (addr < 0x70000000 &&
972 ((mm_asid == MM_CTXT_NO_ASID) ||
973 (mmu_asid != (mm_asid & MM_CTXT_ASID_MASK))))
974 print_asid_mismatch(mm_asid, mmu_asid, 0);
975}
976#endif