Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * TLB Management (flush/create/diagnostics) for ARC700
   4 *
   5 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
   6 *
 
 
 
 
   7 * vineetg: Aug 2011
   8 *  -Reintroduce duplicate PD fixup - some customer chips still have the issue
   9 *
  10 * vineetg: May 2011
  11 *  -No need to flush_cache_page( ) for each call to update_mmu_cache()
  12 *   some of the LMBench tests improved amazingly
  13 *      = page-fault thrice as fast (75 usec to 28 usec)
  14 *      = mmap twice as fast (9.6 msec to 4.6 msec),
  15 *      = fork (5.3 msec to 3.7 msec)
  16 *
  17 * vineetg: April 2011 :
  18 *  -MMU v3: PD{0,1} bits layout changed: They don't overlap anymore,
  19 *      helps avoid a shift when preparing PD0 from PTE
  20 *
  21 * vineetg: April 2011 : Preparing for MMU V3
  22 *  -MMU v2/v3 BCRs decoded differently
  23 *  -Remove TLB_SIZE hardcoding as it's variable now: 256 or 512
  24 *  -tlb_entry_erase( ) can be void
  25 *  -local_flush_tlb_range( ):
  26 *      = need not "ceil" @end
  27 *      = walks MMU only if range spans < 32 entries, as opposed to 256
  28 *
  29 * Vineetg: Sept 10th 2008
  30 *  -Changes related to MMU v2 (Rel 4.8)
  31 *
  32 * Vineetg: Aug 29th 2008
  33 *  -In TLB Flush operations (Metal Fix MMU) there is a explict command to
  34 *    flush Micro-TLBS. If TLB Index Reg is invalid prior to TLBIVUTLB cmd,
  35 *    it fails. Thus need to load it with ANY valid value before invoking
  36 *    TLBIVUTLB cmd
  37 *
  38 * Vineetg: Aug 21th 2008:
  39 *  -Reduced the duration of IRQ lockouts in TLB Flush routines
  40 *  -Multiple copies of TLB erase code seperated into a "single" function
  41 *  -In TLB Flush routines, interrupt disabling moved UP to retrieve ASID
  42 *       in interrupt-safe region.
  43 *
  44 * Vineetg: April 23rd Bug #93131
  45 *    Problem: tlb_flush_kernel_range() doesn't do anything if the range to
  46 *              flush is more than the size of TLB itself.
  47 *
  48 * Rahul Trivedi : Codito Technologies 2004
  49 */
  50
  51#include <linux/module.h>
  52#include <linux/bug.h>
  53#include <linux/mm_types.h>
  54
  55#include <asm/arcregs.h>
  56#include <asm/setup.h>
  57#include <asm/mmu_context.h>
  58#include <asm/mmu.h>
  59
  60/*			Need for ARC MMU v2
  61 *
  62 * ARC700 MMU-v1 had a Joint-TLB for Code and Data and is 2 way set-assoc.
  63 * For a memcpy operation with 3 players (src/dst/code) such that all 3 pages
  64 * map into same set, there would be contention for the 2 ways causing severe
  65 * Thrashing.
  66 *
  67 * Although J-TLB is 2 way set assoc, ARC700 caches J-TLB into uTLBS which has
  68 * much higher associativity. u-D-TLB is 8 ways, u-I-TLB is 4 ways.
  69 * Given this, the thrasing problem should never happen because once the 3
  70 * J-TLB entries are created (even though 3rd will knock out one of the prev
  71 * two), the u-D-TLB and u-I-TLB will have what is required to accomplish memcpy
  72 *
  73 * Yet we still see the Thrashing because a J-TLB Write cause flush of u-TLBs.
  74 * This is a simple design for keeping them in sync. So what do we do?
  75 * The solution which James came up was pretty neat. It utilised the assoc
  76 * of uTLBs by not invalidating always but only when absolutely necessary.
  77 *
  78 * - Existing TLB commands work as before
  79 * - New command (TLBWriteNI) for TLB write without clearing uTLBs
  80 * - New command (TLBIVUTLB) to invalidate uTLBs.
  81 *
  82 * The uTLBs need only be invalidated when pages are being removed from the
  83 * OS page table. If a 'victim' TLB entry is being overwritten in the main TLB
  84 * as a result of a miss, the removed entry is still allowed to exist in the
  85 * uTLBs as it is still valid and present in the OS page table. This allows the
  86 * full associativity of the uTLBs to hide the limited associativity of the main
  87 * TLB.
  88 *
  89 * During a miss handler, the new "TLBWriteNI" command is used to load
  90 * entries without clearing the uTLBs.
  91 *
  92 * When the OS page table is updated, TLB entries that may be associated with a
  93 * removed page are removed (flushed) from the TLB using TLBWrite. In this
  94 * circumstance, the uTLBs must also be cleared. This is done by using the
  95 * existing TLBWrite command. An explicit IVUTLB is also required for those
  96 * corner cases when TLBWrite was not executed at all because the corresp
  97 * J-TLB entry got evicted/replaced.
  98 */
  99
 100
 101/* A copy of the ASID from the PID reg is kept in asid_cache */
 102DEFINE_PER_CPU(unsigned int, asid_cache) = MM_CTXT_FIRST_CYCLE;
 103
 104static int __read_mostly pae_exists;
 105
 106/*
 107 * Utility Routine to erase a J-TLB entry
 108 * Caller needs to setup Index Reg (manually or via getIndex)
 109 */
 110static inline void __tlb_entry_erase(void)
 111{
 112	write_aux_reg(ARC_REG_TLBPD1, 0);
 113
 114	if (is_pae40_enabled())
 115		write_aux_reg(ARC_REG_TLBPD1HI, 0);
 116
 117	write_aux_reg(ARC_REG_TLBPD0, 0);
 118	write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
 119}
 120
 121#if (CONFIG_ARC_MMU_VER < 4)
 122
 123static inline unsigned int tlb_entry_lkup(unsigned long vaddr_n_asid)
 124{
 125	unsigned int idx;
 126
 127	write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid);
 128
 129	write_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe);
 130	idx = read_aux_reg(ARC_REG_TLBINDEX);
 131
 132	return idx;
 133}
 134
 135static void tlb_entry_erase(unsigned int vaddr_n_asid)
 136{
 137	unsigned int idx;
 138
 139	/* Locate the TLB entry for this vaddr + ASID */
 140	idx = tlb_entry_lkup(vaddr_n_asid);
 141
 142	/* No error means entry found, zero it out */
 143	if (likely(!(idx & TLB_LKUP_ERR))) {
 144		__tlb_entry_erase();
 145	} else {
 146		/* Duplicate entry error */
 147		WARN(idx == TLB_DUP_ERR, "Probe returned Dup PD for %x\n",
 148					   vaddr_n_asid);
 149	}
 150}
 151
 152/****************************************************************************
 153 * ARC700 MMU caches recently used J-TLB entries (RAM) as uTLBs (FLOPs)
 154 *
 155 * New IVUTLB cmd in MMU v2 explictly invalidates the uTLB
 156 *
 157 * utlb_invalidate ( )
 158 *  -For v2 MMU calls Flush uTLB Cmd
 159 *  -For v1 MMU does nothing (except for Metal Fix v1 MMU)
 160 *      This is because in v1 TLBWrite itself invalidate uTLBs
 161 ***************************************************************************/
 162
 163static void utlb_invalidate(void)
 164{
 165#if (CONFIG_ARC_MMU_VER >= 2)
 166
 167#if (CONFIG_ARC_MMU_VER == 2)
 168	/* MMU v2 introduced the uTLB Flush command.
 169	 * There was however an obscure hardware bug, where uTLB flush would
 170	 * fail when a prior probe for J-TLB (both totally unrelated) would
 171	 * return lkup err - because the entry didn't exist in MMU.
 172	 * The Workround was to set Index reg with some valid value, prior to
 173	 * flush. This was fixed in MMU v3 hence not needed any more
 174	 */
 175	unsigned int idx;
 176
 177	/* make sure INDEX Reg is valid */
 178	idx = read_aux_reg(ARC_REG_TLBINDEX);
 179
 180	/* If not write some dummy val */
 181	if (unlikely(idx & TLB_LKUP_ERR))
 182		write_aux_reg(ARC_REG_TLBINDEX, 0xa);
 183#endif
 184
 185	write_aux_reg(ARC_REG_TLBCOMMAND, TLBIVUTLB);
 186#endif
 187
 188}
 189
 190static void tlb_entry_insert(unsigned int pd0, pte_t pd1)
 191{
 192	unsigned int idx;
 193
 194	/*
 195	 * First verify if entry for this vaddr+ASID already exists
 196	 * This also sets up PD0 (vaddr, ASID..) for final commit
 197	 */
 198	idx = tlb_entry_lkup(pd0);
 199
 200	/*
 201	 * If Not already present get a free slot from MMU.
 202	 * Otherwise, Probe would have located the entry and set INDEX Reg
 203	 * with existing location. This will cause Write CMD to over-write
 204	 * existing entry with new PD0 and PD1
 205	 */
 206	if (likely(idx & TLB_LKUP_ERR))
 207		write_aux_reg(ARC_REG_TLBCOMMAND, TLBGetIndex);
 208
 209	/* setup the other half of TLB entry (pfn, rwx..) */
 210	write_aux_reg(ARC_REG_TLBPD1, pd1);
 211
 212	/*
 213	 * Commit the Entry to MMU
 214	 * It doesn't sound safe to use the TLBWriteNI cmd here
 215	 * which doesn't flush uTLBs. I'd rather be safe than sorry.
 216	 */
 217	write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
 218}
 219
 220#else	/* CONFIG_ARC_MMU_VER >= 4) */
 221
 222static void utlb_invalidate(void)
 223{
 224	/* No need since uTLB is always in sync with JTLB */
 225}
 226
 227static void tlb_entry_erase(unsigned int vaddr_n_asid)
 228{
 229	write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid | _PAGE_PRESENT);
 230	write_aux_reg(ARC_REG_TLBCOMMAND, TLBDeleteEntry);
 231}
 232
 233static void tlb_entry_insert(unsigned int pd0, pte_t pd1)
 234{
 235	write_aux_reg(ARC_REG_TLBPD0, pd0);
 236	write_aux_reg(ARC_REG_TLBPD1, pd1);
 237
 238	if (is_pae40_enabled())
 239		write_aux_reg(ARC_REG_TLBPD1HI, (u64)pd1 >> 32);
 240
 241	write_aux_reg(ARC_REG_TLBCOMMAND, TLBInsertEntry);
 242}
 243
 244#endif
 245
 246/*
 247 * Un-conditionally (without lookup) erase the entire MMU contents
 248 */
 249
 250noinline void local_flush_tlb_all(void)
 251{
 252	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
 253	unsigned long flags;
 254	unsigned int entry;
 255	int num_tlb = mmu->sets * mmu->ways;
 256
 257	local_irq_save(flags);
 258
 259	/* Load PD0 and PD1 with template for a Blank Entry */
 260	write_aux_reg(ARC_REG_TLBPD1, 0);
 261
 262	if (is_pae40_enabled())
 263		write_aux_reg(ARC_REG_TLBPD1HI, 0);
 264
 265	write_aux_reg(ARC_REG_TLBPD0, 0);
 266
 267	for (entry = 0; entry < num_tlb; entry++) {
 268		/* write this entry to the TLB */
 269		write_aux_reg(ARC_REG_TLBINDEX, entry);
 270		write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
 271	}
 272
 273	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
 274		const int stlb_idx = 0x800;
 275
 276		/* Blank sTLB entry */
 277		write_aux_reg(ARC_REG_TLBPD0, _PAGE_HW_SZ);
 278
 279		for (entry = stlb_idx; entry < stlb_idx + 16; entry++) {
 280			write_aux_reg(ARC_REG_TLBINDEX, entry);
 281			write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
 282		}
 283	}
 284
 285	utlb_invalidate();
 286
 287	local_irq_restore(flags);
 288}
 289
 290/*
 291 * Flush the entrie MM for userland. The fastest way is to move to Next ASID
 292 */
 293noinline void local_flush_tlb_mm(struct mm_struct *mm)
 294{
 295	/*
 296	 * Small optimisation courtesy IA64
 297	 * flush_mm called during fork,exit,munmap etc, multiple times as well.
 298	 * Only for fork( ) do we need to move parent to a new MMU ctxt,
 299	 * all other cases are NOPs, hence this check.
 300	 */
 301	if (atomic_read(&mm->mm_users) == 0)
 302		return;
 303
 304	/*
 305	 * - Move to a new ASID, but only if the mm is still wired in
 306	 *   (Android Binder ended up calling this for vma->mm != tsk->mm,
 307	 *    causing h/w - s/w ASID to get out of sync)
 308	 * - Also get_new_mmu_context() new implementation allocates a new
 309	 *   ASID only if it is not allocated already - so unallocate first
 310	 */
 311	destroy_context(mm);
 312	if (current->mm == mm)
 313		get_new_mmu_context(mm);
 314}
 315
 316/*
 317 * Flush a Range of TLB entries for userland.
 318 * @start is inclusive, while @end is exclusive
 319 * Difference between this and Kernel Range Flush is
 320 *  -Here the fastest way (if range is too large) is to move to next ASID
 321 *      without doing any explicit Shootdown
 322 *  -In case of kernel Flush, entry has to be shot down explictly
 323 */
 324void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
 325			   unsigned long end)
 326{
 327	const unsigned int cpu = smp_processor_id();
 328	unsigned long flags;
 329
 330	/* If range @start to @end is more than 32 TLB entries deep,
 331	 * its better to move to a new ASID rather than searching for
 332	 * individual entries and then shooting them down
 333	 *
 334	 * The calc above is rough, doesn't account for unaligned parts,
 335	 * since this is heuristics based anyways
 336	 */
 337	if (unlikely((end - start) >= PAGE_SIZE * 32)) {
 338		local_flush_tlb_mm(vma->vm_mm);
 339		return;
 340	}
 341
 342	/*
 343	 * @start moved to page start: this alone suffices for checking
 344	 * loop end condition below, w/o need for aligning @end to end
 345	 * e.g. 2000 to 4001 will anyhow loop twice
 346	 */
 347	start &= PAGE_MASK;
 348
 349	local_irq_save(flags);
 350
 351	if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
 352		while (start < end) {
 353			tlb_entry_erase(start | hw_pid(vma->vm_mm, cpu));
 354			start += PAGE_SIZE;
 355		}
 356	}
 357
 358	utlb_invalidate();
 359
 360	local_irq_restore(flags);
 361}
 362
 363/* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective)
 364 *  @start, @end interpreted as kvaddr
 365 * Interestingly, shared TLB entries can also be flushed using just
 366 * @start,@end alone (interpreted as user vaddr), although technically SASID
 367 * is also needed. However our smart TLbProbe lookup takes care of that.
 368 */
 369void local_flush_tlb_kernel_range(unsigned long start, unsigned long end)
 370{
 371	unsigned long flags;
 372
 373	/* exactly same as above, except for TLB entry not taking ASID */
 374
 375	if (unlikely((end - start) >= PAGE_SIZE * 32)) {
 376		local_flush_tlb_all();
 377		return;
 378	}
 379
 380	start &= PAGE_MASK;
 381
 382	local_irq_save(flags);
 383	while (start < end) {
 384		tlb_entry_erase(start);
 385		start += PAGE_SIZE;
 386	}
 387
 388	utlb_invalidate();
 389
 390	local_irq_restore(flags);
 391}
 392
 393/*
 394 * Delete TLB entry in MMU for a given page (??? address)
 395 * NOTE One TLB entry contains translation for single PAGE
 396 */
 397
 398void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
 399{
 400	const unsigned int cpu = smp_processor_id();
 401	unsigned long flags;
 402
 403	/* Note that it is critical that interrupts are DISABLED between
 404	 * checking the ASID and using it flush the TLB entry
 405	 */
 406	local_irq_save(flags);
 407
 408	if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
 409		tlb_entry_erase((page & PAGE_MASK) | hw_pid(vma->vm_mm, cpu));
 410		utlb_invalidate();
 411	}
 412
 413	local_irq_restore(flags);
 414}
 415
 416#ifdef CONFIG_SMP
 417
 418struct tlb_args {
 419	struct vm_area_struct *ta_vma;
 420	unsigned long ta_start;
 421	unsigned long ta_end;
 422};
 423
 424static inline void ipi_flush_tlb_page(void *arg)
 425{
 426	struct tlb_args *ta = arg;
 427
 428	local_flush_tlb_page(ta->ta_vma, ta->ta_start);
 429}
 430
 431static inline void ipi_flush_tlb_range(void *arg)
 432{
 433	struct tlb_args *ta = arg;
 434
 435	local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
 436}
 437
 438#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 439static inline void ipi_flush_pmd_tlb_range(void *arg)
 440{
 441	struct tlb_args *ta = arg;
 442
 443	local_flush_pmd_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
 444}
 445#endif
 446
 447static inline void ipi_flush_tlb_kernel_range(void *arg)
 448{
 449	struct tlb_args *ta = (struct tlb_args *)arg;
 450
 451	local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
 452}
 453
 454void flush_tlb_all(void)
 455{
 456	on_each_cpu((smp_call_func_t)local_flush_tlb_all, NULL, 1);
 457}
 458
 459void flush_tlb_mm(struct mm_struct *mm)
 460{
 461	on_each_cpu_mask(mm_cpumask(mm), (smp_call_func_t)local_flush_tlb_mm,
 462			 mm, 1);
 463}
 464
 465void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
 466{
 467	struct tlb_args ta = {
 468		.ta_vma = vma,
 469		.ta_start = uaddr
 470	};
 471
 472	on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_page, &ta, 1);
 473}
 474
 475void flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
 476		     unsigned long end)
 477{
 478	struct tlb_args ta = {
 479		.ta_vma = vma,
 480		.ta_start = start,
 481		.ta_end = end
 482	};
 483
 484	on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_range, &ta, 1);
 485}
 486
 487#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 488void flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start,
 489			 unsigned long end)
 490{
 491	struct tlb_args ta = {
 492		.ta_vma = vma,
 493		.ta_start = start,
 494		.ta_end = end
 495	};
 496
 497	on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_pmd_tlb_range, &ta, 1);
 498}
 499#endif
 500
 501void flush_tlb_kernel_range(unsigned long start, unsigned long end)
 502{
 503	struct tlb_args ta = {
 504		.ta_start = start,
 505		.ta_end = end
 506	};
 507
 508	on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1);
 509}
 510#endif
 511
 512/*
 513 * Routine to create a TLB entry
 514 */
 515void create_tlb(struct vm_area_struct *vma, unsigned long vaddr, pte_t *ptep)
 516{
 517	unsigned long flags;
 518	unsigned int asid_or_sasid, rwx;
 519	unsigned long pd0;
 520	pte_t pd1;
 521
 522	/*
 523	 * create_tlb() assumes that current->mm == vma->mm, since
 524	 * -it ASID for TLB entry is fetched from MMU ASID reg (valid for curr)
 525	 * -completes the lazy write to SASID reg (again valid for curr tsk)
 526	 *
 527	 * Removing the assumption involves
 528	 * -Using vma->mm->context{ASID,SASID}, as opposed to MMU reg.
 529	 * -Fix the TLB paranoid debug code to not trigger false negatives.
 530	 * -More importantly it makes this handler inconsistent with fast-path
 531	 *  TLB Refill handler which always deals with "current"
 532	 *
 533	 * Lets see the use cases when current->mm != vma->mm and we land here
 534	 *  1. execve->copy_strings()->__get_user_pages->handle_mm_fault
 535	 *     Here VM wants to pre-install a TLB entry for user stack while
 536	 *     current->mm still points to pre-execve mm (hence the condition).
 537	 *     However the stack vaddr is soon relocated (randomization) and
 538	 *     move_page_tables() tries to undo that TLB entry.
 539	 *     Thus not creating TLB entry is not any worse.
 540	 *
 541	 *  2. ptrace(POKETEXT) causes a CoW - debugger(current) inserting a
 542	 *     breakpoint in debugged task. Not creating a TLB now is not
 543	 *     performance critical.
 544	 *
 545	 * Both the cases above are not good enough for code churn.
 546	 */
 547	if (current->active_mm != vma->vm_mm)
 548		return;
 549
 550	local_irq_save(flags);
 551
 552	tlb_paranoid_check(asid_mm(vma->vm_mm, smp_processor_id()), vaddr);
 553
 554	vaddr &= PAGE_MASK;
 555
 556	/* update this PTE credentials */
 557	pte_val(*ptep) |= (_PAGE_PRESENT | _PAGE_ACCESSED);
 558
 559	/* Create HW TLB(PD0,PD1) from PTE  */
 560
 561	/* ASID for this task */
 562	asid_or_sasid = read_aux_reg(ARC_REG_PID) & 0xff;
 563
 564	pd0 = vaddr | asid_or_sasid | (pte_val(*ptep) & PTE_BITS_IN_PD0);
 565
 566	/*
 567	 * ARC MMU provides fully orthogonal access bits for K/U mode,
 568	 * however Linux only saves 1 set to save PTE real-estate
 569	 * Here we convert 3 PTE bits into 6 MMU bits:
 570	 * -Kernel only entries have Kr Kw Kx 0 0 0
 571	 * -User entries have mirrored K and U bits
 572	 */
 573	rwx = pte_val(*ptep) & PTE_BITS_RWX;
 574
 575	if (pte_val(*ptep) & _PAGE_GLOBAL)
 576		rwx <<= 3;		/* r w x => Kr Kw Kx 0 0 0 */
 577	else
 578		rwx |= (rwx << 3);	/* r w x => Kr Kw Kx Ur Uw Ux */
 579
 580	pd1 = rwx | (pte_val(*ptep) & PTE_BITS_NON_RWX_IN_PD1);
 581
 582	tlb_entry_insert(pd0, pd1);
 583
 584	local_irq_restore(flags);
 585}
 586
 587/*
 588 * Called at the end of pagefault, for a userspace mapped page
 589 *  -pre-install the corresponding TLB entry into MMU
 590 *  -Finalize the delayed D-cache flush of kernel mapping of page due to
 591 *  	flush_dcache_page(), copy_user_page()
 592 *
 593 * Note that flush (when done) involves both WBACK - so physical page is
 594 * in sync as well as INV - so any non-congruent aliases don't remain
 595 */
 596void update_mmu_cache(struct vm_area_struct *vma, unsigned long vaddr_unaligned,
 597		      pte_t *ptep)
 598{
 599	unsigned long vaddr = vaddr_unaligned & PAGE_MASK;
 600	phys_addr_t paddr = pte_val(*ptep) & PAGE_MASK;
 601	struct page *page = pfn_to_page(pte_pfn(*ptep));
 602
 603	create_tlb(vma, vaddr, ptep);
 604
 605	if (page == ZERO_PAGE(0)) {
 606		return;
 607	}
 608
 609	/*
 610	 * Exec page : Independent of aliasing/page-color considerations,
 611	 *	       since icache doesn't snoop dcache on ARC, any dirty
 612	 *	       K-mapping of a code page needs to be wback+inv so that
 613	 *	       icache fetch by userspace sees code correctly.
 614	 * !EXEC page: If K-mapping is NOT congruent to U-mapping, flush it
 615	 *	       so userspace sees the right data.
 616	 *  (Avoids the flush for Non-exec + congruent mapping case)
 617	 */
 618	if ((vma->vm_flags & VM_EXEC) ||
 619	     addr_not_cache_congruent(paddr, vaddr)) {
 620
 621		int dirty = !test_and_set_bit(PG_dc_clean, &page->flags);
 622		if (dirty) {
 623			/* wback + inv dcache lines (K-mapping) */
 624			__flush_dcache_page(paddr, paddr);
 625
 626			/* invalidate any existing icache lines (U-mapping) */
 627			if (vma->vm_flags & VM_EXEC)
 628				__inv_icache_page(paddr, vaddr);
 629		}
 630	}
 631}
 632
 633#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 634
 635/*
 636 * MMUv4 in HS38x cores supports Super Pages which are basis for Linux THP
 637 * support.
 638 *
 639 * Normal and Super pages can co-exist (ofcourse not overlap) in TLB with a
 640 * new bit "SZ" in TLB page descriptor to distinguish between them.
 641 * Super Page size is configurable in hardware (4K to 16M), but fixed once
 642 * RTL builds.
 643 *
 644 * The exact THP size a Linx configuration will support is a function of:
 645 *  - MMU page size (typical 8K, RTL fixed)
 646 *  - software page walker address split between PGD:PTE:PFN (typical
 647 *    11:8:13, but can be changed with 1 line)
 648 * So for above default, THP size supported is 8K * (2^8) = 2M
 649 *
 650 * Default Page Walker is 2 levels, PGD:PTE:PFN, which in THP regime
 651 * reduces to 1 level (as PTE is folded into PGD and canonically referred
 652 * to as PMD).
 653 * Thus THP PMD accessors are implemented in terms of PTE (just like sparc)
 654 */
 655
 656void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
 657				 pmd_t *pmd)
 658{
 659	pte_t pte = __pte(pmd_val(*pmd));
 660	update_mmu_cache(vma, addr, &pte);
 661}
 662
 663void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
 664				pgtable_t pgtable)
 665{
 666	struct list_head *lh = (struct list_head *) pgtable;
 667
 668	assert_spin_locked(&mm->page_table_lock);
 669
 670	/* FIFO */
 671	if (!pmd_huge_pte(mm, pmdp))
 672		INIT_LIST_HEAD(lh);
 673	else
 674		list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
 675	pmd_huge_pte(mm, pmdp) = pgtable;
 676}
 677
 678pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
 679{
 680	struct list_head *lh;
 681	pgtable_t pgtable;
 682
 683	assert_spin_locked(&mm->page_table_lock);
 684
 685	pgtable = pmd_huge_pte(mm, pmdp);
 686	lh = (struct list_head *) pgtable;
 687	if (list_empty(lh))
 688		pmd_huge_pte(mm, pmdp) = NULL;
 689	else {
 690		pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
 691		list_del(lh);
 692	}
 693
 694	pte_val(pgtable[0]) = 0;
 695	pte_val(pgtable[1]) = 0;
 696
 697	return pgtable;
 698}
 699
 700void local_flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start,
 701			       unsigned long end)
 702{
 703	unsigned int cpu;
 704	unsigned long flags;
 705
 706	local_irq_save(flags);
 707
 708	cpu = smp_processor_id();
 709
 710	if (likely(asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID)) {
 711		unsigned int asid = hw_pid(vma->vm_mm, cpu);
 712
 713		/* No need to loop here: this will always be for 1 Huge Page */
 714		tlb_entry_erase(start | _PAGE_HW_SZ | asid);
 715	}
 716
 717	local_irq_restore(flags);
 718}
 719
 720#endif
 721
 722/* Read the Cache Build Confuration Registers, Decode them and save into
 723 * the cpuinfo structure for later use.
 724 * No Validation is done here, simply read/convert the BCRs
 725 */
 726void read_decode_mmu_bcr(void)
 727{
 728	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
 729	unsigned int tmp;
 730	struct bcr_mmu_1_2 {
 731#ifdef CONFIG_CPU_BIG_ENDIAN
 732		unsigned int ver:8, ways:4, sets:4, u_itlb:8, u_dtlb:8;
 733#else
 734		unsigned int u_dtlb:8, u_itlb:8, sets:4, ways:4, ver:8;
 735#endif
 736	} *mmu2;
 737
 738	struct bcr_mmu_3 {
 739#ifdef CONFIG_CPU_BIG_ENDIAN
 740	unsigned int ver:8, ways:4, sets:4, res:3, sasid:1, pg_sz:4,
 741		     u_itlb:4, u_dtlb:4;
 742#else
 743	unsigned int u_dtlb:4, u_itlb:4, pg_sz:4, sasid:1, res:3, sets:4,
 744		     ways:4, ver:8;
 745#endif
 746	} *mmu3;
 747
 748	struct bcr_mmu_4 {
 749#ifdef CONFIG_CPU_BIG_ENDIAN
 750	unsigned int ver:8, sasid:1, sz1:4, sz0:4, res:2, pae:1,
 751		     n_ways:2, n_entry:2, n_super:2, u_itlb:3, u_dtlb:3;
 752#else
 753	/*           DTLB      ITLB      JES        JE         JA      */
 754	unsigned int u_dtlb:3, u_itlb:3, n_super:2, n_entry:2, n_ways:2,
 755		     pae:1, res:2, sz0:4, sz1:4, sasid:1, ver:8;
 756#endif
 757	} *mmu4;
 758
 759	tmp = read_aux_reg(ARC_REG_MMU_BCR);
 760	mmu->ver = (tmp >> 24);
 761
 762	if (is_isa_arcompact()) {
 763		if (mmu->ver <= 2) {
 764			mmu2 = (struct bcr_mmu_1_2 *)&tmp;
 765			mmu->pg_sz_k = TO_KB(0x2000);
 766			mmu->sets = 1 << mmu2->sets;
 767			mmu->ways = 1 << mmu2->ways;
 768			mmu->u_dtlb = mmu2->u_dtlb;
 769			mmu->u_itlb = mmu2->u_itlb;
 770		} else {
 771			mmu3 = (struct bcr_mmu_3 *)&tmp;
 772			mmu->pg_sz_k = 1 << (mmu3->pg_sz - 1);
 773			mmu->sets = 1 << mmu3->sets;
 774			mmu->ways = 1 << mmu3->ways;
 775			mmu->u_dtlb = mmu3->u_dtlb;
 776			mmu->u_itlb = mmu3->u_itlb;
 777			mmu->sasid = mmu3->sasid;
 778		}
 779	} else {
 780		mmu4 = (struct bcr_mmu_4 *)&tmp;
 781		mmu->pg_sz_k = 1 << (mmu4->sz0 - 1);
 782		mmu->s_pg_sz_m = 1 << (mmu4->sz1 - 11);
 783		mmu->sets = 64 << mmu4->n_entry;
 784		mmu->ways = mmu4->n_ways * 2;
 785		mmu->u_dtlb = mmu4->u_dtlb * 4;
 786		mmu->u_itlb = mmu4->u_itlb * 4;
 787		mmu->sasid = mmu4->sasid;
 788		pae_exists = mmu->pae = mmu4->pae;
 789	}
 790}
 791
 792char *arc_mmu_mumbojumbo(int cpu_id, char *buf, int len)
 793{
 794	int n = 0;
 795	struct cpuinfo_arc_mmu *p_mmu = &cpuinfo_arc700[cpu_id].mmu;
 796	char super_pg[64] = "";
 797
 798	if (p_mmu->s_pg_sz_m)
 799		scnprintf(super_pg, 64, "%dM Super Page %s",
 800			  p_mmu->s_pg_sz_m,
 801			  IS_USED_CFG(CONFIG_TRANSPARENT_HUGEPAGE));
 802
 803	n += scnprintf(buf + n, len - n,
 804		      "MMU [v%x]\t: %dk PAGE, %sJTLB %d (%dx%d), uDTLB %d, uITLB %d%s%s\n",
 805		       p_mmu->ver, p_mmu->pg_sz_k, super_pg,
 806		       p_mmu->sets * p_mmu->ways, p_mmu->sets, p_mmu->ways,
 807		       p_mmu->u_dtlb, p_mmu->u_itlb,
 808		       IS_AVAIL2(p_mmu->pae, ", PAE40 ", CONFIG_ARC_HAS_PAE40));
 809
 810	return buf;
 811}
 812
 813int pae40_exist_but_not_enab(void)
 814{
 815	return pae_exists && !is_pae40_enabled();
 816}
 817
 818void arc_mmu_init(void)
 819{
 820	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
 821	char str[256];
 822	int compat = 0;
 823
 824	pr_info("%s", arc_mmu_mumbojumbo(0, str, sizeof(str)));
 825
 826	/*
 827	 * Can't be done in processor.h due to header include depenedencies
 828	 */
 829	BUILD_BUG_ON(!IS_ALIGNED((CONFIG_ARC_KVADDR_SIZE << 20), PMD_SIZE));
 830
 831	/*
 832	 * stack top size sanity check,
 833	 * Can't be done in processor.h due to header include depenedencies
 
 
 
 
 834	 */
 835	BUILD_BUG_ON(!IS_ALIGNED(STACK_TOP, PMD_SIZE));
 836
 837	/*
 838	 * Ensure that MMU features assumed by kernel exist in hardware.
 839	 * For older ARC700 cpus, it has to be exact match, since the MMU
 840	 * revisions were not backwards compatible (MMUv3 TLB layout changed
 841	 * so even if kernel for v2 didn't use any new cmds of v3, it would
 842	 * still not work.
 843	 * For HS cpus, MMUv4 was baseline and v5 is backwards compatible
 844	 * (will run older software).
 845	 */
 846	if (is_isa_arcompact() && mmu->ver == CONFIG_ARC_MMU_VER)
 847		compat = 1;
 848	else if (is_isa_arcv2() && mmu->ver >= CONFIG_ARC_MMU_VER)
 849		compat = 1;
 850
 851	if (!compat) {
 852		panic("MMU ver %d doesn't match kernel built for %d...\n",
 853		      mmu->ver, CONFIG_ARC_MMU_VER);
 854	}
 855
 856	if (mmu->pg_sz_k != TO_KB(PAGE_SIZE))
 857		panic("MMU pg size != PAGE_SIZE (%luk)\n", TO_KB(PAGE_SIZE));
 858
 859	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
 860	    mmu->s_pg_sz_m != TO_MB(HPAGE_PMD_SIZE))
 861		panic("MMU Super pg size != Linux HPAGE_PMD_SIZE (%luM)\n",
 862		      (unsigned long)TO_MB(HPAGE_PMD_SIZE));
 863
 864	if (IS_ENABLED(CONFIG_ARC_HAS_PAE40) && !mmu->pae)
 865		panic("Hardware doesn't support PAE40\n");
 866
 867	/* Enable the MMU */
 868	write_aux_reg(ARC_REG_PID, MMU_ENABLE);
 869
 870	/* In smp we use this reg for interrupt 1 scratch */
 871#ifndef CONFIG_SMP
 872	/* swapper_pg_dir is the pgd for the kernel, used by vmalloc */
 873	write_aux_reg(ARC_REG_SCRATCH_DATA0, swapper_pg_dir);
 874#endif
 875
 876	if (pae40_exist_but_not_enab())
 877		write_aux_reg(ARC_REG_TLBPD1HI, 0);
 878}
 879
 880/*
 881 * TLB Programmer's Model uses Linear Indexes: 0 to {255, 511} for 128 x {2,4}
 882 * The mapping is Column-first.
 883 *		---------------------	-----------
 884 *		|way0|way1|way2|way3|	|way0|way1|
 885 *		---------------------	-----------
 886 * [set0]	|  0 |  1 |  2 |  3 |	|  0 |  1 |
 887 * [set1]	|  4 |  5 |  6 |  7 |	|  2 |  3 |
 888 *		~		    ~	~	  ~
 889 * [set127]	| 508| 509| 510| 511|	| 254| 255|
 890 *		---------------------	-----------
 891 * For normal operations we don't(must not) care how above works since
 892 * MMU cmd getIndex(vaddr) abstracts that out.
 893 * However for walking WAYS of a SET, we need to know this
 894 */
 895#define SET_WAY_TO_IDX(mmu, set, way)  ((set) * mmu->ways + (way))
 896
 897/* Handling of Duplicate PD (TLB entry) in MMU.
 898 * -Could be due to buggy customer tapeouts or obscure kernel bugs
 899 * -MMU complaints not at the time of duplicate PD installation, but at the
 900 *      time of lookup matching multiple ways.
 901 * -Ideally these should never happen - but if they do - workaround by deleting
 902 *      the duplicate one.
 903 * -Knob to be verbose abt it.(TODO: hook them up to debugfs)
 904 */
 905volatile int dup_pd_silent; /* Be slient abt it or complain (default) */
 906
 907void do_tlb_overlap_fault(unsigned long cause, unsigned long address,
 908			  struct pt_regs *regs)
 909{
 910	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
 
 911	unsigned long flags;
 912	int set, n_ways = mmu->ways;
 913
 914	n_ways = min(n_ways, 4);
 915	BUG_ON(mmu->ways > 4);
 916
 917	local_irq_save(flags);
 918
 
 
 
 919	/* loop thru all sets of TLB */
 920	for (set = 0; set < mmu->sets; set++) {
 921
 922		int is_valid, way;
 923		unsigned int pd0[4];
 924
 925		/* read out all the ways of current set */
 926		for (way = 0, is_valid = 0; way < n_ways; way++) {
 927			write_aux_reg(ARC_REG_TLBINDEX,
 928					  SET_WAY_TO_IDX(mmu, set, way));
 929			write_aux_reg(ARC_REG_TLBCOMMAND, TLBRead);
 930			pd0[way] = read_aux_reg(ARC_REG_TLBPD0);
 931			is_valid |= pd0[way] & _PAGE_PRESENT;
 932			pd0[way] &= PAGE_MASK;
 933		}
 934
 935		/* If all the WAYS in SET are empty, skip to next SET */
 936		if (!is_valid)
 937			continue;
 938
 939		/* Scan the set for duplicate ways: needs a nested loop */
 940		for (way = 0; way < n_ways - 1; way++) {
 941
 942			int n;
 943
 944			if (!pd0[way])
 945				continue;
 946
 947			for (n = way + 1; n < n_ways; n++) {
 948				if (pd0[way] != pd0[n])
 949					continue;
 950
 951				if (!dup_pd_silent)
 952					pr_info("Dup TLB PD0 %08x @ set %d ways %d,%d\n",
 953						pd0[way], set, way, n);
 954
 955				/*
 956				 * clear entry @way and not @n.
 957				 * This is critical to our optimised loop
 958				 */
 959				pd0[way] = 0;
 960				write_aux_reg(ARC_REG_TLBINDEX,
 961						SET_WAY_TO_IDX(mmu, set, way));
 962				__tlb_entry_erase();
 963			}
 964		}
 965	}
 966
 967	local_irq_restore(flags);
 968}
 969
 970/***********************************************************************
 971 * Diagnostic Routines
 972 *  -Called from Low Level TLB Hanlders if things don;t look good
 973 **********************************************************************/
 974
 975#ifdef CONFIG_ARC_DBG_TLB_PARANOIA
 976
 977/*
 978 * Low Level ASM TLB handler calls this if it finds that HW and SW ASIDS
 979 * don't match
 980 */
 981void print_asid_mismatch(int mm_asid, int mmu_asid, int is_fast_path)
 982{
 983	pr_emerg("ASID Mismatch in %s Path Handler: sw-pid=0x%x hw-pid=0x%x\n",
 984	       is_fast_path ? "Fast" : "Slow", mm_asid, mmu_asid);
 985
 986	__asm__ __volatile__("flag 1");
 987}
 988
 989void tlb_paranoid_check(unsigned int mm_asid, unsigned long addr)
 990{
 991	unsigned int mmu_asid;
 992
 993	mmu_asid = read_aux_reg(ARC_REG_PID) & 0xff;
 994
 995	/*
 996	 * At the time of a TLB miss/installation
 997	 *   - HW version needs to match SW version
 998	 *   - SW needs to have a valid ASID
 999	 */
1000	if (addr < 0x70000000 &&
1001	    ((mm_asid == MM_CTXT_NO_ASID) ||
1002	      (mmu_asid != (mm_asid & MM_CTXT_ASID_MASK))))
1003		print_asid_mismatch(mm_asid, mmu_asid, 0);
1004}
1005#endif
v4.6
 
  1/*
  2 * TLB Management (flush/create/diagnostics) for ARC700
  3 *
  4 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License version 2 as
  8 * published by the Free Software Foundation.
  9 *
 10 * vineetg: Aug 2011
 11 *  -Reintroduce duplicate PD fixup - some customer chips still have the issue
 12 *
 13 * vineetg: May 2011
 14 *  -No need to flush_cache_page( ) for each call to update_mmu_cache()
 15 *   some of the LMBench tests improved amazingly
 16 *      = page-fault thrice as fast (75 usec to 28 usec)
 17 *      = mmap twice as fast (9.6 msec to 4.6 msec),
 18 *      = fork (5.3 msec to 3.7 msec)
 19 *
 20 * vineetg: April 2011 :
 21 *  -MMU v3: PD{0,1} bits layout changed: They don't overlap anymore,
 22 *      helps avoid a shift when preparing PD0 from PTE
 23 *
 24 * vineetg: April 2011 : Preparing for MMU V3
 25 *  -MMU v2/v3 BCRs decoded differently
 26 *  -Remove TLB_SIZE hardcoding as it's variable now: 256 or 512
 27 *  -tlb_entry_erase( ) can be void
 28 *  -local_flush_tlb_range( ):
 29 *      = need not "ceil" @end
 30 *      = walks MMU only if range spans < 32 entries, as opposed to 256
 31 *
 32 * Vineetg: Sept 10th 2008
 33 *  -Changes related to MMU v2 (Rel 4.8)
 34 *
 35 * Vineetg: Aug 29th 2008
 36 *  -In TLB Flush operations (Metal Fix MMU) there is a explict command to
 37 *    flush Micro-TLBS. If TLB Index Reg is invalid prior to TLBIVUTLB cmd,
 38 *    it fails. Thus need to load it with ANY valid value before invoking
 39 *    TLBIVUTLB cmd
 40 *
 41 * Vineetg: Aug 21th 2008:
 42 *  -Reduced the duration of IRQ lockouts in TLB Flush routines
 43 *  -Multiple copies of TLB erase code seperated into a "single" function
 44 *  -In TLB Flush routines, interrupt disabling moved UP to retrieve ASID
 45 *       in interrupt-safe region.
 46 *
 47 * Vineetg: April 23rd Bug #93131
 48 *    Problem: tlb_flush_kernel_range() doesn't do anything if the range to
 49 *              flush is more than the size of TLB itself.
 50 *
 51 * Rahul Trivedi : Codito Technologies 2004
 52 */
 53
 54#include <linux/module.h>
 55#include <linux/bug.h>
 
 
 56#include <asm/arcregs.h>
 57#include <asm/setup.h>
 58#include <asm/mmu_context.h>
 59#include <asm/mmu.h>
 60
 61/*			Need for ARC MMU v2
 62 *
 63 * ARC700 MMU-v1 had a Joint-TLB for Code and Data and is 2 way set-assoc.
 64 * For a memcpy operation with 3 players (src/dst/code) such that all 3 pages
 65 * map into same set, there would be contention for the 2 ways causing severe
 66 * Thrashing.
 67 *
 68 * Although J-TLB is 2 way set assoc, ARC700 caches J-TLB into uTLBS which has
 69 * much higher associativity. u-D-TLB is 8 ways, u-I-TLB is 4 ways.
 70 * Given this, the thrasing problem should never happen because once the 3
 71 * J-TLB entries are created (even though 3rd will knock out one of the prev
 72 * two), the u-D-TLB and u-I-TLB will have what is required to accomplish memcpy
 73 *
 74 * Yet we still see the Thrashing because a J-TLB Write cause flush of u-TLBs.
 75 * This is a simple design for keeping them in sync. So what do we do?
 76 * The solution which James came up was pretty neat. It utilised the assoc
 77 * of uTLBs by not invalidating always but only when absolutely necessary.
 78 *
 79 * - Existing TLB commands work as before
 80 * - New command (TLBWriteNI) for TLB write without clearing uTLBs
 81 * - New command (TLBIVUTLB) to invalidate uTLBs.
 82 *
 83 * The uTLBs need only be invalidated when pages are being removed from the
 84 * OS page table. If a 'victim' TLB entry is being overwritten in the main TLB
 85 * as a result of a miss, the removed entry is still allowed to exist in the
 86 * uTLBs as it is still valid and present in the OS page table. This allows the
 87 * full associativity of the uTLBs to hide the limited associativity of the main
 88 * TLB.
 89 *
 90 * During a miss handler, the new "TLBWriteNI" command is used to load
 91 * entries without clearing the uTLBs.
 92 *
 93 * When the OS page table is updated, TLB entries that may be associated with a
 94 * removed page are removed (flushed) from the TLB using TLBWrite. In this
 95 * circumstance, the uTLBs must also be cleared. This is done by using the
 96 * existing TLBWrite command. An explicit IVUTLB is also required for those
 97 * corner cases when TLBWrite was not executed at all because the corresp
 98 * J-TLB entry got evicted/replaced.
 99 */
100
101
102/* A copy of the ASID from the PID reg is kept in asid_cache */
103DEFINE_PER_CPU(unsigned int, asid_cache) = MM_CTXT_FIRST_CYCLE;
104
 
 
105/*
106 * Utility Routine to erase a J-TLB entry
107 * Caller needs to setup Index Reg (manually or via getIndex)
108 */
109static inline void __tlb_entry_erase(void)
110{
111	write_aux_reg(ARC_REG_TLBPD1, 0);
112
113	if (is_pae40_enabled())
114		write_aux_reg(ARC_REG_TLBPD1HI, 0);
115
116	write_aux_reg(ARC_REG_TLBPD0, 0);
117	write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
118}
119
120#if (CONFIG_ARC_MMU_VER < 4)
121
122static inline unsigned int tlb_entry_lkup(unsigned long vaddr_n_asid)
123{
124	unsigned int idx;
125
126	write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid);
127
128	write_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe);
129	idx = read_aux_reg(ARC_REG_TLBINDEX);
130
131	return idx;
132}
133
134static void tlb_entry_erase(unsigned int vaddr_n_asid)
135{
136	unsigned int idx;
137
138	/* Locate the TLB entry for this vaddr + ASID */
139	idx = tlb_entry_lkup(vaddr_n_asid);
140
141	/* No error means entry found, zero it out */
142	if (likely(!(idx & TLB_LKUP_ERR))) {
143		__tlb_entry_erase();
144	} else {
145		/* Duplicate entry error */
146		WARN(idx == TLB_DUP_ERR, "Probe returned Dup PD for %x\n",
147					   vaddr_n_asid);
148	}
149}
150
151/****************************************************************************
152 * ARC700 MMU caches recently used J-TLB entries (RAM) as uTLBs (FLOPs)
153 *
154 * New IVUTLB cmd in MMU v2 explictly invalidates the uTLB
155 *
156 * utlb_invalidate ( )
157 *  -For v2 MMU calls Flush uTLB Cmd
158 *  -For v1 MMU does nothing (except for Metal Fix v1 MMU)
159 *      This is because in v1 TLBWrite itself invalidate uTLBs
160 ***************************************************************************/
161
162static void utlb_invalidate(void)
163{
164#if (CONFIG_ARC_MMU_VER >= 2)
165
166#if (CONFIG_ARC_MMU_VER == 2)
167	/* MMU v2 introduced the uTLB Flush command.
168	 * There was however an obscure hardware bug, where uTLB flush would
169	 * fail when a prior probe for J-TLB (both totally unrelated) would
170	 * return lkup err - because the entry didn't exist in MMU.
171	 * The Workround was to set Index reg with some valid value, prior to
172	 * flush. This was fixed in MMU v3 hence not needed any more
173	 */
174	unsigned int idx;
175
176	/* make sure INDEX Reg is valid */
177	idx = read_aux_reg(ARC_REG_TLBINDEX);
178
179	/* If not write some dummy val */
180	if (unlikely(idx & TLB_LKUP_ERR))
181		write_aux_reg(ARC_REG_TLBINDEX, 0xa);
182#endif
183
184	write_aux_reg(ARC_REG_TLBCOMMAND, TLBIVUTLB);
185#endif
186
187}
188
189static void tlb_entry_insert(unsigned int pd0, pte_t pd1)
190{
191	unsigned int idx;
192
193	/*
194	 * First verify if entry for this vaddr+ASID already exists
195	 * This also sets up PD0 (vaddr, ASID..) for final commit
196	 */
197	idx = tlb_entry_lkup(pd0);
198
199	/*
200	 * If Not already present get a free slot from MMU.
201	 * Otherwise, Probe would have located the entry and set INDEX Reg
202	 * with existing location. This will cause Write CMD to over-write
203	 * existing entry with new PD0 and PD1
204	 */
205	if (likely(idx & TLB_LKUP_ERR))
206		write_aux_reg(ARC_REG_TLBCOMMAND, TLBGetIndex);
207
208	/* setup the other half of TLB entry (pfn, rwx..) */
209	write_aux_reg(ARC_REG_TLBPD1, pd1);
210
211	/*
212	 * Commit the Entry to MMU
213	 * It doesn't sound safe to use the TLBWriteNI cmd here
214	 * which doesn't flush uTLBs. I'd rather be safe than sorry.
215	 */
216	write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
217}
218
219#else	/* CONFIG_ARC_MMU_VER >= 4) */
220
221static void utlb_invalidate(void)
222{
223	/* No need since uTLB is always in sync with JTLB */
224}
225
226static void tlb_entry_erase(unsigned int vaddr_n_asid)
227{
228	write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid | _PAGE_PRESENT);
229	write_aux_reg(ARC_REG_TLBCOMMAND, TLBDeleteEntry);
230}
231
232static void tlb_entry_insert(unsigned int pd0, pte_t pd1)
233{
234	write_aux_reg(ARC_REG_TLBPD0, pd0);
235	write_aux_reg(ARC_REG_TLBPD1, pd1);
236
237	if (is_pae40_enabled())
238		write_aux_reg(ARC_REG_TLBPD1HI, (u64)pd1 >> 32);
239
240	write_aux_reg(ARC_REG_TLBCOMMAND, TLBInsertEntry);
241}
242
243#endif
244
245/*
246 * Un-conditionally (without lookup) erase the entire MMU contents
247 */
248
249noinline void local_flush_tlb_all(void)
250{
251	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
252	unsigned long flags;
253	unsigned int entry;
254	int num_tlb = mmu->sets * mmu->ways;
255
256	local_irq_save(flags);
257
258	/* Load PD0 and PD1 with template for a Blank Entry */
259	write_aux_reg(ARC_REG_TLBPD1, 0);
260
261	if (is_pae40_enabled())
262		write_aux_reg(ARC_REG_TLBPD1HI, 0);
263
264	write_aux_reg(ARC_REG_TLBPD0, 0);
265
266	for (entry = 0; entry < num_tlb; entry++) {
267		/* write this entry to the TLB */
268		write_aux_reg(ARC_REG_TLBINDEX, entry);
269		write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
270	}
271
272	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
273		const int stlb_idx = 0x800;
274
275		/* Blank sTLB entry */
276		write_aux_reg(ARC_REG_TLBPD0, _PAGE_HW_SZ);
277
278		for (entry = stlb_idx; entry < stlb_idx + 16; entry++) {
279			write_aux_reg(ARC_REG_TLBINDEX, entry);
280			write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
281		}
282	}
283
284	utlb_invalidate();
285
286	local_irq_restore(flags);
287}
288
289/*
290 * Flush the entrie MM for userland. The fastest way is to move to Next ASID
291 */
292noinline void local_flush_tlb_mm(struct mm_struct *mm)
293{
294	/*
295	 * Small optimisation courtesy IA64
296	 * flush_mm called during fork,exit,munmap etc, multiple times as well.
297	 * Only for fork( ) do we need to move parent to a new MMU ctxt,
298	 * all other cases are NOPs, hence this check.
299	 */
300	if (atomic_read(&mm->mm_users) == 0)
301		return;
302
303	/*
304	 * - Move to a new ASID, but only if the mm is still wired in
305	 *   (Android Binder ended up calling this for vma->mm != tsk->mm,
306	 *    causing h/w - s/w ASID to get out of sync)
307	 * - Also get_new_mmu_context() new implementation allocates a new
308	 *   ASID only if it is not allocated already - so unallocate first
309	 */
310	destroy_context(mm);
311	if (current->mm == mm)
312		get_new_mmu_context(mm);
313}
314
315/*
316 * Flush a Range of TLB entries for userland.
317 * @start is inclusive, while @end is exclusive
318 * Difference between this and Kernel Range Flush is
319 *  -Here the fastest way (if range is too large) is to move to next ASID
320 *      without doing any explicit Shootdown
321 *  -In case of kernel Flush, entry has to be shot down explictly
322 */
323void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
324			   unsigned long end)
325{
326	const unsigned int cpu = smp_processor_id();
327	unsigned long flags;
328
329	/* If range @start to @end is more than 32 TLB entries deep,
330	 * its better to move to a new ASID rather than searching for
331	 * individual entries and then shooting them down
332	 *
333	 * The calc above is rough, doesn't account for unaligned parts,
334	 * since this is heuristics based anyways
335	 */
336	if (unlikely((end - start) >= PAGE_SIZE * 32)) {
337		local_flush_tlb_mm(vma->vm_mm);
338		return;
339	}
340
341	/*
342	 * @start moved to page start: this alone suffices for checking
343	 * loop end condition below, w/o need for aligning @end to end
344	 * e.g. 2000 to 4001 will anyhow loop twice
345	 */
346	start &= PAGE_MASK;
347
348	local_irq_save(flags);
349
350	if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
351		while (start < end) {
352			tlb_entry_erase(start | hw_pid(vma->vm_mm, cpu));
353			start += PAGE_SIZE;
354		}
355	}
356
357	utlb_invalidate();
358
359	local_irq_restore(flags);
360}
361
362/* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective)
363 *  @start, @end interpreted as kvaddr
364 * Interestingly, shared TLB entries can also be flushed using just
365 * @start,@end alone (interpreted as user vaddr), although technically SASID
366 * is also needed. However our smart TLbProbe lookup takes care of that.
367 */
368void local_flush_tlb_kernel_range(unsigned long start, unsigned long end)
369{
370	unsigned long flags;
371
372	/* exactly same as above, except for TLB entry not taking ASID */
373
374	if (unlikely((end - start) >= PAGE_SIZE * 32)) {
375		local_flush_tlb_all();
376		return;
377	}
378
379	start &= PAGE_MASK;
380
381	local_irq_save(flags);
382	while (start < end) {
383		tlb_entry_erase(start);
384		start += PAGE_SIZE;
385	}
386
387	utlb_invalidate();
388
389	local_irq_restore(flags);
390}
391
392/*
393 * Delete TLB entry in MMU for a given page (??? address)
394 * NOTE One TLB entry contains translation for single PAGE
395 */
396
397void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
398{
399	const unsigned int cpu = smp_processor_id();
400	unsigned long flags;
401
402	/* Note that it is critical that interrupts are DISABLED between
403	 * checking the ASID and using it flush the TLB entry
404	 */
405	local_irq_save(flags);
406
407	if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
408		tlb_entry_erase((page & PAGE_MASK) | hw_pid(vma->vm_mm, cpu));
409		utlb_invalidate();
410	}
411
412	local_irq_restore(flags);
413}
414
415#ifdef CONFIG_SMP
416
417struct tlb_args {
418	struct vm_area_struct *ta_vma;
419	unsigned long ta_start;
420	unsigned long ta_end;
421};
422
423static inline void ipi_flush_tlb_page(void *arg)
424{
425	struct tlb_args *ta = arg;
426
427	local_flush_tlb_page(ta->ta_vma, ta->ta_start);
428}
429
430static inline void ipi_flush_tlb_range(void *arg)
431{
432	struct tlb_args *ta = arg;
433
434	local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
435}
436
437#ifdef CONFIG_TRANSPARENT_HUGEPAGE
438static inline void ipi_flush_pmd_tlb_range(void *arg)
439{
440	struct tlb_args *ta = arg;
441
442	local_flush_pmd_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
443}
444#endif
445
446static inline void ipi_flush_tlb_kernel_range(void *arg)
447{
448	struct tlb_args *ta = (struct tlb_args *)arg;
449
450	local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
451}
452
453void flush_tlb_all(void)
454{
455	on_each_cpu((smp_call_func_t)local_flush_tlb_all, NULL, 1);
456}
457
458void flush_tlb_mm(struct mm_struct *mm)
459{
460	on_each_cpu_mask(mm_cpumask(mm), (smp_call_func_t)local_flush_tlb_mm,
461			 mm, 1);
462}
463
464void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
465{
466	struct tlb_args ta = {
467		.ta_vma = vma,
468		.ta_start = uaddr
469	};
470
471	on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_page, &ta, 1);
472}
473
474void flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
475		     unsigned long end)
476{
477	struct tlb_args ta = {
478		.ta_vma = vma,
479		.ta_start = start,
480		.ta_end = end
481	};
482
483	on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_range, &ta, 1);
484}
485
486#ifdef CONFIG_TRANSPARENT_HUGEPAGE
487void flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start,
488			 unsigned long end)
489{
490	struct tlb_args ta = {
491		.ta_vma = vma,
492		.ta_start = start,
493		.ta_end = end
494	};
495
496	on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_pmd_tlb_range, &ta, 1);
497}
498#endif
499
500void flush_tlb_kernel_range(unsigned long start, unsigned long end)
501{
502	struct tlb_args ta = {
503		.ta_start = start,
504		.ta_end = end
505	};
506
507	on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1);
508}
509#endif
510
511/*
512 * Routine to create a TLB entry
513 */
514void create_tlb(struct vm_area_struct *vma, unsigned long vaddr, pte_t *ptep)
515{
516	unsigned long flags;
517	unsigned int asid_or_sasid, rwx;
518	unsigned long pd0;
519	pte_t pd1;
520
521	/*
522	 * create_tlb() assumes that current->mm == vma->mm, since
523	 * -it ASID for TLB entry is fetched from MMU ASID reg (valid for curr)
524	 * -completes the lazy write to SASID reg (again valid for curr tsk)
525	 *
526	 * Removing the assumption involves
527	 * -Using vma->mm->context{ASID,SASID}, as opposed to MMU reg.
528	 * -Fix the TLB paranoid debug code to not trigger false negatives.
529	 * -More importantly it makes this handler inconsistent with fast-path
530	 *  TLB Refill handler which always deals with "current"
531	 *
532	 * Lets see the use cases when current->mm != vma->mm and we land here
533	 *  1. execve->copy_strings()->__get_user_pages->handle_mm_fault
534	 *     Here VM wants to pre-install a TLB entry for user stack while
535	 *     current->mm still points to pre-execve mm (hence the condition).
536	 *     However the stack vaddr is soon relocated (randomization) and
537	 *     move_page_tables() tries to undo that TLB entry.
538	 *     Thus not creating TLB entry is not any worse.
539	 *
540	 *  2. ptrace(POKETEXT) causes a CoW - debugger(current) inserting a
541	 *     breakpoint in debugged task. Not creating a TLB now is not
542	 *     performance critical.
543	 *
544	 * Both the cases above are not good enough for code churn.
545	 */
546	if (current->active_mm != vma->vm_mm)
547		return;
548
549	local_irq_save(flags);
550
551	tlb_paranoid_check(asid_mm(vma->vm_mm, smp_processor_id()), vaddr);
552
553	vaddr &= PAGE_MASK;
554
555	/* update this PTE credentials */
556	pte_val(*ptep) |= (_PAGE_PRESENT | _PAGE_ACCESSED);
557
558	/* Create HW TLB(PD0,PD1) from PTE  */
559
560	/* ASID for this task */
561	asid_or_sasid = read_aux_reg(ARC_REG_PID) & 0xff;
562
563	pd0 = vaddr | asid_or_sasid | (pte_val(*ptep) & PTE_BITS_IN_PD0);
564
565	/*
566	 * ARC MMU provides fully orthogonal access bits for K/U mode,
567	 * however Linux only saves 1 set to save PTE real-estate
568	 * Here we convert 3 PTE bits into 6 MMU bits:
569	 * -Kernel only entries have Kr Kw Kx 0 0 0
570	 * -User entries have mirrored K and U bits
571	 */
572	rwx = pte_val(*ptep) & PTE_BITS_RWX;
573
574	if (pte_val(*ptep) & _PAGE_GLOBAL)
575		rwx <<= 3;		/* r w x => Kr Kw Kx 0 0 0 */
576	else
577		rwx |= (rwx << 3);	/* r w x => Kr Kw Kx Ur Uw Ux */
578
579	pd1 = rwx | (pte_val(*ptep) & PTE_BITS_NON_RWX_IN_PD1);
580
581	tlb_entry_insert(pd0, pd1);
582
583	local_irq_restore(flags);
584}
585
586/*
587 * Called at the end of pagefault, for a userspace mapped page
588 *  -pre-install the corresponding TLB entry into MMU
589 *  -Finalize the delayed D-cache flush of kernel mapping of page due to
590 *  	flush_dcache_page(), copy_user_page()
591 *
592 * Note that flush (when done) involves both WBACK - so physical page is
593 * in sync as well as INV - so any non-congruent aliases don't remain
594 */
595void update_mmu_cache(struct vm_area_struct *vma, unsigned long vaddr_unaligned,
596		      pte_t *ptep)
597{
598	unsigned long vaddr = vaddr_unaligned & PAGE_MASK;
599	phys_addr_t paddr = pte_val(*ptep) & PAGE_MASK;
600	struct page *page = pfn_to_page(pte_pfn(*ptep));
601
602	create_tlb(vma, vaddr, ptep);
603
604	if (page == ZERO_PAGE(0)) {
605		return;
606	}
607
608	/*
609	 * Exec page : Independent of aliasing/page-color considerations,
610	 *	       since icache doesn't snoop dcache on ARC, any dirty
611	 *	       K-mapping of a code page needs to be wback+inv so that
612	 *	       icache fetch by userspace sees code correctly.
613	 * !EXEC page: If K-mapping is NOT congruent to U-mapping, flush it
614	 *	       so userspace sees the right data.
615	 *  (Avoids the flush for Non-exec + congruent mapping case)
616	 */
617	if ((vma->vm_flags & VM_EXEC) ||
618	     addr_not_cache_congruent(paddr, vaddr)) {
619
620		int dirty = !test_and_set_bit(PG_dc_clean, &page->flags);
621		if (dirty) {
622			/* wback + inv dcache lines (K-mapping) */
623			__flush_dcache_page(paddr, paddr);
624
625			/* invalidate any existing icache lines (U-mapping) */
626			if (vma->vm_flags & VM_EXEC)
627				__inv_icache_page(paddr, vaddr);
628		}
629	}
630}
631
632#ifdef CONFIG_TRANSPARENT_HUGEPAGE
633
634/*
635 * MMUv4 in HS38x cores supports Super Pages which are basis for Linux THP
636 * support.
637 *
638 * Normal and Super pages can co-exist (ofcourse not overlap) in TLB with a
639 * new bit "SZ" in TLB page descriptor to distinguish between them.
640 * Super Page size is configurable in hardware (4K to 16M), but fixed once
641 * RTL builds.
642 *
643 * The exact THP size a Linx configuration will support is a function of:
644 *  - MMU page size (typical 8K, RTL fixed)
645 *  - software page walker address split between PGD:PTE:PFN (typical
646 *    11:8:13, but can be changed with 1 line)
647 * So for above default, THP size supported is 8K * (2^8) = 2M
648 *
649 * Default Page Walker is 2 levels, PGD:PTE:PFN, which in THP regime
650 * reduces to 1 level (as PTE is folded into PGD and canonically referred
651 * to as PMD).
652 * Thus THP PMD accessors are implemented in terms of PTE (just like sparc)
653 */
654
655void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
656				 pmd_t *pmd)
657{
658	pte_t pte = __pte(pmd_val(*pmd));
659	update_mmu_cache(vma, addr, &pte);
660}
661
662void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
663				pgtable_t pgtable)
664{
665	struct list_head *lh = (struct list_head *) pgtable;
666
667	assert_spin_locked(&mm->page_table_lock);
668
669	/* FIFO */
670	if (!pmd_huge_pte(mm, pmdp))
671		INIT_LIST_HEAD(lh);
672	else
673		list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
674	pmd_huge_pte(mm, pmdp) = pgtable;
675}
676
677pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
678{
679	struct list_head *lh;
680	pgtable_t pgtable;
681
682	assert_spin_locked(&mm->page_table_lock);
683
684	pgtable = pmd_huge_pte(mm, pmdp);
685	lh = (struct list_head *) pgtable;
686	if (list_empty(lh))
687		pmd_huge_pte(mm, pmdp) = NULL;
688	else {
689		pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
690		list_del(lh);
691	}
692
693	pte_val(pgtable[0]) = 0;
694	pte_val(pgtable[1]) = 0;
695
696	return pgtable;
697}
698
699void local_flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start,
700			       unsigned long end)
701{
702	unsigned int cpu;
703	unsigned long flags;
704
705	local_irq_save(flags);
706
707	cpu = smp_processor_id();
708
709	if (likely(asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID)) {
710		unsigned int asid = hw_pid(vma->vm_mm, cpu);
711
712		/* No need to loop here: this will always be for 1 Huge Page */
713		tlb_entry_erase(start | _PAGE_HW_SZ | asid);
714	}
715
716	local_irq_restore(flags);
717}
718
719#endif
720
721/* Read the Cache Build Confuration Registers, Decode them and save into
722 * the cpuinfo structure for later use.
723 * No Validation is done here, simply read/convert the BCRs
724 */
725void read_decode_mmu_bcr(void)
726{
727	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
728	unsigned int tmp;
729	struct bcr_mmu_1_2 {
730#ifdef CONFIG_CPU_BIG_ENDIAN
731		unsigned int ver:8, ways:4, sets:4, u_itlb:8, u_dtlb:8;
732#else
733		unsigned int u_dtlb:8, u_itlb:8, sets:4, ways:4, ver:8;
734#endif
735	} *mmu2;
736
737	struct bcr_mmu_3 {
738#ifdef CONFIG_CPU_BIG_ENDIAN
739	unsigned int ver:8, ways:4, sets:4, res:3, sasid:1, pg_sz:4,
740		     u_itlb:4, u_dtlb:4;
741#else
742	unsigned int u_dtlb:4, u_itlb:4, pg_sz:4, sasid:1, res:3, sets:4,
743		     ways:4, ver:8;
744#endif
745	} *mmu3;
746
747	struct bcr_mmu_4 {
748#ifdef CONFIG_CPU_BIG_ENDIAN
749	unsigned int ver:8, sasid:1, sz1:4, sz0:4, res:2, pae:1,
750		     n_ways:2, n_entry:2, n_super:2, u_itlb:3, u_dtlb:3;
751#else
752	/*           DTLB      ITLB      JES        JE         JA      */
753	unsigned int u_dtlb:3, u_itlb:3, n_super:2, n_entry:2, n_ways:2,
754		     pae:1, res:2, sz0:4, sz1:4, sasid:1, ver:8;
755#endif
756	} *mmu4;
757
758	tmp = read_aux_reg(ARC_REG_MMU_BCR);
759	mmu->ver = (tmp >> 24);
760
761	if (mmu->ver <= 2) {
762		mmu2 = (struct bcr_mmu_1_2 *)&tmp;
763		mmu->pg_sz_k = TO_KB(0x2000);
764		mmu->sets = 1 << mmu2->sets;
765		mmu->ways = 1 << mmu2->ways;
766		mmu->u_dtlb = mmu2->u_dtlb;
767		mmu->u_itlb = mmu2->u_itlb;
768	} else if (mmu->ver == 3) {
769		mmu3 = (struct bcr_mmu_3 *)&tmp;
770		mmu->pg_sz_k = 1 << (mmu3->pg_sz - 1);
771		mmu->sets = 1 << mmu3->sets;
772		mmu->ways = 1 << mmu3->ways;
773		mmu->u_dtlb = mmu3->u_dtlb;
774		mmu->u_itlb = mmu3->u_itlb;
775		mmu->sasid = mmu3->sasid;
 
 
776	} else {
777		mmu4 = (struct bcr_mmu_4 *)&tmp;
778		mmu->pg_sz_k = 1 << (mmu4->sz0 - 1);
779		mmu->s_pg_sz_m = 1 << (mmu4->sz1 - 11);
780		mmu->sets = 64 << mmu4->n_entry;
781		mmu->ways = mmu4->n_ways * 2;
782		mmu->u_dtlb = mmu4->u_dtlb * 4;
783		mmu->u_itlb = mmu4->u_itlb * 4;
784		mmu->sasid = mmu4->sasid;
785		mmu->pae = mmu4->pae;
786	}
787}
788
789char *arc_mmu_mumbojumbo(int cpu_id, char *buf, int len)
790{
791	int n = 0;
792	struct cpuinfo_arc_mmu *p_mmu = &cpuinfo_arc700[cpu_id].mmu;
793	char super_pg[64] = "";
794
795	if (p_mmu->s_pg_sz_m)
796		scnprintf(super_pg, 64, "%dM Super Page%s, ",
797			  p_mmu->s_pg_sz_m,
798			  IS_USED_CFG(CONFIG_TRANSPARENT_HUGEPAGE));
799
800	n += scnprintf(buf + n, len - n,
801		      "MMU [v%x]\t: %dk PAGE, %sJTLB %d (%dx%d), uDTLB %d, uITLB %d %s%s\n",
802		       p_mmu->ver, p_mmu->pg_sz_k, super_pg,
803		       p_mmu->sets * p_mmu->ways, p_mmu->sets, p_mmu->ways,
804		       p_mmu->u_dtlb, p_mmu->u_itlb,
805		       IS_AVAIL2(p_mmu->pae, "PAE40 ", CONFIG_ARC_HAS_PAE40));
806
807	return buf;
808}
809
 
 
 
 
 
810void arc_mmu_init(void)
811{
 
812	char str[256];
813	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
 
 
814
815	printk(arc_mmu_mumbojumbo(0, str, sizeof(str)));
 
 
 
816
817	/* For efficiency sake, kernel is compile time built for a MMU ver
818	 * This must match the hardware it is running on.
819	 * Linux built for MMU V2, if run on MMU V1 will break down because V1
820	 *  hardware doesn't understand cmds such as WriteNI, or IVUTLB
821	 * On the other hand, Linux built for V1 if run on MMU V2 will do
822	 *   un-needed workarounds to prevent memcpy thrashing.
823	 * Similarly MMU V3 has new features which won't work on older MMU
824	 */
825	if (mmu->ver != CONFIG_ARC_MMU_VER) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
826		panic("MMU ver %d doesn't match kernel built for %d...\n",
827		      mmu->ver, CONFIG_ARC_MMU_VER);
828	}
829
830	if (mmu->pg_sz_k != TO_KB(PAGE_SIZE))
831		panic("MMU pg size != PAGE_SIZE (%luk)\n", TO_KB(PAGE_SIZE));
832
833	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
834	    mmu->s_pg_sz_m != TO_MB(HPAGE_PMD_SIZE))
835		panic("MMU Super pg size != Linux HPAGE_PMD_SIZE (%luM)\n",
836		      (unsigned long)TO_MB(HPAGE_PMD_SIZE));
837
838	if (IS_ENABLED(CONFIG_ARC_HAS_PAE40) && !mmu->pae)
839		panic("Hardware doesn't support PAE40\n");
840
841	/* Enable the MMU */
842	write_aux_reg(ARC_REG_PID, MMU_ENABLE);
843
844	/* In smp we use this reg for interrupt 1 scratch */
845#ifndef CONFIG_SMP
846	/* swapper_pg_dir is the pgd for the kernel, used by vmalloc */
847	write_aux_reg(ARC_REG_SCRATCH_DATA0, swapper_pg_dir);
848#endif
 
 
 
849}
850
851/*
852 * TLB Programmer's Model uses Linear Indexes: 0 to {255, 511} for 128 x {2,4}
853 * The mapping is Column-first.
854 *		---------------------	-----------
855 *		|way0|way1|way2|way3|	|way0|way1|
856 *		---------------------	-----------
857 * [set0]	|  0 |  1 |  2 |  3 |	|  0 |  1 |
858 * [set1]	|  4 |  5 |  6 |  7 |	|  2 |  3 |
859 *		~		    ~	~	  ~
860 * [set127]	| 508| 509| 510| 511|	| 254| 255|
861 *		---------------------	-----------
862 * For normal operations we don't(must not) care how above works since
863 * MMU cmd getIndex(vaddr) abstracts that out.
864 * However for walking WAYS of a SET, we need to know this
865 */
866#define SET_WAY_TO_IDX(mmu, set, way)  ((set) * mmu->ways + (way))
867
868/* Handling of Duplicate PD (TLB entry) in MMU.
869 * -Could be due to buggy customer tapeouts or obscure kernel bugs
870 * -MMU complaints not at the time of duplicate PD installation, but at the
871 *      time of lookup matching multiple ways.
872 * -Ideally these should never happen - but if they do - workaround by deleting
873 *      the duplicate one.
874 * -Knob to be verbose abt it.(TODO: hook them up to debugfs)
875 */
876volatile int dup_pd_silent; /* Be slient abt it or complain (default) */
877
878void do_tlb_overlap_fault(unsigned long cause, unsigned long address,
879			  struct pt_regs *regs)
880{
881	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
882	unsigned int pd0[mmu->ways];
883	unsigned long flags;
884	int set;
 
 
 
885
886	local_irq_save(flags);
887
888	/* re-enable the MMU */
889	write_aux_reg(ARC_REG_PID, MMU_ENABLE | read_aux_reg(ARC_REG_PID));
890
891	/* loop thru all sets of TLB */
892	for (set = 0; set < mmu->sets; set++) {
893
894		int is_valid, way;
 
895
896		/* read out all the ways of current set */
897		for (way = 0, is_valid = 0; way < mmu->ways; way++) {
898			write_aux_reg(ARC_REG_TLBINDEX,
899					  SET_WAY_TO_IDX(mmu, set, way));
900			write_aux_reg(ARC_REG_TLBCOMMAND, TLBRead);
901			pd0[way] = read_aux_reg(ARC_REG_TLBPD0);
902			is_valid |= pd0[way] & _PAGE_PRESENT;
903			pd0[way] &= PAGE_MASK;
904		}
905
906		/* If all the WAYS in SET are empty, skip to next SET */
907		if (!is_valid)
908			continue;
909
910		/* Scan the set for duplicate ways: needs a nested loop */
911		for (way = 0; way < mmu->ways - 1; way++) {
912
913			int n;
914
915			if (!pd0[way])
916				continue;
917
918			for (n = way + 1; n < mmu->ways; n++) {
919				if (pd0[way] != pd0[n])
920					continue;
921
922				if (!dup_pd_silent)
923					pr_info("Dup TLB PD0 %08x @ set %d ways %d,%d\n",
924						pd0[way], set, way, n);
925
926				/*
927				 * clear entry @way and not @n.
928				 * This is critical to our optimised loop
929				 */
930				pd0[way] = 0;
931				write_aux_reg(ARC_REG_TLBINDEX,
932						SET_WAY_TO_IDX(mmu, set, way));
933				__tlb_entry_erase();
934			}
935		}
936	}
937
938	local_irq_restore(flags);
939}
940
941/***********************************************************************
942 * Diagnostic Routines
943 *  -Called from Low Level TLB Hanlders if things don;t look good
944 **********************************************************************/
945
946#ifdef CONFIG_ARC_DBG_TLB_PARANOIA
947
948/*
949 * Low Level ASM TLB handler calls this if it finds that HW and SW ASIDS
950 * don't match
951 */
952void print_asid_mismatch(int mm_asid, int mmu_asid, int is_fast_path)
953{
954	pr_emerg("ASID Mismatch in %s Path Handler: sw-pid=0x%x hw-pid=0x%x\n",
955	       is_fast_path ? "Fast" : "Slow", mm_asid, mmu_asid);
956
957	__asm__ __volatile__("flag 1");
958}
959
960void tlb_paranoid_check(unsigned int mm_asid, unsigned long addr)
961{
962	unsigned int mmu_asid;
963
964	mmu_asid = read_aux_reg(ARC_REG_PID) & 0xff;
965
966	/*
967	 * At the time of a TLB miss/installation
968	 *   - HW version needs to match SW version
969	 *   - SW needs to have a valid ASID
970	 */
971	if (addr < 0x70000000 &&
972	    ((mm_asid == MM_CTXT_NO_ASID) ||
973	      (mmu_asid != (mm_asid & MM_CTXT_ASID_MASK))))
974		print_asid_mismatch(mm_asid, mmu_asid, 0);
975}
976#endif