Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0+
  2/*
  3 * Read-Copy Update mechanism for mutual exclusion
  4 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  5 * Copyright IBM Corporation, 2001
  6 *
  7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
  8 *	    Manfred Spraul <manfred@colorfullife.com>
  9 *
 10 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
 11 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 12 * Papers:
 13 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
 14 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
 15 *
 16 * For detailed explanation of Read-Copy Update mechanism see -
 17 *		http://lse.sourceforge.net/locking/rcupdate.html
 18 *
 19 */
 20#include <linux/types.h>
 21#include <linux/kernel.h>
 22#include <linux/init.h>
 23#include <linux/spinlock.h>
 24#include <linux/smp.h>
 25#include <linux/interrupt.h>
 26#include <linux/sched/signal.h>
 27#include <linux/sched/debug.h>
 28#include <linux/atomic.h>
 29#include <linux/bitops.h>
 30#include <linux/percpu.h>
 31#include <linux/notifier.h>
 32#include <linux/cpu.h>
 33#include <linux/mutex.h>
 34#include <linux/export.h>
 35#include <linux/hardirq.h>
 36#include <linux/delay.h>
 37#include <linux/moduleparam.h>
 38#include <linux/kthread.h>
 39#include <linux/tick.h>
 40#include <linux/rcupdate_wait.h>
 41#include <linux/sched/isolation.h>
 42#include <linux/kprobes.h>
 43
 44#define CREATE_TRACE_POINTS
 45
 46#include "rcu.h"
 47
 48#ifdef MODULE_PARAM_PREFIX
 49#undef MODULE_PARAM_PREFIX
 50#endif
 51#define MODULE_PARAM_PREFIX "rcupdate."
 52
 53#ifndef CONFIG_TINY_RCU
 54extern int rcu_expedited; /* from sysctl */
 55module_param(rcu_expedited, int, 0);
 56extern int rcu_normal; /* from sysctl */
 57module_param(rcu_normal, int, 0);
 58static int rcu_normal_after_boot;
 59module_param(rcu_normal_after_boot, int, 0);
 60#endif /* #ifndef CONFIG_TINY_RCU */
 61
 62#ifdef CONFIG_DEBUG_LOCK_ALLOC
 63/**
 64 * rcu_read_lock_held_common() - might we be in RCU-sched read-side critical section?
 65 * @ret:	Best guess answer if lockdep cannot be relied on
 66 *
 67 * Returns true if lockdep must be ignored, in which case *ret contains
 68 * the best guess described below.  Otherwise returns false, in which
 69 * case *ret tells the caller nothing and the caller should instead
 70 * consult lockdep.
 71 *
 72 * If CONFIG_DEBUG_LOCK_ALLOC is selected, set *ret to nonzero iff in an
 73 * RCU-sched read-side critical section.  In absence of
 74 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
 75 * critical section unless it can prove otherwise.  Note that disabling
 76 * of preemption (including disabling irqs) counts as an RCU-sched
 77 * read-side critical section.  This is useful for debug checks in functions
 78 * that required that they be called within an RCU-sched read-side
 79 * critical section.
 80 *
 81 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
 82 * and while lockdep is disabled.
 83 *
 84 * Note that if the CPU is in the idle loop from an RCU point of view (ie:
 85 * that we are in the section between rcu_idle_enter() and rcu_idle_exit())
 86 * then rcu_read_lock_held() sets *ret to false even if the CPU did an
 87 * rcu_read_lock().  The reason for this is that RCU ignores CPUs that are
 88 * in such a section, considering these as in extended quiescent state,
 89 * so such a CPU is effectively never in an RCU read-side critical section
 90 * regardless of what RCU primitives it invokes.  This state of affairs is
 91 * required --- we need to keep an RCU-free window in idle where the CPU may
 92 * possibly enter into low power mode. This way we can notice an extended
 93 * quiescent state to other CPUs that started a grace period. Otherwise
 94 * we would delay any grace period as long as we run in the idle task.
 
 95 *
 96 * Similarly, we avoid claiming an RCU read lock held if the current
 97 * CPU is offline.
 98 */
 99static bool rcu_read_lock_held_common(bool *ret)
100{
101	if (!debug_lockdep_rcu_enabled()) {
102		*ret = 1;
103		return true;
104	}
105	if (!rcu_is_watching()) {
106		*ret = 0;
107		return true;
108	}
109	if (!rcu_lockdep_current_cpu_online()) {
110		*ret = 0;
111		return true;
112	}
113	return false;
114}
115
116int rcu_read_lock_sched_held(void)
117{
118	bool ret;
119
120	if (rcu_read_lock_held_common(&ret))
121		return ret;
122	return lock_is_held(&rcu_sched_lock_map) || !preemptible();
 
 
 
 
 
 
123}
124EXPORT_SYMBOL(rcu_read_lock_sched_held);
125#endif
126
127#ifndef CONFIG_TINY_RCU
128
129/*
130 * Should expedited grace-period primitives always fall back to their
131 * non-expedited counterparts?  Intended for use within RCU.  Note
132 * that if the user specifies both rcu_expedited and rcu_normal, then
133 * rcu_normal wins.  (Except during the time period during boot from
134 * when the first task is spawned until the rcu_set_runtime_mode()
135 * core_initcall() is invoked, at which point everything is expedited.)
136 */
137bool rcu_gp_is_normal(void)
138{
139	return READ_ONCE(rcu_normal) &&
140	       rcu_scheduler_active != RCU_SCHEDULER_INIT;
141}
142EXPORT_SYMBOL_GPL(rcu_gp_is_normal);
143
144static atomic_t rcu_expedited_nesting = ATOMIC_INIT(1);
145
146/*
147 * Should normal grace-period primitives be expedited?  Intended for
148 * use within RCU.  Note that this function takes the rcu_expedited
149 * sysfs/boot variable and rcu_scheduler_active into account as well
150 * as the rcu_expedite_gp() nesting.  So looping on rcu_unexpedite_gp()
151 * until rcu_gp_is_expedited() returns false is a -really- bad idea.
152 */
153bool rcu_gp_is_expedited(void)
154{
155	return rcu_expedited || atomic_read(&rcu_expedited_nesting);
 
156}
157EXPORT_SYMBOL_GPL(rcu_gp_is_expedited);
158
159/**
160 * rcu_expedite_gp - Expedite future RCU grace periods
161 *
162 * After a call to this function, future calls to synchronize_rcu() and
163 * friends act as the corresponding synchronize_rcu_expedited() function
164 * had instead been called.
165 */
166void rcu_expedite_gp(void)
167{
168	atomic_inc(&rcu_expedited_nesting);
169}
170EXPORT_SYMBOL_GPL(rcu_expedite_gp);
171
172/**
173 * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation
174 *
175 * Undo a prior call to rcu_expedite_gp().  If all prior calls to
176 * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(),
177 * and if the rcu_expedited sysfs/boot parameter is not set, then all
178 * subsequent calls to synchronize_rcu() and friends will return to
179 * their normal non-expedited behavior.
180 */
181void rcu_unexpedite_gp(void)
182{
183	atomic_dec(&rcu_expedited_nesting);
184}
185EXPORT_SYMBOL_GPL(rcu_unexpedite_gp);
186
187/*
188 * Inform RCU of the end of the in-kernel boot sequence.
189 */
190void rcu_end_inkernel_boot(void)
191{
192	rcu_unexpedite_gp();
193	if (rcu_normal_after_boot)
194		WRITE_ONCE(rcu_normal, 1);
195}
196
197#endif /* #ifndef CONFIG_TINY_RCU */
198
199/*
200 * Test each non-SRCU synchronous grace-period wait API.  This is
201 * useful just after a change in mode for these primitives, and
202 * during early boot.
203 */
204void rcu_test_sync_prims(void)
205{
206	if (!IS_ENABLED(CONFIG_PROVE_RCU))
207		return;
208	synchronize_rcu();
 
 
209	synchronize_rcu_expedited();
 
 
210}
211
212#if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU)
213
214/*
215 * Switch to run-time mode once RCU has fully initialized.
216 */
217static int __init rcu_set_runtime_mode(void)
218{
219	rcu_test_sync_prims();
220	rcu_scheduler_active = RCU_SCHEDULER_RUNNING;
221	rcu_test_sync_prims();
222	return 0;
223}
224core_initcall(rcu_set_runtime_mode);
225
226#endif /* #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU) */
227
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
228#ifdef CONFIG_DEBUG_LOCK_ALLOC
229static struct lock_class_key rcu_lock_key;
230struct lockdep_map rcu_lock_map =
231	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
232EXPORT_SYMBOL_GPL(rcu_lock_map);
233
234static struct lock_class_key rcu_bh_lock_key;
235struct lockdep_map rcu_bh_lock_map =
236	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
237EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
238
239static struct lock_class_key rcu_sched_lock_key;
240struct lockdep_map rcu_sched_lock_map =
241	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
242EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
243
244static struct lock_class_key rcu_callback_key;
245struct lockdep_map rcu_callback_map =
246	STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
247EXPORT_SYMBOL_GPL(rcu_callback_map);
248
249int notrace debug_lockdep_rcu_enabled(void)
250{
251	return rcu_scheduler_active != RCU_SCHEDULER_INACTIVE && debug_locks &&
252	       current->lockdep_recursion == 0;
253}
254EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
255NOKPROBE_SYMBOL(debug_lockdep_rcu_enabled);
256
257/**
258 * rcu_read_lock_held() - might we be in RCU read-side critical section?
259 *
260 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
261 * read-side critical section.  In absence of CONFIG_DEBUG_LOCK_ALLOC,
262 * this assumes we are in an RCU read-side critical section unless it can
263 * prove otherwise.  This is useful for debug checks in functions that
264 * require that they be called within an RCU read-side critical section.
265 *
266 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
267 * and while lockdep is disabled.
268 *
269 * Note that rcu_read_lock() and the matching rcu_read_unlock() must
270 * occur in the same context, for example, it is illegal to invoke
271 * rcu_read_unlock() in process context if the matching rcu_read_lock()
272 * was invoked from within an irq handler.
273 *
274 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
275 * offline from an RCU perspective, so check for those as well.
276 */
277int rcu_read_lock_held(void)
278{
279	bool ret;
280
281	if (rcu_read_lock_held_common(&ret))
282		return ret;
 
 
283	return lock_is_held(&rcu_lock_map);
284}
285EXPORT_SYMBOL_GPL(rcu_read_lock_held);
286
287/**
288 * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
289 *
290 * Check for bottom half being disabled, which covers both the
291 * CONFIG_PROVE_RCU and not cases.  Note that if someone uses
292 * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
293 * will show the situation.  This is useful for debug checks in functions
294 * that require that they be called within an RCU read-side critical
295 * section.
296 *
297 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
298 *
299 * Note that rcu_read_lock_bh() is disallowed if the CPU is either idle or
300 * offline from an RCU perspective, so check for those as well.
301 */
302int rcu_read_lock_bh_held(void)
303{
304	bool ret;
305
306	if (rcu_read_lock_held_common(&ret))
307		return ret;
 
 
308	return in_softirq() || irqs_disabled();
309}
310EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
311
312int rcu_read_lock_any_held(void)
313{
314	bool ret;
315
316	if (rcu_read_lock_held_common(&ret))
317		return ret;
318	if (lock_is_held(&rcu_lock_map) ||
319	    lock_is_held(&rcu_bh_lock_map) ||
320	    lock_is_held(&rcu_sched_lock_map))
321		return 1;
322	return !preemptible();
323}
324EXPORT_SYMBOL_GPL(rcu_read_lock_any_held);
325
326#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
327
328/**
329 * wakeme_after_rcu() - Callback function to awaken a task after grace period
330 * @head: Pointer to rcu_head member within rcu_synchronize structure
331 *
332 * Awaken the corresponding task now that a grace period has elapsed.
333 */
334void wakeme_after_rcu(struct rcu_head *head)
335{
336	struct rcu_synchronize *rcu;
337
338	rcu = container_of(head, struct rcu_synchronize, head);
339	complete(&rcu->completion);
340}
341EXPORT_SYMBOL_GPL(wakeme_after_rcu);
342
343void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
344		   struct rcu_synchronize *rs_array)
345{
346	int i;
347	int j;
348
349	/* Initialize and register callbacks for each crcu_array element. */
350	for (i = 0; i < n; i++) {
351		if (checktiny &&
352		    (crcu_array[i] == call_rcu)) {
 
353			might_sleep();
354			continue;
355		}
356		init_rcu_head_on_stack(&rs_array[i].head);
357		init_completion(&rs_array[i].completion);
358		for (j = 0; j < i; j++)
359			if (crcu_array[j] == crcu_array[i])
360				break;
361		if (j == i)
362			(crcu_array[i])(&rs_array[i].head, wakeme_after_rcu);
363	}
364
365	/* Wait for all callbacks to be invoked. */
366	for (i = 0; i < n; i++) {
367		if (checktiny &&
368		    (crcu_array[i] == call_rcu))
 
369			continue;
370		for (j = 0; j < i; j++)
371			if (crcu_array[j] == crcu_array[i])
372				break;
373		if (j == i)
374			wait_for_completion(&rs_array[i].completion);
375		destroy_rcu_head_on_stack(&rs_array[i].head);
376	}
377}
378EXPORT_SYMBOL_GPL(__wait_rcu_gp);
379
380#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
381void init_rcu_head(struct rcu_head *head)
382{
383	debug_object_init(head, &rcuhead_debug_descr);
384}
385EXPORT_SYMBOL_GPL(init_rcu_head);
386
387void destroy_rcu_head(struct rcu_head *head)
388{
389	debug_object_free(head, &rcuhead_debug_descr);
390}
391EXPORT_SYMBOL_GPL(destroy_rcu_head);
392
393static bool rcuhead_is_static_object(void *addr)
394{
395	return true;
396}
397
398/**
399 * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
400 * @head: pointer to rcu_head structure to be initialized
401 *
402 * This function informs debugobjects of a new rcu_head structure that
403 * has been allocated as an auto variable on the stack.  This function
404 * is not required for rcu_head structures that are statically defined or
405 * that are dynamically allocated on the heap.  This function has no
406 * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
407 */
408void init_rcu_head_on_stack(struct rcu_head *head)
409{
410	debug_object_init_on_stack(head, &rcuhead_debug_descr);
411}
412EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
413
414/**
415 * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
416 * @head: pointer to rcu_head structure to be initialized
417 *
418 * This function informs debugobjects that an on-stack rcu_head structure
419 * is about to go out of scope.  As with init_rcu_head_on_stack(), this
420 * function is not required for rcu_head structures that are statically
421 * defined or that are dynamically allocated on the heap.  Also as with
422 * init_rcu_head_on_stack(), this function has no effect for
423 * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
424 */
425void destroy_rcu_head_on_stack(struct rcu_head *head)
426{
427	debug_object_free(head, &rcuhead_debug_descr);
428}
429EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
430
431struct debug_obj_descr rcuhead_debug_descr = {
432	.name = "rcu_head",
433	.is_static_object = rcuhead_is_static_object,
434};
435EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
436#endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
437
438#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
439void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
440			       unsigned long secs,
441			       unsigned long c_old, unsigned long c)
442{
443	trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
444}
445EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
446#else
447#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
448	do { } while (0)
449#endif
450
451#if IS_ENABLED(CONFIG_RCU_TORTURE_TEST) || IS_MODULE(CONFIG_RCU_TORTURE_TEST)
452/* Get rcutorture access to sched_setaffinity(). */
453long rcutorture_sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
454{
455	int ret;
456
457	ret = sched_setaffinity(pid, in_mask);
458	WARN_ONCE(ret, "%s: sched_setaffinity() returned %d\n", __func__, ret);
459	return ret;
460}
461EXPORT_SYMBOL_GPL(rcutorture_sched_setaffinity);
462#endif
463
464#ifdef CONFIG_RCU_STALL_COMMON
465int rcu_cpu_stall_ftrace_dump __read_mostly;
466module_param(rcu_cpu_stall_ftrace_dump, int, 0644);
467int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
468EXPORT_SYMBOL_GPL(rcu_cpu_stall_suppress);
 
 
469module_param(rcu_cpu_stall_suppress, int, 0644);
470int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
471module_param(rcu_cpu_stall_timeout, int, 0644);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
472#endif /* #ifdef CONFIG_RCU_STALL_COMMON */
473
474#ifdef CONFIG_TASKS_RCU
475
476/*
477 * Simple variant of RCU whose quiescent states are voluntary context
478 * switch, cond_resched_rcu_qs(), user-space execution, and idle.
479 * As such, grace periods can take one good long time.  There are no
480 * read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
481 * because this implementation is intended to get the system into a safe
482 * state for some of the manipulations involved in tracing and the like.
483 * Finally, this implementation does not support high call_rcu_tasks()
484 * rates from multiple CPUs.  If this is required, per-CPU callback lists
485 * will be needed.
486 */
487
488/* Global list of callbacks and associated lock. */
489static struct rcu_head *rcu_tasks_cbs_head;
490static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
491static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
492static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
493
494/* Track exiting tasks in order to allow them to be waited for. */
495DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
496
497/* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */
498#define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
499static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
500module_param(rcu_task_stall_timeout, int, 0644);
501
502static struct task_struct *rcu_tasks_kthread_ptr;
503
504/**
505 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
506 * @rhp: structure to be used for queueing the RCU updates.
507 * @func: actual callback function to be invoked after the grace period
508 *
509 * The callback function will be invoked some time after a full grace
510 * period elapses, in other words after all currently executing RCU
511 * read-side critical sections have completed. call_rcu_tasks() assumes
512 * that the read-side critical sections end at a voluntary context
513 * switch (not a preemption!), cond_resched_rcu_qs(), entry into idle,
514 * or transition to usermode execution.  As such, there are no read-side
515 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
516 * this primitive is intended to determine that all tasks have passed
517 * through a safe state, not so much for data-strcuture synchronization.
518 *
519 * See the description of call_rcu() for more detailed information on
520 * memory ordering guarantees.
521 */
522void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
523{
524	unsigned long flags;
525	bool needwake;
526
527	rhp->next = NULL;
528	rhp->func = func;
529	raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
530	needwake = !rcu_tasks_cbs_head;
531	*rcu_tasks_cbs_tail = rhp;
532	rcu_tasks_cbs_tail = &rhp->next;
533	raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
534	/* We can't create the thread unless interrupts are enabled. */
535	if (needwake && READ_ONCE(rcu_tasks_kthread_ptr))
536		wake_up(&rcu_tasks_cbs_wq);
537}
538EXPORT_SYMBOL_GPL(call_rcu_tasks);
539
540/**
541 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
542 *
543 * Control will return to the caller some time after a full rcu-tasks
544 * grace period has elapsed, in other words after all currently
545 * executing rcu-tasks read-side critical sections have elapsed.  These
546 * read-side critical sections are delimited by calls to schedule(),
547 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
548 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
549 *
550 * This is a very specialized primitive, intended only for a few uses in
551 * tracing and other situations requiring manipulation of function
552 * preambles and profiling hooks.  The synchronize_rcu_tasks() function
553 * is not (yet) intended for heavy use from multiple CPUs.
554 *
555 * Note that this guarantee implies further memory-ordering guarantees.
556 * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
557 * each CPU is guaranteed to have executed a full memory barrier since the
558 * end of its last RCU-tasks read-side critical section whose beginning
559 * preceded the call to synchronize_rcu_tasks().  In addition, each CPU
560 * having an RCU-tasks read-side critical section that extends beyond
561 * the return from synchronize_rcu_tasks() is guaranteed to have executed
562 * a full memory barrier after the beginning of synchronize_rcu_tasks()
563 * and before the beginning of that RCU-tasks read-side critical section.
564 * Note that these guarantees include CPUs that are offline, idle, or
565 * executing in user mode, as well as CPUs that are executing in the kernel.
566 *
567 * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
568 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
569 * to have executed a full memory barrier during the execution of
570 * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
571 * (but again only if the system has more than one CPU).
572 */
573void synchronize_rcu_tasks(void)
574{
575	/* Complain if the scheduler has not started.  */
576	RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
577			 "synchronize_rcu_tasks called too soon");
578
579	/* Wait for the grace period. */
580	wait_rcu_gp(call_rcu_tasks);
581}
582EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
583
584/**
585 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
586 *
587 * Although the current implementation is guaranteed to wait, it is not
588 * obligated to, for example, if there are no pending callbacks.
589 */
590void rcu_barrier_tasks(void)
591{
592	/* There is only one callback queue, so this is easy.  ;-) */
593	synchronize_rcu_tasks();
594}
595EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
596
597/* See if tasks are still holding out, complain if so. */
598static void check_holdout_task(struct task_struct *t,
599			       bool needreport, bool *firstreport)
600{
601	int cpu;
602
603	if (!READ_ONCE(t->rcu_tasks_holdout) ||
604	    t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
605	    !READ_ONCE(t->on_rq) ||
606	    (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
607	     !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
608		WRITE_ONCE(t->rcu_tasks_holdout, false);
609		list_del_init(&t->rcu_tasks_holdout_list);
610		put_task_struct(t);
611		return;
612	}
613	rcu_request_urgent_qs_task(t);
614	if (!needreport)
615		return;
616	if (*firstreport) {
617		pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
618		*firstreport = false;
619	}
620	cpu = task_cpu(t);
621	pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
622		 t, ".I"[is_idle_task(t)],
623		 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
624		 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
625		 t->rcu_tasks_idle_cpu, cpu);
626	sched_show_task(t);
627}
628
629/* RCU-tasks kthread that detects grace periods and invokes callbacks. */
630static int __noreturn rcu_tasks_kthread(void *arg)
631{
632	unsigned long flags;
633	struct task_struct *g, *t;
634	unsigned long lastreport;
635	struct rcu_head *list;
636	struct rcu_head *next;
637	LIST_HEAD(rcu_tasks_holdouts);
638	int fract;
639
640	/* Run on housekeeping CPUs by default.  Sysadm can move if desired. */
641	housekeeping_affine(current, HK_FLAG_RCU);
642
643	/*
644	 * Each pass through the following loop makes one check for
645	 * newly arrived callbacks, and, if there are some, waits for
646	 * one RCU-tasks grace period and then invokes the callbacks.
647	 * This loop is terminated by the system going down.  ;-)
648	 */
649	for (;;) {
650
651		/* Pick up any new callbacks. */
652		raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
653		list = rcu_tasks_cbs_head;
654		rcu_tasks_cbs_head = NULL;
655		rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
656		raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
657
658		/* If there were none, wait a bit and start over. */
659		if (!list) {
660			wait_event_interruptible(rcu_tasks_cbs_wq,
661						 rcu_tasks_cbs_head);
662			if (!rcu_tasks_cbs_head) {
663				WARN_ON(signal_pending(current));
664				schedule_timeout_interruptible(HZ/10);
665			}
666			continue;
667		}
668
669		/*
670		 * Wait for all pre-existing t->on_rq and t->nvcsw
671		 * transitions to complete.  Invoking synchronize_rcu()
672		 * suffices because all these transitions occur with
673		 * interrupts disabled.  Without this synchronize_rcu(),
674		 * a read-side critical section that started before the
675		 * grace period might be incorrectly seen as having started
676		 * after the grace period.
677		 *
678		 * This synchronize_rcu() also dispenses with the
679		 * need for a memory barrier on the first store to
680		 * ->rcu_tasks_holdout, as it forces the store to happen
681		 * after the beginning of the grace period.
682		 */
683		synchronize_rcu();
684
685		/*
686		 * There were callbacks, so we need to wait for an
687		 * RCU-tasks grace period.  Start off by scanning
688		 * the task list for tasks that are not already
689		 * voluntarily blocked.  Mark these tasks and make
690		 * a list of them in rcu_tasks_holdouts.
691		 */
692		rcu_read_lock();
693		for_each_process_thread(g, t) {
694			if (t != current && READ_ONCE(t->on_rq) &&
695			    !is_idle_task(t)) {
696				get_task_struct(t);
697				t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
698				WRITE_ONCE(t->rcu_tasks_holdout, true);
699				list_add(&t->rcu_tasks_holdout_list,
700					 &rcu_tasks_holdouts);
701			}
702		}
703		rcu_read_unlock();
704
705		/*
706		 * Wait for tasks that are in the process of exiting.
707		 * This does only part of the job, ensuring that all
708		 * tasks that were previously exiting reach the point
709		 * where they have disabled preemption, allowing the
710		 * later synchronize_rcu() to finish the job.
711		 */
712		synchronize_srcu(&tasks_rcu_exit_srcu);
713
714		/*
715		 * Each pass through the following loop scans the list
716		 * of holdout tasks, removing any that are no longer
717		 * holdouts.  When the list is empty, we are done.
718		 */
719		lastreport = jiffies;
720
721		/* Start off with HZ/10 wait and slowly back off to 1 HZ wait*/
722		fract = 10;
723
724		for (;;) {
725			bool firstreport;
726			bool needreport;
727			int rtst;
728			struct task_struct *t1;
729
730			if (list_empty(&rcu_tasks_holdouts))
731				break;
732
733			/* Slowly back off waiting for holdouts */
734			schedule_timeout_interruptible(HZ/fract);
735
736			if (fract > 1)
737				fract--;
738
739			rtst = READ_ONCE(rcu_task_stall_timeout);
740			needreport = rtst > 0 &&
741				     time_after(jiffies, lastreport + rtst);
742			if (needreport)
743				lastreport = jiffies;
744			firstreport = true;
745			WARN_ON(signal_pending(current));
746			list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
747						rcu_tasks_holdout_list) {
748				check_holdout_task(t, needreport, &firstreport);
749				cond_resched();
750			}
751		}
752
753		/*
754		 * Because ->on_rq and ->nvcsw are not guaranteed
755		 * to have a full memory barriers prior to them in the
756		 * schedule() path, memory reordering on other CPUs could
757		 * cause their RCU-tasks read-side critical sections to
758		 * extend past the end of the grace period.  However,
759		 * because these ->nvcsw updates are carried out with
760		 * interrupts disabled, we can use synchronize_rcu()
761		 * to force the needed ordering on all such CPUs.
762		 *
763		 * This synchronize_rcu() also confines all
764		 * ->rcu_tasks_holdout accesses to be within the grace
765		 * period, avoiding the need for memory barriers for
766		 * ->rcu_tasks_holdout accesses.
767		 *
768		 * In addition, this synchronize_rcu() waits for exiting
769		 * tasks to complete their final preempt_disable() region
770		 * of execution, cleaning up after the synchronize_srcu()
771		 * above.
772		 */
773		synchronize_rcu();
774
775		/* Invoke the callbacks. */
776		while (list) {
777			next = list->next;
778			local_bh_disable();
779			list->func(list);
780			local_bh_enable();
781			list = next;
782			cond_resched();
783		}
784		/* Paranoid sleep to keep this from entering a tight loop */
785		schedule_timeout_uninterruptible(HZ/10);
786	}
787}
788
789/* Spawn rcu_tasks_kthread() at core_initcall() time. */
790static int __init rcu_spawn_tasks_kthread(void)
791{
792	struct task_struct *t;
793
794	t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
795	if (WARN_ONCE(IS_ERR(t), "%s: Could not start Tasks-RCU grace-period kthread, OOM is now expected behavior\n", __func__))
796		return 0;
797	smp_mb(); /* Ensure others see full kthread. */
798	WRITE_ONCE(rcu_tasks_kthread_ptr, t);
799	return 0;
800}
801core_initcall(rcu_spawn_tasks_kthread);
802
803/* Do the srcu_read_lock() for the above synchronize_srcu().  */
804void exit_tasks_rcu_start(void)
805{
806	preempt_disable();
807	current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
808	preempt_enable();
809}
810
811/* Do the srcu_read_unlock() for the above synchronize_srcu().  */
812void exit_tasks_rcu_finish(void)
813{
814	preempt_disable();
815	__srcu_read_unlock(&tasks_rcu_exit_srcu, current->rcu_tasks_idx);
816	preempt_enable();
817}
818
819#endif /* #ifdef CONFIG_TASKS_RCU */
820
821#ifndef CONFIG_TINY_RCU
822
823/*
824 * Print any non-default Tasks RCU settings.
825 */
826static void __init rcu_tasks_bootup_oddness(void)
827{
828#ifdef CONFIG_TASKS_RCU
829	if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
830		pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
831	else
832		pr_info("\tTasks RCU enabled.\n");
833#endif /* #ifdef CONFIG_TASKS_RCU */
834}
835
836#endif /* #ifndef CONFIG_TINY_RCU */
837
838#ifdef CONFIG_PROVE_RCU
839
840/*
841 * Early boot self test parameters.
842 */
843static bool rcu_self_test;
 
 
 
844module_param(rcu_self_test, bool, 0444);
 
 
845
846static int rcu_self_test_counter;
847
848static void test_callback(struct rcu_head *r)
849{
850	rcu_self_test_counter++;
851	pr_info("RCU test callback executed %d\n", rcu_self_test_counter);
852}
853
854DEFINE_STATIC_SRCU(early_srcu);
855
856static void early_boot_test_call_rcu(void)
857{
858	static struct rcu_head head;
859	static struct rcu_head shead;
860
861	call_rcu(&head, test_callback);
862	if (IS_ENABLED(CONFIG_SRCU))
863		call_srcu(&early_srcu, &shead, test_callback);
 
 
 
 
 
 
 
 
 
 
 
 
864}
865
866void rcu_early_boot_tests(void)
867{
868	pr_info("Running RCU self tests\n");
869
870	if (rcu_self_test)
871		early_boot_test_call_rcu();
 
 
 
 
872	rcu_test_sync_prims();
873}
874
875static int rcu_verify_early_boot_tests(void)
876{
877	int ret = 0;
878	int early_boot_test_counter = 0;
879
880	if (rcu_self_test) {
881		early_boot_test_counter++;
882		rcu_barrier();
883		if (IS_ENABLED(CONFIG_SRCU)) {
884			early_boot_test_counter++;
885			srcu_barrier(&early_srcu);
886		}
887	}
 
 
 
 
 
 
 
 
 
888	if (rcu_self_test_counter != early_boot_test_counter) {
889		WARN_ON(1);
890		ret = -1;
891	}
892
893	return ret;
894}
895late_initcall(rcu_verify_early_boot_tests);
896#else
897void rcu_early_boot_tests(void) {}
898#endif /* CONFIG_PROVE_RCU */
899
900#ifndef CONFIG_TINY_RCU
901
902/*
903 * Print any significant non-default boot-time settings.
904 */
905void __init rcupdate_announce_bootup_oddness(void)
906{
907	if (rcu_normal)
908		pr_info("\tNo expedited grace period (rcu_normal).\n");
909	else if (rcu_normal_after_boot)
910		pr_info("\tNo expedited grace period (rcu_normal_after_boot).\n");
911	else if (rcu_expedited)
912		pr_info("\tAll grace periods are expedited (rcu_expedited).\n");
913	if (rcu_cpu_stall_suppress)
914		pr_info("\tRCU CPU stall warnings suppressed (rcu_cpu_stall_suppress).\n");
915	if (rcu_cpu_stall_timeout != CONFIG_RCU_CPU_STALL_TIMEOUT)
916		pr_info("\tRCU CPU stall warnings timeout set to %d (rcu_cpu_stall_timeout).\n", rcu_cpu_stall_timeout);
917	rcu_tasks_bootup_oddness();
918}
919
920#endif /* #ifndef CONFIG_TINY_RCU */
v4.17
 
   1/*
   2 * Read-Copy Update mechanism for mutual exclusion
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, you can access it online at
  16 * http://www.gnu.org/licenses/gpl-2.0.html.
  17 *
  18 * Copyright IBM Corporation, 2001
  19 *
  20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
  21 *	    Manfred Spraul <manfred@colorfullife.com>
  22 *
  23 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  24 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  25 * Papers:
  26 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
  27 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
  28 *
  29 * For detailed explanation of Read-Copy Update mechanism see -
  30 *		http://lse.sourceforge.net/locking/rcupdate.html
  31 *
  32 */
  33#include <linux/types.h>
  34#include <linux/kernel.h>
  35#include <linux/init.h>
  36#include <linux/spinlock.h>
  37#include <linux/smp.h>
  38#include <linux/interrupt.h>
  39#include <linux/sched/signal.h>
  40#include <linux/sched/debug.h>
  41#include <linux/atomic.h>
  42#include <linux/bitops.h>
  43#include <linux/percpu.h>
  44#include <linux/notifier.h>
  45#include <linux/cpu.h>
  46#include <linux/mutex.h>
  47#include <linux/export.h>
  48#include <linux/hardirq.h>
  49#include <linux/delay.h>
  50#include <linux/moduleparam.h>
  51#include <linux/kthread.h>
  52#include <linux/tick.h>
  53#include <linux/rcupdate_wait.h>
  54#include <linux/sched/isolation.h>
 
  55
  56#define CREATE_TRACE_POINTS
  57
  58#include "rcu.h"
  59
  60#ifdef MODULE_PARAM_PREFIX
  61#undef MODULE_PARAM_PREFIX
  62#endif
  63#define MODULE_PARAM_PREFIX "rcupdate."
  64
  65#ifndef CONFIG_TINY_RCU
  66extern int rcu_expedited; /* from sysctl */
  67module_param(rcu_expedited, int, 0);
  68extern int rcu_normal; /* from sysctl */
  69module_param(rcu_normal, int, 0);
  70static int rcu_normal_after_boot;
  71module_param(rcu_normal_after_boot, int, 0);
  72#endif /* #ifndef CONFIG_TINY_RCU */
  73
  74#ifdef CONFIG_DEBUG_LOCK_ALLOC
  75/**
  76 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
 
 
 
 
 
 
  77 *
  78 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
  79 * RCU-sched read-side critical section.  In absence of
  80 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
  81 * critical section unless it can prove otherwise.  Note that disabling
  82 * of preemption (including disabling irqs) counts as an RCU-sched
  83 * read-side critical section.  This is useful for debug checks in functions
  84 * that required that they be called within an RCU-sched read-side
  85 * critical section.
  86 *
  87 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
  88 * and while lockdep is disabled.
  89 *
  90 * Note that if the CPU is in the idle loop from an RCU point of
  91 * view (ie: that we are in the section between rcu_idle_enter() and
  92 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
  93 * did an rcu_read_lock().  The reason for this is that RCU ignores CPUs
  94 * that are in such a section, considering these as in extended quiescent
  95 * state, so such a CPU is effectively never in an RCU read-side critical
  96 * section regardless of what RCU primitives it invokes.  This state of
  97 * affairs is required --- we need to keep an RCU-free window in idle
  98 * where the CPU may possibly enter into low power mode. This way we can
  99 * notice an extended quiescent state to other CPUs that started a grace
 100 * period. Otherwise we would delay any grace period as long as we run in
 101 * the idle task.
 102 *
 103 * Similarly, we avoid claiming an SRCU read lock held if the current
 104 * CPU is offline.
 105 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 106int rcu_read_lock_sched_held(void)
 107{
 108	int lockdep_opinion = 0;
 109
 110	if (!debug_lockdep_rcu_enabled())
 111		return 1;
 112	if (!rcu_is_watching())
 113		return 0;
 114	if (!rcu_lockdep_current_cpu_online())
 115		return 0;
 116	if (debug_locks)
 117		lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
 118	return lockdep_opinion || !preemptible();
 119}
 120EXPORT_SYMBOL(rcu_read_lock_sched_held);
 121#endif
 122
 123#ifndef CONFIG_TINY_RCU
 124
 125/*
 126 * Should expedited grace-period primitives always fall back to their
 127 * non-expedited counterparts?  Intended for use within RCU.  Note
 128 * that if the user specifies both rcu_expedited and rcu_normal, then
 129 * rcu_normal wins.  (Except during the time period during boot from
 130 * when the first task is spawned until the rcu_set_runtime_mode()
 131 * core_initcall() is invoked, at which point everything is expedited.)
 132 */
 133bool rcu_gp_is_normal(void)
 134{
 135	return READ_ONCE(rcu_normal) &&
 136	       rcu_scheduler_active != RCU_SCHEDULER_INIT;
 137}
 138EXPORT_SYMBOL_GPL(rcu_gp_is_normal);
 139
 140static atomic_t rcu_expedited_nesting = ATOMIC_INIT(1);
 141
 142/*
 143 * Should normal grace-period primitives be expedited?  Intended for
 144 * use within RCU.  Note that this function takes the rcu_expedited
 145 * sysfs/boot variable and rcu_scheduler_active into account as well
 146 * as the rcu_expedite_gp() nesting.  So looping on rcu_unexpedite_gp()
 147 * until rcu_gp_is_expedited() returns false is a -really- bad idea.
 148 */
 149bool rcu_gp_is_expedited(void)
 150{
 151	return rcu_expedited || atomic_read(&rcu_expedited_nesting) ||
 152	       rcu_scheduler_active == RCU_SCHEDULER_INIT;
 153}
 154EXPORT_SYMBOL_GPL(rcu_gp_is_expedited);
 155
 156/**
 157 * rcu_expedite_gp - Expedite future RCU grace periods
 158 *
 159 * After a call to this function, future calls to synchronize_rcu() and
 160 * friends act as the corresponding synchronize_rcu_expedited() function
 161 * had instead been called.
 162 */
 163void rcu_expedite_gp(void)
 164{
 165	atomic_inc(&rcu_expedited_nesting);
 166}
 167EXPORT_SYMBOL_GPL(rcu_expedite_gp);
 168
 169/**
 170 * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation
 171 *
 172 * Undo a prior call to rcu_expedite_gp().  If all prior calls to
 173 * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(),
 174 * and if the rcu_expedited sysfs/boot parameter is not set, then all
 175 * subsequent calls to synchronize_rcu() and friends will return to
 176 * their normal non-expedited behavior.
 177 */
 178void rcu_unexpedite_gp(void)
 179{
 180	atomic_dec(&rcu_expedited_nesting);
 181}
 182EXPORT_SYMBOL_GPL(rcu_unexpedite_gp);
 183
 184/*
 185 * Inform RCU of the end of the in-kernel boot sequence.
 186 */
 187void rcu_end_inkernel_boot(void)
 188{
 189	rcu_unexpedite_gp();
 190	if (rcu_normal_after_boot)
 191		WRITE_ONCE(rcu_normal, 1);
 192}
 193
 194#endif /* #ifndef CONFIG_TINY_RCU */
 195
 196/*
 197 * Test each non-SRCU synchronous grace-period wait API.  This is
 198 * useful just after a change in mode for these primitives, and
 199 * during early boot.
 200 */
 201void rcu_test_sync_prims(void)
 202{
 203	if (!IS_ENABLED(CONFIG_PROVE_RCU))
 204		return;
 205	synchronize_rcu();
 206	synchronize_rcu_bh();
 207	synchronize_sched();
 208	synchronize_rcu_expedited();
 209	synchronize_rcu_bh_expedited();
 210	synchronize_sched_expedited();
 211}
 212
 213#if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU)
 214
 215/*
 216 * Switch to run-time mode once RCU has fully initialized.
 217 */
 218static int __init rcu_set_runtime_mode(void)
 219{
 220	rcu_test_sync_prims();
 221	rcu_scheduler_active = RCU_SCHEDULER_RUNNING;
 222	rcu_test_sync_prims();
 223	return 0;
 224}
 225core_initcall(rcu_set_runtime_mode);
 226
 227#endif /* #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU) */
 228
 229#ifdef CONFIG_PREEMPT_RCU
 230
 231/*
 232 * Preemptible RCU implementation for rcu_read_lock().
 233 * Just increment ->rcu_read_lock_nesting, shared state will be updated
 234 * if we block.
 235 */
 236void __rcu_read_lock(void)
 237{
 238	current->rcu_read_lock_nesting++;
 239	barrier();  /* critical section after entry code. */
 240}
 241EXPORT_SYMBOL_GPL(__rcu_read_lock);
 242
 243/*
 244 * Preemptible RCU implementation for rcu_read_unlock().
 245 * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
 246 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
 247 * invoke rcu_read_unlock_special() to clean up after a context switch
 248 * in an RCU read-side critical section and other special cases.
 249 */
 250void __rcu_read_unlock(void)
 251{
 252	struct task_struct *t = current;
 253
 254	if (t->rcu_read_lock_nesting != 1) {
 255		--t->rcu_read_lock_nesting;
 256	} else {
 257		barrier();  /* critical section before exit code. */
 258		t->rcu_read_lock_nesting = INT_MIN;
 259		barrier();  /* assign before ->rcu_read_unlock_special load */
 260		if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
 261			rcu_read_unlock_special(t);
 262		barrier();  /* ->rcu_read_unlock_special load before assign */
 263		t->rcu_read_lock_nesting = 0;
 264	}
 265#ifdef CONFIG_PROVE_LOCKING
 266	{
 267		int rrln = READ_ONCE(t->rcu_read_lock_nesting);
 268
 269		WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
 270	}
 271#endif /* #ifdef CONFIG_PROVE_LOCKING */
 272}
 273EXPORT_SYMBOL_GPL(__rcu_read_unlock);
 274
 275#endif /* #ifdef CONFIG_PREEMPT_RCU */
 276
 277#ifdef CONFIG_DEBUG_LOCK_ALLOC
 278static struct lock_class_key rcu_lock_key;
 279struct lockdep_map rcu_lock_map =
 280	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
 281EXPORT_SYMBOL_GPL(rcu_lock_map);
 282
 283static struct lock_class_key rcu_bh_lock_key;
 284struct lockdep_map rcu_bh_lock_map =
 285	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
 286EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
 287
 288static struct lock_class_key rcu_sched_lock_key;
 289struct lockdep_map rcu_sched_lock_map =
 290	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
 291EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
 292
 293static struct lock_class_key rcu_callback_key;
 294struct lockdep_map rcu_callback_map =
 295	STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
 296EXPORT_SYMBOL_GPL(rcu_callback_map);
 297
 298int notrace debug_lockdep_rcu_enabled(void)
 299{
 300	return rcu_scheduler_active != RCU_SCHEDULER_INACTIVE && debug_locks &&
 301	       current->lockdep_recursion == 0;
 302}
 303EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
 
 304
 305/**
 306 * rcu_read_lock_held() - might we be in RCU read-side critical section?
 307 *
 308 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
 309 * read-side critical section.  In absence of CONFIG_DEBUG_LOCK_ALLOC,
 310 * this assumes we are in an RCU read-side critical section unless it can
 311 * prove otherwise.  This is useful for debug checks in functions that
 312 * require that they be called within an RCU read-side critical section.
 313 *
 314 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
 315 * and while lockdep is disabled.
 316 *
 317 * Note that rcu_read_lock() and the matching rcu_read_unlock() must
 318 * occur in the same context, for example, it is illegal to invoke
 319 * rcu_read_unlock() in process context if the matching rcu_read_lock()
 320 * was invoked from within an irq handler.
 321 *
 322 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
 323 * offline from an RCU perspective, so check for those as well.
 324 */
 325int rcu_read_lock_held(void)
 326{
 327	if (!debug_lockdep_rcu_enabled())
 328		return 1;
 329	if (!rcu_is_watching())
 330		return 0;
 331	if (!rcu_lockdep_current_cpu_online())
 332		return 0;
 333	return lock_is_held(&rcu_lock_map);
 334}
 335EXPORT_SYMBOL_GPL(rcu_read_lock_held);
 336
 337/**
 338 * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
 339 *
 340 * Check for bottom half being disabled, which covers both the
 341 * CONFIG_PROVE_RCU and not cases.  Note that if someone uses
 342 * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
 343 * will show the situation.  This is useful for debug checks in functions
 344 * that require that they be called within an RCU read-side critical
 345 * section.
 346 *
 347 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
 348 *
 349 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
 350 * offline from an RCU perspective, so check for those as well.
 351 */
 352int rcu_read_lock_bh_held(void)
 353{
 354	if (!debug_lockdep_rcu_enabled())
 355		return 1;
 356	if (!rcu_is_watching())
 357		return 0;
 358	if (!rcu_lockdep_current_cpu_online())
 359		return 0;
 360	return in_softirq() || irqs_disabled();
 361}
 362EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
 363
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 364#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 365
 366/**
 367 * wakeme_after_rcu() - Callback function to awaken a task after grace period
 368 * @head: Pointer to rcu_head member within rcu_synchronize structure
 369 *
 370 * Awaken the corresponding task now that a grace period has elapsed.
 371 */
 372void wakeme_after_rcu(struct rcu_head *head)
 373{
 374	struct rcu_synchronize *rcu;
 375
 376	rcu = container_of(head, struct rcu_synchronize, head);
 377	complete(&rcu->completion);
 378}
 379EXPORT_SYMBOL_GPL(wakeme_after_rcu);
 380
 381void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
 382		   struct rcu_synchronize *rs_array)
 383{
 384	int i;
 385	int j;
 386
 387	/* Initialize and register callbacks for each flavor specified. */
 388	for (i = 0; i < n; i++) {
 389		if (checktiny &&
 390		    (crcu_array[i] == call_rcu ||
 391		     crcu_array[i] == call_rcu_bh)) {
 392			might_sleep();
 393			continue;
 394		}
 395		init_rcu_head_on_stack(&rs_array[i].head);
 396		init_completion(&rs_array[i].completion);
 397		for (j = 0; j < i; j++)
 398			if (crcu_array[j] == crcu_array[i])
 399				break;
 400		if (j == i)
 401			(crcu_array[i])(&rs_array[i].head, wakeme_after_rcu);
 402	}
 403
 404	/* Wait for all callbacks to be invoked. */
 405	for (i = 0; i < n; i++) {
 406		if (checktiny &&
 407		    (crcu_array[i] == call_rcu ||
 408		     crcu_array[i] == call_rcu_bh))
 409			continue;
 410		for (j = 0; j < i; j++)
 411			if (crcu_array[j] == crcu_array[i])
 412				break;
 413		if (j == i)
 414			wait_for_completion(&rs_array[i].completion);
 415		destroy_rcu_head_on_stack(&rs_array[i].head);
 416	}
 417}
 418EXPORT_SYMBOL_GPL(__wait_rcu_gp);
 419
 420#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
 421void init_rcu_head(struct rcu_head *head)
 422{
 423	debug_object_init(head, &rcuhead_debug_descr);
 424}
 425EXPORT_SYMBOL_GPL(init_rcu_head);
 426
 427void destroy_rcu_head(struct rcu_head *head)
 428{
 429	debug_object_free(head, &rcuhead_debug_descr);
 430}
 431EXPORT_SYMBOL_GPL(destroy_rcu_head);
 432
 433static bool rcuhead_is_static_object(void *addr)
 434{
 435	return true;
 436}
 437
 438/**
 439 * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
 440 * @head: pointer to rcu_head structure to be initialized
 441 *
 442 * This function informs debugobjects of a new rcu_head structure that
 443 * has been allocated as an auto variable on the stack.  This function
 444 * is not required for rcu_head structures that are statically defined or
 445 * that are dynamically allocated on the heap.  This function has no
 446 * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
 447 */
 448void init_rcu_head_on_stack(struct rcu_head *head)
 449{
 450	debug_object_init_on_stack(head, &rcuhead_debug_descr);
 451}
 452EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
 453
 454/**
 455 * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
 456 * @head: pointer to rcu_head structure to be initialized
 457 *
 458 * This function informs debugobjects that an on-stack rcu_head structure
 459 * is about to go out of scope.  As with init_rcu_head_on_stack(), this
 460 * function is not required for rcu_head structures that are statically
 461 * defined or that are dynamically allocated on the heap.  Also as with
 462 * init_rcu_head_on_stack(), this function has no effect for
 463 * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
 464 */
 465void destroy_rcu_head_on_stack(struct rcu_head *head)
 466{
 467	debug_object_free(head, &rcuhead_debug_descr);
 468}
 469EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
 470
 471struct debug_obj_descr rcuhead_debug_descr = {
 472	.name = "rcu_head",
 473	.is_static_object = rcuhead_is_static_object,
 474};
 475EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
 476#endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 477
 478#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
 479void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
 480			       unsigned long secs,
 481			       unsigned long c_old, unsigned long c)
 482{
 483	trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
 484}
 485EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
 486#else
 487#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
 488	do { } while (0)
 489#endif
 490
 491#ifdef CONFIG_RCU_STALL_COMMON
 
 
 
 
 492
 493#ifdef CONFIG_PROVE_RCU
 494#define RCU_STALL_DELAY_DELTA	       (5 * HZ)
 495#else
 496#define RCU_STALL_DELAY_DELTA	       0
 
 497#endif
 498
 
 
 
 499int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
 500EXPORT_SYMBOL_GPL(rcu_cpu_stall_suppress);
 501static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
 502
 503module_param(rcu_cpu_stall_suppress, int, 0644);
 
 504module_param(rcu_cpu_stall_timeout, int, 0644);
 505
 506int rcu_jiffies_till_stall_check(void)
 507{
 508	int till_stall_check = READ_ONCE(rcu_cpu_stall_timeout);
 509
 510	/*
 511	 * Limit check must be consistent with the Kconfig limits
 512	 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
 513	 */
 514	if (till_stall_check < 3) {
 515		WRITE_ONCE(rcu_cpu_stall_timeout, 3);
 516		till_stall_check = 3;
 517	} else if (till_stall_check > 300) {
 518		WRITE_ONCE(rcu_cpu_stall_timeout, 300);
 519		till_stall_check = 300;
 520	}
 521	return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
 522}
 523
 524void rcu_sysrq_start(void)
 525{
 526	if (!rcu_cpu_stall_suppress)
 527		rcu_cpu_stall_suppress = 2;
 528}
 529
 530void rcu_sysrq_end(void)
 531{
 532	if (rcu_cpu_stall_suppress == 2)
 533		rcu_cpu_stall_suppress = 0;
 534}
 535
 536static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
 537{
 538	rcu_cpu_stall_suppress = 1;
 539	return NOTIFY_DONE;
 540}
 541
 542static struct notifier_block rcu_panic_block = {
 543	.notifier_call = rcu_panic,
 544};
 545
 546static int __init check_cpu_stall_init(void)
 547{
 548	atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
 549	return 0;
 550}
 551early_initcall(check_cpu_stall_init);
 552
 553#endif /* #ifdef CONFIG_RCU_STALL_COMMON */
 554
 555#ifdef CONFIG_TASKS_RCU
 556
 557/*
 558 * Simple variant of RCU whose quiescent states are voluntary context switch,
 559 * user-space execution, and idle.  As such, grace periods can take one good
 560 * long time.  There are no read-side primitives similar to rcu_read_lock()
 561 * and rcu_read_unlock() because this implementation is intended to get
 562 * the system into a safe state for some of the manipulations involved in
 563 * tracing and the like.  Finally, this implementation does not support
 564 * high call_rcu_tasks() rates from multiple CPUs.  If this is required,
 565 * per-CPU callback lists will be needed.
 
 566 */
 567
 568/* Global list of callbacks and associated lock. */
 569static struct rcu_head *rcu_tasks_cbs_head;
 570static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
 571static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
 572static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
 573
 574/* Track exiting tasks in order to allow them to be waited for. */
 575DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
 576
 577/* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */
 578#define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
 579static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
 580module_param(rcu_task_stall_timeout, int, 0644);
 581
 582static struct task_struct *rcu_tasks_kthread_ptr;
 583
 584/**
 585 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
 586 * @rhp: structure to be used for queueing the RCU updates.
 587 * @func: actual callback function to be invoked after the grace period
 588 *
 589 * The callback function will be invoked some time after a full grace
 590 * period elapses, in other words after all currently executing RCU
 591 * read-side critical sections have completed. call_rcu_tasks() assumes
 592 * that the read-side critical sections end at a voluntary context
 593 * switch (not a preemption!), entry into idle, or transition to usermode
 594 * execution.  As such, there are no read-side primitives analogous to
 595 * rcu_read_lock() and rcu_read_unlock() because this primitive is intended
 596 * to determine that all tasks have passed through a safe state, not so
 597 * much for data-strcuture synchronization.
 598 *
 599 * See the description of call_rcu() for more detailed information on
 600 * memory ordering guarantees.
 601 */
 602void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
 603{
 604	unsigned long flags;
 605	bool needwake;
 606
 607	rhp->next = NULL;
 608	rhp->func = func;
 609	raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
 610	needwake = !rcu_tasks_cbs_head;
 611	*rcu_tasks_cbs_tail = rhp;
 612	rcu_tasks_cbs_tail = &rhp->next;
 613	raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
 614	/* We can't create the thread unless interrupts are enabled. */
 615	if (needwake && READ_ONCE(rcu_tasks_kthread_ptr))
 616		wake_up(&rcu_tasks_cbs_wq);
 617}
 618EXPORT_SYMBOL_GPL(call_rcu_tasks);
 619
 620/**
 621 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
 622 *
 623 * Control will return to the caller some time after a full rcu-tasks
 624 * grace period has elapsed, in other words after all currently
 625 * executing rcu-tasks read-side critical sections have elapsed.  These
 626 * read-side critical sections are delimited by calls to schedule(),
 627 * cond_resched_rcu_qs(), idle execution, userspace execution, calls
 628 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
 629 *
 630 * This is a very specialized primitive, intended only for a few uses in
 631 * tracing and other situations requiring manipulation of function
 632 * preambles and profiling hooks.  The synchronize_rcu_tasks() function
 633 * is not (yet) intended for heavy use from multiple CPUs.
 634 *
 635 * Note that this guarantee implies further memory-ordering guarantees.
 636 * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
 637 * each CPU is guaranteed to have executed a full memory barrier since the
 638 * end of its last RCU-tasks read-side critical section whose beginning
 639 * preceded the call to synchronize_rcu_tasks().  In addition, each CPU
 640 * having an RCU-tasks read-side critical section that extends beyond
 641 * the return from synchronize_rcu_tasks() is guaranteed to have executed
 642 * a full memory barrier after the beginning of synchronize_rcu_tasks()
 643 * and before the beginning of that RCU-tasks read-side critical section.
 644 * Note that these guarantees include CPUs that are offline, idle, or
 645 * executing in user mode, as well as CPUs that are executing in the kernel.
 646 *
 647 * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
 648 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 649 * to have executed a full memory barrier during the execution of
 650 * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
 651 * (but again only if the system has more than one CPU).
 652 */
 653void synchronize_rcu_tasks(void)
 654{
 655	/* Complain if the scheduler has not started.  */
 656	RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
 657			 "synchronize_rcu_tasks called too soon");
 658
 659	/* Wait for the grace period. */
 660	wait_rcu_gp(call_rcu_tasks);
 661}
 662EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
 663
 664/**
 665 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
 666 *
 667 * Although the current implementation is guaranteed to wait, it is not
 668 * obligated to, for example, if there are no pending callbacks.
 669 */
 670void rcu_barrier_tasks(void)
 671{
 672	/* There is only one callback queue, so this is easy.  ;-) */
 673	synchronize_rcu_tasks();
 674}
 675EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
 676
 677/* See if tasks are still holding out, complain if so. */
 678static void check_holdout_task(struct task_struct *t,
 679			       bool needreport, bool *firstreport)
 680{
 681	int cpu;
 682
 683	if (!READ_ONCE(t->rcu_tasks_holdout) ||
 684	    t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
 685	    !READ_ONCE(t->on_rq) ||
 686	    (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
 687	     !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
 688		WRITE_ONCE(t->rcu_tasks_holdout, false);
 689		list_del_init(&t->rcu_tasks_holdout_list);
 690		put_task_struct(t);
 691		return;
 692	}
 693	rcu_request_urgent_qs_task(t);
 694	if (!needreport)
 695		return;
 696	if (*firstreport) {
 697		pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
 698		*firstreport = false;
 699	}
 700	cpu = task_cpu(t);
 701	pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
 702		 t, ".I"[is_idle_task(t)],
 703		 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
 704		 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
 705		 t->rcu_tasks_idle_cpu, cpu);
 706	sched_show_task(t);
 707}
 708
 709/* RCU-tasks kthread that detects grace periods and invokes callbacks. */
 710static int __noreturn rcu_tasks_kthread(void *arg)
 711{
 712	unsigned long flags;
 713	struct task_struct *g, *t;
 714	unsigned long lastreport;
 715	struct rcu_head *list;
 716	struct rcu_head *next;
 717	LIST_HEAD(rcu_tasks_holdouts);
 
 718
 719	/* Run on housekeeping CPUs by default.  Sysadm can move if desired. */
 720	housekeeping_affine(current, HK_FLAG_RCU);
 721
 722	/*
 723	 * Each pass through the following loop makes one check for
 724	 * newly arrived callbacks, and, if there are some, waits for
 725	 * one RCU-tasks grace period and then invokes the callbacks.
 726	 * This loop is terminated by the system going down.  ;-)
 727	 */
 728	for (;;) {
 729
 730		/* Pick up any new callbacks. */
 731		raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
 732		list = rcu_tasks_cbs_head;
 733		rcu_tasks_cbs_head = NULL;
 734		rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
 735		raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
 736
 737		/* If there were none, wait a bit and start over. */
 738		if (!list) {
 739			wait_event_interruptible(rcu_tasks_cbs_wq,
 740						 rcu_tasks_cbs_head);
 741			if (!rcu_tasks_cbs_head) {
 742				WARN_ON(signal_pending(current));
 743				schedule_timeout_interruptible(HZ/10);
 744			}
 745			continue;
 746		}
 747
 748		/*
 749		 * Wait for all pre-existing t->on_rq and t->nvcsw
 750		 * transitions to complete.  Invoking synchronize_sched()
 751		 * suffices because all these transitions occur with
 752		 * interrupts disabled.  Without this synchronize_sched(),
 753		 * a read-side critical section that started before the
 754		 * grace period might be incorrectly seen as having started
 755		 * after the grace period.
 756		 *
 757		 * This synchronize_sched() also dispenses with the
 758		 * need for a memory barrier on the first store to
 759		 * ->rcu_tasks_holdout, as it forces the store to happen
 760		 * after the beginning of the grace period.
 761		 */
 762		synchronize_sched();
 763
 764		/*
 765		 * There were callbacks, so we need to wait for an
 766		 * RCU-tasks grace period.  Start off by scanning
 767		 * the task list for tasks that are not already
 768		 * voluntarily blocked.  Mark these tasks and make
 769		 * a list of them in rcu_tasks_holdouts.
 770		 */
 771		rcu_read_lock();
 772		for_each_process_thread(g, t) {
 773			if (t != current && READ_ONCE(t->on_rq) &&
 774			    !is_idle_task(t)) {
 775				get_task_struct(t);
 776				t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
 777				WRITE_ONCE(t->rcu_tasks_holdout, true);
 778				list_add(&t->rcu_tasks_holdout_list,
 779					 &rcu_tasks_holdouts);
 780			}
 781		}
 782		rcu_read_unlock();
 783
 784		/*
 785		 * Wait for tasks that are in the process of exiting.
 786		 * This does only part of the job, ensuring that all
 787		 * tasks that were previously exiting reach the point
 788		 * where they have disabled preemption, allowing the
 789		 * later synchronize_sched() to finish the job.
 790		 */
 791		synchronize_srcu(&tasks_rcu_exit_srcu);
 792
 793		/*
 794		 * Each pass through the following loop scans the list
 795		 * of holdout tasks, removing any that are no longer
 796		 * holdouts.  When the list is empty, we are done.
 797		 */
 798		lastreport = jiffies;
 799		while (!list_empty(&rcu_tasks_holdouts)) {
 
 
 
 
 800			bool firstreport;
 801			bool needreport;
 802			int rtst;
 803			struct task_struct *t1;
 804
 805			schedule_timeout_interruptible(HZ);
 
 
 
 
 
 
 
 
 806			rtst = READ_ONCE(rcu_task_stall_timeout);
 807			needreport = rtst > 0 &&
 808				     time_after(jiffies, lastreport + rtst);
 809			if (needreport)
 810				lastreport = jiffies;
 811			firstreport = true;
 812			WARN_ON(signal_pending(current));
 813			list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
 814						rcu_tasks_holdout_list) {
 815				check_holdout_task(t, needreport, &firstreport);
 816				cond_resched();
 817			}
 818		}
 819
 820		/*
 821		 * Because ->on_rq and ->nvcsw are not guaranteed
 822		 * to have a full memory barriers prior to them in the
 823		 * schedule() path, memory reordering on other CPUs could
 824		 * cause their RCU-tasks read-side critical sections to
 825		 * extend past the end of the grace period.  However,
 826		 * because these ->nvcsw updates are carried out with
 827		 * interrupts disabled, we can use synchronize_sched()
 828		 * to force the needed ordering on all such CPUs.
 829		 *
 830		 * This synchronize_sched() also confines all
 831		 * ->rcu_tasks_holdout accesses to be within the grace
 832		 * period, avoiding the need for memory barriers for
 833		 * ->rcu_tasks_holdout accesses.
 834		 *
 835		 * In addition, this synchronize_sched() waits for exiting
 836		 * tasks to complete their final preempt_disable() region
 837		 * of execution, cleaning up after the synchronize_srcu()
 838		 * above.
 839		 */
 840		synchronize_sched();
 841
 842		/* Invoke the callbacks. */
 843		while (list) {
 844			next = list->next;
 845			local_bh_disable();
 846			list->func(list);
 847			local_bh_enable();
 848			list = next;
 849			cond_resched();
 850		}
 
 851		schedule_timeout_uninterruptible(HZ/10);
 852	}
 853}
 854
 855/* Spawn rcu_tasks_kthread() at core_initcall() time. */
 856static int __init rcu_spawn_tasks_kthread(void)
 857{
 858	struct task_struct *t;
 859
 860	t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
 861	BUG_ON(IS_ERR(t));
 
 862	smp_mb(); /* Ensure others see full kthread. */
 863	WRITE_ONCE(rcu_tasks_kthread_ptr, t);
 864	return 0;
 865}
 866core_initcall(rcu_spawn_tasks_kthread);
 867
 868/* Do the srcu_read_lock() for the above synchronize_srcu().  */
 869void exit_tasks_rcu_start(void)
 870{
 871	preempt_disable();
 872	current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
 873	preempt_enable();
 874}
 875
 876/* Do the srcu_read_unlock() for the above synchronize_srcu().  */
 877void exit_tasks_rcu_finish(void)
 878{
 879	preempt_disable();
 880	__srcu_read_unlock(&tasks_rcu_exit_srcu, current->rcu_tasks_idx);
 881	preempt_enable();
 882}
 883
 884#endif /* #ifdef CONFIG_TASKS_RCU */
 885
 886#ifndef CONFIG_TINY_RCU
 887
 888/*
 889 * Print any non-default Tasks RCU settings.
 890 */
 891static void __init rcu_tasks_bootup_oddness(void)
 892{
 893#ifdef CONFIG_TASKS_RCU
 894	if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
 895		pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
 896	else
 897		pr_info("\tTasks RCU enabled.\n");
 898#endif /* #ifdef CONFIG_TASKS_RCU */
 899}
 900
 901#endif /* #ifndef CONFIG_TINY_RCU */
 902
 903#ifdef CONFIG_PROVE_RCU
 904
 905/*
 906 * Early boot self test parameters, one for each flavor
 907 */
 908static bool rcu_self_test;
 909static bool rcu_self_test_bh;
 910static bool rcu_self_test_sched;
 911
 912module_param(rcu_self_test, bool, 0444);
 913module_param(rcu_self_test_bh, bool, 0444);
 914module_param(rcu_self_test_sched, bool, 0444);
 915
 916static int rcu_self_test_counter;
 917
 918static void test_callback(struct rcu_head *r)
 919{
 920	rcu_self_test_counter++;
 921	pr_info("RCU test callback executed %d\n", rcu_self_test_counter);
 922}
 923
 
 
 924static void early_boot_test_call_rcu(void)
 925{
 926	static struct rcu_head head;
 
 927
 928	call_rcu(&head, test_callback);
 929}
 930
 931static void early_boot_test_call_rcu_bh(void)
 932{
 933	static struct rcu_head head;
 934
 935	call_rcu_bh(&head, test_callback);
 936}
 937
 938static void early_boot_test_call_rcu_sched(void)
 939{
 940	static struct rcu_head head;
 941
 942	call_rcu_sched(&head, test_callback);
 943}
 944
 945void rcu_early_boot_tests(void)
 946{
 947	pr_info("Running RCU self tests\n");
 948
 949	if (rcu_self_test)
 950		early_boot_test_call_rcu();
 951	if (rcu_self_test_bh)
 952		early_boot_test_call_rcu_bh();
 953	if (rcu_self_test_sched)
 954		early_boot_test_call_rcu_sched();
 955	rcu_test_sync_prims();
 956}
 957
 958static int rcu_verify_early_boot_tests(void)
 959{
 960	int ret = 0;
 961	int early_boot_test_counter = 0;
 962
 963	if (rcu_self_test) {
 964		early_boot_test_counter++;
 965		rcu_barrier();
 
 
 
 
 966	}
 967	if (rcu_self_test_bh) {
 968		early_boot_test_counter++;
 969		rcu_barrier_bh();
 970	}
 971	if (rcu_self_test_sched) {
 972		early_boot_test_counter++;
 973		rcu_barrier_sched();
 974	}
 975
 976	if (rcu_self_test_counter != early_boot_test_counter) {
 977		WARN_ON(1);
 978		ret = -1;
 979	}
 980
 981	return ret;
 982}
 983late_initcall(rcu_verify_early_boot_tests);
 984#else
 985void rcu_early_boot_tests(void) {}
 986#endif /* CONFIG_PROVE_RCU */
 987
 988#ifndef CONFIG_TINY_RCU
 989
 990/*
 991 * Print any significant non-default boot-time settings.
 992 */
 993void __init rcupdate_announce_bootup_oddness(void)
 994{
 995	if (rcu_normal)
 996		pr_info("\tNo expedited grace period (rcu_normal).\n");
 997	else if (rcu_normal_after_boot)
 998		pr_info("\tNo expedited grace period (rcu_normal_after_boot).\n");
 999	else if (rcu_expedited)
1000		pr_info("\tAll grace periods are expedited (rcu_expedited).\n");
1001	if (rcu_cpu_stall_suppress)
1002		pr_info("\tRCU CPU stall warnings suppressed (rcu_cpu_stall_suppress).\n");
1003	if (rcu_cpu_stall_timeout != CONFIG_RCU_CPU_STALL_TIMEOUT)
1004		pr_info("\tRCU CPU stall warnings timeout set to %d (rcu_cpu_stall_timeout).\n", rcu_cpu_stall_timeout);
1005	rcu_tasks_bootup_oddness();
1006}
1007
1008#endif /* #ifndef CONFIG_TINY_RCU */