Loading...
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Read-Copy Update mechanism for mutual exclusion
4 *
5 * Copyright IBM Corporation, 2001
6 *
7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8 * Manfred Spraul <manfred@colorfullife.com>
9 *
10 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
11 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
12 * Papers:
13 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
14 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
15 *
16 * For detailed explanation of Read-Copy Update mechanism see -
17 * http://lse.sourceforge.net/locking/rcupdate.html
18 *
19 */
20#include <linux/types.h>
21#include <linux/kernel.h>
22#include <linux/init.h>
23#include <linux/spinlock.h>
24#include <linux/smp.h>
25#include <linux/interrupt.h>
26#include <linux/sched/signal.h>
27#include <linux/sched/debug.h>
28#include <linux/atomic.h>
29#include <linux/bitops.h>
30#include <linux/percpu.h>
31#include <linux/notifier.h>
32#include <linux/cpu.h>
33#include <linux/mutex.h>
34#include <linux/export.h>
35#include <linux/hardirq.h>
36#include <linux/delay.h>
37#include <linux/moduleparam.h>
38#include <linux/kthread.h>
39#include <linux/tick.h>
40#include <linux/rcupdate_wait.h>
41#include <linux/sched/isolation.h>
42#include <linux/kprobes.h>
43
44#define CREATE_TRACE_POINTS
45
46#include "rcu.h"
47
48#ifdef MODULE_PARAM_PREFIX
49#undef MODULE_PARAM_PREFIX
50#endif
51#define MODULE_PARAM_PREFIX "rcupdate."
52
53#ifndef CONFIG_TINY_RCU
54extern int rcu_expedited; /* from sysctl */
55module_param(rcu_expedited, int, 0);
56extern int rcu_normal; /* from sysctl */
57module_param(rcu_normal, int, 0);
58static int rcu_normal_after_boot;
59module_param(rcu_normal_after_boot, int, 0);
60#endif /* #ifndef CONFIG_TINY_RCU */
61
62#ifdef CONFIG_DEBUG_LOCK_ALLOC
63/**
64 * rcu_read_lock_held_common() - might we be in RCU-sched read-side critical section?
65 * @ret: Best guess answer if lockdep cannot be relied on
66 *
67 * Returns true if lockdep must be ignored, in which case *ret contains
68 * the best guess described below. Otherwise returns false, in which
69 * case *ret tells the caller nothing and the caller should instead
70 * consult lockdep.
71 *
72 * If CONFIG_DEBUG_LOCK_ALLOC is selected, set *ret to nonzero iff in an
73 * RCU-sched read-side critical section. In absence of
74 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
75 * critical section unless it can prove otherwise. Note that disabling
76 * of preemption (including disabling irqs) counts as an RCU-sched
77 * read-side critical section. This is useful for debug checks in functions
78 * that required that they be called within an RCU-sched read-side
79 * critical section.
80 *
81 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
82 * and while lockdep is disabled.
83 *
84 * Note that if the CPU is in the idle loop from an RCU point of view (ie:
85 * that we are in the section between rcu_idle_enter() and rcu_idle_exit())
86 * then rcu_read_lock_held() sets *ret to false even if the CPU did an
87 * rcu_read_lock(). The reason for this is that RCU ignores CPUs that are
88 * in such a section, considering these as in extended quiescent state,
89 * so such a CPU is effectively never in an RCU read-side critical section
90 * regardless of what RCU primitives it invokes. This state of affairs is
91 * required --- we need to keep an RCU-free window in idle where the CPU may
92 * possibly enter into low power mode. This way we can notice an extended
93 * quiescent state to other CPUs that started a grace period. Otherwise
94 * we would delay any grace period as long as we run in the idle task.
95 *
96 * Similarly, we avoid claiming an RCU read lock held if the current
97 * CPU is offline.
98 */
99static bool rcu_read_lock_held_common(bool *ret)
100{
101 if (!debug_lockdep_rcu_enabled()) {
102 *ret = 1;
103 return true;
104 }
105 if (!rcu_is_watching()) {
106 *ret = 0;
107 return true;
108 }
109 if (!rcu_lockdep_current_cpu_online()) {
110 *ret = 0;
111 return true;
112 }
113 return false;
114}
115
116int rcu_read_lock_sched_held(void)
117{
118 bool ret;
119
120 if (rcu_read_lock_held_common(&ret))
121 return ret;
122 return lock_is_held(&rcu_sched_lock_map) || !preemptible();
123}
124EXPORT_SYMBOL(rcu_read_lock_sched_held);
125#endif
126
127#ifndef CONFIG_TINY_RCU
128
129/*
130 * Should expedited grace-period primitives always fall back to their
131 * non-expedited counterparts? Intended for use within RCU. Note
132 * that if the user specifies both rcu_expedited and rcu_normal, then
133 * rcu_normal wins. (Except during the time period during boot from
134 * when the first task is spawned until the rcu_set_runtime_mode()
135 * core_initcall() is invoked, at which point everything is expedited.)
136 */
137bool rcu_gp_is_normal(void)
138{
139 return READ_ONCE(rcu_normal) &&
140 rcu_scheduler_active != RCU_SCHEDULER_INIT;
141}
142EXPORT_SYMBOL_GPL(rcu_gp_is_normal);
143
144static atomic_t rcu_expedited_nesting = ATOMIC_INIT(1);
145
146/*
147 * Should normal grace-period primitives be expedited? Intended for
148 * use within RCU. Note that this function takes the rcu_expedited
149 * sysfs/boot variable and rcu_scheduler_active into account as well
150 * as the rcu_expedite_gp() nesting. So looping on rcu_unexpedite_gp()
151 * until rcu_gp_is_expedited() returns false is a -really- bad idea.
152 */
153bool rcu_gp_is_expedited(void)
154{
155 return rcu_expedited || atomic_read(&rcu_expedited_nesting);
156}
157EXPORT_SYMBOL_GPL(rcu_gp_is_expedited);
158
159/**
160 * rcu_expedite_gp - Expedite future RCU grace periods
161 *
162 * After a call to this function, future calls to synchronize_rcu() and
163 * friends act as the corresponding synchronize_rcu_expedited() function
164 * had instead been called.
165 */
166void rcu_expedite_gp(void)
167{
168 atomic_inc(&rcu_expedited_nesting);
169}
170EXPORT_SYMBOL_GPL(rcu_expedite_gp);
171
172/**
173 * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation
174 *
175 * Undo a prior call to rcu_expedite_gp(). If all prior calls to
176 * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(),
177 * and if the rcu_expedited sysfs/boot parameter is not set, then all
178 * subsequent calls to synchronize_rcu() and friends will return to
179 * their normal non-expedited behavior.
180 */
181void rcu_unexpedite_gp(void)
182{
183 atomic_dec(&rcu_expedited_nesting);
184}
185EXPORT_SYMBOL_GPL(rcu_unexpedite_gp);
186
187/*
188 * Inform RCU of the end of the in-kernel boot sequence.
189 */
190void rcu_end_inkernel_boot(void)
191{
192 rcu_unexpedite_gp();
193 if (rcu_normal_after_boot)
194 WRITE_ONCE(rcu_normal, 1);
195}
196
197#endif /* #ifndef CONFIG_TINY_RCU */
198
199/*
200 * Test each non-SRCU synchronous grace-period wait API. This is
201 * useful just after a change in mode for these primitives, and
202 * during early boot.
203 */
204void rcu_test_sync_prims(void)
205{
206 if (!IS_ENABLED(CONFIG_PROVE_RCU))
207 return;
208 synchronize_rcu();
209 synchronize_rcu_expedited();
210}
211
212#if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU)
213
214/*
215 * Switch to run-time mode once RCU has fully initialized.
216 */
217static int __init rcu_set_runtime_mode(void)
218{
219 rcu_test_sync_prims();
220 rcu_scheduler_active = RCU_SCHEDULER_RUNNING;
221 rcu_test_sync_prims();
222 return 0;
223}
224core_initcall(rcu_set_runtime_mode);
225
226#endif /* #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU) */
227
228#ifdef CONFIG_DEBUG_LOCK_ALLOC
229static struct lock_class_key rcu_lock_key;
230struct lockdep_map rcu_lock_map =
231 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
232EXPORT_SYMBOL_GPL(rcu_lock_map);
233
234static struct lock_class_key rcu_bh_lock_key;
235struct lockdep_map rcu_bh_lock_map =
236 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
237EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
238
239static struct lock_class_key rcu_sched_lock_key;
240struct lockdep_map rcu_sched_lock_map =
241 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
242EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
243
244static struct lock_class_key rcu_callback_key;
245struct lockdep_map rcu_callback_map =
246 STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
247EXPORT_SYMBOL_GPL(rcu_callback_map);
248
249int notrace debug_lockdep_rcu_enabled(void)
250{
251 return rcu_scheduler_active != RCU_SCHEDULER_INACTIVE && debug_locks &&
252 current->lockdep_recursion == 0;
253}
254EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
255NOKPROBE_SYMBOL(debug_lockdep_rcu_enabled);
256
257/**
258 * rcu_read_lock_held() - might we be in RCU read-side critical section?
259 *
260 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
261 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC,
262 * this assumes we are in an RCU read-side critical section unless it can
263 * prove otherwise. This is useful for debug checks in functions that
264 * require that they be called within an RCU read-side critical section.
265 *
266 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
267 * and while lockdep is disabled.
268 *
269 * Note that rcu_read_lock() and the matching rcu_read_unlock() must
270 * occur in the same context, for example, it is illegal to invoke
271 * rcu_read_unlock() in process context if the matching rcu_read_lock()
272 * was invoked from within an irq handler.
273 *
274 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
275 * offline from an RCU perspective, so check for those as well.
276 */
277int rcu_read_lock_held(void)
278{
279 bool ret;
280
281 if (rcu_read_lock_held_common(&ret))
282 return ret;
283 return lock_is_held(&rcu_lock_map);
284}
285EXPORT_SYMBOL_GPL(rcu_read_lock_held);
286
287/**
288 * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
289 *
290 * Check for bottom half being disabled, which covers both the
291 * CONFIG_PROVE_RCU and not cases. Note that if someone uses
292 * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
293 * will show the situation. This is useful for debug checks in functions
294 * that require that they be called within an RCU read-side critical
295 * section.
296 *
297 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
298 *
299 * Note that rcu_read_lock_bh() is disallowed if the CPU is either idle or
300 * offline from an RCU perspective, so check for those as well.
301 */
302int rcu_read_lock_bh_held(void)
303{
304 bool ret;
305
306 if (rcu_read_lock_held_common(&ret))
307 return ret;
308 return in_softirq() || irqs_disabled();
309}
310EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
311
312int rcu_read_lock_any_held(void)
313{
314 bool ret;
315
316 if (rcu_read_lock_held_common(&ret))
317 return ret;
318 if (lock_is_held(&rcu_lock_map) ||
319 lock_is_held(&rcu_bh_lock_map) ||
320 lock_is_held(&rcu_sched_lock_map))
321 return 1;
322 return !preemptible();
323}
324EXPORT_SYMBOL_GPL(rcu_read_lock_any_held);
325
326#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
327
328/**
329 * wakeme_after_rcu() - Callback function to awaken a task after grace period
330 * @head: Pointer to rcu_head member within rcu_synchronize structure
331 *
332 * Awaken the corresponding task now that a grace period has elapsed.
333 */
334void wakeme_after_rcu(struct rcu_head *head)
335{
336 struct rcu_synchronize *rcu;
337
338 rcu = container_of(head, struct rcu_synchronize, head);
339 complete(&rcu->completion);
340}
341EXPORT_SYMBOL_GPL(wakeme_after_rcu);
342
343void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
344 struct rcu_synchronize *rs_array)
345{
346 int i;
347 int j;
348
349 /* Initialize and register callbacks for each crcu_array element. */
350 for (i = 0; i < n; i++) {
351 if (checktiny &&
352 (crcu_array[i] == call_rcu)) {
353 might_sleep();
354 continue;
355 }
356 init_rcu_head_on_stack(&rs_array[i].head);
357 init_completion(&rs_array[i].completion);
358 for (j = 0; j < i; j++)
359 if (crcu_array[j] == crcu_array[i])
360 break;
361 if (j == i)
362 (crcu_array[i])(&rs_array[i].head, wakeme_after_rcu);
363 }
364
365 /* Wait for all callbacks to be invoked. */
366 for (i = 0; i < n; i++) {
367 if (checktiny &&
368 (crcu_array[i] == call_rcu))
369 continue;
370 for (j = 0; j < i; j++)
371 if (crcu_array[j] == crcu_array[i])
372 break;
373 if (j == i)
374 wait_for_completion(&rs_array[i].completion);
375 destroy_rcu_head_on_stack(&rs_array[i].head);
376 }
377}
378EXPORT_SYMBOL_GPL(__wait_rcu_gp);
379
380#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
381void init_rcu_head(struct rcu_head *head)
382{
383 debug_object_init(head, &rcuhead_debug_descr);
384}
385EXPORT_SYMBOL_GPL(init_rcu_head);
386
387void destroy_rcu_head(struct rcu_head *head)
388{
389 debug_object_free(head, &rcuhead_debug_descr);
390}
391EXPORT_SYMBOL_GPL(destroy_rcu_head);
392
393static bool rcuhead_is_static_object(void *addr)
394{
395 return true;
396}
397
398/**
399 * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
400 * @head: pointer to rcu_head structure to be initialized
401 *
402 * This function informs debugobjects of a new rcu_head structure that
403 * has been allocated as an auto variable on the stack. This function
404 * is not required for rcu_head structures that are statically defined or
405 * that are dynamically allocated on the heap. This function has no
406 * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
407 */
408void init_rcu_head_on_stack(struct rcu_head *head)
409{
410 debug_object_init_on_stack(head, &rcuhead_debug_descr);
411}
412EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
413
414/**
415 * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
416 * @head: pointer to rcu_head structure to be initialized
417 *
418 * This function informs debugobjects that an on-stack rcu_head structure
419 * is about to go out of scope. As with init_rcu_head_on_stack(), this
420 * function is not required for rcu_head structures that are statically
421 * defined or that are dynamically allocated on the heap. Also as with
422 * init_rcu_head_on_stack(), this function has no effect for
423 * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
424 */
425void destroy_rcu_head_on_stack(struct rcu_head *head)
426{
427 debug_object_free(head, &rcuhead_debug_descr);
428}
429EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
430
431struct debug_obj_descr rcuhead_debug_descr = {
432 .name = "rcu_head",
433 .is_static_object = rcuhead_is_static_object,
434};
435EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
436#endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
437
438#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
439void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
440 unsigned long secs,
441 unsigned long c_old, unsigned long c)
442{
443 trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
444}
445EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
446#else
447#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
448 do { } while (0)
449#endif
450
451#if IS_ENABLED(CONFIG_RCU_TORTURE_TEST) || IS_MODULE(CONFIG_RCU_TORTURE_TEST)
452/* Get rcutorture access to sched_setaffinity(). */
453long rcutorture_sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
454{
455 int ret;
456
457 ret = sched_setaffinity(pid, in_mask);
458 WARN_ONCE(ret, "%s: sched_setaffinity() returned %d\n", __func__, ret);
459 return ret;
460}
461EXPORT_SYMBOL_GPL(rcutorture_sched_setaffinity);
462#endif
463
464#ifdef CONFIG_RCU_STALL_COMMON
465int rcu_cpu_stall_ftrace_dump __read_mostly;
466module_param(rcu_cpu_stall_ftrace_dump, int, 0644);
467int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
468EXPORT_SYMBOL_GPL(rcu_cpu_stall_suppress);
469module_param(rcu_cpu_stall_suppress, int, 0644);
470int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
471module_param(rcu_cpu_stall_timeout, int, 0644);
472#endif /* #ifdef CONFIG_RCU_STALL_COMMON */
473
474#ifdef CONFIG_TASKS_RCU
475
476/*
477 * Simple variant of RCU whose quiescent states are voluntary context
478 * switch, cond_resched_rcu_qs(), user-space execution, and idle.
479 * As such, grace periods can take one good long time. There are no
480 * read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
481 * because this implementation is intended to get the system into a safe
482 * state for some of the manipulations involved in tracing and the like.
483 * Finally, this implementation does not support high call_rcu_tasks()
484 * rates from multiple CPUs. If this is required, per-CPU callback lists
485 * will be needed.
486 */
487
488/* Global list of callbacks and associated lock. */
489static struct rcu_head *rcu_tasks_cbs_head;
490static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
491static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
492static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
493
494/* Track exiting tasks in order to allow them to be waited for. */
495DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
496
497/* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */
498#define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
499static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
500module_param(rcu_task_stall_timeout, int, 0644);
501
502static struct task_struct *rcu_tasks_kthread_ptr;
503
504/**
505 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
506 * @rhp: structure to be used for queueing the RCU updates.
507 * @func: actual callback function to be invoked after the grace period
508 *
509 * The callback function will be invoked some time after a full grace
510 * period elapses, in other words after all currently executing RCU
511 * read-side critical sections have completed. call_rcu_tasks() assumes
512 * that the read-side critical sections end at a voluntary context
513 * switch (not a preemption!), cond_resched_rcu_qs(), entry into idle,
514 * or transition to usermode execution. As such, there are no read-side
515 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
516 * this primitive is intended to determine that all tasks have passed
517 * through a safe state, not so much for data-strcuture synchronization.
518 *
519 * See the description of call_rcu() for more detailed information on
520 * memory ordering guarantees.
521 */
522void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
523{
524 unsigned long flags;
525 bool needwake;
526
527 rhp->next = NULL;
528 rhp->func = func;
529 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
530 needwake = !rcu_tasks_cbs_head;
531 *rcu_tasks_cbs_tail = rhp;
532 rcu_tasks_cbs_tail = &rhp->next;
533 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
534 /* We can't create the thread unless interrupts are enabled. */
535 if (needwake && READ_ONCE(rcu_tasks_kthread_ptr))
536 wake_up(&rcu_tasks_cbs_wq);
537}
538EXPORT_SYMBOL_GPL(call_rcu_tasks);
539
540/**
541 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
542 *
543 * Control will return to the caller some time after a full rcu-tasks
544 * grace period has elapsed, in other words after all currently
545 * executing rcu-tasks read-side critical sections have elapsed. These
546 * read-side critical sections are delimited by calls to schedule(),
547 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
548 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
549 *
550 * This is a very specialized primitive, intended only for a few uses in
551 * tracing and other situations requiring manipulation of function
552 * preambles and profiling hooks. The synchronize_rcu_tasks() function
553 * is not (yet) intended for heavy use from multiple CPUs.
554 *
555 * Note that this guarantee implies further memory-ordering guarantees.
556 * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
557 * each CPU is guaranteed to have executed a full memory barrier since the
558 * end of its last RCU-tasks read-side critical section whose beginning
559 * preceded the call to synchronize_rcu_tasks(). In addition, each CPU
560 * having an RCU-tasks read-side critical section that extends beyond
561 * the return from synchronize_rcu_tasks() is guaranteed to have executed
562 * a full memory barrier after the beginning of synchronize_rcu_tasks()
563 * and before the beginning of that RCU-tasks read-side critical section.
564 * Note that these guarantees include CPUs that are offline, idle, or
565 * executing in user mode, as well as CPUs that are executing in the kernel.
566 *
567 * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
568 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
569 * to have executed a full memory barrier during the execution of
570 * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
571 * (but again only if the system has more than one CPU).
572 */
573void synchronize_rcu_tasks(void)
574{
575 /* Complain if the scheduler has not started. */
576 RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
577 "synchronize_rcu_tasks called too soon");
578
579 /* Wait for the grace period. */
580 wait_rcu_gp(call_rcu_tasks);
581}
582EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
583
584/**
585 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
586 *
587 * Although the current implementation is guaranteed to wait, it is not
588 * obligated to, for example, if there are no pending callbacks.
589 */
590void rcu_barrier_tasks(void)
591{
592 /* There is only one callback queue, so this is easy. ;-) */
593 synchronize_rcu_tasks();
594}
595EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
596
597/* See if tasks are still holding out, complain if so. */
598static void check_holdout_task(struct task_struct *t,
599 bool needreport, bool *firstreport)
600{
601 int cpu;
602
603 if (!READ_ONCE(t->rcu_tasks_holdout) ||
604 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
605 !READ_ONCE(t->on_rq) ||
606 (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
607 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
608 WRITE_ONCE(t->rcu_tasks_holdout, false);
609 list_del_init(&t->rcu_tasks_holdout_list);
610 put_task_struct(t);
611 return;
612 }
613 rcu_request_urgent_qs_task(t);
614 if (!needreport)
615 return;
616 if (*firstreport) {
617 pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
618 *firstreport = false;
619 }
620 cpu = task_cpu(t);
621 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
622 t, ".I"[is_idle_task(t)],
623 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
624 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
625 t->rcu_tasks_idle_cpu, cpu);
626 sched_show_task(t);
627}
628
629/* RCU-tasks kthread that detects grace periods and invokes callbacks. */
630static int __noreturn rcu_tasks_kthread(void *arg)
631{
632 unsigned long flags;
633 struct task_struct *g, *t;
634 unsigned long lastreport;
635 struct rcu_head *list;
636 struct rcu_head *next;
637 LIST_HEAD(rcu_tasks_holdouts);
638 int fract;
639
640 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */
641 housekeeping_affine(current, HK_FLAG_RCU);
642
643 /*
644 * Each pass through the following loop makes one check for
645 * newly arrived callbacks, and, if there are some, waits for
646 * one RCU-tasks grace period and then invokes the callbacks.
647 * This loop is terminated by the system going down. ;-)
648 */
649 for (;;) {
650
651 /* Pick up any new callbacks. */
652 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
653 list = rcu_tasks_cbs_head;
654 rcu_tasks_cbs_head = NULL;
655 rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
656 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
657
658 /* If there were none, wait a bit and start over. */
659 if (!list) {
660 wait_event_interruptible(rcu_tasks_cbs_wq,
661 rcu_tasks_cbs_head);
662 if (!rcu_tasks_cbs_head) {
663 WARN_ON(signal_pending(current));
664 schedule_timeout_interruptible(HZ/10);
665 }
666 continue;
667 }
668
669 /*
670 * Wait for all pre-existing t->on_rq and t->nvcsw
671 * transitions to complete. Invoking synchronize_rcu()
672 * suffices because all these transitions occur with
673 * interrupts disabled. Without this synchronize_rcu(),
674 * a read-side critical section that started before the
675 * grace period might be incorrectly seen as having started
676 * after the grace period.
677 *
678 * This synchronize_rcu() also dispenses with the
679 * need for a memory barrier on the first store to
680 * ->rcu_tasks_holdout, as it forces the store to happen
681 * after the beginning of the grace period.
682 */
683 synchronize_rcu();
684
685 /*
686 * There were callbacks, so we need to wait for an
687 * RCU-tasks grace period. Start off by scanning
688 * the task list for tasks that are not already
689 * voluntarily blocked. Mark these tasks and make
690 * a list of them in rcu_tasks_holdouts.
691 */
692 rcu_read_lock();
693 for_each_process_thread(g, t) {
694 if (t != current && READ_ONCE(t->on_rq) &&
695 !is_idle_task(t)) {
696 get_task_struct(t);
697 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
698 WRITE_ONCE(t->rcu_tasks_holdout, true);
699 list_add(&t->rcu_tasks_holdout_list,
700 &rcu_tasks_holdouts);
701 }
702 }
703 rcu_read_unlock();
704
705 /*
706 * Wait for tasks that are in the process of exiting.
707 * This does only part of the job, ensuring that all
708 * tasks that were previously exiting reach the point
709 * where they have disabled preemption, allowing the
710 * later synchronize_rcu() to finish the job.
711 */
712 synchronize_srcu(&tasks_rcu_exit_srcu);
713
714 /*
715 * Each pass through the following loop scans the list
716 * of holdout tasks, removing any that are no longer
717 * holdouts. When the list is empty, we are done.
718 */
719 lastreport = jiffies;
720
721 /* Start off with HZ/10 wait and slowly back off to 1 HZ wait*/
722 fract = 10;
723
724 for (;;) {
725 bool firstreport;
726 bool needreport;
727 int rtst;
728 struct task_struct *t1;
729
730 if (list_empty(&rcu_tasks_holdouts))
731 break;
732
733 /* Slowly back off waiting for holdouts */
734 schedule_timeout_interruptible(HZ/fract);
735
736 if (fract > 1)
737 fract--;
738
739 rtst = READ_ONCE(rcu_task_stall_timeout);
740 needreport = rtst > 0 &&
741 time_after(jiffies, lastreport + rtst);
742 if (needreport)
743 lastreport = jiffies;
744 firstreport = true;
745 WARN_ON(signal_pending(current));
746 list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
747 rcu_tasks_holdout_list) {
748 check_holdout_task(t, needreport, &firstreport);
749 cond_resched();
750 }
751 }
752
753 /*
754 * Because ->on_rq and ->nvcsw are not guaranteed
755 * to have a full memory barriers prior to them in the
756 * schedule() path, memory reordering on other CPUs could
757 * cause their RCU-tasks read-side critical sections to
758 * extend past the end of the grace period. However,
759 * because these ->nvcsw updates are carried out with
760 * interrupts disabled, we can use synchronize_rcu()
761 * to force the needed ordering on all such CPUs.
762 *
763 * This synchronize_rcu() also confines all
764 * ->rcu_tasks_holdout accesses to be within the grace
765 * period, avoiding the need for memory barriers for
766 * ->rcu_tasks_holdout accesses.
767 *
768 * In addition, this synchronize_rcu() waits for exiting
769 * tasks to complete their final preempt_disable() region
770 * of execution, cleaning up after the synchronize_srcu()
771 * above.
772 */
773 synchronize_rcu();
774
775 /* Invoke the callbacks. */
776 while (list) {
777 next = list->next;
778 local_bh_disable();
779 list->func(list);
780 local_bh_enable();
781 list = next;
782 cond_resched();
783 }
784 /* Paranoid sleep to keep this from entering a tight loop */
785 schedule_timeout_uninterruptible(HZ/10);
786 }
787}
788
789/* Spawn rcu_tasks_kthread() at core_initcall() time. */
790static int __init rcu_spawn_tasks_kthread(void)
791{
792 struct task_struct *t;
793
794 t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
795 if (WARN_ONCE(IS_ERR(t), "%s: Could not start Tasks-RCU grace-period kthread, OOM is now expected behavior\n", __func__))
796 return 0;
797 smp_mb(); /* Ensure others see full kthread. */
798 WRITE_ONCE(rcu_tasks_kthread_ptr, t);
799 return 0;
800}
801core_initcall(rcu_spawn_tasks_kthread);
802
803/* Do the srcu_read_lock() for the above synchronize_srcu(). */
804void exit_tasks_rcu_start(void)
805{
806 preempt_disable();
807 current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
808 preempt_enable();
809}
810
811/* Do the srcu_read_unlock() for the above synchronize_srcu(). */
812void exit_tasks_rcu_finish(void)
813{
814 preempt_disable();
815 __srcu_read_unlock(&tasks_rcu_exit_srcu, current->rcu_tasks_idx);
816 preempt_enable();
817}
818
819#endif /* #ifdef CONFIG_TASKS_RCU */
820
821#ifndef CONFIG_TINY_RCU
822
823/*
824 * Print any non-default Tasks RCU settings.
825 */
826static void __init rcu_tasks_bootup_oddness(void)
827{
828#ifdef CONFIG_TASKS_RCU
829 if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
830 pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
831 else
832 pr_info("\tTasks RCU enabled.\n");
833#endif /* #ifdef CONFIG_TASKS_RCU */
834}
835
836#endif /* #ifndef CONFIG_TINY_RCU */
837
838#ifdef CONFIG_PROVE_RCU
839
840/*
841 * Early boot self test parameters.
842 */
843static bool rcu_self_test;
844module_param(rcu_self_test, bool, 0444);
845
846static int rcu_self_test_counter;
847
848static void test_callback(struct rcu_head *r)
849{
850 rcu_self_test_counter++;
851 pr_info("RCU test callback executed %d\n", rcu_self_test_counter);
852}
853
854DEFINE_STATIC_SRCU(early_srcu);
855
856static void early_boot_test_call_rcu(void)
857{
858 static struct rcu_head head;
859 static struct rcu_head shead;
860
861 call_rcu(&head, test_callback);
862 if (IS_ENABLED(CONFIG_SRCU))
863 call_srcu(&early_srcu, &shead, test_callback);
864}
865
866void rcu_early_boot_tests(void)
867{
868 pr_info("Running RCU self tests\n");
869
870 if (rcu_self_test)
871 early_boot_test_call_rcu();
872 rcu_test_sync_prims();
873}
874
875static int rcu_verify_early_boot_tests(void)
876{
877 int ret = 0;
878 int early_boot_test_counter = 0;
879
880 if (rcu_self_test) {
881 early_boot_test_counter++;
882 rcu_barrier();
883 if (IS_ENABLED(CONFIG_SRCU)) {
884 early_boot_test_counter++;
885 srcu_barrier(&early_srcu);
886 }
887 }
888 if (rcu_self_test_counter != early_boot_test_counter) {
889 WARN_ON(1);
890 ret = -1;
891 }
892
893 return ret;
894}
895late_initcall(rcu_verify_early_boot_tests);
896#else
897void rcu_early_boot_tests(void) {}
898#endif /* CONFIG_PROVE_RCU */
899
900#ifndef CONFIG_TINY_RCU
901
902/*
903 * Print any significant non-default boot-time settings.
904 */
905void __init rcupdate_announce_bootup_oddness(void)
906{
907 if (rcu_normal)
908 pr_info("\tNo expedited grace period (rcu_normal).\n");
909 else if (rcu_normal_after_boot)
910 pr_info("\tNo expedited grace period (rcu_normal_after_boot).\n");
911 else if (rcu_expedited)
912 pr_info("\tAll grace periods are expedited (rcu_expedited).\n");
913 if (rcu_cpu_stall_suppress)
914 pr_info("\tRCU CPU stall warnings suppressed (rcu_cpu_stall_suppress).\n");
915 if (rcu_cpu_stall_timeout != CONFIG_RCU_CPU_STALL_TIMEOUT)
916 pr_info("\tRCU CPU stall warnings timeout set to %d (rcu_cpu_stall_timeout).\n", rcu_cpu_stall_timeout);
917 rcu_tasks_bootup_oddness();
918}
919
920#endif /* #ifndef CONFIG_TINY_RCU */
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2001
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 *
23 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
24 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
25 * Papers:
26 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
27 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
28 *
29 * For detailed explanation of Read-Copy Update mechanism see -
30 * http://lse.sourceforge.net/locking/rcupdate.html
31 *
32 */
33#include <linux/types.h>
34#include <linux/kernel.h>
35#include <linux/init.h>
36#include <linux/spinlock.h>
37#include <linux/smp.h>
38#include <linux/interrupt.h>
39#include <linux/sched.h>
40#include <linux/atomic.h>
41#include <linux/bitops.h>
42#include <linux/percpu.h>
43#include <linux/notifier.h>
44#include <linux/cpu.h>
45#include <linux/mutex.h>
46#include <linux/export.h>
47#include <linux/hardirq.h>
48#include <linux/delay.h>
49#include <linux/moduleparam.h>
50#include <linux/kthread.h>
51#include <linux/tick.h>
52
53#define CREATE_TRACE_POINTS
54
55#include "rcu.h"
56
57#ifdef MODULE_PARAM_PREFIX
58#undef MODULE_PARAM_PREFIX
59#endif
60#define MODULE_PARAM_PREFIX "rcupdate."
61
62#ifndef CONFIG_TINY_RCU
63module_param(rcu_expedited, int, 0);
64module_param(rcu_normal, int, 0);
65static int rcu_normal_after_boot;
66module_param(rcu_normal_after_boot, int, 0);
67#endif /* #ifndef CONFIG_TINY_RCU */
68
69#ifdef CONFIG_DEBUG_LOCK_ALLOC
70/**
71 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
72 *
73 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
74 * RCU-sched read-side critical section. In absence of
75 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
76 * critical section unless it can prove otherwise. Note that disabling
77 * of preemption (including disabling irqs) counts as an RCU-sched
78 * read-side critical section. This is useful for debug checks in functions
79 * that required that they be called within an RCU-sched read-side
80 * critical section.
81 *
82 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
83 * and while lockdep is disabled.
84 *
85 * Note that if the CPU is in the idle loop from an RCU point of
86 * view (ie: that we are in the section between rcu_idle_enter() and
87 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
88 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs
89 * that are in such a section, considering these as in extended quiescent
90 * state, so such a CPU is effectively never in an RCU read-side critical
91 * section regardless of what RCU primitives it invokes. This state of
92 * affairs is required --- we need to keep an RCU-free window in idle
93 * where the CPU may possibly enter into low power mode. This way we can
94 * notice an extended quiescent state to other CPUs that started a grace
95 * period. Otherwise we would delay any grace period as long as we run in
96 * the idle task.
97 *
98 * Similarly, we avoid claiming an SRCU read lock held if the current
99 * CPU is offline.
100 */
101int rcu_read_lock_sched_held(void)
102{
103 int lockdep_opinion = 0;
104
105 if (!debug_lockdep_rcu_enabled())
106 return 1;
107 if (!rcu_is_watching())
108 return 0;
109 if (!rcu_lockdep_current_cpu_online())
110 return 0;
111 if (debug_locks)
112 lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
113 return lockdep_opinion || !preemptible();
114}
115EXPORT_SYMBOL(rcu_read_lock_sched_held);
116#endif
117
118#ifndef CONFIG_TINY_RCU
119
120/*
121 * Should expedited grace-period primitives always fall back to their
122 * non-expedited counterparts? Intended for use within RCU. Note
123 * that if the user specifies both rcu_expedited and rcu_normal, then
124 * rcu_normal wins. (Except during the time period during boot from
125 * when the first task is spawned until the rcu_exp_runtime_mode()
126 * core_initcall() is invoked, at which point everything is expedited.)
127 */
128bool rcu_gp_is_normal(void)
129{
130 return READ_ONCE(rcu_normal) &&
131 rcu_scheduler_active != RCU_SCHEDULER_INIT;
132}
133EXPORT_SYMBOL_GPL(rcu_gp_is_normal);
134
135static atomic_t rcu_expedited_nesting =
136 ATOMIC_INIT(IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT) ? 1 : 0);
137
138/*
139 * Should normal grace-period primitives be expedited? Intended for
140 * use within RCU. Note that this function takes the rcu_expedited
141 * sysfs/boot variable and rcu_scheduler_active into account as well
142 * as the rcu_expedite_gp() nesting. So looping on rcu_unexpedite_gp()
143 * until rcu_gp_is_expedited() returns false is a -really- bad idea.
144 */
145bool rcu_gp_is_expedited(void)
146{
147 return rcu_expedited || atomic_read(&rcu_expedited_nesting) ||
148 rcu_scheduler_active == RCU_SCHEDULER_INIT;
149}
150EXPORT_SYMBOL_GPL(rcu_gp_is_expedited);
151
152/**
153 * rcu_expedite_gp - Expedite future RCU grace periods
154 *
155 * After a call to this function, future calls to synchronize_rcu() and
156 * friends act as the corresponding synchronize_rcu_expedited() function
157 * had instead been called.
158 */
159void rcu_expedite_gp(void)
160{
161 atomic_inc(&rcu_expedited_nesting);
162}
163EXPORT_SYMBOL_GPL(rcu_expedite_gp);
164
165/**
166 * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation
167 *
168 * Undo a prior call to rcu_expedite_gp(). If all prior calls to
169 * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(),
170 * and if the rcu_expedited sysfs/boot parameter is not set, then all
171 * subsequent calls to synchronize_rcu() and friends will return to
172 * their normal non-expedited behavior.
173 */
174void rcu_unexpedite_gp(void)
175{
176 atomic_dec(&rcu_expedited_nesting);
177}
178EXPORT_SYMBOL_GPL(rcu_unexpedite_gp);
179
180/*
181 * Inform RCU of the end of the in-kernel boot sequence.
182 */
183void rcu_end_inkernel_boot(void)
184{
185 if (IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT))
186 rcu_unexpedite_gp();
187 if (rcu_normal_after_boot)
188 WRITE_ONCE(rcu_normal, 1);
189}
190
191#endif /* #ifndef CONFIG_TINY_RCU */
192
193#ifdef CONFIG_PREEMPT_RCU
194
195/*
196 * Preemptible RCU implementation for rcu_read_lock().
197 * Just increment ->rcu_read_lock_nesting, shared state will be updated
198 * if we block.
199 */
200void __rcu_read_lock(void)
201{
202 current->rcu_read_lock_nesting++;
203 barrier(); /* critical section after entry code. */
204}
205EXPORT_SYMBOL_GPL(__rcu_read_lock);
206
207/*
208 * Preemptible RCU implementation for rcu_read_unlock().
209 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
210 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
211 * invoke rcu_read_unlock_special() to clean up after a context switch
212 * in an RCU read-side critical section and other special cases.
213 */
214void __rcu_read_unlock(void)
215{
216 struct task_struct *t = current;
217
218 if (t->rcu_read_lock_nesting != 1) {
219 --t->rcu_read_lock_nesting;
220 } else {
221 barrier(); /* critical section before exit code. */
222 t->rcu_read_lock_nesting = INT_MIN;
223 barrier(); /* assign before ->rcu_read_unlock_special load */
224 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
225 rcu_read_unlock_special(t);
226 barrier(); /* ->rcu_read_unlock_special load before assign */
227 t->rcu_read_lock_nesting = 0;
228 }
229#ifdef CONFIG_PROVE_LOCKING
230 {
231 int rrln = READ_ONCE(t->rcu_read_lock_nesting);
232
233 WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
234 }
235#endif /* #ifdef CONFIG_PROVE_LOCKING */
236}
237EXPORT_SYMBOL_GPL(__rcu_read_unlock);
238
239#endif /* #ifdef CONFIG_PREEMPT_RCU */
240
241#ifdef CONFIG_DEBUG_LOCK_ALLOC
242static struct lock_class_key rcu_lock_key;
243struct lockdep_map rcu_lock_map =
244 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
245EXPORT_SYMBOL_GPL(rcu_lock_map);
246
247static struct lock_class_key rcu_bh_lock_key;
248struct lockdep_map rcu_bh_lock_map =
249 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
250EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
251
252static struct lock_class_key rcu_sched_lock_key;
253struct lockdep_map rcu_sched_lock_map =
254 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
255EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
256
257static struct lock_class_key rcu_callback_key;
258struct lockdep_map rcu_callback_map =
259 STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
260EXPORT_SYMBOL_GPL(rcu_callback_map);
261
262int notrace debug_lockdep_rcu_enabled(void)
263{
264 return rcu_scheduler_active != RCU_SCHEDULER_INACTIVE && debug_locks &&
265 current->lockdep_recursion == 0;
266}
267EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
268
269/**
270 * rcu_read_lock_held() - might we be in RCU read-side critical section?
271 *
272 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
273 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC,
274 * this assumes we are in an RCU read-side critical section unless it can
275 * prove otherwise. This is useful for debug checks in functions that
276 * require that they be called within an RCU read-side critical section.
277 *
278 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
279 * and while lockdep is disabled.
280 *
281 * Note that rcu_read_lock() and the matching rcu_read_unlock() must
282 * occur in the same context, for example, it is illegal to invoke
283 * rcu_read_unlock() in process context if the matching rcu_read_lock()
284 * was invoked from within an irq handler.
285 *
286 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
287 * offline from an RCU perspective, so check for those as well.
288 */
289int rcu_read_lock_held(void)
290{
291 if (!debug_lockdep_rcu_enabled())
292 return 1;
293 if (!rcu_is_watching())
294 return 0;
295 if (!rcu_lockdep_current_cpu_online())
296 return 0;
297 return lock_is_held(&rcu_lock_map);
298}
299EXPORT_SYMBOL_GPL(rcu_read_lock_held);
300
301/**
302 * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
303 *
304 * Check for bottom half being disabled, which covers both the
305 * CONFIG_PROVE_RCU and not cases. Note that if someone uses
306 * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
307 * will show the situation. This is useful for debug checks in functions
308 * that require that they be called within an RCU read-side critical
309 * section.
310 *
311 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
312 *
313 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
314 * offline from an RCU perspective, so check for those as well.
315 */
316int rcu_read_lock_bh_held(void)
317{
318 if (!debug_lockdep_rcu_enabled())
319 return 1;
320 if (!rcu_is_watching())
321 return 0;
322 if (!rcu_lockdep_current_cpu_online())
323 return 0;
324 return in_softirq() || irqs_disabled();
325}
326EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
327
328#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
329
330/**
331 * wakeme_after_rcu() - Callback function to awaken a task after grace period
332 * @head: Pointer to rcu_head member within rcu_synchronize structure
333 *
334 * Awaken the corresponding task now that a grace period has elapsed.
335 */
336void wakeme_after_rcu(struct rcu_head *head)
337{
338 struct rcu_synchronize *rcu;
339
340 rcu = container_of(head, struct rcu_synchronize, head);
341 complete(&rcu->completion);
342}
343EXPORT_SYMBOL_GPL(wakeme_after_rcu);
344
345void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
346 struct rcu_synchronize *rs_array)
347{
348 int i;
349
350 /* Initialize and register callbacks for each flavor specified. */
351 for (i = 0; i < n; i++) {
352 if (checktiny &&
353 (crcu_array[i] == call_rcu ||
354 crcu_array[i] == call_rcu_bh)) {
355 might_sleep();
356 continue;
357 }
358 init_rcu_head_on_stack(&rs_array[i].head);
359 init_completion(&rs_array[i].completion);
360 (crcu_array[i])(&rs_array[i].head, wakeme_after_rcu);
361 }
362
363 /* Wait for all callbacks to be invoked. */
364 for (i = 0; i < n; i++) {
365 if (checktiny &&
366 (crcu_array[i] == call_rcu ||
367 crcu_array[i] == call_rcu_bh))
368 continue;
369 wait_for_completion(&rs_array[i].completion);
370 destroy_rcu_head_on_stack(&rs_array[i].head);
371 }
372}
373EXPORT_SYMBOL_GPL(__wait_rcu_gp);
374
375#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
376void init_rcu_head(struct rcu_head *head)
377{
378 debug_object_init(head, &rcuhead_debug_descr);
379}
380
381void destroy_rcu_head(struct rcu_head *head)
382{
383 debug_object_free(head, &rcuhead_debug_descr);
384}
385
386static bool rcuhead_is_static_object(void *addr)
387{
388 return true;
389}
390
391/**
392 * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
393 * @head: pointer to rcu_head structure to be initialized
394 *
395 * This function informs debugobjects of a new rcu_head structure that
396 * has been allocated as an auto variable on the stack. This function
397 * is not required for rcu_head structures that are statically defined or
398 * that are dynamically allocated on the heap. This function has no
399 * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
400 */
401void init_rcu_head_on_stack(struct rcu_head *head)
402{
403 debug_object_init_on_stack(head, &rcuhead_debug_descr);
404}
405EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
406
407/**
408 * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
409 * @head: pointer to rcu_head structure to be initialized
410 *
411 * This function informs debugobjects that an on-stack rcu_head structure
412 * is about to go out of scope. As with init_rcu_head_on_stack(), this
413 * function is not required for rcu_head structures that are statically
414 * defined or that are dynamically allocated on the heap. Also as with
415 * init_rcu_head_on_stack(), this function has no effect for
416 * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
417 */
418void destroy_rcu_head_on_stack(struct rcu_head *head)
419{
420 debug_object_free(head, &rcuhead_debug_descr);
421}
422EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
423
424struct debug_obj_descr rcuhead_debug_descr = {
425 .name = "rcu_head",
426 .is_static_object = rcuhead_is_static_object,
427};
428EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
429#endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
430
431#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
432void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
433 unsigned long secs,
434 unsigned long c_old, unsigned long c)
435{
436 trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
437}
438EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
439#else
440#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
441 do { } while (0)
442#endif
443
444#ifdef CONFIG_RCU_STALL_COMMON
445
446#ifdef CONFIG_PROVE_RCU
447#define RCU_STALL_DELAY_DELTA (5 * HZ)
448#else
449#define RCU_STALL_DELAY_DELTA 0
450#endif
451
452int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
453static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
454
455module_param(rcu_cpu_stall_suppress, int, 0644);
456module_param(rcu_cpu_stall_timeout, int, 0644);
457
458int rcu_jiffies_till_stall_check(void)
459{
460 int till_stall_check = READ_ONCE(rcu_cpu_stall_timeout);
461
462 /*
463 * Limit check must be consistent with the Kconfig limits
464 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
465 */
466 if (till_stall_check < 3) {
467 WRITE_ONCE(rcu_cpu_stall_timeout, 3);
468 till_stall_check = 3;
469 } else if (till_stall_check > 300) {
470 WRITE_ONCE(rcu_cpu_stall_timeout, 300);
471 till_stall_check = 300;
472 }
473 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
474}
475
476void rcu_sysrq_start(void)
477{
478 if (!rcu_cpu_stall_suppress)
479 rcu_cpu_stall_suppress = 2;
480}
481
482void rcu_sysrq_end(void)
483{
484 if (rcu_cpu_stall_suppress == 2)
485 rcu_cpu_stall_suppress = 0;
486}
487
488static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
489{
490 rcu_cpu_stall_suppress = 1;
491 return NOTIFY_DONE;
492}
493
494static struct notifier_block rcu_panic_block = {
495 .notifier_call = rcu_panic,
496};
497
498static int __init check_cpu_stall_init(void)
499{
500 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
501 return 0;
502}
503early_initcall(check_cpu_stall_init);
504
505#endif /* #ifdef CONFIG_RCU_STALL_COMMON */
506
507#ifdef CONFIG_TASKS_RCU
508
509/*
510 * Simple variant of RCU whose quiescent states are voluntary context switch,
511 * user-space execution, and idle. As such, grace periods can take one good
512 * long time. There are no read-side primitives similar to rcu_read_lock()
513 * and rcu_read_unlock() because this implementation is intended to get
514 * the system into a safe state for some of the manipulations involved in
515 * tracing and the like. Finally, this implementation does not support
516 * high call_rcu_tasks() rates from multiple CPUs. If this is required,
517 * per-CPU callback lists will be needed.
518 */
519
520/* Global list of callbacks and associated lock. */
521static struct rcu_head *rcu_tasks_cbs_head;
522static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
523static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
524static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
525
526/* Track exiting tasks in order to allow them to be waited for. */
527DEFINE_SRCU(tasks_rcu_exit_srcu);
528
529/* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */
530static int rcu_task_stall_timeout __read_mostly = HZ * 60 * 10;
531module_param(rcu_task_stall_timeout, int, 0644);
532
533static void rcu_spawn_tasks_kthread(void);
534static struct task_struct *rcu_tasks_kthread_ptr;
535
536/*
537 * Post an RCU-tasks callback. First call must be from process context
538 * after the scheduler if fully operational.
539 */
540void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
541{
542 unsigned long flags;
543 bool needwake;
544 bool havetask = READ_ONCE(rcu_tasks_kthread_ptr);
545
546 rhp->next = NULL;
547 rhp->func = func;
548 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
549 needwake = !rcu_tasks_cbs_head;
550 *rcu_tasks_cbs_tail = rhp;
551 rcu_tasks_cbs_tail = &rhp->next;
552 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
553 /* We can't create the thread unless interrupts are enabled. */
554 if ((needwake && havetask) ||
555 (!havetask && !irqs_disabled_flags(flags))) {
556 rcu_spawn_tasks_kthread();
557 wake_up(&rcu_tasks_cbs_wq);
558 }
559}
560EXPORT_SYMBOL_GPL(call_rcu_tasks);
561
562/**
563 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
564 *
565 * Control will return to the caller some time after a full rcu-tasks
566 * grace period has elapsed, in other words after all currently
567 * executing rcu-tasks read-side critical sections have elapsed. These
568 * read-side critical sections are delimited by calls to schedule(),
569 * cond_resched_rcu_qs(), idle execution, userspace execution, calls
570 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
571 *
572 * This is a very specialized primitive, intended only for a few uses in
573 * tracing and other situations requiring manipulation of function
574 * preambles and profiling hooks. The synchronize_rcu_tasks() function
575 * is not (yet) intended for heavy use from multiple CPUs.
576 *
577 * Note that this guarantee implies further memory-ordering guarantees.
578 * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
579 * each CPU is guaranteed to have executed a full memory barrier since the
580 * end of its last RCU-tasks read-side critical section whose beginning
581 * preceded the call to synchronize_rcu_tasks(). In addition, each CPU
582 * having an RCU-tasks read-side critical section that extends beyond
583 * the return from synchronize_rcu_tasks() is guaranteed to have executed
584 * a full memory barrier after the beginning of synchronize_rcu_tasks()
585 * and before the beginning of that RCU-tasks read-side critical section.
586 * Note that these guarantees include CPUs that are offline, idle, or
587 * executing in user mode, as well as CPUs that are executing in the kernel.
588 *
589 * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
590 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
591 * to have executed a full memory barrier during the execution of
592 * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
593 * (but again only if the system has more than one CPU).
594 */
595void synchronize_rcu_tasks(void)
596{
597 /* Complain if the scheduler has not started. */
598 RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
599 "synchronize_rcu_tasks called too soon");
600
601 /* Wait for the grace period. */
602 wait_rcu_gp(call_rcu_tasks);
603}
604EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
605
606/**
607 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
608 *
609 * Although the current implementation is guaranteed to wait, it is not
610 * obligated to, for example, if there are no pending callbacks.
611 */
612void rcu_barrier_tasks(void)
613{
614 /* There is only one callback queue, so this is easy. ;-) */
615 synchronize_rcu_tasks();
616}
617EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
618
619/* See if tasks are still holding out, complain if so. */
620static void check_holdout_task(struct task_struct *t,
621 bool needreport, bool *firstreport)
622{
623 int cpu;
624
625 if (!READ_ONCE(t->rcu_tasks_holdout) ||
626 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
627 !READ_ONCE(t->on_rq) ||
628 (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
629 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
630 WRITE_ONCE(t->rcu_tasks_holdout, false);
631 list_del_init(&t->rcu_tasks_holdout_list);
632 put_task_struct(t);
633 return;
634 }
635 if (!needreport)
636 return;
637 if (*firstreport) {
638 pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
639 *firstreport = false;
640 }
641 cpu = task_cpu(t);
642 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
643 t, ".I"[is_idle_task(t)],
644 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
645 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
646 t->rcu_tasks_idle_cpu, cpu);
647 sched_show_task(t);
648}
649
650/* RCU-tasks kthread that detects grace periods and invokes callbacks. */
651static int __noreturn rcu_tasks_kthread(void *arg)
652{
653 unsigned long flags;
654 struct task_struct *g, *t;
655 unsigned long lastreport;
656 struct rcu_head *list;
657 struct rcu_head *next;
658 LIST_HEAD(rcu_tasks_holdouts);
659
660 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */
661 housekeeping_affine(current);
662
663 /*
664 * Each pass through the following loop makes one check for
665 * newly arrived callbacks, and, if there are some, waits for
666 * one RCU-tasks grace period and then invokes the callbacks.
667 * This loop is terminated by the system going down. ;-)
668 */
669 for (;;) {
670
671 /* Pick up any new callbacks. */
672 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
673 list = rcu_tasks_cbs_head;
674 rcu_tasks_cbs_head = NULL;
675 rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
676 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
677
678 /* If there were none, wait a bit and start over. */
679 if (!list) {
680 wait_event_interruptible(rcu_tasks_cbs_wq,
681 rcu_tasks_cbs_head);
682 if (!rcu_tasks_cbs_head) {
683 WARN_ON(signal_pending(current));
684 schedule_timeout_interruptible(HZ/10);
685 }
686 continue;
687 }
688
689 /*
690 * Wait for all pre-existing t->on_rq and t->nvcsw
691 * transitions to complete. Invoking synchronize_sched()
692 * suffices because all these transitions occur with
693 * interrupts disabled. Without this synchronize_sched(),
694 * a read-side critical section that started before the
695 * grace period might be incorrectly seen as having started
696 * after the grace period.
697 *
698 * This synchronize_sched() also dispenses with the
699 * need for a memory barrier on the first store to
700 * ->rcu_tasks_holdout, as it forces the store to happen
701 * after the beginning of the grace period.
702 */
703 synchronize_sched();
704
705 /*
706 * There were callbacks, so we need to wait for an
707 * RCU-tasks grace period. Start off by scanning
708 * the task list for tasks that are not already
709 * voluntarily blocked. Mark these tasks and make
710 * a list of them in rcu_tasks_holdouts.
711 */
712 rcu_read_lock();
713 for_each_process_thread(g, t) {
714 if (t != current && READ_ONCE(t->on_rq) &&
715 !is_idle_task(t)) {
716 get_task_struct(t);
717 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
718 WRITE_ONCE(t->rcu_tasks_holdout, true);
719 list_add(&t->rcu_tasks_holdout_list,
720 &rcu_tasks_holdouts);
721 }
722 }
723 rcu_read_unlock();
724
725 /*
726 * Wait for tasks that are in the process of exiting.
727 * This does only part of the job, ensuring that all
728 * tasks that were previously exiting reach the point
729 * where they have disabled preemption, allowing the
730 * later synchronize_sched() to finish the job.
731 */
732 synchronize_srcu(&tasks_rcu_exit_srcu);
733
734 /*
735 * Each pass through the following loop scans the list
736 * of holdout tasks, removing any that are no longer
737 * holdouts. When the list is empty, we are done.
738 */
739 lastreport = jiffies;
740 while (!list_empty(&rcu_tasks_holdouts)) {
741 bool firstreport;
742 bool needreport;
743 int rtst;
744 struct task_struct *t1;
745
746 schedule_timeout_interruptible(HZ);
747 rtst = READ_ONCE(rcu_task_stall_timeout);
748 needreport = rtst > 0 &&
749 time_after(jiffies, lastreport + rtst);
750 if (needreport)
751 lastreport = jiffies;
752 firstreport = true;
753 WARN_ON(signal_pending(current));
754 list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
755 rcu_tasks_holdout_list) {
756 check_holdout_task(t, needreport, &firstreport);
757 cond_resched();
758 }
759 }
760
761 /*
762 * Because ->on_rq and ->nvcsw are not guaranteed
763 * to have a full memory barriers prior to them in the
764 * schedule() path, memory reordering on other CPUs could
765 * cause their RCU-tasks read-side critical sections to
766 * extend past the end of the grace period. However,
767 * because these ->nvcsw updates are carried out with
768 * interrupts disabled, we can use synchronize_sched()
769 * to force the needed ordering on all such CPUs.
770 *
771 * This synchronize_sched() also confines all
772 * ->rcu_tasks_holdout accesses to be within the grace
773 * period, avoiding the need for memory barriers for
774 * ->rcu_tasks_holdout accesses.
775 *
776 * In addition, this synchronize_sched() waits for exiting
777 * tasks to complete their final preempt_disable() region
778 * of execution, cleaning up after the synchronize_srcu()
779 * above.
780 */
781 synchronize_sched();
782
783 /* Invoke the callbacks. */
784 while (list) {
785 next = list->next;
786 local_bh_disable();
787 list->func(list);
788 local_bh_enable();
789 list = next;
790 cond_resched();
791 }
792 schedule_timeout_uninterruptible(HZ/10);
793 }
794}
795
796/* Spawn rcu_tasks_kthread() at first call to call_rcu_tasks(). */
797static void rcu_spawn_tasks_kthread(void)
798{
799 static DEFINE_MUTEX(rcu_tasks_kthread_mutex);
800 struct task_struct *t;
801
802 if (READ_ONCE(rcu_tasks_kthread_ptr)) {
803 smp_mb(); /* Ensure caller sees full kthread. */
804 return;
805 }
806 mutex_lock(&rcu_tasks_kthread_mutex);
807 if (rcu_tasks_kthread_ptr) {
808 mutex_unlock(&rcu_tasks_kthread_mutex);
809 return;
810 }
811 t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
812 BUG_ON(IS_ERR(t));
813 smp_mb(); /* Ensure others see full kthread. */
814 WRITE_ONCE(rcu_tasks_kthread_ptr, t);
815 mutex_unlock(&rcu_tasks_kthread_mutex);
816}
817
818#endif /* #ifdef CONFIG_TASKS_RCU */
819
820/*
821 * Test each non-SRCU synchronous grace-period wait API. This is
822 * useful just after a change in mode for these primitives, and
823 * during early boot.
824 */
825void rcu_test_sync_prims(void)
826{
827 if (!IS_ENABLED(CONFIG_PROVE_RCU))
828 return;
829 synchronize_rcu();
830 synchronize_rcu_bh();
831 synchronize_sched();
832 synchronize_rcu_expedited();
833 synchronize_rcu_bh_expedited();
834 synchronize_sched_expedited();
835}
836
837#ifdef CONFIG_PROVE_RCU
838
839/*
840 * Early boot self test parameters, one for each flavor
841 */
842static bool rcu_self_test;
843static bool rcu_self_test_bh;
844static bool rcu_self_test_sched;
845
846module_param(rcu_self_test, bool, 0444);
847module_param(rcu_self_test_bh, bool, 0444);
848module_param(rcu_self_test_sched, bool, 0444);
849
850static int rcu_self_test_counter;
851
852static void test_callback(struct rcu_head *r)
853{
854 rcu_self_test_counter++;
855 pr_info("RCU test callback executed %d\n", rcu_self_test_counter);
856}
857
858static void early_boot_test_call_rcu(void)
859{
860 static struct rcu_head head;
861
862 call_rcu(&head, test_callback);
863}
864
865static void early_boot_test_call_rcu_bh(void)
866{
867 static struct rcu_head head;
868
869 call_rcu_bh(&head, test_callback);
870}
871
872static void early_boot_test_call_rcu_sched(void)
873{
874 static struct rcu_head head;
875
876 call_rcu_sched(&head, test_callback);
877}
878
879void rcu_early_boot_tests(void)
880{
881 pr_info("Running RCU self tests\n");
882
883 if (rcu_self_test)
884 early_boot_test_call_rcu();
885 if (rcu_self_test_bh)
886 early_boot_test_call_rcu_bh();
887 if (rcu_self_test_sched)
888 early_boot_test_call_rcu_sched();
889 rcu_test_sync_prims();
890}
891
892static int rcu_verify_early_boot_tests(void)
893{
894 int ret = 0;
895 int early_boot_test_counter = 0;
896
897 if (rcu_self_test) {
898 early_boot_test_counter++;
899 rcu_barrier();
900 }
901 if (rcu_self_test_bh) {
902 early_boot_test_counter++;
903 rcu_barrier_bh();
904 }
905 if (rcu_self_test_sched) {
906 early_boot_test_counter++;
907 rcu_barrier_sched();
908 }
909
910 if (rcu_self_test_counter != early_boot_test_counter) {
911 WARN_ON(1);
912 ret = -1;
913 }
914
915 return ret;
916}
917late_initcall(rcu_verify_early_boot_tests);
918#else
919void rcu_early_boot_tests(void) {}
920#endif /* CONFIG_PROVE_RCU */